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A Sparse Sensor Placement Strategy based on
Information Entropy and Data Reconstruction for

Ocean Monitoring
Qiannan Zhang, Huafeng Wu, Senior Member, IEEE, Xiaojun Mei, Dezhi Han, Member, IEEE, Mario Donato

Marino, Member, IEEE, Kuan-Ching Li, Senior Member, IEEE, and Song Guo, Fellow, IEEE

Abstract—Sparse sensor placement strategies are applied to 
reconstruct a region’s full-state data conditioned to a limited 
number of sensors, particularly crucial to ocean monitoring 
systems. In maritime systems, existing sparse sensor placement 
methods consider the reconstruction error of data or rely on 
specific requirements. Considering how sensors acquire essential 
information for monitoring systems, the utilization of entropy 
from information theory becomes quite interesting. In this article, 
we show that entropy measurements on different quantities of 
information are sensitive to indicate the border areas, thus 
requiring a balance between the number of sensors needed and 
the amount of information collected by them in coastal areas. 
Due to such, we propose (i) a novel sparse sensor placement 
strategy based on entropy, where the entropy measurements in 
temporal dimension are utilized for sample selection, so portions 
of samples selected are utilized for training data, significantly 
improving the training efficiency w ithout s acrificing ac curacy of 
subsequent data reconstruction. In the proposed strategy, (ii) 
we use orthogonal triangle decomposition from linear algebra, 
where a low-cost sensor is employed as a pivot. In terms of 
spatial dimension, the entropy of each location is adopted as 
entropy weight to reconstruct full-state data. Additionally, (iii) 
the strategy employs a greedy algorithm of weighted column 
pivoting for the orthogonal triangle decomposition, which is 
designed to suit yet effectively seek additional information and 
minimal reconstruction error in each iteration processing step. 
Experimental results using Sea Surface Temperature (SST) data 
show that the proposed strategy outperforms existing methods, 
acquiring more information, ensuring higher efficiency, and 
reducing costs while minimizing reconstruction errors.
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I. INTRODUCTION

sensors are used in a wide range of applications today,
such as intelligent transportation, distributed data security
transmission, etc [1], [55]. Many research technologies cannot
do without sensors [3], [4].However, different locations of
sensors have different impacts; it is well known that different
placement of the sensors in the ocean observation network
directly affects the monitoring efficiency and the costs of
deployment and maintenance, so selecting appropriate sensor
locations is an essential task [5]. Still, a suitable sensor
placement strategy is crucial to accurately reconstruct the
global atmosphere and hydrologic data with a limited number
of sensors [6].

Nowadays, the data collection process in effect for the
global ocean is implemented through the oceanographic buoys
[7] or Unmanned Aerial Vehicles (UAVs) [9], equipped with
different sensors. The more locations sensors place, the more
data availability, and accuracy are achieved.Monitoring sys-
tems are needed here, and monitoring technology has always
been highly valued and widely used [8]. However, due to
the spatial and temporal sparseness of marine monitoring
data [5] and the cost constraints, the full-state measurements
are not feasible because monitoring locations of the entire
ocean is impractical. Mainly, longer offshore distance means
higher deployment and maintenance costs and signifies that
the more limited network resources, the more limited the
use of monitoring ocean sensors. Consequently, an efficient
sparse deployment strategy of sensors based on the monitoring
requirements is needed, which potentially well balances the
data reconstruction errors for the full-state measurements
while keeping the monitoring system costs at lower levels
[10]. Herein to summarize, the sensor placement problem in
the ocean means placing the buoys or UAVs to obtain the
collected data effectively.

To formalize the sparse sensor placement problem based
on ocean data, k sensors are selected in a state space with n
sampling points (corresponding to the locations of all sensors)
aiming to achieve optimal full state reconstruction, i.e., to
sample yet obtain all required information. Important research
[11] has concluded that this is an NP-hard problem as the
number of combination possibilities is as much as

(
n
k

)
=
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n!
(n−k)!k! : since sensor locations should be precisely selective
from global coordinates, the total amount of calculations is
highly demanding due to the ocean’s vastness; that is, larger
k, much larger the number of combination possibilities.

Many sensor deployment strategies have been proposed to
obtain the optimal locations automatically and the number of
sensors. For example, compressed sensing [12] and informa-
tion entropy-based on information theory [13], [14], classi-
fication based on dimensionality reduction [15], [16], among
others. Nevertheless, dimensional reduction only takes account
of the intrinsic feature of data, while compressive sensing
and information entropy cannot balance either accuracy or
information. Inspired by the previous deployment methods
mentioned, it is crucial to consider the sparse reconstruction
errors and obtain information about the monitoring system
using measured data characteristics.

Different from compressive sensing [12] that considers the
reconstruction error, the complex calculation of conditional
information entropy in modal identification [13], and the hy-
brid information-entropy approach [14] for identifying leakage
water distribution networks, we propose a novel optimal sparse
sensor placement strategy where sparse sensing theory is
combined with entropy to process ocean temperature data.
Using entropy in temporal sampling can better characterize
areas with significant temperature gap changes, thus lowering
costs for deployment and maintenance. The proposed strategy
advances the state of the art in the area of sensors placement
via the following contributions:

• The entropy of temporal dimension measurements is
utilized for sampling selection, where partial samples
are used to train data, significantly improving training
efficiency without sacrificing accuracy. The use of en-
tropy aims to sort the samples and improve the training
efficiency, thus better characterizing the boundaries of the
ocean and areas with noticeable changes.

• A sparse sensor placement based on the optimal in-
formation entropy is used to find the optimal sensor
placement strategy. The entropy of each location in the
spatial dimension is adopted as the entropy weight for the
matrix orthogonal triangle decomposition (also known as
QR decomposition). The weighted singular values of the
determinant in QR pivoting are shown to be submodular,
so a greedy algorithm of entropy-weighted QR column
pivoting is proposed, suitable and effective to seek more
information and minimal reconstruction error in each
iteration.

• The performance of the sparse sensor placement based on
the entropy strategy is analyzed in terms of information
acquisition efficiency, reconstruction error, and deploy-
ment costs for training the Sea Surface Temperature
(SST) data and analyzing mechanisms designed to excel
their capabilities.

The remainder of this article is organized as follows. Section
II presents a review of related works, the proposed methodol-
ogy and corresponding algorithm are depicted in Section III,
the experimental results and analysis are shown in Section
IV, and finally, concluding remarks and future directions are

presented in Section V.

II. RELATED WORK AND BACKGROUND

Sensor placement is significant for effective data acquisition
in a monitoring system, which concretely affects data collec-
tion quality. However, data collection has always been one of
the focuses of various research field [17].For such, the sensor
placement problem is detailed in this section, and existing
solutions are also presented.

Padula et al. [18] defined the sensor placement problem
as focused on a set of n possible locations and targets
to locate a subset of k locations (k ≪ n) with the best
performance, depending on the specific problem to be solved
and the application scenario, such as accuracy of information
reconstruction [11], costs [19], [20], utilization of network
resources [21], [22], the capability of events detection [14],
[23], and others. The purpose is to determine the location and
quantity of sensors in the target area that meets a set of given
constraints (such as costs, lifetime, and connectivity), making
the target optimal.

Whilst the next subsections approach the background in-
volved in this investigation, they discuss previous related work.

A. Data-driven Sparse Sampling

Compressed or Sparse Sampling is a technique that aims to
mitigate the pros and cons of more sampling by reducing data
reconstruction errors and employing fewer sensors (to reduce
deployment costs). As previously stated, Compressive Sensing
(CS) technology [12] is a well-known technique that recovers
the information of a signal x ∈ Rn with significantly fewer
number of samples compared with Nyquist sampling theory
under the condition of x is k-sparse, and it can be expressed
by the product of universal transform basis ψ ∈ Rn×n

and sparse vector s ∈ Rn (where k values are non-zero).
Which means that the measurement of a system is treated
as a high dimensional state representation, and it could be
approximatively recovered by a low-dimensional measurement
which is given by some selected sensors [15], [24].

In fact, recovering a high-dimensional state based on CS
with random measurements on a universal basis can be suitable
for situations where the content of the sampled signal is
unknown. For example, for a physical system, if the type of
signal is known, it is possible to optimize sensor placement by
tailored strategies for specific targets. Among them, the Sin-
gular Value Decomposition (SVD) is an efficient dimensional
reduction method for sparse representation of nature-based
phenomena measurements such as from ocean sensors [25].
Therein, SVD explores the dominant low-dimensional modes
of high-dimensional data based on proper orthogonal decom-
position (POD) [26], [27], which also have been employed
to guide the placement and to reconstruct data collected from
of a limited number of ocean-placed velocity and temperature
sensors [28]. To approach the reconstruction measurements,
the ℓ2 optimal POD is adopted to represent the low-rank
structure of the system and the ℓ1 sparse sampling method
in CS theory is combined to correct the bifurcation regime
from noisy measurements in [29]. In subsequent studies, B. W.
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Brunton et al. [30] proposed an algorithm to solve sparse sen-
sor placement optimization for classification (SSPOC), where
the sparsity-promoting ℓ1 minimization is adopted to find the
sparse sensor locations that correspond to the fewest non-
zero entries of the sparse measurement vector to reconstruct
the measurement vector of high-dimensional space in feature
space.

Sparse sensor placement based on POD has also been
developed and discussed by other researches [11], [31], and
one of the disadvantages of this technique is to achieve the
target of modal approximation with a full state reconstruction.
However, due to the fact that the number of POD modes
are increased, the presence of more modes would lead to an
over-fitting and lower level of reconstruction (uninformative)
considering a wide scale of SST. Therefore, in this case, sparse
sensor placement based on QR columns pivot is employed
to better reconstruct the measurements of the entire system
by filtering uninformative features. QR pivot is a fast and
efficient method to find near-optimal data-driven POD basis
for dimensionality reduction [32]. However, it only focuses
on reconstruction errors of the data without considering the
obtained information compared, which is the focus of the novel
sparse sensor placement strategy proposed here in this report.

The previous sparse sensor placement methods based on
CS are data-driven and likely leverage the intrinsic values
of the measured data. Likewise, the impact of the high-level
information features of the data on sensor placement is not
considered as entropy in our approach.

B. Entropy Maximization

For real monitoring systems, it is necessary to consider
the amount of knowledge/information that can be acquired.
In general, the amount of information obtained is measured
by the entropy of information theory. Shewry et al. [33] first
proposed maximum entropy sampling and applied it to the
human population to find an optimal resolution size of poten-
tial observation sites. The sampled population measurement
had the maximum quantity of variability conditioned on the
unsampled one, itself with minimum variability. Similarly,
Ramakrishnan et al. [34] have proposed an active data mining
mechanism for qualitative analysis of spatial data sets that
utilize entropy-based functions defined on spatial aggregation
in order to optimize sample selection and reduce uncertainty
in the process of selections of targets of these geographical
locations. In the case of the previous study, the neighborhoods
around each location were considered to define its distribution
and scale the variance-based design criterion, which could
instinctively distinguish the amount of high-level information
in the acquired data. These methods mainly focus on local
data variability without considering the state reconstruction of
the overall data, which is considered in this paper.

For ocean monitoring, maximization of mutual information
was utilized to plan the navigation waypoints of Autonomous
Underwater Vehicles (AUVs), which could maximize the
information-gain and save time and energy when collecting
ocean data [35]. To reconstruct the distribution of density for
Antarctic krill, maximum-entropy method was iterative and

combined with the Bayesian approach of evaluating the pos-
terior probability of candidate solutions, which had proved to
be powerful in biological systems [36]. The maximum entropy
method also was applied in reconstructing the ocean by using
radial basis functions [37], and this method performed better
than the least squared method that was subject to appropriate
constraint information [38]. Due to the limitation of these
application scenarios, the methods do not take into account
the entropy representation of ocean boundaries in the process
of data reconstruction.

Entropy-based maximization methods also appear in some
particular monitoring environments. For sensor placement,
Christodoulou S.E. et al. [39] considered the sensor placement
optimization problem as an entropy maximization problem,
in which the number and locations of sensors are placed by
maximizing the knowledge/information. Furthermore, sensor
placement was carried out by maximizing all possible sensor
sets of conditional information entropy indexes [13]. Another
example of entropy-based methods can be found in leak
detections, where a pressure sensor placement method based
on the value of information and transformation entropy was
proposed to optimize the entire decision space [14].

One of the disadvantages of the entropy criterion is not to
consider the predicted quality of the placement of sensors in
predetermined locations: traditional entropy prefers to place
the sensor in the area (boarders) of interest in the actual mon-
itoring of the particular physical phenomena. These methods
either do not require data reconstruction in their applicable
scenarios, or only consider the information properties of the
data without considering the reconstruction quality, which is
one of the aspects considered in our approach.

There is a requirement to place a sensor, considering both
the reconstruction error and the knowledge/information to be
acquired to optimize the monitor efficiency. To measure the
impact of information, the entropy weight method is adopted to
investigate the weight of each index, which is derived from the
statistical information of measured data [40]. In different appli-
cations, the index could indicate different features, conditions,
influences, types, or other factors of analyzed objects, such
as the ship types and regions in evaluating marine accidents
[41], different influence parameters, for example, the ones
associated with tidal flat resources [42], or even for analyzing
eco-environment vulnerability [43].

Notably, the entropy criterion tends to deploy sensors near
the boundary of the monitoring area, and this method shows
significant variability. Especially for ocean monitoring, the
ocean boundary is undoubtedly an area with relatively dense
human activities and lower deployment and maintenance costs.
Due to the high density, the monitoring of this area refers to
the entire monitoring data distribution valuable, because the
adequate information obtained by monitoring this particular
area will affect the application of more data to be monitored.
The entropy weight method only considers the influence of
the amount of information on selecting certain indexes.

Because of the entropy criterion has the property to deploy
sensors near the boundary of monitoring area and the QR
decomposition has been proved to be able to reconstruct data
accurately, the strategy proposed here takes into account the
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accuracy of data reconstruction and obtain more information at
the same time, as well as the deploy and maintenance costs.

Next, we describe in section III the proposed strategy to
leverage the effect of entropy when placing sensors for ocean
monitoring.

Fig. 1. Flow diagram of the sparse sensor placement based on entropy method.

III. PROPOSED STRATEGY

This section introduces the proposed novel sparse sensor
placement strategy based on the entropy method and data
reconstruction for ocean monitoring. We aim to show that the
greedy algorithm is suitable for finding more information in
each iteration of the weighted determinant in the sparse sensor
placement problem and also that the complexity (order) can
minimize costs.

Terminologies used throughout the text are depicted in Table
I.

TABLE I
TERMINOLOGY AND NOTATION

Notation Description
m Number of measurements
n Number of candidate sensors, corresponding to locations
γ Predefined rates of selected samples
m

′
Number of measurements with higher entropy m

′
= mγ

p Number of selected sensors
J Index set of selected sensors |J | = p

Er{J} Reconstruction error of index set J
ej The entropy of j-th sensor, j = 1, 2, . . . , n
ωj The entropy weight of j-th sensor

En{J} The entropy of selected sensors in the index set J

A. Organization of the Proposed Strategy

Fig. 1 depicts the two composing parts of the proposed
strategy as follows:

• In part (i), the selection of the samples is performed based
on information entropy in the temporal dimension of
measurement data. Therein, the entropy method evaluates
each sample’s information for all samples and then sorts
the samples by the evaluated entropy values. After that,
the most valuable measurements which account for γ in
the total number of samples are selected as training data.
In this paper, the entropy of each sample in SST [44]
is calculated in temporal dimension for measurements of
the data selection (as further explained and depicted in
Eq. 1). Next, the samples are ordered by the calculated
entropy values and utilized the first m

′
samples most

informative in the temporal dimension to improve the
training efficiency, as in [45]. That is, m

′
= mγ.

Herein, m is the total number of samples in the temporal
dimension, γ is the proportionality coefficient.

• In part (ii), the locations of the sensor are selected
by QR factorization under the effect of entropy weight
for all candidate locations in the spatial dimension of
measurement data. Therein, the entropy of each location
is obtained from the selected samples in the first part.
Then, QR factorization is carried out to update each step
of the decomposition procedure in which the entropy is
applied to select the largest entropy-weighted norm of
candidate locations so as to obtain the partial permutation
matrix, which contains the locations of selected sensors.
Each of the blocks in Fig1 is described further.

We start with the description of the entropy sensor placement
method. Therein, the entropy method is introduced firstly; the
theory of sparse sensor placement under entropy weight is
introduced secondly; the detailed algorithm is given finally.

B. Entropy method for sensor placement

The entropy of evaluated objects in temporal dimension
and spatial dimension can be calculated in the same way but
separately. The calculation procedure of candidate locations’
entropy in spatial dimensions is taken as an example as
follows:

For sparse sensor placement in this work, we de-
fine that the entropy of selected sensors in J(J =
{J1, J2, . . . , Jp} ⊂ {1, . . . , n}) is represented as En{J} =
[eJ1

, eJ2
, . . . , eJp

] and the corresponding entropy weight as
ω{J} = [ωJ1

, ωJ2
, . . . , ωJp

], wherein, according to [41], [46]–
[48], ej can be expressed as:

ej = −k
m∑
i=1

pij ln(pij) (1)

And we have:
ωj =

1− ej
n∑

j=1

(1− ej)
(2)

wherein, j = J1, J2, . . . , Jp. ωj is the entropy of each
evaluation object (the selected sensor in this paper), also called
the entropy weight method that is practical for evaluating the
importance of real monitor objects [41], [46]–[48].

Generally, k = 1/ln(m) and m is the number of evaluating
objects (the selected samples or sensors in this paper). For
the positive indicator, the larger the value of ej is, the more
significant the effect of the j-th indicator for the results. The
smaller the indicator entropy value, the greater the degree of
data dispersion and therefore, the more significant the impact
on the comprehensive evaluation of the indicator.

Then, the next step is to calculate the proportion equation
pij of the i-th sample of the evaluation object under the j-th
indicator as follows:

pij =
zij

m∑
i=1

zij

(3)

For each indicator, after deleting null values in the original
sparse samples, normalization of the value of indicators can
be done in two ways:
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• Positive indicator:

zij =
xij −min (xj)

max (xj)−min (xj)
(4)

• Or negative indicator:

zij =
max (xj)− xij

max (xj)−min (xj)
(5)

wherein, zij is the normalized value of the i-th evaluating
object on the j-th indicator. i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

According to Caselton et al. investigation [49], monitoring
data of different locations in a natural environment can be
treated as a multivariate normal distribution.The entropy of
evaluated objects has the important feature of additivity when
the evaluated objects are independent variables in the normal
distribution. As a result, the total system entropy of all selected
sensors in J can be calculated as the sum of each entropy in
En{J}, as:

En{J} =

p∑
r=1

eJ(r)
, J(r) ∈ [1, n] (6)

Analogously, the greater the entropy weight, the greater
the overall impact of the selected sensor is. In this article,
the entropy of sensors in the index set J directly affects
the knowledge to be acquired, as explained in the following
subsections.

If it is in the sample selection case, the entropy of samples
in temporal dimension are calculated by converting the index
j to temporal dimension, in which i = 1, 2, . . . , n, j =
1, 2, . . . ,m. In addition, j = J1, J2, . . . , Jm′ ⊂ {1, . . . ,m}
and k = 1/ln(n).

C. Sparse sensor placement based on entropy method

The novel proposed method leverages the effect of entropy
to establish the sparse sensor placement strategy.

In this paper, the locations of the SST data [44] are
indicated by entropy weight for the training process of the
QR-column pivot for sparse data reconstruction. Specifically
in the method, each iteration of QR decomposition depends on
maximizing the determinant and entropy value together, which
is a variation of traditional D-optimality. And, importantly, the
total entropy value of the system with selected sensors is also
determined and analyzed.

Generally, the more sensors are selected by QR factoriza-
tion, the lower the reconstruction error could be achieved, so
more knowledge/information can be implemented. Neverthe-
less, the higher the cost is spawned in equipment, maintenance,
communication, and others. Therefore, when the number of
selected sensors is given, the locations of QR decomposition
for the data matrix are influenced by the entropy weight
method in this part to obtain more knowledge/information.

The entropy of each location can index the variation of
measurement data that corresponds to the size of information.
Although there are often significant variations at regional
boundaries due to the coastal region with much lower cost, the
entropy method is used to influence the process of selecting
sensor positions for QR decomposition column transformation,

retrieving more information at a lower cost.
The detailed theory of the proposed method is furtherly

explained in the following description, and the corresponding
algorithm is given in the following section.

The deployment of the sparse sensor in this research is
based on the principles of sparse sampling [12], given as
follows: For a system with multiple samples, the measurement
set can be represented as a data matrix X = [x1x2 . . . xn]

T ,
xi ∈ Rn is corresponding to all sensors data of i-th sample,
i ∈ [1,m]. According to Manohar et al. [11], sparse sensor
placement means to select p (p≪ n) sensors from n candidate
sensors in order to reconstruct the measurements of the full-
state vector from the actual state vector. Generally, the sparse
sensor placement problem seeks the index set J so that the
reconstruction error Er{J} can be minimized:

argmin
{J}

Er{J}

s.t.|J | = p
(7)

The reconstruction error of selected sensors in J can be
represented as:

Er{J} =
∥X − X̂J∥F
∥X∥F

(8)

wherein ∥·∥F is the Frobenius norm. X̂J is estimated reduced
measurements and X̂J = CJΨ·,J Â, CJ ∈ Rn×p is the select
matrix for measurements X , Ψ·,J ∈ Rn×p is the reduced basis,
A ∈ Rp×m is the coefficients matrix of X in the constructed
modal basis Ψ·,J under the decomposition of X = Ψ·,JA.
Additionally, according to the Eckart Young theorem [50],
the matrix X can be approximately determined by the first p
columns of U ( U is the left m×m unitary matrix of singular
value decomposition of the matrix X). Thus, the basis mode
Ψ·,J for reduced-order modeling is taken as: Ψ·,J = U:,1:p.
When X is unknown, the estimated coefficients of the matrix
Â can be set as:

Â = (CJΨ·,J)
†
X = Θ†X (9)

when let Θ = CJΨ·,J , wherein (·)† is the Moore-Penrose
pseudo-inverse.

To make Er{J} of Eq. (8) minimized, it means to make
∥X −ΘΘ†X∥F minimized. When X −ΘΘ†X = 0, we have
XX† = ΘΘ†. Let MJ = ΘTΘ so that Eq. (7) can be solved
by calculating the spectral radius as in the report [11]:

J∗ = argmax
J,|J|=p

|detMJ | = argmax
J,|J|=p

∏
j

|λj(MJ)|

= argmax
J,|J|=p

∏
j

σj(MJ)
(10)

Therefore, J∗ can be acquired by data matrix Y . QR fac-
torization with column pivoting of Ψ·,J based on approximate
greedy strategy [32] is proved efficiently to solve Eq. (10) and
interpreted later considering the entropy of each column.

Considering the entropy, the sparse sensor placement prob-
lem in Eq. (10) can be re-defined as:

J∗ = argmax
J,|J|=p

∏
j

σj(MJ)ωj (11)
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where the reconstruction contribution of j-th sensor is the
principal factor, but if entropy weight is more significant, the
higher the possibility it is selected, and thus, more knowledge
can be obtained.

According to the D-optimal experiment design [51], the
column selection can be given by first p weighted singular
values of ΘΘT to increase the detMJ . The determinant max-
imizing subset J is submodular according to Clark et al. [10],
which means that it follows the nature of diminishing marginal
returns. Referring to the sub-modular property of entropy
of random variables [52], we have the entropy weighted of
selected sensors by Eq. (11), obeying the diminishing returns
property as Theorem 1.

Theorem 1. For submodular function f1,f2 and f1 ≥ 0,f2 ≥
0, then the function f1f2 is also submodular.

Proof. According to the definition of the submodular function,
for sets A ⊆ B ⊆ V and an element e ∈ V −B, we have:

f1(A ∪ {e})− f1(A) ≥ f1(B ∪ {e})− f1(B) (12)

f2(A ∪ {e})− f2(A) ≥ f2(B ∪ {e})− f2(B) (13)

Given f1 ≥ 0, f2 ≥ 0, multiplying both sides of Eq. (12) by
f2(A∪{e}) and multiply both sides of Eq. (13) by f1(B∪{e})
as:

f1(A ∪ {e})f2(A ∪ {e})− f1(A)f2(A ∪ {e})
≥ f1(B ∪ {e})f2(A ∪ {e})− f1(B)f2(A ∪ {e})

(14)

f2(A ∪ {e})f1(B ∪ {e})− f2(A)f1(B ∪ {e})
≥ f2(B ∪ {e})f1(B ∪ {e})− f2(B)f1(B ∪ {e})

(15)

The two sides of Eq. (14) and Eq. (15) are correspond-
ingly added, then adjust the added items to obtain:

f1(A ∪ {e})f2(A ∪ {e})− f2(B ∪ {e})f1(B ∪ {e})
≥ f1(A)f2(A ∪ {e}) + f1(B ∪ {e})f2(A ∪ {e})−
f1(B)f2(A ∪ {e})− f2(A ∪ {e})f1(B ∪ {e})+
f2(A)f1(B ∪ {e})− f2(B)f1(B ∪ {e})
= f1(B ∪ {e})(f2(A)− f2(B))+

f2(A ∪ {e})(f1(A)− f1(B))

(16)

According to the nature of the submodular function, we
have f1(B ∪ {e}) ≥ f1(B), f2(A ∪ {e}) ≥ f2(A), the Eq.
(16) can be organized as:

f1(A ∪ {e})f2(A ∪ {e})− f2(B ∪ {e})f1(B ∪ {e})
≥ f1(B)(f2(A)− f2(B)) + f2(A)(f1(A)− f1(B))

= f1(A)f2(A)− f1(B)f2(B)

(17)

Next, we have:

f1(A ∪ {e})f2(A ∪ {e})− f1(A)f2(A)
≥ f1(B ∪ {e})f2(B ∪ {e})− f1(B)f2(B)

(18)

Formula 18 satisfies the definition of the submodular
function, so that the function f1f2 is also submodular, and
the proposition is proved.

According to Theorem 1, entropy-weighted determinant
maximizing is also submodular because both the entropy and

singular values are non-negative and submodular. Therefore,
a greedy algorithm is suitable for finding more information
in each iteration of the weighted determinant of the Eq. (11).
The detailed greedy algorithm based on data reconstruction
and entropy is described in next section.

D. Greedy algorithm based on data reconstruction and en-
tropy method

In the greedy algorithm, QR factorization with column
pivoting as a data reconstruction method is adopted here to
find p sensors (pivots) so that base modes Ψ·,J under entropy
weighted could be best sampled. The procedure is described
as follows. For a given data matrix X ∈ Rm×n, m ≤ n, QR
factorization with column pivoting is represented as:

XP = QR (19)

where P ∈ Rn×n is a column permutation matrix for matrix
X , and Q ∈ Rm×m is unitary, R ∈ Rm×n is upper triangular.
Among them, each column corresponds to a candidate loca-
tion of a sensor. Householder transformation is performed to
reflectively permutate the columns of matrix Y and initialized
permutation matrix P0 = In×n. Divide the matrix X into
columns: X = (x1, x2, . . . , xn). Then the column xj with
the largest entropy weighted norm ∥xj∥ωj = σjωj will be
selected to be swapped with the first column x1 and the current
permutation matrix is:

P1 = (ej e2 . . . ej−1 e1 ej+1 . . . en) (20)

where j is the first location index of selected sensors. The
Householder reflection vector of column xj is H1xj , which is
on the hyperplane u = xj − ∥xj∥ej . Therein:

H1xj =

∥xj∥0
...

 (21)

Take w = u
∥u∥ and H1 are given by:

H1 = In×n − 2ww∗ (22)

We can obtain the Householder transformed matrix of XP1:

H1XP1 =


∥xj∥ ∗ ∗ . . .
0
0 X(1)

...
. . .

 (23)

where X(i) is a submatrix of i-th Householder trans-
formation, i = 1, 2, . . . , p. In each transformation, the
column with the largest entropy-weighted norm will be
reflected to the first column of the submatrix X(i).
For the Householder transformed matrix of XP2 and
P2 = (ej ej(2) . . . ej(2)−1 e2 ej(2)+1 . . . en),
steps above are repeated:

H2H1XP2 =


∥xj∥ ∗ ∗ . . .

0 ∥x(1)
j(2)
∥ ∗ . . .

0 0 X(2)

...
...

. . .

 (24)
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The rest transformation can be done in the same manner by
leveraging the Householder reflection until p the order House-
holder matrix Hp−1 is obtained. That is, the decomposition is
achieved as:

Hp−1 . . . H2H1XPp = R (25)

where Pp is the column permutation matrix P in Eq. (11) and
Q = H1

∗H2
∗ . . . Hp−1

∗.
During each iteration, QR factorization updating jq to

maximize entropy weighted |detXq−1|, in which the optimal
solution is greedy-approximate. The computational complexity
of Algorithm 1 is O(mnp), determined by counting operations
of the pseudocode in Algorithm 1.

Algorithm 1 QR pivoting with entropy weight
Input: data matrix X ∈ Rm×n, entropy weight ω ∈ Rn,

number of sensors p ≤ m
Output: Partial permutation matrix P

1: Initial P ←− In×n

2: for q = 1 to n do
3: Jq ←− argmax

j≥q
∥X(q : m, j) · ωj∥

4: Swap (P:,q, P:,Jq
)

5: Calculate Householder reflection Hq such
that(Xq,Jq

Xq+1,Jq
. . . Xm,Jq

)T =
(∥Xq:m,Jq∥ 0 . . . 0)T

6: X ←− diag(I(q−1)×(q−1))XP
7: end for
8: return P:,1:p

As mentioned above, QR factorization with column pivoting
is equivalent to D-optimal experimental design, seeking to
maximize the determinant and volume as well the entropy for
the measurement matrix. Taking CJ

T = P:,1:p and reviewing
the previous Θ = CJΨ·,J then combining Eq. (10), the
optimal sensor selection for Eq. (11) can be obtained, because
rows in Ψ·,J with largest norms (such that the determinant
of Θ) correspond to the optimal sensor locations. Then,
Algorithm 1 can consider both the reconstruction errors and
information simultaneously for the solutions of the sparse
sensor placement problem proposed in Eq. (11).

In addition, Algorithm 1 of QR pivoting with entropy
weight considers the construction error and acquired informa-
tion greedily, which has been proved previously to obey the
diminishing returns property by Theorem 1. Meanwhile, the
entropy of sensor locations can better characterize the ocean
boundary described above, which means that the proposed Al-
gorithm 1 prefers to select locations near the coast with more
variation of monitoring data and lower costs of deployment
and maintenance.

IV. EXPERIMENTAL EVALUATION AND RESULTS

Sparse sensor placement strategy based on entropy is ana-
lyzed in this section in several aspects, including reconstruc-
tion error, deployment costs, and information acquisition rate
in temporal and particularly in dimensions, by comparing it
with QR-decomposition and random selection from Clark et
al. [10].

A. Methodology

We have implemented Algorithm 1 in Matlab (Table II).
To showcase the effect of the aforementioned sparse sensor
placement based on the entropy method, we use the Sea
Surface Temperature (SST) dataset to evaluate and present the
temperature change [44]. The SST dataset is included in the
collected data by the Physical Sciences Laboratory, and the
obtained data is high-resolution data (weekly and monthly time
resolutions) and located in the NOAA Optimum Interpolation
(OI) Sea Surface Temperature (SST) V2 dataset. Downloaded
global temperature data here contains 360*180 locations (cor-
responding to the longitude from 180°E to 180°W and latitude
90°S to 90°N respectively) and 1,600 times measurements
(once a week) that are published from 1990 till present.

TABLE II
EXPERIMENTAL ENVIRONMENT

Hardware
Memory 8G
CPU Intel(R) Core(TM) i7-6700 @3.4GHz

Software
Programming Language Matlab
Operating System Windows 10

TABLE III
PARAMETERS FOR EXPERIMENT PROCESSING

Parameters Value
Number of candidate locations in

the ocean 44219

Number of total samples 1600
Sample selection ratio γ 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Number of selected samples 1600*γ
Number of training samples 1600*γ*80%

Number of validation samples 1600*γ*20%

Number of selected sensors: p 5, 10, 25, 50, 75, 100, 150, 200,
250, 300

Number of cross-validation 10

Importantly, the measurement and number of locations
adopted in this paper follow other well-known reports and
their methodologies [10] [32]. Among them, we similarly
adopt 44219 locations from the SST dataset are candidate
locations of the global sea, wherein the remaining 360*180-
44219 locations of data on land are not considered, whilst their
entropy default values are set to 0. Table II shows the features
of the environment used to develop the algorithm and perform
the experiments. Table III lists the main parameters employed
for Algorithm 1’s processing.
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Fig. 2. Entropy of global sea surface temperature

Before the training of Algorithm 1, the entropy of each
measurement is calculated first, comprising 44,219 locations
of the global sea as the first part in Fig. 1. Then the most
valuable measurements selected by γ are taken as training
data. At the same time, the entropy weight of each location
is also calculated, and the entropy weight values of the global
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Fig. 3. Total entropy of a different number of sensors.
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Fig. 4. Entropy increasing rates with a different number of sensors.

sea are displayed in Fig. 2. As per the negative indicator
in Eq. (5) and Eq. (2), the entropy weight of each location
comprises 1,600 times temperature data, in which the negative
indicator adopted in Fig. 2 conveys the lower entropy that
represents more information except for the locations of land. If
the entropy weight is calculated as the positive indicator in Eq.
(4) and Eq. (2), the higher entropy magnitude will represent
more information.

It is worth noting that, to validate our measurements, Fig.
2 shows a significant variation of the temperature around the
coast near the equator and mid-latitudes, and these tempera-
tures match the distribution of El Niño.

Importantly, in this article, 80% of the samples are selected
and applied as training data, while the remaining as verification
data. Because random interpolation is superior to extrapola-
tion, the random interpolation method is adopted to select the
training data and to cross-validate them.

Once set the reduced-order mode Ψ·,J as a random mode
Ψ·,J RM = GX as per randomized linear algebra, G ∈
R2p×m and its elements are standard normal distribution. We
also set the reduced order mode Ψ·,J as the first p singular
vectors of U from the selected training data matrix X for
comparison purposes.

B. Analyses of the Sparse sensor placement based on entropy
weight method

Sparse sensor placement based on the entropy weight
method is carried out after data pre-processing, as per Al-
gorithm 1 in Section III-D. Next, this method is compared
with the unweighted QR decomposition and random selection
method.

1) Total entropy of different methods:
Fig. 3 shows three different methods to illustrate the dif-

ferent number of sensors for SST data reconstruction and
the total information/knowledge varying with the number of
sensors and the different methods. In this case, all samples are
conducted to be calculated, which means γ = 1. RM QR W

represents the sparse sensor placement based on the entropy
weight method and data reconstruction in this paper, wherein
the random mode basis is used for QR-decomposition, and
the entropy weight method is used to affect the procedure
of D optimization under QR-decomposition. Correspondingly,
the unweighted QR algorithm is expressed as RM QR within
a random mode basis, while RM RS represents the random
selection method based on a random mode basis.

As shown in Fig. 3, the entropy obtained by RM QR W
is the smallest among the three methods when deploying the
different number of sensors. Due to negative indicators, the
smaller the entropy, the greater the amount of information.
That is, the sensor deployed by the method proposed in this
work can obtain the most information compared to the other
two methods.

To highlight, Fig. 4 shows the entropy growth rate of
different numbers of sensor nodes; that is, the average amount
of information that each sensor node obtains when different
numbers of sensors are deployed. Similarly, the smaller the
entropy, the greater the amount of information. We can see
that the method proposed in this work can obtain the most
information when deploying a different number of sensors.

2) Effects of different γ on error and entropy:
As depicted in Figs. 5a, 5b, 5c and 5d, when γ is different,

the reconstruction error varies with the number of selected
sensors for the three methods. It has been shown that sample
selection based on entropy value can reduce the amount of
training data while improving the reconstruction accuracy. In
the first case, when the selected number increases, the corre-
sponding reconstruction error decreases, and when the param-
eter γ increases, the reconstruction errors also increase when
the number of sensors is smaller than 200 for RM QR W
in Fig. 5a and RM QR in Fig. 5b. This behavior shows
that the selected samples with larger entropy values are more
conducive to data reconstruction in these figures, which means
the smaller γ will bring lower reconstruction error for a smaller
number of sensors. In the second case, reconstruction errors
also increase as the number of selected samples with smaller
entropy values increases with larger γ. However, when the
number of sensors is larger (when it reaches 200, 250, and
300, as shown in Figs. 5a and 5b, the value of γ can be 0.5 to
0.7 to reduce the impact on reconstruction errors positively).
This indicates that, when the number of sensors selected is
large, partial samples with larger entropy can be used to
better reconstruct the data without affecting the reconstruction
accuracy, significantly reducing the computational complexity
of the data training algorithm for selecting sparse sensors.
Furthermore, as shown in Fig. 5c, when the number of sensors
is small, the reconstruction error is high and unstable for
RM RS. In addition, in the following comparison, we also
compare the entropy maximization method, named RM EN,
which is similar to [53] but here the total value of entropy
adopts the Eq. (6), to compare the reconstruction error and
cost. As shown in Fig. 5d, when the number of sensors is large
(p=300), a γ of 0.5 or 0.6 can obtain a lower reconstruction
error, while the error value is much larger than the method of
RM QR W in Fig. 5a and RM QR in Fig. 5b.

For the relationship between entropy growth rate and γ,
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Fig. 5. Reconstruction error with different γ.

0.4 0.5 0.6 0.7 0.8 0.9 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

E
n

tr
o

p
y
 i
n

c
re

a
s
in

g
 r

a
te

s
,p

=
5

0

RM__QR__W

RM__QR

RM__RS

RM__EN

(a) p=50

0.4 0.5 0.6 0.7 0.8 0.9 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

E
n

tr
o

p
y
 i
n

c
re

a
s
in

g
 r

a
te

s
,p

=
1

0
0

RM__QR__W

RM__QR

RM__RS

RM__EN

(b) p=100

0.4 0.5 0.6 0.7 0.8 0.9 1
0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

E
n

tr
o

p
y
 i
n

c
re

a
s
in

g
 r

a
te

s
,p

=
3

0
0

RM__QR__W

RM__QR

RM__RS

RM__EN

(c) p=300

Fig. 6. Entropy increasing rates with different γ.

we turn attention to Figs. 6a, 6b and 6c. When the number
of sensors deployed is different, the entropy growth rates of
the four methods are also different. For instance, the entropy
increasing rates of RM EN is the lowest because it only con-
siders maximizing entropy. However, the increasing entropy
rates of RM QR W is much lower than the other two methods,
which shows that RM QR W can gain more information for
50, 100, and 300 sensors. The RM QR method also seeks a
better amount of information to a certain extent, although its
primary purpose is to focus on the internal characteristics of
the data.

Again, if the value of γ is 0.5 to 0.7, then a relatively
good result of the entropy increase rate of RM QR W and
RM QR can be obtained, which undoubtedly saves the amount
of calculation in data training by Algorithm 1 significantly.
Although γ has little effect on the entropy increase rate
when the number of sensors is relatively large (p=300), it
also shows that the sample screening based on the entropy
value can drastically reduce the amount of calculation while
obtaining better benefits. Because of the greedy nature of the
RM QR W and RM QR, when the number of sensors is
small, the entropy increase rate is more prominent. Neverthe-
less, due to the randomness of the RM RS method, different
γ and different numbers of sensors have almost no influence
on the information growth rate.

3) Reconstruction errors and costs for different numbers of
sensors:

Reconstruction errors of the three methods are also com-
pared in Figs. 7a, 7b, 7c and 7d. We observe that, the smaller
the number of sensors, the larger the reconstruction error
for all four methods. Among them, the QR algorithm based
on D optimization (RM QR) has the slightest error because
it only considers minimizing the data reconstruction error.
The method RM QR W sacrifices reconstruction accuracy
during the procedure of data reconstruction when seeking the

maximum information. In addition, the reconstruction error
of the randomly selected method is slightly lower than the
method proposed in this work when the number of sensors
is large, but much worse than the proposed method when
the number of sensors is small. The reconstruction error of
RM EN performs the worst because the reconstruction error
is not considered.

Figs. 7e, 7f, 7g and 7h show the costs of all four methods,
which gradually increase as the number of sensors increases.
However, the cost of RM RS grows much faster than the
other two methods, because the selected sensors are randomly
distributed in the global sea, so there are a large number
of sensors far away from shore, increasing the total cost.
When a different number of sensors is selected, the cost of
the proposed method RM QR W is relatively close to that
of RM QR. Among them, when γ is small ( γ = 0.4),
the costs of the proposed method RM QR W are lower than
the method RM QR due to the samples selection operation,
as depicted in Fig. 7e. Referring to Fig. 7f to Fig. 7h, the
comparison results of cost change slightly when γ is increased.
Specifically, when γ = 0.6 and the number of sensors is
300, the cost of the proposed method RM QR W is almost
the same as the method RM QR, although the cost of other
numbers of sensors is lower than RM QR. For the case
γ = 0.8 and 1, when the number of sensors is less than 200,
the cost of the proposed method RM QR W is lower, which
is comparable to the method RM QR. Due to the sensitivity
of the entropy property to ocean boundaries, RM EN prefers
to deploy sensors near ocean boundaries, and thus, the costs
are significantly less than other methods.

Overall, it can be seen that the method proposed in this
work sacrifices a portion of data reconstruction accuracy when
greedily seeking more information, but the reconstruction
error is not much different from that of method RM QR.
However, the method proposed in this work has advantages
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(a) Reconstruction error,γ=0.4
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(b) Reconstruction error,γ=0.6
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(c) Reconstruction error,γ=0.8
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(d) Reconstruction error,γ=1
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(e) Cost,γ=0.4
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(f) Cost,γ=0.6
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Fig. 7. reconstruction error and costs varies with γ and sensors number.

both in the entropy and the cost, especially when γ is small
and the number of sensors is small. Additionally, smaller
γ means a considerable increase in computational efficiency
while reducing the cost of selected sensors. Although RM EN
has the lowest cost, it also has the highest reconstruction error
and is unsuitable for deploying sensors in ocean monitoring.

4) Sets of Sensors for placement results:
The average sensor locations are shown in Figs. 8a, 8b, 8c,

8d, 8e, 8f, 8g, 8h, 8i, 8j, 8k, and 8l where the number of
sensors is set as p=50, 100, and 300. We can see that both the
RM QR W and RM QR prefer to place sensors near the coast
area and equator, the main area affected by El Niño and the
area with more human activities. However, the sensor locations
of the random selection method are much more scattered than
the two methods. Further, the proposed RM QR W is inclined
to deploy sensors in areas with drastic temperature changes,
which will lead to acquiring more information corresponding
to the unweighted reconstruction method. Figs. 8j, 8k and
8l again verifies that RM EN deploys sensors centrally near
the coastline at the equator, which is not conducive to the
reconstruction of global ocean temperature data.

The above results show that the strategy proposed in this
paper affects the selection of traditional sparse sensors through
the value of entropy so as to obtain more information, and
can better take into account the reconstruction error and cost
at the same time. The proposed strategy not only exploits
the sensitivity of entropy to ocean boundary regions, but also
makes the deployed sensor locations more in line with the
need for monitoring more coastal economic zones. Since all
the global ocean locations are used as candidate locations, the
strategy in this paper also avoids the defect of the entropy
maximization method that deploys sensors in areas with high
entropy values.

V. CONCLUSIONS AND FUTURE WORK

In this article, the need for more information on marine
monitoring systems is raised and considered. When deploy-

ing using sensors, the location where more information can
be obtained is preferred to be selected. The entropy from
information theory is used to measure information obtained
from a region, such as an ocean. Specifically, the entropy
method is used to measure the possibility of use of each
sample of temporal dimension and each location of the spatial
dimension selected. In our novel method, the entropy of
each sample is calculated so that samples with the highest
entropy are selected to be trained. Second, the entropy weight
method is used to influence the solving process of the D
optimization problem based on QR decomposition, to greedily
select a sensor deployment strategy that considers both the
minimal reconstruction errors and more information, wherein
the sample selection based on entropy could effectively reduce
the amount of data processing without affecting the processing
results. At the same time, the entropy can better characterize
the region boundary used for sparse sensor placement, so that
the selected locations are more in line with the application
requirements of ocean monitoring systems. By using ocean
surface temperature data to verify the implementation of this
proposed strategy, results demonstrate that the strategy can
achieve more information while acquiring lower reconstruc-
tion errors and deployment costs. Moreover, training selected
samples with higher entropy can achieve approximate or better
results than training all samples, improving efficiency.

Nevertheless, each sensor must collect multiple environmen-
tal parameters for sensors deployed in the ocean. Therefore,
it is required to be further resolved how to consider the
amount of information and reconstruction errors of differ-
ent environmental parameters simultaneously. In the future,
multiple different types of ocean data that will affect sensor
placement strategy will be tackled. For instance, it will be
better to consider the influence of different data sets on sensor
selection simultaneously, such as the fusion efficiency [54],
the reconstruction accuracy, the obtained information, and
other factors of multiple data sets, wherein the data categories
can include wind, waves, currents, air pressure, visibility,
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Fig. 8. Average sensor locations.

ice distribution, and other parameters that impact the global
natural environment and human activities. In addition, sensor
placement in the ocean also needs to consider further the
influence of network resources [21], [49], sparse data recovery
of spatial-temporal dependencies [55] and other factors in-
volved in the sensor placement in ocean monitoring systems.
Thereafter, sensor placement under the influence of various
factors will be more in line with practical applications for
ocean monitoring.
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