
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



Deep Language Models for Software Testing

and Optimisation

Foivos Tsimpourlas
T

H
E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

CDT Pervasive Parallelism

School of Informatics

The University of Edinburgh

2023





Abstract

Developing software is difficult. A challenging part of production development is en-

suring programs are correct and fast, two properties satisfied with software testing and

optimisation. While both tasks still rely on manual effort and expertise, the recent

surge in software applications has led them to become tedious and time-consuming.

Under this fast-pace environment, manual testing and optimisation hinders productiv-

ity significantly and leads to error-prone or sub-optimal programs that waste energy

and lead users to frustration. In this thesis, we propose three novel approaches to au-

tomate software testing and optimisation with modern language models based on deep

learning. In contrast to our methods, existing few techniques in these two domains

have limited scalability and struggle when they face real-world applications.

Our first contribution lies in the field of software testing and aims to automate

the test oracle problem, which is the procedure of determining the correctness of test

executions. The test oracle is still largely manual, relying on human experts. Au-

tomating the oracle is a non-trivial task that requires software specifications or derived

information that are often too difficult to extract. We present the first application of

deep language models over program execution traces to predict runtime correctness.

Our technique classifies test executions of large-scale codebases used in production as

“pass” or “fail”. Our proposed approach reduces by 86% the amount of test inputs an

expert has to label by training only on 14% and classifying the rest automatically.

Our next two contributions improve the effectiveness of compiler optimisation.

Compilers optimise programs by applying heuristic-based transformations constructed

by compiler engineers. Selecting the right transformations requires extensive knowl-

edge of the compiler, the subject program and the target architecture. Predictive models

have been successfully used to automate heuristics construction but their performance

is hindered by a shortage of training benchmarks in quantity and feature diversity. Our

next contributions address the scarcity of compiler benchmarks by generating human-

likely synthetic programs to improve the performance of predictive models.

Our second contribution is BENCHPRESS, the first steerable deep learning synthe-

sizer for executable compiler benchmarks. BENCHPRESS produces human-like pro-

grams that compile at a rate of 87%. It targets parts of the feature space previously

unreachable by other synthesizers, addressing the scarcity of high-quality training data

for compilers. BENCHPRESS improves the performance of a device mapping predic-

tive model by 50% when it introduces synthetic benchmarks into its training data.

iii



BENCHPRESS is restricted by a feature-agnostic synthesizer that requires thou-

sands of random inferences to select a few that target the desired features. Our third

contribution addresses this inefficiency. We develop BENCHDIRECT, a directed lan-

guage model for compiler benchmark generation. BENCHDIRECT synthesizes pro-

grams by jointly observing the source code context and the compiler features that

are targeted. This enables efficient steerable generation on large scale tasks. Com-

pared to BENCHPRESS, BENCHDIRECT matches successfully 1.8× more Rodinia tar-

get benchmarks, while it is up to 36% more accurate and up to 72% faster in targeting

three different feature spaces for compilers.

All three contributions demonstrate the exciting potential of deep learning and lan-

guage models to simplify the testing of programs and the construction of better optimi-

sation heuristics for compilers. The outcomes of this thesis provides developers with

tools to keep up with the rapidly evolving landscape of software engineering.

iv



Acknowledgements

First of all, I would like to express my deep gratitude to my three advisors Ajitha Rajan,

Hugh Leather and Pavlos Petoumenos for providing me with the best life, research,

professional advice that I could ever wish for. Their mentorship throughout this whole

journey was crucial for its successful completion. They were always there for me and

they influenced me, shaped me and improved me as a researcher, professional and

person. I also want to thank my collaborator Min Xu for supporting me and providing

me with great advice when I needed it.

I want to thank all the great friends that I made during my PhD which made the

journey so much more fun. Andrey for the fun times we had in Edinburgh and London,

Anuraag for being a great colleague at ARM, Stefanos for all the fun rides and discus-

sions and Riyasat, Marco and Ansong for all the laughs we had at the office. Their

friendship has been invaluable to me.

Next, I want to express my gratitude to all the special people in my life. My parents,

Dimitris and Lalita, for supporting me unconditionally throughout my whole life and

wanting the best for me. Dimitra, for being always there for me and supporting me

unconditionally to all my steps for so many years. I owe to her and my parents a lot

for all the support, advice and love that I have received.

Finally, I want to thank all my Greek life-long friends for all the memories and

experiences that we have shared together. Each in their own way, they have influenced

me to be a better person throughout all these years. I feel extremely lucky to spend

quality time with them no matter how many years go by.

v



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Foivos Tsimpourlas)

vi



To my late friend.

vii





Table of Contents

1 Introduction 1

1.1 Software Testing and Machine Learning . . . . . . . . . . . . . . . . 2

1.2 Compiler optimisation and Machine Learning . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 11

2.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Software Testing Workflow . . . . . . . . . . . . . . . . . . . 13

2.1.3 Testing Practices . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Program Instrumentation . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Test Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Compiler Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Language Modeling . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Related Work 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 The Test Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Program Representation . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Language Modeling for Program Synthesis . . . . . . . . . . . . . . 34

ix



4 Supervised learning over test executions as a test oracle 39

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Extended Contributions . . . . . . . . . . . . . . . . . . . . 42

4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Instrument and Gather Traces . . . . . . . . . . . . . . . . . 43

4.2.2 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.4 Neural Network Model . . . . . . . . . . . . . . . . . . . . . 46

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.1 Labelling Traces . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Subject Programs . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Performance Measurement . . . . . . . . . . . . . . . . . . . 54

4.3.4 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . 54

4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.6 Q1. Precision, Recall and Specificity . . . . . . . . . . . . . 55

4.3.7 Q2. Size of training set . . . . . . . . . . . . . . . . . . . . . 62

4.3.8 Q3. Comparison against state of art . . . . . . . . . . . . . . 65

4.3.9 Q4. Generalisation . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.10 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 BenchPress: A Deep Active Benchmark Generator 71

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Learning Corpus . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Language Modeling . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Benchmark Generation . . . . . . . . . . . . . . . . . . . . . 78

5.3.4 Feature Space Search . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Language Modeling for source code . . . . . . . . . . . . . . 81

5.4.3 Feature Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.4 Analysis of BENCHPRESS and CLgen language models . . . 83

5.4.5 Targeted Benchmark Generation . . . . . . . . . . . . . . . . 83

x



5.4.6 Active Learning for Feature Selection . . . . . . . . . . . . . 84

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Analysis of BENCHPRESS and CLGEN language models . . . 85

5.5.2 Targeted Benchmark Generation . . . . . . . . . . . . . . . . 90

5.5.3 Active Learning for Feature Selection . . . . . . . . . . . . . 96

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Deep Directed Language Modeling for Compiler Features 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Directed Language Modeling . . . . . . . . . . . . . . . . . . . . . . 101

6.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Language Modeling for source code . . . . . . . . . . . . . . 103

6.4.3 Feature Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.4.4 Targeted Benchmark Generation . . . . . . . . . . . . . . . . 104

6.5 Results And Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.5.1 Targeted Benchmark Generation . . . . . . . . . . . . . . . . 105

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusion 117
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Automate the Test Oracle . . . . . . . . . . . . . . . . . . . . 117

7.1.2 Steerable Program Generation of Compiler Benchmarks . . . 118

7.1.3 Directed Language Modeling for Compiler Benchmark Gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Critical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Using Machine Learning as a Test Oracle . . . . . . . . . . . 119

7.2.2 Generative Modeling for Compiler Benchmarks . . . . . . . . 119

7.2.3 Directed Program Synthesis . . . . . . . . . . . . . . . . . . 120

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Efficient Directed Program Synthesis . . . . . . . . . . . . . 121

7.3.2 Autonomous Predictive Models . . . . . . . . . . . . . . . . 121

7.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

xi





List of Figures

1.1 Test oracles compute the test inputs’ expected outputs. They identify

program correctness by comparing the actual output of a test execution

with the expected output. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Training pipeline of a predictive model. . . . . . . . . . . . . . . . . 4

1.3 Three contributions presented in applying ML to automate software

testing and compiler optimisation: (a) We propose an ML oracle, which

allows developer to label only 14% of test cases with the remaining be-

ing classified automatically. (b) We present BENCHPRESS, a steerable

program generator that uses active learning to improve the training data

of predictive models for compilers. (c) We develop BENCHDIRECT,

the first directed language model for targeted compiler benchmark gen-

eration. This contribution targets benchmarks written by compiler ex-

perts up to 36% more accurately and up to 72% faster compared to

BENCHPRESS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 An overview of the software testing process. . . . . . . . . . . . . . . 12

2.2 The three-phase pipeline of a compiler. . . . . . . . . . . . . . . . . . 17

2.3 A feed-forward neural network with four input features, two hidden

layers and one output neuron. . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Recurrent Neural Network architecture . . . . . . . . . . . . . . . . . 21

2.5 Long Short-Term Memory cell architecture . . . . . . . . . . . . . . 22

2.6 The architecture of a Transformer Encoder-Decoder. . . . . . . . . . 23

4.1 Key idea in our approach. . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



4.2 Gathering traces, encoding them, and using NNs to classify them.

ENCODER 1 constructs a fixed vector representation per trace line.

A second LSTM Encoder receives all trace line representations as a

sequence and outputs a vector that summarises the execution trace.

Both models are jointly trained with the MLP such that a low error is

achieved in predicting the trace’s label. . . . . . . . . . . . . . . . . . 43

4.3 ENCODER 1 representing a single line in a trace as a vector containing

function caller, callee names, arguments and return values. . . . . . . 46

4.4 ENCODER 2 representing a sequence of trace lines as a single vector. . 46

4.5 Labelling test executions by matching actual and expected behavior. . 51

4.6 Precision and recall achieved by classification model over each PUT. . 63

4.7 Precision and recall achieved by classification model over each PUT. . 64

4.8 Precision-Recall curve for ETHEREUM-CD. . . . . . . . . . . . . . . 66

4.9 Biff trained model - Precision and recall for unseen fsms. . . . . . . 67

4.10 WHOIS trained model - Precision and recall for unseen fsms. . . . . . 67

5.1 # Memory operations and # computational instructions for (a) Rodinia

benchmarks in purple diamonds and (b) CLGEN’s samples in red dots.

Generating samples with missing features is vital for predictive mod-

eling’s performance. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 BENCHPRESS’s high-level approach. We highlight the corpus collec-

tion and processing in green, the language modeling for source code in

red and the feature space search for benchmark generation in orange. . 75

5.3 When a [HOLE] is inserted to a kernel at a random index, it hides a

random number of tokens, unknown to BENCHPRESS. On this exam-

ple, BENCHPRESS learns to predict the first hidden token, P. . . . . . 77

5.4 During sampling, BENCHPRESS receives an input and predicts itera-

tively the fitting tokens. BENCHPRESS predicts [ENDHOLE] to in-

dicate a [HOLE] is complete. . . . . . . . . . . . . . . . . . . . . . 78

5.5 Probability distribution of (a) token length and (b) LLVM-IR Instruc-

tion count among BENCHPRESS’s and CLGEN’s generated benchmarks.

BENCHPRESS’s benchmarks presented here are generated at a single

inference step without iteratively directing program synthesis. . . . . 88

xiv



5.6 PCA-2 representation of feature space coverage of BENCHPRESS and

CLGEN for (a) Grewe’s et al., (b) InstCount and (c) Autophase feature

spaces. In this experiment, BENCHPRESS’s generation is undirected

and no iterative space search is performed. . . . . . . . . . . . . . . . 89

5.7 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features. We report the best match for seven datasets

(BENCHPRESS’s, CLgen’s, GitHub’s and GitHub-768’s datasets also

combined with exhaustive mutations with SRCIROR) over Grewe’s et

al. feature space. Relative proximity is 1 minus the distance of the

two kernels in the feature space relative to the distance of the Rodinia

benchmark from the axes origin. 100% means an exact match in fea-

tures and is highlighted with a white asterisk (*). A score towards 0%

indicates the closest match is closer to the axes origin than the bench-

mark, i.e., a very small or empty kernel. . . . . . . . . . . . . . . . . 91

5.8 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features. We report the best match for seven datasets

(BENCHPRESS’s, CLgen’s, GitHub’s and GitHub-768’s datasets also

combined with exhaustive mutations with SRCIROR) over InstCount

feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features. We report the best match for seven datasets

(BENCHPRESS’s, CLgen’s, GitHub’s and GitHub-768’s datasets also

combined with exhaustive mutations with SRCIROR) over Autophase

feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.10 # Memory operations and # computational instructions for (a) Rodinia

benchmarks in purple diamonds, (b) CLGEN’s samples in red dots

and BENCHPRESS’s benchmarks in green crosses after performing di-

rected search for all Rodinia benchmarks. . . . . . . . . . . . . . . . 95

5.11 BENCHPRESS’s performance enhancement of Grewe et al. heuristic

model when using active learning compared to passively targeting ran-

dom parts of the feature space over the course of 10 sampling epochs.

The y-axis shows the performance enhancement as a percentage for

each sampling epoch (0 to 9) shown in x-axis. . . . . . . . . . . . . . 98

6.1 BENCHDIRECT’s directed language model design. . . . . . . . . . . 102

xv



6.2 Pareto fronts of the average relative proximity versus total inferences

for BENCHDIRECT and BENCHPRESS in targeting Rodinia bench-

marks over three feature spaces ((a) Grewe’s et al., (b) InstCount and

(c) Autophase). Higher relative proximity and fewer inferences are

better, therefore optimal points, i.e., Pareto-dominant, are those to-

wards the top left. We annotate the workload size configuration per

Pareto point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 BENCHDIRECT’s acquired execution time speedup and relative prox-

imity improvement over BENCHPRESS per workload size configura-

tion for (a) Grewe’s et al., (b) InstCount and (c) Autophase feature

spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features on Grewe’s et al. feature space. We show the

best match for BENCHDIRECT and BENCHPRESS. . . . . . . . . . . 109

6.5 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features on InstCount feature space. We show the best

match for BENCHDIRECT and BENCHPRESS. . . . . . . . . . . . . 110

6.6 Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features on Autophase feature space. We show the best

match for BENCHDIRECT and BENCHPRESS. . . . . . . . . . . . . 111

6.7 A comparative visualization of the . . . . . . . . . . . . . . . . . . . 112

6.8 A comparative visualization of the . . . . . . . . . . . . . . . . . . . 113

6.9 A comparative visualization of the . . . . . . . . . . . . . . . . . . . 114

xvi



List of Tables

1.1 The growth of GitHub since it was founded in 2008, depicted by the

total number of registered developers and total number of repositories,

including both public and private repositories. As of 2022, almost 30

million out of 200 million repositories were public. . . . . . . . . . . 2

2.1 Software testing terms and definitions used throughout this thesis. . . 12

2.2 An simple test suite for the provided binary search example on Listing

2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Precision, Recall and True Negative rate (TNR) using our approach

and hierarchical clustering. . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Precision (P), Recall (R) and Specificity (TNR) for each PUT omitting

certain trace information. . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Precision (P), Recall (R) and Specificity (TNR) for each PUT omitting

certain trace information. . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Throughput comparison between BENCHPRESS and CLGEN on gen-

erated OpenCL benchmarks when BENCHPRESS does not use feature-

directed program generation. The column acronyms are as follows:

(a) number of unique benchmarks, (b) number of compiling bench-

marks, (c) rate of compilation, (d) largest compiling sample in tokens,

(e) largest compiling sample in LLVM-IR instructions (-O1) (f) and

inference time per sample in ms. . . . . . . . . . . . . . . . . . . . . 86

5.2 Grewe et al. heuristic model’s performance, precision, recall, and

specificity when trained on each technique. Speedup is the geometrical

mean of speedups over all benchmarks relative to the optimal static de-

cision, i.e. running on the GPU. Precision, recall, and specificity treat

GPU labels as positive and CPU labels as negative. . . . . . . . . . . 97

xvii





Chapter 1

Introduction

Software has become a crucial part of modern life. The exponential growth of software

in technological applications has scaled the complexity of programs significantly [165,

1]. Taking GitHub as an example, the number of developers and repositories have been

increasing exponentially since 2008. In just two years (2020 to 2022), the number

of developers has risen from 40 to 139 million and the number of repositories has

increased from 139 to 200 million (Table 1.1).

The success of software-based products relies on fulfilling their promise to make

our every day lives more productive, safer, more convenient. Whether that may be a

self driving car, a robot vacuum cleaner or a streaming service on the world wide web,

they all share the same success factors: Being safe and fast [5, 4]. Software correctness

is a program’s ability to perform the exact tasks as defined by their specification and is

required for it to be established and trusted by millions of users. In privacy or real-time

applications (e.g., an autopilot) it is critical indeed; a minor bug can be the cause of

a devastating tragedy. Execution efficiency is equally important. An under-optimised

application leads to user frustration and can cause failure on real time systems. In both

these domains, compiler engineers and software testing experts have put an enormous

effort in producing software that is fast and correct.

However, when the complexity of software increases, so does the effort of testing

and optimising it. This is exacerbated by the recent advance of hardware with GPUs,

FPGAs and heterogeneous platforms enabling the amount of applications for software

to explode. Existing approaches to testing and optimising software require enormous

effort and time, while also relying on compiler and low-level systems expertise. Such

manual effort is no longer sustainable, leading to under-optimised and buggy software

being pushed to production. To keep up with the pace of change in software appli-

1



2 Chapter 1. Introduction

2008 2010 2012 2014 2016 2018 2020 2022

# Git Devs 100K 1M 3M 9M 14M 31M 40M 94M

# Git Repos 6.2K 1M 5M 10M 29M 100M 139M 200M

Table 1.1: The growth of GitHub since it was founded in 2008, depicted by the total

number of registered developers and total number of repositories, including both public

and private repositories. As of 2022, almost 30 million out of 200 million repositories

were public.

cations development, researchers must develop novel techniques that enable the au-

tomation of software testing and optimisation processes. This thesis proposes methods

that reduce the overhead and improve performance for software testing and compiler

optimisation, two important parts of development cycle. In the next two sections, the

relevant problems are stated and elaborated, existing techniques are discussed and our

proposed approaches are motivated.

1.1 Software Testing and Machine Learning

Software testing is a critical part of software’s development cycle as it ensures reliabil-

ity, security and high performance which further results in time saving, cost effective-

ness and customer satisfaction. Testing is divided in many different categories, such as

unit, functional and regression testing. All these types heavily rely on human experts

developing test cases, namely programs that will exercise a PUT’s (Program Under

Test) features.

As the scale of software increases, the number of tests needed for effective vali-

dation becomes extremely large, ultimately making software development challenging

and costly [15]. To achieve cheaper and faster testing, as much of the process as pos-

sible needs to be automated. With respect to test input generation, researchers have

made remarkable progress in generating effective test inputs [96, 24, 34]. Automated

test input generation tools, however, generate substantially more tests than manual ap-

proaches. This becomes an issue when determining the correctness of test executions,

a procedure referred to as the test oracle. In Figure 1.1, we show how a test oracle com-

pares the actual and the expected output of a test execution to determine the subject

program’s correctness.

The test oracle is still largely manual, relying on developer expertise. Recent sur-



1.1. Software Testing and Machine Learning 3

veys on the test oracle problem [20, 118, 96] show that automated oracles based on

formal specifications, metamorphic relations [105] and independent program versions

are not widely applicable and are difficult to use in practice. The recent success of arti-

ficial intelligence in many applied tasks in computer science has motivated researchers,

including the author of this thesis, to explore machine learning as a tool to address the

test oracle problem. For codebases with thousands of test inputs that are automatically

generated, a machine learning classifier that can automatically predict their outcome

when executed would be especially useful.

Figure 1.1: Test oracles compute the test inputs’ expected outputs. They identify pro-

gram correctness by comparing the actual output of a test execution with the expected

output.

Previous works exploring the use of machine learning for test oracles have been

in a restrictive context - applied to very small programs with primitive data types,

and only considering their inputs and outputs [148, 87]. Information in execution

traces has not been considered by existing ML-based approaches. Other bodies of work

in program analysis have used neural networks to predict method or variable names

and detect name-based bug patterns [12, 127] relying on static program information,

namely, embeddings of the Abstract Syntax Tree (AST) or source code.

One of this thesis objectives is to propose machine learning based methods to iden-

tify the runtime behavior of test executions. Automating the test oracle reduces the

cost of software construction and maintenance and improves overall functionality and

user experience. The proposed methodology for a machine learning oracle is designed

to be widely applicable to real, large-scale codebases and provide testing experts with

intuitive abstractions to incorporate it into their testing pipeline.



4 Chapter 1. Introduction

Figure 1.2: Training pipeline of a predictive model.

1.2 Compiler optimisation and Machine Learning

Program optimisation is the second area of focus in this thesis. The most essential

software tool in producing efficient programs is the compiler. Compilers optimise pro-

grams through a set of transformations, from an input code to machine instructions

that best utilise the resources of a target architecture. The selection of these trans-

formations, or their parameters, is based on heuristics applied by compiler engineers.

Each architecture supported by a compiler requires extensive manual tuning by experts

to achieve great performance. As knowledge of the whole compiler is required to op-

timise a single heuristic, this become increasingly difficult when software complexity

increases, leading to high development cost, complexity [159] and slow adaptation to

the rapidly changing hardware landscape [38, 114, 89]. When compilers cannot keep

up with the pace of change, the result is sub-optimal executables that consume more

time and energy.

To aid the labour-intensive process of constructing optimisation heuristics, machine

learning has been successfully used in several approaches [111, 157, 108, 39, 153, 158,

154, 51, 37, 99, 120, 142] in the form of predictive modeling. Predictive models predict

outcomes by analyzing patterns in a given set of features extracted from input data as

shown in Figure 1.2. For example, instead of engineers expertly crafting the loop

unrolling heuristic through intuition and experimentation, a predictive model can be

trained on empirical data of the performance of loops under multiple configurations.

It can then be used to predict the best loop unrolling decision for any program on

any hardware. Unlike manual-driven techniques, a predictive model can be easily

adapted to new architectures and compilers simply by repeating the data collection for

re-training. Estimating compiler optimisation heuristics through predictive modeling

has been shown to outperform human experts and reduce development time [40, 42].

However, designing effective predictive models requires extensive and diverse train-



1.3. Contributions 5

ing data to help learn accurate optimisation heuristics. In the field of compilers there

is an acute shortage of benchmarks, both in quantity and diversity of features [155,

42, 40]. The average number of benchmarks used in performance tuning papers was

17 in 2017 [40, 155, 33, 69, 163, 18, 36, 55], while other areas of machine learning

rely on orders of magnitude more data [45]. A shortage of benchmarks in training

leads to poor feature space coverage that degrades the performance of predictive mod-

els [42, 59]. Because of this, their potential for success depends on data augmentation

techniques.

The most common approach to generating programs is fuzzing [164, 103]. Fuzzers

generate programs by inserting random statements and expressions that conform to a

target language’s standard. In the field of compilers, fuzzers [164, 103] are commonly

used to produce compiler benchmarks in C and OpenCL respectively. However, fuzzed

programs differ significantly from code that has been written by humans so much that

predictive models perform worse when trained on their extracted features [40]. Prior

research [40] has shown generative models based on deep learning are an alternative

solution by generating an unbounded number of benchmarks. Synthesized benchmarks

resemble programs written by humans but a recent survey [59] shows they are short,

repetitive and do not extend the diversity of features of existing training benchmarks,

they are therefore ineffective. There are specific areas of the feature space that are

missing from our existing datasets, but no research work covers these missing features

with new programs.

To improve compiler benchmarks for predictive models, we need a generative ap-

proach that identifies and targets those features that are missing from existing datasets.

This thesis aims to bridge the gap between the achieved and potential performance of

predictive modeling for compiler heuristics by proposing novel techniques to generate

high quality compiler benchmarks at scale.

1.3 Contributions

Many software testing and compiler optimisation tasks that are vital for the software

industry’s success still remain largely manual. Inspired by the ever increasing perfor-

mance of machine learning applications in many tasks, we claim they have the potential

to be faster and better in performing tasks that have been long considered achievable

only by experts. This thesis tackles this issue and proposes three novel contributions

that reduce development cost and take away the need for domain expertise, human



6 Chapter 1. Introduction

Figure 1.3: Three contributions presented in applying ML to automate software test-

ing and compiler optimisation: (a) We propose an ML oracle, which allows developer

to label only 14% of test cases with the remaining being classified automatically. (b)

We present BENCHPRESS, a steerable program generator that uses active learning to

improve the training data of predictive models for compilers. (c) We develop BENCHDI-

RECT, the first directed language model for targeted compiler benchmark generation.

This contribution targets benchmarks written by compiler experts up to 36% more ac-

curately and up to 72% faster compared to BENCHPRESS.



1.4. Publications 7

intuition and manual effort. One contribution lies in the field of software testing and

two in compiler optimisation. The overview of this thesis’s contributions are shown in

Figure 1.3.

The key contributions of this thesis are the following:

• The first application of deep learning over program execution traces to predict

runtime correctness. We develop the first NN-based test oracle that classify test

executions as “pass” or “fail”. Our model achieves a near maximum classifica-

tion accuracy on 15 real, large-scale codebases by training only on 14% of the

initial labelled data. This addresses the manual effort of labelling manually the

expected output of test executions for large scale production code.

• BENCHPRESS, the first steerable deep learning program synthesizer to gener-

ate compilable, executable benchmarks for compilers. BENCHPRESS produces

human-like programs that compile at a rate of 87% in contrast to 2.33% achieved

by the current state of the art generator. BENCHPRESS synthesizes benchmarks

that target parts of the feature space previously unreachable by human-written

code from GITHUB. This contribution addresses the scarcity of high-quality

training data for compiler predictive models.

• BENCHDIRECT, the first directed language model for compilers. We develop a

language representation model that synthesizes compiler benchmarks by jointly

conditioning on source code context and the desired compiler features in any fea-

ture space. BENCHDIRECT outperforms BENCHPRESS in the task of directing

program generation towards the features of human-written benchmarks by tar-

geting them up to 36% more accurately and up to 72% faster. This contribution

addresses the inefficiency of existing directed program generation techniques,

enabling large scale tasks.

1.4 Publications

This thesis consists of four publications describing our research ideas and results.

Chapter 4 elaborates on our approach to classify program executions, published in:

• “Supervised learning over test executions as a test oracle”,

F. Tsimpourlas, M. Allamanis, A. Rajan, SACSE 2021 [145]).



8 Chapter 1. Introduction

• “Embedding and classifying test execution traces using neural networks”,

F. Tsimpourlas, G. Rooijackers, A. Rajan, M. Allamanis, IET Software 2022 [146].

Chapter 5 presents BENCHPRESS, the first guided program generator for compiler

benchmarks, based on language modeling and active learning:

• “BenchPress: A Deep Active Benchmark Generator”, F. Tsimpourlas, P. Petoumenos,

M. Xu, C. Cummins, K. Hazelwood, A. Rajan, H. Leather, PACT 2022 [144].

Chapter 6 discusses BENCHDIRECT, a directed language model for efficient and

accurate steerable compiler benchmark generation:

• “BenchDirect: A Directed Language Model for Compiler Benchmarks”, F. Tsim-

pourlas, P. Petoumenos, M. Xu, C. Cummins, K. Hazelwood, A. Rajan, H.

Leather, Submitted to TACO, March 2023 [143].

The source code and experimental data for all three contributions are publicly avail-

able on GitHub for other researchers to use on the following repositories:

1. https://github.com/fivosts/Learning-over-test-executions

2. https://github.com/fivosts/BenchPress

1.5 Structure

This thesis is organized as follows:

Chapter 2 provides background. The relevant terminology is defined and all tech-

niques used in this work are described.

Chapter 3 offers a review of existing literature, divided into three categories: pro-

gram testing, program optimisation and language modeling for program generation.

Chapter 4 presents a novel approach for solving the test oracle problem. A qual-

itative evaluation shows the effectiveness of machine learning identifying incorrect

program executions with near maximum accuracy.

Chapter 5 introduces BENCHPRESS, a novel directed program synthesizer that

finds important program features with active learning and generates programs with

such features. BENCHPRESS outperforms the state of the art in multiple program gen-

eration tasks and improves the performance of predictive models for compilers.



1.5. Structure 9

Chapter 6 presents BENCHDIRECT, an optimised steerable program synthesizer

based on a novel, feature-conditioned language model. BENCHDIRECT outperforms

BENCHPRESS in targeting compiler features in all three accuracy, speed and code

quality measured as its human-likeness.

Chapter 7 summarizes the overall findings of the thesis, provides a review of cur-

rent limitations and outlines potential future directions.





Chapter 2

Background

In this Chapter, we provide necessary background information on various aspects and

concepts of software testing, compiler optimisation and machine learning that are rel-

evant to the scope of this thesis.

Section 2.1 describes the software testing workflow and concepts involved in the

testing process. Section 2.2 illustrates the fundamentals of compilers and software op-

timisation techniques. Section 2.3 illustrates modern machine learning methodologies

that are used in all thesis contributions in software testing and compiler optimisation.

2.1 Software Testing

Software testing is the procedure that examines the behavior of subject programs,

known as Programs Under Test (PUT). The primary purpose of software testing is

to expose failures so they can be discovered and corrected before programs are re-

leased to users [92]. Testing’s scope includes the examination as well as the execution

of code in various conditions to determine correctness. To validate programs through

execution, a set of test inputs are needed, also known as test cases. An overview of the

software testing process is shown in Figure 2.1.

2.1.1 Terminology

First, in Table 2.1 all the definitions and terms used in this thesis are provided to avoid

confusion and be consistent with the current literature.

11



12 Chapter 2. Background

Figure 2.1: An overview of the software testing process.

Definition Description

System/Program Under

Test (SUT/PUT)

Software or System that is tested.

Test Oracle a mechanism that determines whether a test execution

is correct or not.

Software Specification A description of a PUT’s intended behaviour and the

foundation of the test oracle.

Test Input The input used to execute a PUT.

Test Output The real output data collected from a PUT’s execution

given a specific test input.

Expected Output The expected output data from the execution of a spe-

cific test input.

Test Case The test input with its expected output.

Test Suite A collection of test cases.

Test Failure A state where a PUT raises an exception or an undefined

behavior leading to not producing a test output.

Test Result The status indicating whether a test has passed or failed.

Table 2.1: Software testing terms and definitions used throughout this thesis.



2.1. Software Testing 13

2.1.2 Software Testing Workflow

We illustrate the process of software testing with an example. Listing 2.1 presents a

binary search function implemented in Python. The function has four inputs: a sorted

array of integers array, two numbers low and high indicating the bounds of the array,

and a number target, for which to search in the array. It performs a binary search in

the array and returns the first index at which the target is found.

1def bin_search(array , low, high target):

2 if high >=low:

3 mid=low+(high -low)//2

4 if array[mid]==target:

5 return mid

6 elif array[mid]>target:

7 return bin_search(array , low, mid -1, target)

8 else:

9 return bin_search(array , mid+1, high , target)

10 else:

11 return -1

Listing 2.1: An example Python program performing binary search on sorted integer

array

The functional specification for this binary search is the following:

1. It accepts a sorted array of integer values, two integers to index the array and one

integer to search the array for.

2. It returns the first index at which the target is present in the array. If the number

is not present, it returns -1.

3. If the array is empty, it returns -1.

Table 2.2 shows a test suite for this program based on this specification which con-

tains four tests. Listing 2.2 presents an implementation for these tests. In this case the

PUT is the bin search() function. The test inputs are declared and initialized, the

PUT is executed with the test inputs and the test output is recorded. The test output is

compared to the expected output using assertions.



14 Chapter 2. Background

Test ID array low high target Expected Output

1 {} 0 0 2 -1

2 {1, 2, 2, 4} 0 3 2 1

3 {1, 6, 7} 0 2 7 2

4 {1, 6, 7} 0 2 8 -1

Table 2.2: An simple test suite for the provided binary search example on Listing 2.1.

1def test1():

2 assert bin_search([], 0, 0, 2)==-1

3

4def test2():

5 assert bin_search([1,2,2,4], 0, 3, 2)==-1

6

7def test3():

8 assert bin_search([1,6,7], 0, 2, 7)==2

9

10def test4():

11 assert bin_search([1,6,7],0,2,8)==-1

Listing 2.2: A simple implementation for the example test suite given

2.1.3 Testing Practices

The purpose of software testing is to provide confidence that a system’s behaviour

conforms to specification. Ideally, test suites will exhaustively sample the entire input

space of a system, but in practice this is infeasible because it would require billions

of tests even for trivial programs. However, the goal of software testing is to uncover

faults in the system which can be fixed, therefore sufficient testing should eventually

provide enough confidence that no critical faults remain.

Testing can be applied at any level of system granularity - individual functions,

modules and entire systems. Unit testing checks the behaviour of the smallest func-

tional units of a program. Integration testing checks the correctness of the interactions

between units and modules. System testing focuses on the behaviour of the system as

a whole. Regression testing aims to ensure that changes to the existing codebase do

not introduce faults in the system. Mutation testing is a type of testing that injects



2.1. Software Testing 15

errors by modifying the source code of the PUT with random changes. The PUT is

executed with a test suite and it is checked whether the test cases are able to expose

these injected alterations [85].

2.1.4 Program Instrumentation

Program instrumentation is used to measure performance, discover errors and collect

runtime information in the form of execution traces by inserting extra code to a pro-

gram under test [109]. The inserted code must not alter the original functionality of the

program and must also be used to monitor certain metrics from a program’s execution.

The most common use cases of program instrumentation include:

1. Profiling [138] measures dynamic program behaviour through execution. Pro-

filing information helps developers analyse dynamic information that cannot be

measured with static analysis.

2. Performance estimation [156] uses timers to code segments that are computa-

tionally extensive. Timing information is used to estimate overhead and reveal

the time consuming sections of a program.

3. Logging execution information [80] involves recording events related to a pro-

gram’s runtime including crashes, code coverage or control flow. Execution in-

formation is used to measure the achieved test effectiveness of test executions.

There is a plethora of instrumentation tools available, written in different lan-

guages [141, 31, 81]. In this thesis, we use LibTooling [106] to apply static analy-

sis on C, C++ and OpenCL programs for feature extraction. More details on this ap-

proach will be given in Chapter 5. For runtime instrumentation, we use the LLVM [97]

framework to record the control and data flow of test executions and collect data on a

program’s runtime behaviour. The details of this technique is discussed in Chapter 4.

2.1.5 Test Oracle

Test oracles [82] belong in the family of black-box testing techniques. Black-box test-

ing examines the functionality of an application without peering into its internal struc-

tures [57, 84] and can be applied to any type of testing, unit, functional or system. Test

oracles determine the correctness of a program by comparing the test output of a PUT

for a given test input with its expected output. Determining the correct output given a



16 Chapter 2. Background

test input is known as the oracle problem, a difficult challenge that involves working

with the controllability and observability of a system. This process still remains largely

manual.

There exist several categories of test oracles found on the literature. The most

common forms are the following:

1. Specified Oracle judges a program under test’s correctness based on formal

specifications.

2. Implicit Oracle relies on implied information and assumptions such as conclu-

sions based on program crashes.

3. Derived Oracle uses code documentation or system executions when specified

oracles are unavailable.

4. Human Oracle. When no other oracle can be used human experts estimate a

program’s expected behaviour.

5. ML Oracle. Statistical methods based on machine learning that estimate a pro-

gram’s test execution correctness.

This thesis focuses in machine learning oracles. The first contribution described

is a machine learning-based technique to automate the test oracle by classifying test

executions as “pass” or “fail”. This approach is presented in Chapter 4.

2.2 Compiler Infrastructure

The compiler is a programming tool that translates programs from a given source lan-

guage to a lower-level target language. Throughout the compilation process, program

semantics are preserved. Compilers are expected to produce a good quality repre-

sentation of programs in the target language, being optimal with respect to objective

functions. An important objective function is execution time, i.e., the optimisation goal

is to produce a target language representation of the program that will execute as fast

as possible.

Compilers are usually presented as three stage architecture, as shown in Figure

2.2. These stages are the front end, the middle end (or optimiser) and the back end.

The front end parses and validates the source code, making sure it conforms to the



2.3. Machine Learning 17

Figure 2.2: The three-phase pipeline of a compiler.

source language’s grammar. This parsed code is translated into an Intermediate Rep-

resentation (IR). The compiler’s optimiser performs a broad variety of transformations

to the IR, called optimisations. The compiler’s optimisations are usually independent

of the source language or the target hardware and their goal is to improve the code’s

performance. The back end is the compiler’s code generator and translates the IR to

the target language. Hardware-related optimisations can also take place during code

generation to exploit the architecture’s supported features.

One of the most commonly used compilers is the LLVM [97]. LLVM’s intermedi-

ate representation, LLVM-IR, is a human-readable, assembly-like representation that is

used by the compiler’s middle-end to apply optimisations. LLVM-IR’s most notable

feature is Static Single Assignment (SSA) form. In SSA form, each variable is assigned

to only once, and every reference to a variable is a reference to its single assignment.

SSA form has a number of useful properties that make it useful for optimising code.

For example, it makes it easy to determine the live ranges of variables, which can be

used for register allocation. It also makes it easy to detect when variables are used

before they are defined, which can help expose errors in the code.

2.3 Machine Learning

Machine learning is a family of statistical methods and algorithms. They can be predic-

tive to make predictions in the future, or descriptive to gain knowledge from data. ML

algorithms are broadly classified into four major categories, depending on the nature

of the learning response available to a learning system:

1. Supervised Learning models learn by labelled input/output examples.

2. Unsupervised Learning models learn by similarities on unlabelled/unstructured

data.

3. Reinforcement Learning models learn by trial and error to maximize their ac-

cumulated reward based on a reward function.

4. Semi-supervised Learning models learn on partly-labelled or incomplete data.



18 Chapter 2. Background

Predictive models make predictions by correlating their input variables, known as

features, with their outputs, or labels. The n-dimensional space described by n input

features is called a feature space. A feature vector is the set of features describing a

single point in the feature space. The deduction of features from raw data is called

feature selection and it is an important process in machine learning architecture de-

sign, which significantly determines the model’s performance. Instead of manually

selecting features, ML architectures can also be used by learning a numerical vector

representation of raw data in the latent space. This process is commonly referred to

as summarization. The learnt features they extract from raw data are called embed-

dings [29]. Trained embeddings have been shown to significantly outperform manual

feature selection in their quality to represent input data [112].

For classification tasks, there are multiple ways to measure a machine learner’s

performance in predicting labels. All metrics make use of the following scores:

• True Positives (TP): The number of positive class items correctly labelled.

• False Positives (FP): The number of negative class items labelled as belonging

to the positive class.

• True Negatives (TN): The number of negative class items correctly labelled.

• False Negatives (FN): The number of positive class items labelled as belonging

to the negative class.

To evaluate machine learning models in this thesis, we make use of precision, recall

and specificity. These three metrics are defined as follows:

Precision =
T P

T P+FP
(2.1)

Recall =
T P

T P+FN
(2.2)

Speci f icity =
T N

T N +FP
(2.3)



2.3. Machine Learning 19

2.3.1 Neural Networks

Artificial Neural Networks (ANNs) are the most successful and commonly used type

of machine learning architecture and are divided into many different categories. The

simplest one is feed-forward neural networks (FNN) [21]. FNNs consist of a sequence

of neuron layers, where every neuron of a previous layers forms a weighted connection

with all neurons of the next layer. This way, the flow of information is unidirectional,

mapping the input variables to the neural network’s outputs, as shown in Figure 2.3.

Figure 2.3: A feed-forward neural network with four input features, two hidden layers

and one output neuron.

ANNs consist of the input layer that holds as many neurons as the feature space

and the output layer that consists of one neuron per predicted label. For regression,

only one neuron is needed. For classification, there is one neuron per label in the label

space. All intermediate layers for which there are no ground truth values are known as

hidden layers. Feed-forward neural networks are powerful in approximating functions.

In theory, they can learn any bounded continuous function to arbitrary precision given

the right amount of neurons [115].

The prevailing method of training a neural network is back-propagation. A batch of

B observations is propagated through the network in a forward pass, from the inputs to

the outputs. The final output vector of the network ŷ are compared against the labels y

and the distance between them is computed, L(ŷ,y). The error metric, or loss function,

depends on the task. A common loss function used for the task of classification is

categorical cross entropy [116]. Neural networks are prone to over-fitting, when the

parameters of the model lose the ability to generalise to unseen data by becoming too

specialized on the training data. Many regularisation techniques have been adopted



20 Chapter 2. Background

to mitigate the risk of over-fitting. One of the most successful is Dropout, in which

a parameter in the range [0,1] is used to determine a proportion of artificial neurons

to be removed. This helps training by preventing complex co-adaptations on training

values [137].

2.3.2 Language Modeling

Language models are a descriptive type of neural networks that gain knowledge from

natural or programming languages used by humans to communicate. The contribu-

tions of this thesis heavily rely on the use of language models to represent, embed and

generate human-readable programming languages including C, C++ and OpenCL.

Modeling languages is a challenging task that requires large amount of data and

large models that are computationally expensive. The high-level steps for designing a

NN-based language model architecture for source code are the following:

1. Tokenize: Separate source code into words.

2. Encode: Convert string-formatted words into numerical vectors.

3. Train: Apply language modeling task on encoded corpus.

For LM tasks, there are certain architectures that have been shown to capture more

effectively than FNNs the relationship of words in a sentence. The most common of

them is the Recurrent Neural Network (RNN) [133]. The RNN is a type of ANN where

the connections between neurons form a feedback loop from successive layers back to

predecessing ones. This enables processing arbitrarily large sequences of tokens while

learning the correlations between neighbouring words in the sentence. The RNN cell’s

hidden state at each time step t is calculated based on the input and previous hidden

state ht−1, using the weight matrices W and bias vector b to combine the inputs and

apply the activation function:

ht = f (Wxhxt +Whhht−1 +bh) (2.4)

Where, ht represents the hidden state at time step t, xt represents the input at time

step t, and f represents the activation function. Wxh and Whh are the weight matrices

that connect the input and hidden states, and bh is the bias vector.

RNNs can be trained with ordinary back-propagation by unfolding the computation

graph over time as shown on Figure 2.4. Back-propagating through time allows the



2.3. Machine Learning 21

①
✭t✮

✦
✭t✮

❤
✭t✮

❯

❲

❱

(a)

①✭�✁

✦✭�✁

❤✭�✁

❯

❲

❱

①✭✶✁

✦✭✂✁

❤✭✂✁

❯

❱

❲

①✭t✁

✦✭✄✁

❤✭t✁

❯

❱

➱

(b)

Figure 2.4: The computational graph of a RNN, shown as a recurrence relation in a,

and unfolded in b. xxx(t) is the input, hhh(t) is the hidden state, and ŷyy(t) is the output. The

network comprises of three weight matrices: inputs-to-hidden weights UUU , hidden-to-

hidden weights WWW , and hidden-to-output weights VVV .

propagation of error in the temporal domain in the same manner as through layers.

RNN’s accuracy suffers when they are tasked to learn correlations over long sequences.

This is caused by the exponential diminishing or increase of gradients as they are

propagated through the activation functions by the recurrence relation. This issue is

also known as the vanishing gradients problem [76].

A bolstered, RNN-based architecture addresses this issue, namely the Long Short-

Term Memory (LSTM) [77]. The LSTM inherits the RNN design with the addition of

a cell that stores information and three gates which control the flow of it into and out

of the cell, shown in Figure 2.5. For a time-step t, an input at this time-step xt , the

hidden-state ht , the memory’s cell-state ct and input, forget and output gates it , ft , ot

respectively, the output prediction from the LSTM for the next time-step is as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 +bi) (2.5)

ft = σ(Wx f xt +Wh f ht−1 +Wc f ct−1 +b f ) (2.6)

ct = ft · ct−1 + it · tanh(Wxcxt +Whcht−1 +bc) (2.7)

ot = σ(Wxoxt +Whoht−1 +Wcoct +bo) (2.8)

ht = ot · tanh(ct) (2.9)

Where:

σ is the sigmoid activation function [66] and W , b are the weight matrices and

bias vectors, respectively, that are learnt during training. This formula represents the



22 Chapter 2. Background

❝✭t�✁✮

❤✭t�✁✮

❝✭t✮

❤✭t✮

❢ ✭t✮

✦ ✦ ✂✄☎✆ ✦

✂✄☎✆

①✭t✮

✐ ✭t✮

♦ ✭t✮

Figure 2.5: A Long Short-Term Memory cell. Input xxx(t) is concatenated with prior hidden

state hhh(t−1) and used with prior cell state ccc(t−1) to compute the next step’s hidden state

hhh(t) and cell state ccc(t).

computations performed by one LSTM unit at each time step. In an LSTM network,

multiple LSTM units are typically stacked together, with the hidden state of one unit

being used as the input to the next unit. The final hidden state summarizes the state of

the whole time series and is used as an input to the downstream task, whether that be

classification or regression.

The LSTM has been firmly established as the state of the art in sequence modeling

and transduction problems. However, its approach to processing words within a sen-

tence in a sequential way precludes parallelization within a training example, meaning

words cannot be computed in parallel because of their temporal dependency. This

constraint poses a severe performance bottleneck when it comes to designing large

language models with billions of training data.

The Transformer [149] addresses this issue and enables the creation of language

models with hundreds of billions of parameters. The Transformer is based on the atten-

tion mechanism [56, 136, 32]. Its input is first embedded into a continuous represen-

tation and then processed by multiple layers of self-attention. The self-attention layers

allow the model to attend to different positions of the input sequence simultaneously

and weigh their importance when computing the output:

Attention(Q,K,V ) = softmax
(

QKT
√

dk

)
V (2.10)

Where, Q, K, and V are the query, key, and value matrices, respectively, and dk is



2.3. Machine Learning 23

Figure 2.6: The architecture of a Transformer Encoder-Decoder.

the dimension of the keys. The output of the self-attention function is a weighted sum

of the values, where the weights are computed based on the dot product between the

query and the keys. Then this output is processed in parallel by a feed-forward layer

followed by a ReLU activation [2]. The Transformer’s architecture is shown on Figure

2.6.

The Transformer is applied to numerous tasks in language modeling, generation

and predictive modeling. It also has been used as a foundation for many derived ar-

chitectures. The most notable is BERT (Bidirectional Encoder Representations from

Transformers) [46]. BERT learns deep bidirectional representations by jointly con-

ditioning on both left and right context of an input. One of BERT’s key features is

its ability to preserve the context of the words in a sentence, rather than just pro-

cessing individual words in isolation. This allows capturing the relationship between

words in a more accurate way compared to traditional NLP models, leading to excel-

lent performance on a range of NLP tasks [46]. BERT has been widely adopted as

the state-of-the-art in language translation, text summarization, and sentiment analysis



24 Chapter 2. Background

tasks [95, 52, 91]. It has also been used to improve the performance of other machine

learning models, such as those used for image classification and object detection [101].

The second and third contribution of this thesis extends BERT from a masked language

model to a pre-trained generative model for programming languages.

2.3.3 Active Learning

This thesis applies active learning to search feature spaces applied to the field of com-

pilers for areas with few or no representative samples. Active learning is a type of

machine learning that involves learning from actively selected, informative examples

rather than passively accepting a pre-determined dataset. In active learning, the learn-

ing algorithm can interactively query the user (or some other information source) to

obtain the desired outputs, and then use these to improve the accuracy of the model.

Active learning is useful in situations where there is a limited amount of labeled

data available, or where the cost of labeling data is high. By allowing the learning

algorithm to select which examples to label, active learning can improve the efficiency

of the learning process and result in better performance compared to using a fixed

dataset. There are several strategies for selecting the most informative examples in

active learning. In this thesis, we explore two:

• Query by Committee, an approach to selective sampling in which disagreement

among a committee of oracles is used to select data for labeling [135].

• Expected Error Reduction, a technique that selects a datapoint based on its

estimated impact on the classifier’s future error over all other datapoints [131].

Query by Committee (QbC) is a simple yet powerful algorithm. During training, a

committee of students is trained on the same set of data. The next selected datapoint for

labeling (query) is chosen according to the principle of maximal disagreement. This

disagreement is typically measured with entropy, a statistical metric which indicates

the amount of uncertainty in a set of samples. Given an input datapoint x that is can-

didate for labelling, the entropy among N committee members’ predictions is defined

as:

H(x) =−
N

∑
i=1

p(oi
l) log2 p(oi

l), ol ∈ L := {o0,o1, ...,oL} (2.11)

Where l is one possible label that belongs in the label space L and p(ol
i) is the

likelihood of the predicted label l by member i. Query by Committee has shown it



2.4. Summary 25

is an effective active learning algorithm for relatively simple tasks where the label

space has only a few dimensions. For more complicated tasks, QbC suffers from poor

accuracy with noisy predictions (high entropy) among members’ predictions. Also,

members of the same architecture (e.g. NNs) tend to produce the same predictions

regardless of their number of parameters, initialization of weights and the worthiness

of a query. This also hurts the committee’s overall accuracy.

Expected Error Reduction (EER) is a more advanced technique that tackles QbC’s

shortfall in complex tasks. In EER, a single predictive model is directly prompted to

query a datapoint among a provided sample set. The point that is estimated to cause the

lowest possible aggregated error on the training dataset is selected. This is measured by

re-training the predictive model on one pair (x,y) at a time, where x is a datapoint in the

sample set and y is a label in the label space, and then measuring the aggregated error

over the training set with the categorical cross entropy error function. This process is

repeated for all sample datapoints x combined with each possible label y in the label

space. EER has shown to learn faster than QbC the classification task, requiring less

labelled data. However, to query a single datapoint in the feature space, it is required

to re-train the predictive model N ×L times, where N is the number of datapoints in

the sample set and L is the size of the label space. This is a significant overhead which

is prohibitive for large predictive models or multi-dimensional feature spaces.

2.4 Summary

In this Chapter, all necessary background related to the problem and the contributions

presented in this thesis is presented. The reader is introduced to the process of software

testing and its categories in Section 2.1. Section 2.2 elaborates on modern compiler ar-

chitectures and how they are used to optimize programs. Finally, Section 2.3 provides

an overview of all machine learning tools and approaches that were used in this thesis.

The following Chapter surveys the existing related literature.





Chapter 3

Related Work

3.1 Introduction

This Chapter surveys the existing literature relevant to the contributions of this thesis.

Section 3.2 presents the existing literature in the field of software testing and runtime

analysis, focused on the test oracle. Section 3.3 reviews current research in program

embedding and representation relevant to our test oracle approach. In Section 3.4, a lit-

erature review of benchmark generation for compilers is presented, to provide intuition

about our second and third contributions.

3.2 The Test Oracle

Test oracles are an important part of the software testing process as they are used

as a baseline to compare the actual output of a test input to the expected output and

determine whether the test execution has passed or failed.

The importance of oracles as an integral part of the testing process has been a key

topic of research for over three decades. We distinguish three different kinds of test

oracles, based on the survey by [20]. The most common form of test oracle is a speci-

fied oracle, one that judges behavioural aspects of the system under test with respect to

formal specifications. Although formal specifications are effective in identifying fail-

ures, defining and maintaining such specifications is expensive and also relatively rare

in practice. Implicit test oracles require no domain knowledge and are easy to obtain

at no cost. However, they are limited in their scope as they are only able to reveal

particular anomalies like buffer overflows, segmentation faults, deadlocks. Derived

test oracles use documentations or system executions, to judge a system’s behaviour,

27



28 Chapter 3. Related Work

when specified test oracles are unavailable. However, derived test oracles, like meta-

morphic relations and inferring invariants, is either not automated or it are inaccurate

and irrelevant making it challenging to use.

For many systems and much of testing as currently practised in industry, the tester

does not have the luxury of formal specifications or assertions or even automated par-

tial oracles [70, 71]. Predicting the behavior of a large scale program is a tedious

task; for this reason researchers have tried several methods to automate this process.

Statistical analysis and machine learning techniques provide a useful alternative for

understanding software behaviour using data gathered from a large set of test execu-

tions. Briand et al. [27] present a comprehensive overview of existing techniques that

apply machine learning for addressing testing challenges. Among these, the closest

related work is that of Bowring et al. [25]. They propose an active learning approach

to build a classifier of program behaviours using a frequency profile of single events

in the execution trace. Evaluation of their approach was conducted over one small

program whose specific structure was well suited to their technique.

More recently, Rigger et al. [130] introduce Intramorphic Testing, a white-box

methodology for the test oracle that comes in contrast to common black-box approaches

such as differential and metamorphic testing. Rigger’s et al. approach includes chang-

ing one component of the SUT in a known way so that the SUT’s original output can

be related to the changed output. They illustrate how Intramorphic Testing can expose

bugs with three example programs: (a) AST printing, (b) Monte Carlo simulations

and (c) the Knapsack problem [93]. Intramorphic Testing is a novel approach to the

test oracle problem, however it poses several limitations. First, a developer must not

only know the whole codebase and how its components interact, but also how a small

alteration in one component changes the program’s output. This is very difficult on

industry-scale codebases, where the tester is often not the developer. Second, con-

structing relations between program versions for simple operations might be relatively

easy but such relations in complex software is near-impossible. To make things worse,

many mutations may have no effect to the SUT’s output thus leading to no intramor-

phic relations. These two factors increase exponentially the amount of effort and time

needed to construct high-quality relations in large-scale software and make use of this

technique.

Machine learning techniques have also been used in fault detection. Brun and

Ernst [28], explored the use of support vector machines and decision trees to rank pro-

gram properties, provided by the user, that are likely to indicate errors in the program.



3.2. The Test Oracle 29

Podgurski et al. [126] use clustering over function call profiles to determine which

failure reports are likely to be manifestations of an underlying error. A training step

determines which features are of interest by evaluating those that enable a model to

distinguish failures from non-failures. The technique does not consider passing runs.

In their experiments, most clusters contain failures resulting from a single error.

Almaghairbe et al. [11] propose an unsupervised learning technique to classify

unlabelled execution traces of simple programs. They gather two kinds of execution

traces, one with only inputs and outputs, and another that includes the sequence of

method entry and exit points, with only method names. Arguments and return values

are not used. They use agglomerative hierarchical clustering algorithms to build an au-

tomated test oracle, assuming passing traces are grouped into large, dense clusters and

failing traces into many small clusters. They evaluate their technique on 3 programs

from the SIR repository [49]. The proposed approach has several limitations. They

only support programs with strings as inputs. They do not consider correct classifica-

tion of passing traces. The accuracy achieved by the technique is not high, classifying

approximately 60% of the failures. Additionally, fraction of outputs that need to be

examined by the developer is around 40% of the total tests.

Almaghairbe et al. [11] assumed that all the passing traces present the same be-

haviour, leading to them being organized in one, large cluster. On the other hand,

according to them, failing traces tend to present non-uniform, wide-ranging patterns,

which results in failing traces being spread among many small clusters. According to

their methodology, the clusters that are sized below the average of the set, are consid-

ered to contain failing traces and clusters sized above the average are considered to

contain passing traces. For their evaluation, they used different clustering techniques

and experimented on multiple cluster sizes. Almaghairbe et al. used ‘Daikon’ for

instrumentation, an invariant detector that uses machine learning to observe program

values and summarize them into a set of formulas.

Existing work using execution traces for bug detection has primarily been based

on clustering techniques. Neural networks, especially with deep learning, have been

successful for complex classification problems in other domains like natural language

processing, speech recognition, computer vision. There is limited work exploring their

benefits for software testing problems.

NNs were first used by Vanmali et al. [148] to simulate behaviour of simple pro-

grams using their previous version, and applied this model to regression testing of

unchanged functionalities. Aggarwal et al. [3] and Jin et al. [87] apply the same ap-



30 Chapter 3. Related Work

proach to test a triangle classification program, that computes the relationship among

three edge inputs to determine the type of triangle. Mytkowicz [48] et al. propose

TOGA, a Transformer-based approach to infer exceptional and assertion bug finding

test oracles. Based on the observation that oracles in developer-written unit tests typi-

cally follow a small number of common patterns, Mytkowicz et al. define a grammar

that expresses a taxonomy of these patterns. Using this grammar, a two-step neural

ranking procedure scores candidate oracles. They evaluate TOGA on test oracle infer-

ence, reporting an accuracy improvement of 11% and 33% over related work in two

oracle inference datasets. Their tool is also evaluated in bug finding, exposing 57 real

world bugs in Java benchmark, DEFECTS4J [90]. TOGA outperforms the comparing

oracles in exposing more real bugs and developing a lower False Positive Rate of 25%.

The few existing approaches using NNs have been applied to simple programs hav-

ing small I/O domains. The following challenges have not been addressed in existing

work,

1. Training with test execution data and their vector representation – Existing work

only considers program inputs and outputs that are of primitive data types (integers,

doubles, characters). Test data for real programs often use complex data structures and

data types defined in libraries. There is a need for techniques that encode such data. In

addition, existing work has not attempted to use program execution information in NNs

to classify tests. Achieving this will require novel techniques for encoding execution

traces and designing a NN that can learn from them.

2. Test oracles for industrial case studies - Realistic programs with complex behaviours

and input data structures has not been previously explored.

3. Effort for generating labelled training data - Training data in existing work has

been over simple programs, like the triangle classification program, where labelling the

tests was straightforward. Availability of labelled data that includes failing tests has

not been previously discussed. Additionally, the proportion of labelled data needed

for training and its effect on model prediction accuracy has not been systematically

explored.

The performance of neural networks as classifiers was boosted with the birth of

deep learning in 2006 [74]. Deep learning methods have not been explored extensively

for software testing, and in particular for the test oracle problem. Recently, a few tech-

niques have been proposed for automatic pattern-based bug detection. For example,

Pradel et al. [127] propose DeepBugs, a deep learning-based static analysis tool for au-

tomatic name-based bug detection. Allamanis et al. [8] use graph-based neural static



3.3. Program Representation 31

analysis to detect variable misuse bugs. In addition to these techniques, several other

deep learning methods for statically representing code have been developed [13, 10].

We do not discuss these further since we are interested in execution trace classification

and in NNs that use dynamic trace information rather than a static view of the code.

Our first contribution is a deep-learning based approach to embed and classify pro-

gram executions. In the next section, we provide the reader with the current research

in program embeddings.

3.3 Program Representation

Creating representations is a vital process in transforming input data into a format that

is readable by a machine learning model. Good representations highlight the data’s key

qualities and optimize the machine learner’s overall performance. Source code repre-

sentation is an active research field with a large impact on language models’ ability to

understand and generate synthetic programs.

Natural language representation techniques are usually also relevant to source code

representation. Natural and programming languages share some structure similarities,

a property known as naturalness. The naturalness hypothesis [7, 73, 72] states that

software is a form of human communication and software corpora have similar statis-

tical properties to natural language corpora. Using these properties is critical to build

better software engineering tools. The naturalness hypothesis, inspires the goal to ap-

ply machine learning approaches to learn how developers naturally write and use code.

These models can be used to augment existing tools with statistical information and

enable new machine learning-based software engineering tools, such as recommender

systems and program analyzers.

Representation of words as continuous vectors is a field with a long research his-

tory [50, 75, 132]. The Neural Network Language Model (NNLM) [88] is a popular

architecture for word representation, where a feed-forward NN with a linear projection

layer and a non-linear hidden layer learn jointly word vector representations. Fol-

lowing the NNLM, neural probabilistic models were presented [113, 23] where word

vectors are first learnt using neural network with a single hidden layer. They are then

used to train the NNLM. The benefit of this approach compared to the NNLM, is that

word vectors can be obtained even without fully constructing the NNLM.

The N-gram model [26] is a simple, yet effective language representation model.

N-gram models are statistical models and sentences as sequences of atomic units, each



32 Chapter 3. Related Work

statically representing a single word. N-gram models are easy to implement for simpler

tasks but their performance is limited on more complex ones. In tasks such as machine

translation where there is an abundance of training data, more advanced techniques are

needed to achieve good performance.

Following the N-gram’s limitations, a more advanced word embedding algorithm is

Word2Vec [112]. This technique is based on neural networks that are trained to extract

word embeddings from a corpora of natural language data efficiently. Word2Vec con-

structs vector representations of words that are dispersed on the feature space in such

way so words that have a similar meaning or context in humans’ language have vector

representations that are also close to the feature space of the embedded vectors. Com-

pared to non neural-based embedding algorithms, Word2Vec produces significantly

more accurate word representations at a much lower computational cost.

These representation models have been widely used by language models to em-

bed software. Such example is code2vec proposed by [14]. However, as source code

has the feature of being represented as a graph, such representation models are nat-

urally unequipped to capture this kind of structure which may be sub-optimal. This

issue is addressed with graph representation models, most notably Graph2Vec [117].

Graph2Vec is a neural embedding framework that learns data-driven distributed rep-

resentations of arbitrary sized graphs. Graph2Vec’s embeddings are learnt in an un-

supervised manner and can be used for a range of downstream tasks, including graph

classification apart from programming language modeling.

Embedded representations for programs are not restricted to encoding text-level

source code. They can also be used to represent dynamic information, such as pro-

gram executions, or execution traces. An execution trace is a recorded sequence of

instructions executed for a given program, as well as any other data that have been

accessed or modified throughout the execution. Execution traces capture the state of

a program at different runtime states and can provide critical insight to software en-

gineers about the behavior of a program. Our first contribution focuses in embedding

execution traces to automate the classification of program runtime behaviour.

Wang et al. [151] propose an approach to embed program runtime flow. They

use execution traces captured as a sequence of variable values at different program

points. A program point is when a variable gets updated. Their approach uses RNNs

to summarise the information in the execution trace. The execution trace embeddings

are given as an input to a program repair tool. This embedding technique has several

limitations - 1. Capturing execution traces as sequences of updates to every variable in



3.3. Program Representation 33

the program has an extremely high overhead and will not scale to large programs. The

paper does not describe how the execution traces are captured, they simply assume they

have them. 2. The approach does not discuss how variables of complex data types such

as structs, arrays, pointers, objects are encoded. It is not clear if the traces only capture

updates to user-defined variables, or if system variables are also taken into account. 3.

The evaluation uses three simple, small programs (eg. counting parentheses in a string)

from students in an introductory programming course. The complexity and scale of

real programs is not assessed in their experiments. Their technique for capturing and

directly embedding traces as sequences of updates to every variable is infeasible in real

programs.

A novel blended approach to learn program representations with execution traces

is presented by Wang et al. [152]. In this work, they collect a set of symbolic traces

from programs, one for each execution path. They also obtain concrete traces from

program executions, one for each test input. They create a blended trace by merging

one symbolic trace with all concrete traces that exercise this corresponding execution

path. They develop a NN architecture called LiGer, an attention-based RNN. Their

model consists of a vocabulary embedding layer, a fusion layer and a programs em-

bedding layer. The first encodes words to embedding vectors. In the fusion layer,

one RNN embeds statements and a second RNN embeds all program states of that

statement within the same time step. Attention vectors are calculated and concate-

nated using these embeddings as input. Finally, all attention vectors are fed into an

RNN sequentially and all time outputs are pooled. LiGer’s embedding quality is eval-

uated with COSET [150] benchmark. Wang et al. [150] also extend their model into

an encoder-decoder architecture and evaluate their model for the purpose of method

name prediction. LiGer outperforms three relevant code embedding approaches across

a set of benchmarks. However, their execution trace processing technique implies sig-

nificant complexity. They only evaluate it on small functions with simple contexts. It

is unlikely whether this technique can be scaled across multiple of functions of a real

codebase. On the other hand, we show that our approach scales effectively over real

and complex programs from different domains.

Recent works in the field of program representation includes GNN-based approaches

that take advantage of the intermediate representations’ graph structure. Guo et al. [63]

develop a GNN-based approach to embed program binaries and fuse them with the

semantics of control flow, data flow and call graphs into one model. They abstract

programs into multiple graphs for multi-layer analysis. Their approach aims to enable



34 Chapter 3. Related Work

program analysis and compilation-related tasks and it achieves an accuracy of 83% in

binary similarity detection and dead store prediction.

In GRAPHCODE2VEC, Ma et al. [107] propose a generic approach for task-agnostic,

generic embeddings that capture syntax and semantics. GRAPHCODE2VEC’s embed-

dings are evaluated on a range of downstream tasks, including method name prediction,

mutation testing classification and is compared against other state of the art embedding

techniques such as CODEBERT [52] and CODE2SEQ, developing high performance

in both generic and task-specific baselines. CODEBERT is a relevant publication to

our second and third contributions and is discussed further in the next section.

Xu et al. [161] present M3V, a multi-modal, multi-view program embedding for

repair operator prediction. Their proposed approach attempts to capture the context

of a faulty location in a program using two models, (a) a tree-LSTM receiving text

that captures the fault’s signature in natural language and (b) a Graph Neural Network

that encapsulates its structure in two views, data and control dependencies. Xu et al.

evaluate M3V against state of the art context embedding approaches in repairing two

common types of bugs in Java, null pointer exceptions and index out of bounds. They

improve the prediction of repair operators in repairing null pointer exceptions by 11%

to 41% using their context embeddings and 9% to 30% in index out of bounds.

3.4 Language Modeling for Program Synthesis

In the previous two sections, we survey the current literature of test oracles and their

intersection with machine learning in the form of language modeling and program

representation. This section discusses the use of language modeling and program rep-

resentation for compiler benchmark synthesis that aims in optimizing compiler heuris-

tics.

In their 2017 survey, Allamanis et al. [7] describe the fast-moving field of deep lan-

guage models for source code [7]. Wong et al. [160] develop AutoComment that mines

StackOverflow to automatically generate code comments. Allamanis et al. [6] develop

Naturalize which employs techniques developed in the natural language processing

domain to model coding conventions. JSNice [129] leverages probabilistic graphi-

cal models to predict program properties such Javascript identifier names. Allamanis

et al. [9] use attention-based neural networks to generate summaries of source code.

Nero [43] uses an encoder-decoder architecture to predict method names in stripped

binaries. This technique receives an input sequence of call sites from the execution of



3.4. Language Modeling for Program Synthesis 35

a binary as an input and produces a predicted method name.

A recent work that has unlocked numerous applications in code generation and

classification is BERT, a natural language representation model by Devlin et al.[46].

Contrary to previous language modeling tools [125, 128], BERT is designed to learn on

unlabeled text data by jointly conditioning on both left and right context in all layers.

This is achieved by learning to predict single words hidden behind [MASK] tokens.

BERT achieves state of the art results in 11 natural language tasks and enables multiple

applications of this architecture to a wide variety of difficult machine learning tasks,

such as machine translation, question answering etc.

BERT has found many applications in programming languages. In CuBERT [91],

Kanade et al. apply BERT over Python programs and evaluate it on the identifica-

tion of typical mutation faults such as variable misuse localization, swapped operands,

function-docstring mismatch and exception type checking. In CodeBERT [52], Feng

et al. fine-tune BERT to perform NL-PL and PL-NL transformations. First, they syn-

thesize functions from a set of natural language specifications. They also attempt to

generate natural language documentation, provided a source code function. In both

settings, they measure BERT’s prediction accuracy with respect to the ground truth,

i.e. programs and documentation strings.

In the field of compiler benchmarks, there is limited work coming from generative

modeling techniques. In 2017, Cummins et al. [40] develop CLGEN, a deep learning

generator based on LSTM [78] for OpenCL programs. CLGEN learns source code

representations with program fragments collected from GITHUB’s open source repos-

itories. CLGEN is developed to enhance existing benchmark suites with synthetic ones

in order to tackle the compiler benchmarks shortage. Mitigating this shortage com-

piler predictive models are improved by training on more datapoints with new, unseen

features. They generate synthetic benchmarks to enhance existing datasets and use the

enhanced datasets to train the Grewe et al.[61] heuristic model that predicts whether

an OpenCL kernel should execute on the CPU or the GPU for optimal performance.

Training the predictive model on training data enhanced with synthetic benchmarks

improved its performance by 1.27×.

However, CLGEN poses several limitations, illustrated by Goens et al. recent case

study [59]. First, after reproducing CLGEN, they show the Grewe et al. [61] predic-

tive model performs better when trained on any of standard benchmarks or GITHUB

code, while its performance gets worse when synthetic benchmarks are included in

the training set. They also analyze the AST depth distribution of CLGEN’s samples



36 Chapter 3. Related Work

and compare it to standard benchmarks and code from GITHUB. They prove synthetic

benchmarks are significantly smaller, 3× on average. They provide similar results on

the feature space coverage comparison, showing CLGEN covers a narrow space of fea-

tures compared to human-written code, which already exists. This is evidence that

CLGEN’s synthetic benchmarks do not improve the feature diversity of training data

for compilers. CLGEN generates millions of different examples but the probability of

generating a kernel with syntactic errors increases exponentially as new tokens are ap-

pended. This is due to its LSTM’s sequential architecture which is unable to regress to

earlier parts of the generated sequence and repair them. As a result, only a tiny fraction

of synthetic benchmarks compile and those that do are always small in size.

More recent techniques include SketchAdapt by Nye et al. [119]. SketchAdapt

is a synthesizer that generates code from specifications. Their model learns program

sketches by training a generator-synthesizer [19, 47] on input-output pairs of functions.

Then they generate new program sketches that match a given I/O specification. The

RNN generator samples a range of possible generic sketches that match the specifica-

tion of an input/output pair. Sketches contain <HOLE< tokens, which the symbolic

synthesizer fills sequentially with statements. They evaluate SketchAdapt on 2 types of

input specifications: 1) A list of integers as I/O pairs and 2) a natural language descrip-

tion of source code. Their model performs better compared to the generator-only [19]

and synthesizer-only architectures [47] separately.

SketchAdapt samples a pre-defined pool of operations (in the form of lambda func-

tions) that may match a program’s behavior. This restricts the amount of different op-

erations it can generate to the size of its operation pool. Also, the functions they infer

are required to have inputs and outputs as input specifications, which further restricts

its diversity. Finally, they train and evaluate on short sketches of up to 4 operations. We

are inspired to use the <HOLE> token as a means to generate statements within the

middle of an existing function. However, we do not face SketchAdapt’s restrictions.

Bruen et al. [44], propose a Tree2Tree approach for source code generation using

Variational Autoencoders. They use GloVe [124] to embed representations of pro-

grams’ AST nodes. They encode and decode AST representations using Tree-LSTMs

as defined by Tai et al. [140]. They learn latent code representations by minimizing

the reconstruction loss of the variational autoencoder. Bruen et al. train their model on

two million C++ compiling functions gathered from coding competitions. They evalu-

ate their Tree2Tree model against a simple VAE with a simple LSTM encoder-decoder

architecture (Seq2Seq) and measure BLEU [122] and compilation rate scores between



3.4. Language Modeling for Program Synthesis 37

these two architectures. They also experiment with using both architectures as gen-

erative models. In this case, they sample 1000 random latent vector representations

and feed them to the decoder to collect a new sample. Their Seq2Seq model achieves

a compilation rate of up to 67% with greedy search, however the authors argue this

happens because the model greedily selects always the most probable labels, leading

to repetitive samples that compile. When sampling with temperature, their Seq2Seq

model achieves a compilation rate of 40%. Their Tree2Tree architecture is able to

generate a wider variety of unique samples, but only achieves a compilation rate of

up to 22%, which translates to 200 functions out of these 1000 random latent vectors.

This shows bad generalization on the trained dataset which accounts for 2 million C++

functions.

Researchers have recently began to explore the field of infilling language models

for more large scale tasks. Infilling is defined as the bi-directional synthesis process

that produces valid tokens by observing the left and right context of an incomplete

input sentence. Li et al. [102] develop AlphaCode, a coding problem-solving tool

based on deep language modeling and reinforcement learning. AlphaCode uses deep

natural language reasoning to translate a coding problem description into a valid solu-

tion. Among 5,000 participants, it achieves a ranking of top 54.3%. Fried et al. [54]

develop InCoder, a Transformer-based language model that is trained on 28 program-

ming languages to perform left-to-right generation or bi-directional generation (infill-

ing) to provide executable functions. Guo et al. [62] develop GRAMMFORMER which

guides sketch generation by the programming language grammar. This model places

“holes” where the model is uncertain during generation, which will be filled at a later

edit step.

There have also been code generating approaches coming from the field of program

repair / program reconstruction from input/output specifications. Gupta et al. [64]

develop a program generator - program repair framework named SED. SED is a two-

stage code generator. First, a synthesizer receives the input/output specifications that

must be met and generates a set of program candidates that are likely to satisfy them.

Second, a neural debugger evaluates each candidate program and performs program

repair to reform generated candidates into a function that will match the ground truth.

Their model is trained and tested on Karel, an educational programming language.

Gupta et al. evaluate the performance of three different synthesizer architectures with

multiple configurations and measure (a) how well do generated programs generalize

across the test cases they are expected to pass and (b) the accuracy of their debugger



38 Chapter 3. Related Work

to repair synthesized programs across a different count of mutations, 1 to 5. SED is a

meaningful research work in the intersection between program generation and program

repair. However, Karel is an unrealistic language and SED’s generative performance

on a large scale, complex programming is not evaluated.

Faustino et al. develop Anghabench [42], a collection of real world C programs

mined from GITHUB. They argue generative models cannot be easily employed in

general purpose compilers because benchmarks usually target very specific aspects

of target hardware or programming language. In their approach, they mine C code

from open-source repositories to tackle the benchmark shortage [40, 155]. The main

challenge of their work is to automatically compile collected code. To do so, they use

Psyche-C [110] type inference engine for C to apply type reconstruction and resolve

missing dependencies. Structs, unions and other custom data types are all omitted

or re-declared with primitive types, if possible. They collect around 1.5 million C

compiling functions. Anghabench does not support custom data types and user-defined

functions and this is a serious limitation which alters original programs’ semantics

and leads to more simplistic data type relations. Furthermore, their benchmarks are

compiling, but cannot be executed.



Chapter 4

Supervised learning over test

executions as a test oracle

4.1 Introduction

The research contributions presented in this Chapter are the design and implementation

of a NN-based test oracle for automatic program runtime correctness classification.

This Chapter describes the underlying approach, the implementation and the evaluation

of this technique using fifteen industry-standard codebases.

We explore supervised machine learning to infer a test oracle from labelled exe-

cution traces of a given system. In particular, we use neural networks (NNs), well

suited to learning complex functions and classifying patterns, to design the test ora-

cles. Our technique is widely applicable and easy to use, as it only requires execution

traces gathered from running tests through the program under test (PUT) to design the

oracle. This is shown in Figure 4.1 where a small fraction of the gathered execution

traces labelled with pass/fail (shown in light gray) is used to train the NN model which

is then used to automatically classify the remaining unseen execution traces (colored

dark gray).

Previous work exploring the use of NNs for test oracles has been in a restricted con-

text – applied to very small programs with primitive data types, and only considering

their inputs and outputs [148, 87]. Information in execution traces which we believe

is useful for test oracles has not been considered by existing NN-based approaches.

Other bodies of work in program analysis have used NNs to predict method or variable

names and detecting name-based bug patterns [12, 127] relying on static program in-

formation, namely, embeddings of the Abstract Syntax Tree (AST) or source code. Our

39



40 Chapter 4. Supervised learning over test executions as a test oracle

proposed approach is the first attempt at using dynamic execution trace information in

NN models for classifying test executions.

Figure 4.1: Key idea in our approach.

Our approach for inferring a test oracle has the following steps,

1. Instrument a program to gather execution traces as sequences of method invoca-

tions.

2. Label a small fraction of the traces with their classification decision.

3. Design a NN component that embeds the execution traces to fixed length vectors.

4. Design a NN component that uses the line-by-line trace information to classify

traces as pass or fail.

5. Train a NN model that combines the above components and evaluate it on unseen

execution traces for that program.

The novel contributions in this technique are in Steps 3, 4 and 5. Execution traces

from a program vary widely in their length and information. We propose a technique

to encode and summarise the information in a trace to a fixed length vector that can be

handled by a NN. We then design and train a NN to serve as a test oracle.

Labelled execution traces. Given a PUT and a test suite, we gather execution

traces corresponding to each of the test inputs in the test suite with our instrumentation

framework. Effectively learning a NN classifier for a PUT that distinguishes correct

from incorrect executions requires labelled data with both passing and failing exam-

ples of traces. We require a small fraction of the overall execution traces to be labelled,

which is likely to be a manual process. As a result, our proposed approach for test or-

acle is not fully automated. We hypothesize that the time invested in labelling a small

proportion of the traces is justified with respect to the benefit gained in automatically

classifying the remaining majority of traces. In contrast, with no classifier, the devel-

oper would have had to specify expected output for all the tests, which is clearly more

time consuming than the small proportion of tests we need labelled.



4.1. Introduction 41

NN Architecture. An execution trace in our approach comprises multiple lines,

with each line containing information on a method invocation. Our architecture for

encoding and classifying an execution trace uses multiple components: (1) Value en-

coder for encoding values within the trace line to a distributed vector representation, (2)

Trace encoder encoding trace lines within a variable-length trace to a single vector, and

(3) Trace Classifier that accepts the trace representation and classifies the trace. The

components in our architecture are made up of LSTMs, one-hot encoders, and a multi-

layer perceptron. We select LSTMs to represent execution traces because they are fast

to train, require significantly less training data than other architectures (e.g. Trans-

formers) and show high accuracy for the task of predicting failing execution traces.

Case Studies. We evaluate our approach using 4 subject programs and tests from

different application domains - a single module from Ethereum project [30], a module

from Pytorch [123], one component within Microsoft SEAL encryption library [134]

and a Linux stream editor [104]. One of the 4 subject programs were accompanied

by both passing and failing tests that we could directly use in our experiment. The

remaining three programs were only accompanied by passing tests. We treated these

programs as reference programs. We then generated PUTs by artificially seeding faults

into them. We generated traces through the PUTs using the existing tests, labelling the

traces as passing or failing based on comparisons with traces from the reference pro-

gram. We trained a NN model for each PUT using a fraction of the labelled traces.

We found our approach for designing a NN classification model was effective for pro-

grams from different domains. We achieved high accuracies in detecting both failing

and passing traces, with an average precision of 89% and recall of 88%. Only a small

fraction of the overall traces (average 15%) needed to be labelled for training the clas-

sification models.

In summary, the Chapter makes the following contributions:

• Given a PUT and its test inputs, we provide a framework that instruments the

PUT and gathers test execution traces as sequences of method invocations.

• A NN component for encoding variable-sized execution traces into fixed length

vectors.

• A NN for classifying the execution traces as pass or fail.

• We provide empirical evidence that this approach yields effective test oracles for

programs and tests from different application domains.



42 Chapter 4. Supervised learning over test executions as a test oracle

4.1.1 Extended Contributions

In addition to our initial publication [145] of the contributions presented in the previous

Subsection, we published extended contributions in [146]. The extended contributions

are summarised as follows,

1. Support for Java programs. Our work in [145] provided tool support in the

LLVM [97] framework to instrument the intermediate representation (LLVM-IR) of

programs to gather execution traces. LLVM, however, does not provide front-end sup-

port for Java programs. In this Chapter, we provide tool support to gather execution

traces for Java programs using the Soot framework [147].

2. Extensive empirical evaluation. We augment the experiments in [145] with 10 ad-

ditional subject programs – 9 network protocols from L7-filter [35] and 1 Java utilities

library from Defects4J [90], a database of real faults for open-source Java programs.

For these subject programs, we evaluate precision, recall and specificity of our ap-

proach in classifying execution traces. We also assess the size of training set needed

and compare accuracies against a hierarchical clustering technique for classifying ex-

ecution traces proposed by Almaghairbe et al. [11].

3. Generalisation. We conduct an initial exploration into the ambitious possibility of

using a model, trained using traces from one subject program, to classify traces from

other programs in the same application domain. We use FSMs (Finite State Machines)

from the network protocol domain to evaluate this possibility.

We found our approach for designing a NN classification model was effective for

all subject programs. We achieved high accuracies in detecting both failing and passing

traces, with an average precision of 93% and recall of 94%. Only a small fraction of

the overall traces (average 14%) needed to be labelled for training the classification

models. We found generalisation of a classification model from one network protocol

to others in the domain was feasible. Generalisation accuracies were not as high as

accuracy achieved using separate classification models, around 70%, but we believe

there is scope for improvement using fine tuning in the future.

4.2 Approach

Our approach for building an automated test oracle for classifying execution traces has

the following steps,

Step 1: Instrument the PUT to gather traces when executing the test inputs.



4.2. Approach 43

Step 2: Preprocess the traces to prune unnecessary information.

Step 3: Encode the preprocessed traces into vectors that can be accepted by the neural

network.

Step 4: Design a NN model that takes as input an encoded trace, and outputs a verdict

of pass or fail for that trace.

Figure 4.2 illustrates the steps in our approach, with the bottom half of the figure

depicting steps 3 and 4 for any given preprocessed trace from step 2. We discuss each

of the steps in the rest of this Section.

Figure 4.2: Gathering traces, encoding them, and using NNs to classify them. EN-

CODER 1 constructs a fixed vector representation per trace line. A second LSTM En-

coder receives all trace line representations as a sequence and outputs a vector that

summarises the execution trace. Both models are jointly trained with the MLP such that

a low error is achieved in predicting the trace’s label.

4.2.1 Instrument and Gather Traces

For every test input executed through the PUT, we aim to collect an execution trace

as a sequence of method invocations, where we capture the name of the method being

called, values and data types of parameters, return values and their types, and, finally,

the name of the parent method in the call graph. We find gathering further information,

eg. updates to local variables within each method, incurs a significant overhead and is

difficult to scale to large programs. To gather this information we develop two different

tools with support for different programming languages to make our framework widely

applicable. Our first instrumentation tool is primarily aimed at C/C++ programs and



44 Chapter 4. Supervised learning over test executions as a test oracle

uses the middleware of LLVM [97] and instruments the intermediate representation

(LLVM-IR) of programs. This allows our implementation to be language-agnostic.

LLVM provides front-end support for multiple programming languages in addition to

C/C++ like CUDA, Haskell, Swift, Rust among others, along with numerous libraries

for optimisation and code generation.

Our second tool is aimed at Java programs and uses Soot [147] to collect execution

traces. Soot is a Java optimization framework and provides libraries for users to ana-

lyze, instrument and optimize applications. We develop a pass with Soot to compile

Java into bytecode and a second pass to convert bytecode to Jimple-IR. Jimple is a

typed 3-address intermediate representation suitable for code transformations. Using

Soot’s API, we develop a second pass to instrument Jimple and finally compile into

an executable. Our Soot framework is also compatible with any other programming

language that can be compiled into Java bytecode, e.g. Scala.

To perform the instrumentation, we traverse the PUT, visiting each method. Every

time a method invocation is identified, code is injected to trace the caller-callee pair,

the arguments and the return values. At the end of the program, code is inserted to

write the trace information to the output.

Each trace contains a sequence of method invocations. This sequence comprises

multiple lines, each line being a tuple (np,nc,r,a) that represents a single method in-

vocation within it having:

• The names of the caller (parent) np and called nc functions.

• Return values r of the call, if any.

• Arguments passed a, if any.

The order of trace lines or method invocations is the order in which the methods com-

plete and return to the calling point.

Our LLVM instrumentation supports all variable types including primitive types

(such as int, float, char, bool), composite data types (such as structs, classes,

arrays) defined by a user or library, and pointers for return and argument values. Structs

and classes are associated with a sequence of values for their internal fields. We instru-

ment these data structures in a depth first fashion, until all primitive types are traced.

For pointers, we monitor the values they refer to.

Our instrumentation within Soot collects all Java primitive types, strings, primitive

wrapper classes, atomic wrapper classes and arrays. We also support custom classes



4.2. Approach 45

that are defined within the scope of a subject Java translation unit. Soot allows the

instrumentation of public class members only; private methods and variables are not

accessed.

4.2.2 Training Set

We execute the instrumented program with each test input in the test suite to gather

a set of traces. A subset of the traces is labelled and used in training the classifica-

tion model. To label the traces as pass or fail, we compare actual outputs through

the PUT with expected outputs provided by a reference program or the specifications.

Section 4.3.1 discusses how we label traces for the subject programs in our experi-

ment. It is worth noting that in our approach, the developer will only need to provide

expected outputs for a small proportion of tests rather than the whole test suite. In the

absence of expected output in tests, how will tests be labelled is a common question.

Answering this question will depend on what is currently being done by the developer

or organisation for classifying tests as pass or fail. Our approach will entail applying

the same practice to labelling, albeit to a significantly smaller proportion of tests.

To avoid data leakage, i.e. information about the expected outcome of the program

existing in the trace, in our experiment in Section 4.3, we ensure that expected out-

put is removed from the traces. We also remove exceptions, assertions and any other

information in the program or test code that may act as a test oracle. This is further

discussed in Section 4.3.2.

4.2.3 Preprocessing

The execution traces gathered with our approach include information on methods de-

clared in external libraries, called during the linking phase. To keep the length of the

traces tractable and relevant, we preprocess the traces to only keep trace lines for meth-

ods that are defined within the module, and remove trace lines for declared functions

that are not defined, but simply linked to later.

For method invocations within loops, a new trace line is created for each invoca-

tion of the same method within the loop. For loops with large numbers of iterations,

this can lead to redundancy when the method is invoked with similar arguments and

return values. We address this potential redundancy issue by applying average pooling

to trace lines with identical caller-callee methods within loops. This helps summa-

rize huge sequences of function calls with identical caller-callee methods and similar



46 Chapter 4. Supervised learning over test executions as a test oracle

features into compressed representations to save memory and time.

4.2.4 Neural Network Model

In this step, we perform the crucial task of designing a neural network that learns to

classify the pre-processed traces as passing or failing. Shape and size of the input traces

vary widely, and this presents a challenge when designing a NN that accepts fixed

length vectors summarizing the traces. To address this, our network comprises three

components that are trained jointly and end-to-end: 1. a VALENC that encodes values

(such as the values of arguments and return values) into DV -dimensional distributed

vector representations, shown within ENCODER 1 in Figure 4.3, 2. a TRENC that en-

codes variable-sized traces into a single DT -dimensional vector, shown as LSTM in

Figure 4.4, and finally, 3. a TRACECLASSIFIER that accepts the trace representation for

state and predicts whether the trace is passing or failing. The MULTI-LAYER PERCEP-

TRON in Figure 4.2 represents the TRACECLASSIFIER. We describe each component

in detail in the rest of this Section.

Figure 4.3: ENCODER 1 representing a single line in a trace as a vector containing

function caller, callee names, arguments and return values.

Figure 4.4: ENCODER 2 representing a sequence of trace lines as a single vector.

Encoding Values. Values within the trace provide useful indications about clas-

sifying a trace. However, values — such as ints, structs, and floats — vary widely



4.2. Approach 47

in shape and size. We, therefore, design models that can summarize variable-sized

sequences into fixed-length representations. In the machine learning literature, we pre-

dominantly find three kinds of models that can achieve this: recurrent neural networks

(RNNs), 1D convolutional neural networks (CNN) and transformers. In this work,

we employ LSTMs [79] — a commonly used flavour of RNNs. Testing other mod-

els is left as future work. At a high-level RNNs are recurrent functions that accept

a vector ht of the current state and an input vector xt and compute a new state vector

ht+1 = RNN(xt ,ht) which “summarizes” the sequence of inputs up to time t. A special

initial state h0 is used at t = 0.

To encode a value v, we decompose it into a sequence of primitives v = [p0, p1, ...]

(integers, floats, characters, etc.). Each primitive pi is then represented as a binary

vector bi = e(pi) containing its bit representation padded to the largest primitive data

type of the task. For example, if int64 is the largest primitive then all bis have di-

mensionality of 64. This allows us to represent all values (integers, floats, strings,

structs, pointers, etc.) as a unified sequence of binary vectors. We encode v into a

DV -dimensional vector by computing

VALENC(v) = LST Mv(e(pL)L,VALENC([p0, p1, ..., pL−1])),

where LST Mv is the LSTM that sequentially encodes the bis. Note that we use the

same VALENC for encoding arguments and return values, as seen in Figure 4.3. The

intuition behind this approach is that the bits of each primitive can contain valuable

information. For example, the bits corresponding to the exponent range of a float can

provide information about the order of magnitude of the represented number, which in

turn may be able to discriminate between passing and failing traces.

Representing a Single Trace Line. Armed with a neural network component that

encodes values, we can now represent a single line (np,nc,r,a) of the trace. To do this,

we use VALENC to encode the arguments a and the return value r. We concatenate

these representations along with one-hot representations of the caller and callee iden-

tities, as shown in Figure 4.3. Specifically, the vector encoding ti of the ith trace line

is the concatenation

ti = [VALENC(a),VALENC(r),1HOT(np),1HOT(nc)] ,

where 1HOT is a function that takes as input the names of the parent or called methods

and returns a one-hot vector that uniquely encodes that method name. For methods that

are rare (appear fewer than kmin times) in our data, 1HOT collapses them to a single



48 Chapter 4. Supervised learning over test executions as a test oracle

special Unknown (UNK) name. This is similar to other machine learning and natural

language processing models and reduces sparsity often improving generalization. The

resulting vector ti has size 2DV +2k where k is the size of each one-hot vector.

Encoding Traces. Now that we have built a neural network component that en-

codes single lines within a trace, we design TRENC that accepts a sequence of trace

line representations t0...tN and summarizes them into a single DT -dimensional vector

as shown in Figure 4.4. We use an LSTM with a hidden size DT , and thus

TRENC(t0...tN) = LST Mtr (tN,TRENC(t0...tN−1)) ,

where LST Mtr() is an LSTM network that summarizes the trace line representations.

Classifying Traces. With the neural network components described so far we have

managed to encode traces into fixed length vector representations. The final step is to

use those computed representations to make a classification decision. We treat failing

traces as the positive class and passing traces as the negative class since detecting

failing runs is of more interest in testing. We compute the probability that a trace is

failing as

P(fail) = TRACECLASSIFIER([TRENC(t0...tN)]),

where the input of TRACECLASSIFIER is the output vector of TRENC. Our imple-

mentation of TRACECLASSIFIER is a multilayer perceptron (MLP) with sigmoid non-

linearities and a single output. The sigmoid enables the model’s raw output to be

viewed as a probability of the trace to represent a failing execution. It therefore

helps developers measure the model’s prediction certainty. It follows that P(pass) =

1−P(fail).

Training and Implementation Details. We train our network end-to-end in a

supervised fashion, minimizing the binary cross entropy loss. All network parameters

(parameters of LST Mv and LST Mtr and parameters of the MLP) are initialized with

random noise. For all the runs on our network we use DV = 128, DT = 256. The

TRACECLASSIFIER is an MLP with 3 hidden layers of size 256, 128 and 64. We use

the Adam optimizer [94] with a learning rate of 10e−5.

For our subject programs, we find the aforementioned feature values to be optimal

for performance and training time, after having experimented with other NN archi-

tectures, varying the DV , DT sizes, and the hidden layers in the MLP. We explored

increasing DV to 256, 512, DT to 512, 1024 and size of hidden layers to 512 and 1024.



4.3. Experiment 49

To handle class imbalance in datasets, we explicitly counteract the imbalance in

the loss function by down-weighting the samples within the most popular class such

that samples of both class participate equally within this function.

Our implementation of the proposed approach is available at https://github.

com/fivosts/Learning-over-test-executions.

4.3 Experiment

In our experiment, we evaluate the feasibility and accuracy of the NN architecture

proposed in Section 4.2 to classify execution traces for 15 subject programs and their

associated test suites. The selection of our subject programs is based on the build sys-

tem and compiler they use. Our instrumentation tool depends on CMake and LLVM-7,

therefore all case studies are required to satisfy this restriction. We also select pro-

grams with at least a few hundreds of test cases to enable the NN’s training process.

We investigate the following questions regarding feasibility and effectiveness:

Q1. Precision, Recall and Specificity: What is the precision, recall and specificity

achieved over the subject programs?

To answer this question, we use our tool to instrument the source code to record

execution traces as sequences of method invocations, arguments and return values. A

small fraction of the execution traces are labelled (training set) and fed to our frame-

work to infer a classification model. We then evaluate precision, recall and specificity

achieved by the model over unseen execution traces (test set) for that program. The

test set includes both passing and failing test executions. We use Monte Carlo cross-

validation, creating random splits of the dataset into training and test data. We created

15 such random splits and averaged precision, recall and specificity computed over

them.

Q2. Size of training set: How does size of the training set affect precision and

recall of the classification model?

For each program, we vary the size of training set from 5% to 30% of the overall

execution traces and observe its effect on precision and recall achieved.

Q3. Comparison against state of art: How does the precision, recall and speci-

ficity achieved by our technique compare against agglomerative hierarchical cluster-

ing, proposed by Almaghairbe et al. [11] in 2017?

We choose to compare against the hierarchical clustering work as it is the most

relevant and recent in classifying execution traces, even though it is not NN-based like

https://github.com/fivosts/Learning-over-test-executions
https://github.com/fivosts/Learning-over-test-executions


50 Chapter 4. Supervised learning over test executions as a test oracle

our approach. Traces used in their work are sequences of method invocations, similar

to our approach. Other test oracle work that use NNs is not used in the comparison

as they do not work over execution traces, and are limited in their applicability to

programs with numerical input and output which is not the case for programs in our

experiment.

Q4. Generalisation of classification model: Can a classification model inferred

from execution traces of one program be used to classify test executions over other

programs in the same domain?

For the network protocol domain, we evaluate the accuracy of using a classification

model inferred using traces from a single protocol detection finite state machine (FSM)

to classify test executions from other protocol FSMs.

4.3.1 Labelling Traces

All our subject programs are open source, and most of them were only accompanied

by passing tests. This is not uncommmon as most released versions of programs are

correct for the given tests. We take these correct programs to be reference implementa-

tions. To enable evaluation of our approach that distinguishes correct versus incorrect

executions, we need subject programs with bugs. We, therefore, generate PUTs by

automatically mutating the reference implementation using common mutation opera-

tors [86] listed below,

1. Arithmetic operator replacement applied to {+,−,∗,/,−−,++}.

2. Logical connector replacement applied to {&&, ||, !}.

3. Bitwise operator replacement applied to {&, |,∧, ,<<,>>}.

4. Assignment operator replacement applied to

{+=,−=,∗=,/=,% =,<<=,>>=,& =, |=,∧=}.

A PUT is generated by seeding a single fault into the reference implementation at

a random location using one of the above mutation operators. We used an independent

open source mutation tool1 to generate PUTs from a given reference program. Fig-

ure 4.5 shows a PUT generated by seeding a single fault into a reference program. As

seen in Figure 4.5, we run each test, Ti, in the test suite, through both the reference

program and PUT, and label the trace as passing if the expected output, EOi, from

1https://github.com/chao-peng/mutec

https://github.com/chao-peng/mutec


4.3. Experiment 51

Figure 4.5: Labelling test executions by matching actual and expected behavior.

the reference matches the actual output, AOi, from the PUT. If they do not match, the

trace is labelled as failing. We rejected PUTs from mutations that did not result in

any failing traces (outputs always match with the reference). This avoids the problem

of equivalent mutants. All the PUTs in our experiment had both passing and failing

traces.

4.3.2 Subject Programs

We chose subject programs from different domains to assess applicability of our ap-

proach, namely from the blockchain, deep learning, encryption and text editing do-

mains. A description of the programs and associated tests is as follows.

1. Ethereum [30] is an open-source platform based on blockchain technology,

which supports smart contracts. Within it, we evaluate our approach over the DIFFI-

CULTY module that calculates the mining difficulty of a block, in relation to different

versions (eras) of the cryptocurrency (Byzantium, Homestead, Constantinople etc.).

The calculation is based on five fields of an ETHEREUM block, specified in the test

input.

Tests. We use the default test inputs provided by Ethereum’s master test suite for

the DIFFICULTY module. We test this module for the Byzantium era of the cryptocur-

rency (version 3.0). The test suite contains 2254 automatically generated test inputs,

using fuzzing. Each test input contains one hex field for the test input of the difficulty

formula and another hex field for the expected output of the program. All the test



52 Chapter 4. Supervised learning over test executions as a test oracle

inputs provided with the module are passing tests with the actual output equal to the

expected output. As a result, we use the provided module as a reference implementa-

tion. As described in Section 4.3.1, we seed faults into the reference implementation

to generate PUTs, each containing a single mutation. For the difficulty module, we

generate 2 PUTs – 1. Ethereum-SE with a seeded fault in the core functionality of the

difficulty module, and 2. Ethereum-CD with a fault seeded in one of the functions that

is external to the core function but appears in the call graph of the module. The balance

between passing and failing tests varies between the two PUTs, Ethereum-CD being

perfectly balanced and Ethereum-SE being slightly imbalanced (828 failing and 1426

passing tests).

2. Pytorch [123] is an optimized tensor library for deep learning, widely used in

research. In our experiment, we evaluate our model over the intrusive ptr class,

which implements a pointer type with an embedded reference count. We chose this

class because it had a sizeable number of tests (other modules had < 20 published

tests).

Tests. Implementation of the class is accompanied by 638 tests, all of which are

passing. We, thus, use this as the reference implementation. As with ETHEREUM, we

apply mutations to the intrusive ptr implementation to generate a single PUT. Upon

comparison with the reference, 318 of the existing tests are labelled passing through

the PUT and 320 as failing.

3. Microsoft SEAL [134] is an open-source encryption library. In our experiment,

we study one component within Microsoft SEAL, the ENCRYPTOR module, which is

accompanied by tests. This component is responsible for performing data encryption.

Tests. The ENCRYPTOR component is accompanied by 133 tests. The provided

tests were all passing tests, with matching expected and actual output. As with previous

programs, we generate a PUT by mutating the original implementation. On the PUT,

11 tests fail and 122 pass.

4. Sed [104] is a Linux stream editor that performs text transformations on an input

stream.

Tests. We use the fifth version of SED available in the SIR repository [49]. This

version is accompanied by 370 tests, of which 352 are passing and 18 are failing.

The failing tests point to real faults in this version. Since the implementation was

accompanied by both passing and failing, we used it as the PUT. We did not seed

faults to generate the PUT.

5. L7-Filter [35] is a packet identifier for Linux. It uses regular expression match-



4.3. Experiment 53

ing on the application layer data to determine what protocols are used. It works with

unpredictable, non-standard and shared ports. We study the following 9 protocols,

implemented as FSMs, separately in our evaluation

1. ARES - P2P filesharing

2. BGP - Border Gateway Protocol

3. BIFF - new mail notification

4. FINGER - User information server

5. FTP - File Transfer Protocol

6. RLOGIN - remote login

7. TEAMSPEAK - VoIP application

8. TELNET - Insecure remote login

9. WHOIS - query/response system (eg. for domain name)

Tests. For each of the network protocol FSMs, we use test suites generated by

Yaneva et al.[162] that provide all-transition pair coverage. The test suites for the

FSMs have both passing and failing tests.

6. commons-lang [17] is a java library from Apache Commons with utility classes

for the java.lang API. This is a large codebase and contains Java classes such as

OBJECT and CLASS. We gather this subject program from the Defects4J database that

provides several versions of this library and a labelled set of passing and failing test

cases for each version.

Tests. Defects4J contains different versions of COMMONS-LANG. Most of them

have very few, or even no failing tests. These versions do not provide our model with

failing examples to learn and predict, therefore we discard them. We use the 34th

version of this program, which contains 559 passing and 27 failing tests. These 27

tests are caused by real bugs found in this version of the subject program, therefore we

do not seed faults to generate the PUT.

Checks to avoid data leakage. We ensure no test oracle data is leaked into traces.

We remove expected outputs, assertions, exceptions, test names and any other infor-

mation that may act directly or indirectly as a test oracle. For example, Ethereum



54 Chapter 4. Supervised learning over test executions as a test oracle

uses BOOST testing framework to deploy its unit tests. We remove expected out-

puts and assertions in the test code that compare actual with the expected output e.g.

BOOST CHECK EQUAL.

For PUTs generated by seeding faults into the reference implementation, we only

use one PUT for each reference implementation except in the case of Ethereum where

we generated two PUTs, since faults were seeded in different files. Generating more

PUTs for each reference implementation would be easy to do. However, we found our

results across PUTs for a given reference program only varied slightly. As a result, we

only report results over one to two PUTs for each reference implementation.

4.3.3 Performance Measurement

For each PUT, we evaluate performance of the classification model over unseen exe-

cution traces. As mentioned in Section 4.2.4, we use positive labels for failing traces

and negative labels for passing. We measure

1. Precision as the ratio of number of traces correctly classified as “fail” (TP) to the

total number of traces labelled as “fail” by the model (TP + FP).

2. Recall as the ratio of failing traces that were correctly identified (TP/(TP +

FN)).

3. Specificity or true negative rate (TNR) as the ratio of passing traces that were

correctly identified (TN /(TN + FP)).

TP, FP, TN, FN represent true positive, false positive, true negative and false nega-

tive, respectively.

4.3.4 Hierarchical Clustering

In research question 3 in our experiment, we compare the classification accuracy of

our approach against agglomerative hierarchical clustering proposed by Almaghairbe

et al. [11]. Their technique also considers execution traces as sequences of method

calls, but only encoding callee names. Caller names, return values and arguments are

discarded. We attempted to add the discarded information, but found the technique was

unable to scale to large number of traces due to both memory limitations and a time

complexity of O(n3) where n is the number of traces. For setting clustering parameters

for each subject program, we evaluate different types of linkage (SINGLE, AVERAGE,



4.3. Experiment 55

COMPLETE) and a range of different cluster counts (as a percentage of the total number

of tests): 1, 5, 10, 20 and 25%. We use Euclidean distance as the distance measure for

clustering. For each program, we report the best clustering results achieved over all

parameter settings.

4.3.5 Results

In this Section, we present and discuss our results in the context of the research ques-

tions presented in Section 4.3.

4.3.6 Q1. Precision, Recall and Specificity

Table 4.1 shows the precision, recall and specificity achieved by the classification mod-

els in our approach for the different PUTs. Results with the hierarchical clustering

approach by Almaghairbe et al. [11] are also presented in Table 4.1 for comparison,

but this is discussed in Q3 in Section 4.3.8. The column showing % of traces used

in training varies across programs, we show the lowest percentage that is needed to

achieve near maximal precision and recall.

The classification models for all 15 PUTs achieve more than 71% precision and

86% recall, with an average of 93% and 94%, respectively. Our technique works

particularly well for Pytorch, Sed and all networking protocols, achieving >= 94%.

This implies that the number of false positives in the classification is very low and a

large majority of the failing traces are correctly identified.

The classification models for all PUTs also achieve high specificity (>= 79%, av-

erage 96%). This implies that the NN models are able to learn runtime patterns that

distinguish not only failing executions, but also passing executions with a high degree

of accuracy. These results are unprecedented as we are not aware of any technique

in the literature that can classify both passing and failing executions at this level of

accuracy.

Analysis. To understand the results in Table 4.1, for each of the PUTs, we in-

spected and compared passing and failing traces using a combination of longest com-

mon subsequence, syntactic diffs, and manual inspection. We also performed ablation

- systematically removing information (one parameter at a time) from the traces, train-

ing new classification models with the modified traces and observing their effect on

precision, recall and specificity (TNR). In our experiments, we systematically remove

the following parameters from the original traces – function call names, arguments,



56 Chapter 4. Supervised learning over test executions as a test oracle

PU
T

L
ines

of
%

Traces
Total

O
urA

pproach
H

ierarchicalC
lustering

[11]

C
ode

fortraining
#

Traces
Precision

R
ecall

T
N

R
Precision

R
ecall

T
N

R

E
thereum

-C
D

55927
15

2254
0.80

0.82
0.79

1.0
0.49

1.0

E
thereum

-SE
55927

15
2254

0.99
0.82

0.86
1.0

0.25
1.0

Pytorch
21090

10
638

0.99
0.98

0.99
0.48

1.0
0.16

SE
A

L
E

ncryptor
25967

30
132

0.75
0.86

0.98
0.16

0.36
0.83

Sed
4492

10
370

0.94
0.94

0.99
0.35

0.63
0.86

com
m

ons-lang
49028

40
586

0.71
0.94

0.98
0.07

0.96
0.4

A
res

protocol
1261

3
16066

0.97
0.98

0.97
0.94

0.24
0.0

B
G

P
protocol

1025
5

16009
0.99

0.99
0.99

0.18
0.01

0.98

B
iffprotocol

627
15

1958
0.97

0.99
0.99

0.43
0.22

0.72

Fingerprotocol
791

10
2775

0.99
0.99

0.99
0.53

0.13
0.92

FT
P

protocol
995

10
9677

0.99
0.99

0.98
0.07

0.001
0.98

R
login

protocol
955

10
4121

0.97
0.96

0.99
1.0

0.04
1.0

Team
speak

protocol
3284

10
1945

0.95
0.99

0.96
1.0

0.11
1.0

Telnetprotocol
1019

10
319

0.98
0.96

0.95
0.29

0.02
0.87

W
hois

protocol
784

9
4412

0.98
0.99

0.99
0.49

0.03
0.98

Table 4.1: Precision, Recall and True Negative rate (TNR) using our approach and

hierarchical clustering.



4.3. Experiment 57

and return values. Tables 4.2 and 4.3 show the results from our ablation study. We

discuss results for each of the programs in the following paragraphs.

Over SEAL Encryptor, our approach achieves 75% precision, 86% recall and 98%

specificity when trained with 30% of the traces. Encryptor requires a higher fraction

of traces for training when compared to other PUTs, as the number of failing traces is

very small (= 11), unlike other programs. Although we handle imbalance in datasets

by weighting samples in the loss function, the NN still needs some representatives of

the failing class during training. Using 10% of the traces in training, will only provide

one example of failing trace (10% of 11) which is not enough for the NN model to

learn to distinguish failing versus passing behaviour. Training using 30% of the traces

includes 3 failing traces which allows the NN to achieve 75% precision. High precision

with only 3 failing traces is because all the failing traces for this program have the same

call sequence, which is sufficiently different from passing traces. Passing traces do not

all have the same sequence. However, due to the availability of a larger set of passing

traces (training with 30% is 40 passing traces), the NN is able to identify the different

method call patterns in passing traces accurately (98% specificity). The ablation study

in Tables 4.2 and 4.3 shows that all the parameters contribute to model performance as

removing them has a detrimental effect.



58 Chapter 4. Supervised learning over test executions as a test oracle

PUT Omitted Info. P R TNR

Ethereum-CD Function names 0.63 0.64 0.62

Return values 0.68 0.87 0.60

Arguments 0.54 0.78 0.35

Ethereum-SE Function names 0.96 0.84 0.35

Return values 0.99 0.97 0.93

Arguments 0.96 0.84 0.33

Pytorch Function names 0.99 1.0 1.0

Return values 0.99 0.99 0.99

Arguments 0.51 0.99 0.04

Seal
Encryptor

Function names 0.53 0.87 0.92

Return values 0.46 0.99 0.90

Arguments 0.28 0.88 0.76

Sed Function names 0.19 0.72 0.24

Return values 0.48 0.52 0.85

Arguments 0.30 0.40 0.73

commons-
lang

Function names 0.58 1.00 0.97

Return values 0.74 0.88 0.99

Arguments 0.78 0.95 0.99

Table 4.2: Precision (P), Recall (R) and Specificity (TNR) for each PUT omitting certain

trace information.



4.3. Experiment 59

PUT Omitted Info. P R TNR

Finger
Function names 0.99 0.95 0.99

Return values 0.98 0.97 0.99

Arguments 0.52 0.19 0.88

Telnet
Function names 0.93 1.0 0.76

Return values 0.82 1.0 0.25

Arguments 0.76 1.0 0.00

Ares

Function names 0.96 0.98 0.95

Return values 0.95 0.99 0.75

Arguments 0.93 0.96 0.68

BGP

Function names 0.99 0.98 0.98

Return values 0.98 0.99 0.98

Arguments 0.97 0.97 0.97

Biff

Function names 0.58 0.84 0.41

Return values 0.56 0.92 0.35

Arguments 0.51 0.64 0.40

FTP

Function names 0.99 0.99 0.98

Return values 0.97 0.97 0.98

Arguments 0.88 0.93 0.84

Rlogin

Function names 0.95 0.96 0.96

Return values 1.0 0.92 1.0

Arguments 0.85 0.91 0.94

Teamspeak

Function names 0.91 0.97 0.91

Return values 0.94 0.98 0.94

Arguments 0.77 0.86 0.77

Whois

Function names 0.96 0.96 0.96

Return values 0.96 0.96 0.96

Arguments 0.72 0.75 0.73

Table 4.3: Precision (P), Recall (R) and Specificity (TNR) for each PUT omitting certain

trace information.



60 Chapter 4. Supervised learning over test executions as a test oracle

For PyTorch, we achieve 99% precision, 98% recall and 99% specificity when

trained with 10% of the traces. The dataset for PyTorch PUT is balanced (318 passing

and 320 failing). 10% of the traces during training provides sufficient examples from

both passing and failing classes for the NN to learn to distinguish them. We find the

reason for the superior performance of our model over PyTorch is because all failing

traces have significantly fewer trace lines than passing traces. The consistent difference

in length of traces between the two classes allows the NN to easily distinguish them.

The ablation study in Tables 4.2 and 4.3 show arguments in traces matter for model

performance, while method names and return values are irrelevant.

With Sed, our model achieves 94% precision and recall, and 99% specificity using

10% of the traces in training. The dataset for Sed is unbalanced, with only 18 failing

and 352 passing. 10% of the traces in training uses 2 failing tests and 35 passing tests.

Given the extremely small sample of failing tests, it is surprising that the model classi-

fies and identifies failing traces with such high precision and recall. To understand this,

we examined both the passing and failing trace lines. We find the length of passing and

failing traces is similar. All failing traces, however, have a call to a function, getChar,

towards the end of the trace. This function call is absent in passing traces. We believe

associating this function call to failing traces may have helped the performance of the

NN. The ablation study in Tables 4.2 and 4.3 show all the parameters considered in our

traces are important for model performance.

For Ethereum-CD, our model achieves 80% precision, 82% recall and 79% speci-

ficity when trained with 15% of the traces - 169 passing and 169 failing. Ethereum-CD

was generated from the reference implementation using an arithmetic operator muta-

tion in a function deeply embedded in the call graph for the difficulty module. Dif-

ferences between failing and passing traces are not apparent, and analysing longest

common subsequence, syntactic diff and manual inspections did not reveal any char-

acteristic feature for failing or passing traces. We believe the model performance of

around 80% precision, recall and specificity is due to the similarity between passing

and failing traces and the esoteric nature of the mutation. Ablation study for this pro-

gram reveals that all features in the traces slightly impact model performance.

For COMMONS-LANG, our model achieves 71% precision, 94% recall and 98%

specificity using 40% of the traces. This subject program only contains 27 failing ex-

ecutions versus 559 passing executions. There is a stark imbalance between passing

and failing traces for this program which impacts the precision achieved. We also

observe failing execution traces consist of multiple calls to a string conversion func-



4.3. Experiment 61

tion, toString towards the final parts of the sequence. We find this is can serve as a

distinguishing feature between passing and failing executions. It is worth noting that

our classifier’s performance significantly drops when removing function names in the

ablation study and it may be because the toString function is no longer visible. In

contrast, removing arguments or return values does not affect performance visibly.

For Ethereum-SE, our model achieves 99% precision, 82% recall and 86% speci-

ficity with 15% traces in training - 214 failing and 124 passing. Unlike Ethereum-CD,

mutation to generate Ethereum-SE was in the core functionality. Failing traces when

compared to passing traces had differences towards the end of the trace which is eas-

ily distinguished by the NN. Curiously, removing return values in the ablation study,

increases recall and specificity. This may be because the model was previously over-

fitting to return values in traces which may not have been relevant to the classification.

For L7-Filter networking protocols, all programs have enough test inputs to help

our model learn program features with a small percentage of execution traces. Espe-

cially for ARES protocol with 16066 test inputs, our model can achieve 97% precision,

98% recall and 97% specificity labelling only 3% of the total traces for training. For

BGP protocol, we train on 5% of the total traces and achieve 99% precision, 99% recall

and 99% specificity. In all networking protocols, failing traces correspond to execu-

tions that lead to non-accepted states of the protocol’s finite state machine. We observe

that the sequence of function invocations is similar in both passing and failing execu-

tions. However, state information in return values and arguments is critical in order to

determine correctness. The ablation study supports this argument, as removing func-

tion names in any networking protocol has no effect in the classifier’s performance.

On the other hand, in all protocols except for BGP, removing arguments dramatically

decreases the model’s precision, recall and specificity. Removing return values leads

to a slight performance reduction. In BIFF and TELNET, return values seem to be as

important as arguments for our model’s accuracy.

Summary. Overall, we find NN models for all our PUTs perform well as a test

oracle, achieving an average of 93% precision, 94% recall and 96% specificity. The

NN models perform exceptionally well for programs whose traces have characteristic

distinguishing features between passing and failing executions, such as differences

in trace lengths or presence of certain function call patterns. In the absence of such

features, NNs can still do well if it has enough training samples, as in Ethereum-CD.

We also find our approach can cope effectively with unbalanced datasets – four of the

fifteen programs in our experiment have unbalanced passing and failing traces. Even



62 Chapter 4. Supervised learning over test executions as a test oracle

though we attempt to explain what patterns lead to our model to succeed or fail, it

is not always possible to explain the relationship between the input features and the

predicted outcome. Explainability in neural networks is still an open problem.

4.3.7 Q2. Size of training set

Figures 4.6 and 4.7 shows precision and recall achieved by our approach with differ-

ent training set sizes. The fraction of traces needed in training to achieve near max-

imal performance was 3% to 40% across the PUTs. Excluding SEAL Encryptor and

commons-lang, all the other programs only needed to be trained over 15% of the traces

to achieve near maximal performance. Both SEAL encryptor and commons-lang had

very few failing traces, requiring a larger fraction of traces to get sufficient represen-

tation of failing classes during training. As seen in the plots in Figures 4.6 and 4.7,

increasing the % of traces used in training does not increase precision and recall for

all PUTs. For instance, Pytorch and Sed observe a dramatic increase in precision and

recall when going from 5 to 10% traces in training. Performance, however, stagnates

after that point with increasing traces. With Ethereum-CD and Ethereum-SE, precision

or recall becomes worse after 20% traces. This maybe because the model is overfitting

to the training traces.

It is also worth noting that the absolute size of our training set varies across subject

programs. We find our approach works with training sets with as few as 3 failing traces

to as many as 214. The range of passing tests in training was between 31 and 169.



4.3. Experiment 63

Figure 4.6: Precision and recall achieved by classification model over each PUT.



64 Chapter 4. Supervised learning over test executions as a test oracle

Figure 4.7: Precision and recall achieved by classification model over each PUT.



4.3. Experiment 65

4.3.8 Q3. Comparison against state of art

Table 4.1 presents precision, recall, and specificity (TNR) achieved by the agglomera-

tive hierarchical clustering proposed by Almaghairbe et al. [11] on each of the PUTs.

Comparing the precision, recall and TNR of our approach versus hierarchical clus-

tering, we find our approach clearly outperforms the clustering approach on all but

the Ethereum-CD PUT. This is because the hierarchical clustering assumption does

not hold for these programs. According to this assumption, passing traces tend to be

grouped in a few big clusters and failing traces are grouped into many small clusters.

However, for these programs, passing traces tend to be grouped in many small clusters

based on their call sequence pattern, making it hard to distinguish them from failing

traces by simply comparing cluster sizes.

With Ethereum-CD, the hierarchical clustering approach achieves precision and

specificity of 100% and a recall of 49%. This is achieved with complete-linkage clus-

tering, Euclidean distance and a cluster count equal to 10% of total traces. In contrast

our approach achieves a precision of 80%, recall of 82% and specificity of 79%. To

enable better comparison, we plot the precision-recall curve of the NN model in Fig-

ure 4.8 for Ethereum-CD, using 15% of the traces in training.

This curve shows the precision and recall of our trained model with respect to

different values of the classification threshold. It is clear from the plot that for the

same value of recall (49%), hierarchical clutering performs marginally better than our

approach - 100% versus 99%. Hierarchical clustering works well over the Ethereum-

CD PUT because the traces are clustered into just one big passing cluster and one

failing cluster. Lack of cluster fragmentation improved accuracy of the hierarchical

clustering approach. Nevertheless, our model achieves comparable performance for

such traces. In addition, our model allows trade off between precision and recall by

changing the classification threshold which may be driven by requirements or priorities

of the use case. This tradeoff is not possible with the clustering approach.

4.3.9 Q4. Generalisation

In this research question, we conduct an initial exploration into the ambitious possibil-

ity of using a model, trained using traces from one subject program, to classify traces

from other programs in the same application domain. Figures 4.9 and 4.10 represent

precision and recall achieved by models trained using traces from BIFF protocol and

WHOIS protocol, respectively, to classify traces produced by other FSMs. We find



66 Chapter 4. Supervised learning over test executions as a test oracle

Figure 4.8: Precision-Recall curve for ETHEREUM-CD.

that the model trained using traces from BIFF achieves high accuracy over the ARES

protocol with precision and recall close to 1.0, and reasonable precision (> 0.8) for

BGP, FTP, RLOGIN, TEAMSPEAK, WHOIS protocols. Lowest precision (0.17) was

observed with TELNET. Average precision achieved in classifying traces from unseen

FSMs was 0.79. Recall achieved by the model is lower than precision indicating that

the model missed identifying failing traces in each of these protocols. Overall, the

model trained with BIFF traces was successful in identifying failing traces in other

FSMs that have similar patterns to BIFF. Failing traces with differing patterns were

missed. We confirmed this observation by checking results from the WHOIS model.

Although precision and recall numbers are different from the BIFF model, the reason-

ing for classification success was the same - extent of similarity in execution patterns

between FSMs. With the current approach, we find there is scope to generalise a

classification model from a single FSM to multiple FSMs in the networking domain.

However, achieving high accuracies with generalisation is a difficult problem and we

plan to take small, definitive steps towards addressing this challenge in the future. As

a next step, we will explore tuning the classification model from an individual FSM

with sample traces from other FSMs to improve generalisation performance.



4.3. Experiment 67

Figure 4.9: Biff trained model - Precision and recall for unseen fsms.

Figure 4.10: WHOIS trained model - Precision and recall for unseen fsms.

4.3.10 Threats to Validity

We see three threats to validity of our experiment based on the selection of subject

programs and associated tests.

First, PUTs for 4 out of the 15 subject programs in our experiment were generated

by seeding faults into a reference implementation. A reference implementation with

only passing tests is not suitable for evaluating our approach. To address this, we gen-

erated a faulty implementation and ran the original tests through the PUT to gather both

passing and failing traces. It is possible using real faults in place of seeded faults may

lead to different results, or introduce faults that are different than those humans make.

However, Andrews et al. have shown the use of seeded faults leads to conclusions

similar to those obtained using real faults [16, 83]. For one of the subject programs,

Sed, we did not artificially seed faults, but instead used the existing implementation

as it was accompanied by both passing and failing tests. On a real-life scenario where

no real bugs are known, the developer needs to introduce seeded faults into a tested

codebase to help the neural network learn the distinctive features between the passing



68 Chapter 4. Supervised learning over test executions as a test oracle

and failing class. According to [16, 83]such mutations would lead to similar behaviour

with real bugs.

Second, the number of tests that accompanied our subject programs was not very

large, ranging from 132 to 16066 tests. The NN models in our experiments produced

good performance with small to medium sized test suites that may be automatically

or manually generated. Our approach is constrained by the amount of training data

and not by the size of the test suite. As a result for programs accompanied by large

test suites, the NN model will need a larger training set (fraction of traces to be used in

training might still be 14%). Depending on the total size of the test suite, the percentage

needed to be labelled by an expert could still be large. Nevertheless, the labelling effort

(i.e. computing manually the expected value for each test input by understanding a

codebase’s functionality) for a fraction of the tests in our approach is still less than the

current practice of labelling all the tests.

Finally, we conducted our study on subject programs from 5 different application

domains which is not representative of all application domains. Different application

domains may have ranging programming paradigms, therefore different patterns in

errors within execution traces that may be easier or more difficult to predict. For ex-

ample, a parser program is expected to have many recursive function calls whereas a

video game a complex interaction between different classes. It is not guaranteed that

a neural network will learn to represent each of them with the same accuracy. Given

that our approach has no domain specific constraints, we believe it will be widely ap-

plicable.

4.4 Summary

In this Chapter, we describe a novel approach for designing a test oracle as a NN model,

learning from execution traces of a given program. We have implemented an end to

end framework for automating the steps in our approach

1. Gathering execution traces as sequences of method invocations.

2. Encoding variable length execution traces into a fixed length vector.

3. Designing a NN model that uses the trace information to classify the trace as

pass or fail.



4.4. Summary 69

We support Java programs in addition to C/C++. In addition, we conduct an exten-

sive evaluation using 15 realistic PUTs and tests. We found the classification model

for each PUT was effective in classifying passing and failing executions, achieving an

average of 93% precision, 94% recall and 96% specificity while only training with an

average 14% of the total traces. We outperform the hierarchical clustering technique

proposed in recent literature by a large margin of accuracy for 14 out of the 15 PUTs,

and achieved comparable performance for the other PUT. We did an initial experiment

with generalising a classification model learned over one protocol FSM to classify ex-

ecutions over other network protocol FSMs. The results for precision and recall over

other unseen FSMs was not as high as the individual FSM classification models. In the

future, we plan to explore techniques that will improve the generalisation performance

of the NN models.

Practical use. Our approach can be applied out of the box for classifying tests

for any software that can be compiled to LLVM IR or Jimple IR. We gather execu-

tion traces for test inputs automatically, and require a small fraction of the traces to

be labelled with their pass or fail outcomes (average 15% in our experiments). The

remaining traces will then be classified automatically. Our approach is promising with

high accuracy and has clear benefits over current industry practices where developers

label all the tests. Our future work will focus on methods to improve the classification

accuracy while reducing the training data requirement using techniques like transfer

learning.

Replacing a PUT with the Test Oracle. Our approach learns to classify pro-

gram executions as “passing” or “failing” by extracting representations from execution

traces. Implicitly, this requires the test oracle to reason about a program’s reference

result. Given the test oracle has this information internally it could replace the PUT

and act as the actual output provider, given a test input. This could happen with a

different NN design, training and labelling process (e.g. regression instead of binary

classification) and is out of scope for this work. Our tool does not aim to replace a

reference program. Instead we aim to provide the testing expert with a tool that will

assist them in labeling test executions. A NN to provide reference outputs for a PUT

would be helpful in cases where compiling and executing programs would be slow and

acquiring quickly an output with a slight loss of accuracy is acceptable.





Chapter 5

BenchPress: A Deep Active

Benchmark Generator

5.1 Introduction

The research contributions presented in this Chapter are the design and implementa-

tion of a deep learning, unsupervised generative model for compiler benchmarks that

uses active learning to search compiler feature spaces for important features. In the

following Sections, the approach, implementation and evaluation of this technique are

described.

We develop BENCHPRESS [53], a BERT-based OpenCL benchmark generator [46,

139] that targets and synthesizes benchmarks in desired parts of the feature space.

We use active learning to choose parts of the feature space and beam search to steer

BENCHPRESS’s generated samples towards the requested features. We train

BENCHPRESS with OpenCL code samples that we collect by mining BigQuery [60]

and GITHUB directly using its API [58]. We support composite data types and calls

to user-defined functions in our dataset and benchmark generation. BENCHPRESS is

a bidirectional generative model and learns to generate code in any part of a sequence

by jointly considering left and right context. We achieve this with a new learnt token,

the [HOLE], which hides a sequence from the input, whose length is unknown to

BENCHPRESS during training. BENCHPRESS learns to fill [HOLE] by iteratively

predicting an arbitrary number tokens that are likely to lead to a compiling function.

BENCHPRESS outperforms CLGEN in the task of undirected program generation

from a fixed input feed, generating 10× more unique OpenCL kernels that are 7.5×
longer on average, with a compilation rate of 86% compared to CLGEN’s 2.33%.

71



72 Chapter 5. BenchPress: A Deep Active Benchmark Generator

BENCHPRESS strongly outperforms benchmark synthesizers CLGEN, CLSMITH [164,

103], and human written code from GITHUB in reaching close to the features of Ro-

dinia benchmarks, developed by compiler experts. Finally, BENCHPRESS uses active

learning, specifically query by committee [135], to search the feature space and find

missing features to improve Grewe’s et al. [61] CPU vs GPU heuristic. Enhancing the

heuristic’s dataset with BENCHPRESS’s benchmarks improves the heuristic’s speedup

relative to the optimal static decision by 50%, increasing it from 4% to 6%, when the

maximum possible speedup for this task is 12%.

In this Chapter, we present the following contributions:

1. We are the first to develop a feature-space agnostic, steerable code generator

towards desired program features.

2. We develop an automated approach to rank the feature space of downstream

tasks with active learning.

3. We enable bidirectional source code generation by inserting [HOLE] tokens in

any part of a sequence.

5.2 Motivation

Figure 5.1 shows a two-dimensional slice of the Grewe’s et al. [61] feature space:

number of computational instructions vs number of memory instructions. Figure 5.1

also shows how the OpenCL benchmarks found in the Rodinia suite map into this

plane, represented as purple diamonds. We select to plot the benchmarks’ distribution

with respect to these two features because they are accurate in characterizing the type

of a subject OpenCL workload. Having enough benchmarks to cover lots of different

ratios of computational to memory instructions is desirable for predictive models that

generalize well. What we find is that much of this two dimensional space is uncovered.

54 of the 58 Rodinia examples cluster in the lower left corner, the rest of the space

having only four examples. Any optimization decision for programs in this area of the

space would not be accurate due to lack of representative examples.

CLGEN attempted to address this problem by automatically generating more train-

ing examples. However, the generated kernels lacked feature diversity and provided

even poorer coverage of the feature space. Figure 5.1 represents their position in the

2D space as red dots. Almost all of them are concentrated in a corner covering a small



5.3. Approach 73

Figure 5.1: # Memory operations and # computational instructions for (a) Rodinia

benchmarks in purple diamonds and (b) CLGEN’s samples in red dots. Generating

samples with missing features is vital for predictive modeling’s performance.

percentage of the feature space. While CLGEN can generate hundreds of millions of

unique kernels, almost all of them will fail to compile. As the probability of having at

least one illegal token in the kernel body increases with the number of tokens, only tiny

kernels are valid. In our experiments in Section 4.3.5, the longest compiling CLGEN

kernel had 8 lines and 102 tokens. Given the small number of tokens in valid kernels,

there is a high degree of repetitiveness in the generated corpus, not only in terms of

features but also in terms of structure and functionality. As a result, this approach is not

well suited to augmenting the training set with diverse feature benchmarks. There is a

compelling need to generate training points for uncovered regions of the feature space

and we attempt to address this need with BENCHPRESS. In the following Sections,

we discuss our approach and evaluation of BENCHPRESS, comparing it to the existing

state-of-the art for feature space coverage.

5.3 Approach

We present BENCHPRESS, a deep learning model for directed compiler benchmark

generation. BENCHPRESS is the first steerable synthesizer that can synthesize compil-

ing functions with target features. BENCHPRESS steers its generation with a feature



74 Chapter 5. BenchPress: A Deep Active Benchmark Generator

space-agnostic beam search algorithm to search the space and steer BENCHPRESS’s

generation towards the target features. Given a downstream task, BENCHPRESS learns

what features to target in order to improve its performance by searching the space with

active learning. BENCHPRESS’s language model is based on BERT [46], which we

transform into a generative model.

The key feature in BENCHPRESS that enables bidirectional code generation is a

new token, namely, the [HOLE] token. Compared to traditional sequence to sequence

generative models that can only add tokens at the end of a sequence, bidirectionality is

an important feature that allows BENCHPRESS to apply edits on previously generated

code and also insert tokens that fit into the general context of an existing function. We

train BENCHPRESS to learn and understand how to iteratively fill holes of unknown

length that can be found in any part of an input sequence by conditioning it on the left

and right context of the [HOLE]. Later, this approach enables us to use beam search

and steer benchmark generation into the feature space iteratively as it can regress to

previously generated benchmarks with new holes and produce newer samples with

better features.

Figure 5.2 illustrates an overview of our approach. BENCHPRESS consists of three

main components:

1. Learning corpus collection and processing.

2. Source code language modeling.

3. Feature space search and benchmark generation.

We discuss each step in the following Subsections.

5.3.1 Learning Corpus

Modeling source code accurately requires large amounts of data [100] similarly to

other deep learning tasks. We develop a tool to collect data from BigQuery’s GITHUB

dataset [60]. We also use GITHUB’s API [58] and mine directly extra repositories that

are not included in BigQuery. We choose OpenCL to train and evaluate BENCHPRESS

for several reasons. First, many performance critical workloads are still being devel-

oped in OpenCL and ensuring optimal performance is important. Second, OpenCL

is relatively simple to compile and execute compared to more generic languages (e.g.

C/C++) because it has limited dependencies to third-party libraries and header files.



5.3. Approach 75

Figure 5.2: BENCHPRESS’s high-level approach. We highlight the corpus collection

and processing in green, the language modeling for source code in red and the feature

space search for benchmark generation in orange.

Finally, two easily accessible baselines that we can compare against are trained for

OpenCL generation. Even though we use OpenCL in this contribution, BENCHPRESS

can work without any modifications for any programming language. However, a more

appropriate tokenizer for the desired language would make the process more efficient.

Also, a driver that satisfies the language’s library dependencies, compiles and executes

the generated code has to be developed.

There are a few innovations in how we pre-process the code compared to previous

works. First, we inline included header files recursively into source files to resolve type

dependencies. Additionally, we automatically extract custom data types (e.g. STRUCT,

TYPEDEF) and utility functions found in the unprocessed corpus and place them into

header files that are accessible throughout BENCHPRESS’s pipeline. This way, we re-

solve most type dependencies by retaining the functionality and semantics of the orig-

inal, human-written programs. These two steps enable us to increase significantly the

amount of compiling kernels we end up with in our training dataset. Second, we isolate

kernels into single instances because BENCHPRESS is trained on complete functions.

From the previous steps, the type dependencies of each kernel are known and we au-

tomatically provide them to the compiler, retaining their compilability. Finally, we

compile all kernels with Clang and reject those that do not compile.

Next, we re-write identifiers by randomly sampling the alphabet, eliminating spuri-



76 Chapter 5. BenchPress: A Deep Active Benchmark Generator

ous naming patterns in the corpus. All kernels are padded to BENCHPRESS’s sequence

length and kernels that are longer than this are truncated to fit. This helps BENCH-

PRESS train its later indices’ positional embeddings more effectively, for which we

have less training information compared to earlier indices. Finally, we derive a tok-

enizer by parsing the AST of all source code. We reserve tokens for all OpenCL key-

words and all intrinsic OpenCL function name identifiers found in the official OpenCL

specifications [121]. We analyze the dataset and tokenize by word the most common

function names and custom data type identifiers that we have collected. We encode

all literals and infrequently used custom types and functions character by character

to avoid exploding the size of the vocabulary. We define 5 meta tokens: [START],

[END], [PAD], [HOLE], [ENDHOLE]. The derived tokenizer holds in total 2,201

unique tokens.

5.3.2 Language Modeling

BENCHPRESS is based on BERT [46], a Transformer-based model originally designed

for natural language modeling. BERT is trained to predict words that have been ran-

domly hidden by [MASK] tokens. This way BERT learns fitting words with respect

to their position in a sequence and also the left and right context, i.e., the text sequence

before and after the masked token to be predicted. This type of training helps BERT

learn what words mean within a given context, improving downstream tasks that rely

on that knowledge.

While this is a useful property, it is not enough to turn BERT into a generative

model. We also want to be able to extend a kernel by inserting an arbitrary number

of tokens in arbitrary positions. We could iteratively add a [MASK] token to get one

extra token at a time, until we have a full statement. This would be limiting. Each

time the new token would be selected based on its probability of completing forming

a compilable kernel. Every intermediate kernel in the iterative process would have to

be compilable or similar to a compilable, which is not a general way for augmenting

kernels.

Clusters of [MASK] tokens could allow us to insert multiple tokens in each itera-

tion. This is still unsatisfactory. The number of [MASK] tokens in the cluster biases

the kind of code that will be generated: if we ask such a generator to produce five

tokens, it will give us a five token statement that could be expected to close this gap,

not a five token sequence that could be the start of a much longer statement. We could



5.3. Approach 77

place the left and right context to the edges of a sequence and fill intermediate positions

with [MASK] tokens. BENCHPRESS could predict a vocabulary or a stop token for a

[MASK], allowing for arbitrary sequences. We test this configuration and sample a

trained model with a fixed input feed. BENCHPRESS is unable to learn the [MASK]s’

left and right context conditionally, when many [MASK]s are in a sequence, which

leads to zero samples to compile or even resemble reasonable code.

What we do instead is to extend BERT’s functionality with a new pair of learnt

tokens, the [HOLE] and the [ENDHOLE]. [HOLE] follows the same logic with

[MASK], however the number of tokens that have been hidden behind it is unknown

to the model during training. The model only learns to predict the first token of an

arbitrarily long missing sequence. At inference-time, we iteratively predict the first

token of the remaining sequence and re-insert it just before the [HOLE]. This way

BENCHPRESS learns to generate arbitrarily large code sequences within any part of a

sequence.

Figure 5.3: When a [HOLE] is inserted to a kernel at a random index, it hides a random

number of tokens, unknown to BENCHPRESS. On this example, BENCHPRESS learns

to predict the first hidden token, P.

Figure 5.3 shows how a [HOLE] is inserted into a function to create a datapoint. A

random starting index and a random length are selected. The choice of index and length

are only restricted by a potential overlap of the prospective hidden sequence with any of

the other meta token or the maximum hole length that is defined as a training parameter

for the architecture as a percentage of each function’s length. When the specifications

of a hole have been settled, the hidden sequence is discarded. Only the first token of

it is kept as the target prediction for that hole. A hole can also represent an empty

sequence, i.e. hiding 0 tokens. In this case, the target prediction during training is



78 Chapter 5. BenchPress: A Deep Active Benchmark Generator

[ENDHOLE]. The training instances are randomly generated on demand, the entire

space of possible instances is too large to be pre-generated. In this work, we only

insert 1 hole per training instance for BENCHPRESS to learn. Multiple holes could be

used during training, but this is not needed during BENCHPRESS’s current benchmark

generation task.

5.3.3 Benchmark Generation

BENCHPRESS’s synthesizer operates as a generative model with the help of [HOLE] /

[ENDHOLE] tokens. It receives an input with 1 or more [HOLE] tokens and returns

a completed benchmark. For each [HOLE], BENCHPRESS predicts one token that fits

in the sequence at the [HOLE]’s index, with respect to its left and right context. If the

predicted token is not [ENDHOLE], it moves the [HOLE] and all subsequent tokens

one position to the right and inserts the predicted token to the initial target index. This

intermediate kernel is iteratively provided as an input for the next token prediction

and the process is repeated until BENCHPRESS predicts [ENDHOLE]. This marks a

[HOLE] is complete and the final sample is returned, as shown in Figure 5.4.

Figure 5.4: During sampling, BENCHPRESS receives an input and predicts iteratively the

fitting tokens. BENCHPRESS predicts [ENDHOLE] to indicate a [HOLE] is complete.

On its own, this process only augments kernels. We also make it the first to target

desired parts of a feature space by repeatedly generating kernels, selecting the ones

closer to the target features, inserting new holes, and generating new augmented ker-

nels. We use beam search to steer generation.



5.3. Approach 79

Given a target feature vector, BENCHPRESS samples a starting, fixed input feed

‘kernel void [HOLE]’ and yields a collection of starting benchmarks. We reject

benchmarks that do not compile and for the remaining we measure the Euclidean

distance between their feature vectors and the target features. We select the top-K

candidates that have the shortest distance from the target and we use them as inputs

for the next generation. To improve diversity among promoted benchmarks we in-

troduce randomness in the selection of top-K candidates: Each top-K sample, has a

fixed probability p = 0.15 to be replaced by another random candidate of its genera-

tion. BENCHPRESS lazily creates multiple different input instances for each selected

candidate by placing a random [HOLE] of random length in order to synthesize a

new sample. BENCHPRESS generates a successive collection of benchmarks, of which

K compiling ones with the shortest distance from the target again are selected with

p-randomness and used as inputs. This search continues until a sample achieves a dis-

tance of 0 from the target, or until a threshold of generations (i.e. beam search depth) is

exhausted. BENCHPRESS returns the closest benchmark to the target’s features along

with all beam search’s intermediate benchmarks that cover the model’s traversal of

the feature space starting from the origin and ending near the target features. For the

benchmark synthesis process, we use categorical sampling with temperature to sample

BENCHPRESS’s probabilities. The sampling temperature, beam search’s width K and

depth are defined as sampling parameters.

In the worst case, BENCHPRESS’s directed program generation is slow, ranging

from a few seconds to one hour, as it typically requires thousands of language model

inferences. However, BENCHPRESS is the first program synthesizer that can target a

set of desired program features.

5.3.4 Feature Space Search

A steerable synthesizer allows the generation of benchmarks with desired features.

However, the automatic selection of those parts of the feature space that are worth

targeting is challenging and depends on the downstream task.

BENCHPRESS attempts to solve this by searching the feature space with query by

committee [135], a well-known active learning technique. We implement a commit-

tee of (a) 7 NN, (b) 7 k-NN and (c) 7 K-means models. We set their initial state

by passively training on a small portion of the downstream task’s data. We sample

the committee with thousands of random points in the space, we collect the predicted



80 Chapter 5. BenchPress: A Deep Active Benchmark Generator

labels and measure the entropy for each sample. The entropy shows the level of uncer-

tainty among the committee about the predicted label of a given point and is defined

as:

H =−
lεL

∑(p(l)∗ log(p(l))) (5.1)

where L is the set of all predicted labels and p(l) the probability of label l in the

committee’s prediction set for a given input. The highest entropy point is an important

feature vector to target and BENCHPRESS steers benchmark generation towards it with

the approach explained in 3.3. We collect the labels of generated benchmarks and

we train incrementally the committee with them. Then, we sample it to find the next

highest entropy point. We continue this process until we saturate the feature space.

BENCHPRESS’s committee is agnostic to the downstream task or the feature space and

its I/O dimensions are hyper-parameters selected with respect to the task’s feature and

prediction dimensions.

Our active learning algorithm determines the useful range of a downstream task’s

feature space over multiple iterations. Each part of the feature space that is targeted is

likely to improve the task’s overall accuracy. By design, BENCHPRESS does not intro-

duce randomly scattered datapoints to an application dataset’s feature space, therefore

no irrelevant benchmarks are added. Once no high-uncertainty areas are found (based

on entropy), the active learning process halts.

5.4 Experimental Setup

We describe the configurations used in training BENCHPRESS, and the parameters

used in evaluation, namely (1) Feature Spaces - we use three different representations

of program features, (2) Target Benchmarks - We use Rodinia benchmarks [33] and

their features as the target for synthesis by BENCHPRESS, (3) Comparison to state of

the art - we compare BENCHPRESS with code synthesizers and human written code in

improving Grewe’s et al. heuristic model.

5.4.1 Platforms

We train BENCHPRESS and conduct all our experiments on two 64-bit systems each

having one Intel Xeon E5-2620 16-core CPU, 2x Nvidia GeForce GTX 1080 GPU and

32 Gigabytes of RAM. We use Ubuntu 18.04, PyTorch 1.9.1 [123], CUDA version 11.4



5.4. Experimental Setup 81

and Nvidia driver version 510.47.03. We use Clang-10 as BENCHPRESS’s compiler

and LLVM-10 to compile and execute InstCount and Autophase [65] extracting tools.

For compatibility reasons, we are required to use Clang LibTooling from LLVM-6 to

execute Grewe’s et al. [61] feature extractor.

5.4.2 Language Modeling for source code

We collect OpenCL code from GITHUB and split it into single function instances. We

ensure no kernels that come from benchmarks suites used in the evaluation are included

in our corpus by excluding the repositories or their forks that contain them. We do this

to avoid the model train on benchmarks that will be requested to target during the

evaluation. We pre-process text, re-write variables and reject OpenCL kernels that

do not compile. In total we mine 63,918 OpenCL kernels across 12,860 GITHUB

repositories and we successfully compile 19,637 of them (31% compilation rate).

We train BENCHPRESS on our OpenCL Corpus for 10M steps with a batch size

of 32. For BENCHPRESS’s BERT model parameters, we select 2 hidden layers, 12

attention heads. We set intermediate size, hidden size and max position embeddings

(i.e. sequence length) to 768. We set the sequence length to 768 as it is the largest

length our hardware can support while keeping the model’s training time to a sustain-

able level. We set the maximum length of holes to be 90% of a kernel’s token length,

i.e. a hole can hide almost all tokens of a training instance. We optimize the model

using Adam optimizer with a learning rate that reaches a maximum of 45x10−6 after

20,000 warmup steps and decays linearly over the remaining training steps. We train

BENCHPRESS’s language model to a final loss value of 0.28. The selection of hyper-

parameters and number of training epochs are decided after validating our candidate

models in generating kernels and trading-off the synthesis quality against the amount

of hardware needed to sample them.

5.4.3 Feature Spaces

Compiler predictive models use static code features to represent programs and learn

optimisation heuristics. A vector of independent characteristics represent a single pro-

gram. Each of them are typically an integer or float value. Features are extracted at

the Syntax level by traversing the AST or at the IR level using the compiler’s middle

end (e.g. LLVM-IR). A feature space is the collection of all possible program feature

vectors.



82 Chapter 5. BenchPress: A Deep Active Benchmark Generator

BENCHPRESS is a generative model that can be steered to generate samples for

a desired part of the feature space. We evaluate BENCHPRESS on three source fea-

ture representations we find across the literature, (a) Syntax-level Grewe’s et al. fea-

tures [61], (b) IR-level LLVM-InstCount [98] and (c) IR-level Autophase [65].

Grewe’s et al. features are extracted with Clang’s LibTooling and used to train

their predictive model on the CPU vs GPU task for OpenCL kernels. This feature

space holds 8 dimensions. 4 dimensions describe the number of 1) computational, 2)

relational, 3) atomic and 4) memory access instructions. The feature space also counts

the different type of memory instructions, local memory or coalesced. Finally, the

computational to memory and coalesced to memory ratios are defined.

InstCount is a standard pass provided by LLVM-IR framework and used in Com-

piler Gym by Cummins et al. [41]. InstCount holds 70 dimensions: 67 dimensions

each counting all 67 LLVM-IR instruction types and total number of 1) instructions,

2) basic blocks and 3) functions. Autophase by Huang et al. [65] holds 56 dimensions.

While many of the features used in Autophase are shared with InstCount, they intro-

duce new ones such as number of input arguments to PHI Nodes or total number of

memory instructions. On the other hand, they do not include the count of some LLVM

instructions that are not considered to contribute to a program’s representation, e.g.

CATCHPAD instruction.

In this work, BENCHPRESS targets both static and runtime features representing

programs. InstCount and Autophase feature spaces include only static features. Grewe

et al. define two runtime features: the local size of a kernel and the amount of trans-

ferred bytes during execution. For both types, the targeted benchmark generation for

BENCHPRESS does not change. The language model produces candidate benchmarks

whose features are extracted. When the feature space depends only on static features,

only a compiler pass is typically required. For runtime features, the feature extractor

needs to drive the kernel to collect them. This adds an extra time overhead.

BENCHPRESS is also agnostic to the structure of targeted features. The feature

spaces we use consist of fixed arrays of numerical features that are easy to navigate to

with Euclidean distance. Other features could be in the form of graphs, e.g. control

flow or data flow graphs of programs. In such features, an embedding model is needed

to convert structured data into numerical representations to enable BENCHPRESS’s

steerable generation. Pre-trained ML models are typically used to embed information

into vectors. For example, Graph Neural Networks can be used for graph-like data or

Transformers receiving a flattened view of graphs as a sequence.



5.4. Experimental Setup 83

5.4.4 Analysis of BENCHPRESS and CLgen language models

CLGEN [40] is the current state of the art in OpenCL benchmark generation. Its

synthetic benchmarks improve the accuracy of Grewe’s et al. predictive model [61]

by 1.27×. However, Goens et al. [59] perform a case study and show evidence that

CLGEN’s synthetic benchmarks do not improve the quality of training data and, conse-

quently, performance of predictive models. They show that a predictive model in fact

performs worse with synthetic benchmarks as opposed to human written benchmarks

or code from GITHUB.

This study motivates us to perform an analysis of BENCHPRESS’s language model,

BERT, with CLGEN in the task of undirected program generation. In this first experi-

ment, we reproduce CLGEN using the authors’ artifacts and we sample it with a fixed

input ‘kernel void’ to collect a dataset of unique OpenCL kernels. We use BENCH-

PRESS on the same generative task and sample the model with the same fixed input

‘kernel void [HOLE]’ to obtain another dataset of unique benchmarks. In this ex-

periment we focus on the language model’s inference performance. We compare both

generative models on their throughput, their ability to create compiling code, feature

distribution and code size. In this experiment, we do not direct program generation.

BENCHPRESS generates compiling kernels in a single inference step.

5.4.5 Targeted Benchmark Generation

Next, we evaluate BENCHPRESS’s ability to steer towards desired program features.

We use well-established compiler benchmarks as our reference and target their features

within this space. These benchmarks usually perform intensive operations, such as

matrix multiplications or FFT analysis, they contain hundreds of computational and

memory instructions and are specifically fine-tuned by experts to exercise compilers

from different angles. As a result, we believe features in these benchmarks provide a

good target to assess performance of BENCHPRESS’s ability to target complex features.

We choose target benchmarks within the Rodinia suite [33, 22] as it is widely used

in the literature [40, 42]. Similar to the training corpus, we collect the suite’s source

files, we inline header files and dependent OpenCL libraries into them, we split ker-

nels into single source files and reject those that do not compile. In total, we collect

61 target Rodinia benchmarks out of which 58 compile. For the remaining bench-

marks, we collect their features using the feature extractors for Grewe’s et al., Inst-

Count and Autophase feature spaces [61, 98, 65]. We target the feature vectors of



84 Chapter 5. BenchPress: A Deep Active Benchmark Generator

these benchmarks and request BENCHPRESS to generate at least one matching bench-

mark for each. We end up with three collective synthetic benchmark datasets, one for

each feature space, that contain code with features matching Rodinia benchmarks. For

each Rodinia benchmark’s target feature vector, we measure the minimum Euclidean

distance to it achieved between BENCHPRESS, code from GitHub, CLGEN and CL-

SMITH [164, 103]. For GITHUB’s and CLSMITH’s kernels, we use SRCIROR [67]

to apply code mutations exhaustively with beam search.

To make our experiment more intuitive we use two datasets for GITHUB: a)

GITHUB consisting of all OpenCL kernels we collected and b) GITHUB-768, a proper

subset of GITHUB which contains only the kernels that do not exceed BENCHPRESS’s

sequence length of 768 tokens. Since BENCHPRESS benchmarks’ size are restricted

to the architecture’s sequence length, we feel it is important to make this distinction in

order to present a view of BENCHPRESS’s actual performance on features that may be

unreachable within the current sequence length. For example, it may be impossible to

generate 2,000 computational instructions within 768 tokens. For such cases, we be-

lieve GITHUB-768 with its equally restricted sequence length would allow for a fairer

comparison.

For all three feature spaces, we weed out the Rodinia benchmarks that have an exact

matching sample (i.e. a Euclidean distance of 0) in GITHUB-768. Since we already

have matching samples for them, we do not need to target them with BENCHPRESS

or any other generative model. However, we do not skip benchmarks whose features

exist only in GITHUB’s full dataset as we wanted to explore the feasibility of using

BENCHPRESS to generate a sample with the same features but smaller sequence length.

Applying this restriction we end up with 22 Rodinia benchmarks for Grewe’s et al., 52

for InstCount and 36 for Autophase feature spaces.

5.4.6 Active Learning for Feature Selection

BENCHPRESS’s steerable generation is vital for searching the feature space while also

finding useful features to target with active learning. In this experiment, we evaluate

BENCHPRESS in the downstream task of training the predictive model proposed by

Grewe et al. [61], a well-tested problem used by many baseline models.

Grewe et al. train a decision tree model to predict the optimal device to execute

a benchmark, choosing between a CPU and a GPU. They measure their model’s per-

formance as speedup achieved with using the predicted device for execution versus



5.5. Results 85

statically executing all benchmarks on the GPU. To train the predictive model, they

use OpenCL benchmarks from 7 well-known benchmarks suites [40, 61]. In this ex-

periment, we reproduce Grewe’s et al. heuristic using their artifact and we also retrain

it with datasets enriched with executable benchmarks from BENCHPRESS using active

learning and passive learning (i.e. targeting random parts of the feature space instead

of searching it), CLGEN and GITHUB. We measure the speedup over static mapping

for each of them.

To collect our evaluated datasets, we execute OpenCL benchmarks with

CLDRIVE [40] by Cummins et al. CLDRIVE automatically generates inputs and

drives kernels to the hardware. It measures the execution time per device across thou-

sands of runs and it rejects kernels that produce runtime errors, do not modify any

of the inputs (no output) or modify them differently for each run (not deterministic).

For (a) the 7 human-written benchmarks suites, (b) BENCHPRESS, (c) CLGEN and (d)

GITHUB, we execute their kernel on CLDRIVE using a range of different local and

global size configurations. We label each instance with the fastest measured device

(the CPU or the GPU), in the same way Cummins et al. [40] and Grewe et al. [61]

performed their evaluation.

5.5 Results

In this Section, we show our experiments’ results and compare BENCHPRESS with

state of the art techniques in OpenCL benchmark synthesis. We present case studies

of (a) BENCHPRESS’s throughput as a generative model compared to CLGEN, (b) its

ability to steer benchmark generation towards desired features and (c) its performance

in searching the feature space to enhance a downstream task’s performance.

5.5.1 Analysis of BENCHPRESS and CLGEN language models

We perform an analysis of BENCHPRESS and CLGEN as language models and com-

pare them in generating a collection of benchmarks from a fixed input feed, ‘kernel

void [HOLE]’ and ‘kernel void’ respectively. We compare the two approaches

measuring (a) the generative models’ throughput and (b) the quality of their generated

benchmarks in terms of code size and features. In this experiment, we do not use

any directed search or iterative approach for BENCHPRESS’s generation. We perform

this evaluation to measure how BERT, BENCHPRESS’s underlying language model,



86 Chapter 5. BenchPress: A Deep Active Benchmark Generator

compares with CLGEN as a generative model. Table 5.1 presents the aggregate mea-

surements for the generated benchmarks using both approaches.

# unique

bench

# compiling

bench

comp

rate

max

tokens

max inst

(LLVM)

ms per

sample

BENCHPRESS 190,460 142,607 86% 750 161 162

CLGEN 1,564,011 13,035 2.33% 102 32 103

Table 5.1: Throughput comparison between BENCHPRESS and CLGEN on generated

OpenCL benchmarks when BENCHPRESS does not use feature-directed program gen-

eration. The column acronyms are as follows: (a) number of unique benchmarks, (b)

number of compiling benchmarks, (c) rate of compilation, (d) largest compiling sample

in tokens, (e) largest compiling sample in LLVM-IR instructions (-O1) (f) and inference

time per sample in ms.

Compilation rate and code quality. BENCHPRESS generates over 10× more

unique compiling benchmarks than CLGEN. This result is observed despite BENCH-

PRESS generating 8× fewer unique benchmarks than CLGEN. The compilation rate

with BENCHPRESS is 86% while CLGEN has an exceedingly small rate of 2.3%.

BENCHPRESS’s largest sample is 750 tokens compiling to 161 LLVM-IR instructions.

This is a 7.5× and 5× increase in number of tokens and number of LLVM-IR in-

structions compared to CLGEN’s largest kernel. The only drawback of BENCHPRESS

compared to CLGEN is that it is considerably slower in generating candidates. This

is because the transformer-based architecture in BENCHPRESS is significantly larger

in number of parameters than CLGEN’s LSTM. Additionally, BENCHPRESS tends to

generate longer kernels than CLGEN, necessitating more inference steps and longer

generation time.

In Figures 5.5a and 5.5b, we show the frequency distribution of the number of to-

kens and number of LLVM-IR instructions for compiling kernels for both datasets. To

visualize our results better, we focus on synthesized kernels with token lengths ≤ 100

and instructions lengths ≤ 25 where the vast majority of benchmarks are found. Most

of BENCHPRESS’s benchmarks are found to have 20 to 80 tokens and 3 to 16 LLVM-

IR instructions. The majority of CLGEN’s benchmarks are found to have 5 to 45 tokens

and only up to 4 LLVM-IR instructions. 94% of CLGEN’s generated benchmarks have

only 1 instruction when compiled to LLVM-IR. We analyze the dataset to explain this

phenomenon and find CLGEN generates a lot of comments, repeated dead statements



5.5. Results 87

and awkward non-human-like code such as multiple semi-colons. These results agree

with the case study by Goens et al. [59] that shows the AST depth distribution of

CLGEN’s code is significantly narrower compared to code from GITHUB or standard

benchmarks.

Feature space coverage. To further enhance our comparison, we perform an anal-

ysis on the feature space coverage of BENCHPRESS’s and CLGEN’s synthesized pro-

grams in all three feature spaces. Feature coverage is the most critical metric when

evaluating the effectiveness of a benchmark synthesizer for predictive modeling. We

use Principal Component Analysis (PCA-2) to represent the feature spaces in an easy

to visualize 2-dimensional space. In Figures 5.6a, 5.6b and 5.6c we show the extent of

feature space covered by candidates in the two approaches. CLGEN’s samples are clus-

tered around the origin, while there is one outlier for Autophase and two for Grewe’s et

al. and InstCount features. Candidates generated by BENCHPRESS are more scattered

achieving a much wider coverage of the feature space.



88 Chapter 5. BenchPress: A Deep Active Benchmark Generator

Figure 5.5: Probability distribution of (a) token length and (b) LLVM-IR Instruction count

among BENCHPRESS’s and CLGEN’s generated benchmarks. BENCHPRESS’s bench-

marks presented here are generated at a single inference step without iteratively direct-

ing program synthesis.



5.5. Results 89

Figure 5.6: PCA-2 representation of feature space coverage of BENCHPRESS and

CLGEN for (a) Grewe’s et al., (b) InstCount and (c) Autophase feature spaces. In this

experiment, BENCHPRESS’s generation is undirected and no iterative space search is

performed.



90 Chapter 5. BenchPress: A Deep Active Benchmark Generator

5.5.2 Targeted Benchmark Generation

We use beam search to generate samples that target desired parts of the feature space.

We compare BENCHPRESS with human-written benchmarks from GITHUB and syn-

thetic benchmarks from CLGEN and CLSMITH in targeting the features of Rodinia

benchmarks on three feature spaces. We use SRCIROR code mutator with beam

search to collect GITHUB and CLSMITH benchmarks with closer features. For each

target benchmark, we gather one OpenCL kernel per evaluated dataset whose features

have the minimum available Euclidean distance from the target features. Figures 5.7,

5.8 and 5.9 show the relative proximity of each benchmark to the target. This proximity

is the complement of the relative distance of the two kernels, i.e, 1 minus the distance

between the two kernels in the feature space relative to the distance of the Rodinia

kernel from the axes origin. This allows us to express the quality of the match with

an intuitive 0% to 100% scale: 100% means the two kernels have the same features,

0% means the best kernel is as close to the target as an empty kernel. We mark perfect

matches with a white asterisk (*).



5.5. Results 91

Figure 5.7: Relative proximity to each Rodinia benchmark of the candidate kernel with

the closest features. We report the best match for seven datasets (BENCHPRESS’s,

CLgen’s, GitHub’s and GitHub-768’s datasets also combined with exhaustive muta-

tions with SRCIROR) over Grewe’s et al. feature space. Relative proximity is 1 minus

the distance of the two kernels in the feature space relative to the distance of the Ro-

dinia benchmark from the axes origin. 100% means an exact match in features and is

highlighted with a white asterisk (*). A score towards 0% indicates the closest match is

closer to the axes origin than the benchmark, i.e., a very small or empty kernel.



92 Chapter 5. BenchPress: A Deep Active Benchmark Generator

Figure 5.8: Relative proximity to each Rodinia benchmark of the candidate kernel with

the closest features. We report the best match for seven datasets (BENCHPRESS’s,

CLgen’s, GitHub’s and GitHub-768’s datasets also combined with exhaustive muta-

tions with SRCIROR) over InstCount feature space.



5.5. Results 93

Figure 5.9: Relative proximity to each Rodinia benchmark of the candidate kernel with

the closest features. We report the best match for seven datasets (BENCHPRESS’s,

CLgen’s, GitHub’s and GitHub-768’s datasets also combined with exhaustive muta-

tions with SRCIROR) over Autophase feature space.



94 Chapter 5. BenchPress: A Deep Active Benchmark Generator

Performance on syntactic features. On Grewe’s et al. feature space, BENCH-

PRESS generates kernels that are the closest ones in features for all 22 Rodinia Bench-

marks compared to CLGEN and CLSMITH, and 20 out of 22 compared to GITHUB and

GITHUB-768. BENCHPRESS synthesizes an exact match (100% relative proximity)

for 14 target benchmarks.

We pick out and discuss a few examples from our results. The absolute distance

achieved for ‘nw-1’ and ‘ellipse opt’, is 1.0. For both targets, almost all features match

except for one missing instruction (COALESCED MEM ACCESS and ATOMIC INST re-

spectively). For ‘hotspot’ GITHUB and BENCHPRESS produce a candidate kernel

with exact matching features. However, BENCHPRESS generates the matching candi-

date kernel in 421 tokens, unlike GITHUB’s closest benchmark that has 798 tokens.

For the two target benchmarks that BENCHPRESS’s candidates were not closest to,

we found only GITHUB contains better samples for com dwt-3 and and gpu-1, while

BENCHPRESS does not. We find both benchmarks to be fairly large (901 and 5,200

tokens respectively) and BENCHPRESS cannot reach these features within 768 tokens.

For the same reason, GITHUB-768, CLGEN and CLSMITH does worse than BENCH-

PRESS on these targets.

Performance on LLVM IR features. Autophase and InstCount features are ex-

tracted from the LLVM-IR of a program that has been compiled with -O1 flag to apply

basic optimisations such as dead code elimination. BENCHPRESS occasionally gen-

erates repeating operations that a compiler will remove or numerical operations that

may be reduced to simple assignments. Owing to these optimisations, we find tar-

geting benchmarks on these two feature spaces is more challenging than Grewe’s et

al. syntax-level features. With InstCount features, BENCHPRESS generates candidates

whose features completely match 2 out of the 52 Rodinia benchmarks. Among the re-

maining 50, BENCHPRESS outperforms CLGEN, CLSMITH, GITHUB and GITHUB-

768 for all target benchmarks, achieving higher proximity. SRCIROR significantly

improves GITHUB leading to GITHUB+SRCIROR to achieve better proximity for 18

out of 52 Rodinia benchmarks compared to BENCHPRESS. On Autophase features,

BENCHPRESS generates candidates matching the same 2 target benchmarks, while

outperforming CLGEN, CLSMITH and GITHUB on 30 out of 36 Rodinia benchmarks

in total. GITHUB+SRCIROR performs better than BENCHPRESS for 8 out of 36

target benchmarks and produces an exact match for ‘hotspotKernel’.

We previously explain the importance of having diverse features in compiler bench-

marks and we show, in Figure 5.1, how sparse Rodinia benchmarks are on Grewe’s et



5.5. Results 95

Figure 5.10: # Memory operations and # computational instructions for (a) Rodinia

benchmarks in purple diamonds, (b) CLGEN’s samples in red dots and BENCHPRESS’s

benchmarks in green crosses after performing directed search for all Rodinia bench-

marks.

al. reduced feature space and how CLGEN fails to provide any additional features.

Now we introduce into this 2-dimensional space all BENCHPRESS’s kernels that are

generated while performing directed space search to target Rodinia benchmarks and

we present them in Figure 5.10. BENCHPRESS densely populates the space around the

target benchmarks that are clustered around the lower left corner. We find BENCH-

PRESS’s samples progressively converge to the target benchmark features with succes-

sive generations. For example, BENCHPRESS targets com dwt-3 at 385 computational

and 137 memory instructions, starting from the axes origin and attempting to reach

its features from different directions. One of the directions prevail but does not man-

age to exactly reach the target. The same happens for the top right point, gpu-1.

BENCHPRESS’s samples get closer developing a straight line from the origin to 1,000

computational and 100 memory instructions. At this point BENCHPRESS is restricted

by its sequence length and cannot augment further its samples. This is depicted by its

attempt to reduce the distance by swapping the two instruction types within the same

token length, forming a perpendicular line with a negative slope. We argue the area of

Grewe’s et al. feature space that BENCHPRESS can cover within 768 tokens to be the

area of the triangle formed by the intersections of the axes with the extension of the



96 Chapter 5. BenchPress: A Deep Active Benchmark Generator

negative slope line developed by BENCHPRESS’s samples.

Summary - BENCHPRESS vs GitHub vs CLgen vs CLSmith. 6 of the targeted

Rodinia benchmarks exceed BENCHPRESS’s maximum sequence length of 768 to-

kens. In LLVM-IR feature spaces, care must be taken to generate code that will not

be removed by compiler optimisations. This is a difficult challenge for source code

generative models. However, our results demonstrate that BENCHPRESS can gen-

erate OpenCL kernels that approach target human-written benchmarks compared to

GITHUB code and CLGEN candidates. Our experiments also show BENCHPRESS is

dramatically better in all cases than CLGEN, the current state of the art in OpenCL syn-

thetic benchmark generation. We further elaborate on BENCHPRESS’s performance in

the next Subsections.

5.5.3 Active Learning for Feature Selection

We combine BENCHPRESS’s ability to generate benchmarks targeting desired features

with active learning in order to generate benchmarks that improve the training of the

Grewe et al. heuristic. We evaluate this against passive training with CLGEN, GITHUB

code, and BENCHPRESS with randomly selected target features. All approaches aug-

ment the same baseline training set that is taken from [40], containing 7 benchmark

suites1. Table 5.2 shows the effect of each approach on the predictive power of the

heuristic. Training only on human written benchmarks improves the heuristic’s per-

formance by 4%, as shown in Table 5.2’s first row. To understand the maximum

achievable improvement in the heuristic, we compute the best speedup (= 12%) that

is achieved if the model chooses the optimal device as opposed to always picking the

GPU. For 71% of the benchmarks, GPU is the optimal device, so no speedup im-

provement is possible. For the remaining 29% benchmarks, predicting the ‘CPU’ label

correctly with Grewe et al. will result in a speedup improvement.

BENCHPRESS using active learning (BENCHPRESS-AL) clearly outperforms all

other approaches in terms of average speedup, improving it by 6%. When trained on

BENCHPRESS with passive/random feature selection (BENCHPRESS-P), the speedup

achieved is only 1%. To our surprise, the same speedup is achieved with GITHUB,

which is worse compared with training only on the original benchmark suites. We

further analyze the dataset collected from GITHUB code and we find it to be imbal-

anced with 90% of its training instances are labelled as ‘GPU’. This leads the model

1The benchmarks have been updated with a wider range of global and local sizes.



5.5. Results 97

Speedup % Precision Recall Specificity

BENCHMARKS +4% 0.81 0.86 0.61

BENCHPRESS-AL +6% 0.84 0.86 0.64

BENCHPRESS-P +1% 0.84 0.85 0.48

CLGEN -1% 0.52 0.86 0.43

GITHUB +1% 0.85 0.83 0.61

Table 5.2: Grewe et al. heuristic model’s performance, precision, recall, and specificity

when trained on each technique. Speedup is the geometrical mean of speedups over all

benchmarks relative to the optimal static decision, i.e. running on the GPU. Precision,

recall, and specificity treat GPU labels as positive and CPU labels as negative.

having a higher precision of 0.85, i.e. predicting correctly that a kernel should execute

on the GPU, but falling short when it comes to correctly predicting the ‘CPU’ label.

Training the heuristic with CLGEN actually leads to a slowdown: it is 1% slower to

execute kernels on the predicted devices compared to statically executing everything

on the GPU, the baseline device. We analyze CLGEN’s dataset and observe the op-

posite pattern found in GITHUB’s dataset. 63% of its training data execute faster on

the CPU than on the GPU. This is a direct consequence of CLGEN generating small

benchmarks that are poor in features, as the CPU may be slower than the GPU but the

large overhead of transferring data to the GPU makes the CPU a better choice for small

workloads. CLGEN containing too many CPU-labeled kernel explains the heuristic’s

low precision and specificity, as it becomes biased to select the CPU very often leading

to a slowdown.

Our main motivation behind using active learning is that it gives BENCHPRESS the

ability to target directly those parts of the feature space that will maximize a down-

stream task’s performance. To assess the active learner’s performance, we compare

the Grewe et al. heuristic’s speedup when trained on BENCHPRESS’s benchmarks

that target areas of the feature space selected by the active learner versus benchmarks

that target random features. In both cases, we execute BENCHPRESS for the same

amount of time, 10 sampling epochs (i.e., performing steered generation for 10 tar-

get feature vectors). In Figure 5.11, we show the speedup achieved by the heuristic

when trained on the data collected at that step. Using active learning to target features,

BENCHPRESS’s dataset improves the heuristic’s speedup by 50% after 5 sampling

steps, from 4% to 6%. Targeting random features never leads to a speedup higher than



98 Chapter 5. BenchPress: A Deep Active Benchmark Generator

Figure 5.11: BENCHPRESS’s performance enhancement of Grewe et al. heuristic model

when using active learning compared to passively targeting random parts of the feature

space over the course of 10 sampling epochs. The y-axis shows the performance

enhancement as a percentage for each sampling epoch (0 to 9) shown in x-axis.

1%. BENCHPRESS can still develop the same speedup by targeting random features

if infinite amount of time was available. Our active learner ensures that missing fea-

tures are going to be quickly targeted, improving the state of the art within 5 sampling

epochs.

5.6 Summary

Predictive models for compilers have been shown to outperform compiler experts but

they are restricted by the amount and quality of training data they are exposed to.

What is needed is an approach that can synthesize benchmarks and enhance datasets

with missing features. In this Chapter we propose BENCHPRESS, a powerful code

generator that uses active learning to search the feature space and steers generation to-

wards desired features. BENCHPRESS generates 10× more and 7.5× larger undirected

benchmarks with 37× greater compilation rate than CLGEN - a state of the art compiler

benchmark generator - from a fixed input feed. BENCHPRESS outperforms CLGEN,

CLSMITH, code from GITHUB and applied mutations with SRCIROR in generating

OpenCL kernels that target the features of Rodinia benchmarks developed by human

experts. BENCHPRESS applies active learning to enhance Grewe’s et al. dataset with

benchmarks with missing features and leads to improving the heuristic’s speedup by

50%. We hope this work to demonstrate a sustainable method to direct feature space

search of program generation and that BENCHPRESS’s release to researchers will en-

able research in related domains.



Chapter 6

Deep Directed Language Modeling for

Compiler Features

6.1 Introduction

This Chapter presents the design and implementation of a novel, directed language

model for compiler benchmarks. The proposed contribution is based on deep, bi-

directional, unsupervised learning. In the following Sections, the approach, imple-

mentation and evaluation of this technique are discussed.

We develop BENCHDIRECT [143], a BERT-based directed language model for

OpenCL benchmark generation [46, 139]. Similarly to our previous contribution,

namely BENCHPRESS, BENCHDIRECT targets and synthesizes benchmarks from de-

sired parts of the feature space. The key distinction in BENCHDIRECT is a feature en-

coder integrated into its language model which enables conditioning the token genera-

tion on the desired features along with the context of the input source code. BENCHDI-

RECT is able to target areas of the feature space fast, often at a single inference step,

contrary to BENCHPRESS’s feature agnostic-language model that performs thousands

of random inferences.

We compare BENCHDIRECT against BENCHPRESS in targeting the features of

Rodinia benchmarks that are developed by compiler engineering experts. Its directed

language model enables it to target features with significantly higher accuracy than

BENCHPRESS at a fraction of the total inference time needed by the latter. Across

three feature spaces, BENCHDIRECT matches perfectly the features of Rodinia bench-

marks 1.8× more frequently compared to BENCHPRESS. It also generates benchmarks

that are up to 72% closer to Rodinia target features compared to BENCHPRESS’s sam-

99



100 Chapter 6. Deep Directed Language Modeling for Compiler Features

ples, while its sampling process is up to 36% faster. Developing a directed program

synthesizer with a reduced time complexity paves the way for large scale applications

on more difficult compiler optimisation tasks.

In this Chapter, we present the following contributions:

1. We develop the first directed, generative language model for compilers that con-

ditions program generation towards feature space representations.

2. We provide an extensive empirical evaluation on the trade-off between execution

time and accuracy in targeting compiler features using BENCHDIRECT versus

BENCHPRESS.

6.2 Approach

BENCHPRESS’s synthesizer presented in Chapter 5 is feature agnostic. It infills source

code given the input context left and right of the [HOLE]. BENCHPRESS is only able

to steer program generation through a costly beam search on the model’s output: we

generate a large number of random code candidates and we feed those that are closer to

the target features back into the model’s input with new holes for further edits. Given

BENCHPRESS’s language model is undirected, it often needs hundreds of thousands of

code candidates to increase the chance of finding a few with the right features. This is

inefficient and unsustainable on complex compiler tasks.

Instead of randomly trying to fill the space with new benchmarks to get closer to

the target features, a more desirable approach to target them directly during synthesis

is needed. Ideally, this would help generate a benchmark with the right features in a

single inference. To this end, we develop BENCHDIRECT.

BENCHDIRECT consists of the first directed language model for compiler bench-

mark synthesis. Along with the masked source code input, BENCHDIRECT also en-

codes its compiler features before masking. Its classification head selects tokens to fill

a [HOLE] by jointly observing the code context and the encoded features. This leads

to selecting tokens that are likely to generate a kernel that is (a) compiling ( similarly

to BENCHPRESS) but also (b) matching the target features provided in the input.

BENCHDIRECT inherits BENCHPRESS’s three stage pipeline: (a) We collect data

and preprocess them, (b) we train the language model and (c) we sample the model

to steer benchmark generation. The same techniques are used for this contribution’s



6.3. Directed Language Modeling 101

step (a) and (c) with BENCHPRESS, discussed in Chapter 5. BENCHDIRECT is dis-

tinguished by its underlying language model that conditions token generation on the

targeted features. In the rest of this Section, we discuss BENCHDIRECT’s directed

language model component. For further details on the data processing, the masked

language model training and the sampling technique for steerable generation, we redi-

rect the reader to Section 5.3.

6.3 Directed Language Modeling

BENCHDIRECT’s feature encoder is based on Transformer [149] and is shown in Fig-

ure 6.1. We encode a vector of numerical compiler features using an embedded layer

with positional encoding followed by a Transformer-Encoder. We reduce the dimen-

sions of the Transformer’s output using a Fully Connected layer to match BERT lan-

guage model’s hidden state representation of its input source code. Both hidden states

are concatenated and fed to a Fully Connected layer with GELU [68] activation to ex-

tract correlated features. Finally, a Decoding Fully Connected layer projects the joint

hidden state into the vocabulary space. The feature encoder’s input consists of 134 po-

sitions divided into three fixed segments. Each represents one feature space used in our

evaluation: (a) 8 positions for Grewe’s et al. features, (b) 56 for Autophase and (c) 70

for InstCount features. BENCHDIRECT can support multiple spaces and it only needs

to be trained once to direct benchmark synthesis on any of them. To steer generation

in a new feature space, we simply need to extend a new segment in the Transformer-

Encoder’s input and apply fine-tuning using the new space’s feature extractor to collect

data from our training corpus.

BENCHDIRECT is trained with the same approach described in Subsection 5.3.2.

We sample randomly one OpenCL kernel and introduce a [HOLE] to provide it to

the language model’s input. The model learns to predict the first token of the hidden

sequence using cross categorical entropy loss function. Introducing compiler features

in training is the distinction to this process. When one OpenCL kernel is sampled, its

compiler features are also collected. The model receives a pair of inputs, (srci, f v) and

one output tokeni, where i is the index at which the [HOLE] is located.

It is important to note that we do not feed the feature vectors of all three feature

spaces to the encoder at the same time. Instead, we uniformly select one, we set its val-

ues to the respective segment of the encoder’s input and we [PAD] all other positions

such that gradients are not applied. Over training time, the model observes datapoints



102 Chapter 6. Deep Directed Language Modeling for Compiler Features

BERT
Hidden State

Positional Encoding

Transformer Encoder

Reduce - FC

+

Transform - FC

Normalization

Decoder - FC

Embedding

Features

Token Probs

Grewe Autophase InstCount

Figure 6.1: BENCHDIRECT’s directed language model design.

from all feature spaces for every kernel. Padding all feature spaces but one allows

the trained model to learn how to direct synthesis to each one of them independently.

Providing vectors from all spaces as one datapoint would possibly allow the model to

learn correlations between them but this is not useful to us. What is more, directed syn-

thesis on one of the feature spaces would be impossible. The model would have been

trained to observe all three feature vectors for one given source code input. This means

we would have to know the mapping function among all feature spaces to translate a

target feature vector to all supported ones for the encoder’s input. Instead, keeping one

feature space per datapoint leads to the encoder’s weights to be tuned accordingly to

perform accurately on all spaces separately. Parts of the network (e.g. the FC layers)

are jointly trained to optimise all feature spaces encoding. Other parts, such as the

(Q,K,V ) matrices are grouped in vectors, one for each index separately, and are only

trained when their respective positions are not padded. An alternative solution would

be to use many Transformer-Encoders, one per feature space, and train each separately.

During generation, the appropriate Transformer would be manually selected given the

desired feature space. Although this is a valid approach, there is no evidence to suggest



6.4. Experimental Setup 103

it would perform better than one Transformer model large enough to learn all segments

separately.

During sampling, BENCHDIRECT receives a source code input and the target fea-

tures as an input. Given the code context and the [HOLE] position, the model will

attempt to select those tokens that will produce a compiling kernel with features as

close as possible to the target in that respective feature space. At its best, we hope

BENCHDIRECT can receive an empty code input and provide the target benchmark at

a single inference step. At the very least, the beam search sampler will go through

fewer iterations and fewer inferences per generation compared to BENCHPRESS.

6.4 Experimental Setup

We describe the configurations used in training BENCHDIRECT and the parameters

used in our evaluation, namely (1) Feature Spaces - we use three different representa-

tions of program features, (2) Target Benchmarks - We use Rodinia benchmarks [33]

and their features as the target for synthesis by BENCHDIRECT and (3) Comparison

to state of the art - we compare BENCHDIRECT against BENCHPRESS in targeting the

features of Rodinia benchmarks, measuring accuracy and total execution time.

6.4.1 Platforms

We train both models and conduct all our experiments on two 64-bit systems each

having one Intel Xeon E5-2620 32-core CPU, 4x Nvidia TITAN X Pascal GPU and

64 Gigabytes of RAM. We use Ubuntu 18.04, PyTorch 1.9.1 [123], CUDA version

11.4 and Nvidia driver version 510.47.03. We use Clang-10 to compile programs and

LLVM-10 to compile and execute InstCount and Autophase [65] extracting tools. For

compatibility reasons, we are required to use Clang LibTooling from LLVM-6 to exe-

cute Grewe’s et al. [61] feature extractor.

6.4.2 Language Modeling for source code

We use the same OpenCL dataset collected from GITHUB that was used to train

BENCHPRESS in Chapter 5. This dataset consists of 19,637 compiling OpenCL kernels

with re-written variables and formatted text. In this evaluation, we train both BENCH-

PRESS and BENCHDIRECT on this dataset for 40 epochs of 200,000 steps each using a

batch size of 64. For both models’ BERT hyper-parameters, we select 2 hidden layers



104 Chapter 6. Deep Directed Language Modeling for Compiler Features

and 12 attention heads. We set intermediate size and hidden size to 768 and max po-

sition embeddings to 512. We set the maximum length of holes to 100% of a kernel’s

token length. We use Adam optimizer to train the network with a learning schedule

of 20,000 warmup steps that peaks at 45× 10−6. Both models are trained to a final

loss value of 0.14. In this evaluation, we train both language models for more epochs

compared to the training process described in Section 5.4.2. After experimentation, we

observe the quality significantly improves after the loss is reduced below 0.2.

6.4.3 Feature Spaces

Compiler predictive models use static code features to represent programs and learn

optimisation heuristics. A vector of independent characteristics represents a single

program. Each of them are typically an integer or float value. Features are extracted at

the Syntax level by traversing the AST or at the IR level using the compiler’s middle

end (e.g. LLVM-IR). A feature space is the collection of all possible program feature

vectors.

BENCHDIRECT is a generative model that can be steered to generate samples for a

desired part of the feature space. Its language model conditions on compiler features

during program generation, enabling the model to steer into the feature space effi-

ciently. We evaluate BENCHDIRECT on three source feature representations we find

across the literature, (a) Syntax-level Grewe’s et al. features [61], (b) IR-level LLVM-

InstCount [98] and (c) IR-level Autophase [65]. We describe these three feature spaces

in detail in our second contribution’s evaluation at Subsection 5.4.3.

6.4.4 Targeted Benchmark Generation

BENCHPRESS, our second contribution, develops strong performance compared to

state of the art program synthesizers and its benchmarks outperform even human-

written benchmarks from GITHUB in two tasks, (a) targeting the features of Rodinia

benchmarks and (b) improving the accuracy of a compiler heuristic model. However,

its undirected language model requires up to hundreds of thousands of inferences for

its beam search sampler to minimize its samples’ distance from the target features.

BENCHDIRECT strives to address this inefficient process, using a directed language

model.

We repeat the experiment of Section 5.4.5 to evaluate BENCHDIRECT’s accu-

racy and execution time in targeting the features of Rodinia benchmarks compared



6.5. Results And Analysis 105

to BENCHPRESS. We target the features of Rodinia benchmarks in all three feature

spaces for a range of different workload sizes: 32, 64, 128, 256, 512, 1024 and 2048.

A large workload size leads to a significant time overhead but is required to ensure

high accuracy for BENCHPRESS’s undirected language model. This may not be the

case for BENCHDIRECT’s directed synthesizer, speeding up directed generation with-

out compensating on its accuracy. In this experiment, we explore how this parameter

affects accuracy and total execution time for both models. We set an upper threshold

of 6 beam search iterations per target feature vector. We select 6 iterations as they are

enough to observe the difference between both models in reducing their distance from

the target without introducing a large time overhead to conduct our experiments.

6.5 Results And Analysis

In this Section, we show our experiments’ results in comparing BENCHDIRECT with

BENCHPRESS. We present a thorough study of both models’ accuracy and execution

time and discuss their trade-offs in targeting the features of human-written, compiler

benchmarks.

6.5.1 Targeted Benchmark Generation

We target the features of Rodinia benchmarks using BENCHPRESS and BENCHDI-

RECT. Both models use beam search over their synthesizer to minimize their samples’

distance from the target features. At the end of each search, we select the generated

kernel whose features have the minimum Euclidean distance from the target bench-

mark. We perform this experiment for multiple beam search candidate sizes: 32, 64,

128, 256, 512, 1024 and 2048. In Figures 6.2a, 6.2b and 6.2c we show the Pareto

fronts of the average relative proximity achieved over all Rodinia benchmarks versus

the total amount of inferences. Relative proximity is defined in Section 5.5.2 as a

percentage of how close a feature vector is to the target features relatively to the axis

origins. Inferences are calculated as the number of beam search iterations to target

all benchmarks multiplied by the workload size. Each datapoint is annotated with its

workload size configuration. In Figures 6.3a, 6.3b and 6.3c, we show BENCHDI-

RECT’s improvement in accuracy and execution time compared to BENCHPRESS, for

each workload size setting.

BENCHDIRECT outperforms BENCHPRESS in average relative proximity and total



106 Chapter 6. Deep Directed Language Modeling for Compiler Features

2048
1024

512
256

128

64

32

2048

1024

512

256

128

64

32

0 100k 200k 300k 400k 500k 600k

40

50

60

70

80

BenchDirect
Aa

BenchPress
Aa

Grewe Features

# Total Inferences

Av
g 

Re
la

tiv
e 

Pr
ox

im
ity

 (%
)

2048
1024

512
256

128

64
32

2048

1024512

256128

64

32

0 100k 200k 300k 400k 500k 600k
40
45
50
55
60
65
70
75
80

BenchDirect
Aa

BenchPress
Aa

InstCount Features

# Total Inferences

Av
g 

Re
la

tiv
e 

Pr
ox

im
ity

 (%
)

2048
1024

512
256

128
6432

20481024

512
256128

64

32

0 100k 200k 300k 400k 500k 600k

40

50

60

70

BenchDirect
Aa

BenchPress
Aa

Autophase Features

# Total Inferences

Av
g 

Re
la

tiv
e 

Pr
ox

im
ity

 (%
)

Figure 6.2: Pareto fronts of the average relative proximity versus total inferences for

BENCHDIRECT and BENCHPRESS in targeting Rodinia benchmarks over three feature

spaces ((a) Grewe’s et al., (b) InstCount and (c) Autophase). Higher relative proximity

and fewer inferences are better, therefore optimal points, i.e., Pareto-dominant, are

those towards the top left. We annotate the workload size configuration per Pareto

point.



6.5. Results And Analysis 107

0 500 1000 1500 2000
5

10

15

20

25

30

35
% Speedup
% Proximity

Workload Size

%
 G

ai
n 

ov
er

 B
en

ch
Pr

es
s

0 500 1000 1500 2000

10

20

30

40

50
% Speedup
% Proximity

Workload Size

%
 G

ai
n 

ov
er

 B
en

ch
Pr

es
s

0 500 1000 1500 2000

10

20

30

40

50

60

70
% Speedup
% Proximity

Workload Size

%
 G

ai
n 

ov
er

 B
en

ch
Pr

es
s

Figure 6.3: BENCHDIRECT’s acquired execution time speedup and relative proximity

improvement over BENCHPRESS per workload size configuration for (a) Grewe’s et al.,

(b) InstCount and (c) Autophase feature spaces.



108 Chapter 6. Deep Directed Language Modeling for Compiler Features

inferences for all workload size configurations, across all three feature spaces. Taking

the average proximity and the execution time as a design space, the datapoints that are

optimal with respect to these two metrics belong exclusively to BENCHDIRECT, while

there are no configurations for BENCHPRESS that optimise either metric compared to

the former. The effect BENCHDIRECT’s directed language model has in targeting fea-

tures is especially highlighted when the workload size is small. BENCHDIRECT’s syn-

thesizer conditions directly on the target features and provides, in very few attempts,

candidates that match or are very close to them. This means a dramatic reduction in

the amount of benchmarks per beam search does not drastically hamper the model’s

accuracy. The same is not true for BENCHPRESS. While BENCHDIRECT offers an

average speedup of 10.2% and an improvement in average relative proximity of 10.1%

for workloads greater or equal to 512, the speedup reaches up to 36% in all three feature

spaces and the accuracy gain up to 72% on InstCount features for smaller workloads.

This indicates BENCHDIRECT remains consistent in the amount of iterations needed

to achieve high accuracy, while BENCHPRESS suffers in both areas.

Both models achieve a peak accuracy when they use a workload size of 2048. This

is expected as generating more candidates increases the probability of getting closer

to the target features. Using this configuration on both models, we show in Figures

6.4, 6.5 and 6.6 the best relative proximity achieved for each target benchmark in all

three feature spaces. Similarly to Figures 5.7, 5.8 and 5.9, candidates whose euclidean

distance from the target is 0 (i.e., perfect match feature-wise) are marked with a white

asterisk (*). For a selection of Rodinia target benchmarks, we show how the minimum

distance from the target is reduced over the course of 5 beam search iterations for both

models in Figures 6.7, 6.8 and 6.9.

BENCHDIRECT generates 1.8× more candidates that match exactly the target fea-

tures compared to BENCHPRESS. Specifically, it matches 21 targets on Grewe’s et al.

features, 14 on InstCount and 10 targets on Autophase, compared to BENCHPRESS’s

17, 3 and 5 exact matches respectively. Overall, BENCHDIRECT gets closer to the

target compared to BENCHPRESS. Its samples are closer, or as close, for 45 out of

58 Rodinia targets on Grewe’s et al. features, 47 out of 52 on InstCount and 49 out

of 52 on Autophase. BENCHPRESS provides better candidates for 13, 5 and 3 tar-

gets on Grewe’s et al., InstCount and Autophase features respectively. Even though it

is expected for BENCHDIRECT to miss some target features due to the experiment’s

randomness, we pick out a few such examples to discuss why this happens.

The largest performance gap in favour of BENCHPRESS is observed on ellipse



6.5. Results And Analysis 109

Figure 6.4: Relative proximity to each Rodinia benchmark of the candidate kernel with

the closest features on Grewe’s et al. feature space. We show the best match for

BENCHDIRECT and BENCHPRESS.



110 Chapter 6. Deep Directed Language Modeling for Compiler Features

Figure 6.5: Relative proximity to each Rodinia benchmark of the candidate kernel with

the closest features on InstCount feature space. We show the best match for BENCHDI-

RECT and BENCHPRESS.



6.5. Results And Analysis 111

Figure 6.6: Relative proximity to each Rodinia benchmark of the candidate kernel

with the closest features on Autophase feature space. We show the best match for

BENCHDIRECT and BENCHPRESS.



112 Chapter 6. Deep Directed Language Modeling for Compiler Features

Figure 6.7: A comparative visualization of the

minimum distance achieved (y-axis) from backprop-2 target benchmark over the

course of six beam search iterations (x-axis) for all three feature spaces.



6.5. Results And Analysis 113

Figure 6.8: A comparative visualization of the

minimum distance achieved (y-axis) from gpu-4 target benchmark over the course of

six beam search iterations (x-axis) for all three feature spaces.



114 Chapter 6. Deep Directed Language Modeling for Compiler Features

Figure 6.9: A comparative visualization of the

minimum distance achieved (y-axis) from particle naive target benchmark over

the course of six beam search iterations (x-axis) for all three feature spaces.



6.6. Summary 115

and ellipse opt on InstCount features. These two benchmarks are very large, con-

taining multiple thousands of instructions, therefore they are difficult kernels to target.

We examine both models’ generated samples over all 6 beam search iterations. In both

cases, we find BENCHDIRECT’s closest candidate on the first iteration to be 8% closer

to the target compared to BENCHPRESS’s. After measuring the distance distribution

from the target for both models’ samples, we find BENCHDIRECT is 93% more likely

to generate a sample whose distance is lower compared to BENCHPRESS on the first

beam search iteration. BENCHDIRECT seems to succeed in these two target bench-

marks indeed. However, at every inference step BENCHDIRECT tries to match the

target features in a single [HOLE] infill. As these two kernels are very large, this is

a challenging task leading to most of its produced candidates to have syntactic errors,

leaving it with only a few benchmarks that compile. Even though its first iteration’s

samples are closer compared to BENCHPRESS, all successive iterations are becoming

increasingly difficult for BENCHDIRECT to produce a compiling kernel which also re-

duces the minimum distance. For that reason, BENCHPRESS’s random and cautious

steps lead to benchmarks that are eventually closer. We notice this pattern to happen

in all targets where BENCHPRESS produced a better candidate. For these targets, it

is likely that if we break down the difficulty into smaller steps by using intermedi-

ate feature vectors, this would have helped BENCHDIRECT to get to the target features

gradually but more accurately. A potential downside of this approach is that identifying

the granularity of such steps requires intuition and knowledge of the model. Breaking

down a difficult target into too many, easy steps introduces an extra time overhead.

On the other hand, if the intermediate vectors are too few and there is a large distance

between them, BENCHDIRECT may not be able to travel from one step to the next.

6.6 Summary

Predictive models for compilers are crucial in constructing optimal heuristics for pro-

gram optimisation efficiently. However, they are restricted by the quality of training

data they are trained on. BENCHPRESS, our second contribution, proposes a steerable

program generator that improves the Grewe’s et al. CPU vs GPU heuristic model by

50% when it extends its training dataset with synthetic benchmarks. However, its undi-

rected language model requires thousands of random inferences to reach close to the

target, which is inefficient.

In this work, we present BENCHDIRECT which addresses this inefficiency.



116 Chapter 6. Deep Directed Language Modeling for Compiler Features

BENCHDIRECT consists of a generative model based on BERT which has been ex-

tended to condition code synthesis on both input source code context and the features

that are targeted. BENCHDIRECT’s synthesizer is trained to perform directed synthesis

on three different feature spaces that are commonly used in the domain of compiler

optimisation: (a) Grewe’s et al. features, (b) Autophase features and (c) InstCount fea-

tures. BENCHDIRECT matches exactly the features of Rodinia benchmarks 1.8× more

frequently compared to BENCHPRESS, it is up to 72% more accurate and up to 36%

faster in targeting their features. BENCHDIRECT improves significantly the process of

generating compiler benchmarks that are directed into compiler feature spaces which

is crucial to improve predictive modeling for compiler construction. Overall, it ex-

tends significantly BENCHPRESS’s performance and we encourage developers to use

this model for targeted benchmark generation. As BENCHDIRECT’s synthesis depends

on targeting features, BENCHPRESS is still the relevant model to use for general, undi-

rected code generation. We hope this work to stimulate further research in the domain

of directed program synthesis.



Chapter 7

Conclusion

This thesis proposes three novel methods to enable automation in software testing and

compiler optimisation, two fields that still remain largely manual. Our first approach

addresses the test oracle problem with deep neural networks used to summarize and

classify program runtime correctness. Our second contribution tackles the compiler

benchmarks shortage using deep unsupervised language models for program synthe-

sis. Our approach improves predictive models for compiler optimisations whose per-

formance was previously hindered by the training data shortage. Our third contribution

proposes the first generative model for source code that is directed within compiler fea-

ture spaces. It improves significantly our second contribution’s accuracy and inference

time in targeting the feature space. All three proposed techniques attempt to address

challenges that had remained unsolved by existing research.

7.1 Contributions

This thesis makes three main contributions:

7.1.1 Automate the Test Oracle

The test oracle problem is a long-standing challenge in the field of software testing

with experts spending time and effort to compute the expected behaviour of programs

for thousands of randomly generated test cases. This thesis proposes a novel technique

that uses deep learning to encode execution traces and classify them as “pass” or “fail”.

The empirical evaluation on 15 open-source, industry-scale codebases illustrates our

approach achieves maximum accuracy in classifying test executions of a codebase by

only training on a fraction of them, specifically 14%.

117



118 Chapter 7. Conclusion

7.1.2 Steerable Program Generation of Compiler Benchmarks

Predictive models for compilers have shown to outperform human experts in finding

the right optimisation heuristics that enable programs to make use of all available re-

sources of a target architecture. However, they are restricted by the limited amount and

feature diversity of compiler benchmarks available to train on. This thesis proposes

BENCHPRESS, a steerable program generator using active learning and deep unsuper-

vised language modeling to tackle this compiler benchmarks shortage. BENCHPRESS

finds important areas of compiler feature spaces that are likely to improve the perfor-

mance of predictive models. Provided a set of desired features, BENCHPRESS syn-

thesizes compiler benchmarks in OpenCL that target these features. Its benchmarks

compile at a rate of 87% compared to the state of the art’s 2.3%, while they can also

be longer and more diverse. BENCHPRESS outperforms humans in targeting the fea-

tures of high-quality benchmarks across three feature spaces, while also it improves

the accuracy of a device mapping predictive model by 50%, by improving its training

data.

7.1.3 Directed Language Modeling for Compiler Benchmark Gen-

eration

BENCHPRESS is the first steerable program generator for compiler benchmarks, but

its inference time overhead can be quite high, as it needs to infer thousands of random

benchmarks to get incrementally close to the target features. This can be prohibitive for

large-scale experiments. In our third contribution, we propose BENCHDIRECT, a di-

rected, bi-directional language model that infills programs by judging the left and right

context of the code and also attending on the targeted compiler features. BENCHDI-

RECT increases BENCHPRESS’s accuracy in targeting programs by up to 36%, while

it reduces the total inference time by up to 72%. BENCHDIRECT matches exactly the

features of Rodinia benchmarks in three feature spaces 1.8× more frequently and it

is 82% more likely to produce a benchmark closer to the target features compared to

BENCHPRESS.



7.2. Critical Analysis 119

7.2 Critical Analysis

This Section contains a critical analysis of the techniques presented in this work.

7.2.1 Using Machine Learning as a Test Oracle

In Chapter 4, this thesis discusses the use of supervised learning as a test oracle for

runtime behaviour classification. Although this contribution reduces the costly com-

putation of expected outputs for test inputs by 86%, it has its limitations.

First, the machine learning model in this technique needs to be re-trained for each

subject program. Although the training process does not require effort from the de-

veloper, it may be an extra overhead depending on the size of the model used. Also,

the training data collection through instrumentation can pose several challenges. Our

technique’s interface to collect data is based on CMAKE and LLVM-IR. This means

codebases that do not support these tools cannot be used through our model and exe-

cution traces will have to be collected manually. Maintainability is another issue. Such

technologies evolve fast, therefore our instrumentation tools may need to be regularly

maintained to keep up with modern compiler versions, otherwise it may be deprecated

for new subject programs.

Second, we use recurrent neural networks, the LSTM specifically, to embed and

classify program execution traces. Even though the LSTM is an effective architec-

ture in encoding arbitrary sequences into fixed vector representations, there have been

numerous new language models that significantly outperform it since publishing this

contribution. Given the increasing complexity of software, it is unclear whether the

LSTM can keep achieving maximum classification accuracy with execution traces be-

coming larger and more complex. Maintaining a high accuracy is imperative for our

approach to be used by developers effectively.

7.2.2 Generative Modeling for Compiler Benchmarks

Chapter 5 presents BENCHPRESS, a technique for guided/steerable synthesis of com-

piler benchmarks. Using this technique improves the quality of ML-based heuristics

for compilers by providing a fine-grained exploration of the space of representative

programs. One limitation of this technique is that the synthesizer is restricted into

generating functions. Although we keep a large collection of custom structs and data

types, the model is restricted in invoking only them but cannot generate new ones,



120 Chapter 7. Conclusion

limiting the space of possible program functionalities that can be produced.

Although BENCHPRESS is steerable thanks to beam search sampling applied over

a workload of produced programs per generation, the underlying language model itself

is unguided. This can lead to inefficiency as many thousands of inferred programs

may be needed over tens of generations to target a single feature vector. For difficult

parts of the feature space, this can amount to several minutes or even hours of GPU

time to collect a single benchmark. However, there is no other existing work directing

program synthesis in compiler feature spaces. What is more, we strive to mitigate

BENCHPRESS’s time overhead in our third contribution, BENCHDIRECT.

Another concern for BENCHPRESS’s samples is how much they resemble code pro-

duced by humans. BENCHPRESS performs iterative edits on its own produced samples

to guide their features towards the desired part of the feature space. Often, this leads

to repetitive statements that will be eliminated by the compiler or misplaced blocks of

code that are not executed on runtime e.g., computation inside an if statement that is

always evaluated to false. Synthetic benchmarks that are not human-likely are dif-

ficult for developers to interpret and debug and may lead to execution patterns that

deviate significantly from what is expected.

7.2.3 Directed Program Synthesis

Chapter 6 presents BENCHDIRECT, a directed language model for compiler bench-

marks synthesis. BENCHDIRECT is an extension of BENCHPRESS and improves its

accuracy of targeting benchmarks by up to 36%, while reducing its inference time

overhead by up to 72%.

BENCHDIRECT uses a Transformer-Encoder to influence the language model’s to-

ken predictions with respect to the desired features. The Transformer receives a con-

catenation of all supported feature spaces as an input. We use three feature spaces that

are commonly used in compiler optimisation to train and evaluate BENCHDIRECT.

One limitation is how BENCHDIRECT’s sampling process scales with respect to the

input features’ number of dimensions. While usually features for compilers are low-

dimensional (i.e. under 100 features), this architecture is likely to have a considerable

training and sampling overhead if many feature spaces are integrated, increasing the

input sequence’s length. As such, it is unlikely a many-dimensional space can be sup-

ported, as it would increase quadratically the training complexity of the Transformer.

A different technique is needed to represent effectively a large number of different

features without making the training and inference process prohibitively large.



7.3. Future Work 121

7.3 Future Work

This Section outlines 2 promising directions for future research enabled by this thesis.

7.3.1 Efficient Directed Program Synthesis

As discussed in Chapters 5 and 6, directed synthesizers strongly outperform undirected

approaches in delivering high-quality source code. However, the existing technique for

guided synthesis using language models is inefficient, requiring thousands of bench-

marks to slowly converge to the target features. BENCHDIRECT offers a more efficient

approach to steerable generation compared to BENCHPRESS but the improvement is

not exponential.

In most generative language models, there is a trend of steadily increasing the

sizes of the architectures and the amount of training data. While larger models e.g.,

Large Language Models (LLMs), do perform significantly better, we suggest genera-

tive models have to be re-designed to emulate the efficiency of humans. This is cur-

rently allowed with Reinforcement Learning (RL), a method that emulates the way

humans learn, by taking actions and observing their consequences through a reward

and punishment system. This helps a RL agent understand the series of actions that

will maximize its rewards given the environment.

For the task of directed program synthesis, a RL agent can start from an empty

sequence (i.e. the starting state of the environment) and iteratively select actions to

maximize its reward. In this case, the action space can be the type of edit performed

e.g., ‘ADD’, ‘REMOVE’, ‘REPLACE’ or ‘COMPILE’ along with the index of the

sequence at which the action takes place. This assimilates the actions taken by human

developers when writing software. The reward function could take into account if the

current program compiles and how far it is from the target features to guide the agent

into the correct solution.

We feel such an approach is a promising way to make directed program synthesis

more accurate and at the same time reduce its inference overhead to a tiny fraction of

what it currently is. We are very eager to work in this direction in the future.

7.3.2 Autonomous Predictive Models

To maximize their performance, existing predictive models require human expertise for

the task of (a) feature selection, i.e. design their input feature space and (b) curation



122 Chapter 7. Conclusion

of their training data, i.e. ensure they are trained on high-quality datasets. Feature

selection is based on human intuition and expertise which often leads to inaccurate

predictive models because important features have been removed from the original

training data. Finding lots of training data is also a great challenge. Even popular

machine learning applications, such as semantic segmentation, require several hours

of human labour for labelling.

Both feature selection and dataset curation require expertise and manual effort but

they can be automated through autonomously-trained predictive models. In Chapter 5,

we show how the programs generated by BENCHPRESS improve a predictive model’s

accuracy in predicting the fastest execution device for OpenCL workloads. As such,

a generative model can be used as a teacher for the predictive model’s learning pro-

cess. To explore the feature space and find these areas that are likely to improve the

predictive model, active learning can be used in conjunction with a generative model

that will label the active learner’s queries.

Neural networks have shown to be successful in representing efficiently raw in-

formation into fixed vectors on the latent space. Instead of performing manual feature

selection for a predictive model, the feature extraction can be left as a machine learning

task, where the model itself decides those features that are sensitive to the classifica-

tion decision. Taking the device mapping predictive model as an example, instead of

hand-crafting the input feature space of the model, it can receive BENCHPRESS’s hid-

den state representation of a benchmark. An active learning algorithm such as EER

(Expected Error Reduction) can sample the predictive model with unlabelled data and

compute a query. The query can be satisfied by BENCHPRESS, which will synthe-

size a compiler benchmark with the desired features. Such an approach would require

minimal supervision from a human expert and no starting training data. A pre-trained

generative model could teach autonomously a predictive model for any downstream

task applied to source code.

We believe this is an exciting direction for machine learning and we aim to explore

its applications to compiler optimisation.

7.4 Concluding Remarks

The increasing scale of software’s complexity today leads to testing and optimising

programs being two challenging and time-consuming processes that rely on manual

effort and expertise. Addressing these challenges requires developing new automated



7.4. Concluding Remarks 123

tools that will make software faster and safer and will boost developers’ productivity.

This thesis leverages the growth of deep language models to propose novel ap-

proaches for program correctness classification, program generation and compiler opti-

misation that are significantly simpler and more effective than established approaches.

The methodologies are applied across two domains: software testing and compiler op-

timisation. In both cases, the proposed techniques outperform state-of-the-art methods

that have been developed through years of research.

The demonstrated outcomes open new lines of research into programming lan-

guage modeling, generation and testing of programs through deep learning. Although

our results look promising, there is still much work to be done. Promising future re-

search directions include adapting these techniques to problems that have a wider im-

pact further enabling the automation of domains that still rely on manual effort. Such

examples are generating general purpose programming languages that are widely used

to create software, or enabling our test oracle approach to work across different lan-

guages and technologies. I hope the work of this thesis will be useful to researchers in

the future in discovering new domains in the field of artificial intelligence for source

code modeling. To this direction, I publicly release all the code and data associated

with the contributions of this thesis 1 2.

1https://github.com/fivosts/Learning-over-test-executions
2https://github.com/fivosts/BenchPress





Bibliography

[1] ABDELBAKY, M., PARASHAR, M., KIM, H., JORDAN, K., SACHDEVA, V.,

SEXTON, J., JAMJOOM, H., SHAE, Z.-Y., PENCHEVA, G., TAVAKOLI, R.,

AND WHEELER, M. Enabling high-performance computing as a service. Com-

puter 45 (10 2012), 72–80.

[2] AGARAP, A. F. Deep learning using rectified linear units (relu), 2018.

[3] AGGARWAL, ET AL. A neural net based approach to test oracle. ACM SIGSOFT

Software Engineering Notes 29, 3 (2004), 1–6.

[4] AHAMED, S. S. R. Studying the feasibility and importance of software testing:

An analysis.

[5] ALETI, A., BUHNOVA, B., GRUNSKE, L., KOZIOLEK, A., AND MEEDENIYA,

I. Software architecture optimization methods: A systematic literature review.

IEEE Transactions on Software Engineering 39, 5 (2013), 658–683.

[6] ALLAMANIS, M., BARR, E. T., BIRD, C., AND SUTTON, C. Learning Natural

Coding Conventions . In FSE (2014), pp. 281–293.

[7] ALLAMANIS, M., BARR, E. T., DEVANBU, P., AND SUTTON, C. A survey of

machine learning for big code and naturalness. ACM Comput. Surv. 51, 4 (jul

2018).

[8] ALLAMANIS, M., BROCKSCHMIDT, M., AND KHADEMI, M. Learning to

represent programs with graphs. In ICLR (2018).

[9] ALLAMANIS, M., PENG, H., AND SUTTON, C. A Convolutional Atten-

tion Network for Extreme Summarization of Source Code . arXiv:1602.03001

(2016).

125



126 Bibliography

[10] ALLAMANIS, M., PENG, H., AND SUTTON, C. A Convolutional Attention

Network for Extreme Summarization of Source Code. In ICML (2016).

[11] ALMAGHAIRBE, R., AND ROPER, M. Separating passing and failing test ex-

ecutions by clustering anomalies. Software Quality Journal 25, 3 (2017), 803–

840.

[12] ALON, U., ET AL. code2vec: Learning distributed representations of code.

arXiv preprint arXiv:1803.09473 (2018).

[13] ALON, U., LEVY, O., AND YAHAV, E. code2seq: Generating sequences from

structured representations of code. arXiv preprint arXiv:1808.01400 (2018).

[14] ALON, U., ZILBERSTEIN, M., LEVY, O., AND YAHAV, E. Code2vec: Learn-

ing distributed representations of code. Proc. ACM Program. Lang. 3, POPL

(jan 2019).

[15] AMMANN, P., AND OFFUTT, J. Introduction to software testing. Cambridge

Univ. Press, 2016.

[16] ANDREWS, J. H., BRIAND, L. C., LABICHE, Y., AND NAMIN, A. S. Using

mutation analysis for assessing and comparing testing coverage criteria. IEEE

Transactions on Software Engineering 32, 8 (2006), 608–624.

[17] Commons lang. https://commons.apache.org/proper/commons-lang/,

2020.

[18] BAGRODIA, R., MEYER, R., TAKAI, M., CHEN, Y.-A., ZENG, X., MARTIN,

J., AND SONG, H. Y. Parsec: a parallel simulation environment for complex

systems. Computer 31, 10 (1998), 77–85.

[19] BALOG, M., GAUNT, A. L., BROCKSCHMIDT, M., NOWOZIN, S., AND TAR-

LOW, D. Deepcoder: Learning to write programs. In International Conference

on Learning Representations (2017).

[20] BARR, E., ET AL. The oracle problem in software testing: A survey. IEEE TSE

41, 5 (2015), 507–525.

[21] BEBIS, G., AND GEORGIOPOULOS, M. Feed-forward neural networks. IEEE

Potentials 13, 4 (1994), 27–31.

https://commons.apache.org/proper/commons-lang/


Bibliography 127

[22] BENCHMARKS, R. http://lava.cs.virginia.edu/Rodinia/download.

htm. [Online; accessed 25-Apr-2022].

[23] BENGIO, Y., DUCHARME, R., VINCENT, P., AND JANVIN, C. A neural prob-

abilistic language model. J. Mach. Learn. Res. 3, null (mar 2003), 1137–1155.

[24] BERTOLINO, A. Software testing research: Achievements, challenges, dreams.

In Future of Software Engineering (2007), IEEE Computer Society, pp. 85–103.

[25] BOWRING, J., ET AL. Active learning for automatic classification of software

behavior. In ACM SIGSOFT Software Engineering Notes (2004), pp. 195–205.

[26] BRANTS, T., POPAT, A. C., XU, P., OCH, F. J., AND DEAN, J. Large language

models in machine translation. In Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natu-

ral Language Learning (EMNLP-CoNLL) (Prague, Czech Republic, June 2007),

Association for Computational Linguistics, pp. 858–867.

[27] BRIAND, L. C. Novel applications of machine learning in software testing. In

QSIC’08 (2008), IEEE, pp. 3–10.

[28] BRUN, Y., AND ERNST, M. D. Finding latent code errors via machine learning

over program executions. In Proceedings of the 26th ICSE (2004), pp. 480–490.

[29] BUDUMA, N., AND LOCASCIO, N. Fundamentals of Deep Learning: Design-

ing Next-Generation Machine Intelligence Algorithms, 1st ed. O’Reilly Media,

Inc., 2017.

[30] BUTERIN, V. Ethereum Project (release 3.5), 2019. https://github.com/

ethereum/aleth.

[31] CHABOT, M., MAZET, K., AND PIERRE, L. Automatic and configurable

instrumentation of c programs with temporal assertion checkers. In 2015

ACM/IEEE International Conference on Formal Methods and Models for Code-

sign (MEMOCODE) (2015), pp. 208–217.

[32] CHAUDHARI, S., MITHAL, V., POLATKAN, G., AND RAMANATH, R. An

attentive survey of attention models. ACM Trans. Intell. Syst. Technol. 12, 5 (oct

2021).

http://lava.cs.virginia.edu/Rodinia/download.htm
http://lava.cs.virginia.edu/Rodinia/download.htm
https://github.com/ethereum/aleth
https://github.com/ethereum/aleth


128 Bibliography

[33] CHE, S., BOYER, M., MENG, J., TARJAN, D., SHEAFFER, J. W., LEE, S.-H.,

AND SKADRON, K. Rodinia: A benchmark suite for heterogeneous computing.

In 2009 IEEE International Symposium on Workload Characterization (IISWC)

(2009), pp. 44–54.

[34] CHEN, T., ET AL. An orchestrated survey on automated software test case

generation. Journal of Systems and Software (2013).

[35] L7-filter, application layer packet classifier for linux. http://l7-filter.

clearos.com/, 2013.

[36] COLLIE, B., GINSBACH, P., WOODRUFF, J., RAJAN, A., AND O’BOYLE,

M. F. M3: Semantic api migrations. In 2020 35th IEEE/ACM International

Conference on Automated Software Engineering (ASE) (2020), IEEE, pp. 90–

102.

[37] COLLINS, A., FENSCH, C., AND LEATHER, H. Auto-Tuning Parallel Skele-

tons . Parallel Processing Letters 22, 02 (6 2012), 1240005.

[38] CONG, J., HUANG, M., WU, D., AND YU, C. H. Invited - heterogeneous dat-

acenters: Options and opportunities. In Proceedings of the 53rd Annual Design

Automation Conference (New York, NY, USA, 2016), DAC ’16, Association for

Computing Machinery.

[39] CUMMINS, C., PETOUMENOS, P., STEUWER, M., AND LEATHER, H. To-

wards Collaborative Performance Tuning of Algorithmic Skeletons . In

HLPGPU (2016).

[40] CUMMINS, C., PETOUMENOS, P., WANG, Z., AND LEATHER, H. Synthe-

sizing benchmarks for predictive modeling. In 2017 IEEE/ACM International

Symposium on Code Generation and Optimization (CGO) (2017), pp. 86–99.

[41] CUMMINS, C., WASTI, B., GUO, J., CUI, B., ANSEL, J., GOMEZ, S., JAIN,

S., LIU, J., TEYTAUD, O., STEINER, B., TIAN, Y., AND LEATHER, H. Com-

pilergym: Robust, performant compiler optimization environments for ai re-

search, 2021.

[42] DA SILVA, A. F., KIND, B. C., DE SOUZA MAGALHÃES, J. W., ROCHA,

J. N., FERREIRA GUIMARÃES, B. C., AND QUINÃO PEREIRA, F. M. Ang-

http://l7-filter.clearos.com/
http://l7-filter.clearos.com/


Bibliography 129

habench: A suite with one million compilable c benchmarks for code-size re-

duction. In 2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO) (2021), pp. 378–390.

[43] DAVID, Y., ALON, U., AND YAHAV, E. Neural Reverse Engineering of

Stripped Binaries. arXiv:1902.09122 (2019).

[44] DE BRUIN, S., LIVENTSEV, V., AND PETKOVIĆ, M. Autoencoders as tools for

program synthesis, 2021.

[45] DENG, J., DONG, W., SOCHER, R., LI, L.-J., LI, K., AND FEI-FEI, L. Ima-

genet: A large-scale hierarchical image database. In 2009 IEEE Conference on

Computer Vision and Pattern Recognition (2009), pp. 248–255.

[46] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-

training of deep bidirectional transformers for language understanding. In

NAACL (2019).

[47] DEVLIN, J., UESATO, J., BHUPATIRAJU, S., SINGH, R., MOHAMED, A.-R.,

AND KOHLI, P. Robustfill: Neural program learning under noisy i/o. In Pro-

ceedings of the 34th International Conference on Machine Learning - Volume

70 (2017), ICML’17, JMLR.org, p. 990–998.

[48] DINELLA, E., RYAN, G., MYTKOWICZ, T., AND LAHIRI, S. K. Toga: A neu-

ral method for test oracle generation. In Proceedings of the 44th International

Conference on Software Engineering (New York, NY, USA, 2022), ICSE ’22,

Association for Computing Machinery, p. 2130–2141.

[49] DO, H., ELBAUM, S., AND ROTHERMEL, G. Supporting controlled experi-

mentation with testing techniques: An infrastructure and its potential impact.

Empirical Software Engineering 10, 4 (2005), 405–435.

[50] ELMAN, J. L. Finding structure in time. Cognitive Science 14, 2 (1990), 179–

211.

[51] FALCH, T. L., AND ELSTER, A. C. Machine Learning Based Auto-tuning for

Enhanced OpenCL Performance Portability . In IPDPSW (2015), IEEE.

[52] FENG, Z., GUO, D., TANG, D., DUAN, N., FENG, X., GONG, M., SHOU, L.,

QIN, B., LIU, T., JIANG, D., AND ZHOU, M. Codebert: A pre-trained model

for programming and natural languages, 2020.



130 Bibliography

[53] FIVOSTS. https://github.com/fivosts/BenchPress.git. [Online; ac-

cessed 1-Sept-2022].

[54] FRIED, D., AGHAJANYAN, A., LIN, J., WANG, S., WALLACE, E., SHI, F.,

ZHONG, R., YIH, W.-T., ZETTLEMOYER, L., AND LEWIS, M. Incoder: A

generative model for code infilling and synthesis, 2022.

[55] FURSIN, G., AND TEMAM, O. Collective optimization: A practical collabora-

tive approach. ACM Trans. Archit. Code Optim. 7, 4 (dec 2011).

[56] GALASSI, A., LIPPI, M., AND TORRONI, P. Attention in natural language

processing. IEEE Transactions on Neural Networks and Learning Systems 32,

10 (2021), 4291–4308.

[57] GAO, J., TSAO, J., WU, Y., AND JACOB, T. H.-S. Testing and quality assur-

ance for component-based software.

[58] GITHUB. https://docs.github.com/en/rest. [Online; accessed 25-Apr-

2022].

[59] GOENS, A., BRAUCKMANN, A., ERTEL, S., CUMMINS, C., LEATHER, H.,

AND CASTRILLON, J. A case study on machine learning for synthesizing

benchmarks. In Proceedings of the 3rd ACM SIGPLAN International Work-

shop on Machine Learning and Programming Languages (New York, NY, USA,

2019), MAPL 2019, Association for Computing Machinery, p. 38–46.

[60] GOOGLE. https://cloud.google.com/bigquery. [Online; accessed 25-

Apr-2022].

[61] GREWE, D., WANG, Z., AND O’BOYLE, M. F. P. Portable mapping of data

parallel programs to opencl for heterogeneous systems. In Proceedings of the

2013 IEEE/ACM International Symposium on Code Generation and Optimiza-

tion (CGO) (2013), pp. 1–10.

[62] GUO, D., SVYATKOVSKIY, A., YIN, J., DUAN, N., BROCKSCHMIDT, M.,

AND ALLAMANIS, M. Learning to complete code with sketches. In Interna-

tional Conference on Learning Representations (2021).

[63] GUO, Y., LI, P., LUO, Y., WANG, X., AND WANG, Z. Exploring gnn

based program embedding technologies for binary related tasks. In Proceedings

https://github.com/fivosts/BenchPress.git
https://docs.github.com/en/rest
https://cloud.google.com/bigquery


Bibliography 131

of the 30th IEEE/ACM International Conference on Program Comprehension

(New York, NY, USA, 2022), ICPC ’22, Association for Computing Machinery,

p. 366–377.

[64] GUPTA, K., CHRISTENSEN, P. E., CHEN, X., AND SONG, D. Synthesize, exe-

cute and debug: Learning to repair for neural program synthesis. In Proceedings

of the 34th International Conference on Neural Information Processing Systems

(Red Hook, NY, USA, 2020), NIPS’20, Curran Associates Inc.

[65] HAJ-ALI, A., HUANG, Q. J., XIANG, J., MOSES, W., ASANOVIC, K.,

WAWRZYNEK, J., AND STOICA, I. Autophase: Juggling hls phase orderings

in random forests with deep reinforcement learning. In Proceedings of Machine

Learning and Systems (2020), I. Dhillon, D. Papailiopoulos, and V. Sze, Eds.,

vol. 2, pp. 70–81.

[66] HAN, J., AND MORAGA, C. The influence of the sigmoid function parameters

on the speed of backpropagation learning. In From Natural to Artificial Neural

Computation (Berlin, Heidelberg, 1995), J. Mira and F. Sandoval, Eds., Springer

Berlin Heidelberg, pp. 195–201.

[67] HARIRI, F., AND SHI, A. Srciror: A toolset for mutation testing of c source

code and llvm intermediate representation. In 2018 33rd IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE) (2018), pp. 860–

863.

[68] HENDRYCKS, D., AND GIMPEL, K. Gaussian error linear units (gelus), 2016.

[69] HENNING, J. L. Spec cpu2006 benchmark descriptions. SIGARCH Comput.

Archit. News 34, 4 (sep 2006), 1–17.

[70] HIERONS, R. M. Verdict functions in testing with a fault domain or test hy-

potheses. ACM TOSEM 18, 4 (2009), 14.

[71] HIERONS, R. M. Oracles for distributed testing. IEEE TSE 38, 3 (2012), 629–

641.

[72] HINDLE, A., BARR, E. T., GABEL, M., SU, Z., AND DEVANBU, P. On the

naturalness of software. Commun. ACM 59, 5 (apr 2016), 122–131.



132 Bibliography

[73] HINDLE, A., BARR, E. T., SU, Z., GABEL, M., AND DEVANBU, P. On the

naturalness of software. In Proceedings of the 34th International Conference on

Software Engineering (2012), ICSE ’12, IEEE Press, p. 837–847.

[74] HINTON, G., ET AL. A fast learning algorithm for deep belief nets. Neural

computation 18, 7 (2006), 1527–1554.

[75] HINTON, G. E., MCCLELLAND, J. L., AND RUMELHART, D. E. Distributed

Representations. MIT Press, Cambridge, MA, USA, 1986, p. 77–109.

[76] HOCHREITER, S. The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems 6 (04 1998), 107–116.

[77] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural

Comput. 9, 8 (nov 1997), 1735–1780.

[78] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural

Comput. 9, 8 (nov 1997), 1735–1780.

[79] HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term memory. Neural

computation 9, 8 (1997), 1735–1780.

[80] HOLLINGSWORTH, J., MILLER, B., AND CARGILLE, J. Dynamic program in-

strumentation for scalable performance tools. In Proceedings of IEEE Scalable

High Performance Computing Conference (1994), pp. 841–850.

[81] HORVÁTH, F., GERGELY, T., ÁRPÁD BESZÉDES, TENGERI, D., BALOGH,

G., AND GYIMÓTHY, T. Code coverage differences of java bytecode and source

code instrumentation tools. Software Quality Journal 27, 1 (2019), 79–123.

[82] HOWDEN, W. Theoretical and empirical studies of program testing. IEEE

Transactions on Software Engineering SE-4, 4 (1978), 293–298.

[83] HYUNSOOK DO, AND ROTHERMEL, G. On the use of mutation faults in em-

pirical assessments of test case prioritization techniques. IEEE Transactions on

Software Engineering 32, 9 (2006), 733–752.

[84] JALOTE, P. An Integrated Approach to Software Engineering, 3rd ed. Springer

Publishing Company, Incorporated, 2010.



Bibliography 133

[85] JIA, Y., AND HARMAN, M. An analysis and survey of the development of

mutation testing. IEEE Transactions on Software Engineering 37, 5 (2011),

649–678.

[86] JIA, Y., AND HARMAN, M. An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering 37, 5 (2011), 649–

678.

[87] JIN, H., ET AL. Artificial neural network for automatic test oracles generation.

In Proceedings of CSSE (2008), vol. 2, IEEE, pp. 727–730.

[88] JING, K., AND XU, J. A survey on neural network language models, 2019.

[89] JOUPPI, N. P., YOUNG, C., PATIL, N., PATTERSON, D., AGRAWAL, G., BA-

JWA, R., BATES, S., BHATIA, S., BODEN, N., BORCHERS, A., BOYLE, R.,

CANTIN, P.-L., CHAO, C., CLARK, C., CORIELL, J., DALEY, M., DAU,

M., DEAN, J., GELB, B., GHAEMMAGHAMI, T. V., GOTTIPATI, R., GUL-

LAND, W., HAGMANN, R., HO, C. R., HOGBERG, D., HU, J., HUNDT,

R., HURT, D., IBARZ, J., JAFFEY, A., JAWORSKI, A., KAPLAN, A., KHAI-

TAN, H., KILLEBREW, D., KOCH, A., KUMAR, N., LACY, S., LAUDON, J.,

LAW, J., LE, D., LEARY, C., LIU, Z., LUCKE, K., LUNDIN, A., MACK-

EAN, G., MAGGIORE, A., MAHONY, M., MILLER, K., NAGARAJAN, R.,

NARAYANASWAMI, R., NI, R., NIX, K., NORRIE, T., OMERNICK, M.,

PENUKONDA, N., PHELPS, A., ROSS, J., ROSS, M., SALEK, A., SAMADI-

ANI, E., SEVERN, C., SIZIKOV, G., SNELHAM, M., SOUTER, J., STEINBERG,

D., SWING, A., TAN, M., THORSON, G., TIAN, B., TOMA, H., TUTTLE, E.,

VASUDEVAN, V., WALTER, R., WANG, W., WILCOX, E., AND YOON, D. H.

In-datacenter performance analysis of a tensor processing unit. SIGARCH Com-

put. Archit. News 45, 2 (jun 2017), 1–12.

[90] JUST, R., JALALI, D., AND ERNST, M. D. Defects4J: A database of existing

faults to enable controlled testing studies for java programs. In ISSTA 2014, Pro-

ceedings of the 2014 International Symposium on Software Testing and Analysis

(2014), pp. 437–440.

[91] KANADE, A., MANIATIS, P., BALAKRISHNAN, G., AND SHI, K. Learning

and evaluating contextual embedding of source code, 2020.



134 Bibliography

[92] KANER, C., FALK, J. L., AND NGUYEN, H. Q. Testing Computer Software,

Second Edition, 2nd ed. John Wiley; Sons, Inc., USA, 1999.

[93] KELLERER, H., PFERSCHY, U., AND PISINGER, D. Introduction. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 1–14.

[94] KINGMA, D. P., AND BA, J. Adam: A method for stochastic optimization. In

3rd International Conference for Learning Representations (2015).

[95] KOROTEEV, M. V. Bert: A review of applications in natural language process-

ing and understanding. ArXiv abs/2103.11943 (2021).

[96] LANGDON, W., ET AL. Inferring automatic test oracles. In Proceedings of the

10th SBST (2017), pp. 5–6.

[97] LATTNER, C. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s

thesis, Computer Science Dept., University of Illinois at Urbana-Champaign,

Urbana, IL, Dec 2002. See http://llvm.cs.uiuc.edu.

[98] LATTNER, C., AND ADVE, V. LLVM: A compilation framework for lifelong

program analysis and transformation. In CGO (San Jose, CA, USA, Mar 2004),

pp. 75–88.

[99] LEATHER, H., BONILLA, E., AND O’BOYLE, M. Automatic Feature Gener-

ation for Machine Learning Based Optimizing Compilation . TACO 11 (2014).

[100] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. Nature 521 (05

2015), 436–44.

[101] LI, L. H., YATSKAR, M., YIN, D., HSIEH, C.-J., AND CHANG, K.-W. Visu-

albert: A simple and performant baseline for vision and language, 2019.

[102] LI, Y., CHOI, D., CHUNG, J., KUSHMAN, N., SCHRITTWIESER, J.,

LEBLOND, R., ECCLES, T., KEELING, J., GIMENO, F., LAGO, A. D., HU-

BERT, T., CHOY, P., DE MASSON D’AUTUME, C., BABUSCHKIN, I., CHEN,

X., HUANG, P.-S., WELBL, J., GOWAL, S., CHEREPANOV, A., MOLLOY,

J., MANKOWITZ, D. J., ROBSON, E. S., KOHLI, P., DE FREITAS, N.,

KAVUKCUOGLU, K., AND VINYALS, O. Competition-level code generation

with alphacode. Science 378, 6624 (2022), 1092–1097.



Bibliography 135

[103] LIDBURY, C. https://github.com/ChrisLidbury/CLSmith. [Online; ac-

cessed 30-Jan-2023].

[104] Sed, linux stream editor. https://linux.die.net/man/1/sed, 2009.

[105] LIU, H., KUO, F., TOWEY, D., AND CHEN, T. Y. How effectively does meta-

morphic testing alleviate the oracle problem? IEEE Transactions on Software

Engineering 40, 1 (2014), 4–22.

[106] https://clang.llvm.org/docs/LibTooling.html. [Online; accessed 30-

Jan-2023].

[107] MA, W., ZHAO, M., SOREMEKUN, E., HU, Q., ZHANG, J. M., PAPADAKIS,

M., CORDY, M., XIE, X., AND TRAON, Y. L. Graphcode2vec: Generic code

embedding via lexical and program dependence analyses. In Proceedings of

the 19th International Conference on Mining Software Repositories (New York,

NY, USA, 2022), MSR ’22, Association for Computing Machinery, p. 524–536.

[108] MAGNI, A., DUBACH, C., AND O’BOYLE, M. Automatic Optimization of

Thread-Coarsening for Graphics Processors . In PACT (2014), ACM, pp. 455–

466.

[109] MAHRENHOLZ, D., SPINCZYK, O., AND SCHRODER-PREIKSCHAT, W. Pro-

gram instrumentation for debugging and monitoring with aspectc++. In Pro-

ceedings Fifth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing. ISIRC 2002 (2002), pp. 249–256.

[110] MELO, L. T. C., RIBEIRO, R. G., GUIMARÃES, B. C. F., AND PEREIRA, F.

M. Q. A. Type inference for c: Applications to the static analysis of incomplete

programs. ACM Trans. Program. Lang. Syst. 42, 3 (nov 2020).

[111] MICOLET, P., SMITH, A., AND DUBACH, C. A Machine Learning Approach

to Mapping Streaming Workloads to Dynamic Multicore Processors . In LCTES

(2016).

[112] MIKOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Efficient estimation

of word representations in vector space, 2013.

[113] MIKOLOV, T., KOPECKY, J., BURGET, L., GLEMBEK, O., AND ?CERNOCKY,

J. Neural network based language models for highly inflective languages. In

https://github.com/ChrisLidbury/CLSmith
https://linux.die.net/man/1/sed
https://clang.llvm.org/docs/LibTooling.html


136 Bibliography

2009 IEEE International Conference on Acoustics, Speech and Signal Process-

ing (2009), pp. 4725–4728.

[114] MISRA, J., AND SAHA, I. Artificial neural networks in hardware: A survey

of two decades of progress. Neurocomputing 74, 1 (2010), 239–255. Artificial

Brains.

[115] MOHRI, M., ROSTAMIZADEH, A., AND TALWALKAR, A. Foundations of

Machine Learning. The MIT Press, 2012.

[116] MURPHY, K. P. Machine Learning: A Probabilistic Perspective. The MIT

Press, 2012.

[117] NARAYANAN, A., CHANDRAMOHAN, M., VENKATESAN, R., CHEN, L.,

LIU, Y., AND JAISWAL, S. graph2vec: Learning distributed representations

of graphs. ArXiv abs/1707.05005 (2017).

[118] NARDI, P. A., AND DAMASCENO, E. A survey on test oracles. Advances in

Theoretical and Applied Informatics 1, 2 (2015), 50–59.

[119] NYE, M., HEWITT, L. B., TENENBAUM, J. B., AND SOLAR-LEZAMA, A.

Learning to infer program sketches. In ICML (2019).

[120] OGILVIE, W. F., PETOUMENOS, P., WANG, Z., AND LEATHER, H. Fast

Automatic Heuristic Construction Using Active Learning . In LCPC (2014).

[121] OPENCL-SPECIFICATION. https://www.khronos.org/registry/OpenCL/

specs/3.0-unified/html/OpenCL_C.html. [Online; accessed 25-Apr-

2022].

[122] PAPINENI, K., ROUKOS, S., WARD, T., AND ZHU, W.-J. Bleu: A method for

automatic evaluation of machine translation. In Proceedings of the 40th Annual

Meeting on Association for Computational Linguistics (USA, 2002), ACL ’02,

Association for Computational Linguistics, p. 311–318.

[123] PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY, J., CHANAN,

G., KILLEEN, T., LIN, Z., GIMELSHEIN, N., ANTIGA, L., DESMAISON,

A., KOPF, A., YANG, E., DEVITO, Z., RAISON, M., TEJANI, A., CHIL-

AMKURTHY, S., STEINER, B., FANG, L., BAI, J., AND CHINTALA, S. Py-

torch: An imperative style, high-performance deep learning library. In Advances

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_C.html


Bibliography 137

in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Asso-

ciates, Inc., 2019, pp. 8024–8035.

[124] PENNINGTON, J., SOCHER, R., AND MANNING, C. GloVe: Global vectors

for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (Doha, Qatar, Oct. 2014),

Association for Computational Linguistics, pp. 1532–1543.

[125] PETERS, M., NEUMANN, M., IYYER, M., GARDNER, M., CLARK, C., LEE,

K., AND ZETTLEMOYER, L. Deep contextualized word representations.

[126] PODGURSKI, A., ET AL. Automated support for classifying software failure

reports. In Proceedings of 25th ICSE 2003. (2003), IEEE, pp. 465–475.

[127] PRADEL, M., AND SEN, K. Deepbugs: a learning approach to name-based bug

detection. Proceedings of the ACM on Programming Languages 2, OOPSLA

(2018), 147.

[128] RADFORD, A., AND NARASIMHAN, K. Improving language understanding by

generative pre-training.

[129] RAYCHEV, V., VECHEV, M., AND KRAUSE, A. Predicting Program Properties

from ”Big Code” . In POPL (2015).

[130] RIGGER, M., AND SU, Z. Intramorphic testing: A new approach to the test

oracle problem. In Proceedings of the 2022 ACM SIGPLAN International Sym-

posium on New Ideas, New Paradigms, and Reflections on Programming and

Software (New York, NY, USA, 2022), Onward! 2022, Association for Com-

puting Machinery, p. 128–136.

[131] ROY, N., AND MCCALLUM, A. Toward optimal active learning through monte

carlo estimation of error reduction.

[132] RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J. Learning

representations by back-propagating errors. In Nature 323, 533–536 (1986).

https://doi.org/10.1038/323533a0 (1986).

[133] RUMELHART, D. E., AND MCCLELLAND, J. L. Learning Internal Represen-

tations by Error Propagation. 1987, pp. 318–362.



138 Bibliography

[134] Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL, 2019.

Microsoft Research, Redmond, WA.

[135] SEUNG, H. S., OPPER, M., AND SOMPOLINSKY, H. Query by committee. In

Proceedings of the Fifth Annual Workshop on Computational Learning Theory

(New York, NY, USA, 1992), COLT ’92, Association for Computing Machin-

ery, p. 287–294.

[136] SOYDANER, D. Attention mechanism in neural networks: where it comes and

where it goes. Neural Computing and Applications 34, 16 (may 2022), 13371–

13385.

[137] SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER, I., AND

SALAKHUTDINOV, R. Dropout: A simple way to prevent neural networks from

overfitting. J. Mach. Learn. Res. 15, 1 (jan 2014), 1929–1958.

[138] STEPHENSON, M., SASTRY HARI, S. K., LEE, Y., EBRAHIMI, E., JOHN-

SON, D. R., NELLANS, D., O’CONNOR, M., AND KECKLER, S. W. Flexible

software profiling of gpu architectures. SIGARCH Comput. Archit. News 43, 3S

(jun 2015), 185–197.

[139] STONE, J. E., GOHARA, D., AND SHI, G. Opencl: A parallel programming

standard for heterogeneous computing systems. Computing in Science Engi-

neering 12, 3 (2010), 66–73.

[140] TAI, K. S., SOCHER, R., AND MANNING, C. D. Improved semantic represen-

tations from tree-structured long short-term memory networks. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers) (Beijing, China, July 2015), Association for Compu-

tational Linguistics, pp. 1556–1566.

[141] TEMPLER, K., AND JEFFERY, C. A configurable automatic instrumentation

tool for ansi c. In Proceedings 13th IEEE International Conference on Auto-

mated Software Engineering (Cat. No.98EX239) (1998), pp. 249–258.

[142] TSIMPOURLAS, F., PAPADOPOULOS, L., BARTSOKAS, A., AND SOUDRIS,

D. A design space exploration framework for convolutional neural networks

https://github.com/Microsoft/SEAL


Bibliography 139

implemented on edge devices. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 37, 11 (2018), 2212–2221.

[143] TSIMPOURLAS, F., PETOUMENOS, P., XU, M., CUMMINS, C., HAZELWOOD,

K., RAJAN, A., AND LEATHER, H. Benchdirect: A directed language model

for compiler benchmarks, 2023.

[144] TSIMPOURLAS, F., PETOUMENOS, P., XU, M., CUMMINS, C., HAZELWOOD,

K., RAJAN, A., AND LEATHER, H. Benchpress: A deep active benchmark gen-

erator. In Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (New York, NY, USA, 2023), PACT ’22, Associa-

tion for Computing Machinery, p. 505–516.

[145] TSIMPOURLAS, F., RAJAN, A., AND ALLAMANIS, M. Supervised learning

over test executions as a test oracle. In Proceedings of the 36th Annual ACM

Symposium on Applied Computing (New York, NY, USA, 2021), SAC ’21, As-

sociation for Computing Machinery, p. 1521–1531.

[146] TSIMPOURLAS, F., ROOIJACKERS, G., RAJAN, A., AND ALLAMANIS, M.

Embedding and classifying test execution traces using neural networks. IET

Software 16, 3 (2022), 301–316.

[147] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM, P., AND SUN-

DARESAN, V. Soot - a java bytecode optimization framework. In Proceedings

of the 1999 Conference of the Centre for Advanced Studies on Collaborative

Research (1999), CASCON ’99, IBM Press, p. 13.

[148] VANMALI, M., ET AL. Using a neural network in the software testing process.

International Journal of Intelligent Systems 17, 1 (2002), 45–62.

[149] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES, L.,

GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is all you need.

In Proceedings of the 31st International Conference on Neural Information Pro-

cessing Systems (Red Hook, NY, USA, 2017), NIPS’17, Curran Associates Inc.,

p. 6000–6010.

[150] WANG, K., AND CHRISTODORESCU, M. Coset: A benchmark for evaluating

neural program embeddings, 2019.



140 Bibliography

[151] WANG, K., SINGH, R., AND SU, Z. Dynamic neural program embedding for

program repair. ICLR (2018).

[152] WANG, K., AND SU, Z. Blended, precise semantic program embeddings. In

Proceedings of the 41st ACM SIGPLAN Conference on Programming Language

Design and Implementation (New York, NY, USA, 2020), PLDI 2020, Associ-

ation for Computing Machinery, p. 121–134.

[153] WANG, Z., AND O’BOYLE, M. Mapping Parallelism to Multi-cores: A Ma-

chine Learning Based Approach . In PPoPP (2009), no. 15, ACM, pp. 75–84.

[154] WANG, Z., AND O’BOYLE, M. Partitioning Streaming Parallelism for Multi-

cores: A Machine Learning Based Approach . In PACT (2010), ACM, pp. 307–

318.

[155] WANG, Z., AND O’BOYLE, M. Machine learning in compiler optimization.

Proceedings of the IEEE 106, 11 (2018), 1879–1901.

[156] WANG, Z., SANCHEZ, A., AND HERKERSDORF, A. Scisim: A software per-

formance estimation framework using source code instrumentation. In Pro-

ceedings of the 7th International Workshop on Software and Performance (New

York, NY, USA, 2008), WOSP ’08, Association for Computing Machinery,

p. 33–42.

[157] WANG, Z., TOURNAVITIS, G., FRANKE, B., AND O’BOYLE, M. Integrat-

ing Profile-driven Parallelism Detection and Machine-learning-based Mapping

. TACO (2014).

[158] WEN, Y., WANG, Z., AND O’BOYLE, M. Smart Multi-Task Scheduling for

OpenCL Programs on CPU/GPU Heterogeneous Platforms . In HiPC (2014),

IEEE.

[159] WOLVERTON, R. The cost of developing large-scale software. IEEE Transac-

tions on Computers C-23, 6 (1974), 615–636.

[160] WONG, E., YANG, J., AND TAN, L. AutoComment: Mining Question and An-

swer Sites for Automatic Comment Generation . In ASE (2013), IEEE, pp. 562–

567.



Bibliography 141

[161] XU, X., WANG, X., AND XUE, J. M3v: Multi-modal multi-view context

embedding for repair operator prediction. In Proceedings of the 20th IEEE/ACM

International Symposium on Code Generation and Optimization (2022), CGO

’22, IEEE Press, p. 266–277.

[162] YANEVA, V., KAPOOR, A., RAJAN, A., AND DUBACH, C. Accelerated finite

state machine test execution using gpus. In APSEC (2018).

[163] YANEVA, V., RAJAN, A., AND DUBACH, C. Compiler-assisted test accelera-

tion on gpus for embedded software. In Proceedings of the 26th ACM SIGSOFT

International Symposium on Software Testing and Analysis (2017), pp. 35–45.

[164] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and understanding

bugs in c compilers. In Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation (New York, NY, USA,

2011), PLDI ’11, Association for Computing Machinery, p. 283–294.

[165] YU, S., AND ZHOU, S. A survey on metric of software complexity. In 2010 2nd

IEEE International Conference on Information Management and Engineering

(2010), pp. 352–356.


	Introduction
	Software Testing and Machine Learning
	Compiler optimisation and Machine Learning
	Contributions
	Publications
	Structure

	Background
	Software Testing
	Terminology
	Software Testing Workflow
	Testing Practices
	Program Instrumentation
	Test Oracle

	Compiler Infrastructure
	Machine Learning
	Neural Networks
	Language Modeling
	Active Learning

	Summary

	Related Work
	Introduction
	The Test Oracle
	Program Representation
	Language Modeling for Program Synthesis

	Supervised learning over test executions as a test oracle
	Introduction
	Extended Contributions

	Approach
	Instrument and Gather Traces
	Training Set
	Preprocessing
	Neural Network Model

	Experiment
	Labelling Traces
	Subject Programs
	Performance Measurement
	Hierarchical Clustering
	Results
	Q1. Precision, Recall and Specificity
	Q2. Size of training set
	Q3. Comparison against state of art
	Q4. Generalisation
	Threats to Validity

	Summary

	BenchPress: A Deep Active Benchmark Generator
	Introduction
	Motivation
	Approach
	Learning Corpus
	Language Modeling
	Benchmark Generation
	Feature Space Search

	Experimental Setup
	Platforms
	Language Modeling for source code
	Feature Spaces
	Analysis of BenchPress and CLgen language models
	Targeted Benchmark Generation
	Active Learning for Feature Selection

	Results
	Analysis of BenchPress and CLgen language models
	Targeted Benchmark Generation
	Active Learning for Feature Selection

	Summary

	Deep Directed Language Modeling for Compiler Features
	Introduction
	Approach
	Directed Language Modeling
	Experimental Setup
	Platforms
	Language Modeling for source code
	Feature Spaces
	Targeted Benchmark Generation

	Results And Analysis
	Targeted Benchmark Generation

	Summary

	Conclusion
	Contributions
	Automate the Test Oracle
	Steerable Program Generation of Compiler Benchmarks
	Directed Language Modeling for Compiler Benchmark Generation

	Critical Analysis
	Using Machine Learning as a Test Oracle
	Generative Modeling for Compiler Benchmarks
	Directed Program Synthesis

	Future Work
	Efficient Directed Program Synthesis
	Autonomous Predictive Models

	Concluding Remarks

	Bibliography

