

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Performance, memory efficiency and programmability: the

ambitious triptych of combining vertex-centricity with HPC

Ludovic A. R. Capelli

A thesis presented for the degree of

Doctor of Philosophy

School of Informatics

The University of Edinburgh

United Kingdom

2022

To my parents...

Acknowledgements

First and foremost, I would like to express my gratitude to my supervisors Dr Brown

and Dr Bull for their time, academic guidance and technical insight, which have proved

valuable in helping focus efforts, considering potential new research directions and ex-

ploring lower-level aspects more thoroughly.

Also, it should be noted that the research reported in this thesis primarily exploits

results collected from experiments run on Cirrus1, a United Kingdom (UK) National

Tier-2 High-Performance Computing (HPC) Service at the Edinburgh Parallel Comput-

ing Centre (EPCC) funded by the University of Edinburgh and the Engineering and

Physical Sciences Research Council (EPSRC) under grant agreement EP/P020267/1, and

NEXTGenIO2, a system funded by the European Union’s Horizon 2020 Research and In-

novation Program under grant agreement number 671951, and supported by EPCC, at

the University of Edinburgh.

I would like to highlight the importance of my internship at the National Institute of

Informatics (NII) of Tokyo, Japan, in which I discovered the vertex-centric programming

model, under the supervision of Prof Hu. This internship was supported by the Interna-

tional Internship Program of the NII of Tokyo, and the Japan Society for the Promotion

of Science under grant agreement number 17H06099.

Finally, this research would not have been possible without EPSRC, which funded

the first three years of this PhD, as part of the Centre for Doctoral Training (CDT) in

Pervasive Parallelism award under grant agreement EP/L01503X/1, or as comprehensive

without Huawei, as well as my mentor Mr Ye, which helped to support this research,

via the Huawei Fellowship Program, enabling me to benefit from an additional year of

funding and industrial insight.

1http://www.cirrus.ac.uk
2http://www.NEXTGenIO.eu

Declaration

I declare that this thesis was composed by myself, that the work contained herein

is my own except where explicitly stated otherwise in the text, and that this work has

not been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• [1] Ludovic A. R. Capelli, Z. Hu, T. A. K. Zakian, “iPregel: A combiner-based

in-memory shared-memory vertex-centric framework” in Proceedings of the 47th

International Conference on Parallel Processing Companion (2018).

DOI: 10.1145/3229710.3229719

• [2] Ludovic A. R. Capelli, Z. Hu, T. A. K. Zakian, N. Brown, J. M. Bull, “iPre-

gel: Vertex-centric programmability vs memory efficiency and performance, why

choose?” in Journal of Parallel Computing 86 (2019) 45 – 56.

DOI: 10.1016/j.parco.2019.04.005

• [3] Ludovic A. R. Capelli, N. Brown, J. M. Bull, “iPregel: Strategies to deal with

an extreme form of irregularity in vertex-centric graph processing” in Proceedings

of The International Conference for High Performance Computing, Networking,

Storage, and Analysis (2019).

DOI: 10.1109/IA349570.2019.00013

• [4] Ludovic A. R. Capelli, N. Brown, J. M. Bull, “NVRAM as an enabler to new

horizons in graph processing” in Springer Nature Computer Science, Volume 3,

Article 385 (2022) 1–13.

DOI: 10.1007/s42979-022-01317-4

Abstract

The field of graph processing has grown significantly due to the flexibility and wide

applicability of the graph data structure. In the meantime, so has interest from the

community in developing new approaches to graph processing applications. In 2010,

Google introduced the vertex-centric programming model through their framework Pregel.

This consists of expressing computation from the perspective of a vertex, whilst inter-

vertex communications are achieved via data exchanges along incoming and outgoing

edges, using the message-passing abstraction provided. Pregel ’s high-level programming

interface, designed around a set of simple functions, provides ease of programmability

to the user. The aim is to enable the development of graph processing applications

without requiring expertise in optimisation or parallel programming. Such challenges are

instead abstracted from the user and offloaded to the underlying framework. However,

fine-grained synchronisation, unpredictable memory access patterns and multiple sources

of load imbalance make it difficult to implement the vertex centric model efficiently on

high performance computing platforms without sacrificing programmability.

This research focuses on combining vertex-centric and High-Performance Comput-

ing (HPC), resulting in the development of a shared-memory framework, iPregel, which

demonstrates that a performance and memory efficiency similar to that of non-vertex-

centric approaches can be achieved while preserving the programmability benefits of

vertex-centric. Non-volatile memory is then explored to extend single-node capabilities,

during which multiple versions of iPregel are implemented to experiment with the vari-

ous data movement strategies. Then, distributed memory parallelism is investigated to

overcome the resource limitations of single node processing. A second framework named

DiP, which ports applicable iPregel ’s optimisations to distributed memory, prioritises

performance to high scalability.

This research has resulted in a set of techniques and optimisations illustrated through a

shared-memory framework iPregel and a distributed-memory framework DiP. The former

closes a gap of several orders of magnitude in both performance and memory efficiency,

even able to process a graph of 750 billion edges using non-volatile memory. The latter

has proved that this competitiveness can also be scaled beyond a single node, enabling

the processing of the largest graph generated in this research, comprising 1.6 trillion

edges. Most importantly, both frameworks achieved these performance and capability

gains whilst also preserving programmability, which is the cornerstone of the vertex-

centric programming model. This research therefore demonstrates that by combining

vertex-centricity and High-Performance Computing (HPC), it is possible to maintain

performance, memory efficiency and programmability.

Acronyms

AMD Advanced Micro Devices. 10

API Application Programming Interface. 12

BSP Bulk-Synchronous Parallel. 15

CAS Compare-And-Swap. 157

CPU Central Processing Unit. 1

DBLP Database and Logic Programming Bibliography. 74

DCPMM Data Centre Persistent Memory Module. 108

DIMM Dual In-line Memory Module. 61

DOI Digital Object Identifier. 5

DRAM Dynamic Random Access Memory. 2

FPGA Field Programmable Gate Arrays. 1

GPGPU General Purpose Graphics Processing Unit. 11

GPU Graphics Processing Unit. 1

GTEPS Giga-Traversed Edges Per Second. 120

HDD Hard Disk Drive. 11

HPC High-Performance Computing. 2

IBMP Interval-Based Message Processing. 4, 241

INBS Intra-Node Buffer Sharing. 4, 241

LTS Long-Term Support. 61

MPI Message-Passing Interface. 12

NIC Network Interface Card. 1

NUMA Non-Uniform Memory Access. 9, 10

NVRAM Non-Volatile Random Access Memory. 4

OpenMP Open Multi-Processing. 12

PMDK Persistent Memory Development Kit. 111

RDMA Remote Direct Memory Accesses. 2

ReRAM Resistive Random Access Memory. 2

RMA Remote Memory Access. 195

SDK Software Development Kit. 192

SIMD Single Instruction Multiple Data. 11

SIMT Single Instruction Multiple Threads. 11

SM Streaming Multiprocessor. 11

SMT Simultaneous MultiThreading. 9

SNAP Stanford Network Analysis Project. 74

SPFC Slow Passing Fast Consuming. 37

SSD Solid State Drive. 11

SSSP Single-Source Shortest Paths. 20

STL Standard Template Library. 129

USA United States of America. 53

Contents

1 Introduction 1

1.1 Papers published in this research . 5

1.2 Structure of the thesis . 6

2 Background 7

2.1 Graph theory . 7

2.1.1 Structure . 7

2.1.2 Connectivity . 7

2.1.3 Reachability . 8

2.1.4 Metrics . 8

2.2 High performance computing . 8

2.2.1 Architectures . 8

2.2.1.1 Multi-core architectures 9

2.2.1.2 Multithreading . 9

2.2.1.3 Non-uniform memory access 9

2.2.1.4 Non-volatile memory . 10

2.2.1.5 Graphics processing unit 11

2.2.2 Shared and distributed-memory parallelism 12

2.2.3 Metrics . 13

2.2.3.1 Speedup . 13

2.2.3.2 Parallel efficiency . 13

2.2.3.3 Scalability . 14

2.3 Vertex-centric . 14

2.3.1 Execution flow . 15

2.3.2 Benchmarks . 16

2.3.2.1 PageRank . 16

2.3.2.2 Connected Components 18

2.3.2.3 Single-Source Shortest Paths 20

2.4 Conclusions . 22

3 Related work 23

3.1 Introduction . 23

3.2 New programming models . 23

3.2.1 Vertex-subset-centric . 23

3.2.2 Block-centric . 25

3.3 Optimisations within vertex-centric . 27

3.3.1 Sender-side combination . 28

3.3.2 Receiver-side scatter . 28

3.3.3 Vertex-mirroring . 30

3.3.4 Request-respond paradigm . 32

3.3.5 Communication channels . 33

3.3.6 Selective scheduling . 34

3.3.7 Vertex inactivation . 35

3.3.8 Incrementalisation . 36

3.3.9 Message prioritisation . 37

3.4 Conclusions . 38

4 Establishing a new state-of-the-art in vertex-centric shared-memory

processing 41

4.1 Introduction . 41

4.2 Related work . 43

4.3 Overview of iPregel . 44

4.3.1 Interface . 44

4.3.2 Architecture . 45

4.3.2.1 Multi-version module selection 46

4.3.2.2 The core . 46

4.3.2.3 Vertex representation . 47

4.3.2.4 Graphs accepted . 47

4.3.3 Implementation . 48

4.3.4 Optimisations . 48

4.3.4.1 Selection bypass . 48

4.3.4.2 Message exchange . 51

4.3.4.3 Message combination . 52

4.3.4.4 Efficient vertex addressing 55

4.4 Benchmarking applications . 56

4.4.1 PageRank . 56

4.4.2 Connected Components . 57

4.4.3 Single-Source Shortest Paths . 58

4.5 Assessing in-memory shared-memory viability 60

4.5.1 Experimental setup . 61

4.5.1.1 Framework considered 61

4.5.1.2 Computing environment 61

4.5.1.3 Methodology . 61

4.5.1.4 Graphs used . 62

4.5.2 Results . 62

4.5.2.1 Performance of iPregel Versions 62

4.5.2.2 Comparison against Pregel+ 65

4.5.2.3 Memory footprint . 68

4.6 Evaluating the complete triptych . 71

4.6.1 Experimental setup . 71

4.6.1.1 Frameworks considered 71

4.6.1.2 Computing environment 73

4.6.1.3 Methodology . 74

4.6.1.4 Graphs used . 74

4.6.2 Results . 76

4.6.2.1 Performance . 76

4.6.2.2 Memory footprint . 78

4.6.2.3 Programmability . 79

4.7 Conclusions and future work . 82

5 Tackling the irregularity inherent in vertex-centric 87

5.1 Introduction . 87

5.2 Related work . 88

5.3 Fine-grain synchronisation . 90

5.4 Unpredictable memory access patterns 92

5.4.1 Vertex structure externalisation 93

5.4.2 Software prefetching . 94

5.5 Irregular workloads . 94

5.5.1 Workload evaluation proxy . 94

5.5.2 Work distribution . 95

5.6 Experimental environment . 95

5.6.1 Computing environment . 96

5.6.2 Graph configurations . 96

5.6.3 Benchmarks . 96

5.7 Results . 97

5.7.1 Graph scalability . 97

5.7.1.1 Individual optimisations 97

5.7.1.2 Aggregated optimisations 99

5.7.1.3 Predictability . 101

5.7.2 Thread scalability . 101

5.8 Conclusions and future work . 102

6 Leveraging non-volatile memory 107

6.1 Introduction . 107

6.2 Related work . 109

6.3 Persistent memory modes . 111

6.3.1 Memory mode . 111

6.3.2 App-direct mode . 111

6.4 Experimental environment . 112

6.4.1 Hardware and software . 112

6.4.2 Graphs selected . 113

6.4.3 Benchmarks selected . 114

6.5 Results . 115

6.5.1 Experiment 1: storing all data in DRAM only 115

6.5.2 Experiment 2: increasing the size of the graphs 116

6.5.3 Experiment 3: exploring the difference in performance between

read and write NVRAM operations 118

6.5.4 Experiment 4: the impact of data locality and paging 120

6.5.5 Performance summary . 121

6.5.6 Additional metrics . 123

6.6 Conclusion and further work . 124

7 A distributed-memory implementation of iPregel 127

7.1 Introduction . 127

7.2 Related work . 129

7.3 Overview of DiP . 130

7.3.1 Interface . 130

7.3.2 Architecture . 132

7.3.3 Buffer design . 133

7.3.3.1 Push version . 134

7.3.3.2 Pull version . 135

7.3.3.3 Benefits . 137

7.3.3.4 Limitations . 138

7.3.4 64-bit collectives . 138

7.4 Optimisations . 139

7.4.1 Single MPI process . 139

7.4.2 Intra-node buffer sharing (INBS) 139

7.4.2.1 Communicators . 140

7.4.2.2 Push version . 141

7.4.2.3 Pull version . 143

7.4.2.4 Advantages . 143

7.4.3 Interval-based message processing (IBMP) 144

7.4.3.1 Push version . 145

7.4.3.2 Pull version . 149

7.4.3.3 Interleaved window buffer usage 150

7.4.3.4 Advantages . 152

7.4.3.5 Limitations . 152

7.4.3.6 Conclusion . 152

7.5 Experiments . 153

7.5.1 Computing environment . 153

7.5.2 Search space . 153

7.5.3 Graphs . 155

7.5.4 Benchmarks . 155

7.5.5 Frameworks . 156

7.6 Results . 156

7.6.1 Single node performance . 156

7.6.1.1 Sparse graph . 156

7.6.1.2 Dense graph . 163

7.6.2 Node scalability . 166

7.6.2.1 Strong scalability . 166

7.6.2.2 Weak scalability . 177

7.6.3 Memory footprint . 181

7.6.3.1 Predictability . 182

7.6.3.2 Size . 182

7.6.3.3 IBMP . 185

7.6.4 Programmability . 187

7.7 Conclusions and future work . 188

8 Conclusions and future work 191

Appendices 211

A Supporting functions in iPregel 213

B Additional user-defined structures needed by the PageRank compute

function in Ligra. 215

C Implementation of PageRank in Blogel, using the vertex mode 217

D Implementation of PageRank in Blogel, using the block mode 219

E Pseudo-code of the implementation of the Connected Components bench-

mark in Giraph++ 225

F Implementation of the Shiloach-Vishkin algorithm in channel-based Pre-

gel system 227

G Expected and measured aggregated speedups 229

H Main functions, not all, provided by the DiP framework 231

I Implementation of PageRank in the DiP framework 233

J Implementation of Connected Components in the DiP framework 235

K Implementation of unweighted Single-Source Shortest Paths in the DiP

framework 237

L iPregel compilation flags 239

M DiP compilation flags 241

List of Figures

2.1 Memory storage hierarchy . 10

2.2 A Bulk-Synchronous Parallel superstep 15

2.3 The finite state machine of a vertex state. 16

2.4 The graph used in the PageRank and Single-Source Shortest Paths simu-

lations. 17

2.5 The graph used in the Connected Components simulation. 20

3.1 Undirected graph used in Blogel example 25

3.2 Example of a graph partitioning into blocks in Blogel 26

3.3 Example of a graph G, along with a distributed-memory partitioning . . 29

3.4 General cross-worker communication pattern 29

3.5 Example of a receiver-side scatter optimisation 30

3.6 Example of a graph G, along with a distributed-memory partitioning . . 31

3.7 Application of the vertex-mirroring technique on vertex v0 31

3.8 Example of an incrementalisation in PageRank, for the first three super-

steps, assuming a damping factor γ . 36

4.1 User-defined functions of iPregel . 44

4.2 Structure of the iPregel framework . 45

4.3 Execution flow of the vertex selection mechanism 49

4.4 PageRank implemented in iPregel . 58

4.5 Connected components implemented in iPregel 59

4.6 Unweighted SSSP implemented in iPregel 60

4.7 Runtime (in seconds) of iPregel on PageRank, CC and SSSP as the version

varies . 63

4.8 Variation of the Pregel+ runtime (in seconds) of PageRank, Hashmin and

SSSP as the number of nodes varies . 67

4.9 Variation of the iPregel maximum resident set size (in GB) to execute

PageRank against the size of synthetic Twitter graph used 69

4.10 Comparison of vertex-centric and BSP models of computation. 71

4.11 Compute function for SSSP in GraphChi 72

4.12 Variation of iPregel, Ligra, GraphChi and FemtoGraph runtimes (in seconds)

against the number of nodes used, for each benchmark application, per graph. 75

4.13 Compute function for PageRank in Pregel. 79

4.14 Compute function for PageRank in FemtoGraph. 81

4.15 Compute function for PageRank in GraphChi. 82

4.16 Compute function for PageRank in Ligra. 83

5.1 Implementation in iPregel of the hybrid combiner 91

5.2 Implementation of the message fetching phase in the single-broadcast ver-

sion of iPregel . 93

5.3 Variation of the runtime (in seconds) of the baseline version and the all-

optimisations version for each benchmark on the Friendster graph, against

the number of threads, using logarithmic (base 2) scales. 104

5.4 Variation of the speedup of the optimised version compared to the baseline

version for each benchmark on the Friendster graph, against the number

of threads, using logarithmic (base 2) scales. 105

6.1 Variation of the iPregel runtime (in seconds) against the number of threads,

for the Kronecker 25 500 graph using different graph memory placements. 115

6.2 Variation of the iPregel runtime (in seconds) against the number of threads

used, for different graph configurations, using NVRAM memory mode (in-

cluding the K-25-500 DRAM-only data for reference). 117

6.3 Variation of the iPregel runtime (in seconds) on the Kronecker 25 500, us-

ing multiple data placement configurations, for both push and pull versions

at 16 threads . 118

6.4 Variation of the iPregel runtime (in seconds) against the number of threads

used, on the contiguous and scattered versions of the 250 and 750 billion

edge graphs. (Missing results are due to excessive runtime) 119

7.1 User-defined functions of DiP . 131

7.2 Structure of the DiP framework . 132

7.3 Workflow of the buffer exchange for the push version in the DiP framework,

assuming a sum combination operation. 134

7.4 Workflow of the buffer exchange for the pull version in the DiP framework,

assuming a sum combination operation. 136

7.5 Communicator structure in the INBS DiP implementation. 140

7.6 Decomposition of the buffer exchange phase into concurrent series of MPI

collective operations in the INBS implementation 142

7.7 Execution flow of the interval-based message processing technique for the

push version of the DiP framework. 145

7.8 Example of state evolution of a vertex throughout execution, assuming a

sum combination operation. 147

7.9 Execution flow of the interval-based message processing technique for the

pull version of the DiP framework. 149

7.10 Parameter search space in DiP experiments. 154

7.11 Runtime (in seconds) of push and pull versions of iPregel and DiP to

execute 10 PageRank iterations on S 1.5B 16 100K, on one Cirrus node,

using 32 threads for iPregel, 2 MPI processes per node and 16 OpenMP

threads per MPI process for the naive implementation and 32 MPI pro-

cesses per node and 1 OpenMP thread per MPI process for the INBS

implementation. 157

7.12 Runtime (in seconds) of push and pull versions of iPregel and DiP to

execute the first 20 Connected Components iterations on S 1.5B 16 100K,

on one Cirrus node, using 32 threads for iPregel, 2 MPI processes per node

and 16 OpenMP threads per MPI process for the naive implementation

and 32 MPI processes per node and 1 OpenMP thread per MPI process

for the INBS implementation. 159

7.13 Runtime (in seconds) of push and pull versions of iPregel and DiP to ex-

ecute the first 20 Single-Source Shortest Paths iterations on S 1.5B 16 100K,

on one Cirrus node, using 32 threads for iPregel, 2 MPI processes per node

and 16 OpenMP threads per MPI process for the naive implementation

and 32 MPI processes per node and 1 OpenMP thread per MPI process

for the INBS implementation. 160

7.14 Runtime (in seconds) of push and pull versions of iPregel and DiP to ex-

ecute 10 PageRank iterations on S 50M 1K 10K, on one Cirrus node, using

32 threads for iPregel, 2 MPI processes per node and 16 OpenMP threads

per MPI process for the naive implementation and 32 MPI processes per

node and 1 OpenMP thread per MPI process for the INBS implementation.163

7.15 Runtime (in seconds) of push and pull versions of iPregel and DiP to

execute the first 20 Connected Components iterations on S 50M 1K 10K,

on one Cirrus node, using 32 threads for iPregel, 2 MPI processes per node

and 16 OpenMP threads per MPI process for the naive implementation

and 32 MPI processes per node and 1 OpenMP thread per MPI process

for the INBS implementation. 164

7.16 Runtime (in seconds) of push and pull versions of iPregel and DiP to ex-

ecute the first 20 Single-Source Shortest Paths iterations on S 50M 1K 10K,

on one Cirrus node, using 32 threads for iPregel, 2 MPI processes per node

and 16 OpenMP threads per MPI process for the naive implementation

and 32 MPI processes per node and 1 OpenMP thread per MPI process

for the INBS implementation. 165

7.17 Variation of the runtime distribution (in seconds) of the push version of the

DiP naive and INBS implementations against the number of nodes used

to process 10 PageRank iterations on both graphs S 1.5B 16 100K and

S 50M 1K 10K, using 2 MPI processes per node and 16 OpenMP threads

per MPI process for the naive implementation and 32 MPI processes per

node and 1 OpenMP thread per MPI process for the INBS implementation.168

7.18 Variation of the runtime distribution (in seconds) of the pull version of

the DiP naive and INBS implementations against the number of nodes

used to process 10 PageRank iterations on graphs S 1.5B 16 100K and

S 50M 1K 10K, using 2 MPI processes per node and 16 OpenMP threads

per MPI process for the naive implementation and 32 MPI processes per

node and 1 OpenMP thread per MPI process for the INBS implementation.170

7.19 Variation of the runtime distribution (in seconds) of the push version of the

DiP naive and INBS implementations against the number of nodes used to

process 20 Single-Source Shortest Paths iterations on graphs S 1.5B 16 100K

and S 50M 1K 10K, using 2 MPI processes per node and 16 OpenMP

threads per MPI process for the naive implementation and 32 MPI pro-

cesses per node and 1 OpenMP thread per MPI process for the INBS

implementation. 173

7.20 Variation of the runtime distribution (in seconds) of the pull version of the

DiP naive and INBS implementations against the number of nodes used

to process the first 20 Single-Source Shortest Paths iterations on graphs

S 1.5B 16 100K and S 50M 1K 10K, using 2 MPI processes per node and

16 OpenMP threads per MPI process for the naive implementation and 32

MPI processes per node and 1 OpenMP thread per MPI process for the

INBS implementation. 175

7.21 Variation of the runtime of the push and pull versions of the INBS imple-

mentations against the graph size multiplier, for both graphs S 1.5B 8 100K

and S 50M 1K 10K, to process 10 PageRank iterations, using 32 MPI pro-

cesses per node and 1 OpenMP thread per MPI process. 179

7.22 Variation of the runtime of the push and pull versions of the INBS imple-

mentation against the graph size multiplier, for both graphs S 1.5B 8 100K

and S 50M 1K 10K, to process the first 20 Single-Source Shortest Paths

iterations, using 32 MPI processes per node and 1 OpenMP thread per

MPI process. 180

List of Tables

2.1 Simulation of a PageRank application with a maximum of 4 supersteps on

the graph from Figure 2.4 . 18

2.2 Simulation of a Connected Components application on the graph from

Figure 2.5 . 19

2.3 Simulation of a Single-Source Shortest Paths application, selecting vertex

v3 as the source vertex, on the graph from Figure 2.4 21

3.1 Summary of optimisation techniques surveyed and their categorisation de-

pending on their impact on the vertex-centric programming model. . . . 39

4.1 Graphs used in the comparison with Pregel+ 62

4.2 Graphs used for further iPregel memory footprint experiments 68

4.3 Graphs used for the experiments in this section. 76

4.4 Minimum, average and maximum speedup of Ligra over iPregel when pro-

cessing the Connected Components of each graph, across all numbers of

threads tested. 77

4.5 Maximum resident set size (in GB) of each framework tested across all

graphs processed, for each application executed. (Abbreviations used:

ABT = Abnormal Termination, OOM = Out Of Memory, FDO = File

Descriptor Overflow) . 78

4.6 Evaluation of frameworks considered against the programmability criteria

defined from the Pregel implementation of PageRank. 80

5.1 Order and size of graphs selected for experiments 96

5.2 Speedups obtained from each optimisation applied independently, com-

pared to the respective baseline, on each benchmark, using 32 threads, on

all graphs ordered by ascending number of edges. 98

5.3 Final speedups observed compared to the respective baseline, after having

applied all beneficial optimisations on each benchmark, using 32 threads,

across all graphs . 100

5.4 Ratio obtained between the speedup measured and the speedup expected,

across all three benchmarks and all four graphs. 101

6.1 Hardware specification of a NEXTGenIO node. 112

6.2 Graphs selected . 113

6.3 Maximum number of billions of edges traversed per second (in GTEPS)

by the pull and push versions of iPregel, on all graphs considered in this

section, running over 48 threads . 121

6.4 Performance (in GTEPS) of other graph processing frameworks running

with similar-sized graphs to ours, data reported in [5] and reproduced here

for comparison against NVRAM results 123

7.1 Number of vertices and edges in the graphs selected for experiments . . . 155

7.2 Correspondence between weak scaling multiplier and both graph order and

size. 178

7.3 Total memory footprint (in GB) of the INBS implementation against the

node count, to process PageRank, Connected Components and Single-

Source Shortest Paths on both S 1.5B 16 100K and S 50M 1K 10K graphs,

using one MPI process per node. 184

7.4 Summary of weak scaling experiments run on graph S 1.5B 8 100K with

the push version of the IBMP implementation, to process 10 PageRank

iterations using an IBMP allocation of 10GB per MPI process, using 1

MPI process per node and 32 OpenMP threads per MPI process 186

7.5 Summary of weak scaling experiments run on graph S 1.5B 8 100K with

the pull version of the IBMP implementation, to process 10 PageRank

iterations using an IBMP allocation of 10GB per MPI process, using 1

MPI process per node and 32 OpenMP threads per MPI process 186

G.1 Expected and measured aggregated speedups, across all three benchmarks

and all four graphs. 230

Chapter 1

Introduction

Graphs are a uniquely flexible and generic data structure. From social networks to mo-

lecular structures, through road maps and neural networks, graphs are used to represent

a wide range of datasets. Due to this flexibility, there has been a growing interest in graph

processing applications: including clustering [6, 7] and traversal algorithms [8], pattern

matching [9] and data analytics [10] to name a few. This growing interest has resulted

in an increasing number of graph processing frameworks being developed. However, the

writing of graph processing applications is a non-trivial task, especially in the case of

large graphs where distributed-memory programming and high performance computing

techniques play a major role. Users of such graph processing frameworks may be spe-

cialised in their own domain such as data science for example, but with little knowledge

about high performance computing techniques.

The introduction of the vertex-centric programming model in 2010, delivered via the

framework Pregel [11], addressed this issue by providing a highly-abstracted program-

ming model enabling users to develop graph processing applications while all parallelism

and low-level considerations are offloaded to the underlying framework. In vertex-centric,

computation is expressed from a vertex point of view, often referred to as thinking like a

vertex, and inter-vertex communications are achieved with messages using the message-

passing abstraction provided. Due to its ease of use, the vertex-centric programming

model has rapidly grown in popularity, with vertex-centric frameworks flourishing across

all types of hardware; including Central Processing Units (CPUs) [11,12], Graphics Pro-

cessing Units (GPUs) [13–16], Field Programmable Gate Arrays (FPGAs) [17, 18] and

Network Interface Cards (NICs) [19]. In addition to targeting such a variety of hardware,

vertex-centric frameworks have also spanned across programming languages. Although

most frameworks are implemented using imperative programming languages, vertex-

centric frameworks have also been developed using functional programming languages

1

Chapter 1: Introduction

too [20–22]. Furthermore, multiple memory technologies are present in the landscape of

vertex-centric solutions; from traditional Dynamic Random Access Memory (DRAM) [11,

12] to Resistive Random Access Memory (ReRAM) [23], through both classic disk stor-

age [24,25] and flash storage [26]. Moreover, in addition to Google, who introduced vertex-

centric and developed Pregel, several other major companies invested research in vertex-

centric processing, such as Microsoft in 2015 [19] who explored the use of Remote Direct

Memory Accesses (RDMA), Facebook in 2017 [27] by improving the distributed-memory

framework Giraph to process a trillion-edge graph and Huawei [16, 28–30] between 2014

to the present day who investigated out-of-core computation and neural network applica-

tions. Put simply, vertex-centric graph processing is ubiquitous and an Intel patent from

2019 [31] provided an apt summary of the popularity and benefits:

A user specifies a graph algorithm as “vertex programs” following vertex-

centric programming abstraction. This abstraction is chosen as an example

here due to its popularity. A vertex program does not expose hardware details,

so users without hardware expertise (e.g., data scientists) can create it.

However, the vertex-centric abstractions which benefit programmability often do so

at the cost of performance. This is a common trade-off in high performance computing,

where users have a choice between programmability or performance, with technologies

that deliver both being few and far between. Furthermore, vertex-centric frameworks

have proved to have a high memory consumption, for instance Giraph and Pregel+ require

264GB and 109GB of memory respectively to process PageRank over a graph with fewer

than 2 billion edges, thus representing approximately 8GB of data.

Therefore, these two limitations, high memory usage and performance overhead, limit

the utility of vertex-centric for processing larger graphs which, considering the size of

graphs is growing significantly, is a major limitation. Improving the memory efficiency

of vertex-centric frameworks will not only enable shared-memory frameworks to process

larger graphs, but will also benefit distributed memory frameworks as one can reduce

the minimum number of nodes required to process a graph. The current state of the

art is to work around the high memory consumption by favouring distributed memory

solutions, however this results in significant communications overhead. Moreover, Ligra

has shown that shared-memory graph processing is a viable solution, especially consider-

ing that High-Performance Computing (HPC) nodes typically contain 256GB or more of

DRAM. Ligra has become a major framework for shared-memory graph processing and

the state-of-the-art in vertex-subset-centric programming (as defined in Subsection 3.2.1),

but this sacrifices the clean vertex-centric abstraction that promotes programmability for

performance, and an equally competitive vertex-centric counterpart is yet to be designed.

2

Chapter 1: Introduction

Developing and discovering techniques which improve vertex-centric performance and

memory efficiency will therefore enable vertex-centric frameworks to much better ex-

ploit shared memory parallelism. Existing vertex-centric frameworks could also benefit

from such techniques, as these could likely be applied without requiring extensive code

re-writing on behalf of their users.

Nonetheless, developing such techniques is not trivial, for example, there are numerous

challenges when designing an efficient vertex-centric framework, including multiple layers

of load imbalance, fine-grain synchronisations and unpredictable memory accesses both

in terms of quantity and locality. Furthermore, the highly abstracted interface provided

by vertex-centric results in little information being exposed to the underlying framework

responsible for parallelisation and optimisation. Given programmer productivity is the

major reason that vertex-centric is so popular, optimisations that promote performance

or memory efficiency cannot reduce programmability.

Numerous optimisation techniques beneficial to vertex-centric performance have been

developed, such as selective scheduling [24], communication channels [21], receiver-side

scatter [32–34], vertex-mirroring [12, 35], vertex inactivation [21], incrementalisation [36]

and message prioritisation [37]. However, the majority of optimisation techniques impact

the abstractions and impact programmability. For instance, several optimisations require

the removal of a vertex-centric abstraction, such as the message-passing abstraction which

provides a means to communicate by the exchange of messages. Because the vertex-

centric programming model is a coherent and interconnected set of abstractions, removing

one likely results in the degradation, or removal, of other vertex-centric abstractions.

In certain cases, mutations to the original vertex-centric programming model were too

consequential for the resulting framework to still be considered vertex-centric. Although

an attempt at preserving all vertex-centric abstractions [38] is present in the literature,

the performance and memory efficiency exhibited turn out to suffer from a penalty of

orders of magnitude.

The work conducted in this research aims to determine whether such a trade-off

is unavoidable by attempting to design techniques that preserve vertex-centric program-

mability whilst maximising performance and memory efficiency. The overarching research

hypothesis in this thesis is therefore formulated as follows:

Hypothesis:

In the context of vertex-centric, programmability can be preserved during the

design of optimisations improving performance or memory efficiency.

3

Chapter 1: Introduction

To verify this research hypothesis, three research directions have been identified:

1. The investigation of such optimisation techniques in the context of shared-memory

architectures, which limit the complexity of the underlying system.

2. The exploration of hardware technologies to overcome shared-memory limitations.

3. An assessment of whether the benefits obtained in the area of shared memory

can also benefit distributed-memory architectures based on a new, bespoke, buffer

design, in the scope of low to medium node counts.

The novel contributions made in these research directions, and reported in this thesis,

are summarised as follows:

• A modular architecture, as well as a broad set of techniques for maintaining a min-

imum memory footprint, while maximising its performance to reach that of other

non-vertex-centric frameworks. This is demonstrated through the implementation

of a shared-memory framework: iPregel.

• An exploration of Non-Volatile Random Access Memory (NVRAM) in the context

of shared-memory vertex-centric processing, with experiments run on graphs with

between 250 and 750 billion edges. During this exploration, multiple data place-

ment and movement techniques were implemented to evaluate the approach that

best suits the asymmetric performance of read-writes, combined with the two-level

DRAM-NVRAM memory system.

• Bringing application techniques developed in iPregel to distributed-memory and

the introduction of a buffer design that comprises several vertex-centric phases

such as message wrapping or message dispatch, as well as reducing the algorithmic

complexity of a full round of message generation from O(n× log(n)) to O(n). These

techniques and buffer design are demonstrated through theDiP distributed-memory

framework.

• Two techniques that improve the memory footprint of the DiP buffer design: an

Intra-Node Buffer Sharing (INBS) approach relying on MPI-3 shared-memory and

Interval-Based Message Processing (IBMP) that enables the DiP framework to

arbitrarily adapt its size to a memory limit set by the user.

• The fact that none of the techniques and methods presented above results in a

degradation of the vertex-centric programmability, thus maintaining the key benefit

delivered by this approach.

4

Chapter 1: Introduction

1.1 Papers published in this research

Some of the material used in this thesis has been published in the following papers:

• The design of the iPregel framework, including the multi-version module selection

and the set of techniques introduced in Chapter 4, was published in:

[1] Ludovic A. R. Capelli, Z. Hu, T. A. K. Zakian, “iPregel: A combiner-based

in-memory shared-memory vertex-centric framework” in Proceedings of the 47th

International Conference on Parallel Processing Companion (2018).

DOI: 10.1145/3229710.3229719

• The thorough evaluation of the iPregel framework against several other shared-

memory frameworks, which also focusses on including programmability as an addi-

tional criterion to performance and memory footprint, presented in Chapter 4 was

published in:

[2] Ludovic A. R. Capelli, Z. Hu, T. A. K. Zakian, N. Brown, J. M. Bull, “iPre-

gel: Vertex-centric programmability vs memory efficiency and performance, why

choose?” in Journal of Parallel Computing 86 (2019) 45 – 56.

DOI: 10.1016/j.parco.2019.04.005

• The set of optimisation techniques presented in Chapter 5, which focus on ad-

dressing the multiple performance challenges in vertex-centric programming, were

published in:

[3] Ludovic A. R. Capelli, N. Brown, J. M. Bull, “iPregel: Strategies to deal with an

extreme form of irregularity in vertex-centric graph processing” in Proceedings of

The International Conference for High Performance Computing, Networking, Stor-

age, and Analysis (2019).

DOI: 10.1109/IA349570.2019.00013

• The investigation into non-volatile memory technology reported in Chapter 6, which

expands the processing ability of the iPregel framework to graphs reaching almost

a trillion edges, was published in:

[4] Ludovic A. R. Capelli, N. Brown, J. M. Bull, “NVRAM as an enabler to new

horizons in graph processing” in Springer Nature Computer Science, Volume 3,

Article 385 (2022) 1–13.

DOI: 10.1007/s42979-022-01317-4

5

Chapter 1: Introduction

1.2 Structure of the thesis

The rest of this thesis is structured as follows:

Chapter 2 introduces the vertex-centric programming model, the graph theory and

HPC terminologies used throughout this thesis.

Chapter 3 reviews the existing literature by surveying different optimisation techniques

and methods currently used in vertex-centric programming.

Chapter 4 presents the modular design and techniques used in the development of the

shared-memory framework iPregel.

Chapter 5 explores the challenges associated with fine-grained synchronisation, irreg-

ular memory accesses and load imbalance in more detail, and the techniques that

have been developed to address these.

Chapter 6 analyses the suitability of non-volatile memory for vertex-centric workloads.

Chapter 7 presents the development of the distributed-memory framework DiP, the

creation of its interface, its buffer design and the porting of techniques used in

iPregel.

Chapter 8 highlights future work, and discusses whether the investigations conducted

in this thesis verify the overarching research hypothesis.

6

Chapter 2

Background

This chapter introduces underlying concepts from graph theory and high performance

computing which are necessary to the understanding of this thesis. The vertex-centric

programming model is then presented, along with the benchmarks used throughout the

evaluation of the research.

2.1 Graph theory

2.1.1 Structure

A graph is a data structure comprising nodes, also referred to as vertices, which are

linked with edges. An edge is either directed or undirected, where a directed edge is

unidirectional, from a source vertex to a destination vertex. By contrast, an undirected

edge between two vertices is bidirectional; the equivalent of two directed edges, one edge

from the first vertex to the second, and inversely for the second edge. A directed graph

is made up of directed edges, whilst an undirected graph consists of undirected edges.

Additionally, weights can be assigned to edges, resulting in weighted edges of a weighted

graph, or otherwise unweighted edges of an unweighted graph.

2.1.2 Connectivity

A directed edge linking a source vertex vsrc to a destination vertex vdst is said to be

an outgoing edge of vsrc and an incoming edge of vdst, abbreviated out-edge and in-edge

respectively. Vertices connected by an edge are called neighbours, so, in this example,

vsrc is said to be an incoming neighbour of vdst, abbreviated in-neighbour, and vdst is

said to be an outgoing neighbour of vsrc, or out-neighbour. The list of neighbours of a

7

Chapter 2: Background

given vertex is known as an adjacency list in undirected graphs, while vertices in directed

graphs comprise both out-adjacency and in-adjacency lists.

2.1.3 Reachability

A path contains the list of vertices traversed from given source vertex vsrc to eventually

reach a destination vertex vdst, if possible. Two vertices are said to be connected if there

exists a path between them, and a vertex vdst is reachable from a vertex vsrc if both are

connected.

In an unweighted graph, the length of a path is the number of edges that must be

traversed, whereas in a weighted graph it is the sum of the weights of the traversed edges.

Among all possible paths that exist between two connected vertices, the shortest path is

known as the distance between these two vertices.

2.1.4 Metrics

The two main characteristics of a graph are its order and size. The terms graph order

represent the number of vertices in the graph, whilst the terms graph size represent the

number of edges that it contains. In this thesis, these terms are denoted by |V | and |E|
respectively.

The average degree is the ratio of a graph’s size to its order, where the degree of a

vertex is the number of edges shared by this vertex. In the case of directed edges, the

out-degree of a vertex represents the number of outgoing edges from this vertex, while

the in-degree represents the number of incoming edges to this vertex.

Another metric is known as graph diameter, which is the distance between the two

most distant nodes. This can be used to estimate the maximum number of iterations

needed for a message generated from a given source vertex to be propagated to any

destination vertex.

2.2 High performance computing

2.2.1 Architectures

For decades, a correlation between process size and processor performance was observed.

However, although technology continues to permit further shrinking of process size, down

to 2nm as of 2022; a plateau in the processor’s clock frequency has been observed, at

approximately 4GHz since the early 2000s [39].

8

Chapter 2: Background

The reason for this decorrelation is twofold. Firstly, it is due to the increased thermal

loss induced by a higher clock rate, requiring the upgrade of the cooling solutions ap-

plied; ultimately exceeding what can be sustainable, both practically and commercially.

Secondly, the energy required to power a transistor was once thought to be proportional

to its dimensions, known as the Dennard scaling [40]. As transistors shrank, so did

their power consumption, which was expected. However, when lower than 90nm, current

leakage became a significant factor and limited further benefits.

2.2.1.1 Multi-core architectures

To address the inability to continue scaling processor clock frequencies, a shift has been

observed since early 2000s from faster processors to higher processor core counts. For

example, multiprocessors commonly found in HPC nowadays typically contain between 16

and 64 processing cores. This is readily observed in the Top500 list [41], containing the 500

most powerful commercially available computer systems, therefore suggesting that this

approach will likely remain the trend for the foreseeable future.

2.2.1.2 Multithreading

Multithreading refers to the ability of a processing core to support multiple threads of

execution, referred to as hardware threads, concurrently. This technique maximises the

utilisation of CPU hardware resources and overall throughput by avoiding certain execu-

tion units from going idle, in the event of cache misses for instance.

Simultaneous MultiThreading (SMT) is the ability of a processing core to dispatch in-

structions originating from more than a single hardware thread context [42], permitting

to hide what could otherwise be stalls in the execution flow due to cache misses or branch

mispredictions for instance. When combined with superscalar processors, which are pro-

cessors able to execute multiple instructions per cycle, SMT enables the simultaneous

execution of multiple instructions originating from multiple threads.

2.2.1.3 Non-uniform memory access

Modern CPUs contain their own memory controllers and dedicated memory channels

that connect directly to DRAM. However, modern architectures may contain multiple

CPU sockets, each of which contains a CPU connected to its local RAM.

Communication between sockets is ensured via an interconnect, which remotely ac-

cesses data held in another socket’s local DRAM and sends it to the requesting processor,

rather than the processor being able to directly access it. This results in extra latency

and potentially bandwidth restrictions. This characterises Non-Uniform Memory Access

9

Chapter 2: Background

Figure 2.1: Memory storage hierarchy

(NUMA), and in this example, each socket / DRAM module forms what is referred to

as a NUMA-region. It is common for modern HPC architectures to contain a NUMA re-

gion per processor, however there are also architectures such as Advanced Micro Devices

(AMD) Rome in ARCHER2 that contain multiple NUMA regions per socket. Memory

accesses originating from a NUMA region to data located in a different NUMA region

are referred to as cross-NUMA.

The additional latency observed in data movement emphasises the importance of

data placement, which is not always intuitive. For example, Linux, which runs all 500

of the Top500 list, applies a first-touch policy by default [43]. This specifies that the

NUMA region from which the data is first accessed is determinant, not the one from

which the corresponding allocation call was issued. Therefore, maximising performance

requires a careful design of parallel data initialisation for instance to match the pattern of

subsequent parallel accesses during execution. Similarly, software threads must be bound

to a NUMA region, so that they are not moved to a different region during execution and

memory accesses must then traverse the interconnect.

2.2.1.4 Non-volatile memory

Computers have access to several storage mediums, as shown in Figure 2.1 reproduced

from [44], to serve from caches and main memory to file systems. Volatile memory,

such as CPU registers, caches and DRAM; retains data only while the device is powered.

Expensive, volatile memory is typically used in components where performance is sought.

10

Chapter 2: Background

Conversely, non-volatile storage does not lose data held when the device is no longer

powered. This property makes non-volatile storage, such as Solid State Drives (SSDs),

Hard Disk Drives (HDDs) and tape; suitable as secondary storage or long-term consistent

storage.

Non-volatile memory stands as an intermediate layer between volatile memory and

non-volatile storage, and its ability to provide load/store instructions and cache line gran-

ularity in addition to non-volatility allows it to act as memory or storage. With a latency

typically under a microsecond, non-volatile memory remains considerably slower than its

volatile counterpart. However, advances in technology have allowed non-volatile memory

to alleviate, to some extent at-least, performance differences, making it a potential solu-

tion in increasing main memory at a competitive price. The use of this storage type in

the context of vertex-centric is explored in detail in Chapter 6.

2.2.1.5 Graphics processing unit

Graphics processing units were originally developed for the generation of 3D graphics

and contain multiprocessors, referred to as Streaming Multiprocessor (SM), comparable

to large Single Instruction Multiple Data (SIMD) processors where a given instruction is

issued to multiple data concurrently. SMs are rather characterised as Single Instruction

Multiple Threads (SIMT), where cores execute instructions from threads in lock-step.

Unlike SIMD processors, SIMT allows cores to access data locations that are not consec-

utive, as well as execute code with branches.

The large amount of raw computational power and high degree of parallelism available

in GPU architectures attracted an increasing interest over the years towards processing

other types of calculations. As technology progressed, GPUs gradually became more and

more programmable, through what is known as General Purpose Graphics Processing

Unit (GPGPU); allowing arbitrary code to be executed on SMs. The use of GPUs

has proven successful in areas with highly computationally intensive workflows, such as

certain scientific simulations and financial calculations.

However, GPUs remain devices embedding a distinct main memory, often referred to

as device memory by contrast to host memory designating the computer’s main memory.

This implies that data must first be transferred to the GPU before processing, and results

transferred back afterwards. However, the amount of memory available on the vast

majority of GPUs is under 10GB, whereas that of HPC nodes varies between 128GB

and 512GB. Therefore, processing large amounts of data can result in a high number of

data transfers, putting pressure on a known limitation of GPUs. In addition, the load

imbalance induced from irregular structures such as graphs may result in idle time for

11

Chapter 2: Background

large portions of a streaming multiprocessor, for instance when processing graph vertices

with widely different numbers of neighbours. Based on these observations, the use of

GPU architectures was not explored in this thesis.

2.2.2 Shared and distributed-memory parallelism

Processors have access to different levels of memory to store and load data. From L1 and

L2 caches, which are typically local to a processor, up to L3 cache that is commonly shared

with the entire multiprocessor, and main memory that is shared across all multiprocessors

on the node.

Shared-memory parallelism is a form of parallelism that can be used by an application

relying on multiple threads or processes, referred to as workers in the rest of this thesis,

unless specified otherwise; that physically share the same memory space. In HPC, the

dominant Application Programming Interface (API) allowing this type of parallelism is

Open Multi-Processing [45] (OpenMP), which relies on the use of directives that are

inserted as special comments into a serial source code. However, independently from

the shared-memory programming solution, the use of shared-memory parallelism poses

challenges around correctness, such as data-race conditions requiring synchronisation

mechanisms. In addition, the mapping of threads and processes, determining which core

executes which thread, as well as the binding, which specifies where threads can be

remapped at runtime, play an important role in obtaining optimal performance.

Distributed-memory parallelism expands to processors that reside on different nodes,

therefore not physically sharing memory. This form of parallelism allows applications to

use multiple nodes by running multiple distributed-memory workers that can be mapped

to processors residing on the same node, or different nodes. Therefore, distributed-

memory parallelism increases the amount of computing power and memory resources

available to an application. However, this ability comes at the expense of inter-node

network communications. In HPC, the most widely used API for distributed-memory

is Message-Passing Interface [46] (MPI); running multiple instances of a program, called

MPI processes, on different processors, possibly residing on different nodes. Communic-

ations between MPI processes are achieved with explicit messages, using the routines

provided by the API.

Although certain distributed-memory parallelism solutions such as MPI have gained

the ability to leverage shared-memory parallelism by directly accessing the memory of

other distributed-memory workers, they are most commonly combined with a shared-

memory parallelism solution. In HPC, the resulting pair observed is often MPI and

OpenMP, due to the highly optimised implementations available of their respective long-

12

Chapter 2: Background

lasting standard.

2.2.3 Metrics

2.2.3.1 Speedup

A common metric for measuring the effectiveness of a parallel algorithm or hardware is

speedup, which quantifies the gain obtained from parallelisation through a ratio between

the runtime of the serial version and that of the parallelised version, as shown in Equa-

tion 2.1.

U =
TS

TP

(2.1)

where U is the speedup obtained, TS is the runtime of the serial version and TP is the

runtime of the parallelised version. For example, a speedup of four means that the

parallelised version is four times faster than the serial version.

The formula given in Equation 2.1 is derived from Amdahl’s law [47], which takes

into account the portion of the program that is serial in the calculation of the maximal

theoretical gain achievable, as given in Equation 2.2.

U =
1

(1− q) +
q × TP

TS

(2.2)

where q is the fraction of the application that is parallelisable, Ts is the runtime of

the serial version of the parallelisable portion of the application and Tp is the runtime

of the parallel version of the parallelisable portion of the application. It follows that

Equation 2.1 is a special case of Equation 2.2 where q = 1, thus the entirety of the

application is considered parallelisable.

2.2.3.2 Parallel efficiency

A limitation of speedup is that it does not take into consideration the number of workers

being used, and thus lacks context. In shared-memory parallelism, for instance, a speedup

of four is ideal when using four threads. Similarly, a speedup of eight is ideal when using

eight threads. However, a speedup of four obtained from eight threads corresponds to

half of the ideal speedup. This aspect of parallelism is quantified by parallel efficiency,

which is a ratio between the speedup obtained and the amount of parallelism, as shown

in Equation 2.3.

PE =
U

W
(2.3)

13

Chapter 2: Background

where PE is the parallel efficiency, W is the number of workers used and U is the speedup

obtained when using W workers.

2.2.3.3 Scalability

From Amdahl’s law, one can calculate what is referred to as strong scalability, which

expresses the variation of the speedup against the worker count, using a fixed total

problem size. However, as the number of workers increases, the benefits obtained decrease

because the parallelisable portion of the application gradually becomes less significant.

To make use of additional workers, a second approach has been explored, known as

Gustafson’s law [48], increases the problem size proportionally to the increase of the

worker count. This is referred to as weak scalability, which expresses the variation of the

speedup against the worker count, using a constant per-worker problem size.

In shared-memory parallelism, workers typically are threads, however, they can be

threads or processes in distributed-memory parallelism. Codes may exhibit different

scaling depending on whether the total number of workers increases as a result of in-

creasing the number of threads, or the number of processes. This can be more accurately

analysed by referring to thread scalability, which represents the variation of the speedup

as the number of threads per process increases, and process scalability, which represents

the variation of the speedup as the number of processes increases.

Distributed-memory parallelism has an additional factor: the number of nodes. The

process scalability of a program is likely to vary depending on the placement of said

processes due to the resulting amount of communications that must be achieved over the

network. The notion of node scalability addresses this limitation of process scalability by

describing the variation of speedup as the number of nodes increases, better reflecting

the impact of topology on the performance observed.

2.3 Vertex-centric

As mentioned in Chapter 1, the writing of graph processing applications is not a trivial

task, especially at large scale where the use of parallelism and high performance com-

puting techniques becomes crucial in obtaining performance. In addition to being error-

prone, the parallelisation and optimisation is time consuming and requires expertise likely

beyond that of the typical vertex-centric user.

The vertex-centric programming model introduced in 2010 [11] aims to address this

by providing a new way to express graph computation: from a vertex perspective. Using

vertex-centric the user can develop graph processing applications from a localised view

14

Chapter 2: Background

Vertex1 Vertex2 Vertex3 Vertex4
Supersteps

Supersteps+1

Processing Communications Synchronisation

Figure 2.2: A Bulk-Synchronous Parallel superstep

of the graph and an interface consisting of a simple set of highly abstracted functions.

Meanwhile, aspects important for performance, such as parallelism or low-level technic-

alities are offloaded to the underlying framework. This allows HPC experts to implement

optimisation techniques, independently of the writing of the vertex-centric program by

users. As it will be shown in the next subsection, vertices may be processed concurrently,

which exposes a high degree of parallelism.

2.3.1 Execution flow

Vertex-centric programs follow an iterative execution flow based on the Bulk-Synchronous

Parallel (BSP) model [49], where iterations, referred to as supersteps, comprise three

phases, as illustrated in Figure 2.2.

The first phase, local computation, consists of applying the user-defined function

compute to each active vertex (see definition in the next paragraph). During this phase,

a vertex may update its state, read messages received from neighbours and prepare mes-

sages to be sent to neighbours. The second phase consists of performing communications,

where messages generated by vertices are delivered to their recipient, and accessible in

the subsequent superstep. The final phase is a global synchronisation, ensuring the co-

herence of the state of all vertices before proceeding with the next superstep. The design

of the vertex-centric programming model was inspired by the Bulk-Synchronous Parallel

model’s preservation of semantics that are easy to reason about, therefore making the

development of vertex-centric applications more intuitive and less error-prone.

The iterative execution flow, proceeding from one superstep to the next, continues

until the termination condition is met. This termination commonly relies on the notion

of a vertex’s state which is either active or inactive as illustrated in Figure 2.3 and defined

15

Chapter 2: Background

Figure 2.3: The finite state machine of a vertex state.

as follows:

• all vertices are active at the beginning of the first superstep.

• an active vertex becomes inactive when it halts, by calling the halt function.

• an inactive vertex becomes active solely by receiving a message.

As supersteps progress, the number of active vertices, which is counted at the end of a

superstep and after all messages have been delivered, at the end of a superstep, after any

pending messages have been delivered, may vary. When the number of active vertices

reaches zero, the graph processing application terminates.

2.3.2 Benchmarks

Certain applications have been widely used to evaluate graph processing frameworks,

including vertex-centric, and have become de facto benchmarks which are accepted by

the community. The main three, used throughout this thesis, are PageRank, Connected

Components and Single-Source Shortest Paths.

2.3.2.1 PageRank

First presented in 1998 [50], PageRank is an algorithm which evaluates the importance

of vertices by using connectivity as the core metric, where the longer the in-adjacency

list of a vertex, the more important it is.

PageRank was initially designed to better rank web pages listed in the results produced

by search engines, where a web page citation importance is proportional to the number

of hyperlinks pointing from and to that page. The original formula to calculate the

PageRank of a web page is given in Equation 2.4.

PR(A) = (1− d) + d×
∑

p∈Ψ(A)

PR(p)

C(p)
(2.4)

16

Chapter 2: Background

Figure 2.4: The graph used in the PageRank and Single-Source Shortest Paths simula-
tions.

where PR(A) is the PageRank of page A, d is the damping factor, C(p) is the number of

links going out of page p and Ψ(A) is the list of pages to which page A points.

From a vertex-centric point of view, PageRank has the interesting property that all

vertices are active during the entire duration of the simulation. This minimises load

balancing issues and allows experiments to focus on evaluating other performance factors.

Algorithm 1: Pseudo-code for the PageRank implementation in vertex-centric

1 begin
2 T ← 10 // The number of supersteps
3 d ← 0.85 // The damping factor
4 if Superstep index = 0 then

5 Self.Value ← 1

V
6 else
7 Total ← 0
8 while Has pending message() do
9 M ← Fetch next message()

10 Total ← Total + M

11 Self.Value ← d

V
+ (1 - d) × Total

12 if Superstep index < T then

13 SendToAllNeighbours(
Self.value

Self.Out degree
)

14 else
15 Halt()

A pseudo-code implementation of PageRank in vertex-centric, based on the imple-

mentation presented in the original vertex-centric framework Pregel [11], is given in Al-

gorithm 1. A simulation of this PageRank algorithm, assuming a maximum number of

supersteps set to 4, on the graph presented in Figure 2.4 is illustrated in Table 2.1.

17

Chapter 2: Background

Superstep Vertex
Messages
received

Start
value

End
value

Messages generated Halts?

0

0 - - 0.25 0.25 to v1 No
1 - - 0.25 0.25 to v3 No
2 - - 0.25 0.13 to v0, 0.13 to v1 No
3 - - 0.25 0.25 to v2 No

1

0 0.13 0.25 0.15 0.15 to v1 No
1 0.25, 0.13 0.25 0.36 0.36 to v3 No
2 0.25 0.25 0.25 0.13 to v0, 0.13 to v1 No
3 0.25 0.25 0.25 0.25 v2 No

2

0 0.13 0.15 0.15 0.15 to v1 No
1 0.15, 0.13 0.36 0.28 0.28 to v3 No
2 0.25 0.25 0.25 0.13 to v0, 0.13 to v1 No
3 0.36 0.25 0.35 0.35 to v2 No

3

0 0.13 0.15 0.15 - Yes
1 0.15, 0.13 0.28 0.28 - Yes
2 0.35 0.25 0.34 - Yes
3 0.28 0.35 0.28 - Yes

Table 2.1: Simulation of a PageRank application with a maximum of 4 supersteps on the
graph from Figure 2.4

(values are rounded to two decimal places)

2.3.2.2 Connected Components

The second benchmark presented in this chapter is Connected Components [51], which

identifies all components of a graph. A component is a subgraph where each vertex

is reachable by every other vertex, and the subgraph itself is not contained in another

component.

Finding Connected Components can be part of larger clustering applications, or act

as an optimisation technique that preprocesses the graph and provides a first insight into

potential partitioning schemes.

A pseudo-code of the vertex-centric implementation of the Connected Components

is given in Algorithm 2. In vertex-centric, components are found by propagating vertex

identifiers throughout the graph and converging towards the smallest identifiers. Even-

tually, each vertex receives the identifier of all vertices it can reach. By discarding all but

the smallest identifier, vertices forming a component will therefore all share the identifier

of the vertex with the smallest identifier in the component. A simulation of this Con-

nected Components algorithm on the graph presented in Figure 2.5 is given in Table 2.2.

In vertex-centric, the Connected Components benchmark exhibits a fundamental dif-

ference with PageRank, because vertices systematically halt as shown in line 14 of Al-

18

Chapter 2: Background

Algorithm 2: Pseudo-code for the Connected Components implementation in
vertex-centric
1 begin
2 if Superstep index = 0 then
3 Self.Value ← Self.Id
4 Send to all neighbours(Self.Value)

5 else
6 Min value ← Self.Value
7 while Has pending message() do
8 M ← Fetch next message()
9 if M < Min value then

10 Min value ← M

11 if Min value ̸= Self.Value then
12 Self.Value ← Min value
13 Send to all neighbours(Self.Value)

14 Halt()

Superstep Vertex
Messages
received

Start
value

End
value

Messages generated Halts?

0

0 - - 0 0 to v1, 0 to v2 Yes
1 - - 1 1 to v0, 1 to v2, 1 to v3 Yes
2 - - 2 2 to v0, 2 to v1, 2 to v3 Yes
3 - - 3 3 to v1, 3 to v2 Yes

1

0 1, 2 0 0 - Yes
1 0, 2, 3 1 0 0 to v0, 0 to v2, 0 to v3 Yes
2 0, 1, 3 2 0 0 to v0, 0 to v1, 0 to v3 Yes
3 1, 2 3 1 1 to v1, 1 to v2 Yes

2

0 0, 0 0 0 - Yes
1 0, 1 0 0 - Yes
2 0, 1 0 0 - Yes
3 0, 0 1 0 0 to v1, 0 to v2 Yes

3

0 - 0 0 - Yes
1 0 0 0 - Yes
2 0 0 0 - Yes
3 - 0 0 - Yes

Table 2.2: Simulation of a Connected Components application on the graph from Fig-
ure 2.5

19

Chapter 2: Background

Figure 2.5: The graph used in the Connected Components simulation.

gorithm 2. This implies that the number of active vertices is expected to vary throughout

supersteps, itself resulting in potential load balancing challenges. Unlike PageRank, the

Connected Components application is typically run until no more vertices are active.

2.3.2.3 Single-Source Shortest Paths

The third benchmark presented in this chapter is Single-Source Shortest Paths (abbre-

viated SSSP) [52]. This selects a vertex and finds the shortest path from that vertex to

every other vertex in the graph.

There are many applications of the SSSP algorithm, for example, to measure the time

taken for units to be dispatched to every area of a city, or evaluate the relationship of an

individual to their group by quantifying how “direct” their connections are.

A pseudo-code implementation of the vertex-centric implementation of the Connected

Components is sketched in Algorithm 3. In vertex-centric, finding the Single-Source

Shortest Paths is similar to Connected Components since both consist of propagating the

lowest values obtained from the second superstep onwards. However, the major difference

is that in SSSP the value to be sent is first incremented. Another difference in SSSP is

during initialisation, all vertices apart from the source vertex initialise their value to ∞,

representing a value strictly greater than any distance feasible from the source vertex,

while the source vertex initialises its value to 0. A simulation of this SSSP algorithm on

the graph presented in Figure 2.4 is given in Table 2.3.

Unlike PageRank and Connected Components, the Single-Source Shortest Paths bench-

mark exhibits a very low number of active vertices at first. Starting with a single active

vertex, message propagation gradually activates a higher number of vertices, before de-

creasing as convergence is reached throughout the graph. This low number of active

vertices results in a load imbalance greater than that observed in Connected Compon-

ents.

20

Chapter 2: Background

Algorithm 3: Pseudo-code for the Single-Source Shortest Paths implementation
in vertex-centric
1 begin
2 if Superstep index = 0 then
3 if Self.Id = SOURCE VERTEX then
4 Self.Value ← 0
5 Send to all neighbours(Self.Value)

6 else
7 Self.Value ← ∞

8 else
9 Min value ← Self.Value

10 while Has pending message() do
11 M ← Fetch next message()
12 if M < Min value then
13 Min value ← M

14 if Min value ̸= Self.Value then
15 Self.Value ← Min value
16 Send to all neighbours(Self.Value + 1)

17 Halt()

Superstep Vertex
Messages
received

Start
value

End
value

Messages generated Halts?

0

0 - - ∞ - Yes
1 - - ∞ - Yes
2 - - ∞ - Yes
3 - - 0 1 to v2 Yes

1

0 - ∞ ∞ - Yes
1 - ∞ ∞ - Yes
2 1 ∞ 1 2 to v0, 2 to v1 Yes
3 - 0 0 - Yes

2

0 2 ∞ 2 3 to v1 Yes
1 2 ∞ 2 3 to v3 Yes
2 - 1 1 - Yes
3 - 0 0 - Yes

3

0 - 2 2 - Yes
1 3 2 2 - Yes
2 - 1 1 - Yes
3 3 0 0 - Yes

Table 2.3: Simulation of a Single-Source Shortest Paths application, selecting vertex v3
as the source vertex, on the graph from Figure 2.4

21

Chapter 2: Background

2.4 Conclusions

This chapter introduced the concepts from HPC and graph theory necessary to the un-

derstanding of this thesis. It also presented the vertex-centric programming model and

the benchmarks selected for evaluations, illustrated with examples. The next chapter will

describe in detail the work achieved by the graph community, focussing on the different

types of optimisations techniques developed.

22

Chapter 3

Related work

3.1 Introduction

This chapter surveys the literature in areas relevant to the research conducted in this

thesis. Techniques developed to optimise the vertex-centric programming model can be

categorised into two groups. Firstly, approaches that ultimately result in the creation of

a new programming model, introduced in Section 3.2. Secondly, techniques that remain

compatible with the vertex-centric programming model are reported in Section 3.3. Sec-

tion 3.4 then concludes with a brief analysis of the techniques and approaches presented.

3.2 New programming models

The popularity of vertex-centric programming has resulted in numerous attempts at

optimising performance and memory efficiency. Some of these have grown to become

an entirely new programming model, distinct from, but inspired by, the vertex-centric

programming model.

3.2.1 Vertex-subset-centric

Ligra [53] is one of the most popular shared-memory frameworks for graph processing.

It demonstrated, in 2013, that the evolution of hardware technology has enabled nodes

to contain enough memory to process graphs made of tens or even hundreds of billions

of edges. However, due to the size of the graphs considered, in existing literature, the

emphasis was placed on distributed-memory solutions. Therefore, the authors of Ligra

concluded that there was scope to design an efficient shared-memory framework able to

process large-scale graphs.

23

Chapter 3: Related work

The design of Ligra relies on the observation that many graph-based algorithms op-

erate over small subsets of vertices. However, in Pregel computation is localised to in-

dividual vertices as it cannot be expressed at a more global scope than vertex-centric.

Therefore, Ligra aims to support the processing of vertex subsets by shifting the scope

of computation to vertex-subset-centric. An abstraction based on three components is

proposed: two functions, EdgeMap and VertexMap, as well as a type VertexSubset

that represents a subset of vertices in the graph processed.

The EdgeMap function accepts four arguments: a graph G, a VertexSubset S of

G, a user-defined function F (which accepts two vertices and returns a boolean) and a

user-defined function C (which accepts a vertex and returns a boolean). The EdgeMap

function also returns a VertexSubset. The function F is then applied to edges whose

source vertex is in S and target vertex evaluates to true from function C. The latter

can be considered a filter, enabling the user to select or ignore neighbours based on

user-defined criteria.

The VertexMap function accepts two input arguments and returns a VertexSubset.

The input arguments are a user-defined function F , which accepts a vertex and returns a

boolean, and a VertexSubset S. VertexMap then applies the user-defined function

F to each vertex contained in the vertex subset S. Vertices from S that evaluate to true

through function F are appended to a vertex subset, and subsequently returned by the

vertex map function.

The workflow provided by Ligra is based around iterative execution that processes

a given VertexSubset until a termination condition is reached, typically when the

VertexSubset processed becomes an empty set. At the beginning of execution, the

VertexSubset is initialised by the user and then updated by being passed to EdgeMap

and VertexMap at every iteration, applying the user-defined functions specified until

the termination condition is reached. By having placed vertex subsets at the centre of its

design and execution flow, Ligra is categorised as a vertex-subset-centric framework [54].

Compared to the vertex-centric programming model, Ligra retains a global view of

the graph and exposes explicit parallelism to the user as well as atomic operations, but

does not provide a vertex halting feature or a message-passing interface. As stated in [53],

given that the user-defined function passed to VertexMap and EdgeMap may be run

in parallel, “the user must ensure parallel correctness”. The characteristic of the vertex-

centric programming model, where low-level considerations are hidden from the user to

preserve a highly-abstracted interface, is therefore not reflected in Ligra.

Gemini [55] is a distributed-memory framework published in 2016. Described as

computation-centric, it can be considered comparable to a distributed-memory equival-

24

Chapter 3: Related work

Figure 3.1: Undirected graph used in Blogel example

ent of Ligra, providing a similar interface, as well as having a workflow designed upon

the concept of VertexSet which is very similar to Ligra’s VertexSubset. However,

similarities also extend to limitations observed. For example, Gemini retains a global

view of the graph, contrasting with the vertex-local view specific to vertex-centric pro-

gramming. Furthermore, the Gemini framework exposes low-level parallelism too, such

as requiring the explicit use of atomic operations, as well as lacking a message-passing

abstraction.

3.2.2 Block-centric

The block-centric programming model was introduced in 2014 via Blogel [56]. This

approach partitions the graph into blocks and allows applications to communicate at the

block-level in order to hasten the propagation of messages.

Consider, as an example, the undirected graph given in Figure 3.1, which happens

to be a connected component, and where each vertex can reach any other vertex. This

graph has a graph diameter of 7, which means that at most 7 supersteps are needed

for a message to propagate. When running Connected Components using the hash-min

algorithm given in Subsubsection 2.3.2.2 for instance, the initial value 0 held in v0 would

therefore require 7 supersteps to reach vertex v9.

By contrast, the graph can be partitioned via a block decomposition, for example,

the one given in Figure 3.2 where each block is given a connected component. In Blogel,

in the first superstep, the minimum value would be calculated in each block. Block 0

would therefore have a block value of 0, and block 1 would have a block value of 5. At

the end of the superstep, these block values would be exchanged, and then propagated

to the vertices held locally. At the end of the first superstep, all vertices would therefore

obtain their final value.

25

Chapter 3: Related work

Figure 3.2: Example of a graph partitioning into blocks in Blogel

This is made possible by re-analysing the graph at the block-level. The new graph

obtained would therefore contain two nodes (the two blocks) which implies that the graph

diameter of this block-level graph is 1. This determines why any message value generated

from a vertex within a block will take 1 superstep to reach any other vertex held in the

other block.

This graph decomposition into Connected Components is the cornerstone of this pro-

gramming model. Blogel is based on the observation that graphs with a skewed vertex

distribution, where a few vertices are connected to many while many, typically contain a

large connected component and numerous small ones. Their approach consists of building

many individual blocks by converting each small connected component into a block, and

splitting the large connected component into multiple blocks. By allowing reduction op-

erations to be applied at the block-level, message propagation in single-block Connected

Components is achieved within a single step. For a large connected component split over

multiple blocks, the number of supersteps required for message propagation equals the

number of blocks.

The Blogel programming model offers three modes: V-mode, B-mode and VB-mode.

When using the V-mode, the interface and semantics are consistent with that of the

vertex-centric programming model. An example is illustrated with PageRank, whose

implementation in Blogel is given in Appendix C.

When enabling the B-mode, the interface can be considered a strict mapping of the

vertex-centric interface to a block-centric level. The user-defined compute function is

26

Chapter 3: Related work

now applied on blocks, and likewise for the send message and halt functions. When

all blocks have halted and no pending messages are left, the graph application terminates.

The block-centric implementation of PageRank in Blogel is given in Appendix D.

When using V-mode, there is no noticeable difference compared to Pregel. However,

to leverage the block-centric optimisation, additional code must be developed, which

resulted in the 50-line PageRank implementation in V-mode growing to 250 lines required

for B-mode.

The VB-mode is a hybrid which combines both V-mode and B-mode. Communica-

tions can occur at the vertex-level and block-level, and both vertex compute and block

compute functions coexist. The termination condition is satisfied when all vertices, and

all blocks, have halted and there are no pending messages.

This customisation of the API via different modes is an interesting approach to main-

taining the programmability benefits of vertex-centric whilst maximising performance.

However, this comes at the expense of the extra work necessary to develop a Blogel

application leveraging the B-mode. As shown with the PageRank implementation, al-

though the block-centric programming model used in B-mode is a direct transposition of

the vertex-centric programming model at the block-level, it does not allow the user to

write programs as concisely. Therefore it can be argued that this does not solve the under-

lying problem, as users must rely on B-mode for performance which imposes significant

additional programming overhead.

GoFFish [57] was published in 2014 and is conceptually similar to Blogel, although

the latter also developed its own graph partitioning techniques. The experiments con-

ducted suggest the importance that an initial graph partitioning based on Connected

Components may have for performance, not only directly as a consequence of the load

balancing improvement obtained, but also indirectly through the kind of block-centric

optimisations it enables. It must be noted, however, that these techniques had also been

explored in the graph-centric programming model introduced in Giraph++ [58] published

a year earlier, in 2013. These three independent frameworks, therefore, improved the per-

formance of the vertex-centric programming model by targeting the message exchange

phase, speeding up the message propagation through programming at a subgraph-level

and partitioning the graph as a preprocessing phase.

3.3 Optimisations within vertex-centric

The second category presented in this chapter contains optimisations that are leveraged

from within vertex-centric and often transparent to the user.

27

Chapter 3: Related work

3.3.1 Sender-side combination

In distributed-memory frameworks, vertices are distributed across workers which are

mapped to multiple nodes. Messages generated intended for vertices held by a worker

residing on a different node are therefore queued for later sending. A major limitation of

this approach is that the queue might reach a size equalling the graph size.

One of the optimisations introduced in the original Pregel [11] is sender-side com-

bination, which aims to reduce the number of messages generated on the network by

combining them before sending. This optimisation relies on the observation that, in cer-

tain algorithms, a vertex does not seek the value contained in each message individually

but only the result of their reduction, such as a sum or minimum. In these cases such an

intent can be expressed through the use of a combiner, which is a user-defined function

that accepts two message values as input and returns their reduced result. Pregel does

not provide any guarantee around which messages (if any) are combined, or in what or-

der. Therefore, this implies that, as specified in [11], the combination operation must be

commutative and associative.

Applying a combiner to queues allows workers to perform a combination pass upon

their queued messages and reduce the size of these queues before sending. Consequently,

a lower number of messages is ultimately sent over the network, alleviating pressure on

network bandwidth and improving overall performance.

Despite being known since the original Pregel, there have been cases where the com-

biner optimisation is not implemented by other frameworks, such as FemtoGraph [38].

This is a major omission because, not leveraging the use of combiners on the sender-side

guarantees that message queues may grow until containing a number of elements equal

to the graph size. As it will be shown in Section 7.2, not supporting the use of combiners,

or deferring their execution, results in a memory overhead that can be significant.

3.3.2 Receiver-side scatter

In distributed-memory frameworks, vertices may share edges with vertices held on a

worker residing on a different node. Except in the theoretically possible, though highly

unlikely, situation where a disconnected graph whose disjoint subgraphs can be mapped

perfectly to distributed-memory workers, graph partitioning will result in cross-worker

edges. An example of a graph G, distributed over two distributed-memory workers, is

given in Figure 3.3. This partitioning places vertex V0 on worker 0, and vertices V1, V2

and V3 on worker 1, resulting in three cross-worker edges.

When vertex V0 generates messagesM0, M1 andM2 to be sent to vertices V0, V1 and V2

respectively, this results in three cross-worker messages, as illustrated by Figure 3.4. Such

28

Chapter 3: Related work

Figure 3.3: Example of a graph G, along with a distributed-memory partitioning

Figure 3.4: General cross-worker communication pattern

29

Chapter 3: Related work

Figure 3.5: Example of a receiver-side scatter optimisation

a situation represents the most generic situation where no assumption is made about the

vertex communication pattern when undertaking the decomposition of the graph across

workers.

It follows that a vertex with a high out-degree, also referred to as a hub vertex,

may generate a high number of cross-worker messages when communicating. In vertex-

centric applications where vertex communications comprise neighbouring broadcasts, the

messages generated by a given vertex contain the same value. In Figure 3.4, this translates

to messages M0, M1 and M2 containing an identical value, which creates a context where

the receiver-side scatter optimisation can be leveraged. As demonstrated in X-Pregel [32],

LFGraph [33], GRE [34], this technique is an equivalent to a multicast technique applied

to message transmission, where it consists of sending the broadcast message once to each

recipient worker. On receipt, the worker reroutes a copy of this message to each of the

recipient vertices that it holds. An example of the receiver-side scatter technique applied

to this situation is depicted in Figure 3.4 is given in Figure 3.5.

Whilst this technique reduces the overall amount of cross-worker communication gen-

erated by vertices, in two out of the three frameworks cited, there was a reduction in

abstraction. This shifted the vertex-centric model into either a subgraph-centric pro-

gramming model (X-Pregel) or a scatter-combine computation model paired with an

agent-based data model (GRE).

3.3.3 Vertex-mirroring

In graphs with highly skewed distributions, hub vertices are frequently a major cause of

load imbalance in vertex-centric programs. Therefore, efforts have been made to handle

such vertices more efficiently, including the receiver-side scatter technique presented in

30

Chapter 3: Related work

Figure 3.6: Example of a graph G, along with a distributed-memory partitioning

Figure 3.7: Application of the vertex-mirroring technique on vertex v0

Subsection 3.3.2. A similar effect is obtained with another technique, called vertex-

mirroring, and first introduced in Pregel+ [12].

The vertex-mirroring technique consists of virtually splitting a vertex v by duplicating

it upon every worker which holds vertices in the adjacency list of v, similarly to ghost

vertices/edges in Distributed GraphLab [35]. These mirrors act as worker-local repeaters

upon receipt of a message from their original vertex. Using the graph illustrated in

Figure 3.6 as an example, vertex v0 on worker 0 would be mirrored into vertex v′0 on

worker 1, as illustrated in Figure 3.7. In situations where vertex v0 broadcasts a message

M to its neighbours, the message can be delivered directly to recipient vertices on the

same worker as v0. For recipients residing on a different worker, the message is sent to

the corresponding vertex mirror instead, which in turn will broadcast the message to the

recipients held on the vertex mirror worker.

This technique, therefore, helps alleviate the impact on the performance of load im-

balance generated by hub vertices. Selecting the mirroring threshold, which is the degree

above which vertices are mirrored, remains a challenging task and as reported in Fig-

ure 12 in [12], may result in a performance difference of a factor of two depending on its

31

Chapter 3: Related work

value. It should be noted that, in addition to its similarity with the receive-side scat-

ter technique presented in Subsection 3.3.2, the vertex-mirroring technique can also be

considered a vertex-centric equivalent of the vertex-cut technique introduced in Power-

Graph [59]. The authors of Pregel+ highlight that the vertex-mirroring technique is also

similar to the large adjacency-list partitioning technique used in GPS [60]. These obser-

vations demonstrate that the efficient handling of hub vertices has attracted significant

attention both in general graph processing and in vertex-centric.

3.3.4 Request-respond paradigm

The second optimisation introduced in Pregel+ [12] was the request-respond paradigm,

which focusses on the structure of communications in vertex-centric programs, which

are solely vertex-to-vertex. This characteristic results in any ping-pong interactions,

for example, a vertex requesting the value of another vertex, requiring two supersteps to

complete. Inefficiencies arise when multiple source vertices request the same target vertex

value. For example, in a scenario where there are L source vertices, such request-responds

would naively require 2× L messages using classic vertex-centric communications.

The request-respond technique presented in Pregel+ addresses this issue by allowing

vertices to explicitly express their intent to request the value of a certain vertex by calling

the function request and passing it the identifier of the target vertex. The target vertex

of any such request is registered, if it is not present already, into a table which tracks all

target vertices of interest. At the end of the superstep, workers first exchange batches of

ordinary Pregel messages, and then proceed with the sending of the sets of target vertex

identifiers. Upon receipt of a request list, a worker fetches, for each target vertex, the

corresponding vertex value and returns it along with the vertex identifier. This set of

records is then received by the requesting worker and, in the subsequent superstep, any

vertex requesting the value can do so by passing the identifier of the target vertex to the

get resp function. Vertices can also preemptively generate such responses by calling

the respond function.

The benefit of this technique is that, regardless of the number of source vertices

generating requests for a specific target vertex, at most one request and one response are

exchanged at the worker-level, decreasing the number of messages to min(W,L), where

W is the number of workers and L the number of source vertices.

However, to leverage this optimisation, vertex-centric programs written in Pregel+

must implement a respond function, which will be called to fetch the value of the

calling vertex. This means that applications written in Pregel+ already would need

to be rewritten from the pure vertex-centric approach to leverage the request-respond

32

Chapter 3: Related work

optimisation provided.

3.3.5 Communication channels

The concept of communication channels was first introduced into a vertex-centric ap-

proach in 2017 in the channel-based Pregel system [61], with the aim of improving vertex-

centric communications. This is based on the observation that vertex-centric imple-

mentations of certain algorithms, such as minimum spanning forest, require multiple

computation phases which themselves often involve different communication patterns.

This results in two disadvantages, the first, given that the type and structure of the

data contained may vary, is that the message type must be large enough to encode any

potential payload. The second issue is the lack of information at the framework-level to

infer optimisations in the communication patterns used, due to all the messages being

alike.

To address these issues, communication channels were introduced which encode pre-

defined communication patterns that can be used to perform different phases in the

vertex-centric application. Certain channels require a list of edges to operate on, and

where edges of interest must have been added to the channel’s list using add edge

beforehand. For instance, one of the channels is ScatterCombine, which sends the

provided value along all specified edges, and then subsequently combines this value with

that on the receiving vertex using the user-defined combine function. Numerous pre-

defined communication channels are provided, for instance one implementing Pregel+’s

request-respond technique, as discussed in Subsection 3.3.4.

An additional benefit of communication channels is their ability to be composed, and

this is especially useful in supporting algorithms where multiple types of communication

patterns may be needed, such as the Shiloach-Vishkin algorithm [62]. The corresponding

implementation in the channel-based Pregel system, given in Appendix F, uses 3 different

communication channels, ScatterCombine, PushCombiner and RequestRespond.

Communication channels successfully address both the issues identified above. Provid-

ing the framework with a set of channels, each tailored to a specific use, allows vertex-

centric programs implemented in the channel-based Pregel system to benefit from in-

dividually optimised communication patterns both for performance and message input

type.

However, the major limitation is that to enable communication channels, vertex-

centric programs must be rewritten. Additionally, users must understand the exact se-

mantics of each communication channel, as well as which rewritings are needed for this

channel, in addition to assessing their potential suitability for the underlying communic-

33

Chapter 3: Related work

ation pattern used in a given algorithm phase. Analysis of the applicability of commu-

nications channel based on an algorithm’s characteristics might be considered beyond the

original set of expectations in vertex-centric programming, where such low-level concerns

are offloaded to the framework while the user is meant to focus solely on developing a

graph processing application.

3.3.6 Selective scheduling

In vertex-centric algorithms, it is common for computation to converge faster on certain

parts of the graph than others. To address this, the selective scheduling optimisation was

introduced by GraphChi [24] which aims to focus computation on vertices that are yet

to reach convergence.

This technique, similar to the approach of VertexSubset in Ligra and presented in

Subsection 3.2.1, consists of vertices explicitly scheduling other vertices for processing in

the following superstep. At the beginning of the first superstep, all vertices are scheduled

for processing whereas only vertices explicitly scheduled are processed in subsequent

supersteps.

For example, consider where a vertex broadcasts a value predicted to result in a notice-

able change, that is above the convergence threshold specified, in certain neighbouring

values. A vertex in this situation can schedule such neighbours for processing, allow-

ing other neighbours to potentially never be processed should they not receive a value

resulting in a change above the convergence threshold.

The benefit of selective scheduling is in the time saved by skipping inactive vertices.

In addition to saving time undertaking a vertex check, which may become noticeable on

graphs with a high order, there is also a load balancing improvement associated with

this technique. Traditionally, vertices that must be processed are grouped into chunks,

which are then assigned to workers. However, chunks may contain different proportions

of inactive vertices, resulting in workers receiving different workloads. Although certain

dynamic load balancing techniques may help partially alleviate this effect, a better ap-

proach is to begin with a set of vertices that are already pruned to active vertices as this

will result in every chunk containing no vertices to be skipped.

However, the need for this technique may be considered as a consequence of having lost

certain vertex-centric abstractions. As explained in [24], GraphChi does not provide the

message-passing abstraction of the vertex-centric programming model. This goes against

the original vertex-centric execution flow, where inactive vertices become active again

upon receipt of a message. Because the signal is no longer present to wake up vertices,

the corresponding opposite, the vertex halting feature, was also removed in GraphChi.

34

Chapter 3: Related work

Removing these two abstractions resulted in vertices no longer holding a state indicating

whether they are active, or inactive. Processing such vertices can therefore no longer

distinguish vertices that may have already reached convergence, as normally indicated

with an inactive state in vertex-centric programs. To address this the selective scheduling

technique reconstructs the set of active vertices, at every superstep.

The drawback of selective scheduling is that it exposes the construction of the set of

active vertices to the users, who must manually append vertices to the list of vertices to

process as part of their application code. This involvement of the user in the underlying

scheduling mechanism of the framework further degrades the original benefit of the vertex-

centric programming model, originally providing a highly abstracted interface to the user

while offloading low-level technical considerations to the underlying framework.

3.3.7 Vertex inactivation

The replacement of the message-passing abstraction in favour of promoting faster con-

vergence through direct memory accesses, observed in the selective scheduling tech-

nique presented in Subsection 3.3.6, is also found in Palgol [21]. The limitations high-

lighted around the selective scheduling technique, where the removal of the vertex-centric

message-passing abstraction fundamentally breaks the original execution flow of vertex-

centric programs where vertices are normally made active again upon receipt of such a

message.

In Palgol, this resulted in the creation of a vertex inactivation technique which pre-

serves the vertex halting feature, but changes its semantics. A vertex calling halt in

Palgol becomes inactive, like in Pregel, but the difference is that it may never become

active again. This is explained by the authors in [21]:

In Pregel, an inactive vertex can be activated by receiving messages, but such

semantics is unsuitable for Palgol since we already hide message-passing from

programmers. Instead, a stopped vertex in Palgol will become immutable

and never perform any subsequent local computation, but other vertices can

still access its fields. This feature is still experimental and we do not further

discuss it in this paper; it is, however, essential for achieving the performance

reported in section 4.

As acknowledged by its authors, and similarly to the selective scheduling technique,

seeking performance gains by removing one of the vertex-centric abstractions, here the

message-passing abstraction, ultimately led to the removal or degradation of other vertex-

centric abstractions.

35

Chapter 3: Related work

Figure 3.8: Example of an incrementalisation in PageRank, for the first three supersteps,
assuming a damping factor γ

3.3.8 Incrementalisation

In vertex-centric, incrementalisation is the refactoring of message exchanges to no longer

represent whole values, but increments. For instance, considering the PageRank algorithm

introduced in Subsubsection 2.3.2.1, one characteristic is that, at any given superstep i,

active vertices calculate their new value based on the sum of values received from incoming

neighbours. In this case, messages can be refactored such that they no longer represent

a whole value sent from a vertex, but instead the difference, or delta, from the previous

message. This allows vertices to preserve their original value throughout supersteps, and

only update it with the differences received from other vertices. An example is given in

Figure 3.8, with both classic and incremental execution flows for a graph containing three

vertices, where the value of a vertex is updated according to Equation 3.1:

Si =


1

|V |
if first superstep

γ + (1− γ)
∑
m∈M

m otherwise
(3.1)

where Si is the updated value of the vertex at superstep i, |V | is the graph order, γ is

the damping factor and M is the list of messages received. The message generated by

vertices contains their value divided by the number of out-neighbours. When moving

36

Chapter 3: Related work

towards the incremental approach shown in Figure 3.8, a vertex simply updates its value

according to Equation 3.2:

Si =



1

V
if first superstep

γ + (1− γ)
∑
m∈M

m if second superstep

Si−1 +
∑
m∈M

m otherwise

(3.2)

where Si is the value of that vertex at superstep i. It should be noted that, in equation

that in Equation 3.2, messages in M are incremental messages, by contrast to whole

messages in Equation 3.1. As shown in Figure 3.8, the incrementalisation of PageRank

allows faster convergence and reduces the number of messages exchanged.

However, incrementalising a vertex-centric program also requires in application re-

writing, and most often significant application level code changes. This suffers the

trade-off encountered between performance and vertex-centric programmability. The

∆V framework [36] enabled the automatic incrementalisation of vertex-centric programs

using pagerank as a driver. Exploration of incrementalisation in vertex-centric programs

is still active [63].

3.3.9 Message prioritisation

Another approach to restructuring vertex-centric communications is Slow Passing Fast

Consuming (SPFC). This technique is motivated by the observation that, in vertex-centric

programs, certain messages have a higher impact on reaching convergence than others.

The approach aims at reducing the total number of messages generated by selecting only

those messages from vertices with highest priority.

To prioritise vertices, a formula or metric determining a vertex priority must be

defined, with messages generated then taking the priority of the sender vertex. The

authors provide a list of recommended prioritisation strategies for common graph pro-

cessing applications. For instance, in SSSP they recommended that priority is given to

vertices with small identifiers, whereas in PageRank vertices with small in-degree are

recommended for priority. In addition, a threshold indicating the maximum number of

messages that can be generated during the superstep must be specified.

When a vertex expresses an intent to send messages, it is queued by the message-

passing scheduler. At the end of the superstep, should this vertex be in the set of

prioritised vertices, it will be selected and its messages sent. Eventually, all queued

37

Chapter 3: Related work

vertices will be selected for message transmission, although this may occur in different

supersteps.

However a limitation with this approach is that, by queuing vertices and delaying

their message sending, intermediate states of vertices may be lost. For instance, a vertex

broadcasting its value at superstep i, while being already queued since superstep i −
1, where the corresponding broadcast meant to happen at superstep i − 1 is lost. It

depends upon the algorithm whether this impacts correctness, however for SSSP the

most recent state is always the only one relevant and such loss of preceding values does

not matter. However, for pagerank all intermediate states are required and this would

impact correctness. To address this issue, SPFC provides a sender-side accumulator that

combines the message value already in the queue with a new one. In the case of PageRank

for example, these values are summed. When the vertex is scheduled for message sending,

the value transmitted therefore contains information from both messages.

In SPFC, the prioritisation strategy and threshold play an important role in the over-

all impact on performance. An unsuitable prioritisation strategy may cause important

vertices to be scheduled late, thus increasing the number of supersteps, as well as the

number of low-value messages. The threshold is also important, where having a value too

high may increase the number of supersteps as only a select few vertices would be sys-

tematically prioritised for communication, eventually outweighing the benefits obtained

from the message reduction. However, having a threshold value too low may yield a

performance gain lower than the overhead of the message-passing scheduling, thus ulti-

mately degrading performance. Experiments conducted in [37] demonstrate that different

thresholds may result in a performance difference of an order of magnitude.

From a programmability point of view, the approach presented in SPFC exposes low-

level considerations to the user, who needs to understand the underlying message-passing

scheduling architecture, as well as defining both a suitable prioritisation strategy and an

appropriate threshold.

3.4 Conclusions

In this chapter, numerous vertex-centric optimisation techniques have been presented, as

shown in Table 3.1. Their analysis in Section 3.2 revealed that an entire set of optim-

isations resulted in the removal or modification of vertex-centric abstractions, ultimately

mutating the vertex-centric programming model into an entirely new programming model

with a broader scope, from vertex-subset-centric to block-centric (the latter being also

referred to as subgraph-centric or graph-centric).

38

Chapter 3: Related work

Technique New programming model Within vertex-centric
Vertex-subset-centric ✓
Block-centric ✓
Sender-side combination ✓
Receiver-side scatter ✓
Vertex-mirroring ✓
Request-respond paradigm ✓
Communication channels ✓
Selective scheduling ✓
Vertex inactivation ✓
Incrementalisation ✓
Message prioritisation ✓

Table 3.1: Summary of optimisation techniques surveyed and their categorisation de-
pending on their impact on the vertex-centric programming model.

Then, Section 3.3 listed optimisation techniques that did not result in the creation of

a new programming model. However, it was observed that most techniques eventually

degraded or removed certain vertex-centric abstractions, such as the suppression of the

message-passing abstraction, the removal (or change of semantics) of the vertex halting

feature and the exposition of low-level considerations such as message scheduling and

vertex selection.

The survey conducted in this chapter, therefore, indicates how difficult the design of

vertex-centric optimisations can be when programmability must be preserved. However,

it may also suggest that research in such programmability-preserving optimisations is an

area of vertex-centric yet to be explored further.

39

Chapter 3: Related work

40

Chapter 4

Establishing a new state-of-the-art in

vertex-centric shared-memory

processing

4.1 Introduction

Almost a decade ago, the vertex-centric model was introduced through Pregel [11], and

thanks to its expressiveness and scalability, this model rapidly gained in popularity. Many

vertex-centric applications were soon developed, for example social network analysis [64]

and data analytics [65,66].

The majority of existing vertex-centric frameworks use distributed-memory parallel-

ism, out-of-core computation where external memory is used, or both. Such approaches

enable the processing of graphs which are too large to fit in the memory of a single node.

However, these approaches also include overheads such as network communications for

distributed-memory systems, and disk IO for out-of-core solutions. Approaches that only

rely on the shared memory of a single node are another option, and do not suffer from

the aforementioned disadvantages. However, the fundamental limitation of this approach

is the amount of resources, specifically memory, available within a single node.

Surveys indicate that vertex-centric frameworks typically have a large memory foot-

print [67], reaching up to 264GB required to process PageRank over a graph of fewer than

two billion edges [25], thus representing approximately 8GB of data. Such overhead is

incompatible with a viable in-memory shared-memory framework, therefore resulting in

a need to greatly reduce the memory footprint of vertex-centric frameworks. In addition,

the existing in-memory shared-memory vertex-centric frameworks do not significantly

outperform their distributed memory or out-of-core counterparts. Therefore, arguably

41

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

the potential of the in-memory shared-memory architecture, which was illustrated with

Ligra [53] for vertex-subset-centric programming, is yet to be fully realised in vertex-

centric programming.

As described in Chapter 3, vertex-centric frameworks typically incur a compromise

between abstraction provided to the user, performance achieved and memory footprint

generated. To improve performance or reduce memory footprint, vertex-centric frame-

works commonly abandon certain features or abstractions from the vertex-centric model,

which can significantly impact its cornerstone of programmability. Meanwhile, maxim-

ising performance and memory efficiency remains crucial to vertex-centric frameworks to

support the processing of current and next generation graphs.

The contributions made towards these objectives can be described as follows:

• A highly modular design allowing optimisations to be enabled without requiring

application rewriting, implemented in our in-memory shared-memory framework,

iPregel.

• A set of optimisation techniques that leverage vertex-centric combiners, auto-

matically preselect vertices to run based on communication pattern analysis, and

efficiently address vertices.

• Programmability-independent optimisations, where techniques implemented

do not require, or result in; the degradation, or removal, of vertex-centric abstrac-

tions.

• A thorough evaluation of vertex-centric frameworks across three major at-

tributes: performance, memory efficiency and programmability.

The rest of this chapter is organised as follows: Section 4.2 presents related work

and Section 4.3 provides an overview of the iPregel framework, from its interface and

implementation to the optimisations designed and how they can be leveraged by the

user, followed by Section 4.4 which presents the application benchmarks selected. Sec-

tion 4.5 presents experiments designed, and results collected, to assess the competitiveness

and viability of in-memory shared-memory frameworks in vertex-centric programming.

Then, Section 4.6 focusses on providing a thorough comparison between shared-memory

frameworks, before Section 4.7 draws conclusions and discusses potential further work

directions.

42

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

4.2 Related work

The majority of existing vertex-centric frameworks exploit distributed-memory parallel-

ism, for example Pregel+ [12] and Giraph [68]. These frameworks are categorised as in-

memory, where they exclusively use DRAM for storage. Distributed memory parallelism

enables the use of larger memory spaces, decomposed across the physical nodes. Memory

is typically the determining factor when it comes to the number of nodes required to

process a graph. An increased number of nodes requires more network communications,

which exacerbates the fundamental bottleneck of distributed-memory parallelism.

Although, in theory, distributed-memory systems using in-memory storage can pro-

cess graphs of any size, given enough nodes, a trend is observed towards the development

of distributed-memory systems also relying on out-of-core computation, such as Graph-

Lab [69], Pregelix [70] and GraphD [25]. Given their ability to use both DRAM and

disk storage, out-of-core solutions typically offload unused data to disk and only keep in

DRAM data that is currently needed. The resulting disk IO is the challenge faced by such

frameworks, which often hide the corresponding latency using overlapping techniques for

instance.

To avoid the overheads associated with distributed memory parallelism, certain frame-

works moved to shared-memory parallelism, with out-of-core computation. This can be

observed with GraphChi [24], which is a spin-off of its distributed-memory counterpart

GraphLab [69]. GraphChi [24] is a single-node vertex-centric framework able to process,

in theory at-least, graphs of any size by relying on disk storage as an extension of memory.

In GraphChi, the graph is divided into disjoint intervals, each of which is represented by

a shard that stores all incoming edges of the vertices in that interval, on disk. Shards1 are

then loaded, in turn, into memory and the vertices belonging to the interval they repres-

ent are processed concurrently. With this design, GraphChi is able to process graphs that

do not fit in memory, overcoming the fundamental limitation of single-node frameworks,

at the expense of costly disk accesses.

There are other frameworks that are entirely in-memory shared memory, such as

Ligra [53]. This shared-memory framework using in-memory storage was a significant

improvement in the state-of-the-art as it enabled the processing of large graphs in shared

memory. Its authors argue that the amount of memory available in high-end nodes is

sufficient to process graphs with hundreds of billions of edges. More commonly, modern

cluster nodes have between 64GB and 512GB of memory, which remains sufficient to

process graphs up to a hundred billion edges in Ligra. Therefore, single-node frameworks

that rely exclusively on in-memory storage such as Ligra can be viable in large-scale

1When determining the size of a shard, GraphChi ensures that it is sufficiently small to fit in-memory

43

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 /**
2 * @brief This function performs the actual superstep calculations of a
3 * vertex.
4 * @param[inout] me The vertex to process.
5 **/
6 void ip_compute(struct ip_vertex_t* me);
7
8 /**
9 * @brief This function combines two messages into one.
10 * @param[inout] old The existing message in the vertex mailbox.
11 * @param[in] new The message that arrived for receipt.
12 **/
13 void ip_combine(IP_MESSAGE_TYPE* old, IP_MESSAGE_TYPE new);

Figure 4.1: User-defined functions of iPregel

processing too. Experiments conducted [53] show that Ligra is able to scale to graphs

containing almost 13 billion directed edges while preserving a parallel efficiency between

45% and 80% on 40 cores. However, as described in Subsection 3.2.1, from a programming

perspective, Ligra is described as a vertex-subset-centric framework [54].

FemtoGraph [38] is another example of a framework relying on shared-memory paral-

lelism and in-memory storage. The major difference from Ligra is that FemtoGraph fully

preserves all vertex-centric abstractions. However, based on the results reported in [38],

at best FemtoGraph provides little to no performance gain compared to existing graph

processing frameworks. In addition, it also appears to suffer from significant performance

overhead at a low number of threads.

4.3 Overview of iPregel

iPregel was developed as a shared-memory, vertex-centric framework to act as a vehicle

for exploring and developing appropriate techniques. This enables such techniques to be

evaluated in a sterile environment without the baggage of existing technologies.

4.3.1 Interface

In iPregel, the user is provided with a simple Application Programming Interface (API),

in which they must define the compute and combine functions, the signatures of which

are illustrated in Figure 4.1. The compute function contains the computation to execute

on each vertex, whereas the combine function is related to the message combination

feature, which is detailed further later in Subsubection 4.3.4.3.

Appendix A illustrates supporting functions provided by iPregel that allow the user

44

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Vertex
selection

Vertex
addressing Combiner

Core

Direct
mapping

Desolate
memory

Offset
mapping

Pull
combiner

Block-wait
push

combiner

Busy-wait
push

combiner

BypassAll

Figure 4.2: Structure of the iPregel framework

to track superstep progression, read messages received from the previous superstep, send

a message to a specific out-neighbour or all out-neighbours at once, and halt the vertex

currently processed respectively.

Although iPregel relies on shared-memory parallelism, communications are achieved

via a message-passing abstraction. The motivation behind this choice for shared-memory

is multifold; firstly, it protects the user from potential data-races that arbitrary memory

accesses could allow. Secondly, the use of direct memory accesses requires the program-

mer to know exactly where to write information, which implies exposing implementation

details to the user. Finally, this approach provides iPregel with the freedom to optimise

the underlying communication mechanisms whilst preserving a consistent interface for

the user.

4.3.2 Architecture

The iPregel framework is developed in C and parallelised using the shared-memory API

OpenMP [45]. In programming, optimisations may be always applicable, or require a set

of assumptions to be satisfied as a precondition. Generally, the latter are not considered

because they come at the expense of software flexibility. In iPregel however, this is

mitigated via the multi-version design illustrated in Figure 4.2.

45

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

The internals of iPregel are structured around a core that is unique and static, and

modules that have alternative implementations. Each module version is optimised for a

specific set of assumptions. Therefore, with this design, iPregel remains flexible while able

to apply assumption-specific optimisations. The three modules visible in Figure 4.2, as

well as their versions, are presented later in this chapter, in Subsubsections 4.3.4.1, 4.3.4.3

and 4.3.4.4.

4.3.2.1 Multi-version module selection

In order to keep lower-level optimisations concerns hidden from the user, the internal

modular approach of iPregel is abstracted away from them. Nonetheless, the user’s

knowledge about the graph processing algorithm is important information that may be

useful for performance optimisations. As such, users must be provided with a means

to express this additional information. In iPregel this is achieved via defines passed via

compilation flags, and was selected because it is already widely used in programming, and

allows application source codes to remain unmodified. An example of this is where many

vertex-centric algorithms exclusively require neighbour broadcasts for communication,

and by passing this information to iPregel the framework is potentially able to leverage

this.

4.3.2.2 The core

The core is the static and central part of iPregel is where the multi-version selection

takes place. The core also acts as the interface to iPregel by providing all function

declarations, which are consistent across module versions. Certain functions are version-

dependent, where, although they share the same function prototype, there are different

implementations for each module. This design choice allows any additional implementa-

tion version to be easily plugged-in and for users to write their code once this can then

leverage all modules versions. The other functions provided by iPregel have a single im-

plementation across module versions as these are responsible for auxiliary aspects such

as keeping track of the supersteps, or the total number of vertices in the application.

However, as mentioned earlier, not all functions are defined by iPregel.

In addition to functions defined by iPregel, there are also functions declared in iPregel

that must be defined by the user. The two major ones, listed in Figure 4.1, consist of

ip compute and ip combine. The former contains the code to execute on each active

vertex at each superstep, and the latter is called each time a vertex with a message in its

mailbox receives a new message.

46

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

4.3.2.3 Vertex representation

As an in-memory shared-memory solution, iPregel is bound to the memory available on

the single node it runs on. Therefore, reducing its memory footprint is essential. Since

the cornerstone of vertex-centric models is the vertices themselves, an effort was made

towards the design of iPregel regarding vertex representation.

In vertex-centric frameworks, a vertex contains the attributes that are specified by the

user and internals that are used by the framework itself, such as the active state of the

vertex. Generally, vertex-centric frameworks rely on object-oriented languages like C++

and use a base class that contains all internals. That same class also has virtual methods

equivalent to the ip compute and ip combine functions presented in Figure 4.1. The

user then derives their own class from the base class and customises it. However, due to

the presence of virtual methods, a virtual table is created. This results in every vertex

object carrying an additional hidden pointer, which increases the total memory footprint.

To avoid this memory overhead in iPregel, vertices are represented with structures.

They contain arbitrary members provided by the user, as well as internals required by

the framework. Due to the multi-version design of iPregel, vertex internals also have

alternative implementations, but again this is abstracted away from the user. A macro

IP VERTEX INTERNALS is used to conceal the internals of iPregel, where the user defines

the structure struct ip vertex t and includes the macro inside, then can append

any additional member needed in their application.

Having multiple possible vertex internals also enables iPregel to reduce its memory

footprint. For instance, some applications require vertices to track both their in and out-

neighbours, while some others require only the former. Following a single vertex internals

design, the structure would have to assume the most conservative design and store both

in and out-neighbours. By contrast, iPregel proposes several tailor-made internals (in

only, out only, in and out) that take into account the module versions selected and the

compilation flags passed from the user as explained in Subsection 4.3.2.

4.3.2.4 Graphs accepted

Following the approach of many other vertex-centric frameworks, iPregel expects vertex

identifiers to be integral numbers, which is the case in the vast majority of graphs. In

addition, iPregel requires vertex identifiers to be consecutive, and accepts static graphs

only, which means the graph structure needs to be defined a priori and can not change

during execution.

47

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

4.3.3 Implementation

The iPregel framework is developed in C and uses OpenMP [45] to support shared-

memory concurrency. Vertex structures and the list of neighbour identifiers are stored in

two, distinct, global arrays shared with all threads. The vertex workload is distributed

using the default static schedule in OpenMP, which results in the total number of vertices

being evenly distributed across all threads and no work-stealing strategy is required.

4.3.4 Optimisations

This subsection presents the optimisation strategies employed by iPregel, which follow

by the overarching philosophy of iPregel, not resulting in user source code rewriting, or

exposing low-level details to the user. Consequently the approach adopted has been for

optimisations to be enabled explicitly via compilation flags, thus leaving the user source

code unmodified.

4.3.4.1 Selection bypass

The first phase in vertex-centric frameworks consists of selecting the vertices to execute,

and this is well accepted to be a tricky aspect of vertex-centric models [71]. The naive ap-

proach is to check the status of each vertex and process those that are active. However,

for inactive vertices, these checks are pointless and result in wasted memory accesses.

This is important because frameworks that use in-memory storage and shared-memory

parallelism already place high pressure on memory bandwidth. Therefore, keeping unpro-

ductive memory accesses to a minimum prevents aggravating that pressure. The naive

approach becomes especially problematic in programs that contain a small number of

active vertices and many inactive ones, thus resulting in many wasted checks.

The selection phase was analysed, where this phase typically decides to run a vertex

if at least one of the following conditions is met:

1. It is the first superstep

2. The vertex is already active (i.e., it did not halt when it was last processed)

3. The vertex received a message during the previous superstep

Condition 1 becomes false at the end of the first superstep. Thus, from the second

superstep onwards, a vertex is active if and only if conditions 2 or 3 are met. One

cannot assert which condition it is unless the algorithm exhibits a systematic halt, where

every time a vertex is processed it halts at the end of the compute function, because

48

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

First
superstep?

Vertex already
active?

No

Vertex received
a message?

No

Skip the
vertex

No

Run the
vertex

Yes

Yes

Yes

Default start point

Start point from
2nd superstep

Start point from
2nd superstep and
systematic halt

Figure 4.3: Execution flow of the vertex selection mechanism

49

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

this algorithmic particularity guarantees that condition 2 is always false. This is the case

for the Connected Components and SSSP benchmarks presented in Subsections 4.4.2

and 4.4.3. By contrast, in the PageRank benchmark presented in Subsection 4.4.1, a

processed vertex will not halt if the number of supersteps elapsed is less than a predefined

threshold. Therefore, in PageRank a vertex may be active in superstep n without having

received a message in superstep n− 1.

In the systematic halt situation, however, this configuration is not possible. Indeed

since condition 1 is false after the first superstep and condition 2 is always false, only

condition 3 remains where a vertex is active if, and only if, it received a message in

the previous superstep. This is illustrated in Figure 4.3, and because of this property

the list of active vertices for superstep n + 1 can be established by monitoring message

exchanges during superstep n and determining which vertices are the recipients of these

exchanged messages. This is why, when an algorithm exposes systematic halt, iPregel can

monitor message exchanges and automatically determine which vertices are active, i.e.

need processing, in the next superstep.

This approach that has been developed as part of this research is known as selection

bypass and integrating it is straightforward as it can be embedded in the function called

by vertices to send messages (ip send message and ip broadcast as given in Appendix A).

This modification consists of appending the recipient vertex identifier to the list of vertices

that must be run during the next superstep. However, one must avoid duplicate identifiers

so that a given vertex is not processed multiple times. This is again straightforward

because when a vertex sends a message the worker that processes that vertex must check

if the recipient vertex already has a message in its mailbox to determine whether it

should apply the message combination presented in Subsubsection 4.3.4.3. From there,

integrating the selection bypass feature consists of the worker adding the recipient vertex

identifier to the list of vertices to execute during the next superstep if that recipient

vertex’s mailbox is empty. Multiple threads accessing the same list can result in data-

races, and therefore in iPregel each worker maintains its own list. At the end of every

superstep, these lists are merged into a single one. This list is then split evenly across

all workers, which only need to process the vertices in that list, without having to check

their active status or the presence of pending messages.

There are multiple benefits from the selection bypass technique that has been de-

veloped here. Firstly, not having to check the status of each vertex saves memory accesses

and removes possible branch mispredictions on the vertex active state (execute if active,

skip if inactive) since vertices in the merged list are known to be active. Secondly, this

feature improves load balancing because threads receive exclusively vertices that are guar-

50

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

anteed to require processing. This contrasts against the naive approach, where threads

may receive identical numbers of vertices, potentially containing significantly different

proportions of active and inactive vertices. In summary, the selection bypass technique

makes the active vertex distribution optimal with regard to the number of active vertices

per worker.

The selection bypass technique introduced in this subsubsection can be seen as some-

what equivalent to frontiers in Ligra or selective scheduling in GraphChi. However a

major difference is that the selection bypass allows the frontier to be automatically de-

duced from algorithmic analysis, rather than explicit manual user input.

4.3.4.2 Message exchange

Typically vertex-centric applications are communication-intensive, and therefore optim-

ising the message exchange mechanism can result in substantial performance improve-

ments.

There are two means by which a message can be transmitted; firstly the sender can

push it to a recipient’s mailbox, or secondly the recipient can pull it from a sender’s

outbox. The push version can result in race conditions in the event of multiple vertex

messages being pushed to the same recipient’s mailbox concurrently. In iPregel, this is

prevented with the use of busy-waiting locks which are more efficient than their block-

waiting counterparts given that the combination operation is typically very small. By

contrast, the push version can be implemented without any locks if the combination op-

eration corresponds to an atomic operation. In Ligra [53], the user can exploit lock-free

combinations by writing a second, atomic, implementation of their combiner. However,

providing this optimisation without involving additional code writing is tricky and may

require a code parsing phase to determine whether a given combiner code can be atom-

ically processed. Due to this, the design decision was taken for iPregel not to leverage

push-based lock-free combiner operation.

The pull-based approach, due to the read-only nature of potential inter-thread inter-

actions, has the advantage of being data-race free. Thus, threads can process message

exchanges in parallel with no synchronisation required. Vertices must have a mailbox to

fetch messages, as well as an outbox in which they can buffer messages to send. Each

message in the outbox must be annotated with the recipient identifier, so that each out-

neighbour knows which message(s) to fetch. However, this annotation approach would

result in additional memory overhead, which when considering the number of messages

involved would be significant over large graphs.

However, if the same value is to be sent to all out-neighbours via a broadcast, and if

51

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

vertices issue at most one broadcast each per superstep, then only one message needs to

be stored in the vertex’s outbox. As such, there is no need to annotate the recipient’s

identifier since the message is intended for every out-neighbour. It was observed that this

assumption holds in numerous vertex-centric applications, given that communications

are typically performed via broadcasts to neighbours; from graph analytics algorithms

such as PageRank [11], Connected Components [12], Single-Source Shortest Paths [11],

Breadth-First Search [53], Betweenness Centrality [72] and graph radii estimation [53]; to

community detection algorithms, such as including Vertex-Coloring [73] and K-Core [74]

to name a few.

However, to support this lock-free design, iPregel must check, for each vertex, the pres-

ence of a message in the outbox of every in-neighbour, which results in numerous memory

accesses. In applications that expose a low number of active vertices, this optimisation

generates a high number of memory accesses that consist of checking an empty outbox,

hence wasting memory bandwidth and generating unproductive extra work. Although

Ligra can dynamically switch between the push and pull communications at runtime via

a user-defined threshold, iPregel must be configured whether to use the former or the

latter via a compilation flag. The user must therefore determine experimentally whether

it is beneficial in their case to enable this optimisation.

4.3.4.3 Message combination

Once the location of the recipient vertex is found, the message to be sent must be appen-

ded to the recipient’s inbox, and this is where the combination takes place (and where the

user’s ip combine function is called). Concretely, when a vertex sends a message, if its

recipient’s inbox is empty then the message is added, otherwise, it is combined with the

existing message. It follows that shared-memory combiners guarantee that vertices will

have at most one message in their inbox. This greatly reduces memory consumption and

makes memory consumption more predictable, because no dynamically resizeable struc-

ture is required to contain inbox messages. From an implementation perspective, several

techniques are discussed in this section. It should be noted that techniques presented

in this section are independent of, and therefore compatible with, the selection bypass

(see Subsubsection 4.3.4.1) and efficient vertex addressing (see Subsubsection 4.3.4.4)

techniques.

Push-cased combiner The first combiner presented in this section is referred to as the

push-based combiner. In the push-based approach, multiple vertices may send a message

to the same recipient concurrently, which results in a potential data-race which must be

52

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

prevented via synchronisation. This is achieved with the use of a lock that is acquired in

turn by the threads processing their the sender vertices, serialising access to the protected

data (the receiver’s vertex mailbox).

The most common locking technique, known as block-waiting synchronisation, consists

of blocking the threads whilst these are waiting to acquire the lock. These blocked threads

are paused and placed in a waiting queue, from which they will be removed once they have

acquired the lock. By putting threads to sleep this mechanism frees up CPU resources

which can then be allocated to other threads. However, this does result in some overhead

because managing the queue of waiting threads requires a more advanced lock structure

which, in addition to involving extra processing, also requires more memory.

This contrasts with the other common form of synchronisation known as busy-waiting

synchronisation, where threads repeatedly attempt to acquire the lock until they eventu-

ally succeed. This technique is generally avoided because, as threads are not put to sleep,

the CPU spins on attempting to acquire the lock and thus is kept busy by its thread in

this phase. However, this approach does have two advantages over its block-waiting coun-

terpart. Firstly, when the critical section2 is very small, for instance, combiners which

typically consist of a compare-and-replace operation, busy-waiting locks can be more re-

active because they do not incur thread pausing and resuming overheads. Secondly, not

having to handle the overheads of block-waiting (e.g. pausing, queueing, de-queueing,

and resuming) makes them simpler and therefore reduces the bookkeeping compute and

memory requirements.

In gcc, the compiler used in this work, the block-waiting and busy-waiting synchron-

isations are implemented with mutexes and spinlocks respectively (the latter requires

GNU99 extensions). The former requires 40 bytes while the latter only 4 bytes, which

represents a reduction of 90% for block-waiting. Since there is one lock per inbox and one

inbox per vertex, this memory requirement is multiplied by the total number of vertices.

For instance, considering the Wikipedia and United States of America (USA) graphs

used in this research, which are given in Table 4.1, switching from mutexes to spinlocks

reduces the memory footprint of the data-race protection from 730 and 958 megabytes

respectively, to 73 and 96 megabytes. This is valuable in iPregel where being memory

efficient, and thus able to handle larger graphs in shared memory, is a major objective.

Pull-based combiner The combination process is explained thus far in this section has

assumed a push-based approach, where the sender places a message into the recipient’s in-

box. However, adapting this for the pull-based approach is also possible, where recipients

2The region of code protected by a lock.

53

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

fetch messages sent by their in-neighbours, and this is known as the pull-based combiner.

This technique is designed upon the observation that a high number of vertex-centric al-

gorithms use neighbouring broadcasts3 as their unique means of communication. In other

words, every time a vertex communicates, an identical value is sent to all out-neighbours.

This behaviour is present, for instance, in the PageRank benchmark introduced in Sub-

subsection 2.3.2.1.

The Pull-based combiner requires reversing the way communications are designed

and consists of three phases. Firstly, vertices must be provided with their in-neighbours’

identifiers to locate the senders where they will fetch messages from. Secondly, a sending

vertex must buffer the message meant for broadcast in an outbox, as well as updating

its internal state to indicate that it has a message to broadcast. Thirdly, at the end of

every superstep each vertex must iterate through all of its in-neighbours’ outboxes, fetch

the broadcast message (if any) and then add it to its own inbox (or combine it with an

existing message).

With this technique, inter-vertex interactions are exclusively read-only (i.e: fetching

messages) while write actions (i.e: combination) are only intra-vertex. Since a vertex is

processed by a single thread, it follows that threads never modify the value of a vertex they

do not process. Therefore, there is no risk of a data-race, meaning that that pull-based

combiners provide a key improvement for parallelism performance, namely a race-free

design. However, the overall benefits delivered by this approach are influenced by two

factors:

1. The ratio of active to inactive vertices because each vertex must fetch mes-

sages from its in-neighbours at every superstep. Therefore, the more active vertices

contained by in-neighbours, the fewer unproductive checks.

2. The number of in-neighbours because each vertex must iterate through every

one of its in-neighbours. Consequently, the fewer in-neighbours, the faster this

iteration will be undertaken.

Irrespective, locks are no longer needed, therefore avoiding the memory overhead needed

by data-race protections.

Because vertices in iPregel are provided with their list of in and out-neighbours at

creation, from an implementation perspective, each vertex stores a pointer to its array of

in-neighbours as well as a corresponding counter, identically for out-neighbours. However,

the vertex structure may contain-neighbour information that will never be used, resulting

in a waste of memory. One approach would be to set the unused counters to 0 and the

3By opposition to graph-wise broadcast.

54

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

unused pointers to null, however, storing unused pointers and counters wastes several

bytes per vertex, surging to a total of approximately 250MB4 for a 20 million vertex

graph, such as those used for experimentation later in Subsubsection 4.5.1.4. It was

therefore decided to indicate needed neighbour information through compilation flags

such as IP NEEDS OUT NEIGHBOUR IDS, which enables iPregel to select the lightest

structure to represent a vertex and keep its memory footprint to a minimum.

Single message mailboxes With the use of combiners, vertex mailboxes can have two

states, empty or containing one message. Upon receipt of a new message, an empty

mailbox stores it as-is, whereas a mailbox with an existing message combines the new

message and existing one together. Irrespective, at most one message is contained within

a vertex’s mailbox. This allows the mailbox in iPregel to be of size one message only, and

avoid the use of dynamically resizeable data structures as well as the memory overhead

they incur. As a result, this design is a major factor in reducing the memory requirements

of iPregel.

4.3.4.4 Efficient vertex addressing

Vertex-centric models typically involve a high number of communications between ver-

tices, hence the importance of quick message delivery. This section focuses on the first

step of message delivery, finding the recipient vertex.

The vertex addressing mechanism is conventionally achieved with hashmaps matching

vertex identifiers against their locations. However, this intermediate layer in the vertex

addressing process incurs additional memory accesses, increases the memory footprint

and exposes poor data locality that is inherent to hashmaps. In-memory shared-memory

solutions such as iPregel typically store all vertices in a single array, so the location

of a vertex is its corresponding index in that array. Based upon the observation that

most graphs use integral numbers as vertex identifiers, the approach adopted in this

research proposes to semantically enrich vertex identifiers so they also represent their

vertex location.

The first strategy presented in this section is called Direct Mapping, where vertices are

stored in the global array at the index equal to their identifier. For example, a vertex with

identifier 5 resides at index 5 in the vertex array. This approach provides an overhead-free

addressing mechanism but requires identifiers to start at 0 since iPregel is developed in

C which is 0-indexed.

4Assuming a 64-bit operating system, hence 8-byte pointers, and an unsigned int counter, being 4-byte
long in most implementations.

55

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

However, it may be the case that vertex identifiers start at an arbitrary number,

the use of an offset must therefore be considered, resulting in an Offset Mapping. This

offset is then subtracted from the vertex identifier to find the corresponding location.

Consequently, this offset provides an index-identifier matching consisting of a simple

subtraction, which involves a marginal overhead only.

Direct mapping can still be used in situations requiring offset mapping, with the

technique named Desolate Memory. By forcing direct mapping, vertices will reside at

the array index matching their identifier. Since in this case, vertex identifiers contain an

offset, the array elements whose indexes are lower than the actual offset will be unused,

resulting in wasted memory. However, for graphs whose indexes start above 0, for instance

at 1, using desolate memory incurs the waste of a single element, which can be argued is

a reasonable memory sacrifice to benefit from direct mapping. Furthermore, regardless of

the number of elements unused, certain operating systems such as Linux provide what is

referred to as a first-touch policy, where the actual memory allocation for data is deferred

until it is accessed for the first time. Therefore, with this policy, which is enabled by

default on Linux; elements residing at indexes below that of the lowest vertex identifier for

instance, which are never accessed, will not directly5 trigger an actual memory allocation.

The addressing mechanism presented in this section allows for an efficient mapping

between a vertex identifier and its location in memory. In addition, every addressing

technique presented in this section can be used in conjunction with the selection bypass

mechanism introduced in Subsubsection 4.3.4.1.

4.4 Benchmarking applications

In this research, as explained in Subsection 2.3.2, frameworks are evaluated across three

applications widely used as benchmarks in the vertex-centric community: PageRank,

Connected Components and Single-Source Shortest Paths.

4.4.1 PageRank

As introduced in Subsubsection 2.3.2.1, the PageRank algorithm is designed to order web

pages based on their importance calculated from the number of hyperlinks pointing to

them.

The iPregel implementation of a PageRank algorithm presented in Figure 4.4 is based

upon the original Pregel version introduced in [11]. During the first superstep, each

5although they might, indirectly, still have a corresponding memory allocated, through the paging
system, due to the allocation from another vertex close in memory

56

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

vertex begins with an initial PageRank value of one divided by the number of vertices

and broadcasts its PageRank value divided by its number of out-neighbours. From the

next superstep onwards, each vertex sums the PageRank values received from its in-

neighbours, and then it updates its current PageRank value and broadcasts this. This

is repeated for a predefined number of supersteps, after which vertices halt and the

execution terminates. In practice, however, a PageRank application would typically run

until some convergence criteria is reached.

As explained above, when a vertex receives messages, it sums their values, and this

operation is both associative and commutative. Therefore a combiner can be used as

explained in Subsubsection 4.3.4.3. In Figure 4.4, the reader can observe that implement-

ing this combiner requires limited code changes by the user, they must just define the

combine function and write a short code representing the operation to apply. Further-

more, communications performed during the PageRank calculations consist exclusively

of broadcasts, with a maximum of one broadcast per vertex per superstep. According to

Subsubsection 4.3.4.2, this property means that PageRank is compatible with the pull-

based communication model, which can be enabled in iPregel via a compilation flag.

However since vertices halt only after a certain number of supersteps, compared to halt-

ing at every superstep, PageRank is not compatible with the iPregel selection bypass

optimisation presented in Subsubsection 4.3.4.1.

It should be noted that PageRank experiments reported in this chapter are run over

30 iterations.

4.4.2 Connected Components

As described in Subsubsection 2.3.2.2, computing the Connected Components of a graph

consists of finding all disjoint subsets of that graph such that each subset comprises only

of vertices that can reach each other. There are several possible vertex-centric algorithms

to compute Connected Components, the one selected in iPregel is often referred to as

Hash-Min. This relies upon the propagation of vertex identifiers to locate, for each

vertex, the minimum vertex identifier reachable. This computation converges and thus

the algorithm terminates when vertices find the minimum vertex identifier they can reach.

Finally, vertices having reached the same minimum vertex identifier belong to the same

connected component.

The iPregel implementation, illustrated in Figure 4.5, begins with vertices initialising

their value to their own vertex identifier, before broadcasting this to all out-neighbours.

Subsequently, vertices identify the minimum vertex identifier received from their in-

neighbours. They then update their value if the minimum vertex identifier obtained

57

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 const int ROUNDS = 10;
2 void ip_compute(struct ip_vertex_t* me) {
3 if(ip_is_first_superstep()) {
4 me->value = initial_value;
5 }
6 else {
7 IP_MESSAGE_TYPE sum = 0.0;
8 IP_MESSAGE_TYPE msg;
9 while(ip_get_next_message(me, &msg)) {
10 sum += msg;
11 }
12 msg = ratio + 0.85 * sum;
13 me->value = msg;
14 }
15 if(ip_get_superstep() < ROUNDS) {
16 ip_broadcast(me, me->value / me->out_neighbour_count);
17 }
18 else {
19 ip_vote_to_halt(me);
20 }
21 }
22 void ip_combine(IP_MESSAGE_TYPE* old, IP_MESSAGE_TYPE new) {
23 *old += new;
24 }

Figure 4.4: PageRank implemented in iPregel

is smaller, in which case this is then broadcast to the out-neighbours to continue the

propagation. Since vertices may obtain the minimum vertex identifier reachable at any

superstep, they always halt at the end of a superstep.

This broadcast characteristic means that the Connected Components implementation

described here is compatible with the pull-based communications introduced in Subsub-

section 4.3.4.2. Moreover, the combination operation which is applied to incoming mes-

sages, finding the minimum value, is associative and commutative. Therefore, combiners

can be leveraged for Connected Components and, similarly to the PageRank combiner

implementation of Figure 4.4, the Connected Components equivalent is also a combine

function comprising a couple of lines of code. Furthermore, because vertices halt at the

end of every superstep, Connected Components is also suitable for the selection bypass

optimisation presented in Subsubsection 4.3.4.1

4.4.3 Single-Source Shortest Paths

The SSSP algorithm, described in Subsubsection 2.3.2.3, consists of selecting a vertex as

the source and finding the distance between this source vertex and every other vertex in

the graph. In the version of this benchmark used here it is assumed that all edge weights

58

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void ip_compute(struct ip_vertex_t* me) {
2 if(ip_is_first_superstep()) {
3 me->value = me->id;
4 ip_broadcast(me, me->value);
5 }
6 else {
7 IP_MESSAGE_TYPE old_value = me->value;
8 IP_MESSAGE_TYPE msg;
9 while(ip_get_next_message(me, &msg)) {
10 me->value = min(me->value, msg);
11 }
12 if(me->value < old_value) {
13 ip_broadcast(me, me->value);
14 }
15 }
16 ip_vote_to_halt(me);
17 }
18 void ip_combine(IP_MESSAGE_TYPE* old, IP_MESSAGE_TYPE new) {
19 if(*old > new) {
20 *old = new;
21 }
22 }

Figure 4.5: Connected components implemented in iPregel

equal 1.

The iPregel implementation sketched in Figure 4.6 is based upon the original Pregel

version introduced in [11], which is considered a distributed version of the Bellman-Ford

algorithm [54] and is also the implementation used in Ligra. During the first superstep,

the source vertex initialises its value to 0 and begins the propagation by broadcasting

this incremented by 1 (representing the assumed edge weight of 1). Concurrently, all

other vertices initialise their value to INF (which is a value greater than the longest

distance possible in the graph). From the second superstep onwards, vertices calculate the

potential minimum distance obtained from messages received. In the event this distance

is smaller than the current vertex value, the vertex updates its value and broadcasts this

incremented by 1. Finally, vertices halt at the end of every superstep since they may

have obtained their final minimum distance at any superstep.

This SSSP algorithm exposes the same characteristics as Connected Components,

where vertices halt at the end of every superstep, communications are performed only

via broadcasts, there is a maximum of one broadcast per vertex per superstep, and

the algorithm contains a combination operation that is associative and commutative,

which calculates the minimum distance. As a consequence, the SSSP implementation

can be optimised using the selection bypass technique presented in Subsubsection 4.3.4.1,

the pull-based communications discussed in Subsubsection 4.3.4.2 and the leverage of

59

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void ip_compute(struct ip_vertex_t* me) {
2 if(ip_is_first_superstep()) {
3 if(me->id == SSSP_SOURCE) {
4 me->value = 0;
5 ip_broadcast(me, me->value + 1);
6 }
7 else {
8 me->value = INF;
9 }
10 } else {
11 IP_MESSAGE_TYPE mindist = INF;
12 IP_MESSAGE_TYPE msg;
13 while(ip_get_next_message(me, &msg)) {
14 mindist = min(mindist, msg);
15 }
16 if(mindist < me->value) {
17 me->value = mindist;
18 ip_broadcast(me, me->value + 1);
19 }
20 }
21 ip_vote_to_halt(me);
22 }
23 void ip_combine(IP_MESSAGE_TYPE* old, IP_MESSAGE_TYPE new) {
24 if(*old > new) {
25 *old = new;
26 }
27 }

Figure 4.6: Unweighted SSSP implemented in iPregel

combiners introduced in Subsubsection 4.3.4.3 respectively.

Note that benchmark implementations from other frameworks were amended, as re-

quired, to become algorithmically equivalent such as homogenising the predefined itera-

tion number in PageRank for instance.

It should be noted that the SSSP experiments contained in this chapter use the vertex

identified by ’2’ as the source.

4.5 Assessing in-memory shared-memory viability

The first series of experiments conducted in this chapter focus on the competitiveness

of in-memory shared-memory vertex-centric frameworks and determining whether they

are a viable solution for graphs processing. Two sets of experiments are described, the

first evaluating the performance of several iPregel versions, and then secondly comparing

these against an external vertex-centric framework.

60

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

4.5.1 Experimental setup

4.5.1.1 Framework considered

Although FemtoGraph is the most similar framework to iPregel, namely in-memory

shared-memory vertex-centric, a comparison cannot be made because the former does

not yield correct results. Therefore, the comparison must include a framework that has

an architecture different from that of iPregel. In other words, either out-of-core com-

putation or distributed-memory parallelism must be allowed. It has been decided to

compare against the state-of-the-art in-memory distributed-memory system, the vertex-

centric framework Pregel+, because despite suffering from network communications, this

benefits from additional memory and processing power.

4.5.1.2 Computing environment

Experiments are run on Amazon EC2 using m4.large instances, which provide 8GB of

Dual In-line Memory Module (DIMM) memory, 2 cores of an Intel(R) Xeon(R) CPU E5-

2686 v4, clocked at 2.30GHz, and a maximum network bandwidth of 450Mbps. Instances

are set up with Ubuntu 16.04.3 Long-Term Support (LTS) 64-bit operating system. The

objective behind this setup was to target a machine that has a performance comparable

to that of a modern laptop, supporting the argument that such experiments can be run

on reasonably affordable hardware.

iPregel is compiled with gcc version 5.4.0, using C99 standard by default and GNU99

extensions when using spinlocks (see Subsubsection 4.3.4.3). The optimisation level is set

to -O2, and to exploit both cores available on the EC2 instance, two OpenMP threads

are used.

Pregel+ is compiled with mpic++ (MPICH version 3.2), using g++ version 5.4.0 with

C++11 standard as the underlying C++ compiler. The optimisation level is set to -O2,

and to exploit both cores available on each EC2 instance, two MPI processes are created

per node.

4.5.1.3 Methodology

The experiments are initially run five times and are repeated until the margin of error

that is obtained represents less than 1% of the average runtime, given a confidence level of

99%. The timings collected report superstep execution time, that is, graph preprocessing

and graph loading are not included. Memory consumption also measured, represented

by the maximum resident set size6 as returned by the bash command time -v.

6This stands for the maximum amount of memory taken by a program throughout its execution.

61

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.1: Graphs used in the comparison with Pregel+

Name Graph order Graph size Average degree

Wikipedia 18,268,992 172,183,984 9.42
USA Road network 23,947,347 58,333,344 2.44

4.5.1.4 Graphs used

The experiments presented in this section are conducted on the graphs presented in

Table 4.1, namely the Wikipedia graph7 at KONECT [75], and the USA roads graph8 at

DIMACS [76].

The two graphs being used in the experiments are actual, real-world graphs that are

accessible to the public. This characteristic enables comparisons to be made with prior

research findings, as the graphs have already been featured in existing literature [12].

Moreover, despite having comparable graph orders, the density of the graphs varies signi-

ficantly, with one being nearly four times denser than the other. This difference provides

an opportunity for the experiments to impose various levels of stress on the message

processing and combination mechanism. Consequently, the outcomes produced by the

experiments are representative of a broader range of graphs, rather than being limited

to a specific type. The flexibility of the graph density also permits a wider range of

experiments to be conducted on these graphs, allowing researchers to explore different

approaches to message processing and combination, and determine which ones work best

under varying conditions.

The graphs are constructed with consecutive indexes that commence at 1 and are

processed by iPregel using offset mapping along with desolate memory, as described in

Subsubsection 4.3.4.4.

4.5.2 Results

4.5.2.1 Performance of iPregel Versions

The experiments presented in this section intend to evaluate the performance impact

of the selection bypass and combination techniques presented in Subsubsections 4.3.4.1

and 4.3.4.3. Each of the three benchmarks presented in Subsection 2.3.2 is executed

using every compatible version of iPregel. There are in total six versions possible for

CC and SSSP: three combiners (see Subsubection 4.3.4.3) which can be used with or

7http://konect.uni-koblenz.de/networks/dbpedia-link
8http://www.dis.uniroma1.it/challenge9/data/USA-road-d/USA-road-d.USA.gr.gz

62

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

0

60

120

180

240

P
ag
eR

an
k

ru
n
ti
m
e
(i
n
se
c)

Wikipedia graph

0

25

50

75

100

USA roads graph

0

125

250

375

500

C
on

n
ec
te
d
C
om

p
on

en
ts

ru
n
ti
m
e
(i
n
se
c)

0

1,250

2,500

3,750

5,000

0

20

40

60

80

S
S
S
P

ru
n
ti
m
e
(i
n
se
c)

100

101

102

103

104

Mutex Mutex with selection bypass
Spinlock Spinlock with selection bypass
Broadcast Broadcast with selection bypass

Figure 4.7: Runtime (in seconds) of iPregel on PageRank, CC and SSSP as the version
varies

63

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

without the selection bypass (see Subsubsection 4.3.4.1). For PageRank, only the three

versions without selection bypass are implemented. CC and SSSP are implemented in all

six versions. The execution times of these experiments are reported in Figure 4.7.

On both graphs, we observe that PageRank execution times drop by approximately

30% between the mutex and spinlock versions. It is the broadcast version however which

benefits most by moving to spinlocks as this halves the execution time and is the only

version capable of processing 30 PageRank iterations in under a minute.

The runtimes of CC and SSSP are similar in that broadcast versions are slower than

mutexes, themselves slower than spinlocks. In addition, all combiner versions become

faster when they exploit the selection bypass. Therefore, the optimal version is always

the spinlock combiner with selection bypass and the worst is always the broadcast version

without selection bypass. By moving from the Wikipedia to the USA roads graph, the

speedup between these two fastest and the slowest versions increases from 7.5 seconds to

20 seconds for CC, and from 15 seconds to 1,400 seconds for SSSP.

To understand these differences two factors must be considered, the ratio of active

vertices compared to the total number of vertices, and the graph’s density.

This first factor directly impacts the performance of the broadcast version (imple-

mented via pull-based combiner) as explained in Subsubsection 4.3.4.3. PageRank of-

fers an optimal ratio since all vertices stay active during the entire execution time. By

comparison, CC and SSSP expose lower ratios, continuously decreasing and constantly

low respectively. This first factor explains why the broadcast version performed well in

PageRank and poorly for both CC and SSSP.

The second factor is the key to explaining the significant increase in SSSP performance.

A lower density means a smaller average out-degree, which results in a slower propagation

of messages, thus a high number of supersteps to completely reach a graph. In SSSP, the

number of active vertices is low overall, beginning at one, increasing in the early phase of

the propagation, before decreasing in the late phase of propagation; which is suitable for

the selection bypass. As shown in Table 4.1, the density of the USA road network graph

is nearly four times lower than the Wikipedia graph’s. Combined with the low number

of active vertices in SSSP, this lower density explains the performance difference when

using selection bypass or not. CC reaches a very low number of active vertices only in

the late supersteps, which partially mitigates the benefits of a lower graph density.

In this first round of experiments the broadcast version is the fastest for PageRank,

as is the spinlock with selection bypass version for both CC and SSSP. Having identified

these optimal configurations, it is now instructive to compare these against the state-of-

the-art in-memory distributed-memory solution: Pregel+.

64

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

4.5.2.2 Comparison against Pregel+

As explained in Subsubsection 4.5.1.1, the distributed-memory framework Pregel+ is se-

lected for comparisons. However one must be careful when comparing shared-memory and

distributed-memory solutions on a single node, as this can disadvantage the distributed-

memory solution because it will have some overhead for distributed parallelism. Com-

paring over multiple nodes disadvantages the shared-memory solution because it can not

take advantage of these. As a consequence, experiments presented in this subsection are

twofold. Firstly, they compare the performance of Pregel+ and iPregel on a single node.

Secondly, they determine the number of nodes required by Pregel+ to outperform iPregel,

referred to as lead change in the rest of this chapter; by scaling up Pregel+, providing it

with two additional cores for every new node included while iPregel remains single-node

throughout all experiments due to its shared-memory architecture.

Results presented in this section are collected from experiments that are run with a

maximum of 16 nodes. The lead change may not always be observed within this interval,

in which case extrapolation is used by assuming the efficiency between 8 and 16 nodes

to stay constant every time the number of nodes is doubled9. The same extrapolation

method is used backwards to estimate the runtimes for the number of nodes under which

Pregel+ fails to complete due to insufficient memory. The timings that have been collected

are presented in Figure 4.8.

Across both graphs, the execution time of Pregel+ on PageRank remains stable at

approximately 200 seconds. Conversely, that of iPregel decreases by 43%, from slightly

less than on the Wikipedia graph to about 30 seconds with the USA road graph. The

lead change occurs at 11 nodes on the Wikipedia graph and is estimated at 30 nodes for

the USA graph.

To analyse the timings obtained for PageRank, it must first be considered that the

iPregel version used here implements the pull-based combiner that was introduced in

Subsubsection 4.3.4.3. As it was explained in Subsubsection 4.5.2.1, the characteristics

of PageRank mean that it is optimal for the pull-based combiner, making iPregel several

times faster than Pregel+; by a factor of 3.57 and 6.47 on Wikipedia and USA graphs

respectively.

Furthermore, the runtime obtained from iPregel to process PageRank on the USA

roads graph is nearly half that on the Wikipedia graph. As explained in Subsubsec-

tion 4.3.4.3, the number of in-neighbours is the second performance factor of pull-based

combiner. Therefore, the variation of the number of in-neighbours (almost four times

9Given an efficiency of x between 8 and 16 nodes, the runtime of 32 nodes is projected assuming an
efficiency of x between 16 and 32 nodes.

65

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

lower on the USA roads graph) allows the pull-based version of iPregel to yield the

performance improvement observed.

The experiments involving the SSSP benchmark exposes two particularities: insuffi-

cient memory failures and the biggest difference between the performance of Pregel+ and

iPregel. On the Wikipedia graph, it can be seen that iPregel is approximately 7 times

faster than Pregel+, with almost 5 seconds compared to 33 seconds. This difference is

increased by an order of magnitude on the USA graph, where the runtime of Pregel+

increases by more than 560% to reach 221 seconds while that of iPregel falls by 30% to

approximately 3 seconds; making it 69.7 times faster than its distributed rival. Although

the lead change is reached at 13 nodes for the Wikipedia graph, it is estimated that it

would require more than 15,000 nodes for the USA graph. The low number of active ver-

tices and the low graph density of the USA graph provide optimal conditions to exploit

the potential of selection bypass.

The third set of experiments were run on CC, and contain the longest execution times

observed of almost one hour. Although iPregel and Pregel+ process the Wikipedia graph

in less than 25 and 150 seconds respectively, their runtime increases to more than 10

and 50 minutes respectively10 for the USA road network graph. The lead change remains

constant, however, requiring 11 nodes for both graphs.

The interesting feature of CC is its variation of the number of active vertices through-

out the computation, where the algorithm starts with all vertices active, and progressively

these then halt as computation proceeds. Consequently, as most of the execution time

is spent on supersteps containing a medium number of active vertices, this algorithm

does not allow the selection bypass technique to reach its full potential as was the case

with SSSP. Furthermore, the low density of the USA graph significantly slows down the

propagation of the deactivation, which consequently increases the runtime. CC is the

only application in which the speedup between iPregel and Pregel+ decreases from the

Wikipedia to the USA graph. Indeed, while iPregel is 6.5 times faster than Pregel+ on

the former, it is only 5 times faster on the latter.

Across all experiments, iPregel outperforms Pregel+ on a single node, where the

former was naturally at an advantage due to its shared-memory design. However, at

least 10 additional nodes are needed by Pregel+ to outperform iPregel. Certain con-

figurations such as SSSP on the USA graph contain too few active vertices during too

many supersteps and this makes it impossible for Pregel+ to outperform iPregel within

a reasonable number of nodes.

10Exact results are 624.13 and 3,065.03 seconds.

66

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 2 4 8 16
0

60

120

180

240

P
ag
eR

an
k

ru
n
ti
m
e
(i
n
se
c)

Wikipedia graph

1 2 4 8 16
0

60

120

180

240

USA roads graph

1 2 4 8 16
0

40

80

120

160

H
as
h
m
in

ru
n
ti
m
e
(i
n
se
c)

1 2 4 8 16
0

800

1,600

2,400

3,200

1 2 4 8 16
0

10

20

30

40

S
S
S
P

ru
n
ti
m
e
(i
n
se
c)

1 2 4 8 16
100

101

102

103

104

Pregel+ memory failure Pregel+ measured
iPregel single-node reference

Figure 4.8: Variation of the Pregel+ runtime (in seconds) of PageRank, Hashmin and
SSSP as the number of nodes varies

67

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.2: Graphs used for further iPregel memory footprint experiments

Name Graph order Graph size

Twitter (MPI) 52,579,682 1,963,263,821
Friendster 68,349,466 2,586,147,869

4.5.2.3 Memory footprint

The memory footprint of vertex-centric models is a known weakness [67]. Yet, reducing

the memory requirements is crucial to in-memory shared-memory frameworks like iPregel.

Indeed, being lighter on memory requirements increases the number of vertices and edges

that can be processed using a specific amount of memory. This is why the memory foot-

print of iPregel was also measured during the experiments presented in Subsection 4.6.1.

For benchmarks involving theWikipedia graph, both mutex versions (with and without

selection bypass) required 2GB of memory, whilst their spinlock counterparts needed

1.5GB. However, the use of selection bypass increased the memory footprint of the broad-

cast version from 1.5GB to 2.5GB. This is due to the out-neighbours information that is

needed by the selection bypass on top of the in-neighbours information required by the

pull-based combiner used in the broadcast version. For the USA graph, it was observed

that the memory consumption of all versions increased by 10% compared to the Wikipe-

dia graph. This is because vertices require more memory than edges which are typically

just integers. In this case, between the Wikipedia and USA graphs, 100 million fewer

edges do not compensate for the 5 million additional vertices in the USA graph.

Overall, between 1.5GB and 2.8GB of memory were necessary for iPregel, out of a

total of 8GB available.

Throughout experiments presented in this chapter, iPregel used at most 35% of the

8GB available in memory. To estimate the maximal size of graphs that iPregel can pro-

cess with a node containing 8GB, additional experiments were conducted. The Twitter

(MPI) graph presented in Table 4.2 is a KONECT [75] graph publicly available11. This

graph is selected due to existing results describing the memory footprint of Pregel+ and

GraphLab on this same graph. It must be reminded that the memory footprint of in-

memory frameworks includes that of the graph itself. In order to distinguish the graph

from the memory overhead generated by the framework, the graph binary size is calcu-

lated. This takes into account that vertices store their identifier as well as those of their

out-neighbours, and assumes 4-byte vertex identifiers. However, it excludes information

11http://konect.uni-koblenz.de/networks/twitter mpi

68

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

0 10 20 30 40 50 60 70 80 90 100
0

4

8

12

Size of synthetic graph compared to Twitter 2010, in per cent

M
ax

im
u
m

re
si
d
-

en
t
se
t
si
ze

(i
n
G
B
)

Measured Projected

Figure 4.9: Variation of the iPregel maximum resident set size (in GB) to execute PageR-
ank against the size of synthetic Twitter graph used

specific to vertex-centric applications (such as the rank value in PageRank) and internals

required by frameworks, which are considered as part of the total memory overhead. The

binary size of the Twitter graph is calculated to be 8GB; it follows that iPregel cannot

process this graph with 8GB of RAM. Instead, an incremental approach was used to

determine the breaking point of iPregel with 8GB of memory. Concretely, several syn-

thetic graphs were generated12, with a number of vertices and edges proportional to the

original Twitter graph. A synthetic graph which is described as 20% contains a fifth of

the number of vertices and a fifth of the number of edges of the original Twitter graph.

PageRank was then run by iPregel on each of the synthetic graphs, from the smallest to

the largest, until the experiments exhausted available memory. The results obtained are

reported in Figure 4.9. Up to 70% of the Twitter graph can be processed before memory

failure occurs. Therefore, iPregel is able to run PageRank on a graph comprising 37

million vertices and 1.4 billion edges under 8GB of memory.

However, existing results reported in [25] about Pregel+ and Giraph consider PageR-

ank run on the entire graph. For iPregel, the linear extrapolation drawn in Figure 4.9

indicates that 11GB would be required. To verify this, a new Amazon EC2 instance was

deployed, the m4.xlarge, which contains 16GB of memory. PageRank was then run on a

synthetic graph with a size identical to that of the original Twitter graph. In total, iPre-

gel needed 11.01GB to execute PageRank on the complete graph, compared to Pregel+

which requires 109GB and Giraph which needs 264GB.

The memory footprint of iPregel is therefore 10 times smaller than that of Pregel+

12The out-degree distribution is not preserved but this has no impact on the size of the graph or the
memory footprint of iPregel

69

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

and 25 times smaller than that of Giraph. Excluding the 8GB allocated to the graph,

out of the 11GB taken by iPregel, 3GB are due to overheads imposed by the framework

and how it stores the graph. Comparatively, the overheads of Pregel+ and Giraph are

101GB and 256GB respectively; equivalent to 33 and 85 times that of iPregel.

Another experiment was conducted to estimate the biggest graph that iPregel could

process when run on a node containing 16GB of RAM. To that end, two online graph

collections KONECT [75] and SNAP [77] were parsed and the largest graph available

overall was selected. It turns out to be the Friendster graph from KONECT, publicly

available13. As reported in Table 4.2, this graph contains approximately 70 million ver-

tices and 2.5 billion edges. These results reveal that iPregel can process PageRank on

the Friendster graph with 14.45GB of memory. Therefore, iPregel is able to process a

multi-billion edge graph in under 16GB of RAM.

The difference observed in memory footprints between the frameworks can be ex-

plained by two factors. Firstly, there are advantages inherent to the in-memory shared-

memory design. For instance, shared-memory systems manage local communications

only. This contrasts with distributed-memory systems, in which messages between re-

mote vertices are passed over the network, and typically involving the storage of sending

and receiving buffers such as in Pregel+. Additionally, for the receiver node to know

how to dispatch the messages that have been received to their individual target vertex,

messages are wrapped with the vertex identifier of the recipient vertex. This results

in larger messages, and hence a memory overhead. Another advantage of the shared-

memory structure is that it avoids the storage of redundant information. Frameworks

that are exclusively distributed-memory based exploit intra-node parallelism by creating

multiple distributed workers per node. This leads to many instances of the application

and distributed software environment being stored in the memory of every node. These

redundant copies, therefore, waste memory. Finally, frameworks that rely on distributed-

memory, or out-of-core computation, manage vertices that may reside in memory, on

disk, or on a remote node. They must therefore use an additional addressing layer which

stores where each vertex currently resides, and this approach also increases the overall

memory footprint.

In addition to these inherent shared-memory benefits, the design adopted in iPre-

gel also aims to minimise memory overhead. The use of combiners, as explained in

Subsubsection 4.3.4.3, limits the memory requirements of each vertex’s mailbox to one

message only. This avoids the use of dynamically resizeable structures, such as queues,

replacing them instead with a single variable of the message type. Furthermore, the

13http://konect.uni-koblenz.de/networks/Friendster

70

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Vertex-centric BSP

SynchronousAsynchronous Non
vertex-centric

Figure 4.10: Comparison of vertex-centric and BSP models of computation.

memory overhead of the data-race protection mechanism can be reduced to zero when

using the lock-free structure provided by the pull-based combiner presented in Subsubsec-

tion 4.3.4.3. The multi-version design of iPregel also plays an important role in its overall

memory footprint. Indeed, by selecting at compile-time the appropriate structures to use,

iPregel does not include vertex attributes that would be unused or left empty, such as

in-neighbours. Finally, as explained in Subsubsection 4.3.2.3, the use of structures, as

opposed to C++ objects, in iPregel avoids the hidden virtual pointer that is embedded

in each vertex object when using derived classes like in Pregel+.

4.6 Evaluating the complete triptych

The second series of experiments conducted in this chapter aims to evaluate the program-

mability of iPregel against performance and memory footprint. Given that the viability of

shared-memory vertex-centric frameworks against distributed-memory has been demon-

strated in Section 4.5, this section focusses solely on shared-memory frameworks. This

allows experiments to help more accurately assess the competitiveness of iPregel regarding

the triptych considered in this research.

4.6.1 Experimental setup

4.6.1.1 Frameworks considered

Figure 4.10, which is taken from [54], highlights three types of frameworks that can be

considered. Among these categories, iPregel belongs in the overlapping area as it com-

bines vertex-centric programming and synchronous execution. To provide a comparison

of iPregel against a variety of frameworks, the framework commonly considered as the

reference in each category has been selected.

GraphChi The first vertex-centric framework to leverage out-of-core computation [24],

GraphChi, belongs to the category of vertex-centric frameworks that exploit asynchronous

71

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void update(graphchi_vertex<VertexDataType,EdgeDataType> &v,
2 graphchi_context &ctx) {
3 if(ctx.iteration == 0) {
4 set_data(v, vertex_values[v.id()]);
5 if(v.id() == SOURCE_VERTEX) {
6 for(int j = 0; j < v.num_outedges(); j++) {
7 ctx.scheduler->add_task(v.outedge(j)->vertex_id());
8 }
9 }
10 }
11 else {
12 vid_t curmin = v.get_data();
13 for(int i = 0; i < v.num_inedges(); i++) {
14 if(curmin > neighbor_value(v.inedge(i))) {
15 curmin = neighbor_value(v.inedge(i));
16 }
17 }
18 if(curmin < v.get_data() 1) {
19 curmin++;
20 set_data(v, curmin);
21 for(int i = 0; i < v.num_outedges(); i++) {
22 if(curmin<neighbor_value(v.outedge(i))-1) {
23 ctx.scheduler->add_task(v.outedge(i)->vertex_id());
24 }
25 }
26 }
27 }
28 }

Figure 4.11: Compute function for SSSP in GraphChi

execution, shown on the left in Figure 4.10. For a graph that can fit entirely in memory,

the out-of-core nature of GraphChi makes comparisons with an in-memory framework,

such as iPregel, unfair. However, GraphChi also provides in-memory-only implement-

ations14 of its algorithms, which are automatically chosen by GraphChi when memory

allows. Therefore, when running a GraphChi application, based on the amount of RAM

available, as specified by the user via a runtime parameter; GraphChi estimates the

amount of memory required for its in-memory version, and selects this if the memory

available is sufficient. The experiments presented in this chapter use the in-memory ver-

sion of the implementations provided by GraphChi, the exception being the Single Source

Shortest Path (SSSP) for which no implementation is provided. We therefore developed

an in-memory implementation for SSSP, given in Figure 4.11.

Another particularity of GraphChi is its asynchronous execution flow, where vertex

updates are immediately visible, unlike its synchronous counterparts where updates take

effect only in the following superstep. The advantage of the former is to reach convergence

14Available at https://github.com/GraphChi/graphchi-cpp

72

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

faster, while the latter is easier to reason about by providing clearer semantics.

FemtoGraph FemtoGraph [38] is a shared-memory vertex-centric framework that ex-

clusively uses in-memory storage and synchronous execution. It therefore belongs to

the middle category shown in Figure 4.10, like iPregel. However, FemtoGraph15 is de-

signed and hard-coded for PageRank, in which all vertices are run at every superstep.

As a consequence, FemtoGraph does not implement a vertex selection mechanism be-

cause it processes each vertex at every superstep, without checking its active status or

the presence of pending messages in its mailbox. By contrast, the Connected Compon-

ents and SSSP benchmarks do require vertices to be selected since they may become

inactive during the computation. As a result, such algorithms cannot be implemented in

FemtoGraph without rewriting parts of the framework itself. Furthermore, we have not

observed correct results across all the graphs tested. Nonetheless, FemtoGraph remains

an interesting reference since it is the only other vertex-centric framework specifically

designed for in-memory storage and synchronous execution, like iPregel.

Ligra Out of the three categories illustrated in Figure 4.10, Ligra16 belongs to the

rightmost: non-vertex-centric frameworks, which includes vertex-subset-centric, with syn-

chronous execution. Its approach, described as vertex-subset-centric in [54] as opposed

to vertex-centric, consists of dividing the graph processed into subsets, which are run in

turn. Ligra executes on each subset two functions defined by the user: one to apply to

every vertex and one to apply to every edge. Additionally, the user must implement the

compute function, which in Ligra is the function that defines the overall execution flow

of the application, from a graph-centric view. For instance, the user is in charge of writing

the main loop, as well as its termination condition, within which they must explicitly pass

the graph to the vertex and edge functions they defined earlier. Nonetheless, Ligra is a

graph processing framework that relies on shared-memory parallelism, in-memory storage

and synchronous execution, so in that regard, it acts as a non-vertex-centric counterpart

of iPregel.

4.6.1.2 Computing environment

Experiments are run on Cirrus, an HPE/SGI Apollo 8600 system, in which each compute

node is equipped with two 18-core Intel Xeon E5-2695 (Broadwell) series processors. Each

compute node contains 256GB of RAM made up of two Non-Uniform Memory Access

15Available at https://github.com/DataSys-IIT/FemtoGraph
16Available at https://github.com/jshun/ligra

73

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

(NUMA) regions each containing 128GB. All nodes run the CentOS 7 Linux operating

system.

iPregel is compiled with gcc version 6.3.0, using C99 standard (GNU99 extensions

when using spinlocks) and is parallelised with OpenMP. Ligra supports OpenMP and

Cilk Plus parallelisation. To make the comparison with iPregel consistent, the OpenMP

version was selected. The frameworks Ligra, GraphChi and FemtoGraph, which are de-

veloped in C++, are compiled with g++ version 6.3.0, using C++14 standard. The

optimisation level is set to -O3 for all frameworks.

4.6.1.3 Methodology

The timings reported include only the processing time, that is, graph loading and result

writing are not included. The second factor measured during experiments is the resident

set size, which represents the peak memory usage of an application over its entire runtime.

Unlike the performance, which is assessed purely on the runtime, the memory peak usage

includes all phases of an application, which are graph loading, processing and result

writing. The motivation in using this metric is to assess whether a framework can process

a graph given a certain amount of memory, which is conditional upon the success of all

phases, not only the processing.

4.6.1.4 Graphs used

Table 4.3 lists the graphs processed in the experiments conducted in this work, where |V |
is the graph order, and |E| is the graph size. They are real-world graphs selected from

the online collection Stanford Network Analysis Project [77] (SNAP) and cover a range of

sizes ranging from millions to billions of edges. These graphs are undirected, and therefore

the total number of directed edges is twice the amount presented. The smallest graph, the

Database and Logic Programming Bibliography graph17 (DBLP), is a real-world graph

that represents the eponymous computer science bibliography. LiveJournal18, Orkut19

and Friendster20 are network graphs about blogging, social and gaming respectively.

74

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 2 4 8 16 32
0.01

0.1

1

10

100

1000

Number of threads

[D
B
L
P
]

R
u
n
ti
m
e
in

se
co
n
d
s

PageRank

1 2 4 8 16 32
0.001

0.01

0.1

1

Number of threads

Connected Components

1 2 4 8 16 32
0.001

0.01

0.1

1

Number of threads

SSSP

1 2 4 8 16 32
1

10

100

1000

10000

Number of threads

[L
iv
eJ
ou

rn
al
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32
0.1

1

10

Number of threads

1 2 4 8 16 32
0.1

1

10

Number of threads

1 2 4 8 16 32
1

10

100

Number of threads

[O
rk
u
t]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32
0.1

1

10

100

Number of threads

1 2 4 8 16 32
0.1

1

10

Number of threads

1 2 4 8 16 32
10

100

1000

10000

Number of threads

[F
ri
en
d
st
er
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32
10

100

1000

Number of threads

1 2 4 8 16 32
1

10

100

1000

Number of threads

iPregel FemtoGraph Ligra GraphChi

Figure 4.12: Variation of iPregel, Ligra, GraphChi and FemtoGraph runtimes (in seconds)
against the number of nodes used, for each benchmark application, per graph.

75

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.3: Graphs used for the experiments in this section.

Name |V | |E|

DBLP 317,080 1,049,866
Live Journal 4,036,538 34,681,189
Orkut 3,072,441 117,185,083
Friendster 65,608,366 1,806,067,135

4.6.2 Results

4.6.2.1 Performance

Figure 4.12 illustrates the results of the three benchmarks across the four different frame-

works, with different graphs. For PageRank, illustrated in the left column of Figure 4.12,

it is observed that the iPregel version is 70 to 2,300 times faster than its FemtoGraph

counterpart21. GraphChi and Ligra outperform FemtoGraph too, resulting in a maximum

speedup of 700 and 17,000 respectively. The best sequential performance, regardless of the

graph, is achieved by GraphChi22, and this is due to its asynchronous execution which

enables vertices to read values updated by other vertices during this same superstep.

However, this asynchronicity delivers no performance gain when the number of threads

increases and eventually performance decreases compared to both iPregel and Ligra. The

results reported for PageRank in Figure 4.12 demonstrate that the thread scalability of

iPregel is similar to that of Ligra. They also suggest better graph scalability23 in iPregel.

In addition, Figure 4.12 shows that the bigger the graph, the better the thread scalability

of iPregel. The performance differences observed for PageRank between Ligra and iPregel

can be explained using these three factors. On the smallest graph DBLP, Ligra begins

with a sequential runtime lower than iPregel and also provides better thread scalability.

With the Live Journal graph, the number of vertices and edges are multiplied by 10 and

30 respectively. At this point, iPregel now begins to outperform Ligra at 1 thread, and

provides thread scalability better than with DBLP graph. Despite these performance

benefits, the strong thread scalability of Ligra eventually enables it to outperform iPregel

17https://snap.stanford.edu/data/com-DBLP.html
18https://snap.stanford.edu/data/com-LiveJournal.html
19https://snap.stanford.edu/data/com-Orkut.html
20https://snap.stanford.edu/data/com-Friendster.html
21FemtoGraph’s timings for Orkut and Friendster graphs could not be collected due to abnormal

termination and out-of-memory failure respectively.
22GraphChi ’s timings for the Friendster graph could not be collected due to the number of file

descriptors needed, approximately 21,000, being beyond our allowed limit.
23The capacity to provide performance gains when the size of the graph increases.

76

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.4: Minimum, average and maximum speedup of Ligra over iPregel when pro-
cessing the Connected Components of each graph, across all numbers of threads tested.

Graph Min Avg Max

DBLP 5.47 8.07 10.44
Live Journal 7.52 8.17 9.43
Orkut 5.72 6.47 7.77
Friendster 4.60 4.99 5.92

beyond 8 threads. When considering the hundred-million-edge graph Orkut, however,

with PageRank, iPregel outperforms Ligra at 1 thread and manages to remain ahead

across all numbers of threads due to the thread scalability. With the billion-edge graph

Friendster, iPregel now provides thread scalability as good as that of Ligra, with the

runtime being half of that reported by Ligra across all numbers of threads. Overall, for

PageRank, the best performance at 32 threads is achieved by iPregel.

For the Connected Components benchmark, whose results are shown in the middle

column of Figure 4.12, certain patterns already observed for PageRank can be observed.

Namely, GraphChi delivers no thread scalability, which enables Ligra and iPregel to

become competitive at a higher number of threads. However, the performance achieved

by GraphChi, due to its asynchronicity, is rarely equalled by iPregel, even at 32 threads.

Nonetheless, iPregel continues to exhibit better graph scaling than Ligra as illustrated

in Table 4.4. The speed up of Ligra over iPregel decreases as the graph grows, although

always remaining greater than 1. The vertex-centric iPregel remains up to 10 times slower

than the vertex-subset-centric Ligra which leverages atomic combiners. Overall, there are

however two major differences between the results observed for Connected Components

and PageRank. Firstly, the optimal sequential performance is now achieved by both

GraphChi and Ligra. Secondly, the thread scalability of iPregel is as good as Ligra’s on

all graphs.

The timings collected in SSSP, presented in the right column of Figure 4.12, follow

patterns found in the timings gathered for the Connected Components. Indeed, although

Ligra remains several times faster than iPregel, the performance difference diminishes as

the size of the graph increases. In between these two extremes stands GraphChi, faster

than iPregel on low numbers of threads but due to its poor scalability it falls behind

as the number of threads increases. Furthermore, iPregel continues to deliver thread

scalability as good as that of Ligra.

77

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.5: Maximum resident set size (in GB) of each framework tested across all graphs
processed, for each application executed. (Abbreviations used: ABT = Abnormal Ter-
mination, OOM = Out Of Memory, FDO = File Descriptor Overflow)

Graph iPregel FemtoGraph GraphChi Ligra
P
ag
eR

an
k DBLP 0.07 3.26 0.07 0.04

Live Journal 0.48 51.95 1.41 0.51
Orkut 1.08 ABT 3.91 1.10

Friendster 20.45 OOM FDO 21.43

C
C

DBLP 0.15 - 1.06 0.03
Live Journal 0.42 - 2.49 0.48

Orkut 1.03 - 7.58 1.07
Friendster 20.94 - FDO 20.45

S
S
S
P

DBLP 0.14 - 0.10 0.02
Live Journal 0.47 - 2.49 0.42

Orkut 1.07 - 7.57 1.04
Friendster 19.91 - FDO 18.19

4.6.2.2 Memory footprint

The memory footprints collected from these different benchmark runs are reported in

Table 4.5. It can be seen that FemtoGraph is up to 100 times less memory efficient than

iPregel, eventually resulting in an out-of-memory failure for Friendster. The high memory

overhead required by FemtoGraph is partly due to the lack of message combination.

Indeed, each vertex is provided with a mailbox that contains space for 100 messages while

iPregel mailboxes only store the combined message, as described in Subsubsection 4.3.4.3.

When processing Friendster graph’s 65 million vertices (see Table 4.3), the FemtoGraph

mailbox requires 26GB24 while that of iPregel uses 0.26GB. In addition to resulting in

message losses when a vertex receives more than 100 messages, the FemtoGraph design

also wastes memory for vertices that receive fewer than 100 messages. It was not possible

to process Orkut with FemtoGraph due to an abnormal termination.

According to Table 4.5, GraphChi is approximately 40 times more memory efficient

than FemtoGraph, resulting in a memory footprint that is within the same order of

magnitude as iPregel. Nonetheless, GraphChi is between 3 and 6 times less memory

efficient on average. Despite providing an in-memory version of several applications,

GraphChi remains a framework tailored for out-of-core computation, and it is therefore

understandable that memory usage is not as optimised as that of a pure in-memory

2465 million vertices storing 100 4-byte integers each

78

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void Compute(MessageIterator* msgs) {
2 if(superstep() >= 1) {
3 double sum = 0;
4 for(; !msgs->Done(); msgs->Next()) {
5 sum += msgs->Value();
6 }
7 *MutableValue() = 0.15 / NumVertices() + 0.85 * sum;
8 }
9 if(superstep() < 10) {
10 const int64 n = GetOutEdgeIterator().size();
11 SendMessageToAllNeighbors(GetValue() / n);
12 }
13 else {
14 VoteToHalt();
15 }
16 }

Figure 4.13: Compute function for PageRank in Pregel.

framework like iPregel or Ligra.

In Table 4.5 it can be observed that the memory footprint of Ligra is similar to

that of iPregel. In the majority of experiments, the difference is smaller than 60MB.

The maximum difference in favour of Ligra is for SSSP on Friendster, where its memory

footprint is 1.72GB (or 9%) smaller than that of iPregel. Conversely, running PageRank

on the Friendster graph is where iPregel makes the biggest difference in its favour with

20.45GB against 21.43GB for Ligra; saving 0.98GB (approximately 5%). Among the two

frameworks, the best in terms of memory efficiency depends on the benchmark and graph

being processed, Ligra proves to be more efficient than iPregel 7 times, while the contrary

is observed 5 times. As a consequence, iPregel manages to provide a vertex-centric

interface with a memory footprint as competitive as its non-vertex-centric counterpart.

4.6.2.3 Programmability

In this section, the programmability of the different frameworks is evaluated by comparing

against the vertex-centric interface provided by Pregel. Although Pregel is available

within Google exclusively, its implementations for benchmarks used in this chapter are

given in the original chapter [11].

PageRank is the only one implemented by all four frameworks considered in this

chapter, so it was selected as the reference benchmark. The PageRank implementation

using the original Pregel framework is illustrated in Figure 4.13, taken from [11]. Three

characteristics can be observed which can be used as evaluation criteria:

1. A vertex-centric interface; representing the fundamental advantage of the Pregel

79

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

Table 4.6: Evaluation of frameworks considered against the programmability criteria
defined from the Pregel implementation of PageRank.

Framework iPregel FemtoGraph GraphChi Ligra

Vertex-centric interface Yes Yes Yes No
Encapsulated attributes Yes Yes No No
Vertex halting Yes Yes No No

API with regard to programmability.

2. Encapsulated vertex data, that is, data specific to vertices are stored in vertices

themselves, such as the rank for PageRank. This contrasts with another possible

approach where vertices would fetch their rank from a global structure shared across

all vertices. The latter however would require the user to be aware of the underly-

ing addressing algorithm between a vertex identifier and the corresponding position

in the global structure. As a result, encapsulating vertex attributes improves pro-

grammability by letting the framework handle the vertex addressing while exposing

a less error-prone programming interface to the user.

3. The completion of a vertex is expressed via a halting function. This is the corner-

stone of vertex selection and algorithm termination, yet it requires very little work

from the user, simply calling the halting function.

Table 4.6 reports these three programmability attributes against the four graph pro-

cessing frameworks that have been considered here. As can be seen by their implementa-

tions given in Figures 4.4 and 4.14, they offer a highly abstracted vertex-centric interface,

where vertex-specific information is encapsulated in the vertices and the halting mechan-

ism is invoked by vertices using a simple function call.

GraphChi also provides a vertex-centric interface; however, in its implementation of

PageRank in Figure 4.15 vertex ranks are contained in a single array, pr. As a result,

the user is responsible for handling the vertex addressing, and they must manipulate

this global structure from a centralised view and not a vertex-centric one. In addition,

GraphChi performs the vertex selection via a vertex scheduler, which can be disabled for

algorithms such as PageRank, resulting in no halting mechanism available at the vertex-

level. Although the algorithm termination is based on all vertices voting to halt according

to Pregel [11], in the GraphChi version of PageRank it is determined by the main function,

where a maximum number of iterations is defined. The property of PageRank where all

vertices are active at every superstep is not shared for the majority of graph processing

80

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void compute(queue<message*, fixed_sized<true>>* messages) {
2 if(graph->superstepcount >= 1) {
3 double sum = 0;
4 message* m;
5 while(messages->pop(m)) {
6 sum += m->data;
7 }
8 data->weight = 0.15 / graph->size() + 0.85 * sum;
9 }
10 if(graph->superstepcount < 10) {
11 const long n = outEdges.size();
12 sendMessageToNodes(neighbors, data->weight / n);
13 }
14 else {
15 voteToHalt();
16 }
17 }

Figure 4.14: Compute function for PageRank in FemtoGraph.

algorithms such as CC or SSSP, therefore requiring a vertex selection mechanism. In

GraphChi, this is achieved via a vertex scheduler that must be explicitly enabled or dis-

abled by the user, then called in user code when processing each vertex. Indeed, for an

algorithm that requires vertex selection such as SSSP, vertices that send a message must

then explicitly call the scheduler and schedule the recipient vertex for execution. This

approach has the disadvantage of exposing implementation-level details to the user. By

contrast, iPregel abstracts the vertex selection inside the call to the halting function.

Furthermore, the selection bypass optimisation presented in Subsubsection 4.3.4.1 is en-

abled via a compilation flag, without requiring a modification in the user application

source code. That allows the user to rely on a consistent programming interface across

all applications, unlike GraphChi where, for instance, vertices do not halt in PageRank

whereas they do in SSSP, and sending a message must be followed by an explicit schedule

of the recipient vertex in SSSP, while it does not in PageRank.

Finally, Figure 4.16 reports the Ligra implementation of PageRank. For a fair of com-

parison, the source code selection that calculates the convergence of PageRank was ig-

nored because other frameworks (including iPregel) do not provide this. This is beneficial

for Ligra from a programmability perspective because it hides details about convergence

calculations from the code. Nonetheless, none of the criteria presented in Table 4.6 are

observed for Ligra, although this is understandable for a framework that is not vertex-

centric but vertex-subset-centric. The source code explicitly exposes parallelism to the

user in two aspects. Firstly, syntactically, as can be seen in Figure 4.16 with the use

of parallel for loops wrapped in curly brackets. Secondly, semantically, as Ligra states

81

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 void update(graphchi_vertex<VertexDataType, EdgeDataType>& v,
2 graphchi_context& ctx) {
3 if(ctx.iteration == 0) {
4 pr[v.id()] = 1.0 / ctx.nvertices;
5 }
6 else if(ctx.iteration > 0) {
7 float sum = 0.0;
8 for(int i = 0; i < v.num_inedges(); i++) {
9 sum += pr[v.inedge(i)->vertexid];
10 }
11 pr[v.id()] = 0.15 / ctx.nvertices + 0.85 * sum;
12 if(v.outc > 0) {
13 pr[v.id()] /= v.outc;
14 }
15 }
16 if(ctx.iteration < 10) {
17 v.set_data(v.outc > 0 ? pr[v.id()] * v.outc : pr[v.id()]);
18 }
19 }

Figure 4.15: Compute function for PageRank in GraphChi.

in [53], the function provided to edgeMap “can run in parallel, so the user must ensure

parallel correctness”. Therefore, the user is in part responsible for the thread safety of

Ligra. Moreover, the iterative structure of computation as well as dynamic memory alloc-

ations and deallocations are undertaken directly by the user, as illustrated in Figure 4.16.

This is a disadvantage that the designers of Ligra have accepted to obtain increased per-

formance, but such concerns are too low-level for the user. Furthermore, the compute

function only outlines the general computation flow. The edge map and vertex map func-

tions must be defined by the user as well, which are given in Appendix B for PageRank.

As a consequence, the resulting implementation of PageRank on Ligra far exceeds that of

iPregel, by a factor of three: 76 lines of code compared to 24 lines. Also, as explained in

Subsubsection 4.3.4.2, Ligra provides atomic combination as an additional optimisation,

which is enabled by the user providing a second version of the update function. This

requires the user to be aware of the atomicity potential of their combination operation,

as well as being able to implement it atomically using Ligra’s functions.

4.7 Conclusions and future work

This chapter has presented the vertex-centric framework iPregel, which leverages in-

memory storage and shared-memory parallelism. The optimisation techniques developed

address multiple performance challenges in vertex-centric programs, from vertex selection

to message combination and vertex indexing. The underlying modular design of iPregel

82

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

1 template <class vertex>
2 void Compute(graph<vertex>& GA, commandLine P) {
3 long maxIters = 10;
4 long iter = 0;
5 const intE n = GA.n;
6 double one_over_n = 1 / (double)n;
7 double* p_curr = newA(double, n);
8 {parallel_for(long i = 0; i < n; i++) {
9 p_curr[i] = one_over_n;
10 }}
11 double* p_next = newA(double, n);
12 {parallel_for(long i = 0; i < n; i++) {
13 p_next[i] = 0;
14 }}
15 bool* frontier = newA(bool, n);
16 {parallel_for(long i = 0; i < n; i++) {
17 frontier[i] = 1;
18 }}
19 vertexSubset F(n, n, frontier);
20 while(iter++ < maxIters) {
21 edgeMap(GA, F, PR_F<vertex>(p_curr, p_next, GA.V), 0, no_output);
22 vertexMap(F, PR_Vertex_F(p_curr, p_next, 0.85, n));
23 vertexMap(F, PR_Vertex_Reset(p_curr));
24 swap(p_curr, p_next);
25 }
26 F.del();
27 free(p_curr);
28 free(p_next);
29 }

Figure 4.16: Compute function for PageRank in Ligra.

83

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

allows the user to pass additional information about the graph and the application via

compilation flags, which are leveraged by iPregel to apply optimisations techniques spe-

cifically designed for the sets of assumptions expressed through flags. This allows iPregel

to exploit assumption-specific optimisations without sacrificing software flexibility.

Experiments conducted in the first part of this chapter demonstrated that iPregel

outperforms a state-of-the-art in-memory distributed-memory vertex-centric framework.

On a single node, timings collected show that iPregel is always faster than Pregel+, by

a median factor of 6.5. At worst, iPregel is 3.5 times faster, and up to more than 600

times faster in the best case. Additionally, performance achieved by iPregel remains

competitive even when considering multi-nodes. Indeed, the timings collected reveal that

at least 11 nodes are needed by Pregel+ to equal or outperform iPregel.

iPregel also demonstrates that the performance gains obtained do not come at the

expense of memory consumption. In fact, the memory footprint of iPregel is an order of

magnitude smaller than its in-memory distributed-memory counterparts, requiring need-

ing 11GB whilst the latter requires up to a quarter of a terabyte. Further experiments

demonstrated that iPregel, albeit single-node, can process multi-billion edge graphs under

16GB of memory, or the USA road network using less memory than that of a smartphone.

The results collected demonstrate that there is room for optimisation in the memory foot-

print of vertex-centric frameworks. By outperforming the Pregel+ distributed-memory

counterpart in all experiments, as well as delivering a memory efficiency an order of

magnitude better, iPregel demonstrates that in-memory shared-memory vertex-centric

frameworks are a viable solution for graph processing.

Then, the trade-off observed between vertex-centric programmability, performance

and memory was analysed in the second part of this chapter. Experiments illustrated

this compromise, where the FemtoGraph framework differs from Ligra and GraphChi by

successfully preserving vertex-centric programmability, at the expense of performance,

up to 17,000 times and 700 times worse than that of Ligra and GraphChi respectively,

as well as a memory footprint up to orders of magnitude larger.

Experiments also demonstrated that the framework developed in this research, iPre-

gel, provides the best of both worlds. The optimisation techniques that have been de-

veloped in this research enable iPregel to bridge the weaknesses of FemtoGraph in terms

of memory efficiency and performance. Results show that the memory efficiency of iPre-

gel equals that of Ligra, which is the most memory-efficient framework tested. iPregel

was also up to 100 times more memory efficient than FemtoGraph, and up to 7 times

more memory efficient than GraphChi. This additional memory efficiency enables iPregel

to process graphs that FemtoGraph cannot because its memory footprint exceeds the

84

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

available memory. Regarding performance, the maximum speedup of GraphChi or Li-

gra over iPregel is at most 10 times, which is up to 1,700 times less than the speedup

they can achieve over FemtoGraph. The performance observed on iPregel is between 70

times and 2,300 times greater than that of FemtoGraph. For PageRank, iPregel delivers

a competitive performance, outperforming all other frameworks considered in half of the

graphs tested. Most importantly, the performance and memory efficiency gains that have

been observed without sacrificing programmability, such as removing the message-passing

interface, exposing parallelism or atomic operations.

Therefore, the two-phase investigation reported in this chapter demonstrates that the

iPregel framework not only proves to be a viable solution for graph processing, but also

overcomes the fundamental compromise in vertex-centric frameworks by demonstrating

an approach where programmability no longer impacts memory efficiency, and can deliver

competitive performance. Consequently iPregel is the first shared-memory vertex-centric

framework able to scale to a multi-billion edge graph without sacrificing the program-

mability benefits of vertex-centric.

Further improvements of iPregel could include the design and implementation of

atomic combiners that do not impact programmability of the interface exposed to the

user. Furthermore, the multi-threaded performance observed would benefit from addi-

tional investigations into load-balancing strategies and work-stealing techniques. Given

that certain algorithms require a concatenation as part of the combination operation,

further exploration in this area could improve the flexibility of this framework.

85

Chapter 4: Establishing a new state-of-the-art in vertex-centric shared-memory
processing

86

Chapter 5

Tackling the irregularity inherent in

vertex-centric

5.1 Introduction

Following the evaluation of our iPregel framework against other shared-memory vertex-

centric frameworks in Chapter 4, it was observed that iPregel delivered competitive per-

formance and memory usage without sacrificing the high productivity programming ab-

stractions of this model. Subsequently, the focus was on improving iPregel by designing

additional techniques, and as highlighted in Section 4.7, iPregel would benefit from op-

timisations around load-balancing and internal parallelism.

A fundamental challenge is that, whilst the vertex-centric programming model provides

significant programmability advantages, and exposes a large degree of latent parallelism,

it suffers from numerous irregularities that impact performance. The vertex-centric model

exhibits properties that can be more widely described by the class of irregular applica-

tions. These are:

• Fine-grain synchronisation: the communications in vertex-centric programs oc-

cur at a vertex’s mailbox level, hence any data-race protection must be implemented

on a per-vertex basis.

• Unpredictable memory access patterns: broadcasting a message from a vertex

to its neighbours results in a number of messages that is specific to each vertex.

This is further aggravated by the highly skewed distribution of degrees, where the

number of neighbours may significantly vary from a vertex to the next. Further-

more, recipient vertices are unlikely to reside next to each other in memory, making

these memory accesses unpredictable both in terms of quantity and location.

87

Chapter 5: Tackling the irregularity inherent in vertex-centric

• Load imbalance: the number of active vertices may vary drastically from one

superstep to the next. Effectively this means that the number of neighbours that a

vertex needs to communicate with will change from one superstep to the next.

Vertex-centric programs are inherently difficult to optimise because they tend to fol-

low the form of a short user-provided source code, resulting in the underlying framework

being provided with little information to leverage for performance optimisation. In the

meantime, since programmability is the essence of vertex-centric, any performance op-

timisations that have been developed must not degrade the programmability properties

of the framework.

However, numerous attempts to optimise the vertex-centric model have negatively

impacted upon the ability for users to easily to easily program using this paradigm,

highlighting the tension between performance optimisation and programmability [2]. By

contrast, the approach developed in this research integrates the preservation of vertex-

centric programmability as its core. To that end, all the optimisations discussed in

this chapter are encapsulated within the iPregel framework, requiring no user source

modification to take advantage of them.

The main contributions presented in this chapter can be summarised as follows:

• A hybrid combiner designed to couple lock-free and lock-based interactions in

order to efficiently handle fine-grain synchronisations.

• The externalisation of vertex attributes to better cope with unpredictable

memory accesses by improving the cache efficiency through the grouping of vertex

attributes based on their access frequency.

• An edge-centric workload representation that ameliorates load imbalance

whilst preserving both the vertex-centric paradigm and Pregel user interface.

The rest of this chapter is organised as follows: Section 5.2 depicts the context in

which this research takes place. Sections 5.3, 5.4 and 5.5 introduce the optimisations

considered in this chapter. Section 5.6 describes the environment in which experiments

were conducted while Section 5.7 presents and analyses the results obtained. This chapter

then concludes in Section 5.8; summarising the findings of this work as well as discussing

potential future work directions.

5.2 Related work

There have been some attempts by the vertex-centric community to address the im-

plications of irregular workloads present in graph processing algorithms. As shown in

88

Chapter 5: Tackling the irregularity inherent in vertex-centric

Chapter 3, the literature shows that bypassing the costly selection of active vertices has

been addressed, whether it has to be done manually by the user such as in GraphChi [24],

or automatically due to the analysis of algorithmic patterns as introduced in early iPregel

work [1]. However, the dispatching of active vertices to workers remains an unsolved chal-

lenge. Indeed, accurately evaluating the workload contained in these active vertices is key

to an efficient workload dispatch. The common approach in vertex-centric frameworks

consists of distributing an equal number of active vertices to each worker. However, this

approach is sub-optimal due to the power-law degree distribution that typically underpins

the graphs processed. This observation led to the development of PowerGraph [59], where

the authors adopted a more edge-centric approach, which resulted in an entirely new in-

terface based upon the scatter-apply-gather design instead of the typical Pregel single

user-defined function. As such, many of the abstraction and programmability benefits of

the vertex-centric model were lost.

The edge-centric approach was taken one step further by X-Stream [78], whose im-

plementation and interface are designed entirely from an edge-centric perspective, expos-

ing an edge-centric Gather-Apply-Scatter interface to the user. The underlying motiv-

ation for this design was to address the randomness of memory accesses by reading the

graph’s edges sequentially. Nonetheless, edge-centric frameworks, which by definition are

no longer vertex-centric and hence cannot provide the same benefits, demonstrate that

addressing the irregularity challenges associated with vertex-centric without sacrificing

certain aspects of the actual programming model is not a trivial task.

This difficulty in addressing vertex-centric challenges is also illustrated in the imple-

mentations for the fine-grain synchronisations required in vertex-centric programs during

message exchange. Typically, communications are redesigned as pull-based [24] so that

they are lock-free, or a semaphore is needed for each vertex mailbox where appropriate.

An alternative approach for the latter is to implement the message combination as a

compare-and-swap, as used by Ligra [53]. However, despite providing performance be-

nefits, this design reduces the level of abstraction and requires the end programmer to

interact with the framework at a lower level, potentially rewriting certain parts of their

code, in addition to raising additional restrictions that will be discussed in details later

in this chapter.

As described in this section, optimisations for dealing with irregular workloads in

vertex-centric frameworks typically result in the sacrifice of features of programmability

of the vertex-centric model. By contrast, in Chapter 4 it was demonstrated that vertex-

centric optimisations could be designed without this disadvantage, and in this chapter a

similar approach is followed to address the irregularities inherent in the model.

89

Chapter 5: Tackling the irregularity inherent in vertex-centric

5.3 Fine-grain synchronisation

Vertex-centric programs require each vertex’s mailbox to be protected against potential

data-races. The write-interactions with that mailbox are achieved during combination,

which means that combiners are a key area for optimisations since any improvement to

their design will directly impact the performance observed. To implement combiners, two

designs are available:

• Lock based approach: a classic design where vertices acquire the lock held on

the recipient vertex, check if that recipient vertex already received a message, and

if so the sender vertex combines the existing message with the new one. Otherwise,

the new message is stored, before releasing the lock.

• Compare-and-Swap: a lock-free design where vertices retrieve the existing mes-

sage from their recipient’s vertex mailbox, combine it and then push it back using

a compare-and-swap operation. This operation checks if the value of the message is

identical to that read earlier. If so, the message is updated with the new value and

returns true, otherwise the value has changed, which implies that another vertex

updated this recipient’s mailbox first, in which case the entire operation is repeated

until it eventually succeeds.

The second approach has the advantage of avoiding locks, however, it systematically

combines a new message with the existing one, therefore relying on the assumption that

mailboxes begin with a default message value that is neutral to the combination opera-

tion. For instance, in a combination operation that sums messages, vertices’ mailboxes

would begin each superstep with a message value of 0. This requirement for a neutral

value implies that either the user must be constrained to a set of predefined combination

operations whose neutral values are hardcoded, or else the user must somehow declare

the neutral value for any combination operation that they write. In the Ligra version

of PageRank, for instance, the combination operation is a sum (thus having the neutral

value 0). For the user, this results in manually resetting each vertex mailbox to 0 at the

end of every superstep.

The second drawback of a pure compare-and-swap design comes from the lack of a

notion of empty mailboxes. Mailboxes always have a message, either representing the

result of a combination or the default neutral value. Therefore, a vertex knows that it

has received a message if its mailbox message value is different from the neutral value.

However, in a scenario where the combination operation would result in the neutral value

itself, the vertex would assume it has not received a message, whilst in fact, it has. In

vertex-centric programs, this can lead to incorrect outputs since receiving messages is

90

Chapter 5: Tackling the irregularity inherent in vertex-centric

1 void apply_cas(IP_VERTEX_TYPE* dst, IP_MESSAGE_TYPE msg){
2 IP_MESSAGE_TYPE old_msg = dst->msg_next;
3 IP_MESSAGE_TYPE new_msg = old_msg;
4 ip_combine(&new_msg, msg);
5 while(new_msg != old_msg &&
6 !atomic_compare_exchange_strong(&dst->msg_next, &old_msg,
7 new_msg)) {
8 old_msg = dst->msg_next;
9 new_msg = old_msg;
10 ip_combine(&new_msg, msg);
11 }
12 }
13
14 void ip_send_message(IP_VERTEX_ID_TYPE dst_id, IP_MESSAGE_TYPE msg) {
15 IP_VERTEX_TYPE* dst=ip_get_vertex_by_id(dst_id);
16 if(dst->has_msg_next) {
17 apply_cas(dst, msg);
18 }
19 else {
20 ip_lock_acquire(&dst->lock);
21 if(dst->has_msg_next) {
22 ip_lock_release(&dst->lock);
23 apply_cas(dst, msg);
24 }
25 else {
26 dst->message_next = msg;
27 dst->has_message_next = true;
28 ip_lock_release(&dst->lock);
29 }
30 }
31 }

Figure 5.1: Implementation in iPregel of the hybrid combiner

what reactivates inactive vertices. To obtain an approach that combines the best of both

techniques, that is exploiting compare-and-swap while keeping the notion of an empty

mailbox, as well as enabling the user to define any arbitrary combination operation, a

hybrid combiner was designed that leveraged lock-based and lock-free interactions with

a recipient’s mailbox. The implementation of this combiner is provided in Figure 5.1,

where vertex attributes have been shortened for brevity. In this example, ip combine

is the user-defined combination function, has msg next is the flag indicating whether

the vertex has already received a message during this superstep and msg next is the

message itself (whose value is meaningful only if the flag is true).

As shown in Figure 5.1, the hybrid combiner couples lock-free and lock-based interac-

tions. Correctness comes from the guarantee that if the has msg next flag of a recipient

vertex is true, that the value held in that vertex mailbox has been set. Indeed, as soon

as the has msg next flag is true, potential compare-and-swap combinations may ex-

91

Chapter 5: Tackling the irregularity inherent in vertex-centric

ecute concurrently on that vertex from other workers. Therefore, the value that they will

fetch from any recipient vertex’s mailbox must have been set by that time.

To provide this guarantee, when a worker pushes its first message to a recipient’s

mailbox, the message is stored (line 26) before setting the flag to true (line 27). Fur-

thermore, to avoid a potential out-of-order execution, a full memory barrier is required in

between these operations. This barrier is provided by declaring the has msg next flag

as atomic, using C11 atomics, which implicitly enforce a sequentially consistent memory

model. Without such a barrier, an out-of-order execution could result in a recipient’s

vertex entering a state where its has msg next flag is set to true while not having the

msg next message yet set. Another worker attempting to push a message to that vertex

mailbox would therefore check the flag, observe that it is true and apply a compare-

and-swap with the message that is still unset. Finally, having the has msg next flag as

atomic implies that the read at line 16 and write at line 27 are also atomic, guaranteeing

that a read cannot happen on a flag partially written to memory.

The rest of the hybrid combiner is straightforward; workers check if the recipient’s

vertex already holds a message and if so they use a compare-and-swap combination,

otherwise they acquire the lock. When the lock is acquired by a worker it again checks

against the recipient vertex’s flag in case, while it was waiting to acquire the lock, another

worker that was holding that lock pushed the first message into that recipient’s mailbox.

In this event, the recipient’s vertex now has a mailbox containing a message and the

worker can release the lock and use the compare-and-swap combination. Otherwise, it

continues to hold the lock and performs the first message push to that recipient vertex’s

mailbox, ensuring that store operations are issued in the order explained earlier.

5.4 Unpredictable memory access patterns

In vertex-centric programs, the irregularity in memory accesses is two-fold. Firstly, the

power-law distribution that commonly underpins graph processing, results in vertices

having widely different numbers of neighbours. Secondly, the inherent irregular structure

of graphs means that each vertex may be connected to any other arbitrary vertex. In

other words, the data for neighbouring vertices may reside at any location in memory, and

is therefore highly unlikely to be contiguous with each other. As a consequence, when a

vertex broadcasts a message to its neighbours, there are an arbitrary number of memory

accesses which must be undertaken, and each of these accessing an arbitrary location

in memory. This section presents optimisations designed in response to analysing these

unpredictable memory access patterns.

92

Chapter 5: Tackling the irregularity inherent in vertex-centric

1 void ip_fetch_broadcast_messages(IP_VERTEX_TYPE* v) {
2 IP_NEIGHBOUR_COUNT_TYPE i = 0;
3 while(i<v->in_neighbour_count &&
4 !ip_get_vertex_by_id(v->in_neighbours[i])->has_broadcast_message) {
5 i++;
6 }
7 if(i >= v->in_neighbour_count) {
8 v->has_message = false;
9 }
10 else {
11 v->has_message = true;
12 v->message =
13 ip_get_vertex_by_id(v->in_neighbours[i])->broadcast_message;
14 i++;
15 IP_VERTEX_TYPE* temp_vertex = NULL;
16 while(i < v->in_neighbour_count) {
17 temp_vertex = ip_get_vertex_by_id(v->in_neighbours[i]);
18 if(temp_vertex->has_broadcast_message) {
19 ip_combine(&v->message, temp_vertex->broadcast_message);
20 }
21 i++;
22 }
23 }
24 }

Figure 5.2: Implementation of the message fetching phase in the single-broadcast version
of iPregel

5.4.1 Vertex structure externalisation

Whilst they are unpredictable, these memory access patterns do expose one regularity,

which is that attributes are accessed from a neighbour’s vertex structure. For instance,

in the single-broadcast version of iPregel, where communication recipients pull messages

from their sender’s outbox, profiling reveals that up to 99% of the runtime is occupied

in iterating through all incoming neighbours and retrieving messages from those who are

flagged as holding a message to be broadcast. The function that is responsible for message

fetching is illustrated in Figure 5.2, and it can be seen that the loop at line 16 iterates

through incoming neighbours, checking whether each neighbour is flagged as having a

message to broadcast and if so, fetches the corresponding message from their mailbox.

However, as per lines 12-13 show, the only vertex attributes that are accessed in this

loop are has broadcast message and (potentially) broadcast message. Because

these attributes are part of the vertex’s structure, they are therefore grouped with other

vertex attributes such as the vertex’s identifier or user-defined value. As a consequence,

the cache line(s) in which these attributes are stored are also filled with attributes that

will never be used in this loop.

93

Chapter 5: Tackling the irregularity inherent in vertex-centric

This cache pollution can be minimised by reorganising the vertex structure, exter-

nalising the frequently accessed attributes into their own structure. Following this ap-

proach, one array contains structures comprising the has broadcast message and

broadcast message attributes, whilst the other array contains structures holding the

rest of the vertex attributes. Therefore, when entering the loop at line 16, such a design

means that cache lines are only loaded with useful attributes.

5.4.2 Software prefetching

The aim of software prefetching is to enable the programmer to direct the CPU to prefetch

data into its cache when the patterns of data access might not be obvious. An example

of this is that of indirect memory accesses, where the value from a variable or returned

by a function is subsequently used as the array index. This can be especially useful

for applications whose memory accesses are irregular, as such situations are notoriously

difficult for the hardware prefetcher to correctly predict.

Instead, based upon higher level application knowledge the programmer can use the

mm prefetch function call found in xmmintrin.h to fetch data ahead of time. Whilst

some benefit to this approach has been demonstrated [79], there is a sensitivity between

fetching at the right time, prefetching too early (and the data is then flushed from cache

before it is used) or too late (where data access occurs before the prefetch completes).

Furthermore, vertex-centric programs are inherently bandwidth-intensive and as such,

any optimisation putting pressure on memory bandwidth is thus unlikely to yield any

benefit. This is what has been observed in our experiments, and therefore software

prefetching optimisations were not included in the experiments presented in Section 5.7.

5.5 Irregular workloads

A common irregularity that parallel programs face is that of load imbalance, where work-

ers have different amounts of work allocated to them. Vertex-centric programs, where

vertices can become inactive during execution and contain different numbers of edges,

are prone to load imbalance due to the number of active vertices changing dynamically

during the run.

5.5.1 Workload evaluation proxy

Finding the right proxy to evaluate a workload is crucial because it lays down the found-

ations upon which to build more advanced strategies such as load balancing. Logically,

94

Chapter 5: Tackling the irregularity inherent in vertex-centric

implementations of the vertex-centric programming model represent their workload in

terms of vertices. Although this is accurate with regular data structures, the graphs pro-

cessed by vertex-centric programs typically follow a power-law distribution, resulting in

widely different numbers of neighbours per vertex. Additionally, the runtime of typical

vertex-centric programs is dominated by communications and not computation. While

the latter is related to the number of vertices, the former depends on the number of

edges. Based upon this observation, the hypothesis was that the workload of a thread,

which results in the number of combination operations performed and memory writes,

or reads, is better expressed as being correlated to the number of outgoing, or incoming,

neighbours.

5.5.2 Work distribution

When parallelising a for loop in OpenMP by using the for construct, one can apply

the schedule clause, which is provided with a kind that directs how chunks of loop

iterations will be distributed to threads, as well as an optional parameter specifying how

many iterations comprise a single chunk.

One of the scheduling kinds provided by OpenMP is dynamic, and this specifies

that chunks of iterations will be distributed on a first-come-first-served basis. This al-

lows threads that have been assigned smaller chunks to be assigned more chunks, thus

improving load balancing.

Therefore, the dynamic scheduling kind has been included in the set of optimisation

techniques evaluated in this chapter. However, to be compatible with this technique, the

code must be within a for loop whose iteration set distribution can be freely managed

by OpenMP. This suits all versions of iPregel, except those relying on the edge-centric

workload, described in Subsection 5.5.1, since they negate the use of OpenMP dynamic

scheduling given that the workload is represented as edges and not vertices. The assigned

chunks, therefore, represent workloads on a per-vertex basis.

5.6 Experimental environment

This section describes the conditions and configurations in which the experiments presen-

ted in this chapter were conducted.

95

Chapter 5: Tackling the irregularity inherent in vertex-centric

Table 5.1: Order and size of graphs selected for experiments

Name Graph order Graph size

DBLP 317,080 1,049,866
Live Journal 4,036,538 34,681,189
Orkut 3,072,441 117,185,083
Friendster 65,608,366 1,806,067,135

5.6.1 Computing environment

Experiments are run on a standard compute node of Cirrus, whose technical specifications

are provided in Subsection 4.6.1.2. What is referred to as the number of threads in the

rest of this chapter implies a 1:1 mapping between the number of threads and the number

of cores.

The compilation is achieved by using the gcc compiler version 8.2.0 with OpenMP

version 4.5. Compilation flags passed enable the support for C11 standard (-std=c11)

and level 3 optimisations (-O3). All results reported averaging over 5 number of runs.

5.6.2 Graph configurations

Table 5.1 lists the graphs processed in the experiments presented in this chapter. All four

are real-world graphs publicly available in the Stanford Network Analysis Project [77] on-

line collection. The smallest graph, the Database and Logic Programming Bibliography

graph1 (DBLP), represents the eponymous computer science bibliography while Live-

Journal2, Orkut3 and Friendster4 are network graphs about blogging, social and gaming

respectively. These graphs cover all orders of magnitude from a million to a billion edges

and are undirected, meaning that the total number of directed edges is twice the amount

presented.

5.6.3 Benchmarks

The experiments presented in this chapter are conducted on the three benchmarks intro-

duced in Subsection 2.3.2, which are commonly used by the vertex-centric community,

namely PageRank, Connected Components and Single-Source Shortest Paths.

1https://snap.stanford.edu/data/com-DBLP.html
2https://snap.stanford.edu/data/com-LiveJournal.html
3https://snap.stanford.edu/data/com-Orkut.html
4https://snap.stanford.edu/data/com-Friendster.html

96

Chapter 5: Tackling the irregularity inherent in vertex-centric

As discussed in Section 5.1, optimisations of Sections 5.3, 5.4 and 5.5 are designed in

a manner that requires no modifications in user code. Therefore, the iPregel benchmark

implementations provided in Chapter 4 remain unchanged in the experiments conducted

in this chapter.

5.7 Results

Results presented in this section are obtained from experiments designed to evaluate two

aspects of the parallel performance of techniques developed:

• graph scalability: where the number of threads is fixed in order to isolate the

impact of each optimisation against the graph size.

• thread scalability: where the graph size is fixed in order to isolate the impact of

optimisations against the number of threads used.

5.7.1 Graph scalability

5.7.1.1 Individual optimisations

The experiments presented in this subsubsection consist, for each benchmark, in applying

every optimisation individually and calculating the speedup obtained compared to the

baseline version, using 32 threads.

The only optimisation not applicable to all benchmarks is the hybrid combiner presen-

ted in Section 5.3 because it focuses on improving the usage of locks during combination.

Both PageRank and CC rely on lock-free algorithms, making them unsuitable for that op-

timisation. Nonetheless, the results presented in Table 5.2 show that the hybrid combiner

improves the performance of SSSP on all graphs. It also proves to be the optimisation

yielding both the biggest speedup overall, up to 4.07 on Friendster, and on average, with

a geometrical mean of 1.81. Furthermore, as the size of the graph increases, so does

the speedup. The reason for this is that the number of combinations depends upon the

number of edges, and because of this the benefit of improving the combination, therefore

grows with the number of combinations generated. Overall, the constant performance

gain observed from the hybrid combiner demonstrates that when fine-grain synchronisa-

tions cannot be achieved using exclusively a lock-free design, partially leveraging lock-free

interactions and carefully designing them to work with lock-based interactions can be a

beneficial alternative.

97

Chapter 5: Tackling the irregularity inherent in vertex-centric

Table 5.2: Speedups obtained from each optimisation applied independently, compared
to the respective baseline, on each benchmark, using 32 threads, on all graphs ordered
by ascending number of edges.

DBLP LiveJournal Orkut Friendster

PR
Baseline 1.00 1.00 1.00 1.00

Hybrid combiner n/a n/a n/a n/a
Externalised structure 1.31 1.27 1.51 1.13
Edge-centric workload 1.01 2.31 1.67 1.36
Dynamic scheduling 1.23 2.31 1.99 1.44

CC
Baseline 1.00 1.00 1.00 1.00

Hybrid combiner n/a n/a n/a n/a
Externalised structure 1.58 1.66 1.47 1.65
Edge-centric workload 0.56 1.12 1.27 1.41
Dynamic scheduling 1.23 1.67 1.69 1.20

SSSP
Baseline 1.00 1.00 1.00 1.00

Hybrid combiner 1.01 1.12 2.35 4.07
Externalised structure 1.08 1.01 1.07 1.10
Edge-centric workload 0.91 0.87 1.28 1.29
Dynamic scheduling 1.11 1.33 1.55 1.69

98

Chapter 5: Tackling the irregularity inherent in vertex-centric

Similarly, the externalised structure optimisation is beneficial for all graph-benchmarks

tested, with a speedup of 1.30 on average. The results in Table 5.2 show that extern-

alising vertex attributes generates the best speedups for CC and the worst for SSSP.

The explanation is twofold: firstly, PageRank and CC benefit more because they rely

on iPregel versions that use pull-based communications, which are lock-free by design.

As a consequence, the memory accesses performed during the communications are not

interleaved with lock acquisition or release, which reduces further the number of vertex

attributes that are frequently accessed. Secondly, PageRank and CC rely on different

algorithms, the one underpinning PageRank has one loop that can leverage structure

externalisation while the one for CC has two. The overall benefit obtained for CC is

therefore greater since it can leverage this optimisation in two parts of the code. Overall,

structure externalisation, therefore, demonstrates that heavily irregular memory access

patterns may exhibit certain regular aspects which can be leveraged to deliver perform-

ance improvements.

The timings reported in Table 5.2 also indicate that shifting to the edge-centric work-

load proves to be beneficial in 75% of the experiments, resulting in a speedup of 1.19

on average. The extremes are observed for PageRank on Live Journal with a speedup

of 2.31 and Connected Components on DBLP with only 0.56. In fact, the edge-centric

workload approach performs better on PageRank than on any of the two other bench-

marks. The reason for this is that CC and SSSP rely on an iPregel implementation

leveraging the selection bypass optimisation introduced in [1], which helps manage

the variable number of active vertices but requires the edge-centric workload distribution

to be recalculated at every superstep, therefore increasing the total overhead.

The OpenMP dynamic scheduling is the fourth optimisation explored in these ex-

periments. It contrasts with the edge-centric optimisation both because it still represents

the workload in terms of vertices and because it no longer statically allocates them to

threads but uses a first-come-first-served basis instead. The results reported in Table 5.2

are obtained with an empirically determined chunk size of 256. Unlike the edge-centric

optimisation, dynamic scheduling improves performance in all experiments, resulting

in speedups between 1.11 and 2.31. With an average speedup of 1.50, the first-come-

first-served dispatch pattern proves to be a valuable part of an efficient load-balancing

strategy.

5.7.1.2 Aggregated optimisations

The optimisations presented in Sections 5.3, 5.4 and 5.5 and evaluated individually in

Subsubsection 5.7.1.1 are not mutually exclusive, except the edge-centric workload and

99

Chapter 5: Tackling the irregularity inherent in vertex-centric

Table 5.3: Final speedups observed compared to the respective baseline, after having
applied all beneficial optimisations on each benchmark, using 32 threads, across all graphs

DBLP LiveJournal Orkut Friendster

PR 1.61 3.14 3.07 1.63
CC 2.05 2.96 2.41 2.12

SSSP 1.09 1.75 3.18 5.73

the dynamic scheduling, and therefore can be combined5. As such, an all-optimisations

version has been developed for each benchmark by combining all optimisations applicable

to that benchmark. For PageRank and Connected Components since the hybrid combiner

is not applicable, the optimised version consists of the externalised structure with dynamic

scheduling. For SSSP however, the optimised version also includes the hybrid combiner.

The speedups obtained by the all-optimisations versions against the baseline, for each

benchmark, are reported in Table 5.3.

For PageRank and the Connected Components, the speedup patterns exhibited are

identical, where the smallest and biggest graphs, DBLP and Friendster, benefit the least

but exhibit similar speedups. Live Journal and Orkut provide better speedups, with Live

Journal benefiting the most. This correlates to the patterns observed in Table 5.2. In

the case of PageRank, the speedups obtained range from 1.61 up to 3.14, meaning that

at least 38% of the runtime is saved when using the optimised version. For Connected

Components, the speedup range is smaller, reaching only a maximum of 2.96 but never

going below 2.05. In other words, at worst, the optimised version halves the runtime of

the baseline version.

Table 5.3 demonstrates that, in the case of SSSP, the speedup pattern is different,

where the larger the graph, the higher the speedup. This is because of the hybrid com-

biner, which provides such a speedup pattern, in addition to the dynamic scheduling also

exhibiting that pattern for SSSP in Table 5.2. Starting at 1.09 on the smallest graph,

the speedup obtained increases until reaching 5.73 on the largest graph, therefore saving

up to 83% of the runtime.

Overall, when fixing the number of threads at 32, the optimised versions prove to be

beneficial for all benchmarks on all graphs tested. On average, the optimised versions

reduce the runtime by almost two-thirds (59%), with extreme cases observed at 8%

and 83%.

5when the edge-centric workload and dynamic scheduling conflict, the latter is preserved due to the
better performance showcased in Table 5.2.

100

Chapter 5: Tackling the irregularity inherent in vertex-centric

5.7.1.3 Predictability

The expected aggregated speedup of the selected optimisation techniques for each bench-

mark/graph pair, as presented in Table 5.2, has been calculated and is available in Ap-

pendix G.

After calculating the aggregated speedups for each benchmark/graph pair, we con-

ducted further analysis to assess the predictability of the measured aggregated speedup

based on the combined individual speedups. To do so, we calculated the ratio between

the measured aggregated speedup and the estimated aggregated speedup, which was in-

verted if it was strictly greater than one. The ratio obtained serves as an indicator of the

predictability of the measured aggregated speedup compared to the estimated one. The

results of this analysis are presented in Table 5.4.

DBLP LiveJournal Orkut Friendster
PR 100% 94% 98% 100%
CC 94% 93% 97% 93%
SSSP 90% 85% 82% 76%

Table 5.4: Ratio obtained between the speedup measured and the speedup expected,
across all three benchmarks and all four graphs.

The combination of structure externalisation and dynamic scheduling policy in PageR-

ank and Connected Components yields a predictability rate above 93%, with two instances

of PageRank achieving 100%. This indicates that the measured aggregated speedup

closely matches the one obtained by aggregating individual speedups. However, in the

case of SSSP, the predictability rate starts at 90% for DBLP and steadily decreases to

76% for Friendster, implying that the expected speedup is higher than the one meas-

ured. This disparity may be attributed to the presence of the hybrid combiner, which

sets SSSP apart from the other benchmarks. A potential explanation could be that the

specific implementation of the hybrid combiner used in the study is not well-suited to

work effectively with the other techniques as these optimisation techniques were designed

separately. Further investigation and experimentation would be needed to determine the

exact cause of the lack of synergy observed.

5.7.2 Thread scalability

This section contains experiments running the same optimised versions presented in

Table 5.3 but varying the number of threads and fixing the graph size. The biggest

graph, Friendster, was selected to minimise the timing volatility that would be due to

small runtimes. The results from this experiment are reported in Figure 5.3.

101

Chapter 5: Tackling the irregularity inherent in vertex-centric

Across all benchmarks, the optimised versions exhibit two characteristics. Firstly,

their sequential performance is better than that of the baseline, up to 4.36 times faster

in the case of SSSP, due to the benefits of structure externalisation and hybrid com-

bination. Secondly, they demonstrate improved thread scalability, which increases the

parallel efficiency observed at 32 threads by 17% on average due to structure externalisa-

tion and dynamic load balancing. In the case of PageRank for instance, switching from

the baseline to the optimised version improves the parallel efficiency from 43% to 64%.

The worst case observed is SSSP, with a parallel efficiency at 32 threads rising by 13%,

from 43% to 56%.

Using the SSSP benchmark as an example, the performance gains that have been

obtained mean that at only 4 threads the optimised version matches the baseline at 32

threads. Similarly, for PageRank, the 32-thread performance of the baseline is matched

by the optimised version using running over only 16 threads.

The experimentation results presented in this section demonstrate that the optimisa-

tions explored yield a performance benefit in 37 out of the 40 graph-benchmarks pairs

tested. The combined optimisations proved to be beneficial in all the cases, whether they

are assessed from a graph scalability or thread scalability perspective. For the latter, as

shown in Figure 5.4, at 32 threads, the speedups obtained across all three benchmarks

have a geometric means of 2.9 times. For SSSP, which is the benchmark with the highest

load-imbalance, therefore benefiting the most from the optimisations developed in this

work, the speedup reaches 5.7 times.

5.8 Conclusions and future work

This chapter has explored techniques to address the irregular challenges inherent to

vertex-centric programs. The first, presented in Section 5.3, was fine-grain synchronisa-

tions that underpin message combinations. To that end, a hybrid combiner was developed

that couples compare-and-swap and lock-based operations together. Whilst being trans-

parent to the user, results presented in Table 5.2 demonstrate that the hybrid combiner

can reduce the runtime by up to 75% and that the performance gain obtained increases

with the graph size.

Unpredictable memory access patterns were the second irregularity investigated in

this chapter. These are unpredictable, both in terms of quantity and location, and it was

found that although one cannot know which vertex’s structure will be accessed next, it

is predictable which attribute of the structure will be accessed. This characteristic was

exploited to redesign vertex structures for cache efficiency, decreasing the runtime by up

102

Chapter 5: Tackling the irregularity inherent in vertex-centric

to 40% as shown in Table 5.2. The temporality of these accesses was also considered to

explore software prefetching, despite yielding no performance benefit in this case due to

the bandwidth-intensive nature of vertex-centric programs.

The third challenge targeted in this chapter was the load imbalance, as presented in

Section 5.5. The approach developed in this research was to evaluate the workload by

representing it with an edge-centric metric while preserving the user interface. Although

this shift is beneficial in 75% of the tests and provides a runtime reduction of up to 57%,

Table 5.2 also shows that it degrades performance in 25% of the cases. By contrast, the

first-come-first-serve dispatch from the OpenMP dynamic scheduling never resulted in

performance degradation while still providing a maximum runtime gain equal to that of

edge-centric. This, therefore, demonstrates that a better workload proxy is only a part

of a well-rounded load-balancing strategy.

Overall, the experiments conducted in this chapter demonstrate that the techniques

that have been developed deliver performance benefits in 37 out of the 40 graph-benchmark

pairs tested. When successful optimisation techniques are combined, performance bene-

fits are delivered for all graph-benchmark pairs tested, whether they are evaluated from

a graph scalability or thread scalability perspective, as shown in Table 5.3 and Figure 5.3

respectively. This demonstrates that although the vertex-centric model exhibits many

sources of irregularity, they can be efficiently addressed, effectively reducing the runtime

by up to 83%.

Future directions for this work include the integration of work-stealing in the edge-

centric workload, for example by designing an affinity schedule tailored for edge-centric.

Another direction could be that of incrementalisation [36], which is an optimisation area

under-explored in vertex-centric but which could provide a new level of performance.

103

Chapter 5: Tackling the irregularity inherent in vertex-centric

1 2 4 8 16 32
25

50

100

200

400

800

P
ag
eR

an
k

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32
40

80

160

320

640

1280

C
on

n
ec
te
d
C
om

p
on

en
ts

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32
5

10

20

40

80

160

320

640

Number of threads

S
S
S
P

R
u
n
ti
m
e
in

se
co
n
d
s

Baseline Optimised

Figure 5.3: Variation of the runtime (in seconds) of the baseline version and the all-
optimisations version for each benchmark on the Friendster graph, against the number
of threads, using logarithmic (base 2) scales.

104

Chapter 5: Tackling the irregularity inherent in vertex-centric

1 2 4 8 16 32
1

2

4

8

S
p
ee
d
u
p

PageRank Connected Components SSSP

Figure 5.4: Variation of the speedup of the optimised version compared to the baseline
version for each benchmark on the Friendster graph, against the number of threads, using
logarithmic (base 2) scales.

105

Chapter 5: Tackling the irregularity inherent in vertex-centric

106

Chapter 6

Leveraging non-volatile memory

6.1 Introduction

Chapters 4 and 5 demonstrated the effectiveness and feasibility of vertex-centric optim-

isation techniques that do not sacrifice programmability, in the context of shared-memory

parallelism. However, a limitation of shared-memory systems is that applications are re-

stricted to the amount of memory available on a single node. This becomes a serious

challenge when considering large-scale graph processing, which is an important activity

underlying many technologies. Taking the internet as an example, the fact that so many

patterns of web-based interaction, from likes and friends on social networking sites to

click-throughs can be represented as a graph data structure means that companies gen-

erate vast value from analysing such structures. Moreover, many communities including

biological research, transportation planners and communication specialists also derive

significant benefits from graph processing. However, with the explosion of data, which

is only set to continue, graph sizes are growing exponentially and an important question

is how the community can support the processing of these next-generation graphs in the

coming decades.

In graph processing, terabytes of memory can be required to hold large graphs, and

this is orders of magnitude larger than what can be reasonably held within the DRAM

of a single node. This memory limitation is one of the key motivations underpinning the

popularity of distributed-memory graph processing [68], and whilst iPregel was demon-

strated to be significantly more memory efficient than other vertex-centric frameworks,

there still reaches a point where it will exhaust the DRAM of a single node. In the dis-

tributed approach one is typically scaling their graph processing workloads across nodes

due to memory limits rather than being driven by computational concerns, but such

an approach can result in numerous disadvantages. The first of which is the need to,

107

Chapter 6: Leveraging non-volatile memory

often entirely, rewrite the shared-memory implementation, commonly into some form of

message-passing abstraction which requires communications to be explicitly programmed.

Secondly, such inter-node communications are likely to result in significant communica-

tion overhead if they are unstructured, which is the case for graph processing. Further-

more, graph processing is prone to heavy load imbalance due to the power-law distribution

underpinning many graphs, and this forms a major obstacle to efficient distributed graph

partitioning. An alternative approach especially popular in graph processing is that of

out-of-core solutions [24], where the file system is used as a backing store for data and

the DRAM as effectively a manual caching mechanism, fetching the data into DRAM

as it is required and flushing unneeded data back to disk. Due to disks being orders of

magnitude slower than DRAM, the performance of out-of-core solutions greatly depends

on the careful scheduling of those operations. Unfortunately, predicting such behaviour

with an irregular, variable, and imbalanced workload is not trivial [3]. In short, graph

processing is a prime example of an application where one would ideally stay within the

memory space of a single node for as long as possible.

One possible solution to this challenge is the use of commodity NVRAM which has

emerged onto the market through Intel’s Optane Data Centre Persistent Memory Module

(DCPMM). Whilst this is slightly slower than DRAM, although much faster than disk, the

significantly increased per-DIMM capacity compared to DDR4 DRAM, means that byte-

addressable NVRAM can provide much larger RAM-style memory pools than DRAM

alone. Furthermore, NVRAM can act as an extension to DRAM in a transparent manner,

resulting in applications being able to leverage this technology without any code changes

required. Whilst DCPMM is Intel’s specific NVRAM implementation, in this chapter

these terms are used interchangeably. Therefore, for large-scale graph processing, the use

of NVRAM could be an inflection point, enabling much larger graphs to be processed

without incurring the performance overheads of moving to distributed-memory or out-

of-core solutions. This chapter explores the use of Intel’s DCPMM in the context of

vertex-centric graph processing, to understand the role that this could play and the most

appropriate techniques to obtain optimal performance. The contributions of the research

reported in this chapter are:

• Experimenting with and analysing the scalability of shared-memory vertex-centric

graph processing using NVRAM. Resulting in, as far as it can be determined, a

new world record for the size of a graph processed within a single node without the

use of out-of-core computation.

• Evaluating the need for manual tuning of existing codes to most efficiently exploit

NVRAM.

108

Chapter 6: Leveraging non-volatile memory

• Quantifying the impact of NVRAM data placement based on the type of memory

access performed.

• Discussing the price and power properties of using NVRAM for large-scale graph

processing compared to alternate distributed approaches.

The rest of this chapter is organised as follows: Section 6.2 presents related work and

introduces the persistent memory technology and vertex-centric before Section 6.3 focuses

on the Intel Optane DC Persistent Memory Module. Section 6.4 describes the environ-

ment in which experiments are conducted, followed by Section 6.5 which analyses the

results obtained before we draw conclusions and discuss potential future work directions

in Section 6.6.

6.2 Related work

Interest in non-volatile memory technologies has grown over the past decade [80], with

hardware advances in the last two years now resulting in this technology becoming a

realistic proposition for use in the data-centre and HPC machines. One such recent

NVRAM technology is Intel’s Optane DC Persistent Memory (DCPMM) [81]. Released

in April 2019, in addition to featuring byte-addressability and non-volatility, the product

is provided in a standard DRAM DIMM form factor and at a significantly lower cost per

byte than previous DRAM and NVRAM solutions. The byte-addressability means that

the CPU can access any location in the DCPMM, effectively meaning that DCPMM can

be used as either an extra storage disk or an additional pool of RAM. The focus of this

chapter is most interested in the second benefit, where the between five and ten times

increase in per-DIMM capacity when compared to DDR4 DRAM, results in the ability to

provide very large memory spaces. Therefore, whilst DCPMM is slower than DRAM, it

makes it possible to equip nodes with an additional layer of memory hierarchy of TBs in

size, at much lower energy and purchase cost than if this was all DRAM. DCPMM’s read

bandwidth is quoted as around 2.4 times lower than DDR4 DRAM and write bandwidth

around 6 times lower than DDR4 DRAM [82], however, this is still far faster than disk

and can often be ameliorated in an application either by using the node’s DRAM as an

additional layer of cache (which is an automatic feature of the technology) or by the

programmer explicitly controlling data placement.

Previous studies have been conducted around the use of NVRAM for a variety of

applications, including [83] which specifically focuses on the use of DCPMM for scientific

codes. An important result has been to show that applications which scale poorly in

109

Chapter 6: Leveraging non-volatile memory

the distributed-memory environment, can exploit NVRAM’s large memory space to sig-

nificantly increase the local problem size (effectively the data which can fit into a node’s

memory space) and ultimately improve performance. This has been highlighted as a key

facet of the technology, extending the memory capacity of a node to enable applications

most suited to shared-memory operation to reach a scale hitherto unobtainable with

DRAM exclusively.

In recent years graph size has grown exponentially to reach today’s scale which

routinely involves hundreds of billions of edges, and even over a trillion for the largest

graphs reported [19, 27, 58]. The amount of memory required to process such graphs

increases with graph size and now stands at TBs for the largest graphs. The actual

computation required for processing the graph is typically fairly low, with the codes

themselves limited by the amount of memory that can be provided. Whilst the ideal is

to stay within a single node, when processing the largest graphs the memory required is

beyond what the vast majority of machines can hold or reasonably affordable to provide.

Traditionally, there have been two possible approaches to tackle processing such large

graphs. The first is that of distributed parallelism, often via MPI, but graph processing

applications tend to be communication-intensive, resulting in poor inter-node scaling.

Furthermore, the high load imbalance frequently found in graphs, especially within so-

cial networks, greatly increases the complexity of developing efficient distributed-memory

solutions. This was demonstrated in [5], where a 70 trillion edge graph (the overall world

record for graph size in a distributed-memory environment as of 2023) was processed on

38,656 compute nodes of Sunway TaihuLight (with each node containing 260 CPU cores).

This required over a million CPU cores to process the graph, and in their scaling experi-

ments, they highlighted that performance was limited by the bisection bandwidth due to

static routing in InfiniBand, and the increasing volume of the graph cut in their distrib-

uted algorithm. The second possible solution is the use of out-of-core techniques, where

significant chunks of a large graph are held on disk (typically SSDs) and the DRAM is ef-

fectively used as a cache managed explicitly by the programmer. However, this approach

also tends to perform poorly, because of the relatively long latencies and low bandwidth

of disk accesses.

This is where NVRAM can be of great benefit for graph processing, enabling one

to process much larger graphs within a single node before being forced to move to

distributed-memory, based on a technology which is hundreds of times faster than disk

for access [83]. Furthermore, graph processing represents a workload with a highly ir-

regular memory access pattern, which in itself is an important application pattern to

explore within the context of how best one can leverage NVRAM most effectively, with

110

Chapter 6: Leveraging non-volatile memory

lessons learnt applying more widely across other codes which also exhibit similar irreg-

ular memory access patterns. There have been a small number of previous studies of

NVRAM with graph processing, for instance [84] where the authors compared a number

of existing graph frameworks on NVRAM without optimising them specifically for this

technology, and [85] where the authors developed their own placement algorithm exploit-

ing the asymmetry between NVRAM read and write operation performance. Both of

the studies concluded that NVRAM is a promising technology for graph processing. The

research reported in this chapter expands upon this existing work by examining the use

of NVRAM to store significantly larger graphs. The largest graph examined in this study

contains 750 billion edges, compared to 128 billion and 225 billion edges in the previous

studies.

6.3 Persistent memory modes

The Intel Optane DC persistent memory modules can be used in different modes, offer-

ing different levels of granularity in the control of data placement. These modes can be

activated by rebooting the node, which usually takes approximately 20 minutes, mak-

ing it relatively easy to switch between DCPMM modes without hindering the overall

throughput of jobs on a cluster.

6.3.1 Memory mode

The first mode presented in this chapter is referred to as memory mode, which is con-

venient due to it being entirely transparent to applications. This requires no application

modification because the NVRAM provided by the DCPMM becomes the main memory

space whilst the DRAM effectively becomes the last level cache. By default, all allocations

(both static and dynamic) take place within the DCPMM.

6.3.2 App-direct mode

The app-direct mode is the second mode presented in this chapter and, unlike memory

mode, does not provide automatic access to the DCPMM. Instead, existing DRAM re-

mains main memory while the NVRAM can also be accessed via explicit load and store

operations. Allocating memory on the DCPMM can be achieved by mounting a file sys-

tem upon it, and using a special malloc interface from the libvmem library which is part

of the Intel’s Persistent Memory Development Kit (PMDK) [86].

DCPMM’s app-direct mode can also be used in conjunction with the libvmmalloc

111

Chapter 6: Leveraging non-volatile memory

Table 6.1: Hardware specification of a NEXTGenIO node.

Metric Value

Processor 2 × Xeon Platinum 8260M 24-core @ 2.4GHz
Volatile memory (DRAM) 192GB (12 × 16GB)
Non-volatile memory (NVRAM) 3,072GB (12 × 256GB)

library, which intercepts all dynamic allocation calls including malloc. Without such a

library these dynamic allocations would have resulted in data being allocated in DRAM

(as described in Subsection 6.3.2) and the library instead allocates them within DCPMM.

Using this library, dynamic allocations now take place on the DCPMM while static alloc-

ations continue to be placed in DRAM. Furthermore, unlike the general app-direct mode

and explicit use of PMDK, this mode does not require application rewriting beyond the

inclusion of the libvmmalloc.h header file.

6.4 Experimental environment

This section describes the conditions in which our experiments were run, from the hard-

ware and software used, to the graphs and applications selected.

6.4.1 Hardware and software

The experiments presented in this chapter have been run on the cluster built as part

of the NEXTGenIO project whose per-node specifications are given in Table 6.1. The

cluster contains 34 identical nodes totalling over 100TB of NVRAM and 6.5TB of DRAM.

Given the shared-memory nature of the work presented in this chapter, only one node of

this cluster was used at any given time during the experiments discussed in Section 6.5.

The iPregel framework was compiled with gcc 8.3.0, using level 2 optimisations (-O2),

with support for OpenMP version 4.5 enabled. OpenMP threads are placed on physical

cores and pinned to them in order to prevent thread migration. Also, threads are placed

on consecutive physical cores; meaning that the first 24 OpenMP threads are placed on

the same NUMA region. The libraries libvmem and libvmmalloc have been used and

these can be found in Intel’s Persistent Memory Development Kit [86].

112

Chapter 6: Leveraging non-volatile memory

Table 6.2: Graphs selected

Name Number of vertices Number of directed edges

S-250 / C-250 250,000,000 250,000,000,000
S-750 / C-750 750,000,000 750,000,000,000

Kronecker 25 500 33,554,432 33,554,432,000
Kronecker 28 500 268,435,456 268,435,456,000
Kronecker 33 16 8,589,934,592 274,877,906,944

6.4.2 Graphs selected

Table 6.2 lists the graphs that have been used in the experiments of Section 6.5. Of the

five graphs, three of them have been created using a Kronecker graph generator, where

the name of these Kronecker graphs contains the parameters to reproduce them. The

first number represents the logarithm base 2 of the number of vertices, and the second

number is the logarithm base 2 of the average out-degree. The graphs generated vary in

sparsity, with an average degree of up to 500 which mimics those typically found in large

social network graphs [27].

The two other graphs have been generated using a bespoke graph generator, which

provides finer control over vertex adjacency lists. Each graph was generated in two forms,

consecutive and scattered, where both versions comprise the same number of vertices,

edges and degrees. The difference is in the locality of each vertex’s neighbours, where

the consecutive version results in the neighbour list of each vertex containing consecutive

vertex identifiers. For instance, given vertex i, in this configuration, its neighbours would

be i+ 1, i+ 2, ..., i+ n, where n is the number of neighbours. By contrast, the scattered

version inserts a gap between any two consecutive neighbours, such that the identifiers of

two consecutive neighbours are widely separated. For example, in this configuration given

vertex i, its neighbours would be i+ a, i+2a, ..., i+na, with n the number of neighbours

and a the scattering distance. These two configurations have been designed to represent

extreme cases of memory locality, both consecutive and widely scattered accesses, which

enables exploration of the impact of cache and page friendliness in the context of the

NVRAM. These graphs are denoted as C-V for the consecutive version, and S-V for the

scattered version, where V is the number of vertices in millions. The degree remains

500 in all cases and the scattering distance a is set to 100,000 for the scattered versions.

It can be seen that four out of our five graphs are larger than the largest experiments

conducted in both previous studies of graph processing on NVRAM [84,85].

113

Chapter 6: Leveraging non-volatile memory

6.4.3 Benchmarks selected

The results presented in this chapter are obtained by running 10 iterations of the vertex-

centric implementation of PageRank, whose code is illustrated in Figure 4.4. PageRank

is at the core of vertex-centric programming and has become a de-facto benchmark in

the graph community. Whilst other commonly used benchmarks, CC or SSSP, are used

elsewhere in this thesis, PageRank provides a stable workload across iterations. Crucially,

this means that it minimises load imbalance in the sense that every vertex participates

towards the calculation at every superstep, whereas other graph applications deactiv-

ate vertices as the calculation progresses. This enables experiments to remain focussed

on evaluating the performance of the NVRAM hardware and software, without being

potentially biased by application or configuration-specific logical behaviour. Moreover,

PageRank places the most pressure on the memory subsystem as every vertex broadcasts

a message to all its neighbours at every superstep. Therefore the number of messages

generated at every single superstep is equal to the total number of edges, placing a high

degree of pressure on the memory system thus making it a challenging test of NVRAM

performance. As such, whilst it might seem somewhat narrow to focus only on one

specific graph benchmark, no additional applications were selected in our experiments

because PageRank inherently exposes the characteristics that most accurately explore

the role of NVRAM, with the conclusions then applicable to a wide variety of other

graph applications.

The experiments presented in this chapter were conducted on two versions of the

iPregel vertex-centric framework. These are push and pull, where the versions are

alternative implementations of iPregel, triggering specific optimisations by redesigning

certain parts of the vertex-centric features and tuning them for specific situations. As

described in Subsubsection 4.3.4.3, the push version of iPregel consists of each sender

manually writing into the recipient’s memory, where the thread that processes a vertex

will write into the memory of each neighbouring vertex, typically held at random locations

in memory. Of most interest here, this version generates memory writes at multiple

memory locations, in addition to the locks required to prevent potential data-race. By

contrast, the pull version consists of the recipient fetching messages from senders. The

thread processing a vertex will therefore read from the memory locations of the sender

vertices, before writing into the recipient vertex only. In addition to being lock-free, the

pull version therefore generates writes that take place at a single memory location. These

two versions thus make for two configurations that stress the memory in different ways

and provide additional information to aid in analysing the performance of NVRAM under

pressure.

114

Chapter 6: Leveraging non-volatile memory

1 2 4 8 16 32 48
101

102

103

104

105

Number of threads

R
u
n
ti
m
e
in

se
co
n
d
s

Pull version

1 2 4 8 16 32 48
101

102

103

104

105

Number of threads

Push version

DRAM-only NVRAM-only

Figure 6.1: Variation of the iPregel runtime (in seconds) against the number of threads,
for the Kronecker 25 500 graph using different graph memory placements.

6.5 Results

This section presents and analyses the results collected during our experimentation. Mul-

tiple data placement configurations were explored to assess the different performance

overheads related to the use of NVRAM, and by leveraging the memory modes presented

in Subsection 6.3.1, it is possible to control the placement of vertices and edges.

6.5.1 Experiment 1: storing all data in DRAM only

The first experiment presented in this chapter compares processing a graph which is

stored exclusively in DRAM, against one exclusively in NVRAM. By comparing the

performance, any overhead imposed by the use of NVRAM can be identified.

The app-direct mode is used to place a graph entirely in DRAM, where dynamic

allocations are by default placed on the DRAM. By contrast, to place the graph in

NVRAM the libvmmalloc library, described briefly in Subsection 6.3.2, is used. When

using this library dynamic allocations are automatically intercepted and their NVRAM-

equivalent is instead issued.

The graph selected is the Kronecker 25 500, which is a graph small enough to fit within

the 192GB of DRAM available on a single node. Nonetheless, it remains a graph that

has over 30 billion edges, which is larger than most graphs processed by shared-memory

frameworks or publicly available [75, 76]. The results gathered from this experiment are

illustrated in Figure 6.1, where it can be seen that there is always an overhead observable

115

Chapter 6: Leveraging non-volatile memory

between the DRAM and NVRAM placement, as expected. Irrespective of the parallel

configuration, up to and including 16 OpenMP threads, NVRAM placement of the graph

is approximately 2.5 times slower than the DRAM counterpart for the pull version, and

3 times slower for the push version.

There is a noticeable performance drop for the NVRAM-only placement at 32 and

48 threads, and this is explained by how NVRAM-only placement is implemented. Us-

ing this approach, dynamic memory allocations are supplied from a memory pool built

upon a memory-mapped file. This memory-mapped file can only be created on either

the first or second socket, meaning that only the NUMA region local to that socket will

be local to that memory pool. A socket contains 24 physical cores on this NEXTGenIO

cluster and utilising fewer than 24 OpenMP threads, given the OpenMP placement con-

figuration adopted here, results in those OpenMP threads being pinned to physical cores

on the socket which is local to the memory-mapped file. However, 32 and 48 OpenMP

thread configurations result in threads also being mapped to physical cores of the other

socket, and hence accessing the memory-mapped file in a cross-NUMA fashion which im-

pacts performance. Until this cross-NUMA configuration is reached, the use of NVRAM

memory mode does not hinder parallel scaling, either for the push, or the pull versions.

6.5.2 Experiment 2: increasing the size of the graphs

Unlike the experiment presented in Subsection 6.5.1, the next experiment aimed to explore

the use of DRAM and NVRAM working together. To achieve this, DCPMM’s memory

mode, as described in Subsection 6.3.1, was used which automatically places data in

NVRAM and uses DRAM as the last-level cache.

The three Kronecker graphs (see Table 6.2) are used for this experiment, as they are

designed to gradually increase the pressure on the non-volatile memory as their size grows.

The first graph is the Kronecker 25 500, the 30 billion edge graph used in experiment

one and small enough to fit entirely in DRAM. The second graph selected is Kronecker

28 500, and with 270 billion edges requires more than 5 times the memory available in

DRAM. The third graph is Kronecker 33 16 which also contains approximately 270 billion

edges, however, this graph holds 30 times more vertices, exceeding 232. Such a number

of vertices requires vertex identifiers to be encoded using 64-bit integers instead of 32-

bit, effectively doubling the amount of memory required to store the edges. Moreover,

the number of edges per vertex on this last graph is 30 times lower than that on the

Kronecker 28 500 whose vertices are more densely interconnected, enabling an evaluation

of the performance of automatic caching in DRAM by using very different graphs.

The timings collected during this experiment are reported in Figure 6.2 and, as to be

116

Chapter 6: Leveraging non-volatile memory

1 2 4 8 16 32 48
102

103

104

105

Number of threads

R
u
n
ti
m
e
in

se
co
n
d
s

Pull version

1 2 4 8 16 32 48
102

103

104

105

Number of threads

Push version

K-25-500 K-28-500
K-25-500 DRAM-only K-33-16

Figure 6.2: Variation of the iPregel runtime (in seconds) against the number of threads
used, for different graph configurations, using NVRAM memory mode (including the K-
25-500 DRAM-only data for reference).

expected, runtime increases as the graph size grows. The Kronecker 25 500, which can

fit entirely in DRAM, only requires a single movement of data from NVRAM to cache

this in DRAM. The two other graphs however cannot fit in DRAM alone and therefore

require multiple data movements between NVRAM and DRAM as data is evicted from

this last level cache.

It can be observed that whilst both the Kronecker 33 16 and Kronecker 28 500 graphs

contain a similar number of edges, the processing of the former performs worse than

the latter. The crucial difference here is in the number of vertices, with Kronecker 33 16

containing 30 times more vertices than Kronecker 28 500. Storing the 280 million vertices

of the Kronecker 28 500 graph requires approximately 10GB in iPregel, which can fit in

DRAM. By contrast, storing 30 times more vertices consumes over 300GB of memory,

exceeding the total amount of DRAM available. As a result, not all vertices can be held

in DRAM at once and as a superstep progresses, vertices must be evicted from DRAM

to NVRAM.

This experiment has provided an evaluation of the the performance of using DRAM

and NVRAM together. However, whilst DCPMM’s memory mode enables the use of a

much larger memory pool without requiring application rewriting, the initial placement

of all data on NVRAM regardless of their access pattern is likely sub-optimal. This

can have serious implications for performance when edges evict vertices from the DRAM

117

Chapter 6: Leveraging non-volatile memory

DRAM-only RW split Memory mode NVRAM-only

500

1,000

207 250 278

711

309 325 353

1,123

R
u
n
ti
m
e
in

se
co
n
d
s Pull Push

Figure 6.3: Variation of the iPregel runtime (in seconds) on the Kronecker 25 500, using
multiple data placement configurations, for both push and pull versions at 16 threads

cache since the NVRAM overhead of the latter is 3 to 4 times bigger.

6.5.3 Experiment 3: exploring the difference in performance between

read and write NVRAM operations

The second experiment does not take into account the esoteric property of NVRAM,

where the overhead involved in read and write operations is asymmetric (write operations

are over twice as slow as read). Therefore, a hypothesis was that to most optimally

leverage NVRAM, one should tune their application to fit these differences as appropriate.

To minimise the penalty of NVRAM’s write overhead, data should be placed on

DRAM or NVRAM based on its access pattern. It follows that DRAM should therefore

be privileged for data that is read-write, while NVRAM should be ideally kept for read-

only data. In the case of iPregel for instance, vertices are writable while edges are

read-only. An experiment was therefore run to exploit this property, where vertices

are placed in DRAM and edges in NVRAM. Furthermore since NVRAM modules are

plugged into DRAM slots, they are subject to Non-Uniform Memory Access (NUMA)

effects. Therefore, to maximise performance, the placement of edges on NVRAM should

be NUMA-aware, resulting in placing edges on the NVRAM NUMA region corresponding

to that of the vertex from which they are outgoing.

App-direct mode is used to manually place data on the DRAM or NVRAM, where

a file system is mounted on each NVRAM NUMA region which is then accessed via

PMDK’s libvmmem library. The first step involves allocating a memory space on the

NVRAM, from which a pointer is returned. Subsequently, this pointer is then passed

to a decorated set of functions equivalent to classic malloc functions, which perform the

actual allocation on the NVRAM area pointed to.

118

Chapter 6: Leveraging non-volatile memory

Figure 6.3 reports the runtimes obtained by applying the read/write split technique on

the Kronecker 25 500 graph (30 billion edges). Performance is compared against results

collected in previous experiments (DRAM-only, Memory mode, and NVRAM-only). The

performance observed is bounded by the DRAM-only and NVRAM-only configurations,

where for both the push and pull versions the DRAM-only configuration remains the

fastest, and NVRAM-only the slowest. It can be seen that the RW-split and memory

mode experiments provide similar performance, albeit with the memory mode approach

being slightly slower in both cases. Therefore, pinning verticies in DRAM, compared to

memory mode that may evict them and flush them back to NVRAM, does provide a

marginal performance improvement. It should be highlighted that as this graph fits into

DRAM, the data movements performed by memory mode are simpler.

1 2 4 8 16 32 48
102

103

104

105

[2
50
B

ed
ge

gr
ap

h
s]

R
u
n
ti
m
e
in

se
co
n
d
s

Pull version

1 2 4 8 16 32 48
102

103

104

105
Push version

1 2 4 8 16 32 48
102

103

104

105

Number of threads

[7
50
B

ed
ge

gr
ap

h
s]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16 32 48
102

103

104

105

Number of threads

Contiguous Scattered

Figure 6.4: Variation of the iPregel runtime (in seconds) against the number of threads
used, on the contiguous and scattered versions of the 250 and 750 billion edge graphs.
(Missing results are due to excessive runtime)

119

Chapter 6: Leveraging non-volatile memory

6.5.4 Experiment 4: the impact of data locality and paging

A fourth experiment was designed which evaluates the impact of memory locality which

involves two versions of each graph that share the same size both in terms of vertices and

edges but differ in terms of how they are connected. This is an important property as it

influences the efficiency of caching during graph processing.

As described in Section 6.4, two graphs have been designed, each with a contiguous and

scattered version. Contiguous versions contain vertices whose neighbours are consecutive

identifiers, whereas the scattered versions contain vertices with neighbours that are wide

apart from each other. The NVRAM memory mode presented in Subsection 6.3.1 was

selected so that its ability to automatically page data between NVRAM and DRAM can

be explored. Furthermore, the graphs generated consisting of 250 and 750 billion edges

respectively, enabling an evaluation of the performance of NVRAM under significant

memory access load.

Figure 6.4 depicts the performance observed when processing synthetic graphs C/S-

250 and C/S-750 respectively. Whilst, as would be expected, absolute runtime is less

for the 250 billion edge graphs, scalability remains similar when tripling the graph size

to 750 billion edges. The graphs with scattered memory access patterns exhibit poorer

performance than those with consecutive accesses. This is to be expected and due to

the extra paging operations required when recipient vertices are not already in DRAM,

which is much more likely to occur on the scattered configurations. This overhead varies

between 3.19 and 6.85 times, with 4.99 times being the average, depending on the graph

size and iPregel version used, albeit then remaining constant as the number of threads

increases.

The performance observed on NVRAM for these graphs is reported in Table 6.3

using the metric billion edges traversed per second (Giga-Traversed Edges Per Second or

GTEPS). As already observed, scattered neighbours result in a significant performance

overhead compared to the contiguous graph versions, and as far as can be reasonably

deduced, the 750 billion edge graph runs are a new world record for the size of the

graph processed within a single node without the use of out-of-core computation. For

comparison, PageRank with similarly sized synthetic large graphs when processed using

the latest out-of-core solutions typically ranges between 0.07 and 0.83 GTEPS [5] and

distributed GraM over 64 servers results in 8.6 GTEPS [5], as shown in Table 6.3. GraM

was the fastest reported PageRank implementation for large graphs until the ShenTu

implementation which significantly outperforms all of these approaches by two to three

orders of magnitude over 38,656 compute nodes. Whilst the performance of ShenTu is

impressive, realistically even for large companies such as Facebook or Google, such a

120

Chapter 6: Leveraging non-volatile memory

Table 6.3: Maximum number of billions of edges traversed per second (in GTEPS) by
the pull and push versions of iPregel, on all graphs considered in this section, running
over 48 threads

Graph Pull version Push version

C-250 10.12 9.56
S-250 3.26 2.13
C-750 8.61 8.63
S-750 2.35 1.35
Kronecker 25 500 3.35 2.10
Kronecker 28 500 2.31 1.55
Kronecker 33 16 0.61 0.54

specialist and expensive system is likely a difficult proposition.

6.5.5 Performance summary

Across the four experimental configurations tested, certain performance patterns and

overheads were observed. Table 6.3 reports the performance in billion edges traversed

per second (GTEPS) resulting from experiments conducted in this section.

As expected, the highest performance is delivered for the contiguous version of the

graph comprising 250 billion edges (C-250). This is due to the optimal data locality and

load balancing, which enables both iPregel versions to achieve approximately 10 GTEPS.

Between 85 to 90 percent of this performance was preserved when moving to the C-750

graph which contains three times as many edges, resulting in approximately 8.6 GTEPS

for both the pull and push iPregel versions.

The performance observed on their scattered counterparts however is noticeably lower

due to poor data locality. Performance achieved for the scattered graphs is 3.1 to 3.6

times lower than those seen for contiguous graphs with the pull version, and 4.5 to 6.4

times lower for the push version. This difference is explained by the access pattern paired

with the asymmetric read-write overhead of NVRAM. The pull version of iPregel fetches

broadcast messages from neighbours (read) and combines them on the vertex being pro-

cessed (write). Thus all writes are located on the vertex which is being processed by the

executing thread. Conversely, with the push version of iPregel, when a thread processes

a vertex then as messages are produced by that vertex these are immediately placed into

the recipient’s mailbox (or combined with an already present message). Therefore, writes

are located on every neighbour of the vertex being processed, and no longer local but

are instead remote. Although both iPregel versions encounter scattered memory accesses

121

Chapter 6: Leveraging non-volatile memory

when processing the S-250 and S-750 graphs, only for the push version does the loca-

tion of write accesses change. Therefore this version of iPregel is more impacted by the

write-specific additional overhead imposed by NVRAM.

When considering the Kronecker graphs the pattern of performance for each iPregel

version is initially similar. When moving from the K 25 500 graph to the K 28 500 graph,

the latter comprising 8 times as many vertices and edges, this results in a performance

reduction of approximately 30% for both iPregel versions. However, the performance

reduces significantly, by approximately 70%, when moving from the K 28 500 to the K

33 16 graph. This performance decrease is explained by the increased number of vertices,

over 8 billion, for the K 33 16 graph. Whilst such an increase enlarges the workload,

the main issue is that at this scale a change in the type used to identify vertices is

required. Eight billion is beyond what can be encoded by a 32-bit unsigned integer type

and therefore this number of vertices requires the use of a 64-bit type instead. Whilst

the consequence for the vertex data structure is negligible, requiring only an additional

4 bytes per vertex structure, it is far more significant for the edges. Such an increase

in datatype size results in each edge requiring double the amount of memory, resulting

in longer loading times as well as worse data locality since the cache now contains 50%

fewer edges.

It is also instructive to compare the performance of our approach on NVRAM reported

in Table 6.3 with other popular graph processing frameworks which do not use NVRAM.

Table 6.4 is reproduced from [5] and illustrates the performance achieved by these other

graph processing frameworks with similar-sized graphs. Whilst the exact configuration

of these graphs is not made explicit in [5], and likely a number of different configurations

are used between frameworks, several comparisons can still be made. Firstly frameworks

including G-Store, Graphene, and Mosaic utilise an out-of-core approach for processing

these large graphs within a single node. Irrespective, this results in very poor performance

which is typically significantly lower than all performance figures reported when running

iPregel on NVRAM, apart from when the Kronecker 33 16 graph is processed due to the

issues highlighted in this section. Whilst each of these frameworks is utilising a server

with SSDs rather than spinning hard disks, clearly, the performance delivered by such

hardware for large-scale graph processing falls significantly short of that delivered by

NVRAM.

Whilst the parallelised in-memory frameworks Giraph and GraM deliver much greater

performance than the out-of-core solutions in Table 6.3, the results obtained on NVRAM

demonstrate that a single-node NVRAM approach to graph processing is still competitive

for many graph types. Moreover, Giraph and GraM deliver only 0.028 GTEPS and 0.134

122

Chapter 6: Leveraging non-volatile memory

Table 6.4: Performance (in GTEPS) of other graph processing frameworks running with
similar-sized graphs to ours, data reported in [5] and reproduced here for comparison
against NVRAM results

Framework
In-memory or
out-of-core

Configuration
Performance
(GTEPS)

Giraph In-memory 200 nodes 5.6
GraM In-memory 64 nodes 8.6
ShenTu In-memory 1024 nodes 72.8
Chaos Out-of-core 32 nodes (480GB SSD each) 0.07
G-Store Out-of-core 1 node (8x512GB SSDs) 0.23
Graphene Out-of-core 1 node (16x500GB SSDs) 0.83
Mosaic Out-of-core 1 node (6 NVMe SSDs) 0.82

GTEPS per node respectively. Performance wise, the framework that stands out in

Table 6.3 is ShenTu which, for a similar-sized graph achieved 72.8 GTEPS over 1024

nodes. However, it should be noted that this is equivalent to only 0.07 GTEPS per node.

6.5.6 Additional metrics

In addition to raw performance, other metrics such as purchase cost and energy effi-

ciency are also important when one is considering a specific hardware solution such as

NVRAM. A node from the NEXTGenIO cluster contains hardware totalling approxim-

ately £20,000. Comparatively, considering the Sunway TaihuLight supercomputer as an

example, 96 nodes are needed to obtain the same amount of memory. With the total cost

of the 40,960-node supercomputer estimated at 273 million dollars [87], a per-node price

of 6,665 dollars is estimated (approximately £5,000). Therefore, processing the graphs

used in this chapter, which occupy 3,072GB of memory, either requires a single £20,000
NEXTGenIO node, or 96 × £5,000 Sunway TaihuLight nodes totalling £480,000. From

a cost perspective alone there would be an approximate saving of £460,000 by adopting

a non-volatile memory approach. Of course in such a scenario, the amount of compu-

tational processing power that can be leveraged by 96 nodes of the Sunway TaihuLight

supercomputer far exceeds that of a single NEXTGenIO node; however, as described in

Section 6.2, typically vertex-centric graph processing is not computationally bound and

there is a communication overhead involved in a distributed-memory approach.

Energy and power usage is another metric that has become increasingly important over

recent years. The NEXTGenIO and Sunway TaihuLight nodes share a power consumption

123

Chapter 6: Leveraging non-volatile memory

at approximately 400W per node, 375W for TaihuLight1 and 430W for NEXTGenIO

[83]. Therefore, in terms of power draw, which can be a major limit for data-centre

machine rooms, the graph processing workload running over NEXTGenIO will draw

approximately 84 times less power when at full load at any one point in time. It is also

instructive to compare the overall energy consumption in terms of energy-to-solution,

which also requires taking into account the execution time. As NEXTGenIO and Sunway

TaihuLight nodes share the same power consumption this means that such calculations to

be simplified to runtime alone. When processing one iteration of PageRank on Kronecker

34 16, which is twice as many vertices and edges as the Kronecker 33 16, the ShenTu

framework using 1024 nodes from the Sunway TaihuLight supercomputer reaches 72.8

GTEPS, equivalent to 0.07 GTEPS per node. By contrast, when processing one iteration

of PageRank on Kronecker 33 16, iPregel using a single node from the NEXTGenIO

cluster reaches 0.60 GTEPS. This is 8.5 times more GTEPS, using 15% more energy,

for a graph twice as small. Unless the runtime grows as a cubic of the graph size, the

NEXTGenIO node proves to be more efficient when considering the energy-to-solution.

6.6 Conclusion and further work

This chapter has discussed and analysed multiple experiments covering numerous scen-

arios in testing the performance of NVRAM for processing large-scale graphs using the

vertex-centric methodology. These experiments have been designed to evaluate the per-

formance of NVRAM when used in isolation, or in conjunction with DRAM either impli-

citly or directly by the programmer. Two versions of the iPregel vertex-centric framework

which exhibit different memory access patterns have been used as a vehicle to drive the

experiments, with 5 different graphs including 2 specifically designed to provide fine con-

trol over data locality.

Whilst the focus of this chapter has been on the vertex-centric methodology, the

results and conclusions drawn can be more widely applied to both other graph processing

technologies and codes with similar irregular memory access patterns. It was found that

NVRAM permits, without code rewriting, a shared-memory framework such as iPregel

to seamlessly scale to a graph of 750 billion edges, equivalent to 75% of the Facebook

graph [27]. As far as can be reasonably determined, this is a new world record for the

largest graph ever processed by a shared-memory system without the use of out-of-core

computation and makes NVRAM a crucial enabler in reaching new horizons in shared-

memory graph processing within reasonable purchase cost and energy usage. Therefore

1Calculated from the results submitted to Top500, which specify an average power consumption of
15,371kW across 160 supernodes, each containing 256 nodes.

124

Chapter 6: Leveraging non-volatile memory

for technology companies, such as Facebook and Google, who have large graph processing

requirements and vast data centres, NVRAM is a technology that should be considered a

serious contender as having a role in their overarching hardware strategy. This is not least

because such a step change in single-node graph processing capability can be delivered

by NVRAM at a reasonable price and power usage point compared with other options.

The impact of data placement on performance was observed and demonstrated that,

if one is willing to invest time in tuning their code for NVRAM, then manually placing

data based upon the access pattern provides better performance than that of automatic

placement. Nonetheless, the multiple modes available to make use of NVRAM allows

non-experts to leverage this technology without having to rewrite their application or

their framework, and experts to rewrite parts of their software to make the most of this

technology.

When considering future work, in addition to being an enabler for shared-memory

graph processing systems, NVRAM could be beneficial in distributed-memory graph pro-

cessing systems too. In contrast to the Sunway TaihuLight supercomputer, where the full

Sogou graph (270 billion vertices and 12 trillion edges) required at least 10,000 nodes [5],

holding the Sogou graph in NVRAM memory could be achieved with fewer than 50 nodes

based upon the NEXTGenIO cluster specifications. Furthermore, it was demonstrated

in Section 6.5.5 that on a node-by-node basis the performance of existing distributed

in-memory graph processing frameworks tends to be poor. As a next step, it would

be instructive to explore how the emergence of clusters comprising large-memory nodes

could influence the design of distributed-memory graph systems and algorithms. This

will potentially deliver the capability to process extremely large graph by combining the

single-node performance enabled by NVRAM with the memory capabilities of multi-node

NVRAM.

125

Chapter 6: Leveraging non-volatile memory

126

Chapter 7

A distributed-memory implementation

of iPregel

7.1 Introduction

The competitiveness of non-volatile memory (NVRAM) for processing large-scale graphs

was demonstrated in Chapter 6. Furthermore, NVRAM also proved to be an enabler for

shared-memory frameworks, by significantly extending the boundary of their fundamental

limitation, memory. Nonetheless, this fundamental limitation still holds and NVRAM

just delays the exhausting of memory. The amount of memory available in a single node

is still a blocker for processing very large-scale graphs..

As of 2022, traditional HPC cluster nodes commonly contain between 256GB and

512GB of RAM, thus rapidly totalling terabytes of RAM with only a few nodes. The

distributed-memory architecture, therefore, remains an important target, and ultimately

the only realistic in-memory approach for graphs requiring more memory than what

a single node can provide. However, the vertex-centric programming model comprises

numerous challenges, as illustrated throughout previous chapters. Such challenges are

further aggravated when moving to distributed-memory solutions, as they can also impact

network communications, which are already a major limitation of distributed-memory

graph processing approaches.

Existing distributed-memory vertex-centric frameworks have relied upon numerous

message wrapping and buffer exchange approaches to achieve the communication phase

needed at every superstep. Whilst these aim to lower the overhead of communications,

such designs incur additional computations and involve memory access patterns which

typically offset the benefits of distributed memory parallelism, especially on a small num-

ber of nodes [12].

127

Chapter 7: A distributed-memory implementation of iPregel

However, the majority of real-world graphs [68] are reported as being orders of mag-

nitude smaller than the record-breaking graphs presented in literature [5]. Although

research can aim at developing solutions to prepare for long-term challenges, it is not

incompatible with also tackling present and short to medium term ones. In the vast ma-

jority of cases, graphs will not be processed with tens of thousands or millions of cores,

either due to the lack of budget or the graph size not requiring this amount of resources.

For these real-world, practical, cases, a distributed-memory implementation that is effi-

cient, and scales to modest node counts is highly desirable and will be directly usable for

state of the art graph processing.

To that end, the shared-memory framework iPregel was ported to distributed-memory

and in doing so this research:

• Proposes a new buffer design which, on the sender-side, avoids the appending of

recipient vertex identifiers along with messages and the use of computationally

intensive hash-based indexing. By doing so this avoids the need for a pre-exchange

sort, reducing the message-sending algorithmic complexity to linear. Furthermore,

on the receiver side, this technique removes the need for both message unwrapping

and dispatch, as well as more generally enabling support for network offloading

optimisations.

• Leverages MPI-3 shared-memory to implement an intra-node buffer sharing optim-

isation that reduces the buffer memory footprint from a replicated cost per MPI

process down to per node. This decreases the pressure on the network bandwidth

and improves MPI reduction parallelisation.

• Develops an interval-based message processing technique where the maximum amount

of memory occupied by the framework’s buffers can be specified. This allows the

framework to adapt to memory-constrained environments, for example existing

compute resources available for graph processing, that would have otherwise resul-

ted in an out-of-memory failure.

Section 7.2 explores the evolution of distributed-memory vertex-centric frameworks,

along with the different directions investigated and the challenges that arose. Section 7.3

then introduces the framework developed in this research, DiP, from its interface and

architecture to buffer design. Then, optimisations developed for the buffer design are

presented and explained in Section 7.4. The experimental environment is outlines in Sec-

tion 7.5, before the results obtained for DiP are discussed and analysed in Section 7.6.

Finally, this chapter concludes in Section 7.7 summarising the findings of this investiga-

tion, as well as future research directions that would be interesting to pursue.

128

Chapter 7: A distributed-memory implementation of iPregel

7.2 Related work

Over the years, several distributed-memory vertex-centric frameworks have been de-

veloped, starting with the original Pregel framework back in 2010. In vertex-centric

programming, distributed-memory frameworks must handle a phase that shared-memory

frameworks do not, which is the carrying of messages across distributed-memory workers.

Shared-memory accesses can no longer be systematically employed because, by definition,

such distributed-memory workers may reside on physically distinct nodes. Since network

communications are known to be the major limitation of distributed-memory solutions,

attention must be given to the design of this extra phase and several approaches have

been developed.

The first approach, adopted by Pregel+ [12] and GraphD [25], consists of appending

messages to a single queue. Before being added to the queue each message is prepen-

ded with the vertex identifier of the recipient, and messages are therefore queued in an

unordered fashion. However, applying a sender-side combination would be particularly

inefficient in this configuration because, for each recipient, the entire queue must be

parsed to locate corresponding messages and combine them. This step would thus be

of complexity O(n2) and, to avoid this, a sort is applied at the end of the vertex pro-

cessing phase. The C++ Standard Template Library (STL) sort is used for Pregel+,

with both algorithms being of complexity O(n× log2(n)). The combination pass with a

sorted queue completes in linear complexity, reducing the total algorithmic complexity

to O(n× log2(n) + n).

In HAMA [88], a similar design is used, except that the queue is built as a hashmap

indexed on the vertex identifier. Messages no longer need to be individually appended

to the vertex identifier, as they are now grouped per recipient vertex. The major benefit

of this approach is that it avoids needing to sort the queue before combining, resulting

in an algorithmic complexity of O(n). However, the constant in the O(1) complexity of

hashmaps indexing must not be ignored, as it may represent a non-negligible overhead

in the entire runtime across large graphs.

The major drawback of these with these approaches is that the sender-side combin-

ation is applied only after all messages are queued. Consequently, on each distributed-

memory worker, the queue can grow to a maximum size equal to the number of edges to

which its local vertices are connected. As graphs typically contain order(s) of magnitude

more edges than vertices, this limits the overall size of the graph, as large-scale graphs

with many edges will exhaust available memory resulting in an out-of-memory error.

Although implementations could be modified to undertake combinations immediately

upon message queuing, this would still involve a second phase on the receiver side. This

129

Chapter 7: A distributed-memory implementation of iPregel

is because, regardless of whether they are sorted on the recipient vertex identifier, mes-

sages queued are not guaranteed to be consecutive. Therefore, the distributed-memory

worker on the receiving end must dispatch each message to its recipient. During this

step, for each queue entry, the message along with its vertex identifier are extracted and

dispatched into the corresponding recipient vertex mailbox, as well as combining it with

the existing message, if any. Although this single-pass step is of linear complexity O(n),

such random memory accesses are likely to result in significant overhead. Moreover, the

network communications are implemented as individual send-receive pairs, resulting in

the underlying technology being unaware of any reduction taking place and therefore

unable to leverage potential optimisations. Such optimisations, commonly provided by

supercomputers and advantageous to HPC workloads, consist of performing certain oper-

ations directly on network hardware such as the processing of MPI collectives on network

switches [89], or MPI non-blocking all-to-all on smart network interface cards [90].

As seen in the approaches described above, the design of the queue, or buffer, used

in the message exchange has consequences beyond network communications including

requiring a sender-side sort to an extra receiver-side message dispatch. Based on this,

the hypothesis is that a buffer design which reduces the number of additional steps as well,

as better expressing the combination intent during the buffer exchange to the underlying

distributed-memory technology, would be beneficial.

7.3 Overview of DiP

The DiP framework is the approach developed in this research for tackling the challenges

presented in Section 7.2. Standing for Distributed iPregel, it combines the overarch-

ing philosophy and design concepts of iPregel, which proved to be successful in shared-

memory parallelism, with techniques crucial for distributed-memory performance.

7.3.1 Interface

iPregel has served this research by being a vehicle for testing and developing techniques for

efficient shared-memory vertex-centric graph processing. However, whilst the framework

has changed internally due to these techniques, the API exposed to the programmer has

remained constant. This demonstrates the benefit of adopting a clear, and simple API,

and the interface adopted for DiP has therefore been strongly inspired by iPregel.

Similarly to its shared-memory counterpart, the DiP framework requires two functions

to be defined by the user: dip compute and dip combine, listed in Figure 7.1. Their

semantics are identical to that in iPregel, thus providing a smooth transition from iPregel

130

Chapter 7: A distributed-memory implementation of iPregel

1 /**
2 * @brief This function performs the actual superstep calculations of a
3 * vertex.
4 * @param[inout] me The vertex to process.
5 * @pre The vertex pointer given points to an allocated memory area
6 * containing a vertex.
7 * @pre This function must be defined by the user.
8 * @post The vertex specified has finished its work for the current
9 * superstep.
10 **/
11 void dip_compute(dip_vertex* me);
12
13 /**
14 * @brief This function combines two messages into one.
15 * @param[inout] old The existing message in the vertex mailbox.
16 * @param[in] new The message that arrived for receipt.
17 * @pre The variable old points to an allocated memory area containing a
18 * message.
19 * @pre The variable new points to an allocated memory area containing a
20 * message.
21 * @pre The operation defining the combination is associative and
22 * commutative.
23 * @pre This function must be defined by the user.
24 * @post The variable old contains the combined value of old and new.
25 **/
26 void dip_combine(DIP_MESSAGE_TYPE* old, DIP_MESSAGE_TYPE new);

Figure 7.1: User-defined functions of DiP

131

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.2: Structure of the DiP framework

to its distributed-memory counterpart. Unlike iPregel however, there is an optional com-

pilation flag that directs whether the combination function expressed in dip combine

matches one of the predefined MPI reduction operations. If this is present then DiP will

leverage the underlying highly-optimised MPI predefined reduction operation instead of

that defined by the user.

In addition to the user-defined functions listed in Figure 7.1, there are also functions

provided by the DiP framework for tracking supersteps, or getting the graph size and

order. Some of these are described in Appendix H. Despite the different methods of

parallel computing, this set of functions maps to that of iPregel, permitting a smooth

porting of iPregel applications to DiP.

7.3.2 Architecture

Similarly to its shared-memory counterpart, the DiP framework is developed in C and

parallelised within a node using the shared-memory OpenMP [45]. To go beyond single-

node development, the distributed-memory aspects were written following the Message-

Passing Interface (MPI) standard [46].

One of the iPregel characteristics is modularity and, as shown in [1–3], this proved

132

Chapter 7: A distributed-memory implementation of iPregel

to be a valuable feature throughout the evolution of the iPregel framework. Modular-

ity therefore played a major role in the design of the DiP framework, and, as shown

in Figure 7.2, the DiP framework contains multiple implementations of modules. Sim-

ilarly to iPregel, these modules operate independently, where any combination is pos-

sible. The combiner module is the distributed-memory implementation of iPregel ’s com-

biner, containing both push and pull versions whose semantics are identical to that in

iPregel. The push combiner consists of putting generated messages into the recipient’s

mailbox and combining them with the existing message. The pull combiner leverages

a synchronisation-free approach, as was demonstrated to be beneficial for the shared-

memory implementation, where every MPI process issues writes only to its locally-held

vertex mailboxes.

iPregel ’s vertex addressing module described in Subsubsection 4.3.4.4 does not exist

in DiP because the direct mapping technique became the choice adopted in DiP for

vertex addressing. During the investigation into the NVRAM technology presented in

Chapter 6, the graphs used in the evaluation of this research grew beyond what can be

publicly found. Consequently, synthetic graphs are generated which are typically built

on consecutive 0-index vertex identifiers, making direct mapping the most appropriate

addressing technique.

The buffer exchange module is specific to DiP and provides different means of un-

dertaking data communications during the buffer exchange phase. This will be discussed

further in Subsection 7.3.3.

7.3.3 Buffer design

In the iPregel framework every vertex can reach any other vertex using direct memory

accesses, regardless of which threads were holding the sender and recipient vertices. In

DiP, however, this no longer applies as the distributed nature means that neighbours of a

given vertex may be held by an MPI process residing on a different node. Consequently,

although shared-memory accesses are still a viable solution for node-local neighbours, a

mechanism must be provided for node-remote neighbours.

The design presented in this section relies on replicated buffers, which comprise a

pair of buffers allocated on every MPI process. To leverage the direct mapping vertex

addressing discussed in Subsubsection 4.3.4.4, each of the two buffers contains a number

of elements equal to the graph order. The first buffer, known as the flag-buffer, contains

boolean elements that indicate whether the corresponding vertex takes part in inter-

vertex communications. Elements in the flag-buffer are initialised, and reset at the end

of every superstep, to false. The second buffer, the value-buffer, holds elements of

133

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.3: Workflow of the buffer exchange for the push version in the DiP framework,
assuming a sum combination operation.

the message type DIP MESSAGE TYPE defined by the user. These elements contain the

actual message content exchanged with the vertex, and the default value, which is also

the value to which they are reset at the end of every superstep, is the neutral value of the

message combination operation defined by the user. The value contained in an element of

the value-buffer is therefore significant only if the corresponding element in the flag-buffer

contains the value true.

The underlying buffer exchange may be designed differently therefore based upon the

version of the combiner that has been used.

7.3.3.1 Push version

An example of a message exchange for the push version is shown in Figure 7.3. For

simplification purposes, the configuration illustrated contains only two MPI processes

and a graph with seven vertices. As explained above, each MPI process holds two buffers

containing one element per vertex in the entire graph. Buffers A are the flag-buffers,

while buffers B are the value-buffers. Additionally, to distinguish between buffer A on

distinct MPI processes, the MPI process rank is appended to the buffer name such that

A0 is the buffer A held on MPI process 0 and A1 is the buffer A held on MPI process 1.

As shown in Figure 7.3, the first phase consists of storing the messages generated by

the vertices processed. For instance, in the example given, vertex 0 on MPI process 0

generates messages to vertices 1 and 5. Therefore, the corresponding elements in the A0

flag-buffer are set to true. In practice no data-race protection is needed for concurrent

writes attempting to store the same value regardless because the assumption is that such

134

Chapter 7: A distributed-memory implementation of iPregel

writes in hardware are atomic. However, it should be noted that this is not legal OpenMP.

The value-buffers (B0 and B1) contain the actual message content to transmit. The

default value of those buffer’s elements is selected to be neutral to the combination

operation specified by the user, zero here since the operation is a sum. As a consequence

a compare-and-swap combination can be performed systematically, removing the need

for data-race protections on these buffers too.

Out of all the buffers held by a process, the recipient is ultimately only interested in

the final value of the elements corresponding to the vertices it processes. This is made

visible by appending the buffer name to the rank of the destination MPI process. For

instance, buffer A0,0 is the subset of buffer A0 for MPI process 0, while buffer A0,1 is the

one for MPI process 1. The buffer exchange phase, therefore, consists of combining the

buffers so that each MPI process receives the final value of elements that reside in its

subset. In this example, obtaining the combined results of flag-buffers A0,0 and A1,0, and

that of value-buffers B0,0 and B1,0, on MPI process 0, and similarly for MPI process 1

with flag-buffers A0,1 and A1,1, and value-buffers B0,1 and B1,1. The resulting data is

stored in buffers C and D respectively, which are the memory locations of a vertex’s

mailbox flags and values.

In MPI, this communication pattern can be achieved with two series of MPI reduc-

tions; a logical or reduction on the flags and then the user-defined combination operation

operating upon the values. Each MPI process, in turn, becomes the root MPI process for

both reductions, sending the interval of the flag and value buffers it holds. Non-blocking

reductions are used to ensure that the MPI reductions that are issued are executed con-

currently.

In this implementation, the structure externalisation technique leveraged in [3] was

reused to extract both the vertex received message and the received message flag from

the vertex structure. However, they have been grouped into two separate arrays so that

all vertex mailbox flags are contiguous in memory, likewise for vertex mailbox values,

while preserving the direct mapping property. This design, therefore, removes the need

for a message dispatch phase as MPI reductions can store the results directly into the

recipient vertex mailboxes via a single contiguous memory move.

7.3.3.2 Pull version

An example for the opposite approach, the pull version, is provided in Figure 7.4.

In the pull version, introduced in Subsubsection 4.3.4.3, communications consist of

vertices fetching messages, if any, from the senders’ outbox.

In the first phase, referred to as flag for broadcast, an element filled with true in buffer

135

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.4: Workflow of the buffer exchange for the pull version in the DiP framework,
assuming a sum combination operation.

A signifies that the corresponding vertex has a message to broadcast. For instance, in

Figure 7.4 vertices 0 and 2 processed by MPI process 0 generate a message to broadcast.

This contrasts with the push version, in which setting these two A0 elements to true

would have meant that vertices 0 and 2 required a message to be sent to them. As a

consequence, each MPI process only fills its subset of the buffer during this phase.

During the second phase, where buffers are exchanged, each MPI process sends its

subset of the buffer to all other MPI processes, which informs these other MPI processes

about potential messages broadcast from the vertices it is processing. In MPI this can

be achieved with two series of MPI broadcasts, one for the flag-buffer and one for the

value-buffer (note that the same result can also be obtained using MPI Gather). Since a

subset of the buffer is sent to multiple MPI processes, the notation selected differs from

that used by the push version. A0,1 is the subset of buffer A held on MPI process 0 that

is updated with data coming from MPI process 1.

The third and final phase occurs when each MPI process has gathered all messages

broadcast across the entire graph. This phase consists of each MPI process iterating

through each of their vertex neighbours and fetching the message broadcast, if any. Sim-

ilar to the push version, flags are combined with a logical or and values combined using

the user-defined combination operation (a sum in the example).

136

Chapter 7: A distributed-memory implementation of iPregel

7.3.3.3 Benefits

The buffer design, which underlies both the push and pull approaches, presented in this

subsection offer multiple advantages; for instance, it does not rely on a dynamically

resized structure, which implies that any out-of-memory failure will arise during the

memory allocations issued at the beginning of the application. This contrasts with other

approaches where the memory usage may not exhaust memory resources until an arbitrary

point in time in the execution, such as the last superstep for instance. This predictability

in memory usage may prove to be valuable in long, and thus expensive, runs. The benefits

of this buffer design are also observed in both sender and receiver distributed-memory

workers.

Sender side By enhancing the element indexes to also encode vertex identifiers, the

sender does not need to append the vertex identifier to messages. Instead, the index used

to access any element in the flag and value buffers already represents the vertex identifier

of the sender.

Furthermore, locating an element that corresponds to the recipient vertex in the flag

or value buffer is straightforward due to the direct mapping characteristic of this buffer

design. As recipient vertex mailbox information resides at the element whose index is

equal to the recipient vertex identifier, this buffer design removes the need of using a hash

function whose computational intensity is not negligible.

Direct mapping also allows messages generated by vertices to be combined imme-

diately with any preexisting message for each recipient vertex identifier. This provides

two benefits: firstly it removes the need for a sort later in the process, thus sparing the

O(n × log2(n)) observed on other distributed-memory frameworks. Secondly this caps

the maximum buffer size to be proportional to the number of vertices, not the number

of edges.

On the sender side, the resulting algorithmic complexity of the message generation

phase using the approach developed in this research is O(n), which is reduced from the

O(n× log2(n)) provided by distributed-memory vertex-centric frameworks.

Receiver side Benefits of this buffer design approach are also observed on the receiver

side. Firstly, the buffers received do not require unwrapping to access the message content

as the value buffer contains only message values. Secondly, the direct mapping character-

istic removes the need for a message dispatch mechanism, along with intermediate copies.

Paired with the vertex structure externalisation to place vertex mailboxes consecutively

in memory, the flag and value buffers received can be stored directly in the final recipient

137

Chapter 7: A distributed-memory implementation of iPregel

vertex’s mailbox by executing a single memory move.

Finally, leveraging the underlying MPI technology to embed the combination into the

collective operation provides the possibility of leveraging HPC optimisation techniques

such as network offloading.

7.3.3.4 Limitations

The fundamental limitation of the buffer design developed in this thesis is the memory

footprint of each MPI process when scaling. Equation 7.1 describes the amount of memory

required per MPI process:

MB = |V | ∗ (SF + SM) (7.1)

where MB is the total amount of memory needed to store both flag and value buffers, |V |
is the graph order, SF is the size of a flag and SM is the size of the message payload. This

equation illustrates that the memory cost associated with this buffer design is replicated

across MPI processes, hindering both intra-node and inter-node MPI process scalability

as well as increasing the amount of data exchanged by network communications.

7.3.4 64-bit collectives

In MPI, counts and displacements passed to routines are of type int, which is typically

encoded using 32-bit signed integers. However, the size of buffers considered in this

chapter results in counts and displacements that have values beyond what can be encoded

within a 32-bit signed integer. Therefore, an extended version of the MPI routines used in

this research was developed, where the count and displacement types are encoded using

unsigned 64-bit integers. This change increases the maximum value encodable from 231−1
to 264−1, moving the upper limit from a couple of billion elements to trillions of trillions.

Nonetheless, the backend of this 64-bit library relies on the native 32-bit MPI routines.

The technique employed, therefore, consists of iterating through the buffers and issuing

multiple rounds of 32-bit MPI routines. For non-blocking routines, a new MPI Request

type is used to store all underlying 32-bit non-blocking requests obtained from the mul-

tiple rounds of native MPI non-blocking routines. Functions equivalent to MPI Wait and

MPI Waitall were also developed to provide 64-bit counterparts of this synchronisation

mechanism.

138

Chapter 7: A distributed-memory implementation of iPregel

7.4 Optimisations

The original buffer design presented in this chapter provides multiple benefits, as de-

scribed in Subsubection 7.3.3.3. However, the large memory footprint is a major disad-

vantage as this limits MPI process scaling, both intra-node and inter-node, and techniques

presented in this section aim at mitigating.

7.4.1 Single MPI process

One potential solution would be to use a single MPI process per node, where multithread-

ing covers the entirety of the node, including all NUMA regions. The frequent random

accesses to buffers would therefore trigger cross-NUMA accesses, potentially resulting in

a non-negligible overhead. By contrast, mapping one MPI process per NUMA region

ensures that intra-MPI (i.e: OpenMP) memory accesses are kept within that NUMA

region, effectively delaying the cross-NUMA interactions to the buffer exchange phase.

Therefore the consideration is evaluating situations in which the importance of frequent

OpenMP cross-NUMA accesses outweigh the overhead in exchanging MPI messages. The

first factor to consider is the average degree, and this is because the more vertices that

are present, the larger the buffers needed to be, and the more edges and more memory

accesses. This is because a higher average degree increases the amount of data to be

transferred by MPI whilst decreasing the number of memory accesses (thus potential

cross-NUMA accesses) for OpenMP. Conversely, a lower average degree will favour an

MPI process per NUMA region. This also depends on the nature of the memory accesses

because, in the pull version, MPI processes write into the exchange buffer only at the

indexes corresponding to the vertices it processes. Therefore, writes are issued to two

disjoint sets of buffer entries. After the buffers are exchanged, however, the pull version

needs to fetch messages, which results in memory accesses occurring over both NUMA

regions. However, these are limited to read accesses, which might make a difference, for

instance those systems involving NVRAM. By contrast, with the push version, before

buffers are exchanged an MPI process can write to any location in that buffer, not allow-

ing them to be split in a NUMA-friendly way for writes. Consequently this technique of

a single MPI process is more likely to be beneficial for the pull version.

7.4.2 Intra-node buffer sharing (INBS)

As mentioned in Subsubsection 7.3.3.4, the memory footprint of the buffer design presen-

ted in this chapter is replicated on each MPI process. Therefore, on any node, the amount

of memory needed to store the buffers is multiplied by the number of MPI processes resid-

139

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.5: Communicator structure in the INBS DiP implementation.

ing on that node. This characteristic limits any intra-node process scalability, exhausting

the node’s memory beyond a certain point.

The approach presented in this subsection, called Intra-Node Buffer Sharing or INBS,

consists of leveraging version 3 of the MPI standard, which introduced shared-memory

programming where MPI processes expose and access a common memory segment. Con-

sequently, MPI processes residing on the same node can share memory similarly to if

these were running as threads. Leveraging this feature allows the flag and value buffers

to be allocated only once per node regardless of the number of MPI processes that it

hosts.

7.4.2.1 Communicators

As shown in Figure 7.5, in addition to the default global communicator represented

with the constant MPI COMM WORLD, two types of communicators were created in the

design of the INBS technique. The first one is the intra-node communicator which con-

tains MPI processes residing on the same node as the caller. MPI version 3 allows the

user to group such MPI processes by passing the flag MPI COMM TYPE SHARED to the

MPI Comm split type routine. This communicator is necessary for MPI processes to

expose and effectively share the flag and value buffer elements.

When considering the communication associated with the buffer exchange phase, a

naive approach would consist of selecting one MPI process per node to handle the col-

140

Chapter 7: A distributed-memory implementation of iPregel

lective operation on the entirety of buffers. However, this reverts the execution flow of

collective operations to be sequential on each node. Such sequential execution could prove

particularly penalising on the push version when processing the MPI reduction with a

single MPI process on each node, aggravated further when facing high graph orders.

A potentially better approach consists of issuing a number of collective operations

equal to that of the MPI processes. Each MPI process would, in turn, become the root of

the reduction operation on the buffer subset it is responsible for. This approach preserves

the parallel MPI process execution on each node by issuing Pt collective operations in-

volving Pt MPI processes each, where Pt is the total number of MPI processes. However,

given that MPI processes on a given node share the flag and value buffers, any collective

operation would involve concurrent and redundant read / write from MPI processes to the

same buffer subset, as well as requiring cross-MPI process aliased pointers in send-receive

buffers.

The solution proposed by this research is illustrated in Figure 7.6, which consists of

addressing the aliased accesses issue by restricting all collective operations to one MPI

process per node. In MPI, collective operations must be called by all MPI processes in

the corresponding communicator. Applying any filter to MPI processes participating in a

collective operation, therefore, means filtering the MPI processes belonging to the corres-

ponding communicator. To that end, communicators referred to as fellow communicators

have been created. These contain MPI processes whose node-local ranks are identical,

which includes exactly one MPI process per node. This solution, therefore, ensures that

each buffer subset will be interacted with by a single MPI process on each node. In

addition to overcoming the aliased accesses issue, this solution also decreases the number

of MPI processes participating in each collective operation from Pt to N , where Pt is the

total number of MPI processes and N is the number of nodes.

7.4.2.2 Push version

Algorithm 4 depicts pseudo-code for the push version of the INBS technique in the DiP

framework. The algorithm ensures that, in each node, MPI processes applying a reduction

on disjoint subsets of the shared buffer may do so concurrently. This was made possible

by grouping MPI processes into fellow communicators where each communicator contains

all MPI processes responsible for a given shared buffer subset and, as shown in Figure 7.5,

this corresponds to one MPI process per node. Attention must be paid to synchronisation,

as MPI processes may write to buffer elements virtually held by any MPI process on that

node (as shown in Figure 7.3). Therefore an intra-node synchronisation must occur

before buffer exchange may proceed. This synchronisation will ensure that there are no

141

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.6: Decomposition of the buffer exchange phase into concurrent series of MPI
collective operations in the INBS implementation

Algorithm 4: Pseudo-code for buffer exchange using the INBS technique with
the push version of DiP.

1 begin
2 MPI Barrier(intranode communicator)
3 i ← 0
4 while i < fellow communicator size do
5 root global rank ← intranode rank + i × intranode communicator size
6 offset ← id of first vertex handled by root global rank
7 offset next ← id of first vertex handled by root global rank + 1
8 count ← offset next - offset
9 MPI Ireduce(flag-buffer[offset ; offset + count - 1])

10 MPI Ireduce(value-buffer[offset ; offset + count - 1])
11 i ← i + 1

12 Wait on all non-blocking reductions issued

142

Chapter 7: A distributed-memory implementation of iPregel

pending writes on buffer elements that may be in transit over the network. Similarly,

an additional node synchronisation must be placed after the mailbox reset that follows,

where flag-buffer elements are reinitialised to false and value-buffer elements to the

combination neutral value. This ensures that the reset of a certain portion of the buffers

will not occur concurrently to the message pushes from another MPI process which, for

instance, would have already started the subsequent superstep.

7.4.2.3 Pull version

Algorithm 5: Pseudo-code for the buffer exchange using the INBS technique
with the pull version of DiP.

1 begin
2 i ← 0
3 while i < fellow communicator size do
4 root global rank ← intranode rank + i × intranode communicator size
5 offset ← id of first vertex handled by root global rank
6 offset next ← id of first vertex handled by root global rank + 1
7 count ← offset next - offset
8 MPI Ibcast(flag-buffer[offset ; offset + count - 1]
9 MPI Ibcast(value-buffer[offset ; offset + count - 1]

10 i ← i + 1

11 Wait on all non-blocking broadcasts issued
12 MPI Barrier(intranode communicator)

The equivalent of Algorithm 4 for the pull version is illustrated in Algorithm 5. By

contrast to the push version of the INBS technique, synchronisation is required after the

data exchange, not before. The reason for this is that, as shown in Figure 7.4, each

MPI process may fetch messages from vertices held on any other MPI process residing on

that node. This synchronisation, therefore, ensures that local buffer accesses have been

completed before the message fetching phase begins. Once again, conversely to the push

version, synchronisation protecting the mailbox reset must be done before, and not after,

the reset. The reason for this is the access pattern, where an MPI process may reset

buffer elements that have pending read access(es) from other MPI process on the node

which are fetching messages from neighbours of their vertices.

7.4.2.4 Advantages

The core benefit of the INBS technique is the decorrelation of node memory footprint

and MPI process count, which results in the new memory footprint calculation described

143

Chapter 7: A distributed-memory implementation of iPregel

in Equation 7.2, assuming an identical number of MPI processes per node.

MB =
|V | ∗ (SF + SM)

PN

(7.2)

where MB is the total amount of memory needed per node to store both flag and value

buffers, |V | is the graph order, SF is the size of a flag, SM is the size of the message

payload and PN is the number of MPI processes per node. Because the number of MPI

processes per node is now a term in this equation, by contrast to Equation 7.1, memory

footprint redundancy has been decreased from a per MPI process level down to a per

node level.

In addition, the INBS technique improves network bandwidth usage. For the push

version, for instance, as illustrated in Figure 7.3, without the INBS technique each MPI

process sends over the network the entirety of its flag and value buffers. As a result, the

amount of data sent over the network is the size of these buffers multiplied by the total

number of MPI processes. When using the MPI 3 shared-memory feature, however, this

amount is reduced to the size of the buffer multiplied by the number of nodes, effectively

dividing the amount of data that must be sent by the number of MPI processes per

node. Similarly, for the pull version, having fewer MPI processes participating in the

MPI broadcast operation reduces the number of network copies.

Finally, this technique makes it possible to experiment with a mapping of MPI pro-

cesses to (physical or logical) cores with a 1:1 ratio, which would likely result in an

out-of-memory failure when using the naive implementation for graphs of any complex-

ity. For the push version a higher number of MPI processes participating in the reduction

also increases the degree of parallelisation of the MPI reduction. The higher the graph

order, thus the larger the buffers in DiP, the bigger the performance gain to be expected

by the MPI reduction parallelisation.

7.4.3 Interval-based message processing (IBMP)

Although the intra-node buffer sharing technique presented in Subsection 7.4.2 reduces

the memory footprint replication factor from per MPI process to per node, this may not be

sufficient to prevent memory exhaustion when processing very large graphs. The interval-

based message processing technique presented in this subsection, shortened IBMP, aims

at providing the ability to arbitrarily determine the maximum amount of memory that

can be used by DiP buffers, thus virtually removing the possibility of an out-of-memory

failure due to memory replication.

The overarching objective of the IBMP technique aims to provide the DiP framework

144

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.7: Execution flow of the interval-based message processing technique for the
push version of the DiP framework.

with the ability to store only a portion of the entire flag and value buffers by using

an interval that determines which subset of the buffers are to be interacted with at

a given time. For the push version, this results in pushing a message that has been

generated during the vertex processing phase, whereas for the pull version it involves

reading a message during the message fetching phase. In both cases, the workflow can

be redesigned so that the entirety of the flag and value buffer elements can be processed

in multiple rounds, through the definition of an interval specifying the boundaries of the

buffer subset to be processed at each round.

7.4.3.1 Push version

In the push version of DiP, generated messages are stored (and combined) into the recip-

ient’s slot in flag and value buffers. As shown in Figure 7.7, the flag and value buffers are

processed in rounds. Each round covers an interval, with buffers known as window buffers

acting as a proxy for the global flag and value buffers. Only messages intended for recip-

ients inside the interval covered during the current round are sent, and other messages

are discarded for the round. Eventually, the entirety of flag and value buffer elements

will have been part of an IBMP interval exactly once, as described by the pseudo-code

provided in Algorithm 6. However, processing each vertex once per round, thus several

145

Chapter 7: A distributed-memory implementation of iPregel

Algorithm 6: Pseudo-code of the IBMP technique applied during one superstep
in the push version of DiP.

1 begin

2 RoundCount ←
⌈

V

WindowBufferSize

⌉
3 RoundIndex ← 0
4 while RoundIndex < RoundCount do
5 V First ← Round Index× WindowBufferSize
6 V Last ← VFirst + WindowBufferSize - 1
7 if RoundIndex is even then
8 WBCurrent ← WB0

9 WBPrevious ← WB1

10 else
11 WBCurrent ← WB1

12 WBPrevious ← WB0

13 if RoundIndex ≥ 2 then
14 MPI Wait64(WBCurrent)

15 foreach v in LocalVertices do
16 if RoundIndex < RoundCount - 1 then
17 BackupVertex(v)

// Ignore messages to recipients outside [VFirst;
VLast]

18 ProcessVertex(v)
19 if RoundIndex < RoundCount - 1 then
20 RestoreVertexBackup(v)

21 MPI Ireduce64(WBCurrent)
22 if RoundIndex < RoundCount - 1 then
23 ResetLocalVertices()

24 RoundIndex ← RoundIndex + 1

25 if RoundCount > 1 then
26 MPI Wait64(WBPrevious)

27 MPI Wait64(WBCurrent)
28 ActivateVerticesWithMessages()
29 CountActiveVertices()

146

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.8: Example of state evolution of a vertex throughout execution, assuming a sum
combination operation.

times per superstep, raises new challenges.

Reproducibility As shown in Figure 7.8, after the first round the state of a vertex may

have been updated; for instance, it has become inactive, changed value or consumed its

messages. Although this updated state is correct as the starting state for the following

superstep, it is incorrect for the following IBMP round in the current superstep. Indeed,

at the end of the first IBMP round in superstep S, elements of the flag and value buffers

corresponding to the neighbours of vertex V have been updated with the messages gen-

erated by vertex V if they belong to the interval covered during this round. Meanwhile,

messages destined for neighbours outside this interval have been discarded for this round.

As mentioned earlier, every element in the flag and value buffers will be covered even-

tually as IBMP rounds progress. However, when the second IBMP round of superstep

S begins, vertex V is processed again and this time only messages generated in the new

interval are preserved. The flaw here is that at the end of the first IBMP round vertex

V is inactive, and therefore at the start of the second IBMP round it is skipped. As a

consequence, messages destined for any neighbour residing in the new interval are not

generated. Moreover, the fact that the new state of vertex V indicates it has no new

message may trigger a different response, where the underlying vertex-centric application

may for instance generate messages only upon receipt of new messages. Furthermore, in

vertex-centric programs, vertices typically send their current value as the message pay-

load. That information too has changed between the first and second IBMP rounds, from

108 to 161 in the example given in Figure 7.8.

147

Chapter 7: A distributed-memory implementation of iPregel

This example of Figure 7.8 highlights a non-reproducibility issue, where a mechanism

must be implemented so that vertices can be replayed in a reproducible manner. The

solution adopted here is the creation of a vertex backup: a copy of the vertex’s original

state before the first IBMP round. As shown in Figure 7.8, four pieces of information

must be stored, these are the vertex’s mailbox flag, mailbox content, status and current

value. In every IBMP round except the last, the state of the vertex process is reset after

processing by reloading this original, thus addressing the non-reproducibility issue.

Memory footprint The memory footprint of the IBMP technique comprises four com-

ponents, the flag window buffers, the value window buffers, the vertices’ original values

and the next buffers. The amount of memory generated by the IBMP technique is given

in Equation 7.3.

MIBMP = 2× I × (SF + SM) + VL × (SB + SN) (7.3)

where MIBMP is the total amount of memory required per MPI process to progress by

intervals containing I vertices, SF is the size of a flag, SM is the size of the message

payload, VL is the number of vertices locally held, SB is the size of a vertex backup and

SN is the size of the next buffers.

As mentioned earlier, the store of a vertex’s original values contains four fields; the

mailbox flag and the status fields, which are both booleans, and the mailbox content and

current value which are of user-defined type DIP MESSAGE TYPE. The size of a vertex

backup, therefore, is given by Equation 7.4.

SB = 2× (SF + SM) (7.4)

Buffers referred to as next buffers are part of all synchronous vertex-centric frame-

works. These buffers act as mailboxes for messages received during the current superstep,

and therefore intended to be accessed in the subsequent superstep. Next buffers are key

to ensuring correctness as they prevent messages from different supersteps being mixed.

The memory footprint of a next buffer is given by Equation 7.5.

SN = SF + SM (7.5)

where VL is the number of vertices handled by the MPI process. When substituting SB

and SN in Equation 7.3 with equations 7.4 and 7.5 respectively, Equation 7.6 is obtained.

MIBMP = (3× VL + 2× I)× (SF + SM) (7.6)

148

Chapter 7: A distributed-memory implementation of iPregel

Figure 7.9: Execution flow of the interval-based message processing technique for the pull
version of the DiP framework.

7.4.3.2 Pull version

Figure 7.9 illustrates how the IBMP technique is performed in the pull version of the DiP

framework. It relies on the same approach as the push version, where the flag and value

buffers are iterated through with the use of window buffers covering a given interval at

a time. With the pull version, however, it is the message fetching phase that is repeated

once per round, fetching messages from neighbours residing in the interval currently being

covered.

Associativity As shown in Figure 7.4, after the buffer exchange phase, vertices fetch

messages from neighbours residing at any index in the flag and value buffers. When

applying the IBMP technique all vertices will fetch messages only from neighbours in

the interval being covered in the current round. Therefore this fetch operation must be

repeated on all vertices every IBMP round, similarly to the message generation phase in

the push version.

Consequently, any potential non-reproducibility must be protected with the storing of

original vertex state when needed. The operation applied on vertices during the message

fetching phase updates the processed vertex’s state twice. Firstly it updates the vertex’s

flag which indicates whether this vertex connects to a neighbour which broadcasts a

149

Chapter 7: A distributed-memory implementation of iPregel

message, and this is described by Equation 7.7.

FB(v) = ∨
i∈Γ(v)

Bi (7.7)

where FB(v) is the final state of the flag member of the vertex v being processed, ∨ is

the logical or operation, Bi is the element at index i in the flag buffer and Γ(v) is the

list of incoming neighbour vertex identifiers. The second update consists of combining

the messages obtained from broadcast messages if any, as described by Equation 7.8.

FR(v) =
⊕
i∈Γ(v)

Ri (7.8)

where FR(v) is the final state of the message of the vertex v being processed,
⊕

is the

combination operation specified by the user, Ri is the element at index i in the value

buffer and Γ(v) is the list of incoming neighbour vertex identifiers. As mentioned in the

preconditions of the DiP function dip combine in Figure 7.1, the provided combination

operation must be associative. Therefore, both the logical or operation, ∨, applied in

Equation 7.7 and the combination operation,
⊕

, applied in Equation 7.8 are associative.

This implies that the final state of a vertex will be identical regardless of whether it has

been calculated on the entire flag and value buffers at once or through multiple IBMP

rounds. It follows that no reproducibility issue arises in the pull version, which therefore

removes the need for storing the original vertex state. The pseudo-code to implement the

IBMP technique in the pull version of DiP is given in Algorithm 7.

Memory footprint Because the pull version does not require storing the original vertex

state, this avoids the memory cost associated with their storage. The resulting memory

footprint of the IBMP technique in the pull version, therefore, can be calculated by

subtracting SB in Equation 7.4 from Equation 7.3, which gives Equation 7.9.

MIBMP = (VL + 2× I)× (SF + SM) (7.9)

where MIBMP is the total amount of memory needed by the IBMP buffers to progress

with intervals made up of I vertices, VL is the number of vertices locally held, SF is the

size of a flag and SM is the size of the message payload.

7.4.3.3 Interleaved window buffer usage

To minimise the impact of the IBMP technique on performance, two window buffers are

used alternatively, corresponding to lines 7-12 in Algorithms 6 and 7. The use of MPI

150

Chapter 7: A distributed-memory implementation of iPregel

Algorithm 7: Pseudo-code for IBMP in the pull version of DiP.

1 begin
2 RoundCount ← ⌈ V

WindowBufferSize
⌉

3 RoundIndex ← 0
4 while RoundIndex < RoundCount do
5 Vfirst ← RoundIndex ×WindowBufferSize
6 Vlast ← VFirst +WindowBufferSize− 1
7 if RoundIndex is even then
8 WBCurrent ← WB0

9 WBPrevious ← WB1

10 else
11 WBCurrent ← WB1

12 WBPrevious ← WB0

13 if RoundIndex ≥ 2 then
14 MPI Wait64(WBCurrent)

15 FetchMessagesAndCombine(WBCurrent)
16 if RoundIndex = MyMpiRank then
17 MPI Ibroadcast64(LocalVerticesOutbox[Vfirst;Vlast])

18 else
19 MPI Ibroadcast64(WBCurrent)

20 RoundIndex ← RoundIndex + 1

21 if RoundCount > 1 then
22 MPI Wait64(WBPrevious)
23 FetchMessagesAndCombine(WBPrevious)

24 MPI Wait64(WBCurrent)
25 FetchMessagesAndCombine(WBCurrent)
26 ActivateVerticesWithMessages()
27 CountActiveVertices()

151

Chapter 7: A distributed-memory implementation of iPregel

non-blocking operations in the buffer exchange phase enables the exchange of one window

buffer to be concurrent with the processing of the other. This systematic switch between

window buffers is repeated until all IBMP rounds are processed for the current superstep.

However, this interleaved pattern requires careful synchronisations because, for ex-

ample, from the third superstep onwards, the buffer window to be used is already part

of a buffer exchange issued two rounds prior. The DiP framework must therefore ex-

plicitly wait for completion of the corresponding buffer exchange as shown in line 14 of

Algorithms 6 and 7. Lines 26-27 of Algorithm 6 and lines 22 and 24 of Algorithm 7 high-

light the need to immediately synchronise both window buffers upon exiting the loop.

The reason for this is that, inside the loop, waiting upon the completion of a buffers

exchange is performed two loop iterations later (that is, two IBMP rounds later). When

the last IBMP round finishes, the non-blocking operations corresponding to the buffer

exchanges from current and previous IBMP rounds are still pending, and therefore must

be waited upon for completion before proceeding with the rest of the algorithm.

As a result, by alternatively using the first and second window buffers, this approach

enables an overlapping of computation and communication, minimising the impact of the

IBMP technique on performance.

7.4.3.4 Advantages

The IBMP technique presented in this subsection enables the DiP framework to control

its memory footprint and conform to a limit specified by the user. As a consequence,

this technique mitigates the fundamental weakness of the buffer design presented in Sec-

tion 7.3.3, enabling the DiP framework to process graphs which would otherwise have

resulted in DiP buffers triggering an out-of-memory failure.

7.4.3.5 Limitations

The IBMP technique relies on a trade-off between memory footprint and performance,

where the gain in the former comes at the cost of an overhead in the latter, proportional

to the number of rounds required to cover all vertices.

7.4.3.6 Conclusion

The IBMP technique presented in this subsection allows the user to arbitrarily determine

the maximum amount of memory that will be used by DiP for its buffers. This gain in

control and reduction of memory footprint comes at the expense of additional computa-

tion due to the multiple rounds that must now be executed per superstep. However, the

152

Chapter 7: A distributed-memory implementation of iPregel

primary objective of IBMP is to enable DiP to process graphs whose resulting buffers

would otherwise have resulted in an out-of-memory failure.

Nevertheless, by adapting to an arbitrarily defined memory footprint limit, the IBMP

technique mitigates the fundamental weakness of the buffer design presented in this

chapter. More generally, it also offers the graph processing community a new approach

to better control the memory footprint of distributed-memory vertex-centric frameworks.

7.5 Experiments

This section describes the conditions and configurations in which the experiments presen-

ted in this chapter were conducted.

7.5.1 Computing environment

Experiments are run on standard compute nodes of the Cirrus, whose technical specific-

ations are provided in Subsection 4.6.1.2.

Compilation is undertaken using the gcc compiler version 8.2.0 (OpenMP version

4.5) and OpenMPI version 4.1.0. Compilation flags passed enable the support for C11

standard (-std=c11) and level 2 optimisations (-O2).

The results presented in this chapter are calculated based on the average of three

runs.

7.5.2 Search space

Figure 7.10 illustrates the search space of parameters that can be set in the experiments.

The overall number of possible permutations of these is very large, and as such not

all combinations can be investigated. Consequently, as detailed in this section, specific

decisions have been made around which parameters to investigate and which to fix.

Graph size Experiments conducted in this investigation aim to evaluate the compet-

itiveness of the DiP framework compared to its shared-memory counterpart. It follows

that graphs considered must be processable by both frameworks, implying that graphs

must fit in the 256GB of memory available on a single node.

Graph imbalance The research presented in this chapter focusses on the buffer design

introduced in Section 7.3.3. While load-balancing challenges in vertex-centric program-

ming have been thoroughly investigated in [3], they are outside the scope of this invest-

igation. Therefore, the standard OpenMP dynamic loop clause was used, with a chunk

153

Chapter 7: A distributed-memory implementation of iPregel

Search space

Analysis

Programmability

Memory efficiency

Performance

Weak scalability

Strong scalability

Node scalability

Process scalability

Thread scalability

Graph

Size

Order

Diameter

Degree distribution

Scattering

Density

Application

SSSP source vertex

PageRank max superstep count

Number of active vertices

Communication patterns

Computational intensity

Framework

Version
Pull

Push

Implementation

IBMP

INBS

Naive

Figure 7.10: Parameter search space in DiP experiments.

154

Chapter 7: A distributed-memory implementation of iPregel

Table 7.1: Number of vertices and edges in the graphs selected for experiments

Name Graph order Graph size Average degree

S 1.5B 16 100K 1,500,000,000 24,000,000,000 16
S 50M 1K 10K 50,000,000 50,000,000,000 1,000

size empirically determined to:

|V |
10×OP × PN ×N

(7.10)

where |V | is the number of vertices in the entire graph, OP is the number of OpenMP

threads per MPI process, PN is the number of MPI processes per node and N is the

number of nodes.

Graph locality The impact of locality on vertex-centric application performance was

analysed in [4] and reported in Chapter 6. However, the priority of the experiments con-

ducted in this chapter is the evaluation of the buffer design as this is the core component

of DiP and major research contribution presented in this chapter.

7.5.3 Graphs

Graphs at the scale considered in this investigation require disk storage, typically on

the order of terabytes, beyond what can be reasonably expected from common cluster

allocations. Consequently graphs are instead generated in memory, aiming at average

degrees observed in existing literature and real-world data, from approximately 16 [5,

13, 24, 25, 58, 59, 91] up to 1,000 and above [24, 68]. To prevent unrealistic neighbour

locality a parameter referred to as scattering distance is applied which determines the

distance between two consecutive neighbours of a given vertex. The graphs obtained,

whose configurations are reported in Table 7.1, have been produced using the graph

generator introduced in Subsubsection 6.4.2 and are named using the convention A B C,

where A is the graph order, B is the average degree and C is the scattering distance.

7.5.4 Benchmarks

The experiments conducted in this chapter include the three benchmarks: PageRank,

Connected Components and Single-Source Shortest Paths, whose implementations are

given in Appendices I, J and K respectively. As explained in Subsubsection 2.3.2, these

155

Chapter 7: A distributed-memory implementation of iPregel

benchmarks expose a variety of algorithmic characteristics, including the variation of the

number of active vertices throughout supersteps, as well as inherent properties allowing

or preventing the use of certain optimisation techniques. For reasons that will be explored

later in this chapter, they also represent good, average and bad case scenarios for the

DiP framework. It should be noted that PageRank experiments run over 10 supersteps,

and that the vertex identified by 0 is selected as the source vertex in SSSP experiments.

7.5.5 Frameworks

The experiments conducted in this chapter do not compare against frameworks bey-

ond iPregel given that the focus of this research is the optimisation of a specific phase

in vertex-centric programs. Comparing against other frameworks would likely involve

runtimes with diverse sources of overheads, thus not reflecting impacts made on the buf-

fer exchange performance in particular. In addition, the techniques developed in this

section cover more than a single profiling area because they explore the network commu-

nication phase, sender-side message combination, client-side combination and client-side

message dispatch.

7.6 Results

This section presents and provides an analysis of the data gathered from experiments.

7.6.1 Single node performance

The scope of the first set of experiments to be conducted was restricted to single-node

runs. By doing so the competitiveness of the distributed-memory framework DiP against

its shared-memory counterpart iPregel can be evaluated, as a first step before investig-

ating its scalability in subsequent sections. Accordingly, the graphs selected are of a size

permitting to be processed within the amount of memory held on a single node.

7.6.1.1 Sparse graph

All three benchmarks were run on the sparse graph, S 1.5B 16 100K, which contains 1.5

billion vertices and 24 billion edges. As mentioned in Subsection 7.5.3, the resulting

average degree of 16 is observed in numerous synthetic and real-world graphs used in

existing literature.

156

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

100

200

300

400

286.4

132.1

205.2

74.85

122.8

52.34

R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.11: Runtime (in seconds) of push and pull versions of iPregel and DiP to
execute 10 PageRank iterations on S 1.5B 16 100K, on one Cirrus node, using 32 threads
for iPregel, 2 MPI processes per node and 16 OpenMP threads per MPI process for the
naive implementation and 32 MPI processes per node and 1 OpenMP thread per MPI
process for the INBS implementation.

PageRank The results collected from PageRank are reported in Figure 7.11. The data

shows that on the sparse graph S 1.5B 16 100K, the naive DiP implementation out-

performs iPregel on both push and pull scenarios. The push version of the naive DiP

implementation, for instance, is 205.19 seconds which is 28% lower than the runtime of the

shared-memory iPregel which completes the 10 PageRank iterations in 286.36 seconds.

This performance difference increases to 43% for the pull version.

Although the software of iPregel and DiP are inherently similar due to the latter

being the distributed-memory port of the former, their different parallelism strategies

impose different restrictions and provide different levels of freedom. One such difference

resides in the combination mechanism where, upon sending a message in iPregel, the

hybrid combiner introduced in Section 5.3 systematically checks whether the recipient’s

mailbox is empty. This determines whether the message to be pushed should be written

to the memory location or combined with an existing message. On the other hand, in DiP,

mailboxes are initialised to a neutral value, allowing the framework to use Compare-And-

Swap (CAS) directly. The hybrid combiner still requires the flag check, and potentially a

lock-based combination. Furthermore, vertex structures in DiP, therefore, do not carry

over the lock, increasing the probability of cache hits.

Another factor is the handling of cross-NUMA interactions, where it appears that

the distributed-memory framework outperforms iPregel by up to 20%. This may be

explained through the different mapping of workers to hardware: whereas iPregel evenly

spreads its 32 threads across both NUMA regions, DiP pins 1 MPI process per NUMA

157

Chapter 7: A distributed-memory implementation of iPregel

region, each spawning 16 threads bound to that NUMA region. It follows therefore

that iPregel threads may issue cross-NUMA memory accesses whereas those in DiP are

solely intra-NUMA. Cross-NUMA communications in DiP take place at the MPI level,

through an MPI message exchange. Therefore, it comes down to comparing cross-NUMA

memory accesses at the thread-level against communications at the process-level, and the

results reported in Figure 7.11 demonstrate that the later approach favours performance.

This observation could be investigated further in iPregel, by developing a NUMA-aware

distribution of data across threads in order to minimise cross-NUMA memory accesses.

The performance gain increases further when enabling the intra-node buffer-sharing

(INBP) implementation of DiP. With an additional 82 seconds reduced from the runtime,

the push version of the INBS DiP completes the 10 PageRank iterations in approximately

120 seconds, effectively becoming 2.3 times faster than iPregel. Similarly, on the pull

version, the decrease of 22 seconds in the runtime when moving from the naive DiP

implementation to INBS allows the total runtime saving to reach 80 seconds compared

to iPregel. This makes the INBS implementation of DiP approximately 2.5 times faster

than iPregel.

Profiling has helped explain the performance difference because, whilst the same time

is spent on vertex processing, the buffer exchange dominates the difference in runtime

observed. As per the DiP buffer design introduced in Section 7.3.3, a graph with 1.5

billion vertices, such as the S 1.5B 16 100K graph, requires the DiP buffers to contain

1.5 billion elements each. In the case of PageRank, the memory footprint of these buffers

reaches 13.5GB per MPI process on the naive DiP implementation, and 13.5GB per

node on the INBS DiP implementation. Also, the INBS technique permits DiP to halve

the memory footprint of its buffers, from 27GB to 13.5GB as well as entirely bypassing

the communication phase in the context of single-node processing due to MPI 3 shared-

memory. In the push version, in addition to halving the amount of memory passed

over the network for reduction, the INBS implementation allows the MPI Reduce to be

parallelised further by distributing it across 32 MPI processes per node instead of 2.

When comparing push against pull versions, the latter proves to be consistently faster.

Overall, the speedups obtained range from 2.2 up to 2.7. This difference observed is due

to the buffer exchange no longer being performed using an MPI reduction but instead

a broadcast, which avoids the need to apply an operation to the value; as well as write

memory accesses being issued only to locally held memory in the pull version.

Connected Components Figure 7.12 plots the runtime of processing the first 20 su-

persteps of Connected Components. A fixed number of supersteps was selected to limit

the overall machine time required for this experiment, as the total number of supersteps

158

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

100

200

300

400

500
429.9

260.7

323.9

124.6

232.7

96.7

R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.12: Runtime (in seconds) of push and pull versions of iPregel and DiP to execute
the first 20 Connected Components iterations on S 1.5B 16 100K, on one Cirrus node,
using 32 threads for iPregel, 2 MPI processes per node and 16 OpenMP threads per MPI
process for the naive implementation and 32 MPI processes per node and 1 OpenMP
thread per MPI process for the INBS implementation.

that are required to run the algorithms which are message-propagation based, such as

Connected Components, to completion is equal to the graph diameter. Using the graph

generator introduced in Chapter 6, the formula to calculate the diameter of the graphs

generated is given in Equation 7.11.

D = L+

⌊
|V |
L

⌋
(7.11)

where D is the graph diameter, L is the scattering distance and |V | is the graph or-

der. Therefore, when considering graph S 1.5B 16 100K, the total number of supersteps

required is 110,000, which would require an excessive amount of execution time.

Results collected show that the naive DiP implementation is faster than its shared-

memory counterpart, by a factor of 1.3 for the push version and almost 2 times for the pull

version. In addition, the INBS implementation provides further gains, with a speedup

against the naive DiP implementation of a factor of approximately 1.3 for both versions.

This data is comparable to that obtained from the PageRank experiment. This is

partially due to the sparse nature of the S 1.5B 16 100K graph which, after the first 20

supersteps, results in more than 99.99% of all graph vertices still being active. Combined

with the fact that both benchmarks have the same communication pattern and computa-

tional intensity, from a workload perspective, the processing of Connected Components

is similar to the processing of PageRank.

159

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

50

100

150

200

1.97

155.6

125.9

75.79

37.98 36.18

R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.13: Runtime (in seconds) of push and pull versions of iPregel and DiP to
execute the first 20 Single-Source Shortest Paths iterations on S 1.5B 16 100K, on one
Cirrus node, using 32 threads for iPregel, 2 MPI processes per node and 16 OpenMP
threads per MPI process for the naive implementation and 32 MPI processes per node
and 1 OpenMP thread per MPI process for the INBS implementation.

Single-Source Shortest Paths The results obtained by running the SSSP benchmark

on the S 1.5B 16 100K graph are reported in Figure 7.13. Similarly, to the Connected

Components experiment, only the first 20 supersteps were run to keep the runtime within

a reasonable limit.

Unlike what is observed for both PageRank and Connected Components benchmarks

on this graph, the push version of iPregel is significantly faster with SSSP than both DiP

versions, especially the naive one. With approximately 2 seconds against 125, iPregel

provides a 60 times speedup over its distributed-memory counterpart. This situation

only holds for the push version, however, because runtimes obtained with the pull version

are in line with that observed for previous experiments where iPregel is slower than

the naive implementation of DiP. The explanation for the performance of iPregel in

the push version is twofold. Firstly, this benchmark, SSSP, has a very low number of

active vertices in the first 20 supersteps. With a peak of 301 active vertices, out of

1.5 billion, at most 0.0001% of the graph vertices are active in the first 20 supersteps.

As explained in Section 7.3.3, in DiP the amount of information exchanged during the

buffer exchange phase is independent of the number of active vertices, for both push and

pull versions. In iPregel however, in the push version, inactive vertices are checked but

result in no additional processing beyond that check. This checking alone imposes an

additional overhead of 52 seconds. The runtime decreases by a further 50 seconds when

the selection bypass technique presented in Subsubsection 4.3.4.1 is used. The main

benefit of this technique is that only active vertices are iterated, thus skipping 99.9999%

160

Chapter 7: A distributed-memory implementation of iPregel

of the graph vertices which are inactive in each of the 20 supersteps. However, the pull

version of iPregel cannot leverage this technique due to the memory requirement of the

selection bypass which, when combined with the pull version, requires more memory than

the amount available on a single node.

When comparing the naive implementation against the INBS one, the former remains

slower, which is in line with what was observed in previous experiments. However, for the

push version, the gap between the naive and INBS implementations is greater than that

in previous experiments. Indeed, the INBS implementation completes the first 20 SSSP

supersteps in 38 seconds, compared to 126 seconds for the naive implementation, making

INBS 3.3 times faster. This is twice the speedup of 1.67 that was obtained between the

same two implementations on the PageRank benchmark, where this speedup doubling can

be explained by the change in the calculation basis. The runtimes between the PageRank

and SSSP benchmarks decreased from 205 to 126 seconds for the naive implementation,

and from 123 to 38 for INBS. This is a reduction of approximately 82 seconds for both

implementations, due to a faster vertex processing phase caused by the lower number

of active vertices in SSSP. Therefore, this difference of slightly more than 80 seconds

observed between the runtimes of both implementations on PageRank, is present with

SSSP too, where the INBS implementation delivers a runtime that is 88 second lower

than that of the naive implementation. However, given that the absolute value of the

runtimes is lower on the SSSP benchmark, the difference of approximately 85 seconds

translates to a speedup of 3.3 times rather than 1.67 times for PageRank.

Between the push and pull versions, the results collected exhibit three different vari-

ations. Firstly, in the case of iPregel, an increase of nearly two orders of magnitude

is observed when moving to the pull version, requiring over 150 seconds compared to

2 seconds for the push version. As explained earlier, the selection bypass technique is

particularly efficient in this scenario, thus considerably improving iPregel ’s performance

compared to without selection bypass. In the case of the push version, where iPregel

completed in under 2 seconds. A performance gain was expected for the pull version

too, similar to that presented in Figure 7 in [1]. However, the combination of the se-

lection bypass technique and the pull version was not possible in this experiment due

to the increased memory footprint. Indeed, by design, the pull version requires storing

incoming edges, in order to fetch messages. In the meantime, as explained in Subsub-

section 4.3.4.1 the selection bypass requires storing outgoing edges in order to schedule

the recipients for processing during the next superstep. Considering the S 1.5B 16 100K

graph comprising 24 billion edges, each encoding a 4-byte identifier, outgoing edges alone,

therefore, require 96GB of memory, implying that storing incoming edges as well would

161

Chapter 7: A distributed-memory implementation of iPregel

require an additional 96GB of memory. When added to the memory footprint required

by other components of the iPregel framework, such as the vertex structures the amount

of memory available on a single node became insufficient.

Secondly, for the naive DiP implementation, moving from the push to the pull ver-

sion improves the performance observed, decreasing the runtime from 126 seconds to 76,

which is a speedup of 1.65. Similarly, to previous benchmarks, this is due to the buffer

exchange phase now being achieved with an MPI broadcast rather than a reduction suf-

fering from poor parallelisation. In addition, the lower number of active vertices results

in less vertex processing for the push version thus decreasing its runtime. The workload

of the pull version is less proportional to the number of active vertices than the push

version, preventing it from benefiting from a similar performance gain in SSSP.

Thirdly, while moving from push to pull results in a runtime increase for iPregel and

a decrease for the naive DiP implementation, it appears to have no impact on that of

the INBS DiP implementation, which maintains a runtime of approximately 37 seconds.

This contrasts to what was observed on PageRank, where the runtime of the INBS DiP

implementation decreased from 122 seconds to 52 seconds when switching to the pull

version. The performance gain observed on PageRank by switching to the pull version

was mostly due to a reduction in the runtime of the vertex processing phase. However,

with SSSP the low number of active vertices results in a vertex processing phase with a

runtime noticeably smaller. When moving to the pull version, the drop observed in the

buffer exchange phase is compensated by an equivalent increase due to the introduction

of the message fetching phase. Paired with the small runtime of the vertex processing

phase, the resulting benefit is close to null.

General Across all 3 benchmarks, the distributed-memory framework DiP outperforms

iPregel, except for the push version in the SSSP benchmark. The INBS implementation

provided an additional performance gain compared to the naive implementation in all

experiments. The speedups obtained from the INBS implementation against iPregel range

between 1.8 and 6.8 times. On average, the results collected indicate that a speedup of

3.6 times resulted.

According to the results collected from experiments run in this subsubsection, sparse

graphs appear to be beneficial to DiP, and even more so to the INBS implementation.

Given the architecture change between iPregel and the naive DiP implementation, this

suggests that in the case of sparse graphs, batching messages and keeping direct memory

access patterns intra-NUMA regions yields performance improvements. As mentioned

earlier, this direction could be pursued further to develop new optimisations in iPregel,

such as NUMA-local copies paired with a mechanism ensuring their consistency.

162

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

200

400

600

800

1,000

373.3

133.5

638.9

84.79

781.7

122.9

R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.14: Runtime (in seconds) of push and pull versions of iPregel and DiP to
execute 10 PageRank iterations on S 50M 1K 10K, on one Cirrus node, using 32 threads
for iPregel, 2 MPI processes per node and 16 OpenMP threads per MPI process for the
naive implementation and 32 MPI processes per node and 1 OpenMP thread per MPI
process for the INBS implementation.

Additional gains were observed for the push version specifically, where the buffer

exchange was noticeably faster on the INBS implementation. This is due to the better

parallelisation of the underlying single-threaded MPI reduction given that the reduction

applied on buffers is distributed across 32 MPI processes instead of 2.

Finally, as an extra benefit of the switch to the INBS implementation, the fact that

the INBS implementation moves the replication cost of the DiP buffers from per MPI

process to per node, which in this case halves the memory footprint per node.

7.6.1.2 Dense graph

By contrast to the sparse graph S 1.5B 16 100K, the S 50M 1K 10K connects 60 times

more neighbours to each vertex. Such dense graphs are more representative of social

networks, for instance, as seen in [68].

PageRank The runtimes reported in Figure 7.14 show that for the push version, iPregel

is more than 70% faster than the naiveDiP implementation. On the pull version, however,

the naive DiP implementation outperforms iPregel, by completing the same 10 PageRank

iterations in approximately 85 seconds against 133. This is the opposite of what was

observed for PageRank on a sparse graph, where iPregel was slower. Therefore the

number of vertices and graph density have an impact on performance.

When comparing the naive DiP implementation against INBS, it can be observed that

the latter is 22% and 45% slower for the push and pull versions respectively, unlike what

163

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

500

1,000

1,500

458.8

143.9

863.1

74.14

1,202

107.2R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.15: Runtime (in seconds) of push and pull versions of iPregel and DiP to
execute the first 20 Connected Components iterations on S 50M 1K 10K, on one Cirrus
node, using 32 threads for iPregel, 2 MPI processes per node and 16 OpenMP threads
per MPI process for the naive implementation and 32 MPI processes per node and 1
OpenMP thread per MPI process for the INBS implementation.

was observed on the sparse graph. For the push version, the main advantage of INBS is

the parallelisation of the MPI reduction. For the dense graph however, the number of

vertices is 50 million instead of 1.5 billion, and therefore the importance of performance

improvements in the reduction reduces by a factor of 60. Furthermore, the batched

approach of the naive DiP implementation is beneficial when processing a dense graph

because of the higher risk of write collisions occurring. Therefore, with dense graphs

the main source of performance gains has been lost from INBS and the overhead of this

technique now dominates.

Similarly to what was observed on the sparse graph, the characteristics of PageRank

make it the optimal benchmark for leveraging the pull version. For each of the three

implementations, performance gains were observed, with a speedup of 2.8 for iPregel,

7.5 for naive DiP and 6.4 for INBS. These performance improvements are higher than

those observed for the sparse graph, with an average speedup of 5.6 times compares to

2.4 times. It follows that the explanation lies in the intrinsic characteristics of the graph

that changed between the two experiments. Once again, the higher degree of the dense

graph implies a higher risk for write collisions because each vertex now has 60 times more

neighbours than the sparse graph. The live-locking or extra CAS attempts that result

from write collisions imply that moving to the lock-free structure of the pull version yields

significant benefits.

Connected Components Figure 7.15 depicts the runtimes measured to complete the

first 20 supersteps for the Connected Components benchmark on graph S 50M 1K 10K.

164

Chapter 7: A distributed-memory implementation of iPregel

Push Pull
0

50

100

150

0.31

132.1

4.31

74.38

1.63

71.77

R
u
n
ti
m
e
in

se
co
n
d
s

iPregel DiP Naive DiP INBS

Figure 7.16: Runtime (in seconds) of push and pull versions of iPregel and DiP to execute
the first 20 Single-Source Shortest Paths iterations on S 50M 1K 10K, on one Cirrus node,
using 32 threads for iPregel, 2 MPI processes per node and 16 OpenMP threads per MPI
process for the naive implementation and 32 MPI processes per node and 1 OpenMP
thread per MPI process for the INBS implementation.

Results obtained are in line with those observed on PageRank in the same conditions.

The push version of iPregel is almost 90% faster than the naive DiP implementation,

and the opposite is again observed for the pull versions, where iPregel requires twice as

much time to complete than the naive DiP implementation.

Similarly to what was observed with PageRank, switching from the naive DiP im-

plementation to INBS for a dense graph reduces performance between 40% to 45%. On

both naive and INBS implementations, switching to the pull version yields speedups of

11.2 times and 11.6 times respectively. The primary source of these performance gains

remains the constantly high number of vertices kept active throughout the first 20 su-

persteps of the Connected Components. Therefore, the same performance trends were

observed with Connected Components as with PageRank, with iPregel outperforming the

naive DiP implementation for the push version but not the pull version. Meanwhile, the

INBS implementation reduces performance of the naive implementation for both versions

by approximately 42%.

Single-Source Shortest Paths Figure 7.16 illustrates the runtimes measured to com-

plete the first 20 supersteps of the SSSP benchmark on the S 50M 1K 10K graph. As

mentioned in Subsection 7.5.2, the vertex with identifier 0 was picked as the source.

When comparing iPregel against the DiP implementations, the runtimes observed

vary by a factor of up to 2.3. The iPregel framework completes the first 20 supersteps of

SSSP in nearly 2 seconds, whilst the naive implementation DiP requires approximately

4 seconds and INBS less than 2 seconds. Compared to the sparse graph, the runtimes of

165

Chapter 7: A distributed-memory implementation of iPregel

both naive and INBS implementations have been divided by 30. This ratio also corres-

ponds to the ratio between the sparse and dense graphs orders, where the sparse graph

contains 30 times more vertices than its dense counterpart. Given that DiP implement-

ations do not have the equivalent of the iPregel selection bypass technique, they must

iterate through each vertex regardless of its active state. This systematic overhead grows

to become a major obstacle to DiP implementations performance compared to iPregel on

graphs with a high number of vertices such as the S 1.5B 16 100K. However, on a graph

with only 50 million vertices, the overhead appears to be 30 times smaller, permitting

the DiP implementations to deliver performance comparable to that of iPregel.

General The much lower graph order of graph S 50M 1K 10K has meant that DiP buf-

fers contained only 50 million elements, compared to 1.5 billion with graph S 1.5B 16 100K.

This meant that the MPI reductions of the push version of DiP were no longer a source

of significant overhead. Similarly for the message exchange, where the reduction by a

factor of 30 in the size of the buffer reduced the amount of data passed over the network

accordingly. However, the higher risk of write collisions during combinations degraded

the overall performance of the DiP versions. With the pull versions, however, where

by design there cannot be write collisions during combinations, results showed that DiP

outperformed iPregel.

7.6.2 Node scalability

The second set of experiments conducted focussed on evaluating multi-node performance,

on the same graphs as Subsection 7.6.1. Due to its high similarity with PageRank,

the Connected Components application was not included to avoid redundant series of

visualisations and analyses. However, SSSP contrasts against PageRank by having a very

low number of active vertices, which makes it a a meaningful and interesting benchmark

to include in the experiments presented below.

7.6.2.1 Strong scalability

In this section results are visualised by reporting the runtime against the number of nodes

for a specific graph. There are four series on each plot, beginning with the vertex pro-

cessing phase, which reports the time to run the dip compute function on all vertices,

including the time needed to handle combinations in flag and value buffers. Secondly

the time for buffer exchange is reported, which represents the time spent in exchanging

the flag and value buffers, as well as updating vertex mailboxes and resetting buffers to

neutral values. Total reports the sum of the first two, representing the total time spent

166

Chapter 7: A distributed-memory implementation of iPregel

in the application whilst the fourth, Total (ideal), depicts what the total runtime should

have been assuming ideal node scalability.

PageRank Figure 7.17 shows the runtime scalability of the push version of both na-

ive and INBS DiP implementations against the number of nodes when executing 10

PageRank iterations on each graph. It can be observed that, for the sparse graph

S 1.5B 16 100K, the runtime of the naive implementation gradually decreases from 200

seconds to approximately 150 seconds at 16 nodes, equivalent to a node scalability ef-

ficiency of 8%. The profiling information gathered reports that the runtime is quickly

dominated by the buffer exchange phase. Comprising over 40% of the total runtime on

one node, the buffer exchange phase grows until eventually accounting for 95% of the

runtime at 16 nodes. As explained in Subsection 7.6.1, the poor parallelisation of the

MPI reduction in the naive implementation is responsible for the overhead observed in

single-node performance.

In the meantime, the INBS implementation does not scale much better, with only

a 15% node scalability efficiency at 16 nodes. Starting at 122 seconds on one node,

the runtime gradually decreases to 50 seconds at 16 nodes, representing a speedup of

approximately 2.5 times. Once again, the runtime eventually becomes dominated by the

buffer exchange phase, representing 83% of the runtime at 16 nodes. By running over

32 MPI processes per node, the INBS implementations deliver better parallelisation of

the MPI reductions than their naive counterpart. Nonetheless, due to the high number

of vertices present in the graph, it remains that the size of the buffers does not permit

satisfactory node scalability.

Despite both DiP implementations suffering from poor node scalability due to the

buffer exchange phase, it can be observed that the INBS implementation clearly outper-

forms the naive implementation. INBS is 1.2 times faster with 1 node than the naive

implementation with 16 nodes, increasing that speedup to 3 when running over 16 nodes

too.

The starting point for DiP, based on single-node performance, is already 28% and

58% faster than iPregel for the naive and INBS DiP implementations respectively. Des-

pite the low performance gains, both implementations further improve performance when

compared to their shared-memory counterpart. When using 16 nodes, the naive imple-

mentation delivers a speed up of 1.9 times against the performance of iPregel, which raises

to 5.7 times for INBS.

The second row of experiments illustrated in Figure 7.17 focussed on the dense graph

S 50M 1K 10K. The trends observed are opposite of those from the sparse graph. The

naive DiP implementation now delivers near ideal node scalability until 16 nodes. With

167

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16
0

50

100

150

200

250

[S
1.
5B

16
10
0K

]
R
u
n
ti
m
e
in

se
co
n
d
s

Naive

1 2 4 8 16
0

50

100

150

200

250
INBS

1 2 4 8 16
0

200

400

600

800

1,000

Number of nodes

[S
50
M

1K
10
K
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16
0

200

400

600

800

1,000

Number of nodes

Vertex processing Buffer exchange Total Total (ideal)

Figure 7.17: Variation of the runtime distribution (in seconds) of the push version of the
DiP naive and INBS implementations against the number of nodes used to process 10
PageRank iterations on both graphs S 1.5B 16 100K and S 50M 1K 10K, using 2 MPI
processes per node and 16 OpenMP threads per MPI process for the naive implementation
and 32 MPI processes per node and 1 OpenMP thread per MPI process for the INBS
implementation.

168

Chapter 7: A distributed-memory implementation of iPregel

a single-node runtime of 638 seconds, the 36 seconds measured at 16 nodes represents

super-linear scalability. The reason for this difference in performance between the dense

and sparse graphs is illustrated by Figure 7.17, where the buffer exchange phase, which

accounted for 40% of the single-node performance of the naive implementation on the

sparse graph is now less than 3% for the dense graph. This is caused by the number of

vertices in the dense graph being 30 times lower than that of the sparse graph, which in

turn means that DiP buffers are 30 times smaller. Consequently, for the dense graph,

the favourable node scalability that is observed is because the vertex processing phase

now dominates the runtime at 95% of the overall execution time.

A similar trend is observed for the INBS implementation when applied to the dense

graph, despite the runtime not being as close to the ideal. Starting at 780 seconds,

the runtime gradually decreases to nearly 80 seconds over 16 nodes. This speedup of 9.4

times obtained corresponds to a node scalability efficiency of 58%. The different runtimes

reported in Figure 7.17 highlight that the explanation of this suboptimal performance

is multifold. To begin with, the vertex processing phase is measured at 720 seconds in

the single node configuration, which involves a starting overhead of 100 seconds, or 14%,

compared to that of the naive implementation. Furthermore, by decreasing to 57 seconds

over 16 nodes, and a speed up of 12.6 times, the node scalability of the vertex processing

phase is not competitive with that observed for the naive implementation. This difference

in vertex processing time suggests that, for the DiP framework, the batching technique

used by the naive implementation is beneficial in the context of dense graphs, where the

risk of write collisions is high.

When comparing the push versions of the naive and INBS implementations, two

trends are observed. Firstly, the large number of vertices in sparse graphs results in large

buffers being required for the buffer exchange. As expected, this is a major obstacle to

performance, and even more so with the naive implementation. INBS partially mitigates

this overhead by relying on an improved parallelisation of the MPI reduction used in

the buffer exchange, resulting in at one node the benchmark outperforming the naive

implementation with any number of nodes tested. Secondly, the degree of the graph

and the subsequent chances of write collisions determine whether the batching technique

used in the naive implementation will be beneficial compared to its direct memory access

equivalent in INBS. On dense graphs, the performance showed that, on DiP, batching

messages not only provided improved better single-node performance, but also great node

scalability by exhibiting a linear speedup continuously until 16 nodes.

In addition to experiments run using the push versions of DiP implementations,

identical experiments were conducted on pull versions. The results collected are re-

169

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16
0

20

40

60

80

100

120

[S
1.
5B

16
10
0K

]
R
u
n
ti
m
e
in

se
co
n
d
s

Naive

1 2 4 8 16
0

20

40

60

80

100

120
INBS

1 2 4 8 16
0

40

80

120

160

Number of nodes

[S
50
M

1K
10
K
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16
0

40

80

120

160

Number of nodes

Vertex processing Buffer exchange Message fetching
Total Total (ideal)

Figure 7.18: Variation of the runtime distribution (in seconds) of the pull version of the
DiP naive and INBS implementations against the number of nodes used to process 10
PageRank iterations on graphs S 1.5B 16 100K and S 50M 1K 10K, using 2 MPI pro-
cesses per node and 16 OpenMP threads per MPI process for the naive implementation
and 32 MPI processes per node and 1 OpenMP thread per MPI process for the INBS
implementation.

170

Chapter 7: A distributed-memory implementation of iPregel

ported in Figure 7.18. On the sparse graph S 1.5B 16 100K, the INBS implementation

demonstrates to deliver single-node performance greater than that of naive DiP over 16

nodes, in line with what was observed for push versions. The 20-second runtime differ-

ence illustrates a 30% performance gain of the single-node INBS implementation over

its naive counterpart with 16 nodes. However, the INBS implementation also delivers

poor scaling, providing approximately 10% of node scalability efficiency at 16 nodes. The

naive implementation delivers near to no performance gains at 16 nodes. According to

the profiling information collected, similarly to identical experiments for push versions,

the buffer exchange phase is the cause of this poor node scalability.

Figure 7.18 illustrates that performance becomes dominated by the buffer exchange

phase at low node counts, 2 and 4 for naive and INBS implementations respectively. The

proportion of runtime required by the buffer exchange phase rises to 96% over 16 nodes

for the naive implementation, and 85% for the INBS implementation. However, for the

naive implementation, the node scalability of the buffer exchange phase follows one trend

before diverging at 4 nodes. Although the high number of vertices continues to be an

aggravating factor by resulting in buffers of almost 14GB, no such spike was observed with

the push version of the naive implementation on the same sparse graph. The source of this

change might therefore be a threshold in the underlying MPI implementation triggering an

optimisation in the implementation of the MPI broadcast collective used in pull versions.

For instance, the underlying MPI implementation may rely on individual sends or binary-

tree decomposition depending on the amount of data emitted per MPI process and the

total number of MPI processes. The conditions to trigger such optimisation may be met

at 4 nodes, therefore switching to a different broadcast algorithm delivering different node

scalability properties.

The message fetching phase, which is a new phase compared to the push version,

demonstrates node scalability comparable to that of the vertex processing phase. For

the sparse graph this involves approximately half of the runtime that was measured for

single-node runs for both naive and INBS implementations. At 16 nodes, however, that

proportion reduces to approximately 2% and 9% of the total runtime respectively. As

explained in Subsubsection 4.3.4.3, the pull-based combination does not generate write

conflicts as threads only issue writes to thread-local memory locations. Reading values

however requires memory accesses that can suffer from cross-NUMA region overheads, as

observed with the INBS implementation.

With the dense graph S 50M 1K 10K, at 16 nodes, the naive implementation reduces

single-node runtime from approximately 85 seconds to 11 seconds, which is a speedup of

7.5 times, or a 47% node scalability efficiency. The INBS implementation improves node

171

Chapter 7: A distributed-memory implementation of iPregel

scalability efficiency to 78% over 16 nodes, decreasing the runtime from 123 seconds to

10 seconds. In both cases, the runtime appears to be dominated by the message-fetching

phase in all node counts tested. As explained for push versions, the dense graph has

relatively few vertices, which results in relatively small buffers which therefore do not no-

ticeably hinder network communication performance. In addition, the vertex processing

phase in the pull versions only consists of flagging vertices for broadcast when applicable.

Therefore, the classical hotspot of vertex-centric programs, message combinations, takes

place solely in the message fetching phase.

For the dense graph, similarly to what was observed with the push versions, the pull

version of INBS involves a 43% starting overhead compared to the naive implementation.

These results suggest that the batching of messages performed by the naive implement-

ation outperforms the direct memory accesses of its INBS counterpart.

Single-Source Shortest Paths Figure 7.19 depicts the runtime obtained by running

the first 20 supersteps of the SSSP application using the push version of both naive and

INBS DiP implementations, on both sparse and dense graphs, against the number of

nodes used.

For the sparse graph, the performance of naive DiP counter scales, similarly to what

was observed for this configuration with PageRank. Starting with a single-node runtime

of 126 seconds, it increases to 155 seconds at 16 nodes. When plotted against the number

of nodes, the variation of the runtime first increases and then decreases, with a peak of

170 seconds over 4 nodes. Profiling information shows that 93% to 99% of the runtime

is spent on buffer exchange. This is a consequence of the vertex processing phase now

requiring only a few seconds. Unlike PageRank, where single-node runtime of the vertex

processing phase was 80 seconds, the equivalent starting point in SSSP is at less than 8

seconds. Despite running over a graph comprising 1.5 billion vertices, the first supersteps

of SSSP activates only a small number of vertices, which therefore only require a small

amount of runtime for processing.

The INBS implementation exhibits worse counter scaling than the naive implement-

ation, albeit over a smaller runtime interval. Whilst the single-node run completes the

first 20 SSSP supersteps in 30 seconds, using 16 nodes requires up to 53 seconds, almost

doubling the amount of time needed. Nonetheless, over 1 and 16 nodes, the INBS im-

plementation is 4.2 times and 2.9 times faster than its naive counterpart. The runtime

distribution drawn from the profiling information gathered indicates that the INBS imple-

mentation follows the same performance trend as naive DiP. Where the vertex processing

phase has become negligible due to the low number of active vertices, which subsequently

increases the proportion of the runtime required by the buffer exchange phase.

172

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16
0

50

100

150

200

[S
1.
5B

16
10
0K

]
R
u
n
ti
m
e
in

se
co
n
d
s

Naive

1 2 4 8 16
0

50

100

150

200
INBS

1 2 4 8 16
0

2

4

6

8

Number of nodes

[S
50
M

1K
10
K
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16
0

2

4

6

8

Number of nodes

Vertex processing Buffer exchange Total Total (ideal)

Figure 7.19: Variation of the runtime distribution (in seconds) of the push version of the
DiP naive and INBS implementations against the number of nodes used to process 20
Single-Source Shortest Paths iterations on graphs S 1.5B 16 100K and S 50M 1K 10K,
using 2 MPI processes per node and 16 OpenMP threads per MPI process for the naive
implementation and 32 MPI processes per node and 1 OpenMP thread per MPI process
for the INBS implementation.

173

Chapter 7: A distributed-memory implementation of iPregel

The same behaviour is observed for the dense graph, with the naive implementation

counter scaling, albeit on a smaller scale. With buffer exchange dominating single-node

performance by 91%, the lack of node scalability delivered by the buffer exchange, there-

fore, means that it is dominant in the overall performance behaviour that is observed. In

the meantime, runtime of the vertex processing phase reduces by 8 times between 1 and

16 nodes. Despite exhibiting a node scalability efficiency of 50% at 16 nodes, the per-

formance gains obtained from the vertex processing phase do not outweigh the runtime

increase in the buffer exchange on the same node count interval. This is due to the low

number of active vertices in SSSP making the vertex process phase no longer significantly

impacting the overall runtime.

The INBS implementation exhibits the same performance trends as observed with

naive DiP over the dense graph. The buffer exchange counterscales, and the subsequent

runtime increase is not mitigated by performance gains obtained from the vertex pro-

cessing node scalability. The total runtime variation ranges from 1.7 seconds over 1 node

to 2 seconds over 16 nodes, with a peak of 2.1 seconds over 4 nodes. Although the interval

covered is smaller than that of the naive implementation, the variation follows the same

pattern, with an increase followed with a decrease.

The results reported in Figure 7.20 are the pull version counterparts of those presented

in Figure 7.19, illustrating the runtime of both naive and INBS DiP implementation pull

versions against the node count, for both graphs, to process the first 20 iterations of the

SSSP application.

The trends observed on the sparse graph are similar to those seen on their PageR-

ank equivalents. For the naive implementation, the variation of the runtime against the

number of nodes follows a bell curve peaking at four nodes. The runtime over 16 nodes

delivers no improvement compared to the single-node performance. As profiling data

shows, the cause remains the poor node scalability of the buffer exchange, which dom-

inates the runtime. Due to the number of vertices in the sparse graph, the size of DiP

buffers becomes a noticeable performance challenge. By contrast, the vertex processing

phase delivers performance gains when increasing the number of nodes. However, the low

proportion of runtime that this represents does not allow performance gains to outweigh

the overhead imposed by network communications.

For the sparse graph, the results collected for INBS are also similar to those obtained

on PageRank under the same conditions. Namely, the runtime remains steady, at approx-

imately 35 seconds in this configuration, regardless of the number of nodes used. Once

again, the time spent on buffer exchange by INBS increases with the number of nodes.

However, the rate at which it increases is lower such that, unlike its naive counterpart,

174

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16
0

20

40

60

80

100

[S
1.
5B

16
10
0K

]
R
u
n
ti
m
e
in

se
co
n
d
s

Naive

1 2 4 8 16
0

20

40

60

80

100
INBS

1 2 4 8 16
0

20

40

60

80

100

Number of nodes

[S
50
M

1K
10
K
]

R
u
n
ti
m
e
in

se
co
n
d
s

1 2 4 8 16
0

20

40

60

80

100

Number of nodes

Vertex processing Buffer exchange Message fetching
Total Total (ideal)

Figure 7.20: Variation of the runtime distribution (in seconds) of the pull version of
the DiP naive and INBS implementations against the number of nodes used to pro-
cess the first 20 Single-Source Shortest Paths iterations on graphs S 1.5B 16 100K and
S 50M 1K 10K, using 2 MPI processes per node and 16 OpenMP threads per MPI pro-
cess for the naive implementation and 32 MPI processes per node and 1 OpenMP thread
per MPI process for the INBS implementation.

175

Chapter 7: A distributed-memory implementation of iPregel

the runtime increase from the buffer exchange phase is negated by the performance gains

obtained by the vertex processing and message fetching phases. The reason for this is the

runtime starting point in the buffer exchange phase. Both vertex processing and message

fetching phases exhibit an identical runtime across naive and INBS implementations. The

difference, therefore, comes down to the improvement of network communications in the

INBS implementation, thus increasing the proportion of runtime spent on vertex process

and buffer exchange, allowing these phases to have an impact on the runtime sufficiently

big to hide the growing overhead of the buffer exchange phase.

General Across the 16 sets of strong node scalability results collected in this section,

two main trends were visible. Firstly, for graphs with a large number of vertices such as

the sparse graph S 1.5B 16 100K, the size of the DiP buffers prevents any node scaling

benefits. However, the vertex processing phase, which does encounter performance gains

when the number of nodes is increased, represents a non-negligible amount of runtime,

therefore the performance gains delivered in this phase partially mitigate the growing

overhead of network communications. Nevertheless, for graph processing algorithms such

as SSSP where the number of active vertices is low, the performance gains from parallel-

ising the vertex processing phase no longer noticeably mitigate the increasing overhead of

network communications. Secondly, in graphs with a low number of vertices, the size of

DiP buffers shrinks accordingly, allowing the runtime of the buffer exchange to reduce to a

few seconds. As a consequence, the runtime becomes dominated by the vertex processing

or message-fetching phase. The exception is the push version running SSSP which, for

the sparse graph, requires only a couple of seconds to handle the vertex processing phase,

thus meaning that the buffer exchange is still a significant part of the overall runtime

despite the decrease in absolute runtime.

As mentioned in Subsubsection 7.3.3.4, the fundamental weakness of the buffer design

implemented in the DiP framework is poor node scalability. Although the intra-node

buffer sharing technique delays this overhead, and typically results in runtime between

two and three times smaller, the node scalability observed is not improved. As seen by

results collected from experiments conducted in this subsection, this noticeably impacts

performance on graphs with a number of vertices in the billion and above range such as the

S 1.5B 16 100K. On graphs with tens of millions of vertices, such as the S 50M 1K 10K,

the size of the DiP buffers is less than a gigabyte, which means that the buffer exchange

does not significantly impact overall performance.

176

Chapter 7: A distributed-memory implementation of iPregel

7.6.2.2 Weak scalability

The second node scalability aspect investigated in this section is weak scalability, where

the workload per node is kept constant as the node count increases. The graphs selected

are scaled up by multiplying both their order and size by the number of nodes used.

In addition to exploring the weak scalability of the DiP framework, this subsubsection

also intends to provide an insight into the memory footprint scalability of DiP. Since the

memory footprint of the naive implementation of DiP is proportional to the number of

MPI processes, whilst that of INBS is proportional to the number of nodes, only the INBS

implementation was selected to be executed as part of these weak scaling experiments.

Switch to 64-bit identifiers Initially, both graphs presented in Table 7.1 were selected

for weak scaling experiments. However, once scaled up by a factor of four, the graph

S 1.5B 16 100K reached an order of six billion, which represents a number of vertices

that is no longer encodable by a 32-bit integer. As a result, a switch to 64-bit integers

was required. This change doubled the size of a vertex’s identifier, which subsequently

doubles the amount of memory needed to store edges as well as increasing the size of

vertex structures. For graph S 1.5B 16 100K scaled up by four, the total amount of

memory required to store only the vertex structures and edges is given by Equation 7.12.

TotalINBS = SV ×
|V |
N

+ SE ×
|E|
N

= 40× 6× 109

4
+ 8× 96× 109

4

= 60 + 192

= 252 (7.12)

where TotalINBS is the total amount of memory needed per node to store vertex structures

and edges, SV is the size of a vertex structure, |V | is the graph order, N is the number

of nodes, SE is the size of an edge and |E| is the graph size.

Due to this switch to 64-bit vertex identifiers, out of the 256GB available on a node,

252GB are occupied by vertex structures and edges. Whilst the memory footprint of

vertex structures increased from 48GB to 60GB, the growth in overall memory footprint

is mainly due to the doubling of the edges’ memory footprint, now requiring 192GB.

Therefore, under these circumstances, processing the graph S 1.5B 16 100K exhausts the

memory available on a node of Cirrus, before considering the memory necessary to store

the buffers used in the DiP buffer design presented in Subsection 7.3.3, or required by

MPI and operating system internals.

177

Chapter 7: A distributed-memory implementation of iPregel

Table 7.2: Correspondence between weak scaling multiplier and both graph order and
size.

S 50M 1K 10K S 1.5B 8 100K

Multiplier
Graph order
(in millions)

Graph size
(in billions)

Graph order
(in millions)

Graph size
(in billions)

1 50 50 1,500 12
2 100 100 3,000 24
4 200 200 6,000 48
8 400 400 12,000 96
16 800 800 24,000 192
32 1,600 1,600 48,000 384

As a consequence, graph S 1.5B 16 100K was replaced with graph S 1.5B 8 100K,

which contains half the number of edges. The updated list of graphs selected for weak

scaling experiments is given in Table 7.2.

PageRank Figure 7.21 shows the runtimes measured to complete 10 PageRank iter-

ations on graphs S 1.5B 8 100K and S 50M 1K 10K. The missing data points on the

former reflect out-of-memory failures, where the total amount of memory required ex-

ceeded 256GB, which was mostly due to the growing memory footprint of the DiP buffers.

Over 1 node, for the S 1.5B 8 100K graph, DiP buffers account for 13.5GB, eventually

reaching 432GB at 32 nodes. The turning point, at which a given graph can no longer

be further scaled up without generating out-of-memory failures, differs between push

and pull versions on the graph S 1.5B 8 100K. As shown in Figure 7.21, the pull version

encounters this point at 8 nodes whereas for this push version this occurs at 4 nodes.

Over 8 nodes, 108GB is required to hold DiP buffers and 156GB for vertex structures

and edges total 254GB, leaving 2GB for all other software layers, including the operating

system and MPI internals. However, over 4 nodes, the size of the DiP buffers is 54GB,

totalling 210GB when including vertex structures and edges. Therefore 46GB of memory

remains on the node to contain aspects including the operating system and MPI. For in-

stance, the MPI reduction used in the push version requires the use of internal temporary

buffers, unlike the MPI broadcast used in the pull version. The allocation and handling

of such temporary buffers are dependent on the MPI implementation used. However,

experiments suggest that this overhead may reach up to 30GB for the graph size over 4

nodes, with this third-party memory requirement being the determining factor between

a successful run or out-of-memory error.

178

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16 32
0

40

80

120

160

200

Graph size multiplier / Node count

R
u
n
ti
m
e
in

se
co
n
d
s

S 1.5B 8 100K

1 2 4 8 16 32
0

200

400

600

800

1,000

Graph size multiplier / Node count

S 50M 1K 10K

Push (ideal) Pull (ideal)
Push (observed) Pull (observed)

Figure 7.21: Variation of the runtime of the push and pull versions of the INBS im-
plementations against the graph size multiplier, for both graphs S 1.5B 8 100K and
S 50M 1K 10K, to process 10 PageRank iterations, using 32 MPI processes per node
and 1 OpenMP thread per MPI process.

Despite the out-of-memory failures that were encountered, results collected from ex-

periments for graph S 1.5B 8 100K illustrate that both push and pull versions deliver

a runtime which approximately doubles as the weak scaling factor doubles. Given that

weak scaling experiments keep the local computation constant on each node, the runtime

increase observed is therefore caused by network communications. Nodes are connected

with InfiniBand providing a bandwidth of 54.5Gb/s. Over 2 nodes, the 27GB of DiP

buffers, therefore, require at-best 4 seconds to be transmitted. Given that 10 iterations

of PageRank are executed, this corresponds closely to the difference in execution time

observed between 1 and 2 nodes for the pull version, and similarly between 2 and 4 nodes.

The increase observed on the push version, however, is greater than 40 seconds because

of the reduction operation.

By comparing the weak scalability on both graphs, it can be seen that the pull version

performs better on graph S 50M 1K 10K than on S 1.5B 8 100K. This is explained by

the size of the buffers being 30 times smaller, due to the number of vertices being 30 times

lower. However, the pull version on S 50M 1K 10K also demonstrates weak scalability

behaviour that is different to that of its push counterpart, highlighting the presence of

the extra operations required in an MPI reduction, such as buffer copies and reduction

operation, compared to an MPI broadcast.

179

Chapter 7: A distributed-memory implementation of iPregel

1 2 4 8 16 32
0

40

80

120

160

200

240

Graph size multiplier / Node count

R
u
n
ti
m
e
in

se
co
n
d
s

S 1.5B 8 100K

1 2 4 8 16 32
0

20

40

60

80

100

120

Graph size multiplier / Node count

S 50M 1K 10K

Push (ideal) Pull (ideal)
Push (observed) Pull (observed)

Figure 7.22: Variation of the runtime of the push and pull versions of the INBS im-
plementation against the graph size multiplier, for both graphs S 1.5B 8 100K and
S 50M 1K 10K, to process the first 20 Single-Source Shortest Paths iterations, using
32 MPI processes per node and 1 OpenMP thread per MPI process.

In addition to inducing out-of-memory failures, the worst weak scalability is observed

on graph S 1.5B 8 100K, experiencing an overhead of 250% over 4 nodes. As explained

throughout previous sections, the high number of vertices in such graphs results in large

buffers, and therefore expensive network communications and reduction operations. Con-

versely, the best weak scalability is seen with the pull version on graph S 50M 1K 10K,

which, over 32 nodes, processes the biggest graph generated in this research, 1.6 trillion

edges, while limiting the overhead to 30%.

Single-Source Shortest Paths Figure 7.22 reports weak scalability of both the push and

pull versions of DiP when processing the first 20 supersteps of SSSP on S 1.5B 8 100K

and S 50M 1K 10K graphs. Similarly, to PageRank, for graph S 1.5B 8 100K, out-of-

memory failures are generated from 4 nodes onwards for the push version and 8 nodes

onwards for the pull version. Although differences exist between PageRank and SSSP

on an algorithmic basis, they do not influence the memory footprint, thus raising out-of-

memory failures at the same node counts.

Moreover, the weak scaling behaviour observed for the S 1.5B 8 100K graph is con-

sistent with that observed for PageRank. The low number of active vertices present in

SSSP permits the push version to provide performance equal to that of the pull version.

180

Chapter 7: A distributed-memory implementation of iPregel

However the low number of active vertices does not influence network communications,

which have been analysed above as the cause of this runtime increase.

The results obtained by running SSSP over the S 50M 1K 10K graph illustrate that

there is an overhead of approximately 60 seconds over 32 nodes, for both push and pull

versions. However, the small number of active vertices in SSSP cannot be exploited by

the pull version, which, as observed in previous sections, is required to process each vertex

regardless of its state. The ability of the push version to skip inactive vertices allows it

to complete the first 20 supersteps of SSSP in only a few seconds at one node, compared

to over 60 for its pull counterpart.

Finally, in the case of the push version on the S 50M 1K 10K graph, when weakly

scaled by a factor of 32, the performance observed when processing the corresponding

graph of 1.6 trillion edges is equivalent to more than 250 billion edges traversed per

second.

General The weak scaling experiments presented in this subsubsection support the ob-

servations made in the strong scaling experiments, where the impact of network commu-

nications on graphs with a higher order is greater due to the size of DiP buffers growing

proportionally to the graph order.

Furthermore, the reduction which is applied in the push version typically results in

an overall performance worse than its pull counterpart, which instead relies on simpler

broadcast and lockless memory accesses. The exception to this is SSSP, where the ability

of the push version to skip inactive vertices outweighs the benefits from the pull versions.

Finally, these experiments also demonstrate that when processing a graph comprising

1.6 trillion edges, the DiP framework is able to maintain its overhead at 30% in the case

of PageRank, or traverse 250 billion edges per second in the case of SSSP.

7.6.3 Memory footprint

Memory footprint is the second aspect evaluated in this section. As highlighted in previ-

ous chapters, the impact of memory footprint can be two-fold, impacting performance as

well as generating an out-of-memory failure. In distributed-memory systems, the latter

can usually be overcome by the addition of nodes. However, the replicated nature of the

buffer design presented in Subsection 7.3.3 challenges this possibility, in return for the

multiple benefits presented in Subsubsection 7.3.3.3.

181

Chapter 7: A distributed-memory implementation of iPregel

7.6.3.1 Predictability

Although the memory footprint of the DiP buffers is replicated, it does not vary through-

out execution and therefore can be calculated before execution. These properties make

the memory footprint of DiP predictable, thus helping foresee out-of-memory failures or

anticipate hardware requirements given the size of the graph considered. Moreover, in

DiP, any out-of-memory failure caused by the buffer design presented in Subsection 7.3.3

occurs during the initialisation phase. This contrasts against those buffer designs which

are based on dynamically resizeable structures, which may trigger an out-of-memory fail-

ure virtually at any point during execution. This may prove particularly inconvenient

when occurring towards the end of long, and expensive, graph processing jobs.

The formula to calculate the memory usage per node of the naive DiP implementation

is given in Equation 7.13, assuming an identical number of MPI processes on each node.

MNAIVE = (SF + SM)× |V | × PN +

(
|V | × SV + |E| × SE

N

)
+ ζ (7.13)

where MNAIVE is the memory usage per node for the naive implementation, MB is the

amount of memory needed to store both flag and value buffers as described in Equa-

tion 7.1, PN is the number of MPI processes per node, |V | is the graph order, SV is the

size of a vertex structure, |E| is the graph size, SE is the size of an edge and ζ is the

memory footprint of all underlying software layers. As explained in Subsection 7.4.2, the

memory footprint of the intra-node buffer sharing optimisation decreases the replication

level from per MPI process to per node, thus yielding Equation 7.14.

MINBS = (SF + SM)× |V |+
(
|V | × SV + |E| × SE

N

)
+ ζ (7.14)

where MINBS is the memory usage per node for the INBS implementation

However, as shown in weak scaling experiments presented in Subsubsection 7.6.2.2, the

memory footprint of underlying software layers represented by ζ must not be neglected.

In situations where concurrent non-blocking reductions occur, the implicit use of internal

temporary buffers by MPI Reduce can dynamically allocate a memory amount equal to

the size of DiP buffers: (SF + SM) × |V | × PN or (SF + SM) × |V |, for the naive and

INBS implementations respectively.

7.6.3.2 Size

As demonstrated by the previous subsubsection, the memory footprint of the naive im-

plementation, when using one MPI process, is equal to that of the INBS implementation.

182

Chapter 7: A distributed-memory implementation of iPregel

The difference for the naive implementation comes from the number of additional MPI

processes per node. Therefore, only the INBS implementation is considered in the exper-

iments conducted in this subsubsection.

Single node Equation 7.14 provides the formula to calculate the memory footprint

required by the INBS implementation. When considering the single node experiments

presented in Subsection 7.6.1, the resulting memory footprint obtained for each graph

has two possible values depending upon the benchmark selected. The term SM , which

represents the size of the type used to encode message payloads, is commonly a double-

precision float (8 bytes) in PageRank, while being of the same type as the vertex identifier

(4 bytes for the graph considered) in both CC and SSSP.

Processing PageRank on the graph S 1.5B 16 100K requires 157.5GB of memory, out

of which 13.5GB are due to the DiP buffers. When compared against the total memory

footprint, DiP buffers represent less than 9%. The difference highlighted in the previous

paragraph for CC and SSSP, results in 151.5GB being required instead, where 7.5GB are

allocated to DiP buffers or approximately 5% of the overall memory footprint. Because

the size of DiP buffers is proportional to the graph order, this makes them larger on

graphs such as S 1.5B 16 100K.

Conversely, the graph S 50M 1K 10K has a relatively low graph order, resulting in

smaller DiP buffers. To process PageRank, a total of 203GB is required, compared to

158GB on S 1.5B 16 100K. This increase is due to the larger graph size. However, the size

of the underlying DiP buffers is 0.45GB or less than 1% of the total memory footprint.

This is a reduction of 97% compared to what was observed for the S 1.5B 16 100K graph.

Similarly, for CC and SSSP, only 0.25GB of memory is required for storing DiP buffers,

out of a total of 202GB.

When compared against the amount of memory available on a node, which is 256GB,

the portion taken by DiP buffers ranges between 0.1% and 5%. In other words, the

memory footprint overhead of the buffer design in DiP is relatively low for the graphs

considered here.

Strong scaling As explained in Subsubsection 7.3.3.4, the main weakness of the buffer

design introduced in Subsection 7.3.3 is its replication across nodes for the INBS imple-

mentation. Because the term (SF + SM) × |V | from Equation 7.14 remains constant,

this is the limit towards which the memory footprint tends to grow as the node count

increases. Table 7.3 lists the amount of memory required per node, calculated from Equa-

tion 7.14 (neglecting ζ), in the configuration used in strong scaling experiments presented

in Subsubsection 7.6.2.1.

183

Chapter 7: A distributed-memory implementation of iPregel

Node count
S 1.5B 16 100K S 50M 1K 10K
PR CC or SSSP PR CC or SSSP

1 157.5 151.5 202.5 202.1
2 85.5 79.5 101.7 101.3
4 49.5 43.5 51.3 50.9
8 31.5 25.5 26.1 25.7
16 22.5 16.5 13.5 13.1

Table 7.3: Total memory footprint (in GB) of the INBS implementation against the node
count, to process PageRank, Connected Components and Single-Source Shortest Paths
on both S 1.5B 16 100K and S 50M 1K 10K graphs, using one MPI process per node.

A metric similar to node scalability could be used on the memory footprint, which

assesses the extent to which the memory requirements grow as the node count increases.

Considering graph S 1.5B 16 100K for instance, the memory footprint of DiP buffers

has been calculated at 13.5GB or 9% of the total memory footprint for PageRank. The

remaining 91% are therefore distributed across the nodes. This means that, from 12

nodes onwards, more than half of the entire memory footprint on a node is occupied by

the DiP buffers. This is illustrated in Table 7.3 at 16 nodes for instance, where 13.5GB,

or 60%, of the 22.5GB are allocated to DiP buffers.

Continuing the analogy with performance speedup and parallel efficiency, at 16 nodes,

the original memory footprint is divided by 7, or 44% compared to what can be considered

as the ideal where the memory footprint would have been divided by 16. Due to their

smaller messages on this graph, Connected Components and Single-Source Shortest Paths

the memory footprint of CC and SSSP are dominated by the DiP buffers at 20 nodes

instead of 12. The memory footprint of 16.5GB calculated over 16 nodes is therefore

relatively better, being 9.2 times lower than its single-node counterpart, equivalent to

57% of the ideal.

Due to its lower graph order, graph S 50M 1K 10K results in smaller DiP buffers

while generating a larger memory footprint overall. With PageRank, for instance, over

16 nodes, the memory footprint is divided by 15, which is 94% of the ideal. Similarly,

for CC and SSSP where the memory footprint calculated is 15.4 times lower than the

single-node one, equivalent to 96% of the ideal.

As a result, this analysis demonstrates that the core weakness of the DiP buffers,

their replication, does not prevent this design from delivering strong scaling gains.

Weak scaling As observed in weak scaling experiments conducted in Subsection 7.6.2.2,

the growing size of DiP buffers eventually led both push and pull versions to exhaust

memory. For graph S 1.5B 8 100K, this occurred over two and four nodes, for the push

184

Chapter 7: A distributed-memory implementation of iPregel

and pull versions respectively. Processing the graph S 50M 1K 10K, however, did not

generate such errors in the range of weak scaling factors considered. According to Equa-

tion 7.14, at 64 nodes, the memory footprint of the INBS version, excluding ζ, is estimated

at 230GB, which remains under the 256GB available on a node. However, the estimation

for 128 nodes projects a memory footprint, excluding ζ, of 460GB due to the switch to

64-bit vertex identifiers.

The weak scaling experiments of Subsubsection 7.6.2.2, stopped over 32 nodes, and

at this scale the 256GB of RAM available on each node total 8,192GB of distributed

memory. For the scaled-up version of graph S 50M 1K 10K, which contains 1.6 trillion

edges, storing edges requires 6,400 GB of RAM, or 200GB per node, assuming 4-byte

vertex identifiers. In DiP, the buffer design introduced in Section 7.3.3 requires 14GB per

node to process PageRank, representing only 7% of the total memory footprint, excluding

ζ. This is similar to the observations made in the previous subsubsection focussing on

strong scaling.

Therefore, also in a weak scaling context, the efficiency of memory footprint of DiP ’s

buffers can vary significantly between graphs, from experiencing out-of-memory failures

over as few as 4 nodes, to enabling a trillion-edge graph to be processed over a thousand

cores while generating a memory overhead as small as 400MB per core.

7.6.3.3 IBMP

As mentioned in Subsubsection 7.6.2.2, while the out-of-memory failures encountered

with the original S 1.5B 16 100K graph were triggered by the switch to 64-bit types,

those raised with graph S 1.5B 8 100K however were due to the growth of DiP buffers.

For example, on the latter graph with a weak scaling factor of 32, DiP buffers alone

would occupy a total of 432GB of memory.

This issue can be addressed with the IBMP technique introduced in Subsection 7.4.3,

enabling DiP to limit the memory footprint of DiP buffers to a threshold specified by

the user. At the time of writing, the implementation of the IBMP technique is not fully

functional for some of the large-scale graph processing considered in the weak scaling

experiments. Nonetheless, the results that have been collected are discussed in this

section.

Table 7.4 summarises the findings obtained when running, in a weak scaling con-

figuration, PageRank with the push version of the IBMP implementation on the graph

S 1.5B 8 100K. The results obtained broadly support the analysis from Subsection 7.4.3,

where an overhead in performance is encountered due to the multiple rounds of pro-

cessing required. On a single node, the 3 IBMP rounds that are required result in an

185

Chapter 7: A distributed-memory implementation of iPregel

Weak scaling
factor

Number of
IBMP rounds

IBMP runtime
(in seconds)

INBS runtime
(in seconds)

Slowdown

1 3 255.41 79.96 3.19
2 6 652.52 153.94 4.23
4 11 1295.86 - -

Table 7.4: Summary of weak scaling experiments run on graph S 1.5B 8 100K with the
push version of the IBMP implementation, to process 10 PageRank iterations using an
IBMP allocation of 10GB per MPI process, using 1 MPI process per node and 32 OpenMP
threads per MPI process

Weak scaling
factor

Number of
IBMP rounds

IBMP runtime
(in seconds)

INBS runtime
(in seconds)

Slowdown

1 3 189.00 44.49 4.25
2 6 332.04 78.89 4.20
4 11 584.03 137.12 4.26

Table 7.5: Summary of weak scaling experiments run on graph S 1.5B 8 100K with the
pull version of the IBMP implementation, to process 10 PageRank iterations using an
IBMP allocation of 10GB per MPI process, using 1 MPI process per node and 32 OpenMP
threads per MPI process

overall runtime that is 3.2 times higher than the INBS reference. With a weak scaling

factor of 2, the runtime obtained is 4.2 times higher than that of the INBS implementa-

tion, instead of 6, which could be expected given that 6 IBMP rounds are executed. This

difference can be explained by the fact that only local computation is indeed repeated

across IBMP rounds to combine messages, however, communications are issued only once

overall at the end of the superstep. Moreover, the performance observed does not seem

to suffer from the poor parallelisation of the MPI reduction highlighted earlier in this

chapter. As shown in Figure 7.7, when selecting one MPI process per node, the IBMP

implementation alternatively uses two buffers so that local computation and commu-

nications overlap. This overlapping enables the non-blocking MPI reduction to execute

concurrently with vertex processing, reducing the overhead of communication. Most im-

portantly, at a weak scaling factor of 4, the IBMP implementation successfully executes

PageRank whilst INBS results in an out-of-memory failure. This particular experiment

acts as a proof of concept, demonstrating the ability of the IBMP technique to enable

DiP to process a graph it otherwise could not.

Table 7.5 reports runtime results from the pull version of the DiP framework. The

runtime of IBMP is again proportional to the number of rounds executed. In this config-

uration, however, no out-of-memory failure was generated by the INBS implementation

on the weak scaling interval considered. The INBS implementation proves to be approx-

186

Chapter 7: A distributed-memory implementation of iPregel

imately four times faster in all three experiments, however, performance of the IBMP

technique is secondary, as the primary objective is to enable DiP to process graphs that

otherwise would exhaust memory.

Results collected, therefore, demonstrate that the IBMP technique enables the DiP

framework to process graphs that would otherwise be impractical. An example of this is

provided by Table 7.4, where IBMP enables DiP to process a graph of 6 billion vertices

and 48 billion edges.

7.6.4 Programmability

The third and final aspect used in the evaluation of the DiP framework is programmab-

ility. More specifically, assessing whether the original vertex-centric abstractions have

been preserved.

The fundamental vertex-centric abstraction remains the expression of computation

from the perspective of a vertex. Not requiring the user to retain a global view of the

graph, but instead providing them with a localised approach to graph computation is the

core objective of vertex-centric programming. As shown in Subsection 7.5.4, implement-

ing benchmarks in the DiP framework conforms by this paradigm by allowing the user to

express computation from a vertex’s point of view via a single function, dip compute.

As mentioned in Section 7.3, the interface provided by DiP has been inspired and built

from that of iPregel. A difference is that, in its current state, the DiP framework restricts

the combination operations that are possible to the set of predefined reduction operations

in MPI. This is a precondition to the original assumption that MPI one-sided operations,

which do not accept user-defined operations, may be used in DiP. Nevertheless, the stand-

ard set of predefined MPI reduction operations covers the majority of operations required

by graph processing combiners, and the DiP framework could be extended in the future

to accept arbitrary operations.

Another important component of this programming model is the ability for the user

to focus on the implementation of their algorithm, whilst performance-related aspects are

offloaded to the underlying framework. To that end explicit parallelism is not exposed

to the user, and neither are atomic operations. In DiP, parallelism is automatically

applied and no low-level concerns are required to be addressed by the user, and this was

illustrated by the benchmark implementations that were discussed in Subsection 7.5.4.

The final factor used in this consideration of programmability is the message-passing

abstraction provided to implement inter-vertex interactions. In DiP, the user continues to

be provided with a message-passing abstraction via the dip send and dip broadcast

functions, following the same usage behaviour as corresponding iPregel functions.

187

Chapter 7: A distributed-memory implementation of iPregel

Therefore, based on the above, it is concluded that the DiP framework successfully

preserves the cornerstone of vertex-centric, programmability providing the user with the

very programming abstractions that define this programming model, regardless of the

underlying implementation used whether it be naive, INBS or IBMP.

7.7 Conclusions and future work

The work presented in this chapter focussed on the design and development of the

distributed-memory framework DiP, porting the overarching philosophy, as well as ad-

apting optimisation techniques, from the shared-memory framework iPregel. At its core,

the buffer design introduced in Subsection 7.3.3, leverages the direct mapping property

to provide numerous benefits to the overall vertex-centric workflow.

For the sender, this buffer design removes the need for hash-based indexing of ver-

tices, commonly found in state-of-the-art distributed-memory vertex-centric frameworks.

By semantically enriching the array indexes to represent vertex identifiers, the direct

mapping property of this buffer design also removed the need to append recipient vertex

identifiers to generated messages. Moreover, by not relying on a dynamically resizeable

structure nor delaying sender-side combinations, this buffer design also removed the need

for the sorting phase that is commonly required by other frameworks. This consequently

reduced the algorithmic complexity of the message generation phase from O(n× log2(n)),

or O(n × log2(n) + n), as explained in Section 7.2; to O(n), as explained in Subsub-

section 7.3.3.3. Benefits from the DiP buffer design are also observed on the receiver

side, where the message unwrapping phase common in distributed-memory frameworks

is no longer necessary as vertex identifiers are not appended to messages. Furthermore,

message dispatches are also no longer needed because the combined data can be received

directly into the vertex recipient’s mailbox, due to the externalisation of vertex structure

members to guarantee contiguity in memory. The final benefit of this buffer design is the

limitation of its maximum memory footprint, from being proportional to the graph size

in most distributed-memory frameworks [12, 25, 88], to being proportional to the graph

order, which is typically at least an order of magnitude smaller.

However, despite the benefits listed above, this buffer design also encounters a fun-

damental weakness: its memory footprint is fixed and replicated. In other words, the

memory footprint is constant, and this is independent of the number of empty elements

which are contained within the buffer. This fixing of the memory size is required to sup-

port direct mapping, and each MPI process must store buffers with a number of elements

equal to the graph order. The replicated nature of buffers partially negates the benefits

188

Chapter 7: A distributed-memory implementation of iPregel

of adding more nodes, and also implies that this will not address situations where the

memory footprint of the DiP buffers alone exceeds the amount of memory available on a

node. In addition, its replication basis is the MPI process, meaning that the maximum

number of MPI processes that can be used is also limited, itself resulting in a poor paral-

lelisation of underlying MPI collective operations used in the buffer exchange phase, such

as the MPI reduction.

To address the parallelisation issue, as well as attempting to reduce the memory

footprint, the intra-node buffer sharing (INBS) technique has been developed and was

presented in Subsection 7.4.2. By leveraging shared-memory, the INBS technique enables

MPI processes residing on a given node to share their DiP buffers, therefore allocating

only one buffer per node. This technique effectively decouples the memory footprint per

node of DiP from the number of MPI processes residing on it. As a result, a higher num-

ber of MPI processes per node can be used, therefore improving the parallelisation of MPI

collective operations. Furthermore, with a careful design of communication patterns, and

the use of several levels of communicators, the buffer exchange phase is decomposed into

a series of concurrent collective operations making use of all MPI processes while min-

imising the number of MPI processes taking part in each series. This yielded noticeable

performance gains, both for single-node performance as well as node scalability. This was

particularly evident for the push version, where the single-threaded execution of the MPI

reduction was penalising overall performance.

Nonetheless, the DiP buffers must continue to allocate a number of elements equal

to the graph order, thus limiting the maximum graph order that can be processed. To

address this issue, the interval-based message processing technique has been developed,

introduced in Section 7.4.3. This provides DiP with the ability to constrain the size of

buffers within the amount of memory specified by the user at the expense of additional

computation. The IBMP technique therefore virtually removes the risk of out-of-memory

failures due to DiP buffers. Experiments conducted in Subsubsection 7.6.3.3 demon-

strated that, with the use of the IBMP technique, the DiP framework is able to process

a graph comprising 6 billion vertices and 48 billion edges, which it was unable to do so

using the INBS implementation.

Overall, experiments demonstrated that the DiP framework manages to deliver the

performance of iPregel to distributed-memory architectures. Over a single node, DiP

outperformed iPregel in eight out of twelve experiments. However, the selection bypass

technique introduced in Subsubsection 4.3.4.1 enables iPregel to continue to perform well

when an application with a typically low number of active vertices in its execution flow,

such as SSSP, is applied to a graph with high order. This resulted in a performance

189

Chapter 7: A distributed-memory implementation of iPregel

advantage over DiP of up to a factor of 60. Investigating the feasibility of porting

this technique to distributed-memory could therefore greatly improve the performance of

vertex-centric frameworks in similar configurations, including DiP. In addition to single-

node experiments, multi-node experiments were conducted. Numerous scenarios were

considered and results showed that whilst DiP does exhibit poor scalability in certain

situations, typically on graphs with a high order, it can prove very efficient in other

situations.

When considering future directions, the IBMP technique evaluated in Subsubsec-

tion 7.6.3.3 may prove to have unexploited potential. For instance, the memory footprint

of IBMP buffers remains replicated on a per MPI process basis. It would therefore

benefit from the buffer-sharing feature provided by the INBS technique. Furthermore,

early algorithmic analysis shows that the IBMP and INBS techniques are not mutually

exclusive, but a new implementation would need to be developed to exploit this ob-

servation. Another potential direction for future work could explore the use of double

buffering in vertex-centric programs. As observed with the push version, computation

and communication overlapping obtained by the alternating use of two buffers in the

IBMP implementation appeared to mitigate some of the expected performance penalty

due to the poor parallelisation of the MPI reduction. Finally, in addition to the porting

of the selection bypass technique to distributed-memory, another direction to investigate

could be that of a buffer-less, or near buffer-less, design where messages are sent as soon

as generated. Such an approach would require technologies that focus on low latency,

typically one-sided, communications. An attempt has been made in this research, us-

ing the GASPI [92] technology. However, the use of GASPI was not possible due to

implementation limitations incompatible with the support of combiners. In GASPI, the

function that implements a one-sided accumulation, equivalent to MPI Accumulate in

MPI, only supports the sum combination operation. Although the inability to pass user-

defined operations to one-sided functions is present in MPI too, the latter does provide

a standard set of predefined operations covering most reduction operations required by

commonly used graph algorithms. Another option in GASPI is to use the one-sided re-

mote compare-and-swap, however restrictions imposed on the type of the target variable

meant that this was not suitable in its current form.

190

Chapter 8

Conclusions and future work

This chapter summarises the findings presented in this thesis and discusses their relevance

towards the verification of the original research hypothesis given in Chapter 1, as well as

presenting potential future directions that may prove interesting to explore.

The first research direction consisted in demonstrating whether optimisation tech-

niques can be developed without sacrificing programmability in vertex-centric shared-

memory frameworks. As shown in Chapter 4, existing shared-memory frameworks can

be divided into those preserving vertex-centric programmability, and those that sacrifice

vertex-centric abstractions for performance and memory efficiency gains. Experiments

conducted demonstrate that the former suffers from performance and memory efficiency

penalties of orders of magnitudes, while in the latter a removal of certain fundamental

vertex-centric abstractions, such as message-passing or exposing explicit parallelism to

the user, is observed.

The vertex-centric framework developed in this research, iPregel, implements a highly

modular design that allows underlying modules to be switched without requiring applic-

ation rewritings. Moreover, multiple optimisation techniques have been designed, such as

the selection bypass, the hybrid combiner and the vertex structure externalisation which

leverage the clear distinction between the user interface and underlying implementations

provided through vertex-centric abstractions. As observed the experiments of Chapters 4

and 5, the techniques implemented improve the handling of vertex-centric phases such

as vertex selection and message combination, as well as tackling more general challenges

such as load imbalance and memory locality. The results collected show that the iPre-

gel framework successfully reaches the performance and memory efficiency of the fastest

and most memory-efficient shared-memory frameworks tested. When compared against

the then state-of-the-art distributed-memory vertex-centric framework Pregel+, iPregel

demonstrates a memory footprint that is an order of magnitude smaller, while also ex-

191

Chapter 8: Conclusions and future work

hibiting a single-node performance that Pregel+ can only match by using ten times the

hardware resources. However, the most important aspect is that iPregel manages to

achieve these results without having sacrificed vertex-centric abstractions, therefore veri-

fying the first research direction.

The second research direction focussed on how the benefits obtained from shared-

memory can be preserved while overcoming the memory limitations associated with a

single node. To that end, non-volatile memory technology has been explored. Able to act

as a filesystem, NVRAM can also behave as an extension to DRAM, thus allowing shared-

memory frameworks to run within a single memory space containing terabytes of memory

at low cost and with low power consumption. However, these benefits come at the expense

of technology that is slower than DRAM, and provides asymmetric speeds for reads and

writes. These characteristics make NVRAM particularly sensitive to data placement, as

well as data movements between NVRAM and DRAM. The persistent-memory program-

ming Software Development Kit (SDK) enables NVRAM to be used in multiple modes,

for example acting as main memory while DRAM implicitly acts as the last-level cache,

in which case underlying data movements and allocations are automatically handled,

or behaving as a distinct medium requiring the use of explicit data manipulations. To

evaluate the multiple memory modes available, several implementations of iPregel were

developed, and experiments showed that careful placement of data and well-timed data

movements, driven by insights gained from analysing the application’s memory access

patterns, are key to leveraging the performance of NVRAM.

Although non-volatile memory enables the iPregel framework to scale to a graph of

750 billion edges, shared-memory frameworks cannot benefit from the extra resources

available on additional nodes, such as fast DRAM memory and compute power. In

addition to performance, the results gathered also show that non-volatile memory is

efficient in terms of energy and cost, consuming two orders of magnitude less energy and

costing approximately half a million pounds less than using the equivalent amount of

resources from the supercomputer used to process the biggest graph to date. Therefore,

by successfully utilising non-volatile memory to enable the shared-memory vertex-centric

framework iPregel to process a graph with nearly a trillion edges, this investigation verifies

the second research direction.

The third research direction was the development of a design allowing the benefits

of shared-memory iPregel to be leveraged over a distributed-memory architecture, in

the scope of low to medium node counts. The research led to the development of a

distributed-memory vertex-centric framework named DiP, which ports some of the tech-

niques from iPregel, as well as exposing an interface consistent with that of iPregel. At its

192

Chapter 8: Conclusions and future work

core, the DiP framework implements a new buffer design that provides several benefits

including a lighter message structure, an indexing mechanism not relying on hashing,

an immediate combination upon queue which does not require prior sorting, a straight-

forward message dispatch not requiring intermediate copies or unwrapping. However, it

is limited by the fact that its memory footprint is fixed, in order to provide the direct

mapping property underlying most optimisations, and replicated across MPI processes.

An intra-node buffer-sharing technique has been proposed in Subsection 7.4.2 to address

the second drawback to this distributed approach. By enabling MPI processes on a given

node to share buffers, this technique reduces the memory footprint replication basis from

per MPI process to per node. To evaluate the competitiveness of the DiP framework

against a shared-memory state-of-the-art, experiments have been carried out to compare

against iPregel. Both push and pull versions of each framework were evaluated on sparse

and dense graphs, across the three common vertex-centric benchmarks. Out of the twelve

experiments, eight concluded that the DiP framework exhibited better single-node per-

formance, although the key objective here is to enable the processing of larger graphs

rather than provide greater performance.

Experiments were then carried out to investigate node scalability. The results show

that the fewer the number of vertices, and thus the smaller the amount of data that is

exchanged, the better the strong scaling properties of the DiP framework. By remov-

ing the memory footprint replication across MPI processes, the INBS technique enables

nodes to host more MPI processes, which allows the parallelisation of MPI reductions

to a greater extent. Weak scaling experiments highlight that the growth of DiP buffers

eventually generates out-of-memory failures. The interval-based message processing tech-

nique proposed in Subsection 7.4.3 mitigates this issue by enabling the DiP framework

to restrict the memory footprint of its buffers to a limit specified by the user and execute

the processing phase in multiple rounds.

In terms of performance it has been demonstrated that the distributed-memory vertex-

centric framework is competitive with its shared-memory counterpart. Furthermore, it

was found that the memory footprint of the communication buffers, albeit replicated

across MPI processes, typically accounts for less than 10% of the entire memory footprint

per node due to the immediate combination of messages when they are queued up. This

contrasts against existing distributed-memory frameworks, which are known to generate

a noticeable memory overhead, where the message buffers account for up to 96% of the

entire memory footprint. For example, as discussed in Section 4.1, where 264GB of

DRAM was required by Giraph to process PageRank over a graph comprising nearly 2

billion edges [25], which can be stored in 8GB of memory. Despite the stress on network

193

Chapter 8: Conclusions and future work

bandwidth caused by large buffers, the scalability provided by DiP means that it is

still able to process graphs of up to 1.6 trillion edges across a thousand cores, using

approximately 6.8TB of DRAM in total, for a graph whose edges alone require 6.4TB

of memory. Comparatively, at this scale, a framework imposing a memory overhead of

96% would require over 160TB of memory. Moreover, as shown in Subsection 7.6.4, the

porting of iPregel optimisation techniques, the implementation of the buffer design and

the development of the INBS and IBMP techniques successfully preserve vertex-centric

programmability. Based on these findings, and the research conducted, therefore, the

third research direction is verified.

To summarise, the main contributions made throughout this research, and whose

relevance towards demonstrating the original research hypothesis was discussed further

in this chapter, can be recapitulated as follows:

• Several techniques able to provide performance equal to, or competitive with, that of

other non-vertex-centric frameworks, whilst maintaining a minimum memory foot-

print. The shared-memory framework developed in this research, iPregel, demon-

strated this across experiments.

• An exploration of non-volatile memory in the context of shared-memory vertex-

centric processing to overcome the limitation in-memory processing. Multiple data

placement and data movement strategies were implemented in the iPregel frame-

work to assess the suitability of each approach in maximising the asymmetric per-

formance of read-writes, combined with the two-level DRAM-NVRAM memory

system, with experiments conducted on graphs comprising between 250 and 750

billion edges.

• The porting of applicable techniques originally implemented in shared-memory, il-

lustrated in iPregel, to distributed-memory and the introduction of a buffer design

that reduces the algorithmic complexity of a full round of message generation from

O(n × log(n)) to O(n) by exploiting the direct mapping property. These tech-

niques and buffer design are demonstrated through the DiP distributed-memory

framework.

• Two improvements to the memory footprint of the buffer design implemented in the

DiP framework: an INBS technique relying on MPI-3 shared-memory and IBMP

technique that enables DiP to adapt its size to a memory limit specified by the

user.

• The fact that none of the techniques and methods presented above results in a

194

Chapter 8: Conclusions and future work

degradation of the vertex-centric programmability, thus maintaining the key benefit

delivered by this approach.

Nonetheless, there are numerous further directions worthy of further exploration based

upon the research reported in this thesis. As mentioned in Chapter 4, providing a built-in

support for message concatenation as the combination operation, albeit counter-intuitive

since combiners aim to merge messages, would improve the flexibility of both frameworks

developed in this research. This would allow a larger class of algorithms to be imple-

mented, which themselves would benefit from the techniques that have been developed

and integrated with combiners. However, supporting message concatenation requires a

careful design of the combiner in order to avoid requiring intermediate copies that may

result in memory leaks unbeknown to the user such as implicit mailbox swaps occurring

at the end of supersteps.

As discussed in Chapter 7, supporting user-defined combination operations in DiP

would widen the flexibility that is provided to the user of the framework. However

this feature is incompatible with the use of MPI one-sided routines that are leveraged

for implementing the distributed buffer. This is because MPI Remote Memory Access

(RMA), unlike MPI reduction calls, does not support user-defined operations.

A further approach worthy of exploration which could improve the handling of vertex

communications is the incrementalisation of vertex-centric programs, presented in Sub-

section 3.3.8. This is where the exchange of messages is redesigned to communicate data

representing inter-superstep variations. By sending deltas, representing only the changed

values, this will potentially reduce the overall amount of communications required be-

cause unchanged values need not be communicated. Existing research [36] reports that

the incrementalisation technique can be applied automatically to vertex-centric programs

and, depending upon the specific graph processing algorithm, has the potential to reduce

the number of messages exchanged. Consequently, such an approach would reduce the

pressure placed on memory and/or network bandwidths.

More generally, as mentioned in Chapter 4, further investigations into load-balancing

and work-stealing strategies could be beneficial to the performance of both frameworks

developed in this research, and more widely to graph processing applications. As shown

in Chapter 5, when switching from the default static OpenMP scheduling policy to

dynamic, with an experimentally determined chunk size, this resulted in an average spee-

dup of 1.50. However, techniques that better handle the distribution of workload across

workers and potentially adjust these choices at runtime with work-stealing strategies are

known to be particularly difficult to design in the context of distributed-memory paral-

lelism and incur overhead that must be offset by the benefits gained.

195

Chapter 8: Conclusions and future work

Finally, the results reported in this thesis do not include the time required to load the

graph processed, and this follows the standard way in which performance numbers are

calculated by contemporary research in the field. However, such overheads can become

significant when considering large files with a size typically beyond terabytes. Graph

loading is a performance challenge which can be improved, for instance, by leveraging

MPI parallel IO over dedicated parallel file systems or by exploring the possibility of

pipelining the loading and computing phases, developing techniques allowing the first

superstep to begin processing based on a graph partially loaded at any given point in

time.

To prospective users, the compilation process for iPregel is straightforward. Bench-

marks provided compile into multiple binaries: one for each available variation when

applicable, namely: push and pull combiners, with and without selection bypass, using

32-bit and 64-bit vertex identifiers. For users to leverage optimisation techniques in their

own applications, they only need to pass compilation flag defines given in Appendix L.

The distributed memory counterpart DiP relies on the same approach. Certain flags

are direct equivalent to those of iPregel, whereas others are specific to DiP, such as

defines specific to MPI, to determine for instance the MPI reduction operation to use

for the vertex-centric combination operation or the MPI datatype representing the data-

type of values exchanged during reduction. Compilations flags for DiP are provided in

Appendix M.

When considering the appropriate framework for a given application, several factors

are to be included in the decision-making process. One such factor is the size of the

graph in relation to the available memory. Situations where single-node processing is not

applicable renders iPregel unsuitable. In other cases, it is worth noting that the selection

bypass technique is currently only available in iPregel, which may make it a more versatile

option in terms of the available optimisations and a more fitting starting point. However,

as demonstrated in this thesis, the differences in implementation between iPregel and

DiP are minimal, allowing for easy transfer of applications between the two frameworks.

The DiP framework also offers a more fine-grain control over the datatypes used in the

graphs to read.

As previously noted in this chapter, both frameworks are designed upon combiners,

which can result in certain restrictions, such as limiting the types of combination opera-

tions that can be supported. For algorithms that require concatenation, implementation

may become error-prone due to potential memory leaks resulting from pointer passing in

the various combination copies that may be generated during the combination process.

While this issue can be addressed in some cases in iPregel through the use of global vari-

196

Chapter 8: Conclusions and future work

ables, DiP does not offer this option due to its distributed memory structure. Ultimately,

appreciating the different tradeoffs offered by the non-vertex-centric and vertex-centric

solutions available, and determining the approach followed, remains the choice of the

user.

197

198

Bibliography

[1] L. A. R. Capelli, Z. Hu, T. A. K. Zakian, iPregel: A Combiner-Based In-memory

Shared Memory Vertex-Centric Framework, Proceedings of the 47th International

Conference on Parallel Processing Companion - ICPP ’18 (2018). doi:10.1145/

3229710.3229719.

URL http://dx.doi.org/10.1145/3229710.3229719

[2] L. A. R. Capelli, Z. Hu, T. A. K. Zakian, N. Brown, J. M. Bull, iPregel: Vertex-

centric programmability vs memory efficiency and performance, why choose?, Par-

allel Computing 86 (2019) 45 – 56. doi:10.1016/j.parco.2019.04.005.

URL http : / / www . sciencedirect . com / science / article / pii /

S0167819118303788

[3] L. A. R. Capelli, N. Brown, J. M. Bull, iPregel: Strategies to Deal with an Extreme

Form of Irregularity in Vertex-Centric Graph Processing, Proceedings of the The

International Conference for High Performance Computing, Networking, Storage,

and Analysis - SC ’19 (2019). doi:10.1109/IA349570.2019.00013.

[4] L. A. R. Capelli, N. Brown, J. M. Bull, NVRAM as an Enabler to New Horizons

in Graph Processing, SN Computer Science 3 (5) (2022) 1–13. doi:10.1007/

s42979-022-01317-4.

URL https://doi.org/10.1007/s42979-022-01317-4

[5] H. Lin, X. Zhu, B. Yu, X. Tang, W. Xue, W. Chen, L. Zhang, T. Hoefler, X. Ma,

X. Liu, W. Zheng, J. Xu, ShenTu: Processing Multi-trillion Edge Graphs on Mil-

lions of Cores in Seconds, in: Proceedings of the International Conference for High

Performance Computing, Networking, Storage, and Analysis, SC ’18, IEEE Press,

Piscataway, NJ, USA, 2018, pp. 56:1–56:11. doi:10.1109/SC.2018.00059.

URL https://doi.org/10.1109/SC.2018.00059

199

http://dx.doi.org/10.1145/3229710.3229719
http://dx.doi.org/10.1145/3229710.3229719
https://doi.org/10.1145/3229710.3229719
https://doi.org/10.1145/3229710.3229719
http://dx.doi.org/10.1145/3229710.3229719
http://www.sciencedirect.com/science/article/pii/S0167819118303788
http://www.sciencedirect.com/science/article/pii/S0167819118303788
https://doi.org/10.1016/j.parco.2019.04.005
http://www.sciencedirect.com/science/article/pii/S0167819118303788
http://www.sciencedirect.com/science/article/pii/S0167819118303788
https://doi.org/10.1109/IA349570.2019.00013
https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1007/s42979-022-01317-4
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1109/SC.2018.00059
https://doi.org/10.1109/SC.2018.00059

[6] A. Brighen, H. Slimani, A. Rezgui, H. Kheddouci, Listing all maximal cliques in

large graphs on vertex-centric model, The Journal of Supercomputing 75 (8) (2019)

4918–4946.

[7] S. E. Schaeffer, Graph clustering, Computer science review 1 (1) (2007) 27–64.

[8] J. A. Bondy, U. S. R. Murty, et al., Graph theory with applications, Vol. 290,

Macmillan London, 1976.

[9] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, M. Saltz, A Distributed Vertex-

Centric Approach for Pattern Matching in Massive Graphs, in: 2013 IEEE Interna-

tional Conference on Big Data, IEEE, 2013, pp. 403–411.

[10] I. Abdelaziz, R. Harbi, S. Salihoglu, P. Kalnis, N. Mamoulis, SPARTex: A Vertex-

centric Framework for RDF Data Analytics, Proc. VLDB Endow. 8 (12) (2015)

1880–1883. doi:10.14778/2824032.2824091.

URL http://dx.doi.org/10.14778/2824032.2824091

[11] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, G. Cza-

jkowski, Pregel: A System for Large-scale Graph Processing, in: Proceedings of the

2010 ACM SIGMOD International Conference on Management of Data, SIGMOD

’10, ACM, New York, NY, USA, 2010, pp. 135–146. doi:10.1145/1807167.

1807184.

URL http://doi.acm.org/10.1145/1807167.1807184

[12] D. Yan, J. Cheng, Y. Lu, W. Ng, Effective Techniques for Message Reduction and

Load Balancing in Distributed Graph Computation, in: Proceedings of the 24th

International Conference on World Wide Web, International World Wide Web Con-

ferences Steering Committee, 2015, pp. 1307–1317.

[13] F. Khorasani, K. Vora, R. Gupta, L. N. Bhuyan, CuSha: Vertex-centric Graph

Processing on GPUs, in: Proceedings of the 23rd International Symposium on High-

performance Parallel and Distributed Computing, HPDC ’14, ACM, New York, NY,

USA, 2014, pp. 239–252. doi:10.1145/2600212.2600227.

URL http://doi.acm.org/10.1145/2600212.2600227

[14] F. Khorasani, High performance vertex-centric graph analytics on gpus, Ph.D. thesis,

UC Riverside (2016).

[15] S. Che, GasCL: A vertex-centric graph model for GPUs, in: 2014 IEEE High Per-

formance Extreme Computing Conference (HPEC), IEEE, 2014, pp. 1–6.

200

http://dx.doi.org/10.14778/2824032.2824091
http://dx.doi.org/10.14778/2824032.2824091
https://doi.org/10.14778/2824032.2824091
http://dx.doi.org/10.14778/2824032.2824091
http://doi.acm.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2600212.2600227
https://doi.org/10.1145/2600212.2600227
http://doi.acm.org/10.1145/2600212.2600227

[16] Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, F. Yu, Seastar: vertex-

centric programming for graph neural networks, in: Proceedings of the Sixteenth

European Conference on Computer Systems, 2021, pp. 359–375.

[17] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F. Mart́ınez,

C. Guestrin, GraphGen: An FPGA Framework for Vertex-Centric Graph Computa-

tion, in: 2014 IEEE 22nd Annual International Symposium on Field-Programmable

Custom Computing Machines, 2014, pp. 25–28. doi:10.1109/FCCM.2014.15.

[18] N. Engelhardt, H. K.-H. So, GraVF: A vertex-centric distributed graph processing

framework on FPGAs, in: Field Programmable Logic and Applications (FPL), 2016

26th International Conference on, IEEE, 2016, pp. 1–4.

[19] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, L. Zhou, GraM:

Scaling Graph Computation to the Trillions, in: Proceedings of the Sixth ACM

Symposium on Cloud Computing, SoCC ’15, ACM, New York, NY, USA, 2015, pp.

408–421. doi:10.1145/2806777.2806849.

URL http://doi.acm.org/10.1145/2806777.2806849

[20] K. Emoto, K. Matsuzaki, Z. Hu, A. Morihata, H. Iwasaki, Think Like a Vertex,

Behave Like a Function! A Functional DSL for Vertex-centric Big Graph Processing,

in: Proceedings of the 21st ACM SIGPLAN International Conference on Functional

Programming, ICFP 2016, ACM, New York, NY, USA, 2016, pp. 200–213. doi:

10.1145/2951913.2951938.

URL http://doi.acm.org/10.1145/2951913.2951938

[21] Y. Zhang, H.-S. Ko, Z. Hu, Palgol: A High-Level DSL for Vertex-Centric Graph Pro-

cessing with Remote Data Access, in: Asian Symposium on Programming Languages

and Systems, Springer, 2017, pp. 301–320.

[22] O. Coll Ruiz, K. Matsuzaki, S. Sato, S6Raph: Vertex-centric Graph Processing

Framework with Functional Interface, in: Proceedings of the 5th International Work-

shop on Functional High-Performance Computing, FHPC 2016, ACM, New York,

NY, USA, 2016, pp. 58–64. doi:10.1145/2975991.2976000.

URL http://doi.acm.org/10.1145/2975991.2976000

[23] M. Zhou, M. Imani, S. Gupta, Y. Kim, T. Rosing, GRAM: Graph Processing in a

ReRAM-based Computational Memory, in: Proceedings of the 24th Asia and South

Pacific Design Automation Conference, ASPDAC ’19, ACM, New York, NY, USA,

201

https://doi.org/10.1109/FCCM.2014.15
http://doi.acm.org/10.1145/2806777.2806849
http://doi.acm.org/10.1145/2806777.2806849
https://doi.org/10.1145/2806777.2806849
http://doi.acm.org/10.1145/2806777.2806849
http://doi.acm.org/10.1145/2951913.2951938
http://doi.acm.org/10.1145/2951913.2951938
https://doi.org/10.1145/2951913.2951938
https://doi.org/10.1145/2951913.2951938
http://doi.acm.org/10.1145/2951913.2951938
http://doi.acm.org/10.1145/2975991.2976000
http://doi.acm.org/10.1145/2975991.2976000
https://doi.org/10.1145/2975991.2976000
http://doi.acm.org/10.1145/2975991.2976000
http://doi.acm.org/10.1145/3287624.3287711
http://doi.acm.org/10.1145/3287624.3287711

2019, pp. 591–596. doi:10.1145/3287624.3287711.

URL http://doi.acm.org/10.1145/3287624.3287711

[24] A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: Large-scale Graph Computation on

Just a PC, in: Proceedings of the 10th USENIX Conference on Operating Systems

Design and Implementation, OSDI’12, USENIX Association, Berkeley, CA, USA,

2012, pp. 31–46.

URL http://dl.acm.org/citation.cfm?id=2387880.2387884

[25] D. Yan, Y. Huang, M. Liu, H. Chen, J. Cheng, H. Wu, C. Zhang, GraphD: Distrib-

uted Vertex-Centric Graph Processing Beyond the Memory Limit, IEEE Transac-

tions on Parallel and Distributed Systems (2017).

[26] S.-W. Jun, A. Wright, S. Zhang, S. Xu, et al., GraFBoost: Using accelerated flash

storage for external graph analytics, in: 2018 ACM/IEEE 45th Annual International

Symposium on Computer Architecture (ISCA), IEEE, 2018, pp. 411–424.

[27] C. Martella, D. Logothetis, A. Loukas, G. Siganos, Spinner: Scalable Graph Parti-

tioning in the Cloud, in: 2017 IEEE 33rd International Conference on Data Engin-

eering (ICDE), 2017, pp. 1083–1094. doi:10.1109/ICDE.2017.153.

[28] C. Zhou, J. Gao, B. Sun, J. X. Yu, Mocgraph: Scalable distributed graph processing

using message online computing, Proceedings of the VLDB Endowment 8 (4) (2014)

377–388.

[29] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, C. He, VENUS: Vertex-centric stream-

lined graph computation on a single PC, in: 2015 IEEE 31st International Confer-

ence on Data Engineering, 2015, pp. 1131–1142. doi:10.1109/ICDE.2015.

7113362.

[30] Q. Liu, Z. Li, J. C. Lui, J. Cheng, Powerwalk: Scalable personalized pagerank via

random walks with vertex-centric decomposition, in: Proceedings of the 25th ACM

International on Conference on Information and Knowledge Management, 2016, pp.

195–204.

[31] E. Nurvitadhi, D. Marr, Heterogeneous hardware accelerator architecture for pro-

cessing sparse matrix data with skewed non-zero distributions (Jan 2019).

[32] N. T. Bao, T. Suzumura, Towards Highly Scalable Pregel-based Graph Processing

Platform with X10, in: Proceedings of the 22nd International Conference on World

Wide Web, 2013, pp. 501–508.

202

https://doi.org/10.1145/3287624.3287711
http://doi.acm.org/10.1145/3287624.3287711
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://doi.org/10.1109/ICDE.2017.153
https://doi.org/10.1109/ICDE.2015.7113362
https://doi.org/10.1109/ICDE.2015.7113362

[33] I. Hoque, I. Gupta, LFGraph: Simple and fast distributed graph analytics, in: Pro-

ceedings of the First ACM SIGOPS Conference on Timely Results in Operating

Systems, 2013, pp. 1–17.

[34] J. Yan, G. Tan, N. Sun, GRE: A graph runtime engine for large-scale distributed

graph-parallel applications, arXiv preprint arXiv:1310.5603 (2013).

[35] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J. M. Hellerstein, Distrib-

uted GraphLab: A Framework for Machine Learning and Data Mining in the Cloud,

Proc. VLDB Endow. 5 (8) (2012) 716–727. doi:10.14778/2212351.2212354.

URL https://doi.org/10.14778/2212351.2212354

[36] T. A. Zakian, L. A. Capelli, Z. Hu, Incrementalization of Vertex-Centric Programs,

in: 2019 IEEE International Parallel and Distributed Processing Symposium (IP-

DPS), IEEE, 2019, pp. 1019–1029.

[37] J. Li, Y. Cao, Y. Zhang, M. Z. A. Bhuiyan, B. Li, SPFC: An Effective Optimization

for Vertex-Centric Graph Processing Systems, IEEE Transactions on Sustainable

Computing 4 (1) (2019) 118–131. doi:10.1109/TSUSC.2017.2780320.

[38] B. Alex, W. Benjamin, R. Ioan, FemtoGraph: A Pregel Based Shared-memory Graph

Processing Library, poster at SC’16.

[39] H. Sutter, et al., The Free Lunch Is Over: A Fundamental Turn Toward Concurrency

in Software, Dr. Dobb’s journal 30 (3) (2005) 202–210.

[40] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, A. R. LeBlanc,

Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions, IEEE

Journal of solid-state circuits 9 (5) (1974) 256–268.

[41] E. Strohmaier, H. W. Meuer, J. Dongarra, H. D. Simon, The TOP500 list and

progress in high-performance computing, Computer 48 (11) (2015) 42–49.

[42] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, D. M. Tullsen, Sim-

ultaneous Multithreading: A Platform for Next-Generation Processors, IEEE micro

17 (5) (1997) 12–19.

[43] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma, R. Lachaize,

M. Roth, Challenges of memory management on modern NUMA systems, Commu-

nications of the ACM 58 (12) (2015) 59–66.

203

https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1109/TSUSC.2017.2780320

[44] Persistent memory documentation, https : / / docs . pmem . io /

persistent-memory / getting-started-guide / introduction, re-

trieved: 2022-10-27.

[45] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory

programming, IEEE Computational Science and Engineering 5 (1) (1998) 46–55.

doi:10.1109/99.660313.

[46] M. P. Forum, MPI: A Message-Passing Interface Standard, Tech. rep., Knoxville,

TN, USA (1994).

[47] G. M. Amdahl, Validity of the single processor approach to achieving large scale com-

puting capabilities, in: Proceedings of the April 18-20, 1967, spring joint computer

conference, 1967, pp. 483–485.

[48] R. Benner, J. Gustafson, G. Montry, Development and analysis of scientific applic-

ation programs on a 1024-processor hypercube, SAND 88-0317, Sandia National

Laboratories (1988).

[49] L. G. Valiant, A Bridging Model for Parallel Computation, Communications of the

ACM 33 (8) (1990) 103–111.

[50] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine,

Computer networks and ISDN systems 30 (1-7) (1998) 107–117.

[51] Y. Han, R. A. Wagner, An efficient and fast parallel-connected component algorithm,

Journal of the ACM (JACM) 37 (3) (1990) 626–642.

[52] R. K. Ahuja, K. Mehlhorn, J. Orlin, R. E. Tarjan, Faster algorithms for the shortest

path problem, Journal of the ACM (JACM) 37 (2) (1990) 213–223.

[53] J. Shun, G. E. Blelloch, Ligra, Proceedings of the 18th ACM SIGPLAN symposium

on Principles and practice of parallel programming - PPoPP ’13 (2013). doi:

10.1145/2442516.2442530.

URL http://dx.doi.org/10.1145/2442516.2442530

[54] R. R. McCune, T. Weninger, G. Madey, Thinking Like a Vertex: A Survey of Vertex-

Centric Frameworks for Large-Scale Distributed Graph Processing, ACM Computing

Surveys 48 (2) (2015) 1–39. doi:10.1145/2818185.

URL http://dx.doi.org/10.1145/2818185

204

https://docs.pmem.io/persistent-memory/getting-started-guide/introduction
https://docs.pmem.io/persistent-memory/getting-started-guide/introduction
https://doi.org/10.1109/99.660313
http://dx.doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
http://dx.doi.org/10.1145/2442516.2442530
http://dx.doi.org/10.1145/2818185
http://dx.doi.org/10.1145/2818185
https://doi.org/10.1145/2818185
http://dx.doi.org/10.1145/2818185

[55] X. Zhu, W. Chen, W. Zheng, X. Ma, Gemini: A computation-centric distributed

graph processing system, in: 12th {USENIX} Symposium on Operating Systems

Design and Implementation ({OSDI} 16), 2016, pp. 301–316.

[56] D. Yan, J. Cheng, Y. Lu, W. Ng, Blogel: A block-centric framework for distributed

computation on real-world graphs, Proceedings of the VLDB Endowment 7 (14)

(2014) 1981–1992.

[57] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. Raghav-

endra, V. Prasanna, Goffish: A sub-graph centric framework for large-scale graph

analytics, in: European Conference on Parallel Processing, Springer, 2014, pp. 451–

462.

[58] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, J. McPherson, From ”Think Like

a Vertex” to ”Think Like a Graph”, Proc. VLDB Endow. 7 (3) (2013) 193–204.

doi:10.14778/2732232.2732238.

URL http://dx.doi.org/10.14778/2732232.2732238

[59] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, PowerGraph: Distributed

Graph-Parallel Computation on Natural Graphs, in: Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),

USENIX, Hollywood, CA, 2012, pp. 17–30.

URL https : / / www . usenix . org / conference / osdi12 /

technical-sessions/presentation/gonzalez

[60] S. Salihoglu, J. Widom, Gps: A graph processing system, in: Proceedings of the 25th

international conference on scientific and statistical database management, 2013, pp.

1–12.

[61] Y. Zhang, Z. Hu, Composing Optimization Techniques for Vertex-Centric Graph

Processing via Communication Channels, in: 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), IEEE, 2019, pp. 428–438.

[62] Y. Shiloach, U. Vishkin, An O(log n) parallel connectivity algorithm, Tech. rep.,

Computer Science Department, Technion (1980).

[63] S. Gong, C. Tian, Q. Yin, W. Yu, Y. Zhang, L. Geng, S. Yu, G. Yu, J. Zhou,

Automating incremental graph processing with flexible memoization, Proceedings of

the VLDB Endowment 14 (9) (2021) 1613–1625.

205

http://dx.doi.org/10.14778/2732232.2732238
http://dx.doi.org/10.14778/2732232.2732238
https://doi.org/10.14778/2732232.2732238
http://dx.doi.org/10.14778/2732232.2732238
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gonzalez

[64] L. Quick, P. Wilkinson, D. Hardcastle, Using Pregel-like Large Scale Graph Pro-

cessing Frameworks for Social Network Analysis, in: Proceedings of the 2012 Inter-

national Conference on Advances in Social Networks Analysis and Mining (ASO-

NAM 2012), ASONAM ’12, IEEE Computer Society, Washington, DC, USA, 2012,

pp. 457–463. doi:10.1109/ASONAM.2012.254.

URL http://dx.doi.org/10.1109/ASONAM.2012.254

[65] I. Abdelaziz, R. Harbi, S. Salihoglu, P. Kalnis, N. Mamoulis, Spartex: A vertex-

centric framework for RDF data analytics, Proceedings of the VLDB Endowment

8 (12) (2015) 1880–1883.

[66] I. Abdelaziz, R. Harbi, S. Salihoglu, P. Kalnis, Combining Vertex-Centric Graph

Processing with SPARQL for Large-Scale RDF Data Analytics, IEEE Transactions

on Parallel and Distributed Systems 28 (12) (2017) 3374–3388. doi:10.1109/

TPDS.2017.2720174.

[67] V. Kalavri, V. Vlassov, S. Haridi, High-Level Programming Abstractions for Dis-

tributed Graph Processing (07 2016). arXiv:1607.02646.

URL https://arxiv.org/abs/1607.02646

[68] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One Trillion

Edges: Graph Processing at Facebook-Scale, Proceedings of the VLDB Endowment

8 (12) (2015) 1804–1815.

[69] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. M. Hellerstein, Graph-

lab: A new framework for parallel machine learning. arXiv preprint, arXiv preprint

arXiv:1006.4990 1 (2010).

[70] Y. Bu, Pregelix: Dataflow-based Big Graph Analytics, in: Proceedings of the 4th

Annual Symposium on Cloud Computing, SOCC ’13, ACM, New York, NY, USA,

2013, pp. 54:1–54:2. doi:10.1145/2523616.2525962.

URL http://doi.acm.org/10.1145/2523616.2525962

[71] A. Khan, Vertex-Centric Graph Processing: The Good, the Bad, and the Ugly (12

2016). arXiv:1612.07404.

URL https://arxiv.org/abs/1612.07404

[72] S. Liu, A. Khan, An empirical analysis on expressibility of vertex centric graph

processing paradigm, in: 2018 IEEE International Conference on Big Data (Big

Data), IEEE, 2018, pp. 242–251.

206

http://dx.doi.org/10.1109/ASONAM.2012.254
http://dx.doi.org/10.1109/ASONAM.2012.254
https://doi.org/10.1109/ASONAM.2012.254
http://dx.doi.org/10.1109/ASONAM.2012.254
https://doi.org/10.1109/TPDS.2017.2720174
https://doi.org/10.1109/TPDS.2017.2720174
https://arxiv.org/abs/1607.02646
https://arxiv.org/abs/1607.02646
http://arxiv.org/abs/1607.02646
https://arxiv.org/abs/1607.02646
http://doi.acm.org/10.1145/2523616.2525962
https://doi.org/10.1145/2523616.2525962
http://doi.acm.org/10.1145/2523616.2525962
https://arxiv.org/abs/1612.07404
http://arxiv.org/abs/1612.07404
https://arxiv.org/abs/1612.07404

[73] M. Han, On Improving Distributed Pregel-like Graph Processing Systems, Master’s

thesis, University of Waterloo (2015).

[74] X. Hu, An experimental evaluation of vertex-centric k-core decomposition using

giraph and graphchi (2017).

[75] J. Kunegis, KONECT: The Koblenz Network Collection, in: Proceedings of the 22Nd

International Conference on World Wide Web, WWW ’13 Companion, ACM, New

York, NY, USA, 2013, pp. 1343–1350. doi:10.1145/2487788.2488173.

URL http://doi.acm.org/10.1145/2487788.2488173

[76] T. C. for Discrete Mathematics, T. C. S. (DIMACS), 9th DIMACS Implementa-

tion Challenge, http://www.dis.uniroma1.it/challenge9/download.

shtml (2006).

[77] J. Leskovec, A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data (Jun. 2014).

[78] A. Roy, I. Mihailovic, W. Zwaenepoel, X-Stream: Edge-centric Graph Processing

Using Streaming Partitions, in: Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, ACM, New York, NY, USA, 2013, pp.

472–488. doi:10.1145/2517349.2522740.

URL http://doi.acm.org/10.1145/2517349.2522740

[79] I. Hadade, T. M. Jones, F. Wang, L. di Mare, Software prefetching for unstructured

mesh applications, in: 2018 IEEE/ACM 8th Workshop on Irregular Applications:

Architectures and Algorithms (IA3), IEEE, 2018, pp. 11–19.

[80] A. M. Caulfield, J. Coburn, T. Mollov, A. De, A. Akel, J. He, A. Jagatheesan, R. K.

Gupta, A. Snavely, S. Swanson, Understanding the Impact of Emerging Non-Volatile

Memories on High-Performance, IO-Intensive Computing, in: SC ’10: Proceedings

of the 2010 ACM/IEEE International Conference for High Performance Computing,

Networking, Storage and Analysis, 2010, pp. 1–11. doi:10.1109/SC.2010.56.

[81] Intel Announces Broadest Product Portfolio for Moving, Storing and Pro-

cessing Data, https : / / newsroom . intel . com / news-releases /

intel-data-centric-launch/#gs.no8yic, retrieved: 2022-10-27.

[82] M. Weiland, Evaluation of Intel Optane DCPMM for memory and I/O intens-

ive HPC applications, https://www.ixpug.org/resources/download/

207

http://doi.acm.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
http://doi.acm.org/10.1145/2487788.2488173
http://www.dis.uniroma1.it/challenge9/download.shtml
http://www.dis.uniroma1.it/challenge9/download.shtml
http://snap.stanford.edu/data
http://doi.acm.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2517349.2522740
https://doi.org/10.1145/2517349.2522740
http://doi.acm.org/10.1145/2517349.2522740
https://doi.org/10.1109/SC.2010.56
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.no8yic
https://newsroom.intel.com/news-releases/intel-data-centric-launch/#gs.no8yic
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020

micheleweiland-hpcasia2020, iXPUG Workshop at HPC Asia 2020. Re-

trieved: 2022-10-27 (2020).

[83] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart, C. Herold,

A. Bonanni, A. Jackson, M. Parsons, An early evaluation of Intel’s optane DC per-

sistent memory module and its impact on high-performance scientific applications,

in: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis, 2019, pp. 1–19.

[84] G. Gill, R. Dathathri, L. Hoang, R. Peri, K. Pingali, Single machine graph analyt-

ics on massive datasets using intel optane DC persistent memory, arXiv preprint

arXiv:1904.07162 (2019).

[85] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons,

J. Shun, Semi-Asymmetric Parallel Graph Algorithms for NVRAMs, arXiv preprint

arXiv:1910.12310 (2019).

[86] Persistent Memory Development Kit, https://pmem.io/pmdk/, retrieved: 2022-

10-27.

[87] Gong Zhe, Sunway Taihulight: Things you may not know about China’s super-

computer, https://news.cgtn.com/news/3d517a4d324d444e/share_

p.html (2017).

[88] S. Seo, E. J. Yoon, J. Kim, S. Jin, J.-S. Kim, S. Maeng, Hama: An efficient matrix

computation with the mapreduce framework, in: 2010 IEEE Second International

Conference on Cloud Computing Technology and Science, IEEE, 2010, pp. 721–726.

[89] J. Stern, Q. Xiong, A. Skjellum, M. Herbordt, A novel approach to supporting

communicators for in-switch processing of MPI collectives, in: Workshop on Exascale

MPI, 2018.

[90] M. Bayatpour, N. Sarkauskas, H. Subramoni, J. Maqbool Hashmi, D. K. Panda,

BluesMPI: Efficient MPI Non-Blocking Alltoall Offloading Designs on Modern Blue-

Field Smart NICs, in: International Conference on High Performance Computing,

Springer, 2021, pp. 18–37.

[91] Q. Chen, S. Bai, Z. Li, Z. Gou, B. Suo, W. Pan, GraphHP: A hybrid platform for

iterative graph processing, arXiv preprint arXiv:1706.07221 (2017).

208

https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://www.ixpug.org/resources/download/micheleweiland-hpcasia2020
https://pmem.io/pmdk/
https://news.cgtn.com/news/3d517a4d324d444e/share_p.html
https://news.cgtn.com/news/3d517a4d324d444e/share_p.html

[92] C. Simmendinger, M. Rahn, D. Gruenewald, The GASPI API: A failure tolerant

PGAS API for asynchronous dataflow on heterogeneous architectures, in: Sustained

Simulation Performance 2014, Springer, 2015, pp. 17–32.

209

210

Appendices

211

Appendix A

Supporting functions in iPregel

1 /**
2 * @brief This function returns the current superstep.
3 * @details The superstep is 0-indexed, meaning that the first superstep is
4 * the superstep 0.
5 * @return The current superstep.
6 **/
7 size_t ip_get_superstep(void);
8
9 /**
10 * @brief This function consumes the next message in the mailbox of the
11 * specified vertex.
12 * @details This function consumes the next message and stores it in the
13 * message pointed by the pointer provided. Prior to consuming the message,
14 * this function checks if the vertex specified has at least one message to
15 * read. The result of this check is returned by this function, which
16 * allows for this function to be used in a loop condition statement.
17 * @param[inout] me The vertex whose mailbox is to be fetched.
18 * @param[out] message The variable in which to store the message consumed.
19 * @return The result indicating whether a fetch took place.
20 * @retval true The vertex specified had a message to read; this message
21 * has been consumed and is stored in the message variable passed.
22 * @retval false The vertex specified did not have a message left to read.
23 * The message variable passed is left unmodified.
24 * @pre The vertex pointer given points to an allocated memory area
25 * containing a vertex.
26 * @pre The message pointer given points to an allocated memory area
27 * containing a message.
28 **/
29 bool ip_get_next_message(struct ip_vertex_t* me, IP_MESSAGE_TYPE* message);
30
31 /**
32 * @brief This function sends the message given to the vertex identified
33 * by the vertex identifier specified.
34 * @param[in] id The identifier of the destination vertex.
35 * @param[in] message The message to send.
36 * @pre id is an existing vertex identifier.
37 * @post The message is delivered to the destination vertex, and combined
38 * with any pre-existing message on that recipient vertex if any.
39 **/

213

40 void ip_send_message(IP_VERTEX_ID_TYPE recipient_vertex_id,
41 IP_MESSAGE_TYPE message);
42
43 /**
44 * @brief This function sends the message specified to all neighbours of
45 * the emitting vertex.
46 * @param[out] me The emitting vertex.
47 * @param[in] message The message to broadcast.
48 * @pre The vertex pointer given points to an allocated memory area
49 * containing a vertex.
50 * @post All neighbours of the emitting vertex will have received the
51 * message given before next superstep. Note that it may be combined
52 * during the process.
53 **/
54 void ip_broadcast(struct ip_vertex_t* me, IP_MESSAGE_TYPE message);
55
56 /**
57 * @brief This function halts the vertex specified.
58 * @details This function is safe to call on a vertex already inactive.
59 * @param[out] me The vertex to halt.
60 * @pre The vertex pointer given points to an allocated memory area
61 * containing a vertex.
62 * @post The vertex specified is inactive.
63 **/
64 void ip_vote_to_halt(struct ip_vertex_t* me);

214

Appendix B

Additional user-defined structures
needed by the PageRank compute
function in Ligra.

1 template <class vertex> struct PR_F {
2 double* p_curr;
3 double* p_next;
4 vertex* V;
5 PR_F(double* _p_curr, double* _p_next,vertex* _V):
6 p_curr(_p_curr),
7 p_next(_p_next),
8 V(_V) {
9 }
10 inline bool update(uintE s, uintE d) {
11 p_next[d] += p_curr[s] / V[s].getOutDegree();
12 return 1;
13 }
14 inline bool updateAtomic(uintE s, uintE d) {
15 writeAdd(&p_next[d], p_curr[s]/V[s].getOutDegree());
16 return 1;
17 }
18 inline bool cond(intT d) {
19 return cond_true(d);
20 }
21 };
22 struct PR_Vertex_F {
23 double damping;
24 double addedConstant;
25 double* p_curr;
26 double* p_next;
27 PR_Vertex_F(double* _p_curr, double* _p_next, double _damping, intE n):
28 p_curr(_p_curr),
29 p_next(_p_next),
30 damping(_damping),
31 addedConstant((1 _damping) *(1 / (double)n)) {
32 }
33 inline bool operator () (uintE i) {
34 p_next[i] = damping * p_next[i] + addedConstant;

215

35 return 1;
36 }
37 };
38 struct PR_Vertex_Reset {
39 double* p_curr;
40 PR_Vertex_Reset(double* _p_curr):
41 p_curr(_p_curr) {
42 }
43 inline bool operator () (uintE i) {
44 p_curr[i] = 0.0;
45 return 1;
46 }
47 };

216

Appendix C

Implementation of PageRank in Blogel,
using the vertex mode

1 struct PRValue_pregel {
2 double pr;
3 vector<VertexID> edges;
4 };
5
6 class PRVertex_pregel: public Vertex<VertexID, PRValue_pregel, double> {
7 public: virtual void compute(MessageContainer & messages) {
8 if(step_num() == 1) {
9 value().pr = 1.0 / get_vnum();
10 }
11 else {
12 double sum = 0;
13 for(MessageIter it = messages.begin(); it != messages.end();
14 it++) {
15 sum += *it;
16 }
17 double* agg = (double*)getAgg();
18 double residual = *agg/get_vnum();
19 value().pr = 0.15 / get_vnum() + 0.85 * (sum+residual);
20 }
21 if(step_num() < ROUND) {
22 double msg = value().pr / value().edges.size();
23 for(auto it = value().edges.begin(); it != value().edges.end();
24 it++) {
25 send_message(*it, msg);
26 }
27 }
28 else {
29 vote_to_halt();
30 }
31 }
32 };
33
34 class PRAgg_pregel: public Aggregator<PRVertex_pregel, double, double> {
35 private: double sum;
36 public: virtual void init(){
37 sum = 0;

217

38 }
39
40 public: virtual void stepPartial(PRVertex_pregel* v) {
41 if(v->value().edges.size() == 0) {
42 sum+=v->value().pr;
43 }
44 }
45
46 public: virtual void stepFinal(double* part) {
47 sum += *part;
48 }
49
50 public: virtual double* finishPartial() {
51 return ∑
52 }
53
54 public: virtual double* finishFinal() {
55 return ∑
56 }
57 };

218

Appendix D

Implementation of PageRank in Blogel,
using the block mode

1 #define EPS 0.01
2
3 struct PRValue {
4 double pr;
5 vector<triplet> edges;
6 int split;
7 };
8
9 class PRVertex: public BVertex<VertexID, PRValue, char> {
10 public: virtual void compute(MessageContainer& msgs) {
11 }
12 };
13
14 struct doublepair {
15 bool converge;
16 double accum;
17 };
18
19 struct tuple {
20 int block;
21 double weight;
22 int worker;
23 };
24
25 struct PRBlockValue {
26 double pr;
27 double delta;
28 vector<tuple> edges;
29 };
30
31 class PRBlock: public Block<PRBlockValue, PRVertex, double> {
32 public: virtual void compute(MessageContainer& msgs,
33 VertexContainer& vertexes) {
34 if(step_num() == 1) {
35 value().pr = 1.0 / get_bnum();
36 value().delta = EPS / get_bnum() + 1;
37 }

219

38 else {
39 double sum = 0;
40 for(MessageIter it = msgs.begin(); it != msgs.end(); it++) {
41 sum += *it;
42 }
43 doublepair* agg = ((doublepair*)getAgg());
44 if(agg->converge) {
45 vote_to_halt();
46 return;
47 }
48 double residual = agg->accum / get_bnum();
49 double newVal = 0.15 / get_bnum() + 0.85 * (sum + residual);
50 value().delta = fabs(newVal - value().pr);
51 value().pr = newVal;
52 }
53 for(auto it = value().edges.begin(); it != value().edges.end();
54 it++) {
55 send_message(it->block, it->worker, it->weight * value().pr);
56 }
57 }
58 };
59
60 class PRSum : public BAggregator<PRVertex, PRBlock, doublepair,
61 doublepair> {
62 private: doublepair pair;
63
64 public: virtual void init() {
65 pair.converge = true;
66 pair.accum = 0;
67 }
68
69 public: virtual void stepPartialV(PRVertex* v) {};
70
71 public: virtual void stepPartialB(PRBlock* b) {
72 if(b->value().edges.size() == 0) {
73 pair.accum += b->value().pr;
74 }
75 if(b->value().delta > EPS / get_bnum()) {
76 pair.converge = false;
77 }
78 }
79
80 public: virtual void stepFinal(doublepair* part) {
81 pair.accum += part->accum;
82 if(part->converge == false) {
83 pair.converge = false;
84 }
85 }
86
87 public: virtual doublepair* finishPartial() {
88 return &pair;
89 }
90
91 public: virtual doublepair* finishFinal() {
92 return &pair;

220

93 }
94 };
95
96 class PRWorker : public BWorker<PRBlock, PRSum> {
97 public: void localPR(PRBlock* block, VertexContainer& vertexes) {
98 bool converge = false;
99 double accum = 0;

100 int num = block->size;
101 double* pr_buf;
102 int round = 1;
103 double threshold = EPS / num;
104 while(converge == false) {
105 double oldaccum;
106 double* old_pr_buf;
107 if(round > 1) {
108 converge = true;
109 oldaccum = accum;
110 accum = 0;
111 old_pr_buf = pr_buf;
112 }
113 pr_buf = new double[num];
114 for(int i = 0; i < num; i++) {
115 pr_buf[i] = 0;
116 }
117 for(int i = block->begin; i < block->begin + block->size;
118 i++) {
119 PRVertex* vertex = vertexes[i];
120 if(round == 1) {
121 vertex->value().pr = 1.0 / num;
122 }
123 else {
124 int logID = i - block->begin;
125 double impact = old_pr_buf[logID] + oldaccum / num;
126 double new_pr = 0.15 / num + 0.85 * impact;
127 double delta = new_pr - vertex->value().pr;
128 if(fabs(delta) > threshold) {
129 converge = false;
130 }
131 vertex->value().pr = new_pr;
132 }
133 vector<triplet>& edges = vertex->value().edges;
134 int split = vertex->value().split;
135 if(split == -1) {
136 accum += vertex->value().pr;
137 }
138 else {
139 double msg = vertex->value().pr / (split + 1);
140 for(int j = 0; j <= split; j++) {
141 triplet nb = edges[j];
142 int phyID = nb.wid;
143 int logID = phyID - block->begin;
144 pr_buf[logID] += msg;
145 }
146 }
147 }

221

148 if(round > 1) {
149 delete old_pr_buf;
150 }
151 round++;
152 }
153 delete pr_buf;
154 }
155
156 virtual void blockInit(VertexContainer& vertexes,
157 BlockContainer& blocks) {
158 ResetTimer(4);
159 hash_map<int, int> map;
160 for(int i = 0; i < vertexes.size(); i++) {
161 map[vertexes[i]->id] = i;
162 }
163 for(BlockIter it = blocks.begin(); it != blocks.end(); it++) {
164 PRBlock* block = *it;
165 for(int i = block->begin; i < block->begin + block->size;
166 i++) {
167 PRVertex* vertex = vertexes[i];
168 vector<triplet>& edges = vertex->value().edges;
169 vector<triplet> tmp;
170 vector<triplet> tmp1;
171 for(int j = 0; j < edges.size(); j++) {
172 if (edges[j].bid == block->bid) {
173 edges[j].wid = map[edges[j].vid];
174 tmp.push_back(edges[j]);
175 }
176 else {
177 tmp1.push_back(edges[j]);
178 }
179 }
180 edges.swap(tmp);
181 vertex->value().split = edges.size() - 1;
182 edges.insert(edges.end(), tmp1.begin(), tmp1.end());
183 }
184 }
185 for(BlockIter it = blocks.begin(); it != blocks.end(); it++) {
186 PRBlock* block = *it;
187 localPR(block, vertexes);
188 }
189 for(BlockIter it = blocks.begin(); it != blocks.end(); it++) {
190 PRBlock* block = *it;
191 for(int i = block->begin; i < block->begin + block->size;
192 i++) {
193 PRVertex* vertex = vertexes[i];
194 vector<triplet>& edges = vertex->value().edges;
195 int split = vertex->value().split;
196 for(int j = 0; j <= split; j++) {
197 edges[j].wid = _my_rank;
198 }
199 }
200 }
201 for(BlockIter it = blocks.begin(); it != blocks.end(); it++) {
202 PRBlock* block = *it;

222

203 hash_map<int, tuple> bmap;
204 for(int i = block->begin; i < block->begin + block->size;
205 i++) {
206 PRVertex* vertex = vertexes[i];
207 vector<triplet>& vedges = vertex->value().edges;
208 int degree = vedges.size();
209 hash_map<int, tuple> count;
210 for(int j = 0; j < degree; j++) {
211 int blockID = vedges[j].bid;
212 int workerID = vedges[j].wid;
213 hash_map<int, tuple>::iterator cit = count.find(blockID);
214 if(cit == count.end()) {
215 tuple cur = { blockID, 1, workerID };
216 count[blockID] = cur;
217 }
218 else {
219 cit->second.weight++;
220 }
221 }
222 for(auto cit = count.begin(); cit != count.end(); cit++) {
223 int blockID = cit->first;
224 double cnt = cit->second.weight;
225 int workerID = cit->second.worker;
226 double val = vertex->value().pr * cnt / degree;
227 hash_map<int, tuple>::iterator bit =
228 bmap.find(blockID);
229 if(bit == bmap.end()) {
230 tuple cur = { blockID, val, workerID };
231 bmap[blockID] = cur;
232 }
233 else {
234 bit->second.weight += val;
235 }
236 }
237 }
238 vector<tuple>& adj_list = block->value().edges;
239 double wsum = 0;
240 for(auto bit = bmap.begin(); bit != bmap.end(); bit++) {
241 adj_list.push_back(bit->second);
242 wsum += bit->second.weight;
243 }
244 for(int i = 0; i < adj_list.size(); i++) {
245 adj_list[i].weight /= wsum;
246 }
247 }
248 }
249 };
250
251 class PRCombiner : public Combiner<double> {
252 public: virtual void combine(double& old, const double& new_msg) {
253 old += new_msg;
254 }
255 };

223

224

Appendix E

Pseudo-code of the implementation of
the Connected Components benchmark
in Giraph++

1 begin
2 if getSuperstep() = 0 then
3 sequentialCC()
4 foreach bv IN boundaryVertices() do
5 sendMsg(bv.getVertexId(), bv.getVertexValue())

6 else
7 equiCC={}
8 foreach iv IN activeInternalVertices() do
9 minValue = min(iv.getMessages())

10 if minValue < iv.getVertexValue() then
11 equiCC.add(iv.getVertexValue(), minValue)

12 equiCC.consolidate()
13 foreach iv IN internalVertices() do
14 changedTo=equiCC.uniqueLabel(iv.getVertexValue())
15 iv.setVertexValue(changedTo)

16 foreach bv IN boundaryVertices() do
17 changedTo=equiCC.uniqueLabel(bv.getVertexValue())
18 if changedTo!=bv.getVertexValue() then
19 bv.setVertexValue(changedTo)
20 sendMsg(bv.getVertexId(), bv.getVertexValue())

21 allVoteToHalt()

225

226

Appendix F

Implementation of the Shiloach-Vishkin
algorithm in channel-based Pregel
system

1 class SVWorker: public Worker<int> {
2 private:
3 int phase;
4 vector<int> P, GP, MNP, Dup;
5
6 ScatterCombine<int, int> MSG_1;
7 PushCombine<int, int> MSG_2;
8 RequestRespond<int, int> REQ;
9
10 Combiner<int> combiner;
11
12 public:
13 SVWorker(): phase(1), REQ(this),
14 MSG_1(this, make_combiner(c_min, INT_MAX)),
15 MSG_2(this, make_combiner(c_min, INT_MAX)),
16 combiner(make_combiner(c_min, INT_MAX)) {}
17
18 ˜SVWorker() {
19 }
20
21 void load_channels(const EdgeBuffer &es) override {
22 P.resize(numv());
23 MNP.resize(numv());
24 Dup.resize(numv());
25 MSG_1.load(es);
26 }
27
28 bool compute() override {
29 if(phase == 1) {
30 for(int u = 0; u < numv(); u++) {
31 P[u] = MNP[u] = get_id(u);
32 }
33 REQ.add_requests(P);
34 phase = 2;

227

35 return false;
36 }
37 if(phase == 2) {
38 Dup = P;
39 REQ.respond(P);
40 MSG_1.scatter(P);
41 phase = 3;
42 return false;
43 }
44 if(phase == 3) {
45 copyFrom(GP, REQ);
46 for(int u = 0; u < numv(); u++) {
47 MNP[u] = min(MNP[u], MSG_1.get_message(u));
48 if(GP[u] == P[u]) {
49 if(MNP[u] < P[u]) {
50 MSG_2.add_message(P[u], MNP[u]);
51 }
52 }
53 else {
54 P[u] = GP[u];
55 }
56 }
57 GP = P;
58 MSG_2.activate();
59 phase = 4;
60 return false;
61 }
62 if(phase == 4) {
63 combineFrom(P, MSG_2, combiner);
64 REQ.add_requests(P);
65 phase = 2;
66 return (P == Dup);
67 }
68 return true;
69 }
70
71 void output() {
72 int sum = 0;
73 for(int u = 0; u < numv(); u++) {
74 if (P[u] == get_id(u)) {
75 sum += 1;
76 }
77 }
78 int num_cc = all_sum(sum);
79 if(get_rank() = 0) {
80 printf("number of CCs: %d\n", num_cc);
81 }
82 }
83 };

228

Appendix G

Expected and measured aggregated
speedups

229

Benchmark Graph Expected Measured

PR

DBLP 1.61 1.61
LiveJournal 2.97 3.14
Orkut 3.01 3.07
Friendster 1.63 1.63

CC

DBLP 1.94 2.05
LiveJournal 2.77 2.96
Orkut 2.48 2.41
Friendster 1.98 2.12

SSSP

DBLP 1.21 1.09
LiveJournal 1.50 1.75
Orkut 3.90 3.18
Friendster 7.56 5.73

Table G.1: Expected and measured aggregated speedups, across all three benchmarks
and all four graphs.

230

Appendix H

Main functions, not all, provided by the
DiP framework

1 /**
2 * @brief This function returns the current superstep.
3 * @details The superstep is 0-indexed, meaning that the first superstep is
4 * the superstep 0.
5 * @return The current superstep.
6 **/
7 unsigned long int dip_get_superstep(void);
8
9 /**
10 * @brief This function consumes the next message in the mailbox of the
11 * specified vertex.
12 * @details This function consumes the next message and stores it in the
13 * message pointed by the pointer provided. Prior to consuming the message,
14 * this function checks if the vertex specified has at least one message to
15 * read. The result of this check is returned by this function, which
16 * allows for this function to be used in a loop condition statement.
17 * @param[inout] me The vertex whose mailbox is to be fetched.
18 * @param[out] message The variable in which to store the message consumed.
19 * @return The result indicating whether a fetch took place.
20 * @retval true The vertex specified had a message to read; this message
21 * has been consumed and is stored in the message variable passed.
22 * @retval false The vertex specified did not have a message left to read.
23 * The message variable passed is left unmodified.
24 * @pre The vertex pointer given points to an allocated memory area
25 * containing a vertex.
26 * @pre The message pointer given points to an allocated memory area
27 * containing a message.
28 **/
29 bool dip_get_next_message(dip_vertex* me, DIP_MESSAGE_TYPE* message);
30
31 /**
32 * @brief This function sends the message given to the vertex identified
33 * by the vertex identifier specified.
34 * @param[in] id The identifier of the destination vertex.
35 * @param[in] message The message to send.
36 * @pre id is an existing vertex identifier.
37 * @post The message is delivered to the destination vertex, and combined

231

38 * with any pre-existing message on that recipient vertex if any.
39 **/
40 void dip_send(DIP_VERTEX_ID_TYPE id, DIP_MESSAGE_TYPE message);
41
42 /**
43 * @brief This function sends the message specified to all neighbours of
44 * the emitting vertex.
45 * @param[out] me The emitting vertex.
46 * @param[in] message The message to broadcast.
47 * @pre The vertex pointer given points to an allocated memory area
48 * containing a vertex.
49 * @post All neighbours of the emitting vertex will have received the
50 * message given before next superstep. Note that it may be combined
51 * during the process.
52 **/
53 void dip_broadcast(dip_vertex* me, DIP_MESSAGE_TYPE message);
54
55 /**
56 * @brief This function halts the vertex specified.
57 * @details This function is safe to call on a vertex already inactive.
58 * @param[out] me The vertex to halt.
59 * @pre The vertex pointer given points to an allocated memory area
60 * containing a vertex.
61 * @post The vertex specified is inactive.
62 **/
63 void dip_halt(dip_vertex* me);

232

Appendix I

Implementation of PageRank in the
DiP framework

1 void dip_compute(dip_vertex* me) {
2 if(dip_get_superstep() == 0) {
3 me->value = 1.0 / dip_get_vertex_count();
4 } else {
5 DIP_MESSAGE_TYPE sum = 0.0;
6 if(dip_has_message(me)) {
7 dip_get_next_message(me, &sum);
8 }
9 me->value = ratio + 0.85 * sum;
10 }
11
12 if(dip_get_superstep() < 10) {
13 if(me->neighbours_count > 0) {
14 dip_broadcast(me, me->value / me->neighbours_count);
15 }
16 }
17 else {
18 dip_halt(me);
19 }
20 }

233

234

Appendix J

Implementation of Connected
Components in the DiP framework

1 void dip_compute(dip_vertex* me) {
2 if(dip_get_superstep() == 0) {
3 me->value = me->id;
4 dip_broadcast(me, me->value);
5 }
6 else {
7 DIP_MESSAGE_TYPE valueTemp = me->value;
8 DIP_MESSAGE_TYPE message_value;
9 while(dip_get_next_message(me, &message_value)) {
10 if(me->value > message_value) {
11 me->value = message_value;
12 }
13 }
14 if(valueTemp != me->value) {
15 dip_broadcast(me, me->value);
16 }
17 }
18 dip_halt(me);
19 }

235

236

Appendix K

Implementation of unweighted
Single-Source Shortest Paths in the
DiP framework

1 #define START_VERTEX 0
2
3 void dip_compute(dip_vertex* me) {
4 if(dip_get_superstep() == 0) {
5 if(me->id == START_VERTEX) {
6 me->value = 0;
7 dip_broadcast(me, me->value + 1);
8 }
9 else {
10 me->value = UINT_MAX;
11 }
12 }
13 else {
14 DIP_MESSAGE_TYPE m_initial = UINT_MAX;
15 DIP_MESSAGE_TYPE m;
16 while(dip_get_next_message(me, &m)) {
17 if(m_initial > m) {
18 m_initial = m;
19 }
20 }
21 if(m_initial < me->value) {
22 me->value = m_initial;
23 dip_broadcast(me, m_initial + 1);
24 }
25 }
26
27 dip_halt(me);
28 }

237

238

Appendix L

iPregel compilation flags

The following flags are used to enable certain defines, so they must be prefixed with -D.

IP USE SPREAD Passing this flag enables the selection bypass technique, which was

introduced in Subsubsection 4.3.4.1.

IP USE SINGLE BROADCAST Indicates which combiner use, introduced in Subsubsec-

tion 4.3.4.3. Specifying this flag enables the use of the pull-based combiner, other-

wise uses the push-based combiner.

IP VERTEX ID TYPE Specifies the datatype of a vertex identifier in the graph to load.

Example values: uint32 t, uint64 t...

Example: -DIP VERTEX ID TYPE=uint32 t

IP ID OFFSET Specifies the lowest vertex identifier. This is used to apply an offset when

addressing vertices. If the lowest vertex identifier is 0, this flag has no consequence.

Example values: 0, 40, 125...

Example: -DIP ID OFFSET=300

IP FORCE DIRECT MAPPING Indicates that vertices are to be stored at the index equal

to their identifier, see Subsubsection 4.3.4.4. If used in conjunction with IP ID OFFSET,

it trumps it.

Example: -DIP ID OFFSET=300 -DIP FORCE DIRECT MAPPING

239

240

Appendix M

DiP compilation flags

The following flags are used to enable certain defines, so they must be prefixed with -D.

DIP BRANCH The version of the buffer design to use. Possible values are:

master the naive version of DiP.

inbs the version of DiP using the Intra-Node Buffer Sharing buffer design.

ibmp the version of DiP using the Interval-Based Message Processing buffer design.

Example: -DDIP BRANCH=inbs

DIP EDGE OFFSET TYPE The datatype of an offset in the CSR-stored graph to load.

Example values: uint32 t, uint64 t...

Example: -DDIP EDGE OFFSET TYPE=uint32 t

DIP MPI EDGE OFFSET TYPE The MPI datatype equivalent of DIP EDGE OFFSET TYPE.

Example values: MPI UINT32 T, MPI UINT64 t...

Example: -DDIP MPI EDGE OFFSET TYPE=UINT32 T

DIP VERTEX ID TYPE The datatype of a vertex identifier in the CSR-stored graph to

load.

Example values: uint32 t, uint64 t...

Example: -DDIP VERTEX ID TYPE=uint32 t

DIP MPI VERTEX ID TYPE The MPI datatype equivalent of DIP VERTEX ID TYPE.

Example values: MPI UINT32 T, MPI UINT64 t...

Example: -DDIP MPI VERTEX ID TYPE=uint32 t

DIP MESSAGE TYPE The datatype of values exchanged between vertices.

Example values: float, double, uint32 t...

Example: -DDIP MESSAGE TYPE=float

241

DIP MPI MESSAGE TYPE The MPI datatype equivalent of DIP MESSAGE TYPE.

Example values: MPI FLOAT, MPI DOUBLE, MPI UINT32 T...

Example: -DDIP MPI MESSAGE TYPE=MPI FLOAT

DIP COMBINATION OPERATION MIN Indicates that the reduction operation used for

combination is the minimum operation. Automatically defines the function void

dip combine(DIP MESSAGE TYPE* old, DIP MESSAGE TYPE new) as well

as sets DIP COMBINATION OPERATION NEUTRAL VALUE accordingly.

DIP COMBINATION OPERATION SUM Using a reduction operation that is a sum. Auto-

matically defines the function void dip combine(DIP MESSAGE TYPE* old,

DIP MESSAGE TYPE new) accordingly.

DIP COMBINATION OPERATION NEUTRAL VALUE Specifies the value that is neutral

to the combination operation applied.

DIP COMBINATION OPERATION CUSTOMISED Indicates that the reduction operation

is user-defined. Requires the function void dip combine(DIP MESSAGE TYPE*

old, DIP MESSAGE TYPE new) to be defined by the user.

242

	Introduction
	Papers published in this research
	Structure of the thesis

	Background
	Graph theory
	Structure
	Connectivity
	Reachability
	Metrics

	High performance computing
	Architectures
	Multi-core architectures
	Multithreading
	Non-uniform memory access
	Non-volatile memory
	Graphics processing unit

	Shared and distributed-memory parallelism
	Metrics
	Speedup
	Parallel efficiency
	Scalability

	Vertex-centric
	Execution flow
	Benchmarks
	PageRank
	Connected Components
	Single-Source Shortest Paths

	Conclusions

	Related work
	Introduction
	New programming models
	Vertex-subset-centric
	Block-centric

	Optimisations within vertex-centric
	Sender-side combination
	Receiver-side scatter
	Vertex-mirroring
	Request-respond paradigm
	Communication channels
	Selective scheduling
	Vertex inactivation
	Incrementalisation
	Message prioritisation

	Conclusions

	Establishing a new state-of-the-art in vertex-centric shared-memory processing
	Introduction
	Related work
	Overview of iPregel
	Interface
	Architecture
	Multi-version module selection
	The core
	Vertex representation
	Graphs accepted

	Implementation
	Optimisations
	Selection bypass
	Message exchange
	Message combination
	Efficient vertex addressing

	Benchmarking applications
	PageRank
	Connected Components
	Single-Source Shortest Paths

	Assessing in-memory shared-memory viability
	Experimental setup
	Framework considered
	Computing environment
	Methodology
	Graphs used

	Results
	Performance of iPregel Versions
	Comparison against Pregel+
	Memory footprint

	Evaluating the complete triptych
	Experimental setup
	Frameworks considered
	Computing environment
	Methodology
	Graphs used

	Results
	Performance
	Memory footprint
	Programmability

	Conclusions and future work

	Tackling the irregularity inherent in vertex-centric
	Introduction
	Related work
	Fine-grain synchronisation
	Unpredictable memory access patterns
	Vertex structure externalisation
	Software prefetching

	Irregular workloads
	Workload evaluation proxy
	Work distribution

	Experimental environment
	Computing environment
	Graph configurations
	Benchmarks

	Results
	Graph scalability
	Individual optimisations
	Aggregated optimisations
	Predictability

	Thread scalability

	Conclusions and future work

	Leveraging non-volatile memory
	Introduction
	Related work
	Persistent memory modes
	Memory mode
	App-direct mode

	Experimental environment
	Hardware and software
	Graphs selected
	Benchmarks selected

	Results
	Experiment 1: storing all data in DRAM only
	Experiment 2: increasing the size of the graphs
	Experiment 3: exploring the difference in performance between read and write NVRAM operations
	Experiment 4: the impact of data locality and paging
	Performance summary
	Additional metrics

	Conclusion and further work

	A distributed-memory implementation of iPregel
	Introduction
	Related work
	Overview of DiP
	Interface
	Architecture
	Buffer design
	Push version
	Pull version
	Benefits
	Limitations

	64-bit collectives

	Optimisations
	Single MPI process
	Intra-node buffer sharing (INBS)
	Communicators
	Push version
	Pull version
	Advantages

	Interval-based message processing (IBMP)
	Push version
	Pull version
	Interleaved window buffer usage
	Advantages
	Limitations
	Conclusion

	Experiments
	Computing environment
	Search space
	Graphs
	Benchmarks
	Frameworks

	Results
	Single node performance
	Sparse graph
	Dense graph

	Node scalability
	Strong scalability
	Weak scalability

	Memory footprint
	Predictability
	Size
	IBMP

	Programmability

	Conclusions and future work

	Conclusions and future work
	Appendices
	Supporting functions in iPregel
	Additional user-defined structures needed by the PageRank compute function in Ligra.
	Implementation of PageRank in Blogel, using the vertex mode
	Implementation of PageRank in Blogel, using the block mode
	Pseudo-code of the implementation of the Connected Components benchmark in Giraph++
	Implementation of the Shiloach-Vishkin algorithm in channel-based Pregel system
	Expected and measured aggregated speedups
	Main functions, not all, provided by the DiP framework
	Implementation of PageRank in the DiP framework
	Implementation of Connected Components in the DiP framework
	Implementation of unweighted Single-Source Shortest Paths in the DiP framework
	iPregel compilation flags
	DiP compilation flags

