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Abstract

In tissue engineering, miniature Electrical Impedance Tomography (mEIT) (or bioimpedance

tomography), is an emerging tomographic modality that contributes to non-destructive and

label-free imaging and monitoring of 3-D cellular dynamics. The main challenge of mEIT

comes from the nonlinear and ill-posed image reconstruction problem, leading to the in-

creased sensitivity to imperfect measurement signals. Physical model-based image recon-

struction methods have been successfully applied to conventional setups, but are less sat-

isfying for the mEIT setup regarding image quality, conductivity retrieval and computational

efficiency. Data-driven or learning-based methods have recently become a new frontier for

tomographic image reconstruction, particularly for medical imaging modalities, e.g., Com-

puted Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance

Imaging (MRI). However, the study of learning-based image reconstruction methods in chal-

lenging micro-scale sensor setups and the seamless integration of such algorithms with the

tomography instrument remains a gap. This thesis aims to develop 2-D and 3-D imaging

platforms integrating multi-frequency EIT and machine learning-based image reconstruction

algorithms to extract spectroscopic electrical properties of 3-D cultivated cells under in vitro

conditions, in a non-destructive, robust, and computation-efficient manner.

Recent advances in deep learning have pointed out a promising alternative for EIT image

reconstruction. However, it is still challenging to image multiple objects with varying conduct-

ivity levels with a single neural network. A deep learning and group sparsity regularization-

based hybrid image reconstruction framework was proposed to enable high-quality cell culture

imaging with mEIT. A deep neural network was proposed to estimate the structural informa-

tion in binary masks, given the limited number of data sets. Then the structural information

is encoded in group sparsity regularization to obtain the final conductivity estimation. We

validated our approach by imaging 3D cancer cell spheroids (MCF-7). Our method can be

readily translated to spheroids, organoids, and cell culture in scaffolds of biomaterials. As

the measured conductivity is a proxy for cell viability, mEIT has excellent potential to enable

non-invasive, real-time, long-term monitoring of 3D cell growth, opening new avenues in

regenerative medicine and drug testing.

Deep learning provides binary structural information in the above-mentioned hybrid learning

approach, whereas the regularization algorithm determines conductivity contrasts. Despite

the advancement of structure distribution, the exact conductivity values of different objects

are less accurately estimated by the regularization-based framework, which essentially pre-

vents EIT’s transition from generating qualitative images to quantitative images. A structure-

aware dual-branch deep learning method was proposed to further tackle this issue to predict

iii



structure distribution and conductivity values. The proposed network comprises two independ-

ent branches to encode the structure and conductivity features, respectively, and the two

branches are joined later to make final predictions of conductivity distributions. Numerical and

experimental evaluation results on MCF-7 human breast cancer cell spheroids demonstrate

the superior performance of the proposed method in dealing with the multi-level, continuous

conductivity reconstruction problem.

Multi-frequency Electrical Impedance Tomography (mfEIT) is an emerging biomedical imaging

modality to reveal frequency-dependent conductivity distributions in biomedical applications.

Conventional model-based image reconstruction methods suffer from low spatial resolution,

unconstrained frequency correlation and high computational cost. Most existing learning-

based approaches deal with the single-frequency setup, which is inefficient and ineffective

when extended to the multi-frequency setup. A Multiple Measurement Vector (MMV) model-

based learning algorithm named MMV-Net was proposed to solve the mfEIT image recon-

struction problem. MMV-Net considers the correlations between mfEIT images and unfolds the

update steps of the Alternating Direction Method of Multipliers for the MMV problem (MMV-

ADMM). The nonlinear shrinkage operator associated with the weighted l1,2 regularization

term of MMV-ADMM is generalized in MMV-Net with a cascade of a Spatial Self-Attention

module and a Convolutional Long Short-Term Memory (ConvLSTM) module to capture intra-

and inter-frequency dependencies better. The proposed MMV-Net was validated on our Ed-

inburgh mfEIT Dataset and a series of comprehensive experiments. The results show super-

ior image quality, convergence performance, noise robustness and computational efficiency

against the conventional MMV-ADMM and the state-of-the-art deep learning methods.

Finally, few work on image reconstruction for Electrical Impedance Tomography (EIT) focuses

on 3D geometries. Existing reconstruction algorithms adopt voxel grids for representation,

which typically results in low image quality and considerable computational cost, and lim-

its their applicability to real-time applications. In contrast, point clouds are a more efficient

format for 3D surfaces, and such representation can naturally handle 3D shapes of arbitrary

topologies with fine-grained details. Therefore, a learning-based 3D EIT reconstruction al-

gorithm with efficient 3D representations (i.e., point cloud) was proposed to achieve higher

image accuracy, spatial resolution and computational efficiency. A transformer-like point cloud

network is adopted for 3D image reconstruction. This network simultaneously recovers the

3D coordinates of points to adaptively portray the objects’ surface and predicts each point’s

conductivity. The results show that point cloud provides more efficient fine-shape descriptions

and effectively alleviates computational costs.

In summary, the work demonstrated in this thesis addressed the research void in tissue

imaging with bioimpedance tomography by developing learning-based imaging approaches.

The results achieved in this thesis could promote bioimpedance tomography as a robust,

intelligent imaging technique for tissue engineering applications.

iv



Lay Summary

In tissue engineering, 3-D cell culture models are capable of mimicking the complexity and

pathophysiology of “closer-to-in vivo” biological behaviour, which have become increasingly

attractive in drug response studies, cancer research, gene and protein expression applica-

tions, etc. While traditional cellular assays are generally destructive and label-based, miniature

bioimpedance tomography with specialized microelectrode arrays is potentially a rapid 3D

tissue imaging method that can provide insight into 3D cell dynamics in a label-free and non-

destructive manner.

Bioimpedance tomography is a tomographic imaging modality that images the 3D conduct-

ivity distribution within the Region of Interest (ROI) by measuring a sequence of differen-

tial voltages at the boundary of the ROI. Despite its intrinsic characteristics of portability,

non-destructiveness, low-cost fabrication, and non-ionizing radiation, 3D tissue imaging with

micro-scale impedance sensors has been particularly demanding in solving the image re-

construction problem, as the trend of sensor micro-miniaturization will lead to much weaker

measurement signals and considerably increased sensitivity to sensor imperfection. Another

critical challenge in the image reconstruction problem of bioimpedance tomography lies in its

highly nonlinear and ill-conditioned characteristics, which further contribute to its susceptibility

to distorted electric field lines and imperfect measurement data.

Focusing on these problems, this thesis systematically demonstrates the development of

image reconstruction methods based on machine learning in challenging micro-scale sensor

setups and the integration of such methods with the in-house developed 3D bioimpedance

tomography system to promote the micro-scale bioimpedance tomography as a robust, intel-

ligent tissue imaging technique for tissue engineering applications.
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Chapter 1

Introduction

1.1 Background and motivation

Standard two-dimensional (2-D) cell culture which cultivates mono-layer cells possesses con-

siderable limitations in mimicking the complexity and pathophysiology of in vivo conditions in

tissue engineering (Vinci et al., 2012). In contrast, three-dimensional (3-D) cell culture models

present “closer-to-in vivo” biological behaviour and therefore have been extensively applied

in drug response studies, cancer research, gene and protein expression applications, etc.

(Ravi, Paramesh, Kaviya, Anuradha, & Solomon, 2015). Compared to traditional cellular assay

methods that are destructive and label-based, rapid imaging in a label-free, non-destructive

manner has been increasingly attractive in tissue engineering (Justice, Badr, & Felder, 2009).

Recent research (Y. Yang, Wu, Jia, & Bagnaninchi, 2019) pointed out the potential of mini-

ature Electrical Impedance Tomography (EIT) with specialized microelectrode arrays in non-

destructive and label-free imaging of cellular dynamics. EIT is a tomographic modality that

images the cross-section conductivity distribution within the Region of Interest (ROI) via meas-

uring differential voltages at the boundary of the ROI. On account of its intrinsic characteristics

of non-destructiveness, low-cost fabrication, portability, non-ionizing radiation and real-time

imaging capability, EIT has been extensively exploited in functional lung imaging (Schullcke et

al., 2016), cell culture imaging (Y. Yang et al., 2016), and cell-drug response imaging (H. Wu,

Yang, Bagnaninchi, & Jia, 2018) over the last decades.

Among the aforementioned biomedical applications, 3D cell culture imaging with miniature

EIT sensors has been particularly demanding in solving the image reconstruction problem, as

the trend of sensor micro-miniaturization (H. Wu, Yang, et al., 2018; Y. Yang et al., 2016) will

lead to much weaker measurement signals and considerably increased sensitivity to sensor

imperfection. Therefore, performing robust, high-quality image reconstruction with high spatial

resolution becomes essential. In addition, the need to process large amounts of sensing

data sequences in real-time imaging settings suggests that high computational efficiency is

preferable.

1
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Another critical challenge in the EIT image reconstruction problem is its highly nonlinear and

ill-conditioned characteristics, which further contributes to its susceptibility to imperfect meas-

urement data (Lu et al., 2011). Most physical model-based image reconstruction methods

linearize the EIT model and approximate the solution by minimizing least square errors and

introducing various regularization terms that encode prior information. Prevailing algorithms of

this kind include l1 regularization (Tehrani, McEwan, Jin, & Van Schaik, 2012), Adaptive Group

Sparsity (AGS) regularization (Y. Yang & Jia, 2017a), etc. In addition, image reconstruction

approaches from statistical perspectives stimulate novel insights. Examples include Structure-

Aware Sparse Bayesian Learning (SA-SBL) for 2D image reconstruction (S. Liu, Jia, Zhang,

& Yang, 2018) and its extended version to deal with 3D geometries (S. Liu, Wu, Huang, Yang,

& Jia, 2019). Whilst time-consuming, results of these methods suggest that introducing struc-

tural sparsity information as prior knowledge leads to significant improvement of image quality.

Despite the remarkable progress of these state-of-the-art algorithms, improvements are still

in demand in terms of spatial resolution, noise reduction performance and computational

efficiency to facilitate high-quality cell culture imaging with the miniature EIT setup.

Data-driven or learning-based methods have recently become a new frontier for tomographic

image reconstruction, particularly for mature medical imaging modalities (G. Wang, Ye, Mueller,

& Fessler, 2018). Significant improvements in image quality and fast inference capability

contribute to their growing popularity, although these methods rely heavily on the quality

and availability of training data sets, and their training time is usually considerable. Accord-

ing to G. Wang et al. (2018), existing learning-based image reconstruction algorithms for

Computed Tomography (CT), Positron Emission Tomography (PET), Magnetic Resonance

Imaging (MRI), and Photoacoustic Tomography can be generally classified as (a) image do-

main learning, which mainly removes artefacts of post-reconstructed images, (b) data domain

learning, a more aggressive strategy that directly maps measurement data to images, (c)

hybrid methods, which uses machine learning to provide image prior, and (d) end-to-end work-

flows, where image reconstruction and analysis are trained jointly. In electrical tomography,

Zheng et al. (2018) proposed an auto-encoder structure and Tan, Lv, Dong, and Takei (2018)

employed a LeNet-like network to reconstruct tomographic images, both mapping directly

the measurement data to 2D images. These pioneering studies utilize data domain learning

structure, demonstrating the superiority of deep learning methods over conventional image

reconstruction methods under conventional sensing setups. However, thus far, the application

of learning-based image reconstruction methods in more challenging miniature EIT sensor

setups remains unexplored.
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1.2 Aims and objectives

Based on the existing EIT system and miniature EIT sensors developed in the research

group (Y. Yang & Jia, 2017b), this thesis aims to develop a 2D and 3D imaging platform

integrating multi-frequency EIT and machine-learning based image reconstruction algorithms,

to extract spectroscopic electrical properties of 3D cultivated cells under in vitro conditions, in

a non-destructive, robust and computation-efficient manner. Specific targets include EIT data

generation, advanced learning-based 2D and 3D reconstruction algorithms, and algorithm

evaluation on simulation and experimental data. The ultimate goal is to promote miniature EIT

as a robust cellular imaging technique for tissue engineering applications. Distinct objectives

are listed as follows:

1. Establish multi-physics simulation-based tissue imaging datasets with a considerable

number and diversity of conductivity distributions.

2. Explore various machine learning methods to tackle the 2D and 3D EIT inverse prob-

lems and improve reconstructed image quality.

3. Conduct substantial quantitative and qualitative experimental evaluation of the developed

methods in micro-scale setups for cell imaging.

1.3 Main contribution

The main contributions of this thesis are summarised as follows:

1. A large-scale (∼75k samples) EIT dataset that mimics tissue engineering applications

was generated via simulation for machine learning algorithm development and analysis.

This dataset is made open-sourced at: Edinburgh EIT Dataset and Edinburgh mfEIT

Dataset , which can serve as a benchmark for the EIT community.

2. Two image reconstruction algorithms based on hybrid learning and deep learning were

proposed for cell aggregate imaging with miniature EIT (mEIT). The proposed ap-

proaches can address the multi-level, continuous conductivity reconstruction problem

and demonstrate superior performance in terms of image quality, computational effi-

ciency and generalization ability compared to existing algorithms.

3. A Multiple Measurement Vector (MMV) model-based learning algorithm named MMV-

Net was proposed to address the simultaneous image reconstruction problem of multi-

frequency EIT (mfEIT). The proposed MMV-Net outperformed the state-of-the-art meth-

ods regarding image quality, generalization ability, noise robustness and convergence

performance.

4. A transformer-like point cloud network was proposed to tackle the challenging 3D EIT

image reconstruction problem. Compared to voxel grid-based representation, point cloud

provides more efficient fine-shape descriptions. The proposed point cloud network out-

performed the existing 3D EIT image reconstruction methods.

https://datashare.ed.ac.uk/handle/10283/4440
https://datashare.ed.ac.uk/handle/10283/4441
https://datashare.ed.ac.uk/handle/10283/4441
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These contributions can assist in promoting bioimpedance tomography as an effective real-

time imaging modality for 3D cell culture systems. Relevant outcomes have been published in

or submitted to renowned journals and international conferences as given in the publication

list.

1.4 Overview of the thesis

The thesis comprises seven chapters, and the remainder is structured as follows. Following

the introductory part, Chapter 2 provides a brief review of the foundation of EIT, the application

of EIT in tissue engineering, the state-of-the-art EIT image reconstruction algorithms, and the

recent challenge in tissue engineering.

Chapter 3 presents the development of a novel Deep Neural Network (DNN) and phys-

ical model-based hybrid image reconstruction framework to address the challenging multi-

conductivity-level EIT image reconstruction problem frequently encountered in cell imaging.

The proposed framework first leverages DNN to predict binary structural information and then

determines the conductivity in a continuous manner using regularization. The effectiveness

and superiority of this framework are verified based on phantom simulation and real-world

data on MCF-7 breast cancer cell aggregates.

Chapter 4 proposes another 2D image reconstruction algorithm using a structure-aware dual-

branch deep learning method to accurately predict the exact conductivity values while pre-

serving the structure distribution. Two independent branches learn the structural and con-

ductivity features in the first place, which are subsequently fused to make final predictions on

conductivity distributions. The results demonstrate the superior performance of the proposed

method in dealing with the multilevel, continuous conductivity reconstruction problem.

Chapter 5 develops an effective model-based deep learning approach to solve the mfEIT-

image-reconstruction problem. The proposed approach unrolls an iterative algorithm for mfEIT

into a single pipeline to incorporate the advantages of both the physical model and deep

network. Edinburgh mfEIT Dataset and various real-world experiments validate the proposed

approach’s superior reconstruction quality, convergence performance, and noise robustness.

Chapter 6 introduces an efficient point-cloud-based 3D reconstruction network directly work-

ing on 3D geometries. Even with limited points to describe fine-grained details of 3D surfaces,

the transformer-like point cloud network exhibits the superior performance of reconstruction

quality over voxel-based 3D reconstruction algorithms.

Finally, Chapter 7 summarises the scientific contribution of this thesis and discusses future

work.



Chapter 2

Literature Review

2.1 Introduction

This chapter succinctly reviews the foundation of EIT, based on which the emerging applic-

ation of EIT in tissue engineering is comprehensively reviewed. Furthermore, the state-of-

the-art EIT image reconstruction algorithms are summarised, including model-based and

learning-based methods. Finally, the recent challenge of EIT imaging in tissue engineering

is discussed.

2.2 Electrical Impedance Tomography

2.2.1 Foundation of EIT

EIT is an emerging medical imaging modality that visualizes the conductivity distribution σσσ ∈
Rn inside the sensing region Ω by injecting currents I into electrode pairs and detecting the

induced boundary voltages V at the remaining electrode pairs (see illustration in Fig. 2.1). The

numerical computation of boundary voltage measurements is termed the forward problem

of EIT, which can be most accurately described by the Complete Electrode Model (CEM)

(Cheng, Isaacson, Newell, & Gisser, 1989). Let N be the number of electrodes attached at

the boundary ∂Ω, and n be the outward unit normal of ∂Ω. With CEM, the potential u can be

calculated using

∇ · (σσσ∇u) = 0, x ∈Ω (2.1)

u+ zℓσσσ
∂u
∂n

=Uℓ, x ∈ eℓ, ℓ= 1, . . . ,N (2.2)∫
eℓ

σσσ
∂u
∂n

dS = Iℓ, x ∈ eℓ, ℓ= 1, . . . ,N (2.3)

σσσ
∂u
∂n

= 0, x ∈ ∂Ω\∪N
ℓ=1 eℓ (2.4)
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−𝑰

𝑽

Figure 2.1: Sensing schematic of EIT.

where eℓ represents the ℓth electrode; zℓ, Iℓ, and Uℓ denote contact impedance, injected

currents and corresponding potential on eℓ, respectively. The conservation of the charge and

the choice of the reference point are added to CEM for the existence and uniqueness of the

solution u, which are expressed as

N

∑
ℓ=1

Iℓ = 0,
N

∑
ℓ=1

Vℓ = 0. (2.5)

The resulting voltage measurements V ∈Rm are then used to reconstruct the discrete spatial

conductivity distribution σσσ within the ROI through reconstruction algorithms, which is termed

the inverse problem of EIT (or EIT image reconstruction problem). The nonlinear relationship

between V and σσσ can be generally described as:

V = F(σσσ)+e (2.6)

where F(·) represents the nonlinear forward operator, and e is the noise vector. To elimin-

ate the common modelling errors, difference imaging is usually considered, wherein (2.6) is

linearized by assuming a perturbation of conductivity distribution ∆σσσ ∈ Rn. The change of

induced boundary voltages ∆V ∈ Rm can be approximated by

∆V = J∆σσσ +e (2.7)

where J ∈ Rm×n donates the Jacobian matrix (also known as the sensitivity matrix). The

sensitivity at the kth pixel of the sensing region is calculated by

Ji j(k) =
∂Vi j

∂σk
=−

∫
pixel k

∇u(Ii) ·∇u(I j)dV (2.8)
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where ∇u(Ii) and ∇u(I j) are gradients of the potential fields u, when the current is injected

into the ith and jth electrode pairs, respectively.

Conventionally, the EIT image reconstruction problem based on (2.7) can be formulated as

the following constrained problem:

min
∆σσσ

R(∆σσσ)

s.t.J∆σσσ = ∆V
(2.9)

where R denotes the regularization function, which integrates the prior knowledge of ∆σσσ .

2.2.2 EIT for Tissue Engineering

EIT has appealing properties of non-destructiveness, low cost, portability, radiation-free meas-

urement and real-time imaging capability, making it an up-and-coming candidate in biomed-

ical imaging, including functional lung imaging (Santos, Czaplik, Orschulik, Hochhausen, &

Leonhardt, 2018; Schullcke et al., 2016), biological tissue imaging (A. Adler & Boyle, 2017;

Ahn, Oh, Jun, Seo, & Woo, 2011), stroke diagnosis (Goren et al., 2018; McDermott et al.,

2020), breast cancer detection (Choi, Kao, Isaacson, Saulnier, & Newell, 2007; Sadleir, Sajib,

Kim, Kwon, & Woo, 2013) and brain imaging (Goren et al., 2018; Romsauerova et al., 2006).

This thesis mainly focuses on miniature EIT for tissue engineering, particularly 3D cell culture

imaging.

Tissue engineering combines biology with engineering aiming at cultivating functional tissues

or cellular products in vitro to restore or improve malfunctioning tissues in the human body.

Before in vivo transplantation, it takes days to grow fully differentiated and mature 3D tissues

or cells (Carlson, Alt-Holland, Egles, & Garlick, 2008; Rahman, Register, Vuppala, & Bhansali,

2008; H. Wu, Yang, et al., 2018). 3D cell culture can better mimic the function of living

tissues based on the cellular responses to drugs/compounds/external stimuli compared to

cell monolayers (see Fig. 2.2). 3D in vitro models are promising for drug screening, cancer

research, gene and protein expression applications, and cell-based analysis (Ravi et al.,

2015). Providing better models of cell behavior may benefit the study and treatment of human

diseases, reduce animal testing, and facilitate the development of decisional tools in regen-

erative medicine. A key challenge in 3D cell culture is determining the cellular state in-depth

and over time. This process requires real-time monitoring, visualization, and evaluation of

tissue-engineered cultures to control and optimize cellular functions, e.g., growth, proliferation,

differentiation, and viability (De León, Pupovac, & McArthur, 2020).

To date, the gold standard techniques of monitoring 3D culture models are end-point histology

and fluorescence microscopy (Dmitriev, 2017), while requiring physical destruction of the

cultured samples by sectioning and staining. Indirect and non-invasive assessment of cell

culture via measuring other parameters of cell health is more attractive and has been extens-
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2D Cell Culture System 3D Cell Culture System
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Figure 2.2: Comparison of 2D and 3D cell culture systems.

ively investigated for 2D cell cultures. Bavli et al. (2016) and Mahfouzi, Amoabediny, Doryab,

Safiabadi-Tali, and Ghanei (2018) provided effective 2D spatial resolution by measuring oxy-

gen, glucose, and lactate concentrations. These approaches are limited by the molecule

diffusion into the culture media, which is unsuitable for 3D cell culture systems. Alternat-

ively, physiological, morphological, and pathological conditions of cells can be determined

by characterizing electrical properties of cells in culture (K’Owino & Sadik, 2005; Miklavčič,

Pavšelj, & Hart, 2006). Trans-epithelial electrical resistance (TEER) measurements (S. Chen,

Einspanier, & Schoen, 2015) allowed real-time monitoring based on the characterization of

electrical properties of cells but only at single frequency. In contrast, electrical impedance

spectroscopy (EIS) (Benson, Cramer, & Galla, 2013) is a well-established tool enabling fre-

quency sweeping to capture frequency-dependent electrical characteristics of cell cultures.

Migrating from 2D to 3D environment, the EIS system has been integrated with external

electrodes either horizontally (Lei, Liu, & Tsang, 2018) or in parallel (Del Agua et al., 2018;

Groeber et al., 2015; Pan et al., 2019). These early studies of 3D applications demonstrated

the impedance spectrum of 3D cells and the correlation of impedance changes with cell

number. However, integrating electrodes with 3D cell culture systems while preserving the

functionality of cells remains very challenging.

Based on impedance spectroscopy studies, bioimpedance tomography targets imaging 3D

culture processes with high spatial resolution. Obtaining the spatial resolution within 3D cell

cultures is of great interest to efficiently identify the number, shape, and location of cells

over time to distinguish cell metabolism and health status in different areas of the tissue.

Bioimpedance tomography is an emerging promising technique that measures bioimpedance

to image cells and accordingly infers the physical properties of cells, such as the physiological
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status, shape, location, and dynamic response to regenerative medicines. Recent years have

witnessed the explosive research of EIT in cell culture imaging (Y. Yang et al., 2016, 2019),

cell-drug response imaging (H. Wu, Yang, et al., 2018), cell growth and viability assessment

(H. Wu, Zhou, Yang, Jia, & Bagnaninchi, 2018), monitoring of single cell mitosis (X. Li, Yang,

He, & Rubinsky, 2019), and tissue electroporation imaging (Davalos, Otten, Mir, & Rubinsky,

2004). EIT has exhibited great potential in providing information regarding the morphological

and functional behavior of the cell cultures in a real-time and non-invasive manner.

The first EIT system was developed in 1978 (Henderson & Webster, 1978), while the Sheffield

Mk1 was the first EIT system specially designed for biomedical purposes (Brown & Seagar,

1987). With the developments of micro technologies (Griffiths, Tucker, Sage, & Herrenden-

Harker, 1996; Linderholm, Marescot, Loke, & Renaud, 2007; Rahman et al., 2008), instru-

mentation miniaturization of EIT has become prevailing by deploying a set of microelectrodes

inside the cell culture environment. In other words, the feasibility of system fabrication at the

cellular level allows EIT to accommodate the needs of 3D cell culture monitoring. E. J. Lee

et al. (2014) proposed a KHU Mark2 micro-EIT system which placed a large number of elec-

trodes on parallel walls to obtain large data points with the intention of high image resolution

but was not yet examined with cells. Instead, Yin, Wu, Jia, and Yang (2018) employed 17

circular microelectrodes radially distributed at the bottom of the well while Y. Yang et al. (2016)

placed 16 rectangular microelectrodes surrounding the substrate of the cylindrical chamber.

This deployment enabled the authors to image human breast cancer cell spheroids (Y. Yang

et al., 2016) and to characterize cell viability in the Triton X-100 solution (H. Wu, Yang, et

al., 2018). The data acquisition speed of Yang’s work can be up to 546 fps in serial mode

and 1014 fps in semi-parallel mode (Y. Yang & Jia, 2017b). The spatial resolution that EIT

can typically achieve is around 10% of the diameter of the sensing region (Metherall, Barber,

Smallwood, & Brown, 1996).

These studies have demonstrated a prospective use for EIT in 3D cell culture monitoring. One

challenge is the trend of sensor micro-miniaturization in cell imaging (H. Wu, Yang, et al., 2018;

Y. Yang et al., 2016, 2019) has led to much weaker measurement signals and increased sens-

itivity to sensor imperfection, which requires improving spatial resolution and obtaining robust,

high-quality image reconstruction. The other challenge is the need to process large amounts

of sensing data sequences in real-time for cell imaging, suggesting that high computational

efficiency is preferable.
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2.3 EIT Image Reconstruction Algorithms

In tissue engineering, imaging 3D cell culture with spatial resolution at the cellular level (ideally

∼50µm (De León et al., 2020)) is of great interest to efficiently identify the number, shape

and location of cells over time and to determine cell metabolism and health status. EIT is

an emerging imaging technique that can potentially obtain better spatial resolution of 3D

tissue cultures. As a typical inverse problem, the image reconstruction of EIT, in essence,

suffers from nonlinearity, under-determination and ill-posedness. The development of EIT

image reconstruction algorithms has been extensively investigated in terms of spatial res-

olution, noise resistance performance and computational efficiency to facilitate high image

quality. Most EIT image reconstruction algorithms have been recently summarised by Chitturi

and Farrukh (2017); M. Zhang, Ma, Huang, and Ge (2022); Zong, Wang, and Wei (2020).

This section briefly reviews recent progress for EIT image reconstruction algorithms from the

perspectives of model-based, learning-based/data-driven methods and recent challenges in

tissue engineering.

2.3.1 Model-based Methods

Model-based methods refer to techniques that model the physical processes of the underly-

ing problem and capture prior domain knowledge. Conventional model-based reconstruction

approaches are partitioned into one-step, iterative, stochastic, and nonlinear methods.

One-step method

One-step reconstruction is constructed based on the idealized mathematical inversion of the

forward model. This type of reconstruction algorithms is suitable for real-time imaging due

to its fast running speed. As a universal method, Tikhonov regularization (Lukaschewitsch,

Maass, & Pidcock, 2003) promotes smoothness of solutions with l2 norm as the quadratic

penalty, i.e. R(∆σσσ) = ∥∆σσσ∥2. The EIT image reconstruction problem in (2.9) can then be

formulated as an analytical expression:

∆σσσ = (JTJ+λ I)−1JT
∆V (2.10)

where I is the identity matrix. Another common method GREIT (A. Adler et al., 2009) adopts

the one-step Gauss-Newton solver with the Laplacian filter L:

∆σσσ = (JTJ+λLTL)−1JT
∆V (2.11)
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However, the one-step method usually performs poorly in practice, resulting in image blur-

riness and artefacts. The main reason is that the sensor data easily deviate from what the

analytic expression of the mathematical model would predict. Typically, one-step reconstruc-

tion serves as an initial guess for more advanced reconstruction algorithms, e.g., the adaptive

group sparsity (AGS) (Y. Yang & Jia, 2017a; Y. Yang, Wu, & Jia, 2017).

Iterative method

The iterative reconstruction method is more reliable than one-step reconstruction. First, it

combines the numerical forward model with a feedback loop, which enables strong noise

robustness and artifact reduction. Second, it allows for introducing external prior knowledge

as additional constraints R to further enrich the sensor data information and enhance the

ultimate reconstruction quality. Different choices of R result in different patterns. Third, the

iterative method is an alternate solution for cases where closed-form solutions are intractable.

Optimizations of iterative algorithms can be solved by iterative Landweber method (Jang,

Lee, Kim, & Choi, 2006), conjugate gradient algorithms (Wei, Liu, & Chen, 2019), alternating

direction method of multipliers (ADMM) optimization algorithm (Fukushima, 1992; J. Wang,

Huang, Zhang, & Wang, 2020), Gauss-Newton method (K. Zhang, Li, Yang, Xu, & Abubakar,

2019), and iterative shrinkage and thresholding algorithm (ISTA) (Gehre et al., 2012).

Total variation (TV) regularisation (Borsic, Graham, Adler, & Lionheart, 2009; González, Koleh-

mainen, & Seppänen, 2017; Zhou et al., 2015) is a widely used regularisation method for EIT

reconstruction, which is especially suitable for conductivity distributions with a sharp boundary

for the inclusions:

R(∆σσσ) = ∑
(i, j)∈Ω

√
|∆σσσ (i+1, j)−∆σσσ (i, j)|2 + |∆σσσ (i, j+1)−∆σσσ (i, j)|2 (2.12)

where (i, j) donates pixel index inside Ω. l1 (or sparsity) regularization offers monadic penal-

ties to promote sparsity or discontinuity (Gehre et al., 2012; Jin, Khan, & Maass, 2012; Tehrani

et al., 2012), which is defined by:

R(∆σσσ) = ∑
k
|⟨∆σσσ ,φk⟩| (2.13)

where {φk} a basis/overcomplete frame/dictionary. This is suitable for circumstances where

objects are naturally sparse inside the sensing region as prior knowledge, which is capable

of suppressing pixels belonging to the background very close to zero and promoting nonzero

pixels belonging to the targeted objects. Furthermore, group sparsity regularization (Y. Yang &

Jia, 2017a) and its advanced version (Y. Yang et al., 2017) extended the concept of sparsity via

pixel grouping to construct the underlying structure of the solutions. Assuming the conductivity

change ∆σσσ can be classified into SN groups, group sparsity regularization can be formulated
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as

R(∆σσσ) = ∥∆σσσ∥2,1 =
N

∑
i=1
∥∆σσσSi∥

2 (2.14)

where ∥·∥2,1 denotes the l2,1 norm, which is the sum of energy of each defined group. These

works demonstrated that the adoption of the group sparsity could potentially facilitate cancer

cell spheroid imaging and tissue culture monitoring in biomedical applications. K. Zhang et al.

(2019) utilized the multiplicative regularization (MR) algorithm to sharpen blurred edges. This

smoothing regularization is based on the weighted l2 norm with edge-preserving characterist-

ics as follows:

Ri(∆σσσ) =
1
v

∫
Ω

bi−1(|∇∆σσσ |2 +δi−1)dr,

bi−1 =
1

|∇∆σσσ i−1|2 +δi−1
,

δi−1 =
∥∆V−J∆σσσ i−1∥2

∥∆V∥2 · 1
∆̃
,

(2.15)

where i is the iteration index, v is the volume of Ω, bi is the weighted for l2 norm, ∆̃ is a positive

parameter related to the mesh size, and δi is a positive parameter to control the strength of

regularization. In this regularization scheme, the dynamic regularization weight alleviates the

complexity of parameter fine-tuning.

Stochastic method

The stochastic method solves the inverse problem in (2.9) from the statistical perspective.

The above methods make estimations on ∆σσσ deterministically, whereas this method regards

∆σσσ as a random variable. It allows quantification of the uncertainty in the reconstruction to

enhance robustness to data disturbance. Mathematically, it incorporates the Bayesian frame-

work by implementing maximum a posteriori (MAP):

argmax
∆σσσ

p(∆σσσ |∆V) ∆
= argmin

∆σσσ

[− log p(∆V|∆σσσ)−λ log p(∆σσσ ;θθθ)] (2.16)

where the parametric prior probability p(∆σσσ ;θθθ) introduces the prior knowledge, e.g. Gaussian

distribution, which has the same function as R(∆σσσ); the likelihood p(∆V|∆σσσ) amounts to the

data fidelity term in (2.9), which encapsulates the physics process to generate the measure-

ment ∆V; the posterior probability p(∆σσσ |∆V) provides a distribution of all possible solutions

for reconstruction.

For EIT imaging, structure-aware sparse Bayesian learning (SA-SBL) (S. Liu et al., 2018) and

its 3D version (S. Liu et al., 2019) were proposed to promote clustered sparsity constraint

from the statistical perspective. This Bayesian framework achieved promising results when

extended to frequency-difference EIT (fdEIT) within the multiple measurement vector (MMV)

models (S. Liu, Huang, Wu, Tan, & Jia, 2020). Generally, they considered ∆σσσ as a set of
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clusters with an equal size h and the clusters were allowed to overlap. The clustering partition

is embedded with a matrix ΨΨΨ so that ∆σσσ is factorized by:

∆σσσ
∆
=ΨΨΨx ∆

= [ΨΨΨ1, · · · ,ΨΨΨg][xT
1 , · · · ,xT

g ]
T (2.17)

where g= n−h+1 donates the total number of possible clusters. ∀i= 1, · · · ,g, ΨΨΨi
∆
= [0T

(i−1)×h,

ITh×h,0
T
(n−i−h+1)×h]

T ∈Rn×h donates the i-th cluster structure, and xi = [xi, · · · ,xi+h−1]
T ∈Rh×1

denotes weights of each cluster. The linearized EIT model in (2.7) incorporates structure

sparsity by:

∆V = JΨΨΨx+e ∆
=ΦΦΦx+e (2.18)

where ΦΦΦ= JΨΨΨ
∆
= [ΦΦΦ1, · · · ,ΦΦΦg], ΦΦΦi

∆
= JΨΨΨi ∈Rm×h, and the noise vector e is subject to multivari-

ate Gaussian distribution, i.e. e∼N (0,α I). The prior of x is assumed to follow a zero-mean

Gaussian distribution:

p(x;{θθθ i}g
i=1) = N (0,ΣΣΣ0) (2.19)

where the covariance matrix ΣΣΣ0 ∈Rgh×gh is designed as a cluster diagonal matrix. The optimal

clustering strategy was learned by sparse Bayesian learning (SBL). This method exhibited

strong noise resistance performance.

However, these approaches may not be suitable for real-time monitoring where computation

efficiency is a crucial criterion. In addition, they are based on the linearized EIT model and

sparsity assumption, making it challenging to accurately estimate conductivity values and deal

with non-sparse cases.

Nonlinear method

In the above methods, the approximated linearization of the EIT model incurs model errors,

limiting the reconstruction quality. Error is inevitable when interpreting conductivity levels

based on the sensitivity matrix J from the measurement data. To mitigate this issue, the

non-linear reconstruction algorithm opens a new research area to improve image quality by

modelling the non-linear EIT problem.

The D-bar method as a classical non-linear method was proposed for solving EIT image

reconstruction (Knudsen, Lassas, Mueller, & Siltanen, 2007, 2009; Watzenig & Fox, 2009).

It provides non-iterative/real-time absolute reconstruction by firstly applying the nonlinear

Fourier transform to the boundary measurement in the form of Neumann-to-Dirichlet (ND)

map Λσσσ :

texp(k) =
∫

∂Ω

eik̄z̄(Λσ −Λ1)eikzds(z), f or k ∈ C,0 < |k| ≤ R (2.20)
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where Λ1 the ND map of the homogeneous conductivity 1, ds(z) denotes arclength measure

on ∂Ω, texp(k) is the generated scattering data, and R is the chosen radius. Secondly, texp(k)

is then used to solve the low-pass D-bar equation. This equation directly recovers the absolute

conductivity distribution σσσ , which is defined as:

σσσ
exp(z) = [µexp(z,0)]2, f or z ∈Ω

µ
exp(z,k) = 1+

1
4π2

∫
∂Ω

texp(k′)
(k− k′)k̄′

e(z,−k′)µexp(z,k′)dk′1dk′2,
(2.21)

where e(z,k) := exp(i(kz+ k̄z̄)) is a unitary multiplier. The robustness of the D-bar algorithm

to incorrect electrode locations and boundary shape was explicitly proven (Hamilton, Mueller,

& Santos, 2018). The D-bar method with EIT was further validated in pediatric cystic fibrosis

(CF) patients for lung function assessment (Muller et al., 2018). Despite these advances, the

existence and uniqueness of the D-bar solution were proven for only two-dimensional inverse

problem by Nachman (1996). In addition, the D-bar method suffers from images’ degraded

sharpness, which is an important feature in medical imaging.

In the context of difference imaging, (D. Liu, Kolehmainen, Siltanen, & Seppänen, 2015)

proposed a nonlinear approach by simultaneously reconstructing both the initial state of the

conductivity distribution σσσ1 and the conductivity change ∆σσσ . The nonlinear model in (2.6) was

reformulated as: [
V1

V2

]
=

[
FFEM(σσσ1)

FFEM(σσσ1 +∆σσσ)

]
+

[
e1

e2

]
(2.22)

where V1 and V2 donate voltage data measured at the initial state and after conductivity

change, respectively; FFEM(·) donates discretized forward mapping based on finite element

method (FEM). The final estimate was obtained by minimizing regularized least squares

formalism with independent regularization design for σσσ1 and ∆σσσ . This work demonstrated the

robustness of difference imaging in the presence of modelling errors. Based on this nonlinear

method, Khambampati, Liu, Konki, and Kim (2018) further proposed to automatically restrict

∆σσσ to a subdomain. However, their optimization with the iterative Gauss–Newton method

suffers from heavy computational costs.

Table 2.1 comprehensively compares representative model-based methods. Despite the suc-

cessive advancement of these advancing algorithms based on either mathematical or physical

models, real-time 3D cell culture imaging with the miniature EIT system requires further

improvements in terms of computational efficiency, spatial resolution at the miniaturised scale,

and noise resistance performance.
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Table 2.1: Comparison of representative model-based methods for EIT image reconstruction.

Method
type

Reference Algorithm Regularization Optimization Characteristics

One-
step

Lukaschewitsch et al.
(2003)

Tikhonov l2 norm - Smoothness; real-time; geophysical imaging

A. Adler et al. (2009) GREIT Laplacian filter One step
Gauss-Newton

Small position error; small ringing artefacts;
real-time; lung imaging

Iterative Tehrani et al. (2012) Sparsity l1 constraint ISTA Sparsity; sharp edge; discontinuity
Zhou et al. (2015) Total variation TV Gauss–Newton Sharp edge; discontinuity; blocky images
Y. Yang and Jia
(2017a)

AGS Group sparsity ADMM Dynamic pixel grouping; cell spheroid imaging

K. Zhang et al. (2019) MR Weighted l2
norm

Gauss-Newton Edge-preserving; reduced complexity of para-
meter fine-tuning;thorax imaging

Stochastic S. Liu et al. (2018) SA-SBL Prior MAP estimation Structured sparsity; automatic structure clus-
tering; higher spatial resolution and anti-noise
performance

Nonlinear D. Liu et al. (2015) nonlinear
difference re-
construction

l2 norm, TV Gauss-Newton FEM approximation; robustness to modeling
errors; difference imaging

Hamilton et al. (2018) D-bar - - Nonlinear inversion; real-time; robustness to
modeling errors; absolute imaging
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2.3.2 Learning-based Methods

Conventional algorithms require manually determining regularization terms and fine-tuning

hyper-parameters, such as penalty parameters and step sizes. In addition, the computational

cost is considerable, preventing their wide adoption in biomedical applications that desire

real-time imaging capability. Moreover, more advanced image reconstruction algorithms need

to be studied to achieve a spatial resolution of reconstructed images that is appropriate for

high-quality measurements.

Recent years have witnessed the revolution of deep learning, which can offer superior im-

age quality and fast inference time. Instead of handcrafting prior knowledge in conventional

iterative approaches, deep learning has proven its effectiveness and efficiency in automat-

ically learning information from big data set. Encouraged by the unprecedented success of

deep learning in the computer vision domain, medical tomographic image reconstruction is a

new frontier of machine learning with noteworthy improvement in image quality and speed

(G. Wang et al., 2020). In the context of EIT imaging, learning-based methods are also

desirable for real-time imaging due to the faster execution time against the above conventional

algorithms. These methods typically take advantage of a deep network fθθθ (·) parameterised

by network weights θθθ to reconstruct the conductivity distribution based on the measurement

input. Optimal θθθ ∗ are determined based on training data D of measurements and correspond-

ing ground-truth conductivity distributions, {(∆V(k),∆σσσ
(k)
gt )}K

k=1. Then the image reconstruction

problem is converted to a regression problem by minimising an objective function L (here,

Mean Squared Error is taken as an example):

min
θθθ

L (θθθ ;D) :=
1
2 ∑
(∆V,∆σσσgt)∈D

∥∆σσσgt − fθθθ (∆V)∥2 + r(θθθ). (2.23)

where r is the regularization term to avoid overfitting. Once the training procedure is finished,

the execution of fθθθ ∗(·) is fast for reconstruction.

Existing learning-based EIT image reconstruction algorithms can be classified into three cat-

egories (Z. Chen, Xiang, Bagnaninchi, & Yang, 2022; Xiang, Dong, & Yang, 2021): (a) fully

learning approaches that directly map measurement data to a conductivity image; (b) image

post-processing approaches that employ a trained network to eliminate artifacts of a pre-

liminary conductivity image obtained from model-based algorithms; (c) model-based deep

learning approaches that unroll a finite number of iterations of the model-based methods into

a network.
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Fully Learning Approach

Empowered by big data, fully learning approaches directly learn the mapping from measure-

ment data to the conductivity image via a neural network typically constructed by a sequence

of convolutional layers, Multilayer Perceptron (MLP), and activation layers (Z. Chen et al.,

2020; F. Li, Tan, & Dong, 2020; Tan et al., 2018). Rather than relying on the mathematical or

physical model, these approaches are purely data-driven. Fig. 2.3 illustrates a typical deep

network architecture for image reconstruction. MLP (Rumelhart, Hinton, & Williams, 1986)

was the top choice to construct a neural network and its working mechanism is depicted in

Fig. 2.3(c). The output neurons of the lth hidden layer, i.e. h(l)i , are fully connected to every

neuron in the previous layer, i.e. h(L−1)
j . The analytic expression is formulated as:

h(l)i = γ(∑
j

W (l)
i j h(l−1)

j +b(l)i ) (2.24)

where W (L)
i j denotes the unit weight connecting the jth neuron in layer l−1 with the ith neuron

in layer l; b(L)i is the bias for the ith neuron in layer l; and γ is the non-linear activation function.

Common choices of activation function γ for nonlinear operations can be the logistic function,

rectified linear units, and the hyperbolic tangent function. The weights and biases construct

the trainable network parameters θθθ that are learned during training in (2.23) (see Fig. 2.3(b)).

The linear operations by MLPs acquire massive parameter dimensionality and limit the depth

of neural networks, which motivated the development of convolutional neural networks (CNNs)

(Krizhevsky, Sutskever, & Hinton, 2017; LeCun, Bottou, Bengio, & Haffner, 1998). In CNNs,

sparse connections successfully release heavy computation of MLPs by sharing weights

across different spatial locations (see Fig. 2.3(d)).

A surge of efforts has introduced various CNNs to the field of electrical tomography and

exhibited remarkable performance in tomographic imaging. Zheng et al. (2018) employed an

auto-encoder structure where the encoder mimics the forward problem and the subsequent

decoder solves the inverse problem of electrical capacitance tomography (ECT). Tan et al.

(2018) alternatively developed a deep network taking the well-established architecture in

computer vision, i.e. LeNet (LeCun et al., 1998) for electrical resistance tomography (ERT).

Dedicated to EIT, Hu, Lu, and Yang (2019) took into account the geometrical structure of

EIT sensors and introduced a CNN to map directly the measurement data to conductivity

distribution. Z. Chen et al. (2020) proposed a novel deep network FC-UNet for cell imaging.

The design of FC-UNet mimics the behavior of the human brain by taking steps to make

predictions.
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Figure 2.3: (a) An illustration of a typical deep architecture for image reconstruction. (b)
Supervision strategy with mean squared error (MSE) as the objective function for training.
(c) Multilayer Perceptron (MLP): neurons are fully connected at each layer. (d) Convolution:
neurons are sparsely connected and restricted to local neighbours.
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These fully learning-based methods utilize data domain learning structure and demonstrate

the superiority of deep learning methods over conventional image reconstruction methods

in identifying each object’s position and geographical shape within the sensing region. A

significant limitation of these early-stage studies is that only single-level (or binary) conduct-

ivity/permittivity changes are investigated, which is far from the practical cell culture systems

with multi-level conductivity/permittivity distributions.

Another critical concern over the practical deployment of fully learning-based methods is the

black-box nature. End-to-end training of deep networks is the lack of interpretability and the

underlying structures neglect the physical processes of the inverse problem. Furthermore,

such blind reconstruction tools highly depend on the quality and diversity of training data,

which to some extent, degrades the generalization ability, especially in biomedical engineer-

ing.

Image Post-processing Approach

Instead of entirely ignoring the physical insights, image post-processing approaches start

from the preliminary conductivity images generated by the mathematical inversion/iterative

algorithms/nonlinear reconstructions (see Fig. 2.4). To eliminate the inevitable artefacts of the

initial reconstructions, different deep networks are picked and trained as a post-processing

step for denoising (Duan, Taurand, & Soleimani, 2019; Hamilton et al., 2018; Wei et al., 2019).

Preliminary 
Approximation

∆𝑽

∆𝝈$

∆𝝈

Denoising 
Network

Figure 2.4: The generic pipeline of image post-processing approaches.
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Similar to fully learning approaches, image post-processing took advantage of the availability

of well-established deep-learning models in computer vision. Among all learning models, the

UNet which was first proposed especially for biomedical image segmentation (Ronneberger,

Fischer, & Brox, 2015) has become the most popular and indispensable denoising tool in EIT

imaging. Fig. 2.5 illustrates an example of the UNet architecture. The main idea of UNet is to

map an image to a latent vector and then reconstruct it back to an image. The contraction on

the left-hand side applies two convolutional layers with a max pooling in each step whereas

the layer at the bottom employs a upsample layer after convolutions. During expansion on

the right-hand side, the corresponding feature maps from the contraction part are reused to

reduce the distortion of images. They are appended directly after the upsampling layer. After

the two-convolution operation for the last step, a 1×1 convolutional layer and a sigmoid layer

are used for classification.
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Figure 2.5: The network architecture of UNet.

For EIT imaging, the work in (Duan et al., 2019) adopted the UNet architecture to remove

aliasing artefacts from the TV results (Borsic et al., 2009). The network was trained using

only hundreds of samples. Similarly, the deep D-Bar approach (Hamilton et al., 2018) and

the dominant-current deep learning scheme (DC-DLS) (Wei et al., 2019) used the UNet to

estimate the conductivity based on the approximated solution from different model-based

methods. In the deep D-bar, the network input is calculated based on the D-bar method

(Hamilton et al., 2018). Compared to the deep D-Bar approach, the DC-DLS is relatively

time-consuming as an iterative algorithm derives the approximation.

Unfortunately, learning-based post-processing approaches still suffer from image blurring,

especially when insufficient data is collected for training, e.g., clinical data. In addition, the

quality of preliminary images may affect the ultimate reconstruction performance.
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Model-based Deep Learning Approach

The main drawback of generic deep networks in fully learning and image post-processing

approaches is the black box nature and the requirement of large-scale data acquisition. These

shortages limit the deployment of learning-based methods in clinical utility, which motivates

contributions of model-based deep learning approaches. Unrolling or unfolding approaches

(Monga, Li, & Eldar, 2021) are emerging techniques that systematically incorporate deep

neural networks with conventional iterative algorithms instead of relying entirely on big data or

physics. The main idea of unrolling strategy is to unfold the iterative steps of conventional

iterative algorithms into cascaded blocks of a deep network. The schematic illustration is

provided in Fig. 2.6. The repetitive iteration step of iterative algorithms is interpreted as one

network layer. A stack of this network layer forming a deep neural network is equivalent to

executing the iteration multiple times. The network parameters are learned via backpropaga-

tion. Consequently, the trained network inherits prior structures and domain knowledge of the

iterative algorithms and computational benefits of conventional deep networks.

The seminal work of Gregor and LeCun (2010) was the first algorithm unrolling approach to

improve the computational efficiency of sparse coding. In this work, the ISTA was unrolled

into a compact network LISTA. The trained LISTA was reported roughly 20 times faster than

the original ISTA. In the past few years, growing unrolling approaches have been explored for

diverse underlying iterative algorithms. For example, L. Zhang, Wang, and Giannakis (2019)

unrolled an iterative prox–linear solver for power system state estimation. Y. Yang, Sun, Li, and

Xu (2018) unrolled the widely adopted ADMM into a deep architecture ADMM-CSNet for com-

pressed sensing. Parameters of the ADMM solver are learned via training to achieve faster

speed while preserving reconstruction accuracy. For tomographic reconstruction, J. Adler and

Öktem (2018) proposed an iterative CNN by unrolling the primal-dual hybrid gradient (PDHG)

algorithm and replacing the proximal operator with learned operators. Xiang et al. (2021)

unrolled the fast iterative shrinkage and thresholding algorithm (FISTA) into a deep network

FISTA-Net. FISTA-Net demonstrated good generalization ability over conventional methods

for two image reconstruction modalities, i.e. Electromagnetic Tomography (EMT) and sparse-

view Computational Tomography (CT).

Unrolling approaches provide a novel way to interpretable deep neural networks and relieve

heavy parameter requirements compared to the hierarchical architecture adopted by generic

deep networks. However, the network architecture design of unrolling approaches is overly

complicated, which results in less effective network training.
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∆𝝈(&)= 𝑔(∆𝝈 &'𝟏 , ∆𝑽; 𝜽)
end for
Output : ∆𝝈(𝑲𝒔). 

(a)

∆𝑽,∆𝝈(𝟎)

∆𝝈(𝑲𝒔)

𝑔(#	; 𝜽)

Figure 2.6: The general idea of model-based deep learning approach based on algorithm
unrolling. Starting from an iterative algorithm, a deep network is generated by cascading
the iterations g(·;θθθ) of the iterative algorithm. Each iteration is mapped into a network
layer parameterized by θθθ k,k = 1, . . . ,Ks. Layer parameters can be shared across layers or
layer-specific. Stacking Ks layers to construct a deep network is equivalent to executing the
iterative algorithm with Ks iterations. Therefore, this network structure naturally inherits the
interpretability from the physics of the iteration algorithm. The parameters {θθθ 1,θθθ 2, . . . ,θθθ Ks}
are learned through end-to-end training. (a) An abstract iterative image reconstruction
algorithm. (b) The corresponding unrolled deep network.
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Table 2.2: Recent representative learning-based methods for electrical tomographic image reconstruction.

Underlying Image Computational
Methods Year Reference

network/algorithm resolution speed (ms)
Application domain Topics

Fully learning 2018 Zheng et al. Auto-encoder 3228×1 - Multiphase flow ECT

2018 Tan et al. LeNet 812×1 7.8 Multiphase flow, biomed- ERT

ical monitoring, etc.

2019 Hu et al. CNN 64×64 - Industrial process,

cell culture imaging EIT

2020 F. Li et al. V-Net 812×1 16.1 Multiphase flow ERT

2020 Z. Chen et al. UNet 64×64 1.08 Cell culture imaging EIT

2021 Z. Chen et al. Multimodal CNN 3228×1 1.82 Cell culture imaging EIT

Image post- 2018 Hamilton et al. UNet, D-Bar 64×64 7.65 Medical imaging EIT

processing (UNet only)

2019 Duan et al. UNet, TV 50×50 - Artificial skin EIT

2019 Wei et al. UNet, bases-expansion 64×64 69×103 Medical imaging EIT

subspace optimization

2022 X. Zhang et al. VDD-Net, conjugate 256×256 400 Medical imaging EIT

gradient algorithm

Model-based 2021 Xiang et al. CNN, ISTA 64×64 - Biomedical imaging EMT, CT

deep learning 2022 Z. Chen et al. Self-attention, 64×64 126 Biomedical imaging Multifreq-

LSTM, ADMM uency EIT
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Table 2.2 provides a brief overview of representative fully learning approaches, image post-

processing approaches, and model-based deep learning approaches for tomographic image

reconstruction applied in different domains over the past five years. The development of deep

learning in the electrical tomography field is gradually increasing and enhancing industrial

processes and biomedical imaging.

2.3.3 Recent Challenge in Tissue Engineering

Tissue engineering has achieved tremendous progress in aspects of renewable cell sources,

advanced biomaterials for active modulation of cell growth, and 3D architecture technolo-

gies of tissue scaffolds (Khademhosseini & Langer, 2016). The recent challenge of tissue

engineering lies in achieving biological functions of cellularized constructs and host compat-

ibility, especially for clinical applications. Consequently, it is demanding to quantify cellular

responses in-depth and over time in a label-free and non-invasive manner. End-point histology

and fluorescence microscopy, which are current gold standard tools to monitor 3D culture

models, are time-consuming and destructive despite offering high-resolution images.

In contrast, EIT is a potential solution for 3D cell culture monitoring with excellent properties of

low-cost fabrication, non-invasiveness, portability, and fast speed. However, EIT intrinsically

suffers from low spatial resolution due to the nature of nonlinear, ill-posed, and ill-conditioned

image reconstruction problem and weak measurements. These long-standing challenges in

image resolution have hindered the massive adoption of EIT as a standard tool in tissue

engineering. As reported in De León et al. (2020), the ideal spatial resolution for 3D cell

culture monitoring is ∼50µm to efficiently identify the cell metabolism and health status. The

issues to be addressed urgently include high-resolution image reconstruction with preferable

real-time performance and quantitative tomographic image analysis.

Table 2.3 compares the performance of conventional model-based reconstruction algorithms,

and learning-based reconstruction methods in terms of accuracy, interpretability, general-

izability, parameter dimensionality, and computational efficiency. Apparently, learning-based

reconstruction methods exhibit more powerful performance in different aspects. Deep learning

opens a new era of imaging research and translation. Therefore, the advancement of machine

learning for EIT in tissue engineering has the potential to contribute to developing data-driven

decisional tools in the field and thus ultimately generate significant clinical benefits for patients,

transforming the healthcare practice into personalized, preventive and precision medicine.
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Table 2.3: Comparison of model-based and learning-based image reconstruction algorithms.

Reconstruction Parameter Computational
Methods

accuracy
Interpretability Generalizability

dimensionality efficiency

Model-based

One-step Low

High High Low

High

Iterative Middle Low

Stochastic Middle Low

Nonlinear Low High

Fully learning High Low Low High High

Image post-

processing
High Middle Middle High Middle

Model-based

Learning-based

deep learning
High High Middle Middle High
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2.4 Summary

This chapter provides a brief review of the foundation of EIT, a prospective use for EIT in

tissue engineering, the state-of-the-art EIT image reconstruction algorithms, and the recent

challenge in tissue engineering. The purpose of the chapter is to highlight the importance of

deep learning to promote EIT as a gold standard technique for monitoring 3D culture models.

The innovative work and scientific contribution of this thesis lies in hybrid learning-based cell

imaging, structure-aware learning-based cell culture imaging, model-based learning algorithm

for mfEIT image reconstruction and 3D imaging using point cloud network, which will be

presented subsequently in the following chapters.



Chapter 3

Cell Culture Imaging Using Hybrid

Learning

3.1 Introduction

Rapid imaging of 3-D cell culture processes in a label-free, non-destructive manner is be-

coming increasingly attractive in tissue engineering, especially for drug discovery and long-

term biological behavior monitoring. Cell imaging with EIT has been particularly challenging

in solving the EIT-image-reconstruction problem. The trend of sensor micro-miniaturization in

cell imaging (H. Wu, Yang, et al., 2018; Y. Yang et al., 2016, 2019) has led to much weaker

measurement signals and increased sensitivity to sensor imperfection, which requires im-

proving spatial resolution and obtaining robust, high-quality image reconstruction. In addition,

the need to process large amounts of sensing data sequences in real-time for cell imaging

suggests that high computational efficiency is preferable.

This chapter targets addressing the challenging multi-conductivity-level EIT image recon-

struction problem that is frequently encountered in cell imaging. The main contribution lies

in developing a novel Deep Neural Network (DNN) and physical model-based hybrid image

reconstruction framework to recover multi-conductivity-level conductivity distributions effect-

ively. As it is very challenging to estimate continuous, multi-level conductivity changes using a

single neural network with limited training data, the problem is split into two sub-tasks, i.e. DNN

based structural information estimation and physical model-based conductivity prediction.

Some recent work (Hamilton et al., 2018; Wei et al., 2019) has demonstrated the success

of combining DNN with the physical EIT model, where DNNs implement post-processing to

remove artefacts of the initial low-quality images generated from the physical model-based

reconstruction. Differently, the proposed framework first leverages DNN to predict binary struc-

tural information and then continuously determines the conductivity using regularization. A

DNN named FC-UNet is established to identify binary structural information, i.e. position and

geographical shape of each object within the sensing region. The structural information is

then encoded into Group Sparsity (GS) regularization (Y. Yang & Jia, 2017a), an iterative

27
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framework utilizing the structural information as constraint, to further estimate the conductivity

levels of each object. The framework is named DL-GS and its effectiveness and superiority

are verified based on phantom simulation and real-world data on MCF-7 breast cancer cell

aggregates.

3.2 DL-GS: A Hybrid Learning Method for Cell Aggregate Imaging

3.2.1 DL-GS Framework

Fig. 3.1 presents the schematic illustration of the proposed DL-GS framework, where the input

is boundary voltage measurement, and the output is conductivity change. We first construct

a deep convolutional neural network to estimate the conductivity distribution with the input

voltage measurement. This network distinguishes inclusions from background substances,

and results are presented in a binary format. To train the network, we establish a training

data set with multi-level conductivity distributions by finite element modelling with COMSOL

Multiphysics (see details in Section 3.3.1). The binary result is then fed into a group index

encoder, which generates a pixel grouping index vector depicting the underlying structural

information of the conductivity (Y. Yang & Jia, 2017a). As prior knowledge, the structural

information is finally integrated into GS regularization to estimate conductivity values in a

continuous manner.

Conductivity 
change ∆𝝈

Trained 
Neural Network

Background/Object

Group index 
encoder

Pixel grouping 

Boundary voltage measurement
∆𝑽

Group sparsity regularization

Figure 3.1: Schematic illustration of the proposed DL-GS framework.
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Network Architecture

The objective of the neural network is to predict the positions and shapes of all possible

objects, given the boundary voltage measurement. The neural network consists of a Fully

Connected (FC) layer and a UNet (Ronneberger et al., 2015) (see Fig. 3.2); therefore, it

is named as FC-UNet. In our previously reported Adaptive Group Sparsity (AGS) algorithm

(Y. Yang & Jia, 2017a), the estimation of the positions and shapes of objects was achieved

by a one-step Gauss-Newton solver with Laplacian regularization (Y. Yang, Jia, Polydorides,

& McCann, 2014). This method is limited in that the results are coarse and sensitive to noise,

which poses a challenge to accurately determining the boundary of objects. In contrast, the

proposed FC-UNet is designed to enable faster and more accurate predictions.
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Figure 3.2: The architecture of FC-UNet.

As illustrated in Fig. 3.2, in FC-UNet, we first introduce an FC layer followed by a ReLU layer

to implement an initial estimate of the conductivity distribution. A UNet-like architecture, which

was proposed especially for biomedical image segmentation (Ronneberger et al., 2015), is

employed afterwards to denoise the output of the FC layer. The main architecture of UNet is a

typical auto-encoder, which maps an image to a low-dimension tensor and then reconstructs

it back to an image. The contraction on the left-hand side comprises a stack of convolutional

and max pooling layers. It applies two 3× 3 convolutional layers with a 2× 2 max pooling in

each step, whereas the layer at the bottom employs a 2×2 upsample layer after convolutions.

The expansion on the right-hand side is more or less symmetric to the contraction, using

transposed convolutions to facilitate accurate localization. Skip connections are also inserted

in expansion to capture tiny details and mitigate the vanishing gradient problem, where the

corresponding feature maps from the contraction part are reused and concatenated in expan-

sion steps. The feature maps are appended directly after the upsample layer. Finally, after

the two-convolution operation, a 1× 1 convolutional layer and a sigmoid layer are used for
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classification. To choose a UNet structure well suited to EIT image reconstruction problems,

we need to reduce hidden layers in the original architecture as a trade-off due to the consid-

erable parameters for the FC layer at the beginning (i.e. 104×4096). After performing hyper-

parameter searching on the validation data set, we determine to have one less contraction

step and one less expansion step.

Each pixel is eventually classified into either background or object. Then the binary mask

M ∈ Rn is given by the output, M = fFC−UNet(∆V|θθθ), where fFC−UNet is the forward mapping

of the FC-UNet parameterised by network weights θθθ . The network parameters θθθ are learned

during training. We use binary-cross-entropy as the loss function to train the FC-UNet:

L (θθθ) =− 1
K

K

∑
i=1

(Mi · logM̂i +(1−Mi) · log(1− M̂i)) (3.1)

where M̂i denotes the ground truth, and K is the total number of input-target pairs in the

training data set.

Group Index Encoder

The group index encoder is to partition all pixels within the sensing region into different groups

based on the structural information depicted by the binary mask M from FC-UNet. Assuming

the conductivity change ∆σσσ can be classified into N groups, i.e.

∆σσσ = {∆σσσS1 ,∆σσσS2 , . . . ,∆σσσSN} (3.2)

where Si, i = 1,2, . . . ,N denotes the group index of the ith group. The strategy of the group

index encoder is (see Fig. 3.3 for schematic illustration):

1. pixel clusters classified as an object will be defined as a large group and assigned

the same group index value; different objects correspond to different large groups; (the

example in Fig. 3.3 has two large groups, i.e. ∆σσσS1 ,∆σσσS2)

2. individual pixels classified as the background will be defined as a series of small groups;

(Fig. 3.3 has ∆σσσS3 , . . . ,∆σσσSN )

3. consecutive integers are assigned as group index for each group, i.e. 1, 2,..., N;

4. the grouping follows
⋃N

i=1 ∆σσσSi = ∆σσσ .
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∆𝝈!!

Objects ∆𝝈!!
∆𝝈!"

∆𝝈!"

FC-UNet result Pixel grouping

Figure 3.3: Pixel grouping based on FC-UNet result.

Group Sparsity Regularization

After obtaining the pixel grouping result, we impose this structural characteristic as a-priori

information and estimate the continuous conductivity by using group sparsity regularization

(Y. Yang & Jia, 2017a). As reported in Y. Yang and Jia (2017a), group sparsity promotes

the underlying structural information of conductivity distribution. The constrained optimization

problem can be formulated asmin
∆σσσ
∥∆σσσ∥2,1 :=

N

∑
i=1
∥∆σσσSi∥2

s.t.J∆σσσ = ∆V

(3.3)

where ∥·∥2,1 denotes the l2,1 norm, which is the sum of energy of each defined group. It has

been proved to facilitate group sparsity, i.e. minimizing the l2,1 norm suppresses pixel groups

with very small energies while promoting those present large energies (Huang & Zhang, 2010;

Obozinski, Taskar, & Jordan, 2010). This way, it takes advantage of the structural prior and

improves image quality.

We apply the Alternating Direction Method of Multipliers (ADMM) to solve (3.3). ADMM is

a prevailing approach for solving constrained separable optimization problems by breaking

the objective function into several sub-problems without coupled variables (Fukushima, 1992;

J. Wang et al., 2020). By introducing an auxiliary vector x ∈ Rn, the problem in (3.3) can be

rewritten as

min
∆σσσ ,x

N

∑
i=1
∥xSi∥2

s.t.x = ∆σσσ ,J∆σσσ = ∆V

(3.4)

Equivalently, we solve the following augmented Lagrangian problem.

min
∆σσσ ,x

N

∑
i=1
∥xSi∥2−γγγ

T
1 (x−∆σσσ)+

α1

2
∥x−∆σσσ∥2

2−γγγ
T
2 (J∆σσσ −∆V)+

α2

2
∥J∆σσσ −∆V∥2

2 (3.5)
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where γ1,γ2γ1,γ2γ1,γ2 ∈ Rn are multipliers and α1,α2 ∈ R denote the penalty parameters.

We then split (3.5) as two sub-problems which are expressed by

x(k+1) = argmin
x

N

∑
i=1

∥∥∥x(k)Si

∥∥∥
2
−γγγ

T
1 x(k)+

α1

2

∥∥∥x(k)−∆σσσ

∥∥∥2

2
(3.6)

∆σσσ
(k+1) = argmin

∆σσσ

{
γγγ

T
1 ∆σσσ

(k)+
α1

2

∥∥∥x−∆σσσ
(k)
∥∥∥2

2
−γγγ

T
2 J∆σσσ

(k)+
α2

2

∥∥∥J∆σσσ
(k)−∆V

∥∥∥2

2

}
(3.7)

The sub-problem in (3.6) can be solved by soft-thresholding in a group-wise manner (Deng,

Yin, & Zhang, 2013), i.e.

xSi = max
{∥∥∥∥∆σσσSi +

1
α1

(γγγ1)Si

∥∥∥∥
2
− 1

α1
,0
}
·

∆σσσSi +
1

α1
(γγγ1)Si∥∥∥∆σσσSi +

1
α1

(γγγ1)Si

∥∥∥
2

(3.8)

While the sub-problem in (3.7) is a convex quadratic problem, which can be solved directly by

asserting its gradient to zero, i.e.

γγγ1 +α1

(
∆σσσ

(k)−x
)
+JT

(
α2

(
J∆σσσ

(k)−∆V
)
−γγγ2

)
= 0 (3.9)

After solving these two sub-problems, we update the multipliers: γγγ1 = γγγ1−η1α1(x−∆σσσ)

γγγ2 = γγγ2−η2α2(J∆σσσ −∆V)
(3.10)

where η1,η2 ∈ R represent the step sizes.

In summary, the pseudo-code implementation of the DL-GS algorithm is presented in Al-

gorithm 1.

3.2.2 Evaluation Metrics

We quantitatively evaluate the performance of image reconstruction algorithms using Correl-

ation Coefficient (CC), which is defined as

CC =
∑

n
i=1(∆σ̂ i−∆σ̂̂σ̂σ)(∆σ i−∆σσσ)√

∑
n
i=1(∆σ̂ i−∆σ̂̂σ̂σ)2 ∑

n
i=1(∆σ i−∆σσσ)2

(3.11)
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Algorithm 1: DL-GS Algorithm
Input: Boundary voltage measurement ∆V.
Initialize: x, ∆σσσ , γ1γ1γ1, γ2γ2γ2, η1, η2, α1, α2.

1 Calculate the binary mask M using FC-UNet;
2 Calculate the group index vector based on S;
3 while the stopping criterion is not satisfied do

a) Solve the first sub-problem (3.6) using (3.8);
b) Solve the second sub-problem (3.7) using (3.9);
c) Update multipliers using (3.10);
end

Output: Estimated conductivity change ∆σσσ .

where ∆σ̂̂σ̂σ and ∆σσσ represents the predicted conductivity and ground truth, respectively; ∆σ̂ i

and ∆σ i denotes the ith element of ∆σ̂̂σ̂σ and ∆σσσ , respectively; ∆σ̂̂σ̂σ is the mean of ∆σ̂̂σ̂σ , and ∆σσσ

is the mean of ∆σσσ ; n is the total number of pixels. A larger CC indicates better image quality.

3.3 Experimental Setup

3.3.1 Data Set Generation

Simulation Data

To generate data set for FC-UNet training, we model a circular 16-electrode EIT sensor

using COMSOL Multiphysics. We adopt the adjacent measurement strategy and discretize

the sensing region with n = 3228 pixels.

3D cultivated cell aggregates are approximately circular. Therefore, we consider circular

phantoms with uniformly randomly assigned object numbers (1 to 4), size (from 0.03d to 0.3d;

d is the sensor diameter), location and conductivity values. The conductivity of the circular

objects is bounded within the range of 0.0001 S ·m−1 and 0.05 S ·m−1. The background

substance has a constant conductivity of 0.05 S ·m−1. The forward problem of EIT is calculated

regarding each randomly generated phantom to obtain the corresponding measurement. An

example of the generated phantom with its voltage data is shown in Fig. 3.4.

We finally generated 29,333 multi-level EIT samples, including 7035 1-object samples, 7298

2-object samples, 7500 3-object samples and 7500 4-object samples (the dataset is available

at https://datashare.ed.ac.uk/handle/10283/4440). We then divided this dataset into a training

set (6000 samples from each case), a validation set (500 samples from each case), and a

testing set (the remaining samples). The three subsets contain 24k, 2k and 3,333 samples,

respectively.
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(a) (b)

Object 1

Object 2

Object 3
Object 4

Background

Figure 3.4: A 4-object example of simulation data. (a) Boundary voltage change. (b)
Corresponding conductivity distribution.

In addition, we implement data augmentation by adding Gaussian noise to measurement data

in both training and validation sets to enhance the robustness of our model when system noise

or error is encountered. Additive noise with the Signal-to-Noise Ratio (SNR) of 50dB is added

to half of the training and validation samples for each case. Additive noise with an SNR of

40dB is added to the other half of the training and validation data. As a result, both training

and validation data are doubled. Testing data are added noise with SNR of 50dB, 40dB and

30dB. Table 3.1 summarizes the constitution of the training, validation, and testing data sets.

Table 3.1: Number of samples in each data set

Data set Training Validation Testing
Noise Free Samples 24,000 2,000 3,333

50dB Samples 12,000 1,000 3,333
40dB Samples 12,000 1,000 3,333
30dB Samples / / 3,333
Total Samples 48,000 4,000 13,332

Experimental Data

To validate the multi-conductivity-level performance of the proposed method using mEIT, we

employed the 16-electrode miniature EIT sensor designed in Y. Yang et al. (2016) to collect

phantom experiment data (see Fig. 3.5). The inner diameter of the sensing chamber is 15

mm and the height is 10 mm. A carrot and a rubber cylinder, which has similar size but

different conductivity (rubber: non-conductive; carrot: less conductive than the background),

were imaged. Additionally, we conducted experiments on MCF-7 human breast cancer cell

aggregates to examine the performance in cell imaging. In this case, a 16-electrode quasi-

2D miniature EIT sensor (Y. Yang, Wu, & Jia, 2018), which is able to incorporate imped-

ance sensing with optical imaging modalities, and a multi-frequency EIT system designed by

Y. Yang and Jia (2017b) were employed for cell imaging (MCF-7 cell: less conductive than

the background). The schematic and manufactured miniature EIT sensor, and 3D cultivated



3.3. Experimental Setup 35

MCF-7 cell aggregates are presented in Fig. 3.6. The sensing chamber has a diameter of

14mm and a height of 1.6mm. Two MCF-7 human breast cancer cell aggregates with a

diameter of approximately 2mm were imaged. More details regarding experimental phantoms

are presented in Section 3.4.3.

(a)

Ground Electrode

ElectrodeConnector

(b)

(c)

5.5mm

5mm

PVC Tube

Figure 3.5: Experimental setup for carrot and rubber phantom. (a) The miniature EIT sensor
(Y. Yang et al., 2016). (b) Carrot cylinder. (c) Rubber cylinder.

3.3.2 Data Normalization

In FC-UNet training, to reduce the effect of sensor imperfection, we normalize the voltage

measurement and conductivity distribution by

∆Vn =
Vmea−Vre f

Vre f
(3.12)

∆σσσn =
σσσmea−σσσ re f

σσσ re f
(3.13)

where Vre f and σσσ re f represent the measurement and conductivity distribution, respectively,

when the sensing region is only filled with background substance; Vmea and σσσmea denote

respectively the measurement and conductivity distribution after objects are present in the

sensing region.
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Figure 3.6: Experimental setup for cell imaging. (a) Sensor schematic. (b) The manufactured
quasi-2D miniature EIT sensor (Y. Yang, Wu, & Jia, 2018). (c) MCF-7 cell aggregates.

During training, one option is to retain the varying conductivity changes from (3.13), in which

case the FC-UNet solves a regression problem. Then all the output’s non-zero pixels are set as

one to generate the binary mask. Whilst the alternative is to binarize the conductivity values

from (3.13) before training and use this binary format as ground truth so that it becomes a

classification task. We investigated both options and found that the latter performs better in

terms of accuracy. Therefore, we adopt the latter in training.

3.3.3 Network Training

To train the FC-UNet model, we use the well-known Adam (Kingma & Ba, 2014) for optimiza-

tion. The initial learning rate is 0.0001. We also introduce the step decay for the training, where

the learning rate is reduced by a factor of 0.1 every 25 epochs to promote faster convergence

and higher accuracy. The effect of step decay will be discussed in Section 3.4.1. The model

is trained with a batch size of 25.

Inspired by transfer learning which takes a pre-trained model of one task as a starting point

for another task (Torrey & Shavlik, 2010), we initialize weights for the fully connected layer

with the pre-calculated least-squares (LS) solution of (2.7) using training data, instead of

random weights. During training, these weights are further fine-tuned. The rest is initialized

with random weights as usual.
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The maximum number of training epochs is set as 50. The final model is selected according

to the validation loss. That is, the training process stops at the point with the least validation

loss. Experiments are implemented using NVIDIA P5000 GPUs.

3.4 Results and Discussions

3.4.1 Learning Curve of FC-UNet

Learning curves (see Fig. 3.7) illustrate the effect of step decay when training the FC-UNet.

It can be observed that the training curve in blue using step decay shows a steep decrease

at the 25th epoch when the learning rate is reduced by a factor of 0.1. This curve has a

lower asymptote at the end compared to the training curve in green, which utilizes a constant

learning rate in the entire learning process and converges at a local minimum. This implies that

introducing the step decay term can promote convergence at a better minimum and achieve

considerably lower loss.

Figure 3.7: The learning curves of the FC-UNet.
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The orange and red lines represent the validation loss curves with and without step decay,

respectively. In the initial phase, both validation losses are smaller than the corresponding

training losses. This means more training is required since the model underfits the training

data. After 3 epochs, the training loss starts exceeding the validation loss. The dashed grey

and yellow dashed lines indicate where the lowest validation loss is reached and the training

process stops. Obviously, the step decay contributes to much better validation performance.

3.4.2 Results Based on Simulation Data

Fig. 3.8(a) shows four multi-level conductivity phantoms in the testing data set. In the sim-

ulation, additive Gaussian noise with an SNR of 50dB was added to the measurements.

Theoretically, as the number of inclusion and conductivity levels increases, the estimation of

conductivity distribution in the binary form is more challenging. Fig. 3.8(b) gives binary results

generated by FC-UNet and correlation coefficients of all phantoms are shown in Fig. 3.9. The

numerical results suggest that FC-UNet performs well in predicting the positions and shapes

of the given multi-conductivity-level phantoms.

(a)

(b)

Phantom 1 Phantom 2 Phantom 3 Phantom 4

Figure 3.8: Multi-conductivity-level phantoms and binary masks generated by FC-UNet. (a)
Ground Truth (b) Corresponding binary masks from FC-UNet.

We then compare the multi-conductivity-level reconstruction results of the proposed DL-GS

method with some state-of-the-art EIT image reconstruction algorithms, i.e. l1 regularization

(l1) (Tehrani et al., 2012), Sparse Bayesian Learning (SBL) (S. Liu et al., 2018), AGS (Y. Yang

& Jia, 2017a), and LeNet (Tan et al., 2018). During implementation, stopping tolerance is set

as 1e−7. The maximum iteration numbers of l1, SBL, AGS, and DL-GS are respectively set

as 50, 20, 500, and 500. The block size of SBL is 4. For AGS, the maximum diameter of the

group is set as 10 pixels. The penalty vectors of AGS and DL-GS are respectively [1/|∆V|,
5/|∆V|], and [10/|∆V|, 0.1/|∆V|] throughout the experiment. The training procedure for LeNet

is the same as that for FC-UNet except that mean square error is the loss function.
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Figure 3.9: Correlation coefficients of the FC-UNet results.

Fig. 3.10 shows the relative conductivity changes reconstructed by different algorithms. For

the phantom with a small conductivity change in the first row, AGS recovers better size com-

pared to l1, SBL, and LeNet whereas they all underestimate the object dimension. In contrast,

DL-GS provides much better results in terms of both structure and conductivity variation. As

the number of objects and conductivity levels increases (see phantoms from the second to the

fourth row), l1, SBL, AGS, and LeNet fail to reconstruct the shape and conductivity difference,

and objects with smaller conductivity changes are barely recovered. In comparison, DL-GS

outputs more accurate shapes as well as conductivity variations. Particularly, when there are

four objects, DL-GS is the only algorithm that manages to recognize them all and recovers

more faithful conductivity information.

Table 3.2 compares the average CC of all phantoms in the testing set when the noise of

various levels is added to measurements. We can observe that DL-GS outperforms the other

algorithms in all cases, with the highest CC. Noting that it performs even better than the purely

deep learning method LeNet by 5.9%. All algorithms exhibit their robustness to noise and

there is a continuous decrease in CC with the growth of SNR. Table 3.3 reports the average

model execution time per image. LeNet achieves the fastest running time, indicating the

prominent advantage of using a deep neural network. DL-GS is the second fastest algorithm,

substantially 6.5 times better than AGS on average. As expected, the FC-UNet significantly

reduces the computation time for pixel grouping whereas in AGS, the initial grouping from

one-step Gauss-Newton requires much longer time.



3.4. Results and Discussions 40

(a) (b) (c) (d) (e) (f)

Figure 3.10: Image reconstruction results of four phantoms from testing data set (SNR = 50
dB) (note we use inverted color bar). (a) Ground truth (b)-(e) Corresponding results of l1, SBL,
AGS, LeNet, and DL-GS respectively.

Table 3.2: Comparison of average CC

Image Reconstruction SNR
Algorithm Noise Free 50dB 40dB 30dB

l1(Tehrani et al., 2012) 0.5268 0.5276 0.5244 0.5253
SBL(S. Liu et al., 2018) 0.5634 0.5633 0.5628 0.5617

AGS(Y. Yang & Jia, 2017a) 0.5263 0.5224 0.5196 0.4982
LeNet(Tan et al., 2018) 0.6445 0.6420 0.6124 0.5233

DL-GS 0.7215 0.6639 0.6161 0.5648

Table 3.3: Comparison of average model execution time per image [s]

Image Reconstruction SNR
Algorithm Noise Free 50dB 40dB 30dB

l1(Tehrani et al., 2012) 0.4867 0.4878 0.4636 0.4689
SBL(S. Liu et al., 2018) 12.95 13.00 13.03 12.85

AGS(Y. Yang & Jia, 2017a) 0.7388 0.7573 0.7520 0.7396
LeNet(Tan et al., 2018) 0.22e-3 0.26e-3 0.25e-3 0.27e-3

DL-GS 0.1114 0.1131 0.1128 0.1127
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3.4.3 Results Based on Experimental Data

In addition to validation with simulation data, we collect experimental data using different

miniature EIT sensors to examine the performance of DL-GS. When implementing l1, SBL,

AGS, LeNet, and DL-GS, all parameters are the same as in simulation settings.

Three phantoms as shown in the first column of Fig. 3.11 were imaged. The first phantom

contains carrot and rubber cylinders with saline as the background. The excitation frequency

is 20kHz and the maximum iteration of DL-GS is 350. Intrinsically, the rubber at the lower

left corner has lower conductivity than the carrot (i.e. the rubber leads to larger conductivity

change with respect to background), which is successfully recovered by all algorithms but

most significantly by LeNet and DL-GS. DL-GS also reconstructs the best shape of both

objects with clear boundaries. The other two phantoms image two cell aggregates. Observing

the results, l1 can roughly identify both cell aggregates but there exists obvious distortion

and artifacts. SBL consistently manages to reconstruct the two cell aggregates with good

positions, whilst it underestimates the size of the cell and the artifact at the center of ROI is

also distinct. AGS fails to reconstruct the phantoms clearly, which is even worse than l1 and

SBL. The underlying reason might be that AGS utilizes a one-step algorithm to estimate the

structural information, but in this case, the one-step algorithm struggles to provide meaningful

results for pixel grouping. LeNet performs well when the two cell aggregates are far from each

other but has the same issues as l1 when they become closer. With regard to DL-GS, it is able

to obtain much better shape and position of each cell aggregate for both cases. Compared

to l1, SBL, and AGS, DL-GS yields sharper edges for all reconstructed cell aggregates.

Table 3.4 gives CC of experimental results, further confirming the successful transition of

DL-GS to various experimental data. DL-GS achieves the highest CC for all the phantoms,

outperforming the other algorithms. The results indicate that DL-GS can be generalized to the

mEIT setup and facilitate robust and high-quality cell imaging.

Table 3.4: CC of experimental results

Phantom 1 2 3
l1(Tehrani et al., 2012) 0.4809 0.6490 0.7145
SBL(S. Liu et al., 2018) 0.4473 0.6271 0.6689

AGS(Y. Yang & Jia, 2017a) 0.3188 0.3666 -0.0020
LeNet(Tan et al., 2018) 0.5449 0.7704 0.7224

DL-GS 0.7477 0.8008 0.7650
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Figure 3.11: Image reconstruction results using experimental data (note we use inverted color
bar). (a) Three setups. (b)-(e) corresponds to results of l1, SBL, AGS, LeNet, and DL-GS,
respectively.

3.5 Summary

In this chapter, a deep learning and group sparsity regularization-based hybrid algorithm was

proposed for 3D cultivated cell imaging with miniature EIT sensors. This work specifically

focused on the challenge of performing multi-conductivity-level imaging under multiple ob-

jects setups. A novel EIT data set with continuously varying conductivity values for different

sensing objects was established. An FC-UNet model was then developed to provide structural

information of multi-level conductivity distribution. Afterwards, this structural information was

integrated into group sparsity regularization to estimate the continuous conductivity values.

Both simulation and experiments demonstrated that the proposed DL-GS method outperforms

the other given image reconstruction approaches and demonstrates strong generalization

ability on a practical miniature EIT sensor to image MCF-7 cell aggregates.



Chapter 4

Cell Culture Imaging Using

Structure-aware Learning

4.1 Introduction

Chapter 3 found the structure of target objects could be well-estimated in the form of binary

masks and facilitate distinguishing the conductivity contrast of multiple targets. However, the

conductivity value still could not be precisely estimated due to the error introduced by the

linearized EIT model. Accurate reconstruction of continuous, multi-level conductivity variations

and the structural distribution remain very challenging.

In this chapter, targeting cell culture imaging, a regression deep learning model is proposed

to predict accurately both the geometric structure and conductivity value of multi-object, multi-

conductivity-level conductivity distributions. Inspired by multi-modal learning for activity and

context recognition (Radu et al., 2018) and the work of DL-GS in Chapter 3, a Structure-Aware

Dual-Branch Network (SADB-Net) is developed for EIT image reconstruction. The SADB-Net

consists of two branches to learn the structural and conductivity representations, respectively,

in the first place. Then, the multi-branch features are fused by two fully connected layers.

We demonstrate the effectiveness of the SADB-Net in reconstructing continuous, multi-level

conductivity distributions with both simulation and experimental data on MCF-7 breast cancer

cell aggregates, and benchmark the results with the baseline and state-of-the-art algorithms.

43
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4.2 SADB-Net: A Learning-based Method for Cell Culture Ima-

ging

4.2.1 Multi-Modal Deep Neural Network

We introduce the multi-branch characteristics of multi-modal deep learning to solve the target

EIT-image-reconstruction problem. Some challenging learning tasks usually involve more than

one sensing modality providing diverse input data. In such cases, the multi-modal solutions

fuse different sensing streams to boost the accuracy of the predicted results. Deep archi-

tectures, e.g. Restricted Boltzmann Machine (RBM) (Ngiam et al., 2011) and Convolutional

Neural Network (CNN) (Audebert, Le Saux, & Lefèvre, 2018), have been applied for multi-

modal learning.

A straightforward strategy of multi-modal learning is to concatenate the inputs of different

modalities, taking raw data or lightly pre-processed data at the input layer. Then the fused

input is propagated through the neural network. However, this early fusion learning approach

tends to emphasize the inherent cross-modality correlations (Ngiam et al., 2011), as early

fusion and unbalanced mixture of inputs make it difficult to extract the potential intra-modality

relations.

An alternative named Modality-specific Architecture (MA) (Radu et al., 2018) leverages both

intra-modality and cross-modality correlations (see Fig. 4.1). In MA, information propagates

through all layers. The input layer is fed with data from each modality and the output layer

generates the final result. Separate branches (Bn) are specified for each modality, without

any connections in between. Through a couple of hidden layers in each branch, feature

representations associated with every single modality are learned and merged afterwards by

subsequent layers u(i) in the network. The output neurons of the Lth hidden layer, i.e. h(L)i , are

determined by every neuron in the previous layer, i.e. h(L−1)
j . In general, it can be formulated

as:

h(L)i = γ(∑
j

w(L)
i j h(L−1)

j ) (4.1)

where w(L)
i j denotes the unit weight connecting the jth neuron in layer L−1 with the ith neuron

in layer L, and γ is the non-linear activation function. In this work, we simply adopt Rectified

Linear Unit (ReLU) (Nair & Hinton, 2010):

γ(x) = max(0,x). (4.2)
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Figure 4.1: Schematic illustration of generic modality-specific deep neural network.

The generic MA in Fig. 4.1 comprises a multi-layer perceptron, which can be replaced with a

CNN for multi-modal learning. CNN is characterized by shared weights in the form of stacks of

filters, which parameters are trained to extract different high-level features. Using convolutional

layers could avail more complicated patterns with far fewer parameters to learn. Inspired by

MA, in this work we employ CNNs to learn intra-branch correlations over several layers and

use fully connected layers to combine features from CNNs.

4.2.2 SADB-Net for EIT Image Reconstruction

We comprehend the EIT-image-reconstruction problem in a multi-modal context in the sense

that the conductivity images reconstructed from the boundary voltage measurements gener-

ally contain two types of information: (a) geometric structure information and (b) conductivity

value information. We first extract the binary structural information of the conductivity distri-

bution and then utilize this binary image together with boundary voltage measurement as two

inputs to tackle the regression problem. We will demonstrate this leads to a more accurate

estimation of both structure distribution and conductivity values. Fig. 4.2 shows the schematic

illustration of the proposed Structure-Aware Dual-Branch Network (SADB-Net) for EIT image

reconstruction based on this idea. We design two separate branches to deal with the two

types of information: one is the structure-related branch (see orange arrows in Fig. 4.2), and

the other is the conductivity-value related branch (see blue arrows in Fig. 4.2).

The structure branch BS operates in the image domain, which consists of a mask gener-

ator and a feature extractor. The input vector first goes through the mask generator, which

generates a binary mask to distinguish objects from the background. Following the work in

Z. Chen, Yang, and Bagnaninchi (2020), we use the FC-UNet, a cascade of a fully connected

layer and a UNet (Ronneberger et al., 2015) to learn the mapping from boundary voltage
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Figure 4.2: Schematic illustration of the proposed Structure-aware Dual-branch Network
(SADB-Net).

measurement to a binary mask. A sigmoid activation function is selected as the last layer of

FC-UNet to constrain all values within the range [0,1]. The feature extractor A is constructed by

a standard CNN, where the stack of two convolutional layers with 3×3 kernels and padding of

1 are followed by a max pooling layer. A batch normalization layer and a ReLU activation layer

are applied after each convolutional layer. In this step, the binary mask (64× 64) is reduced

to a feature map of size 16×16×16 (height, width, channel) by the feature extractor.

The conductivity branch BC takes the raw voltage measurement as input. Feature extractor

B for BC has exactly the same architecture as that for the branch BS, except that all layers

operate in one dimension. The output is a 52×16 (length, channel) feature map.

The two feature maps learned from branches BS and BC are then concatenated together into

a 4928-dimensional vector. This vector passes through two fully-connected layers, which fuse

the information from the two branches. The first fully-connected layer encodes the vector down

to a hidden feature with 4900 neurons. The second finally predicts conductivity distributions

in a continuous manner. Each fully-connected layer is followed by a ReLU activation layer.



4.2. SADB-Net: A Learning-based Method for Cell Culture Imaging 47

4.2.3 Loss Function

Let ∆σσσ ∈ Rn denote the conductivity variation distribution, ∆V ∈ Rm be the boundary voltage

measurements change, and the SADB-Net fSADB−Net(·) is parameterised by network weights

θθθ , which calculation is described in Section 4.3.1.

Binary Cross Entropy Loss (LBCE )

For binary mask generation in BS, we explicitly train the FC-UNet parameterised by network

weights θθθ OD using binary cross entropy loss on the predicted binary masks Mpred ∈ Rn, i.e.

LBCE =− 1
K

K

∑
i=1

(M(i)
pred · logM(i)

gt +(1−M(i)
pred) · log(1−M(i)

gt )) (4.3)

where K represents the size of dataset, M(i)
gt denotes the ground truth for the ith input-target

pair. Given the ground truth of conductivity distribution ∆σσσ
(i)
gt , M(i)

gt is generated by setting all

non-zero elements in ∆σσσ
(i)
gt to one while the rest remains zero.

Total Loss (LTotal)

For the ultimate reconstruction task, our loss function intends to combine the per-pixel recon-

struction accuracy with spatial piecewise smoothness in the predicted conductivity values.

Given the predicted conductivity distribution ∆σσσ pred = fSADB−Net(∆V;θθθ) and training dataset

D , we first define per-pixel losses with Mean Square Error (MSE), i.e.

LMSE =
1
K ∑

(∆V,∆σσσgt)∈D

∥∥∆σσσgt −∆σσσ pred
∥∥2

. (4.4)
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In addition to MSE loss, we also include l2 loss (a regularization term) that is a function of the

network weights θθθ :

Ll2 = ∥θθθ∥
2
2 = ∑

i
|θθθ i|2. (4.5)

Inspired by the work in super-resolution style transfer (Johnson, Alahi, & Fei-Fei, 2016), the

last loss term adopts the Total Variation (TV) loss LTV as the piecewise smoothing penalty

for ∆σσσ pred , i.e.

LTV = ∑
i, j∈Ω

|∆σσσ pred(i+1, j)−∆σσσ pred(i, j)|+ |∆σσσ pred(i, j+1)−∆σσσ pred(i, j)|. (4.6)

The total loss LTotal is a combination of the above three terms:

LTotal = λMSELMSE +λl2Ll2 +λTV LTV (4.7)

where λMSE ,λl2 ,λTV are scalars for corresponding loss terms. Larger scalars are assigned to

loss terms that are more critical. Here we consider the pixel-by-pixel loss LMSE as the most

critical term. The loss term scalars are determined by performing hyper-parameter searching

on the validation data set. After a series of experiments, we found that (1, 3e-6, 1e-8) is the

most appropriate setting for (λMSE ,λl2 ,λTV ).

4.2.4 Supervision Strategy

A specialized supervision strategy is developed as illustrated in Fig. 4.3. Inspired by multi-

task deep learning (Luvizon, Picard, & Tabia, 2020), we first train the mask generator only

with LBCE for 100 epochs. Then we freeze all parameters of the object detector and train the

remaining network with LTotal for around 200 epochs. That is, the full network is established

on top of the pre-initialized mask generator.

An easier way is to perform the end-to-end supervision by adding the binary cross entropy

loss LBCE to the total loss LTotal by imposing weighting factors. However, as the mask

generator is closer to the input layer and away from the output layer, the gradients of the binary

cross entropy loss become much smaller when they arrive at the object detector during back-

propagation. Consequently, it requires much longer training time and is more likely to converge

to a worse local minimum. In contrast, the proposed training strategy directly feeds LBCE to

the mask generator, which has two advantages: first, the mask generator is more sensitive

to gradients from LBCE during training; second, it facilitates faster and better convergence

performance.
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Figure 4.3: Deep supervision of SADB-Net.

4.2.5 Evaluation Metrics

We adopt the commonly used Relative Image Error (RIE) to assess the quality of the recon-

structed images, i.e.

RIE =
||∆σσσ pred−∆σσσgt ||
||∆σσσgt ||

×100% (4.8)

where ∆σσσ pred and ∆σσσgt represent respectively the predicted and ground truth of conductivity

distribution. RIE indicates the overall accuracy of the reconstruction quality in a pixel-by-pixel

manner. Smaller RIE suggests better image quality.

4.3 Experimental Setup

4.3.1 Training Data Generation

To date, no open-source EIT dataset is available. Therefore, to mimic cell culture phantoms,

we established an EIT dataset (the dataset is available at https://datashare.ed.ac.uk/handle/10

283/4440) containing multiple continuously varying conductivity levels by modeling a circular

16-electrode EIT sensor in COMSOL Multiphysics (see Fig. 4.4(a)). The background conduct-

ivity is set as 0.05 S ·m−1 and the conductivity of circular inclusions is uniformly randomly

selected within the range [1e-4, 0.05) S ·m−1. Apart from uniformly distributed circular targets,
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we also evaluated the performance of phantoms with single ring-shaped objects. We gen-

erated another group of ring-shaped dataset. Within each circular object, a smaller circular

region is randomly created with the conductivity of 1 S ·m−1. The conductivity of the rest

part of each object and the background is 0.1 and 2 S ·m−1, respectively. To evaluate the

performance of non-circular imaging targets, we established another dataset containing 1 to

4 rectangular inclusions. The conductivity of each rectangular inclusion and the background

are 0.0001 and 0.05 S ·m−1, respectively. We adopt adjacent measurement strategy (Brown

& Seagar, 1987) and a completed non-redundant measurement vector contains 104 values.

Further, we divide the circular sensing region by a 64× 64 quadrate mesh, which contains

3228 pixels.

Figure 4.4: Sensor modelling and examples of nine patterns in the EIT data set.

In total, we randomly generated 54,333 pairs of samples through finite element modelling

simulation. The dataset consists of nine different patterns with random object sizes, positions

and conductivity values (see examples in Fig. 4.4). This data set is further partitioned into

training set (6k samples of each circular pattern, 4k samples of ring-shape pattern, 4k samples

of each rectangular pattern), validation set (500 samples of each pattern), and testing set (all

the remaining samples). Accordingly, the three subsets contain 44k, 4,500 and 5,833 samples,

respectively.
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Data Augmentation

We implement data augmentation by adding Gaussian noise with diverse levels to voltage

measurements in training, validation and testing data sets. The purpose is to mitigate the

data limitation issue and improve robustness when dealing with noise-contaminated data. For

the training and validation set, white noise with Signal-to-Noise Ratio (SNR) of 50dB and 40dB

is added to half of the samples of each subset and the other half samples, respectively. The

number of samples in the training and validation subset is then doubled. In addition, we add

white noise with SNR of 50dB and 40dB to all samples in the testing subset to validate the

performance of SADB-Net. Table 4.1 gives the number of samples in training, validation, and

testing subsets before and after augmentation.

Table 4.1: Number of samples in each dataset

Dataset Training Validation Testing
Before Augmentation 44,000 4,500 5,833
After Augmentation 88,000 9,000 17,499

Data Normalization

To reduce systematic defects caused by sensor imperfection, an additional pre-processing

procedure is conducted to normalize the voltage measurements and conductivity in the data

set as did in (3.12) and (3.13).

4.3.2 Network Training

To train the FC-UNet as a mask generator, the optimization setup is exactly the same as that

in previous work (Z. Chen et al., 2020). For the rest of the SADB-Net, we use Adam (Kingma

& Ba, 2014) with a batch size of 25 and a base learning rate of 0.0001, which is reduced by

a factor of 0.1 with a step size of 25. Except for the pre-trained weights of FC-UNet, all other

weights are initialized randomly. The weight decay in Adam has the same function with the

l2 penalty and thus is set as 3e-6. The training was carried out on two NVIDIA P5000 GPUs,

and we select the model with the least validation loss as the final one to avoid overfitting.

4.3.3 Baseline

We select the FC-UNet reported in Z. Chen et al. (2020) as the baseline algorithm since it does

not require further preprocessing of the dataset. As this chapter solves a regression problem,

we replace the last sigmoid layer (suited for classification/segmentation) in the original FC-

UNet with a ReLU layer.
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We also compare performance with L1 regularization (L1) (Jin et al., 2012), Laplacian filter

(Lap) (Y. Yang et al., 2014), Sparse Bayesian Learning (SBL) (S. Liu et al., 2018) and LeNet

(Tan et al., 2018). L1 (Jin et al., 2012) is an iterative model-based reconstruction algorithm

with a maximum iteration number of 50. Lap is the one-step linear Gauss-Newton solver with

Laplacian filter with a regularization factor of 0.05 (Y. Yang et al., 2014). LeNet and SBL are two

recently reported learning-based EIT image reconstruction algorithms. SBL was implemented

according to S. Liu et al. (2018), where we select the stopping tolerance to be 1e− 9, the

maximum iteration number to be 20 and the block size to be 7, after a careful tuning process.

4.4 Results and Discussions

4.4.1 Evaluation on Simulation Data

Case Study

We show some representative reconstruction examples using testing data under 50dB SNR

(see Fig. 4.5). Fig. 4.6 gives the RIE of each phantom.

Overall, SADB-Net outperforms the other five methods. L1, Lap, SBL, LeNet and the baseline

are suboptimal because the Lap, LeNet and baseline contain artifacts, L1 and SBL keep

underestimating the shape of the objects (see Fig. 4.5). In Phantom 1 and 2, only SADB-

Net manages to recover all objects in terms of both shape and conductivity value. SADB-Net

uses an extra pipeline to learn the conductivity value, merges this feature with the structural

feature from the other pipeline, and could better recover the global information. In these cases,

L1, Lap, SBL, LeNet and the baseline are unable to reveal the conductivity difference of the

objects, whereas SADB-Net succeeds to reconstruct this critical information. Regarding the

more challenging Phantom 3, L1, Lap, SBL and LeNet even fail to recognize the correct

number of objects within the region and the baseline hardly distinguishes the two objects

in the middle, not to mention the conductivity levels. However, SADB-Net recovers the best

structural information and at least figures out the conductivity value of the one at the lower left

corner that is most significantly different from the background. For non-uniformly distributed

inclusions, the reconstruction results demonstrate that all networks can handle Phantom

4 and 5 better than L1, Lap, and SBL, especially in terms of shape reconstruction. The

baseline is comparable to SADB-Net but SADB-Net can better localize the region with a lower

conductivity contrast. Comparing the reconstruction results of Phantom 6, it is obvious that

only SADB-Net provides the most accurate shape while the other methods tend to generate

unexpected circular objects.
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Figure 4.5: Image reconstruction results based on simulation data (SNR = 50 dB) in testing
set. Each column corresponds to a phantom.

Figure 4.6: Numerical comparisons of six phantoms based on RIE.
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However, a remarkable advantage of the baseline can be noted, i.e. its shallower architecture

with a straight pipeline is more sensitive to LTV so that the reconstructed results are smoother

than those of SADB-Net. The multi-branch representations which are joined later in SADB-

Net are more informative, which consequently improves the overall image quality in terms of

conductivity values of multiple objects, at the expense of less smoothness in the reconstructed

images.

In Fig. 4.6, RIE of all methods, in general, gets worse as the number of objects increases.

SADB-Net consistently yields the best RIE of 27.73%, 41.61%, and 69.76% relatively for

Phantom 1-3, suggesting its high accuracy of estimating complicated conductivity distribu-

tions. The gap among L1, Lap, SBL, LeNet and baseline shrinks with increasing inclusions.

For ring targets in Phantom 4 and 5 and rectangular targets in Phantom 6, deep learning

methods show significantly lower RIE than conventional methods.

Fig. 4.7 presents high- and low-contrast profiles of reconstructions for Phantom 1 and 2,

marked by dashed line segments in the first row of Fig. 4.5. For the high-contrast case, L1,

Lap, SBL and LeNet deviate far from the ground truth, while the baseline and SADB-Net can

smooth the details but SADB-Net better follows the two transitions. With respect to the low-

contrast profile, L1 and SADB-Net overlap with the ground truth, but Lap, LeNet and baseline

show deep troughs, suggesting obvious artefacts in their reconstructed background.

Figure 4.7: (a) High-contrast profile in (3) of Fig. 4.5 and (b) low-contrast profile in (4) of
Fig. 4.5.
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Quantitative comparisons

Table 4.2 reports the statistical average of RIE and running speed over all the testing data.

We partition the results based on four different patterns in Fig. 4.4 and three noise levels, i.e.

noise free, 50dB, and 40dB.

Table 4.2: Performance comparisons (RIE and Speed) under different phantom patterns and
noise levels.

No. of Objects
Noise Free 50dB 40dB

1 2 3 4 1 2 3 4 1 2 3 4
RIE(L1)(%) 95.73 111.9 118.6 116.9 96.29 111.9 118.8 117.3 96.76 112.4 119.5 117.1
RIE(Lap)(%) 87.31 104.3 111.6 110.1 87.43 104.6 111.7 111.5 87.61 104.8 111.6 111.7
RIE(SBL)(%) 77.95 80.74 83.68 84.29 77.19 80.22 83.55 84.30 78.26 79.21 83.04 84.01
RIE(LeNet)(%) 62.62 75.76 78.50 82.71 62.83 75.98 78.55 82.99 65.32 77.48 79.87 83.88
RIE(Baseline)(%) 49.65 62.11 65.71 73.73 58.60 65.61 70.53 77.04 64.24 73.49 76.96 82.03
RIE(SADB-Net)(%) 32.40 59.28 62.99 72.43 53.28 60.61 66.18 74.91 59.08 56.71 72.64 81.01

Speed(L1)(s) 0.05 0.05 0.05
Speed(Lap)(s) 0.59 0.60 0.59
Speed(SBL)(s) 12.63 13.09 12.91
Speed(LeNet)(s) 0.22e-3 0.26e-3 0.25e-3
Speed(Baseline)(s) 1.08e-3 1.08e-3 1.09e-3
Speed(SADB-Net)(s) 1.83e-3 1.91e-3 1.92e-3
Best results are highlighted in bold. Speed computes average model execution time per image.

Similar to the trend in Fig. 4.6, all methods show degraded performance with the increasing

number of objects in the ROI, as reconstruction becomes more challenging. Fig. 4.8 further

evaluates the performance of the given approaches under a wide range of SNR levels from

30dB to 70dB. It suggests all methods are generally robust to noise, with deep learning-based

methods, i.e. LeNet, baseline and SADB-Net, yielding much better RIE than conventional

methods. Overall, SADB-Net performs the best in terms of RIE. This implies that learning

the structure- and conductivity-related information with separate branches helps effectively to

discriminate conductivity levels among inclusions, compared with concatenated learning with

simple network architectures.

Regarding the reconstruction time, we compute the average running time of all the given

algorithms on all cases in the testing data set, a conventional approach adopted in K. He,

Gkioxari, Dollár, and Girshick (2017). Deep learning-based approaches achieve high-quality

image reconstruction results at a very fast speed, approximately 50 times faster than L1, 600

times faster than Lap, and 10,000 times faster than SBL. The LeNet consistently runs slightly

faster than SADB-Net by 1.64ms, as it has a shallower structure, which costs slightly less

computation for inferences. Nevertheless, the execution time of SADB-Net (below 2ms) is

sufficiently good for implementing real-time EIT imaging.
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Figure 4.8: Noise robustness comparison in terms of RIE.

4.4.2 Evaluation on Experimental Data

In addition to the simulation study, we carried out real-world experiments on different miniature

EIT sensors to examine the generalization ability of the proposed method. Image recon-

struction on miniature EIT sensors is challenging due to their weak measurement signals

and sensitivity to sensor imperfection. The miniature EIT sensor (Y. Yang et al., 2016) (see

Fig. 4.9(a)) is equipped with 16 planar electrodes at the substrate and the inner diameter of

the sensing chamber is 15 mm. We use cucumber, carrot, and potato cylinders with similar

sizes but different conductivity values as imaging targets. The background substance is saline

with a 0.25 S ·m−1 conductivity. The excitation frequency is 20kHz. We also examined the

performance of the given methods on MCF-7 human breast cancer cell spheroids with a

quasi-2D miniature EIT sensor (Y. Yang, Wu, & Jia, 2018), which has a inner diameter of

14mm. The two MCF-7 human breast cancer cell spheroids with a diameter of 2mm are less

conductive than the background substance. The parameter setting for all methods is the same

as in the simulation.
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Figure 4.9: Experimental results on miniature EIT sensors. (a) Experiment phantom 1: cucumber and carrot cylinders. (b) Experiment phantom 2:
potato and carrot cylinders. (c)-(d) Experiment phantom 3 and 4: two MCF-7 cell spheroids.
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Fig. 4.9 illustrates the image reconstruction results of four phantoms. In experiment phantom

1, carrot has higher conductivity than cucumber, but both are lower than the background

substance (Malone, Dos Santos, Holder, & Arridge, 2013). SBL could roughly recover such

conductivity contrast but severely underestimates the size of both objects due to its strong

sparsity constraint. Whilst L1, Lap, and LeNet could recover the shape of each object much

better, but all generate significant artifacts (also can be found in simulations). The baseline

even fails to tell either conductivity contrast or the target shape. SADB-Net performs better

in terms of target shape and noise reduction whilst hardly reconstructing the conductivity

contrast. In experiment phantom 2, the potato on the bottom-left corner induces a larger

negative conductivity change than the carrot on the top-right corner (Malone et al., 2013).

We can explicitly observe that L1 could hardly recover the top-right carrot cylinder, Lap suffers

from significant artifacts, SBL underestimates target sizes, and LeNet and the baseline are

unable to reconstruct the conductivity contrast. Differently, SADB-Net consistently outperforms

the other approaches in shape preservation, conductivity contrast prediction and noise reduc-

tion. Based on Eq. (15) and the measured conductivity of carrot, potato and cucumber in

Malone et al. (2013), we could deduct the relative conductivity changes of carrot, potato and

cucumber under 20kHz are around -0.56, -0.76 and -0.81. By comparing the reconstructed

images for experimental phantom 1 and phantom 2, we further confirm SADB-Net could better

estimate both the conductivity change and the shape of imaging objects. Experiment phantom

3 and 4 contain two cell spheroids. L1, Lap, SBL and LeNet suffer from significant artifacts.

They exhibit poor ability to distinguish the adjacent cell aggregates. SADB-Net yields consist-

ently better shapes than the baseline. These results suggest that SADB-Net can generalize

well to real experimental setups. Additionally, the unique architecture of SADB-Net makes a

worthwhile contribution to accurate predictions of the structure and the conductivity difference

between objects.

4.5 Summary

This chapter attempts to tackle the challenge of reconstructing the multi-object, multi-value

conductivity distributions with EIT for tissue engineering applications. Typical convolutional

networks (LeNet and the baseline model) run much faster than conventional approaches but

are still unsatisfactory when estimating conductivity values. A novel network SADB-Net was

proposed and demonstrated that:

1. by separating the estimation of structure distribution and conductivity values using two

branches and then fusing the information together, SADB-Net could generate high-

quality reconstructions of multi-object, multi-conductivity-value distributions with better

structural and conductivity estimation;

2. SADB-Net exhibits good generalization ability based on the experimental results on

miniature EIT sensors.



Chapter 5

Multi-frequency Tissue Imaging with

Model-based Learning

5.1 Introduction

Bioimpedance as an indicator of the physiological status of biological tissues varies with

frequency. Therefore, different electrical properties between various tissues can be exploited

to benefit physiological and pathological diagnostics for tissue differentiation, early cancer

detection, and tumor or stroke imaging (A. Adler & Boyle, 2017; L. Yang et al., 2017). This

motivates the development of multi-frequency EIT (mfEIT) (Y. Yang & Jia, 2017b), which

measures the bio-impedances under different frequencies of interest and employs them to

reconstruct a set of multi-frequency conductivity images related to tissue properties. The

mfEIT-image-reconstruction problem concerns the simultaneous reconstruction of multiple

conductivity images of selected frequencies. Existing algorithms generally require manual

determination of regularization terms and fine-tuning hyper-parameters, such as penalty para-

meters and step sizes. In addition, the computational cost is considerable, preventing their

wide adoption in biomedical applications that desire real-time imaging capability.

In this chapter, a model-based deep learning approach is developed to solve the mfEIT-image-

reconstruction problem. The main target is to exploit intra- and inter-frequency dependencies

to improve multi-frequency image quality. The proposed approach, named as MMV-Net, un-

rolls the iterative MMV-ADMM algorithm (M. Zhang et al., 2020) into a single pipeline (see

Fig. 5.2). MMV-Net is composed of multiple blocks, each of which corresponds to one iteration.

A deep network approximates and generalises the non-linear shrinkage operation in each

block. MMV-Net fundamentally differs from ISTA-Net (J. Zhang & Ghanem, 2018) and FISTA-

Net (Xiang et al., 2021). The main contributions are as follows:

1. A novel model-based deep learning approach is proposed for simultaneous mfEIT

image reconstruction. The proposed MMV-Net tackles the inherent limitations of the

conventional MMV-ADMM approach. Parameters across all iteration blocks are shared

and learned through end-to-end training.

59
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2. A dedicated network is developed to substitute the non-linear shrinkage operator, which

learns a more general regularizer to incorporate spatial and frequency correlations

between mfEIT images. The unique design could boost the reconstruction performance

of mfEIT.

3. The proposed MMV-Net has much fewer parameters than the state-of-the-art model-

based learning approaches, e.g. MoDL (Aggarwal, Mani, & Jacob, 2018) and FISTA-

Net (Xiang et al., 2021) (by 12.8 and 8.5 times, respectively), making it easier to train

even with a smaller dataset.

4. The Edinburgh mfEIT Dataset is constructed for mfEIT image reconstruction. The data-

set mimics tissue engineering applications and comprises 4×12,414 randomly gener-

ated multi-object, multi-conductivity phantoms at four distinct frequencies.

5. MMV-Net is thoroughly evaluated on the Edinburgh mfEIT Dataset and various real-

world experiments, and achieves superior reconstruction quality, convergence perform-

ance, and noise robustness, compared to state-of-the-art methods, such as MMV-

ADMM (M. Zhang et al., 2020), MoDL (Aggarwal et al., 2018), and FISTA-Net (Xiang et

al., 2021).

5.2 MMV-Net: A Model-based Learning Method

5.2.1 Multi-frequency EIT

Consider difference imaging of mfEIT (D. Liu et al., 2015), voltage changes ∆V ∈ Rm×l at

a set of excitation frequencies { f1, f2, . . . , fl} are measured to reconstruct the conductivity

changes ∆σσσ ∈Rn×l . The MMV model (Ziniel & Schniter, 2012) of mfEIT linearly approximates

the relationship between ∆V and ∆σσσ by

∆V = A∆σσσ (5.1)

where A ∈ Rm×n (m≪ n) denotes the sensitivity matrix.

We define ∆V = [∆v f1 ,∆v f2 , . . . ,∆v fl ], where ∆v fi ∈Rm×1(i = 1, . . . , l) denotes the ith column

of ∆V. The first method to obtain voltage changes leverages Time-Difference (TD) measure-

ments (Brown, 2003), i.e. ∆v fi = v fi(t1)−v fi(t0), which requires mfEIT measurements at two

time instants t0 and t1, i.e. v fi(t1), and v fi(t0) ∈ Rm×1. Another prevailing method is to utilize

Frequency-Difference (FD) measurements (Harrach & Seo, 2009). The FD approach employs

voltage changes at different frequencies, i.e. ∆v fi = v fi − v f0 , where f0 is the reference fre-

quency.

For convenience, we use B and X as substitutes for ∆V and ∆σσσ respectively in the rest of this

chapter. Typically, the MMV model-based mfEIT image reconstruction problem can be solved

by addressing the constrained optimization problem:
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min
X

R(X)

s.t.AX = B
(5.2)

where R(·) denotes the regularization function, which encodes the a priori knowledge of the

conductivity distribution X. The MMV model uses the weighted l2,1 regularization to promote

the joint sparsity (Deng et al., 2013; M. Zhang et al., 2020):
min

X
∥X∥w,2,1 :=

n

∑
i=1

wi ∥Xi∥2

s.t.AX = B
(5.3)

where wi(i = 1, . . . ,n) is a positive scalar and Xi is the ith row of X.

5.2.2 MMV-ADMM for mfEIT image reconstruction

The MMV-based mfEIT-image-reconstruction problem in (5.3) can be efficiently solved using

the classic Alternating Direction Method of Multipliers (ADMM) (Fukushima, 1992; J. Wang et

al., 2020). By introducing an auxiliary vector Z ∈ Rn×l , the problem in (5.3) is equivalent tomin
X,Z
∥Z∥w,2,1

s.t.Z = X,AX = B.
(5.4)

The augmented Lagrangian problem of (5.4) is

min
X,Z

(
∥Z∥w,2,1−ΛΛΛ

T
1 (Z−X)+

β1

2
∥Z−X∥2

2−ΛΛΛ
T
2 (AX−B)+

β2

2
∥AX−B∥2

2

)
(5.5)

where ΛΛΛ = {ΛΛΛ1 ∈ Rn×l,ΛΛΛ2 ∈ Rm×l} are Lagrangian multipliers and β = {β1,β2 > 0} are

penalty parameters. The ADMM is then applied to solve (5.5) through the following steps:

argmin
X

(
ΛΛΛT

1 X+ β1
2 ∥Z−X∥2

2−ΛΛΛT
2 AX+ β2

2 ∥AX−B∥2
2

)
,

argmin
Z

(
∥Z∥w,2,1−ΛΛΛT

1 Z+ β1
2 ∥Z−X∥2

2

)
,

ΛΛΛ1←−ΛΛΛ1− γ1β1(Z−X),

ΛΛΛ2←−ΛΛΛ2− γ2β2(AX−B),

(5.6)

where γ = {γ1,γ2 > 0} are step lengths for the Lagrangian multipliers.

The first step in (5.6) is a convex quadratic problem, which has a closed-form solution:

X = (β1I+β2ATA)−1(β1Z−ΛΛΛ1 +β2ATB+AT
ΛΛΛ2) (5.7)
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where I ∈ Rn×n is an identity matrix.

To avoid large matrix inversion and reduce the computation cost, we in this work adopt the

gradient descent method as a substitute for (5.7):

X←− X−η∇X;Z,ΛΛΛ1,ΛΛΛ2 (5.8)

where η is the step size, and ∇X;Z,ΛΛΛ1,ΛΛΛ2 is the gradient of the first step in (5.6) with respect to

X given {Z,ΛΛΛ}, which is defined by:

∇X;Z,ΛΛΛ1,ΛΛΛ2 = (β1I+β2ATA)X− (β1Z−ΛΛΛ1 +β2ATB+AT
ΛΛΛ2) (5.9)

Thus, to solve (5.4) with ADMM, we have the following updates at the kth iteration:

X(k) = X(k−1)−η∇
X(k−1);Z(k−1),ΛΛΛ

(k−1)
1 ,ΛΛΛ

(k−1)
2

, (5.10a)

Z(k) = S (X(k)+ 1
β1

ΛΛΛ
(k−1)
1 , w

β1
), (5.10b)

ΛΛΛ
(k)
1 =ΛΛΛ

(k−1)
1 + γ1β1(X(k)−Z(k)), (5.10c)

ΛΛΛ
(k)
2 =ΛΛΛ

(k−1)
2 + γ2β2(B−AX(k)), (5.10d)

where k ∈ {1 . . .Ks} is the iteration index, and S (·) represents a row-wise shrinkage operator

associated with the weighted l2,1 regularization:

Z(k)
i = max

{∥∥∥∥X(k)
i +

1
β1

(ΛΛΛ1)
(k−1)
i

∥∥∥∥
2
− wi

β1
,0
}
·

X(k)
i + 1

β1
(ΛΛΛ1)

(k−1)
i∥∥∥X(k)

i + 1
β1
(ΛΛΛ1)

(k−1)
i

∥∥∥
2

, f or i = 1, . . . ,n.
(5.11)

This work proposes to approximate S (·) through the data-driven method. Instead of directly

applying (5.11) only to promote the joint sparsity, MMV-Net aims to learn a more general S (·)
to exploit both the spatial correlation and the inherent correlation across different frequencies

(see illustration in Fig. 5.1), to reconstruct the multi-frequency conductivity distributions effect-

ively and simultaneously.
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Figure 5.1: Illustration of intra- and inter-frequency correlation between mfEIT images.

5.2.3 MMV-Net for mfEIT image reconstruction

For the mfEIT-image-reconstruction problem, the conventional ADMM (MMV-ADMM) has lim-

itations in three respects: a) typically it requires hundreds of iterations to achieve the optimum,

which degrades the computational efficiency to a significant extent (Qu, Nasrabadi, & Tran,

2013; M. Zhang et al., 2020); b) the non-linear shrinkage operator S (·) is only valid for

specific image patterns (e.g. sparsity (Cotter, Rao, Engan, & Kreutz-Delgado, 2005), group

sparsity (M. Zhang et al., 2020)); c) it is non-trivial to fine-tune the algorithm parameters

{β ,γ,η}.

To address the above issues, we propose a deep architecture named MMV-Net for mfEIT

image reconstruction by unrolling the iterative MMV-ADMM algorithm. MMV-Net combines the

model-based method and the deep neural network for mfEIT image reconstruction to exploit

advantages from both sides. We map the four update procedures in (5.10a)-(5.10d) into an

unfolded data flow with Ks iterations as illustrated in Fig. 5.2.
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Algorithm : MMV-ADMM for mfEIT Image Reconstruction
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Figure 5.2: (a) The iterative MMV-ADMM algorithm. (b) Illustration of the four updating steps at the kth iteration corresponding to (5.10a)-(5.10d).
(c) The overall architecture of the proposed MMV-Net. MMV-Net is an unrolled architecture for Ks iterations. It alternates among the four update
steps. These update steps share parameters across all iterations.
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The input of the MMV-Net is the mfEIT measurement data B. Z(0), ΛΛΛ
(0)
1 , and ΛΛΛ

(0)
2 are initialized

as zeros. X(0) is obtained by employing the one-step Gauss-Newton solver with the Laplacian

filter (A. Adler et al., 2009):

X(0) = (ATA+λLTL)−1ATB (5.12)

where L is the Laplacian matrix, and λ is the regularization factor. The initialization results are

then utilized to generate the final multi-frequency conductivity images Z(Ks) after Ks iterations.

The subsequent part of MMV-Net comprises of Ks blocks, where the kth block corresponds

to the kth iteration of the MMV-ADMM algorithm. Each block consists of four update steps

corresponding to one iteration of MMV-ADMM in (5.10a)-(5.10d), including gradient descent

(X) update, auxiliary variable (Z) update, the first multiplier (ΛΛΛ1) update, and the second

multiplier (ΛΛΛ2) update. The following parts discuss the four update steps at the kth iteration

in detail.

X(k) update

This update step implements the gradient descent method. It generates the immediate result

X(k). Given X(k−1), Z(k−1), ΛΛΛ
(k−1)
1 , and ΛΛΛ

(k−1)
2 , which are obtained from the previous (k−1)th

iteration, the output X(k) is computed according to (5.10a).

Z(k) update

This step updates the auxiliary variable by unrolling the generalized non-linear operator S (·)
in (5.10b), where the prior knowledge is integrated. For mfEIT, it is crucial to learn intra- and

inter-image correlations simultaneously with respect to frequency channels (see Fig. 5.1).

With this purpose, we propose to design S (·) as a deep neural network, in particular, a cas-

cade of a Spatial Self-Attention (SSA) module and a Convolutional Long Short-Term Memory

(ConvLSTM) module. Fig. 5.2(b) illustrates how (5.10b) is mapped into a network. First, a

more general combination of X(k) and ΛΛΛ
(k−1)
1 is learned by two 1×1×1 convolutional layers

respectively and an element-wise sum. Afterwards, we apply the SSA and ConvLSTM to

improve the reconstruction performance of Z(k). Let Conv1(·) and Conv2(·) be the two convo-

lutional layers, FSSA(·) and FLST M(·) be the function of SSA and ConvLSTM, respectively,

then (5.10b) can be reformulated as:

Z(k) = FLST M(FSSA(Conv1(X(k))+Conv2(ΛΛΛ
(k−1)
1 ))) (5.13)

The detailed design of the SSA and ConvLSTM is elaborated as follows.
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Spatial self-attention module FSSA(·): our previous work (Z. Chen et al., 2020) observed

that by explicitly learning the structural information of the conductivity image, significant image

quality improvement can be achieved in terms of spatial resolution and accuracy. This idea is

inherited by using a spatial self-attention module to determine the structural information under

each frequency channel to extract inter-frequency correlations.

The family of attention modules is capable of modeling long-range dependencies in natural

language processing and computer vision. As a variation of attention, the self-attention mech-

anism was first proposed to extract global dependencies of inputs for machine translation

(Vaswani et al., 2017). X. Wang, Girshick, Gupta, and He (2018) and Fu et al. (2019) extended

the self-attention mechanism to video classification and image segmentation, respectively.

Self-attention is usually inserted in a network and generates importance maps to refine the

high-level feature maps. As a result, important regions can be focused on and feature repres-

entations are enriched with contextual relationships for intra-image compactness.

Inspired by the self-attention mechanism, the proposed SSA adopts the structure of a sym-

metric encoder–decoder network, embedded with a self-attention mechanism to the encoder

output. An encoder typically comprises a stack of convolutional layers with activation layers to

extract latent feature representations. For instance, X. Wang et al. (2018) and Fu et al. (2019)

employed the pre-trained ResNet (K. He, Zhang, Ren, & Sun, 2016) as the backbone. Q. He,

Sun, Yan, and Fu (2021) used a lightweight backbone based on ShuffleNetV2 (Ma, Zhang,

Zheng, & Sun, 2018) followed by a deformable context feature pyramid network to improve

the adaptive capability of multiscale features. As the reconstructed mfEIT images under all

frequencies share the same structure, the encoder part first introduces a 3×3 convolutional

layer producing one output channel. Then, we apply two 2×2 convolutional layers with a stride

of 2. Each layer is followed by a Batch Normalization layer and an ELU layer. The encoder

outputs a feature representation E with the size of C×H×W , which is fed into three 3× 3

convolutional layers to generate feature maps queries Q, keys K and values V, respectively.

Q, K and V now have the size as E. They are all reshaped to C×P, where P = H×W . Q and

K are multiplied and fed into a softmax layer to generate a score/attention map S with the size

of P×P. Afterwards S and V are multiplied and reshaped back to C×H×W . We then perform

residual learning through a skip connection to E. Finally, the decoder is applied and comprises

two 2× 2 deconvolutional layers with a stride of 2, each followed by a BatchNorm layer and

an ELU layer. The final output is the contextualized representation of structure information

R(k) ∈ Rm×l .

Convolutional LSTM module FLST M(·): based on the structure information R(k), we then

attempt to learn the inter-frequency correlations by reconstructing the trend of the varying

conductivity contrast along the frequency domain, meanwhile preserving the general struc-

tures learned from the SSA.
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We view the contextualized representation R(k) as a set of sequential images, i.e. {r(k)i }l
i=1,

where r(k)i ∈Rm represents the ith column of R(k). To tackle this sequence-to-sequence (seq2-

seq) problem, Recurrent Neural Network (RNN) and LSTM models (Cho et al., 2014; Do-

nahue et al., 2015) are in a dominant position in the field of deep learning. One drawback

of RNNs/LSTMs is that they require considerable memory to store intermediate cell gate

parameters, especially for long sequences and high dimensional inputs, on account of the

usage of full connections. Though powerful enough to capture temporal correlations, the fully-

connected layers raise redundancy and distortion for spatial data. In contrast, Convolutional

LSTM (ConvLSTM) (Shi et al., 2015) is more computationally efficient as it replaces the fully-

connected layers with convolutional layers. This operation further preserves spatial correla-

tions with much fewer parameters and better generalization, meaning we could employ more

parameters to construct the SSA.

To learn the changes of conductivity contrast along with the frequency, we take advantage

of ConvLSTMs. The proposed ConvLSTM module has a stack of multiple ConvLSTM layers

with a kernel size of 3× 3. We set the layer number as two by default. We finally apply an

additional 1×1 convolutional layer and a ReLU layer to generate Z(k).

ΛΛΛ
(k)
1 update

The multiplier update step corresponds to (5.10c). As shown in Fig. 5.2(b), the residual (X(k)−
Z(k)) first goes through a 1×1×1 convolutional layer, which is expected to learn γ1β1. Then

we perform an element-wise sum operation between the residual and Z(k−1) to obtain the

output ΛΛΛ
(k)
1 .

ΛΛΛ
(k)
2 update

Fig. 5.2(b) also illustrates the multiplier update according to (5.10d) with inputs of ΛΛΛ
(k−1)
2 and

(B−AX(k)). Similar to the update of ΛΛΛ1, we decompose this operation to a 1×1 convolutional

layer to learn the product γ2β2 and an element-wise sum to generate ΛΛΛ
(k)
2 .

Given a training dataset D with ND pairs of samples, we define the objective function as the

Mean Square Error (MSE) between the predicted images Z(Ks) and the ground truth X(gt):

L =
1

ND
∑

(B,X(gt))∈D

∥∥∥Z(Ks)−X(gt)
∥∥∥2

. (5.14)
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5.2.4 Network Training

We train the MMV-Net using PyTorch and employ Adam (Kingma & Ba, 2014) for optimization

with the batch size of 6. Similar to Aggarwal et al. (2018); Xiang et al. (2021); Y. Yang, Sun,

et al. (2018); J. Zhang and Ghanem (2018), the non-linear operator and parameters ΘΘΘ =

{Conv1(·),Conv2(·),FSSA(·),FLST M(·),β ,γ,η} are all learned from training data, rather than

hand-tuning. We employ the parameter-sharing strategy to penalize the recursive network

size for effective learning, where ΘΘΘ of the MMV-Net is shared across all iterations. Inspired by

the training approach in Aggarwal et al. (2018), we adopt a three-step approach for training.

We first train the auxiliary variable update (Z) to learn ΘΘΘZ = {Conv1(·),Conv2(·),FSSA(·),
FLST M(·)}. Then we train the entire parameters ΘΘΘ for only one iteration, initialized with the

previously learned parameters ΘΘΘZ. The trained parameters ΘΘΘ with a single iteration serve as

a starting point for training the MMV-Net with multiple iterations.

5.3 Experiments and Results

5.3.1 The Edinburgh mfEIT Dataset

We constructed the Edinburgh mfEIT Dataset (the dataset is available at https://datashare.ed.

ac.uk/handle/10283/4441) to train the proposed MMV-Net. It contains multiple imaging objects

with continuously varying conductivity values along four frequencies (l = 4) within a circular

16-electrode EIT sensor. The forward problem was solved by using COMSOL Multiphysics

and Matlab. We adopt the adjacent measurement strategy (Brown & Seagar, 1987) and a

completed non-redundant measurement cycle contains m = 104 voltage measurements. In

solving the inverse problem, we divide the circular sensing region by a 64× 64 quadrate

mesh, which contains n = 3228 pixels.

The background substance is saline with a constant conductivity of 2 S/m, which does not

change with frequency. One to three circular objects are simulated with their diameters ran-

domly determined by the uniform distribution [0.05d, 0.3d] (d is the sensor diameter). Extra

constraints are imposed to avoid overlap within the sensing region. We then design three pos-

sible groups of increasing conductivity values associated with the four frequencies as shown

in Table 5.1, from which the changing conductivity values of target objects along frequency

are assigned randomly. A distinct conductivity group is further ensured for each circular object

within a phantom. This setup was adopted to simulate potential target application scenarios

in tissue engineering (e.g. cell culture imaging (Z. Chen et al., 2020)).
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Table 5.1: Groups of simulated conductivity values at different frequencies.

Group f1 f2 f3 f4
Index (S/m) (S/m) (S/m) (S/m)

1 0.01 0.6 1.2 1.8
2 0.4 0.6 0.8 1.0
3 0.8 1.0 1.2 1.4

A total of 4×12,414 (where 4 is the number of current frequencies) pairs of voltage-conductivity

samples were generated through finite element modelling simulation. Considering phantom

complexity, we generated 4× 3k one-object samples, 4× 4k two-object samples, 4× 5,414

three-object samples. They are partitioned into 4×8,700 training set, 4×1,900 validation set,

and 4×1,814 testing set for network training.

To eliminate the influence of systematic defect, we calibrate and normalize the voltage meas-

urements and conductivity in the dataset, following:

B =
Vmea−Vre f

Vre f
, (5.15)

X =
σσσmea−σσσ re f

σσσ re f
, (5.16)

where σσσ re f and Vre f denote the reference conductivity distributions and corresponding meas-

urement data respectively with only background substance (discussed in Section 5.2.1); σσσmea

and Vmea denote respectively the conductivity distribution and measurement with perturba-

tions.

5.3.2 Evaluation on Simulation Data

In this sub-section, we evaluate the performance of the proposed MMV-Net using simulated

mfEIT data.

Performance Comparison

We compare the proposed MMV-Net with three state-of-the-art image-reconstruction methods

for mfEIT, i.e. MMV-ADMM (M. Zhang et al., 2020), MoDL (Aggarwal et al., 2018), and FISTA-

Net (Xiang et al., 2021) on the Edinburgh mfEIT Dataset. MMV-ADMM is a conventional

MMV-based method with the ADMM solver that can be adjusted and applied for mfEIT image

reconstruction. MoDL and FISTA-Net are model-based deep learning methods targeted at

single measurement vector-based tomographic imaging. MoDL unrolls the traditional ADMM

algorithm, while FISTA-Net is based on the FISTA framework (Beck & Teboulle, 2009). The

number of trainable parameters of the latter two model-based deep learning methods is given

in the last row of Table 5.2.
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Table 5.2: Performance comparisons (PSNR, SSIM and RMSE) on the Edinburgh mfEIT
Dataset.

Metrics
Frequency MMV-

MoDL
FISTA-

MMV-Net
Channel ADMM Net

PSNR

1 19.3950 21.4738 21.4444 23.7423
2 22.0398 24.1978 24.4338 26.1284
3 24.3093 26.1114 26.6960 28.5507
4 26.6077 27.0675 27.6000 28.6125

Average 23.0880 24.7126 25.0435 26.7585

SSIM

1 0.4347 0.8467 0.8784 0.9354
2 0.5266 0.8676 0.9092 0.9312
3 0.6175 0.8712 0.9182 0.9469
4 0.6383 0.8569 0.9092 0.9265

Average 0.5543 0.8606 0.9038 0.9350

RMSE

1 0.1175 0.0910 0.0933 0.0700
2 0.0836 0.0651 0.0644 0.0527
3 0.0650 0.0526 0.0499 0.0404
4 0.0549 0.0512 0.0496 0.0407

Average 0.0803 0.0650 0.0643 0.0510
No. of learning

NA 112,517 75,045 8,780
parameters

Best results are highlighted in bold.

Table 5.2 shows quantitative comparison based on the average Peak Signal to Noise Ratio

(PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Square Error (RMSE) on

all the testing data. MMV-Net outperforms all competing approaches at all frequencies. Note

that there is an explicit improvement of PSNR, SSIM and RMSE from f1 to f4. This is due to

the higher sensitivity of these metrics to larger conductivity contrasts.

Fig. 5.3 demonstrates reconstructions of two simulated phantoms for qualitative comparison.

In the following work, qualitative results are presented in square images by doing zero padding

outside the circular sensing region. MMV-ADMM can hardly reconstruct lower conductivity

contrasts, especially at f3 and f4, whereas MoDL and FISTA-Net perform better. In con-

trast, the proposed MMV-Net can restore the most consistent structures/shapes and the

conductivity changes along the frequency domain more smoothly. In addition, MMV-Net can

distinguish fairly close objects more effectively than the other methods, which demonstrates

the advantages of SSA and ConvLSTM used in MMV-Net. However, all methods failed to yield

accurate conductivity values for each object. Even the best-performing MMV-Net tends to as-

sign similar values to all objects, although the shapes estimated are close to the ground truth.

The potential reason is that the approximated linearization in (5.1) is unable to handle such

non-linear circumstances, i.e. the sensitivity matrix A suffers from errors when interpreting

conductivity levels from the measurement data.
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Figure 5.3: Comparison of the proposed MMV-Net with the state-of-the-art imaging ap-
proaches on two simulated phantoms in the testing set.
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Fig. 5.4 shows two typical failure cases of MMV-Net. For case 1, MMV-Net fails to reconstruct

the smallest object closely positioned to two larger objects. Case 2 contains a noticeable

artifact at the center of the reconstructed images of each frequency. This artifact is possibly

inherited from the one-step initialization, indicating that the quality of the initial guess may also

affect the final reconstruction.

Figure 5.4: Two failure cases of MMV-Net.

Ablation Studies

In MMV-Net, we employ a Spatial Self-Attention (SSA) Module and a Convolutional LSTM

(ConvLSTM) Module to capture intra- and inter-frequency correlations for high-performance

mfEIT reconstructions. To verify the performance of the two modules, we conduct ablation

studies (see Table 5.3). MMV-Net with only the ConvLSTM module outperforms MMV-Net with

individually the SSA module by 6% in PSNR, 22% in SSIM, and 15% in RMSE. Integration of

the two modules into MMV-Net brings further improved performance of 26.9817 dB in PSNR,

0.9364 in SSIM, and 0.0498 in RMSE.
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Table 5.3: Ablation study on the validation set. (SSA: Spatial Self-attention Module; ConvL-
STM: Convolutional LSTM Module.)

Method SSA ConvLSTM PSNR SSIM RMSE

MMV-Net
✓ 24.9132 0.7640 0.0622

✓ 26.5144 0.9300 0.0530
✓ ✓ 26.9817 0.9364 0.0498

Fig. 5.5 illustrates the visual effects of the two modules. As expected, the SSA module itself

manages to split the two objects and provide rough shapes but relatively vague boundaries,

whereas the ConvLSTM module enhances the continuity but focuses less on shapes. By tak-

ing advantage of both modules, the proposed MMV-Net demonstrates superior performance

among all the given approaches.

𝑓!

𝑓"

𝑓#

𝑓$

Ground Truth SSA only ConvLSTM only MMV-Net

0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.00.2 0.4 0.6 0.70.0 0.1 0.50.3 0.2 0.4 0.6 0.80.0

Figure 5.5: An example of image reconstruction results from ablation study.

Iteration Analysis

Table 5.4 shows the impact of the iteration number Ks. It can be observed that average

PSNR, SSIM, and RMSE values on the validation set are improved with increasing iterations.

These improvements slow down considerably when Ks ≥ 7. Therefore, we use Ks = 7 for

configuration as a compromise of performance and computational cost.



5.3. Experiments and Results 74

Table 5.4: Improvement in reconstruction quality on validation data with the increasing number
of iterations of the network.

No. of
5 6 7 8 9

Iterations

PSNR 26.8428 26.9422 26.9817 27.0174 27.0177
SSIM 0.9341 0.9342 0.9364 0.9391 0.9394
RMSE 0.0506 0.0501 0.0498 0.0496 0.0496

We show the intermediate reconstructed images of MMV-Net, FISTA-Net and MMV-ADMM at

different iterations in Fig. 5.6. Each row corresponds to an iteration under different frequencies.

The reconstruction quality of MMV-Net improves gradually with iteration. More specifically,

details in the structural information are clearer and more accurate while tiny changes in

conductivity values raise as it goes deeper. It might be because we put more parameters

in the SSA modules to learn the structural information.
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Figure 5.6: Intermediate reconstructed images by MMV-Net, FISTA-Net and MMV-ADMM at different iterations.
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Generalization Ability

We demonstrate the generalization ability of MMV-Net by adding different levels of Gaussian

noise to the measurement data and evaluating the image quality based on PSNR. Fig. 5.7

shows the average PSNR values of different methods. Degraded performance can be ob-

served for all methods, whilst the proposed MMV-Net is the most robust against noise and

FISTA-Net suffers a rapid decay. MoDL and FISTA-Net are more robust than MMV-ADMM

with lower noise levels (e.g. 45dB) but MMV-ADMM exceeds both MoDL and FISTA-Net when

the SNR is smaller than around 37dB.

Figure 5.7: Generalization ability study of different noise levels.

However, it is worth mentioning that all three learning-based methods are trained with only

noise-free data. We believe our MMV-Net will retain more advantage upon MMV-ADMM and

the other two model-based learning approaches should demonstrate more robustness to

noise if sufficient noisy data are added in the training stage.

Convergence Performance

Fig. 5.8 illustrates the convergence performance of MMV-ADMM, MoDL, FISTA-Net, and

MMV-Net. MMV-ADMM runs 100 iterations and ultimately converges to a certain level, while

much faster convergence can be achieved by all network-based approaches. They adopt

only 7 iterations and saturate at a much lower RMSE. We also observe that FISTA-Net

shows smoother convergence than MoDL though they finally stop at similar values. MMV-Net

converges even faster than MoDL and FISTA-Net.
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Figure 5.8: Convergence performance analysis on the testing set.

5.3.3 Computational Complexity Evaluation

Table 5.5 compares the model size and running speed of MMV-ADMM, MoDL, FISTA-Net,

and MMV-Net as indicators for computational complexity. MMV-Net has the smallest model

size while obtaining the best performance. In terms of FPS, MMV-ADMM is faster than MoDL

and competitive to FISTA-Net, showing the advancement of the MMV model compared to the

SMV model. The proposed MMV-Net achieves the highest model execution speed of 7.92

ft/s, making it suitable for real-time imaging. MMV-Net also achieves the lowest floating-point

operations, which benefits from the lightweight backbone.

Table 5.5: Complexity evaluation. FPS means frame per second. FLOPS means floating point
operations per second

Method
Model Size

FPS FLOPS
(MB)

MMV-ADMM - 1.39 -
MoDL 0.46 0.48 12.93
FISTA-Net 0.32 1.87 12.91
MMV-Net 0.06 7.92 0.04
Best results are highlighted in bold.
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5.3.4 Evaluation on Experimental Data

In addition to the simulation study, we carried out real-world experiments on two different EIT

sensors (Z. Chen et al., 2020; Y. Yang & Jia, 2017b) to examine the generalization ability of

the proposed method. The inner diameter of the first 16-electrode EIT sensor is 94 mm. We

use a potato cylinder, a sweet potato cylinder, a metal cylinder and a plastic cylinder with dif-

ferent conductivity values as imaging targets. Fig. 5.9(a)-(f) show pictures and corresponding

geometric distributions of the three phantoms based on the first EIT sensor, which contains

combinations of different targets. The background substance is saline with a conductivity of

0.07 S ·m−1. The excitation frequencies are { f1, f2, f3, f4, f5}= {100,80,50,40,10}kHz, and

10kHz is selected as the reference frequency. The conductivity of metal and plastic hardly

changes with frequency, whilst the conductivity of potato and sweet potato increases pro-

gressively with the increase of current frequency (Y. Yang & Jia, 2017b). The second miniature

EIT sensor has 16 planar electrodes and an inner diameter of 15 mm (see Fig. 5.9(g)). The

excitation frequencies are { f1, f2, f3, f4, f5}= {20,30,40,50,10}kHz, and 10kHz is selected

as the reference frequency. The background substance is cell culture media with a conductivity

of 2 S ·m−1. The imaging object is a triangular MCF-7 human breast cancer cell pellet, which is

less conductive than the background substance and demonstrates an increasing conductivity

with the increase of current frequency.

Figure 5.9: Experiment phantoms using two different 16-electrode EIT sensors. (a) Phantom
1: potato rod, sweet potato rod and metal rod. (b) Geometric distribution of phantom 1. (c)
Phantom 2: potato rod and sweet potato rod. (d) Geometric distribution of phantom 2. (e)
Phantom 3: sweet potato rod and plastic rod. (f) Geometric distribution of phantom 3. (g)
Phantom 4: MCF-7 cell pellet

Fig. 5.10 illustrates the mfEIT image reconstruction results based on experimental data. We

also compare the results quantitatively based on SSIM, which is listed in Table 5.6. Overall,

only MMV-ADMM and the proposed MMV-Net manage to consistently provide a clear trend

of conductivity values with respect to frequency. MMV-Net further produces more accurate

shapes and fewer artifacts. Note that the potato cylinder and the sweet potato cylinder in

experiment phantom 1 have the same location as that in experiment phantom 2, which is

most successfully recovered by the MMV-Net. MMV, MoDL and FISTA-Net fail to identify the

conductive metal cylinder in experiment phantom 1, whereas MMV-Net can roughly observe

the metal cylinder but the shape is underestimated. For experiment phantom 3, MMV-ADMM,

FISTA-Net and MMV-Net are more noise-resistant than MoDL. However, MoDL and MMV-
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Net can reconstruct the non-conductive plastic cylinder. Similarly, for experiment phantom 4,

MMV-Net is the most effective in inhibiting artifacts and shows more shape consistency at all

frequencies. The results suggest that MMV-Net generalizes well to real-world experiments and

outperforms the conventional model-based method and state-of-the-art learning approaches

due to the competitive capability of capturing both intra- and inter-frequency correlations.

MMV-ADMM MoDL FISTA-Net MMV-Net

𝑓 !
=
10
0𝑘
𝐻
𝑧

𝑓 "
=
80
𝑘𝐻
𝑧

𝑓 #
=
50
𝑘𝐻
𝑧

𝑓 $
=
40
𝑘𝐻
𝑧

Phantom 1
MMV-ADMM MoDL FISTA-Net MMV-Net

Phantom 2

MMV-ADMM MoDL FISTA-Net MMV-Net

𝑓 !
=
10
0𝑘
𝐻
𝑧

𝑓 "
=
80
𝑘𝐻
𝑧

𝑓 #
=
50
𝑘𝐻
𝑧

𝑓 $
=
40
𝑘𝐻
𝑧

Phantom 3
MMV-ADMM MoDL FISTA-Net MMV-Net

Phantom 4

0.2 0.4 0.6 0.80.00.2 0.4 0.60.0 0.2 0.3 0.4 0.50.0 0.1 0.6 0.7 0.2 0.3 0.4 0.50.0 0.1 0.6 0.70.2 0.3 0.4 0.50.0 0.1 0.20.3 0.4 0.50.0 0.1 0.6 0.7 0.2 0.3 0.4 0.50.0 0.1 0.6 0.2 0.4 0.6 0.80.0

0.2 0.4 0.6 0.80.00.2 0.4 0.6 0.80.00.2 0.3 0.40.0 0.1 0.2 0.3 0.4 0.50.0 0.1 0.6 0.7 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0 0.2 0.4 0.6 0.80.0

𝑓 !
=
10
0𝑘
𝐻
𝑧

𝑓 "
=
80
𝑘𝐻
𝑧

𝑓 #
=
50
𝑘𝐻
𝑧

𝑓 $
=
40
𝑘𝐻
𝑧

𝑓 !
=
20
𝑘𝐻
𝑧

𝑓 "
=
30
𝑘𝐻
𝑧

𝑓 #
=
40
𝑘𝐻
𝑧

𝑓 $
=
50
𝑘𝐻
𝑧

Figure 5.10: mfEIT image reconstruction results of four experimental phantoms.
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Table 5.6: Numerical comparisons of experimental results based on SSIM.

Phantom
MMV- MoDL FISTA-

MMV-Net
ADMM Net

1

f1 0.39 0.71 0.71 0.77
f2 0.41 0.69 0.73 0.77
f3 0.45 0.69 0.72 0.76
f4 0.45 0.69 0.72 0.75

2

f1 0.38 0.74 0.74 0.79
f2 0.41 0.75 0.76 0.79
f3 0.44 0.75 0.75 0.79
f4 0.43 0.74 0.75 0.79

3

f1 0.53 0.61 0.79 0.80
f2 0.59 0.60 0.79 0.80
f3 0.61 0.59 0.80 0.80
f4 0.55 0.59 0.81 0.81

4

f1 0.27 0.70 0.77 0.87
f2 0.40 0.71 0.86 0.87
f3 0.34 0.70 0.85 0.87
f4 0.36 0.74 0.85 0.87

Best results are highlighted in bold.

5.4 Summary

In this chapter, a model-based learning approach named MMV-Net was proposed to address

the simultaneous image reconstruction problem of mfEIT. MMV-Net combines the advantages

of the traditional MMV-ADMM algorithm and deep networks. All parameters are learned during

training, rather than manually tuned. The regularizer of MMV-ADMM was generalized by

introducing the spatial self-attention module and convolutional LSTM module to learn both

spatial and frequency correlations between mfEIT images. Ablation experiments showed that

cascading both modules strengthened the structural information effectively and provided su-

perior results. Simulation and real-world experiments demonstrated that the proposed MMV-

Net outperformed the state-of-the-art methods in terms of image quality, generalization ability,

noise robustness and convergence performance.



Chapter 6

3D Tissue Imaging with Point Cloud

Network

6.1 Introduction

Despite the advancement of existing image reconstruction algorithms, most are focused on

2D geometries, and 3D image reconstruction algorithms are relatively rare. Some studies

have been focused on extending 2D algorithms to 3D cases, such as direct 3D reconstruction

based on Complex Geometrical Optics (CGO) solutions (Bikowski, Knudsen, & Mueller, 2010),

3D-Laplacian and sparsity joint regularization (Y. Yang et al., 2016), Bayesian learning with

Total Variation prior (González, Huttunen, Kolehmainen, Seppänen, & Vauhkonen, 2016),

and 3D Structure-Aware Sparse Bayesian Learning (SA-SBL) (S. Liu et al., 2019). However,

these approaches are based on regular grids (e.g., voxels), and handcrafting parameters

and regularization terms are usually required, resulting in low image quality and considerable

computational cost.

This chapter proposes a learning-based 3D EIT reconstruction algorithm with efficient 3D

representations to facilitate image accuracy, spatial resolution and computational efficiency.

In terms of 3D representations, most existing image reconstruction methods adopt voxel grids

for simplicity. However, voxelization of a 3D space inevitably discards lots of details, and the

memory footprint increases cubically with the resolution, indicating that there is always a

trade-off between the depth of network architectures and the resolution (Mescheder, Oechsle,

Niemeyer, Nowozin, & Geiger, 2019). Therefore, we propose to employ point clouds to repres-

ent 3D objects in the 3D EIT reconstruction problem. We hypothesize that the dedicated deep

network can generate 3D reconstructions with limited data but high resolution by learning point

cloud distributions as the shape of 3D objects. In terms of the reconstruction algorithm, unlike

voxel-based methods, the 3D image reconstruction task here transits to recover the 3D co-

ordinates of points to adaptively portray objects’ surfaces and predict each point’s conductivity.

Therefore, we propose a point cloud-based 3D EIT image reconstruction network, ptEIT. The

network architecture of ptEIT resembles the structure of the well-known transformer proposed

by (Vaswani et al., 2017). The main contributions of this chapter are as follows:

81



6.1. Introduction 82

1. For the first time, we introduce point cloud as a new 3D representation in the 3D EIT

image reconstruction problem, which provides fine-shape descriptions with a limited

number of points, alleviates memory requirements, and allows for deeper network ar-

chitectures.

2. A point cloud-based 3D EIT image reconstruction network, ptEIT, is proposed to trans-

late EIT measurements to point cloud representations. ptEIT tackles the 3D EIT re-

construction problem by solving two sub-problems, i.e., shape reconstruction and con-

ductivity prediction. Explicitly learning the two sub-problems through end-to-end training

boosts the performance of ptEIT.

3. The proposed ptEIT is validated with simulation and experiments to demonstrate its

superior performance compared to voxel-based 3D reconstruction algorithms.

6.2 Related Work

6.2.1 3D Representations

Learning-based 3D object reconstruction from low dimensional data (mainly 2D images (Han,

Laga, & Bennamoun, 2019)) has been extensively investigated. The data representation is

critical for reconstruction quality, network establishment and computational efficiency. Typic-

ally, 3D representations could be regular voxel-based, irregularly structured point cloud-based

or mesh-based, and implicit function-based.

Voxels based on regular volumetric grids are a natural extension to 2D image pixels. The

main advantage is that existing network architectures for 2D images can be easily extended by

using 3D convolutions (J. Wu et al., 2017; Xie, Yao, Sun, Zhou, & Zhang, 2019; D. Zhang et al.,

2020). However, accurate 3D reconstruction based on voxel-based representations requires

finer discretization of the 3D space and deeper networks, thus limited by the computational

and memory cost.

Meshes are targeted directly at the surfaces of 3D objects which are more efficient than

voxel-based representations, assuming that rich information is usually located on/nearby the

surfaces. Here, 3D surfaces can be described by constructing vertices and faces based on

parameterization (Groueix, Fisher, Kim, Russell, & Aubry, 2018; Pumarola et al., 2018) or

deformation (Kato, Ushiku, & Harada, 2018; N. Wang et al., 2018). These methods are limited

to the template topology or genus-0 surfaces and the generated meshes tend to be self-

intersecting and non-watertight.

Implicit Functions learned by deep networks have become an emerging strategy for de-

scribing 3D geometries (Chabra et al., 2020; Z. Chen & Zhang, 2019; Mescheder et al.,

2019; Park, Florence, Straub, Newcombe, & Lovegrove, 2019). Instead of discretizing the

3D space with a fixed resolution, given a query point, these continuous functions predict the
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signed surface distance value (Chabra et al., 2020; Park et al., 2019) or whether the point is

inside the object as the continuous decision boundary (Z. Chen & Zhang, 2019; Mescheder

et al., 2019). For visualization, one way is to feed every point in the voxel grid at any arbitrary

resolution into the trained network to generate 3D volumetric images. Alternatively, the multi-

resolution isosurface extraction algorithm (Mescheder et al., 2019) can extract 3D meshes

from the trained network. The reported average inference time requires 3s per mesh, which is

undesirable for real-time imaging.

Point Clouds are also an efficient format for 3D surfaces and have increasing popularity in

many scene understanding-related applications (Y. Guo et al., 2020). Such representation is

simply a collection of unordered points. It thus can naturally handle 3D shapes of arbitrary to-

pologies with fine-grained details. Point-wise multilayer perceptrons (MLP) (Fan, Su, & Guibas,

2017; Jiang, Shi, Qi, & Jia, 2018; Mandikal & Radhakrishnan, 2019) and 1D convolutions

(Gadelha, Wang, & Maji, 2018) are used to regress 3D point coordinates and the attributes

for the unordered points. Similar to implicit functions, the resulting point clouds can also be

post-processed to retrieve 3D meshes based on Poisson surface reconstruction (Kazhdan &

Hoppe, 2013).

We propose to use point clouds to represent the 3D geometry in a non-Euclidean space for the

3D EIT image reconstruction problem for their simplicity, generalization ability, and efficiency

in terms of memory and computation. Each object is described by a fixed number of points.

6.2.2 Transformer

Recently, Transformer (Vaswani et al., 2017) as a decoder–encoder structure and its variants

(J. Lee et al., 2020; Z. Yang et al., 2019) have gained tremendous interest and achieved

impressive performance in Natural Language Processing (NLP). The key component of Trans-

former is the self-attention module, which can capture long-term dependencies of context

as an alternate of recurrence or convolutions by explicitly learning interactions along the

sequences. This idea has been successfully extended to Computer Vision (CV) tasks, such

as image recognition (Dosovitskiy et al., 2020) and object detection (Carion et al., 2020).

Additionally, the self-attention module is inherently permutation invariant, which fits the prop-

erty of disordered points. Therefore, it is natural to apply Transformer in point cloud learning,

where it has achieved good performance in point cloud segmentation and classification tasks

(M.-H. Guo et al., 2021; Hui, Yang, Cheng, Xie, & Yang, 2021).

This chapter proposes to exploit Transformer to solve the 3D EIT reconstruction problem.

Extracting context dependencies between points is expected to facilitate the quality of recon-

structed point cloud representations.
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6.3 Point Cloud Network

6.3.1 Problem Definition

The EIT-image-reconstruction problem aims to recover the conductivity distribution given the

boundary voltage measurements. In this work, we represent the targeted objects as point sets

S = P(1)⋃P(2)⋃ ...
⋃

P(N), where P(n) donates the nth object and N is the maximum number of

objects. M points are used to represent each object, P(n) = {(x(n)i ,y(n)i ,z(n)i ,c(n))}M
i=1, where

each point P(n)
i is a vector of 3D coordinates (x(n)i ,y(n)i ,z(n)i ) and the conductivity value cn.

Here, we assume uniform conductivity distribution for each object. With point clouds, arbitrary

topologies could be described. The input of the network is a sequence of ordered EIT voltage

measurements X = {(vi,Ce1
i ,Ce2

i )}NM
i=1, where NM is the number of independent measure-

ments; vi ∈ R is the calibrated voltage readout; Ce1
i ∈ R3 is the 3D coordinates of current

injection electrodes; Ce2
i ∈ R3 is the 3D coordinates of voltage measurement electrodes.

6.3.2 Point Cloud Network

We employ the proposed point-cloud transformer for 3D EIT image reconstruction, i.e., ptEIT

(see Figure 6.1), which is established based on Transformer (Vaswani et al., 2017). As point

clouds are not limited to regular geometry, ptEIT has a strong generalization ability for irregular

shapes and expression ability for fine details. The key idea of ptEIT is to divide the challenging

3D EIT image reconstruction task into two sub-tasks: shape reconstruction and conductivity

estimation.

In general, ptEIT comprises one encoder and two decoders. The objective of the encoder

E(·) is to convert the voltage readouts incorporating the electrodes’ topology information to a

high-dimensional latent code-word. We consider that the geometry information of electrodes

plays a vital role in helping the deep learning model to find the correct non-linear relationship,

thus improving the convergence speed. The input of the encoder not only contains the voltage

measurements but also six coordinates of each measurement’s corresponding injection and

measurement electrode pairs. The voltage measurement v ∈ RNM is first linearly transformed

to the embedding dimension (128) for the following self-attention operation, by an MLP fv(·)
operation. The position information (Ce1,Ce2)∈RNM×6 is encoded through another MLP fc(·).
After adding the extracted positional information and voltage measurements together, a trans-

former encoder module, which is identical to the original paper (Vaswani et al., 2017), is

applied to generate latent code-word L ∈ RNM×128.
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Figure 6.1: The network architecture of the proposed point-cloud transformer for 3D
EIT image reconstruction (ptEIT). The voltage measurement and position information are
embedded and then mapped into a latent space by an encoder. Based on the latent code, the
conductivity decoder estimates conductivity values ŶC and makes constraints K on structural
information for the shape decoder. Meanwhile, the measurement data is reused to provide an
initial guess about the shape distribution Ŷ Sint . With the latent code, the initial shape is fed into
the shape decoder to reconstruct a fine-tuned shape Ŷ S. Finally, ŶC and Ŷ S are concatenated
to provide the targeted point cloud S. (a) The encoder E(·). (b) The conductivity decoder
Dc(·). (c) The shape decoder Ds(·).
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Conductivity decoder: A conductivity decoder Dc(·) is introduced to estimate conductivity

values: low conductivity, high conductivity and background. Dc(·) is constructed by a few MLPs

followed by a tanh layer to generate a probability matrix ŶC = {(ci0,ci1,ci2)}N
i=1, where each

column represents the class of conductivity value. We use cross-entropy LC to train Dc(·).
ŶC is further reused to create a structural constraint K ∈ RN in the form of binary masks to

inform the object number inside the sensing region for the following shape decoder.

Shape decoder: The main difficulty lies in the shape reconstruction task, which is treated

as a deformation task accomplished by a shape decoder Ds(·). The network starts from

certain initial shapes Ŷ Sint . To generate an appropriate initial shape, we introduce the voxel-

based algorithm, i.e. 3D-Laplacian (Y. Yang et al., 2016). 3D-Laplacian employs the one-step

Gauss-Newton solver with a Laplacian filter to obtain an image. The reconstructed image is

firstly segmented using a threshold of 30% of the maximum conductivity value. After seg-

mentation, we use k-means clustering to determine 3D coordinates of the centroid of each

object. Surrounding these centroids, we generate spheroids with the same radii for each

object to construct Ŷ Sint . Notice that our network has the ability to reconstruct arbitrary shapes

away from the sphere. Ŷ Sint is then transformed into the embedding dimension by an MLP.

Together with L, the output of the MLP is fed into a transformer decoder module identical

to the original paper (Vaswani et al., 2017), a fully connected layer, and a sigmoid layer for

activation. The output of the sigmoid layer is further masked by K to zero out coordinates of

unnecessary objects, resulting in Ŷ S = {(xi,yi,zi)}N×M
i=1 . In terms of the objective functions,

Earth Mover’s Distance (EMD) (Andoni, Indyk, & Krauthgamer, 2008), Hausdorff Distance

(HD) (Huttenlocher, Klanderman, & Rucklidge, 1993) and Chamfer Distance (CD) (Butt &

Maragos, 1998) are commonly used in point cloud learning, which are defined by

LEMD(Y S,Ŷ S) = min
φ :Y S→Ŷ S

∑
s∈Y S

∥s−φ(s)∥2
2 (6.1)

LHD(Y S,Ŷ S) = max(max
ŝ∈Ŷ S

min
s∈Y S
∥s− ŝ∥2

2,

max
s∈Y S

min
ŝ∈Ŷ S
∥s− ŝ∥2

2)
(6.2)

LCD(Y S,Ŷ S) = ∑
ŝ∈Ŷ S

min
s∈Y S
∥s− ŝ∥2

2 + ∑
s∈Y S

min
ŝ∈Ŷ S
∥s− ŝ∥2

2 (6.3)

where φ is a bijection, and Y S is the ground truth of point cloud;. EMD conducts rigor-

ous assignments that are computationally expensive due to repetitive forward and backward

propagations during training, while HD is unable to guarantee stable convergence with the

presence of outlier points. This chapter adopts an Object-Wise CD (OWCD) function for shape
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reconstruction by modifying equation 6.3:

Ls(Y S,Ŷ S) =
1
N

N

∑
i=1

( ∑
p̂∈P̂(i)

min
p∈P(i)
∥p− p̂∥2

2+

∑
p∈P(i)

min
p̂∈P̂(i)

∥p− p̂∥2
2)

(6.4)

where P̂(i) and P(i) are the nth object in Ŷ S and Y S respectively. Compared to CD, the main

advantage of OWCD is that considering one point belonging to P̂(i), it depresses the minimum

distance within P̂(i) instead of other objects Ŷ S\P̂(i), indicating that points will not jump in-

between objects during training. As a result, the object-level correspondence can be achieved

and the mean-shape behaviour (Fan et al., 2017) can also be avoided.

6.3.3 Network Training

The training was implemented on two NVIDIA P5000 GPUs. The optimizer used in training

is Adam (Kingma & Ba, 2014) with a weight decay of 10−8. The initial learning rate is 10−4

and decreases by 0.7 times every 20 steps. The batch size is 32 and the maximum training

epoch is 400. The models with the least validation loss are selected as the final models. The

transformer encoder and decoder modules have 6 stacks of encoder/decoder sub-modules

with 4 heads of attention.

6.4 Results and Discussion

6.4.1 3D EIT Dataset

To generate the 3D EIT dataset, we model a cylindrical 32-electrode EIT sensor using COM-

SOL Multiphysics (see figure 6.2). The voltage measurements are collected based on the

adjacent measurement strategy. In total, the 3D EIT dataset has 21,135 samples. Details of

the constitution are provided in table 6.1. The data set has at most three objects, two types

of geometry, and two types of conductivity. The background conductivity is 2 S ·m−1. Each

object has a random location and size while overlapping in between is not allowed. Points

are uniformly distributed on the surface of each object. To eliminate systematic defects due

to sensor imperfection, both voltage measurements and conductivity values in the data set

are normalized as did in (3.12) and (3.13). Finally, the normalized dataset is split into training,

validation, and testing sets for network training with a ratio of 8:1:1.



6.4. Results and Discussion 88

We also implement data augmentation by adding Gaussian noise to measurement data in

both training and validation sets. Additive noise with the Signal-to-Noise Ratio (SNR) of 50dB

is added to one-third of the training and validation samples. Additive noise with the SNR of

40dB is then added to the other two-thirds of the training and validation data. Consequently,

both training and validation data are doubled.

(c)

Electrodes

(a) (b)

Figure 6.2: (a) Sensor modelling: the inner diameter is 28.7 cm and the height is 20.6 cm. (b)-
(c) An example of 3D conductivity distribution represented by point clouds and corresponding
voltage measurement.

Table 6.1: 3D EIT dataset constitution. For each object, the conductivity value and geometry
are randomly selected from the given sets.

No. of objects 2 3
No. of samples 8,872 12,263

Conductivity (S ·m−1) {0.1, 3.9}
Geometry {spheroid, block}
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6.4.2 Evaluation on Simulation Data

In this sub-section, we evaluate the performance of the proposed ptEIT based on the 3D EIT

simulation data.

Performance Comparison

We compare the proposed ptEIT with two state-of-the-art image-reconstruction methods for

3D EIT based on regular volumetric grid of 32×32×40, i.e. 3D-Laplacian (Y. Yang et al., 2016)

and the 3D version of the FC-UNet (3D-FC-UNet) (Z. Chen et al., 2020) on the testing set.

3D-Laplacian is a conventional model-based method while 3D-FC-UNet is a learning-based

reconstruction method. Table 6.2 shows quantitative comparison based on average OWCD,

OWHD (object-wise HD), CA (classification accuracy), Root Mean Square Error (RMSE),

Structural Similarity Index Measure (SSIM), FPS (Frame Per Second), and FLOPS (Float-

ing Point Operations Per Second) on all the testing data. All methods are suitable for real-

time 3D EIT imaging, where 3D-Laplacian based on a simple mathematical inversion is 10

times faster than the other two learning-based methods. However, 3D-FC-UNet significantly

performs better than 3D-Laplacian in terms of image quality, indicating the superiority of deep

networks. Our ptEIT is 1.2 times more accurate in predicting the conductivity levels but with 15

times fewer trainable parameters than 3D-FC-UNet. ptEIT also achieves lower floating-point

operations than 3D-FC-UNet.

Table 6.2: Numerical comparisons (OWCD, OWHD, CA, RMSE, SSIM, FPS, and FLOPS) on
the testing set.

Metrics
3D-Laplacian 3D-FC-UNet

ptEIT
Y. Yang et al. (2016) Z. Chen et al. (2020)

OWCD (cm) - - 0.0288

OWHD (cm) - - 0.514

CA - 80.1% 98.1%
RMSE 0.134 0.086 -

SSIM 0.584 0.962 -

No. of learning
- 31,859,331 2,088,823

parameters

FPS (ft/s) 566.74 52.79 41.61
FLOPS (GMac) - 42.31 3.5
Best results are highlighted in bold.



6.4. Results and Discussion 90

y
z

x

y
z

x

y
z

x

y
z

x

z: 4.84,5.67 cm

y: 5.39,6.28 cm

y
z

x

z: 11!" slice z: 4.84,5.67 cm

y: 5.39,6.28 cm

z: 4.84,5.67 cm

y: 5.39,6.28 cm

z: 11!" slice

y: 23!" slice

ptEITGround Truth 3D-Laplace 3D-FC-UNet Initial Shape

y
z

x

y
z

x

y
z

x

y
z

x

z: 5.67,6.18 cm

y: 9.87,10.76 cm

y
z

x

z: 12!" slice

y: 28!" slice

z: 5.67,6.18 cm

y: 9.87,10.76 cm

z: 5.67,6.18 cm

y: 9.87,10.76 cm

z: 12!" slice

y: 28!" slice
(b)

(a)

(c)

(d)

(f)

(e)

y
z

x

y
z

x

y
z

x

y
z

x

z: 12.88,13.39 cm

y: 5.39,6.28 cm

y
z

x

z: 26!" slice

y: 23!" slice

z: 12.88,13.39 cm

y: 5.39,6.28 cm

z: 12.88,13.39 cm

y: 5.39,6.28 cm

z: 26!" slice

y: 23!" slice

y
z

x

y
z

x

y
z

x

y
z

x

z: 12.88,13.39 cm

y: 7.18,8.04 cm

y
z

x

z: 26!" slice

y: 25!" slice

z: 12.88,13.39 cm

y: 7.18,8.04 cm

z: 12.88,13.39 cm

y: 7.18,8.04 cm

z: 26!" slice

y: 25!" slice

y
z

x

y
z

x

y
z

x

y
z

x

z: 4.84,5.67 cm

y: −6.31, −5.45 cm

y
z

x

z: 11!" slice

y: 10!" slice

z: 4.84,5.67 cm

y: −6.31, −5.45 cm

z: 4.84,5.67 cm

y: −6.31, −5.45 cm

z: 11!" slice

y: 10!" slice

y
z

x

y
z

x

y
z

x

y
z

x

z: 4.84,5.67 cm

y: −1.72, −0.92 cm

y
z

x

z: 11!" slice

y: 23!" slice

z: 4.84,5.67 cm

y: −1.72, −0.92 cm

z: 4.84,5.67 cm

y: −1.72, −0.92 cm

z: 11!" slice

y: 23!" slice

y: 23!" slice

Figure 6.3: 3D reconstruction results from the testing set. The ground truth, initial shapes
where ptEIT starts from, and results of ptEIT are represented by point clouds, whereas the
other two algorithms are based on the voxel grid. Apart from 3D reconstructions, two critical
2D slices for each 3D image are visualized for qualitative comparison. For each row, numerical
coordinate ranges to generate 2D slices for point clouds correspond to slice numbers in voxel
grids.
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Figure 6.3 illustrates six examples of 3D reconstruction results for qualitative comparison. Our

ptEIT outperforms the benchmark algorithms with the highest image quality in terms of object

number, position, geometry, and conductivity level estimation. Figure 6.4 provides a zoomed-

in version of phantom (f) from Figure 6.3. Higher visual quality and finer surface details are

achieved by ptEIT owing to the increased resolution and representation flexibility of point

clouds.

Ground Truth

ptEIT

3D-FC-UNet

Figure 6.4: Qualitative comparison of the two learning-based algorithms. Cyan boxes:
zoomed-in region of interest.
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Generalization to Different Noise Levels

We demonstrate the generalization ability of ptEIT by testing the measurements with the

noise of 100dB (nearly noise-free), 50dB, 40dB and 30dB respectively. Table 6.3 reports

the average evaluation results on the testing set based on OWHD, OWCD, and CA of the

conductivity branch. We observe that 50dB results are close to 100dB results. Furthermore,

the upper limit of OWCD is empirically around 0.4 cm. In other words, certain reconstruction

results with OWCD exceeding 0.4 cm suffer from considerable errors in shape, position or

conductivity estimation. Our ptEIT achieves acceptable results even at the unseen 30dB,

which demonstrates its good generalization ability. Figure 6.5 illustrates an example of point

cloud visualizations under various noise levels, which matches the average performance of

ptEIT shown in Table 6.3.

Table 6.3: Evaluation on the testing set under different noise levels.

SNR(dB) OWCD (cm) OWHD (cm) CA

100 0.0288 0.514 95.2%

50 0.0350 0.578 95.2%

40 0.0765 0.982 76.2%

30 0.205 2.208 47.6%

Ground Truth 100dB

50dB 40dB 30dB

Noise Free

Figure 6.5: An example of qualitative results under different noise levels.
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Variable Resolution Feature

Existing learning-based reconstruction methods are restricted to the resolution of training

data. Re-training these models is inevitable to handle different resolutions. In contrast, our

ptEIT possesses an interesting and attractive property in that the model trained on one

resolution dataset can be directly reused to reconstruct targets with arbitrary resolutions.

In this chapter, ptEIT is trained on a 500-point-resolution dataset while it could reconstruct

point clouds with a 200-point resolution by simply inputting initial shapes with 200 points. This

variable resolution feature of ptEIT benefits from the power of self-attention operators, where

the learnable parameters W Q ∈Rndim×dQ ,W K ∈Rndim×dK , and WV ∈Rndim×dV to linearly project

ndim-dimensional feature maps queries Q, keys K and values V to dQ,dK ,dV dimensions

respectively are not relevant to the point resolution M but the feature number of each point

ndim. Therefore, the self-attention operators can implement matrix multiplication with input

data of various M. Table 6.4 shows the results of applying ptEIT trained on data with M = 500

to various reconstruction tasks when M ∈ {100,200,500,1000}. As M increases, OWCD and

OWHD decline gradually whereas CA is not affected by M. The results indicate that our ptEIT

could function as a uniform interpolater for the unordered output point set as long as both the

training data set and initial point set are uniform.

6.4.3 Evaluation on Experimental Data

In addition to the simulation study, we carried out real-world experiments on a cylindrical

EIT sensor designed by Y. Yang and Jia (2017b) to assess the generalization ability of the

proposed method. 3D image reconstruction is challenging due to its sensitivity to sensor

imperfection and its even more ill-posedness nature. The EIT sensor, as shown in the first

column of Figure 6.6, is equipped with two layers of electrodes, and each layer has 16

electrodes. The inner diameter of the sensing chamber is 287 mm. The background substance

is saline, with a height of 206 mm. The imaging targets are 3D printed with polylactide (PLA),

a widely used plastic filament material for 3D printing. Shapes include spheroid and cuboid

with different sizes. Conductive targets are wrapped with copper.

Fig. 6.6 illustrates the 3D image reconstruction results of three phantoms. In experiment

phantom 1, 3D-Laplacian manages to recover both conductivity contrast and provides a rough

3D position of the spheroid, but the size is overestimated. 3D-FC-UNet suffers from severe

image artifacts and fails to tell the target shape. This is because the single object pattern

is not included in training data. In contrast, ptEIT exhibits strong generalization ability with

accurate target shape and conductivity estimation. In experiment phantom 2, both targets

induce negative conductivity change, which all methods recognise. Apart from conductivity

values, all methods could provide accurate 3D positions of both targets but coarse shapes.

Compared to the spheroid, the cuboid is a challenging shape which is overestimated by

3D-Laplacian. The two learning methods present a state between spheroid and cuboid. In
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Table 6.4: Visual quality under different point resolutions and evaluation metrics.

Resolution
Visual Quality

OWCD OWHD
CA

M (cm) (cm)

100 0.0388 1.030 95.2%

200 0.0264 0.6303 95.2%

500 0.0176 0.2831 95.2%

1000 0.0138 0.2795 95.2%
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experiment phantom 3, the upper left cuboid and the lower right spheroid induce positive

and negative conductivity change, respectively. All methods perform accurate conductivity

contrast prediction. However, ptEIT yields effectively and consistently better 3D shapes and

positions. These results suggest that ptEIT can generalize well to real experimental setups

and outperforms conventional voxel-based methods. Both the unique 3D data representa-

tion strategy and powerful network architecture of ptEIT make a worthwhile contribution to

accurate predictions in terms of conductivity estimation, spatial resolution, noise-resistance

performance, as well as computational efficiency.

6.5 Summary

In this chapter, a transformer-based 3D EIT image reconstruction algorithm was reported.

The proposed algorithm synergically integrates point-cloud-based irregular-grid data repres-

entation, attention-based architecture, multi-task learning paradigm and tailored object-wise

chamfer distance loss function. With a trivial requirement of prior knowledge, i.e., the max-

imum amount of objects, ptEIT could reconstruct 3D point clouds with high spatial resolution

and visual quality. Compared with the voxel-based approach, ptEIT shows higher-fidelity visual

quality with fine details and dramatically reduces memory cost and complexity. Moreover, due

to the interpolation equivalence property of the self-attention operator, ptEIT trained on a spe-

cific resolution dataset can be applied to arbitrary resolution reconstructions. The proposed

approach is an early study of 3D EIT image reconstruction, verified by experiments with 3D

printed phantoms. Future work will investigate ptEIT’s application in 3D tissue imaging.
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Figure 6.6: Experimental results on EIT sensors. For each row, numerical coordinate ranges for point clouds correspond to the selected 2D slice
numbers for voxel grids. The results of ptEIT start from initial shapes. (a) Experiment phantom 1: a spheroid. (b) Experiment phantom 2: a cuboid
(left) and a spheroid (right). (c) Experiment phantom 3: a conductive cuboid (upper left wrapped with copper) and a spheroid (lower right).



Chapter 7

Conclusions and Future Work

7.1 Conclusions

Bioimpedance tomography, or EIT, as a promising tomographic imaging modality, has been

widely adopted in biomedical engineering because of its non-destructiveness and label-free

imaging nature. The main challenge of EIT comes from the nonlinear and ill-posed image

reconstruction problem. Recent advances in deep learning have pointed out a promising

direction for EIT image reconstruction. This thesis explored the development of an imaging

platform integrating multi-frequency EIT and machine learning-based image reconstruction

algorithms to image 3D cells under in vitro conditions. A comprehensive study was carried

out in terms of hybrid learning-based cell imaging, structure-aware learning-based cell culture

imaging, model-based learning algorithm for mfEIT image reconstruction and 3D imaging

using a point cloud network. The detailed work, contributed by this thesis, is summarised as

follows.

The foundation of EIT, the prospective use for EIT in tissue engineering, the cutting-edge

EIT image reconstruction algorithms, and the recent challenge in tissue engineering were

reviewed. This review pointed out the recent advances of the EIT and the importance of deep

learning in biomedical imaging, which is the background of the innovative work demonstrated

in this thesis.

For EIT image reconstruction, it is challenging to image multiple objects with varying conduct-

ivity levels with a single neural network. To address this issue, a hybrid algorithm, named DL-

GS, based on deep learning and group sparsity regularization was proposed for 3D cultivated

cell imaging with miniature EIT sensors. This work specifically focused on the challenge of

performing multi-conductivity-level imaging under multiple objects setups. An EIT dataset with

continuously varying conductivity values for different sensing objects was established. An FC-

UNet model was then developed to provide structural information of multi-level conductivity

distribution. Afterwards, this structural information was integrated into group sparsity regu-
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larization to estimate the continuous conductivity values. Both simulation and experiments

demonstrated that the proposed DL-GS method outperforms the other given image recon-

struction approaches and demonstrates strong generalization ability on a practical miniature

EIT sensor to image MCF-7 cell aggregates.

Deep learning in the DL-GS method provides binary structural information, whereas the regu-

larization algorithm determines conductivity contrasts. Despite the advancement of structure

distribution, the exact conductivity values of different objects are less accurately estimated

by the regularization-based framework, which essentially prevents EIT’s transition from gen-

erating qualitative images to quantitative images. Therefore, a structure-aware dual-branch

deep learning method (SADB-Net) was proposed to further tackle the challenge of accurate

reconstruction of the multi-object, multi-value conductivity distributions with EIT for tissue

engineering applications. Typical convolutional networks (LeNet and the baseline model) run

much faster than conventional approaches but are still unsatisfactory when estimating con-

ductivity values. The proposed network SADB-Net demonstrated that by separating the estim-

ation of structure distribution and conductivity values using two branches and then fusing the

information together, SADB-Net could generate high-quality reconstructions of multi-object,

multi-conductivity-value distributions with better structural and conductivity estimation. SADB-

Net also exhibits good generalization ability on miniature EIT sensors.

Multi-frequency Electrical Impedance Tomography (mfEIT) is an emerging biomedical imaging

modality to reveal frequency-dependent conductivity distributions in biomedical applications.

Conventional model-based image reconstruction methods suffer from low spatial resolution,

unconstrained frequency correlation and high computational cost. Most existing learning-

based approaches deal with the single-frequency setup, which is inefficient and ineffective

when extended to the multi-frequency setup. A model-based learning approach named MMV-

Net was then proposed to address the simultaneous image reconstruction problem of mfEIT.

MMV-Net combines the advantages of the traditional MMV-ADMM algorithm and deep net-

works. All parameters are learned during training, rather than manually tuned. The regularizer

of MMV-ADMM was generalized by introducing the spatial self-attention module and convo-

lutional LSTM module to learn both spatial and frequency correlations between mfEIT im-

ages. Ablation experiments showed that cascading both modules strengthened the structural

information effectively and provided superior results. Simulation and real-world experiments

demonstrated that the proposed MMV-Net outperformed the state-of-the-art methods regard-

ing image quality, generalization ability, noise robustness and convergence performance.

Finally, this thesis investigated efficient representations of 3D geometries for EIT image re-

construction. Existing reconstruction algorithms adopt voxel grids for representation, which

typically results in low image quality and considerable computational cost, and limits their

applicability to real-time applications. Therefore, the point cloud was introduced as a new

3D representation in the 3D EIT image reconstruction problem. Based on point cloud rep-
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resentation, a transformer-based 3D EIT image reconstruction algorithm named ptEIT was

reported. The proposed algorithm synergically integrates point-cloud-based irregular-grid data

representation, attention-based architecture, multi-task learning paradigm and tailored object-

wise chamfer distance loss function. With a trivial requirement of prior knowledge, i.e., the

maximum amount of objects, ptEIT could reconstruct 3D point clouds with high spatial resolu-

tion and visual quality. Compared with the voxel-based approach, ptEIT shows higher-fidelity

visual quality with fine details, dramatically reducing memory cost and complexity. Moreover,

due to the interpolation equivalence property of the self-attention operator, ptEIT trained on

a specific resolution dataset can be applied to arbitrary resolution reconstructions. This work

offered an alternative approach for 3D tissue imaging with EIT.

In summary, the work demonstrated in this thesis contributes to addressing the existing re-

search void in tissue imaging with bioimpedance tomography. Learning-based imaging ap-

proach development and integration with the in-house developed bioimpedance tomography

system have been explored. The reliable results achieved in this thesis could promote bioim-

pedance tomography as a robust, intelligent tissue imaging technique for tissue engineering

applications, which can also facilitate data-driven decision systems in biomedical engineering.

7.2 Future Work

Although this thesis promotes the application of miniature EIT in regenerative medicine, the

adoption of EIT in this field is still at its preliminary stage. Extensive efforts are still needed to

promote EIT in tissue engineering from the following directions:

1. The study of point cloud network for 3D EIT image reconstruction is still at an early stage

examined on simplified phantoms. Its application in practical cell culture monitoring is

more complicated and its feasibility requires further investigations.

2. Monitoring the 3D cell culture process requires dynamic imaging, resulting in time-

series measurement data. Conventional algorithms often use single-frame data to re-

construct EIT images, and images reconstructed from multiple frames are independent.

These methods ignore the temporal correlation of the conductivity distribution. In addi-

tion, the reconstructed images are susceptible to measurement noise, which may break

the temporal correlation of images reconstructed at different time points. Therefore, the

spatiotemporal correlation of conductivity distribution needs exploration to improve the

EIT image quality and algorithm stabilization.

3. Based on measurement data merely from the EIT system, the state-of-the-art learning-

based image reconstruction algorithms have demonstrated significant improvement

in reconstructing the electrical properties of cell aggregates, regarding conductivity

accuracy and artefact reduction. However, other imaging modalities with information fu-
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sion may further enhance image quality in terms of structure preservation, background

artifact suppression, and conductivity prediction. Multi-modal approaches are also at-

tractive in alleviating EIT ill-posedness with the help of complementary information from

other imaging modalities.

4. While EIT is an attractive solution for non-destructive, label-free monitoring of 3D cell

cultures, the ideal spatial resolution is at the cellular level (∼50 µm) to allow monitor-

ing of specific cells. Besides algorithm design, more advanced EIT sensors could be

developed targeting cellular resolution.
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