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Abstract

Experiments investigating the regulation of RNA transcripts have been revolutionised by
technology developed over the last 40 years. The data acquired from these experiments
have revealed novel regulatory mechanisms for the localisation, degradation and modi-
fication of RNA transcripts. However, the volume and complexity of the data sets have
led to an unprecedented reliance on statistical software. Inadequate analysis of data sets
is contributing to the ongoing crisis around reproducing conclusions from published re-
search. Rigorous implementation of statistical analysis software can continue to uncover
novel regulatory mechanisms, but closed, obscure, and incorrect analyses will propagate
the reproducibility crisis to unassailable new heights.

The objective of this research project is to develop open-source software and im-
plement reproducible analyses to enable further exploration of regulatory mechanisms
acting on RNA transcripts. This thesis focuses on the analysis of transcriptomics data
sets, predominately from the model organism Saccharomyces cerevisiae. This first project
discusses the standardisation of the analysis of qPCR data. The chapter compares the R
package tidyqpcr, developed by the author, to other current software available. This case
highlights how quality software supported by comprehensive documentation can improve
the quality of an entire experimental assay. The next chapter showcases how the imple-
mentation of quality analysis can detect subtle interactions between regulatory motifs.
The design of several reporter constructs using insights from published data sets shows
how even short regulatory motifs can be affected by their overall context. The final results
chapter outlines the development of a statistical software package to rigorously analyse
noisy transcriptomic data from RNA-Seq assays exploring RNA localisation. The statis-
tical software package uses a Bayesian hierarchical model of fractionation-based assays
to overcome common biases in RNA-Seq data sets.

In summary, this thesis presents and implements two examples of research soft-
ware that improve the reproducibility and quality of conclusions from data acquired from
common experimental assays in molecular biology. The thesis also outlines how to im-
plement open-source development practices and create inclusive documentation in an aca-
demic setting. Software developed within this framework is then used to elucidate subtle
ways that cells regulate their transcriptome.



Lay Summary

A simple model for how cells regulate themselves begins with deoxyribonucleic acid
(DNA) as the information storage molecule inherited over generations and ends with the
proteins encoded by DNA that a cell uses to respond to its environment. Ribonucleic
acid (RNA) is considered to be an auxiliary molecule that is used to facilitate the flow
of information from DNA to ribosomes, the cellular machinery that creates proteins from
amino acids. However, with less than 2% of the human genome encoding a protein, the
model is over-simplistic as it emphasises the regulatory role of proteins over RNA. Even
within this model, RNA is required to perform a multi-faceted role: the DNA template
of a protein is transcribed as messenger RNA (mRNA) which transports it to a ribosome,
the ribosomes themselves are predominately made of ribosomal RNA (rRNA), and the
amino acids used to create proteins are carried by transfer RNA (tRNA). Beyond this
model populations of non-coding RNA (ncRNA) continue to be discovered with distinct
regulatory roles, including: long non-coding RNAs (lncRNA), microRNAs (miRNA), and
small nuclear RNAs (snRNA).

Our understanding of the world of RNA has been revolutionised over the last 40
years by technology that has enhanced the extraction and quantification of different RNA
populations. Experiments can now be designed to complete a wide range of tasks from
carefully comparing specific RNA targets across large samples to exploring differences
in entire populations of RNA transcripts across sub-cellular compartments. However, as
the experiments have become more sensitive and the regulatory mechanisms of interest
more subtle, the detection of biologically significant effects from experimental noise has
become increasingly complex. Therefore, the demands on molecular biologists now in-
clude: biological knowledge and experimental skills to plan and execute an experiment;
and programming and statistical skills to analyse the data they create. Biologists are
equipped to meet the biological knowledge and experimental demands, but the demand
for programming and statistical skills has yet to be met by sufficient training or funding.
This in turn leads biologists to depend on proprietary software or to develop their own
analysis scripts without the knowledge of best practices or understanding the implicit
assumptions behind the methods they use. Closed, obscure, and incorrect analyses are
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fueling an ongoing crisis around reproducing results in published papers.

This thesis outlines how best practices in software development and rigorous sta-
tistical analyses can contribute to more informative and reproducible experiments inves-
tigating the regulatory role of RNA. The thesis consists of three main results chapters.
The first results chapter describes the development of a software package called tidyqpcr
which analyses data from a key experiment in molecular biology. tidyqpcr uses compre-
hensive documentation and intuitive function design to empower biologists to conduct
quality-controlled experiments and publish reproducible results. The second results chap-
ter implements tidyqpcr, together with the rigorous analysis of several other experimental
assays, to detect subtle interactions between short regulatory sequences within mRNA.
The final results chapter introduces a novel statistical method to remove known biases
in experiments designed to compare changes in RNA populations between sub-cellular
compartments. This research contributes to our understanding of how cells regulate them-
selves through their finessed control of their RNA and provides open-source software to
enable other researchers to enhance their own experiments.
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Chapter 1

Introduction

1.1. Overview

Assays quantifying changes in transcript abundance with unprecedented sensitivity have
rewritten our understanding of RNA regulation. Regulatory mechanisms for the locali-
sation, degradation and modification of RNA transcripts can now be investigated across
entire transcriptomes. However, as the sensitivity of experiments has increased so has
the difficulty of distinguishing biologically significant effects from experimental noise.
Confounding biological effects with experimental noise could undermine the progress
promised by a data-rich age of molecular biology.

Science is suffering from a reproducibility crisis. In 2017, Nature surveyed over
1500 scientists and found over 70% of them tried and failed to reproduce someone else’s
work (Baker, 2016). The origins of the crisis come from the lack of detail in experimental
protocols, obscure analysis methods, and misunderstanding of statistical tests. The level
at which scientists misuse statistical tests has even led a journal to ban any reference to
statistical significance (Trafimow & Marks, 2015).

The reproducibility crisis is worsened by the gap between the statistical methods
developed to analyse noisy data and the implementation of these methods on biological
questions. The choice of statistical method can change depending on subject, hypothesis
and data quality which also contributes to the gap (Ching et al., 2018). The way data
is preprocessed, the method used to deal with missing values and the software used can
all drastically change results (Ioannidis et al., 2009). Meanwhile, those that bridge this
gap are typically biologists with no formal software engineering training (Attwood et
al., 2019) and who are unlikely to develop prototype analysis scripts into fully fledged
programs (Prins et al., 2015). This leads to high duplication, poor reproducibility and
slower overall progress (Lawlor & Walsh, 2015).

The use of rigorous statistical methods implemented in reproducible, open-source
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1.2. Contributions 2

research software is the only way to overcome this crisis. Furthermore, the inclusion of
comprehensive documentation with research software can encourage experimental best
practices and improve the reproducibility of an entire experimental assay. This thesis
combines software development best practices with rigorous analysis of multiple tran-
scriptomic assays to conduct reproducible experiments and investigate post-transcription
regulatory mechanisms acting on mRNA.

1.2. Contributions

The aim of this thesis is to develop and apply computational methods to investigate the
regulation of RNA abundance. The contributions of this thesis are as follows:

• The development of tidyqpcr, an open-source R package for the analysis of qPCR
data. tidyqpcr contains extensive documentation and integrates with the wider tidy-
verse suite of data analysis packages to help users conduct reproducible, flexible,
and MIQE best-practice-compliant quantitative PCR experiments. The R package
is available to download and has an accompanying publication in the Journal for
Open Source Software, doi:10.21105/joss.04507.

• The detection of the limitations of composability of cis-regulatory elements be-
yond promoter and terminator regions. Short regulatory sequences in the 3’UTR of
mRNA transcripts are shown to have different contributions to gene expression de-
pending on context. The paper is currently under review by Nucleic Acids Research
with a preprint available on bioRχiv, doi:10.1101/2021.08.12.455418v2.

• The development of DiffFracSeq, a novel Bayesian statistical model that normalises
bulk RNA-Seq assays exploring differential fractionation. Exploiting the physi-
cal properties of sequencing sub-fractions of a larger body DiffFracSeq can over-
come issues with normalising samples that have global changes in the transcrip-
tome. The model to available to use as an R package downloadable from GitHub,
github.com/DimmestP/DiffFracSeq.

1.3. Thesis Layout

In this thesis, I outline the development of analysis software and statistical models to ex-
plore transcript localisation and the context dependence of cis-regulatory elements. Chap-
ter 2 provides the necessary background knowledge required to understand the results of
this thesis. It starts with an overview of the key mechanisms used by eukaryotic cells
to regulate RNA abundance. Then, the basics of several transcriptomic assays that have
enabled quantitative comparisons of RNA abundance are explained. qPCR, microarrays

https://joss.theoj.org/papers/10.21105/joss.04507
https://www.biorxiv.org/content/10.1101/2021.08.12.455418v2
https://github.com/DimmestP/DiffFracSeq
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and RNA-Seq are introduced with emphasis on the sources of error that can be present
in these experiments. Finally, the chapter introduces software development practices that
have been implemented in this work.

Chapter 3 describes the materials and methods used to complete my PhD, includ-
ing: a brief overview of the statistical methods used, details of the practices followed to
develop tidyqpcr, and an overview of experiments conducted by members of the Wallace
lab for the results in chapter 5. Chapter 4 starts by justifying the need for a new qPCR
analysis package and explaining how tidyqpcr has been designed to overcome some of
the deficiencies in currently available software.

Chapter 5 introduces the concept of composability of regulatory elements in the
contexts of synthetic and computational biology. Then, the changing contributions to gene
expression from terminators when paired with different promoters and coding sequences
are shown. The chapter ends by describing the design of constructs with short regulatory
motifs inserted or removed from their terminators and showing that these motifs also have
differing contributions depending on context.

Chapter 6 begins by outlying the difficulties in detecting differential fractiona-
tion using standard RNA-Seq analysis software. The Bayesian statistical model behind
DiffFracSeq is then introduced and its ability to successfully detect differential fraction-
ation is inspected using three different data sets. Finally, chapter 7 summarises the main
contributions of this body of work and suggests some avenues for future research.



Chapter 2

Preliminaries

2.1. Gene Expression Regulation

Across all cells genetic information flows from DNA to RNA to proteins, the central
dogma of molecular biology (Crick, 1970). Transcription from DNA to RNA and trans-
lation from RNA to protein are regulated by numerous mechanisms simultaneously to
enable cells to respond to their environment. This chapter is a brief overview of the
transcription and post-transcriptional regulatory mechanisms that contribute to the dif-
ferential expression of mRNA transcripts with emphasis on the mechanisms present in
Saccharomyces cerevisiae, Figure 2.1.

2.1.1. Transcriptional regulation

The creation of an mRNA transcript from a DNA template requires the completion of
three key transcriptional steps: initiation, elongation and termination. Initiation of mRNA
transcription consists of the RNA polymerase II binding to the DNA template upstream
of the sequence encoding a protein. The region where the RNA polymerase II initiates
transcription is called the promoter. In eukaryotes, DNA is wound around nucleosomes
and densely packaged in several orders of chromatin structure. Therefore, the initiation
of transcription requires a variety of transcription factors to aid in the unwinding of the
chromatin, scanning of regions for promoters, and the binding of RNA polymerase II.
Promoters consist of regulatory sequences that encourage the binding of transcription
factors and can be further affected by distal regulatory regions such as enhancers (Cramer,
2019).

Once transcription is initiated the polymerase begins the sporadic process of elon-
gation from the transcript start site. The polymerase first transcribes the 5’ untranslated
region (5’UTR) of an mRNA transcript, then the coding sequence for the corresponding
protein, and finally the 3’ untranslated region (3’UTR). For genes that contain introns, the
polymerase will also transcribe the intron sequences which can occur across the nascent

4
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Figure 2.1: Overview of key mRNA regulatory processes. Several mechanisms act simultane-
ously to enable cells to respond to their environment through the regulation of mRNA transcripts.
Figure adapted from Corbett, 2018

transcript but are removed from the mature mRNA transcript. The process of elongation is
highly stochastic with polymerases regularly pausing and even stalling with several acces-
sory proteins required to maintain the process. Early on in the elongation stage, the 5’ end
of the pre-mRNA is modified by several enzymes to form a 5’-methyl cap which inhibits
degradation and aids translation. Finally, the termination of transcription remains a rela-
tively unclear process as a distinct termination sequence has not been found. Instead, the
polymerase continues to transcribe the sequence downstream of the 3’UTR. This down-
stream terminator region does contain sequences to recruit cleavage and polyadenylation
factors. The still elongating RNA transcript is cleaved at the end of the 3’UTR as dictated
by these sequences. The freely floating pre-mRNA transcript is then bound by a poly(A)
polymerase that adds a tail of hundreds of adenine bases to the end of the transcript. The
remaining string of RNA bound to the polymerase and DNA template is degraded by a 5’
to 3’ exonuclease, which is thought to dislodge the polymerase and terminate transcription
(Alberts et al., 2015; Cramer, 2019). The terminator can contain multiple cleavage sites
leading to transcript variants, called isoforms, with different poly(A) positions. Transcript
isoforms can also be created as the promoter can contain different transcription start sites
leading to transcript isoforms with different coding sequences and 5’UTRs (de Klerk &
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’t Hoen, 2015).

2.1.2. Post-transcriptional regulation

A variety of regulatory mechanisms act in between the transcription of a nascent mRNA
transcript and its translation into a sequence of amino acids. Key tasks include: removing
introns, conducting quality control and transporting transcripts around the cell. Introns are
regions that are transcribed but are not in the final mature mRNA transcript. Concurrently
with or immediately after transcription a group of co-functional RNA and proteins called
the spliceosome remove intron segments within nascent RNA transcripts. The regions that
form the mature mRNA transcript are called exons and a single transcript may consist of
10s of exons spliced together. Alternative splicing of introns and exons can theoretically
produce thousands of different versions of a protein in some Drosophila genes (Wilkinson
et al., 2020).

Selective degradation of low quality mRNA or transcripts that are no longer needed
is a crucial post-transcriptional regulation mechanism. The importance of degradation in
gene regulation is reflected in the number of redundant processes to degrade transcripts,
but the majority of degradation is facilitated by the deadenylation-dependent mRNA de-
cay pathway. This pathway starts by flagging transcripts for degradation by shortening the
poly(A) tail. Then, either the 5’methyl cap is removed to enable 5’->3’ degradation by
the XRN1 exoribonuclease or 3’->5’ degradation is initiated by the exosome attaching to
the exposed 3’ end. A variety of surveillance methods can trigger transcript degradation,
including: non-sense mediated decay which checks for premature stop codons, non-stop
mediated decay which checks for missing stop codons, and no-go mediated decay which
checks for stalled ribosomes on mRNA. In response to stress or other causes of high
load on the degradation machinery, P-bodies can form in the cytoplasm that are believed
to facilitate degradation as they often contain deadenylation, decapping and degradation
factors (Garneau et al., 2007).

Spatial regulation enables centrally transcribed mRNA transcripts to be regulated
differently depending on the target location of their encoded protein. In budding yeast,
the Ash1 protein represses mating-type switching, but only in daughter cells (Sil & Her-
skowitz, 1996). The localisation of the ASH1 transcript at the bud tip and subsequent
localised translation ensures the Ash1 protein is not present in the parent cell despite be-
ing transcribed in its nucleus (Niednery et al., 2014). It is thought that co-transcriptional
recruitment of She2 protein to the Ash1 transcript in the nucleus of the parent cell en-
ables the later recruitment of cytoplasmic factors Khd1/Hek2 and Puf6, factors known
for translational repression. Furthermore, the successful transport of ASH1 to the bud tip
by She2-She3-Myo4 complexes depends on translational repression by Khd1 and Puf6.
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Later, phosphorylation of Khd1 and Puf6 by bud-membrane-localised kinases leads to
localised translational activation of the ASH1 mRNA (Paquin et al., 2007; Deng et al.,
2008).

Another example where the effect of a CRE on a transcript depends on co-localisation
with a regulatory kinase comes from the fungal RNA-binding protein Ssd1. Yeast cell
wall proteins such as Sun4 and Tos6 are translationally repressed by Ssd1 (Jansen et al.,
2009). It is thought that these transcripts are translationally activated at bud sites after the
phosphorylation of Ssd1 by a localised kinase, Cbk1 (Jansen et al., 2009; Kurischko et
al., 2011). There is no evidence that Ssd1 directly acts to transport RNA, so this localised
activation presumably depends on the recruitment of other RNA-binding proteins to those
transcripts (Hogan et al., 2008; Bayne et al., 2021), that then recruit transport machinery.

Post-transcription regulation is also known to facilitate temporal regulation in
cells. Temporal regulation is common in developmental processes where the order of
production of specific proteins is highly regulated. For example, in C. elegans lin-4 is
a non-coding RNA gene crucial for regulating cell fates during the early stages of larval
development (Wightman et al., 1993). Lin-4 is a small RNA that binds to its target mRNA
lin-14 and inhibits the translation of lin-14 (Lee et al., 1993). Since lin-4 is only expressed
at the end of the first larval development stage, lin-14 is only translationally inhibited at
the end of stage 1, initiating the start of stage 2 (Olsen & Ambros, 1999). Similarly, to es-
tablish meiotic chromosome segregation in budding yeast, mRNA encoding cyclin CLB3
is transcribed in stage I of meiosis, but is translationally repressed until stage II of meiosis.
CLB3 is translationally repressed by the RNA-binding protein Rim4. During the transi-
tion to meiosis II, Rim4 is phosphorylated which inhibits binding to CLB3 and enables
CLB3 to be translated (Berchowitz et al., 2013). Therefore, post-transcription control
of CLB3 by Rim4 and of lin-4 by lin-14 depends on the timing of promoter-specified
transcriptional control.
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2.2. Experiments Quantifying RNA Abundance

2.2.1. qPCR

Quantitative polymerase chain reaction (qPCR) is the basis of countless assays that can
quantify various populations of DNA and RNA. Polymerase chain reaction (PCR) is re-
garded as one of the most significant methods in molecular biology as it enables the pro-
duction of copies of regions of DNA. The log-linear growth of copies from PCR duplica-
tion led researchers to explore its use as an accurate method to quantify abundance (Saiki
et al., 1988). After its invention in the 1980s the quantification of the rate of amplification
in real time quickly followed (Holland et al., 1991), but it was not until the 2000s that
biochemistry and technology matured into a reliable quantitative PCR (qPCR) method
(Walker, 2002). qPCR is a relatively low-throughput quantification method when com-
pared to the other methods described here. However, developments in microfluidics and
multiplexing target probes are overcoming the bottlenecks in conducting high-throughput
qPCR (Dreier et al., 2022).

The basic principle of PCR consists of the duplication of a region of DNA that
is specified by two short nucleotide sequences, called primers, that are designed to be
complementary to the start and the end of the region of interest. A highly thermotolerant
polymerase, adapted from the bacteria Thermus aquaticus, is then able to complete the
duplication of the region by elongation of the sequence between the two primers (Saiki
et al., 1988). The duplication cycle is repeated several times leading to an exponential
growth in the number of copies of the original region. The PCR polymerase must be ther-
motolerant as the duplication cycle is rapidly repeated by raising the temperature to melt
the newly created complementary strand away from the original strand before dropping
the temperature back down to enable the next round of elongation. Quantifying the rate
of amplification is done by introducing dyes that only fluoresce when a region has been
successfully duplicated. The fluorescence of the sample is measured as the PCR cycle
is repeated to determine the exponential growth in duplicates. Quantitative PCR (qPCR)
uses the amplification curve to infer the number of transcripts of the target sequence in
the original sample (Holland et al., 1991).

2.2.1.1. qPCR methods: RNA vs DNA

qPCR is highly optimised for amplifying DNA fragments using engineered derivatives of
the Thermus aquaticus polymerase (Witte et al., 2018). Therefore, to quantify RNA frag-
ments an additional step is required to create complementary DNA (cDNA) from RNA
using a reverse transcriptase. Unfortunately, this step can be a significant source of vari-
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ation and has been determined to be the source of most variation between RNA samples.
The variation in cDNA yield between replicates can be influenced by the choice of reverse
transcriptase priming method, the original RNA target concentration and the total RNA
concentration in the sample. In order for an RT-qPCR experiment to be reproducible the
reverse transcriptase step must be optimised and clearly described (Ståhlberg et al., 2004).

2.2.1.2. qPCR methods: Intercalating dyes vs probe-specific dyes

Figure 2.2: Comparison of the key steps in a qPCR assay using two different fluorescent
probes. (A) Intercalating dyes, such as SYBR Green fluorescent probes, bind to any double-
stranded DNA. (B) Probe-specific dyes, such as TaqMan fluorescent probes, bind to specific se-
quences and only fluoresce once detached from their paired quencher during elongation. Figure
adapted from Wikimedia Taqman diagram.

There are two common types of fluorescent dye used to measure duplicated frag-
ments: probe-specific dyes vs intercalating dyes. Intercalating dyes fluoresce when they
bind to any double-stranded DNA species in a sample (Ihmels & Otto, 2005), Figure 2.2A.
This leads to it being a cheap and relatively easy to use system, but it is highly susceptible
to contamination and it is unable to distinguish between samples from different targets.
Probe-specific dyes bind the fluorescent dye to an oligonucleotide probe that is designed
to attach to the region of interest somewhere in between the two primers. The oligonu-
cleotide probe has the fluorescent dye on one end and a quencher on the other. The
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quencher stops any excitation emissions from the dye through fluorescence resonance
energy transfer (Juskowiak, 2010). However, during elongation, when the polymerase
reaches the oligonucleotide probe it is hydrolysed separating the dye from the quencher.
Emissions from the fluorescent dye can then be measured and the creation of a new du-
plicate is detected, 2.2B. The introduction of a custom oligonucleotide probe increases
the specificity of probe-specific dye methods and reduces the effects of contamination.
Also, the abundance of multiple targets can be measured in the same sample by carefully
designing different oligonucleotide probes with different fluorescent dyes. Unfortunately,
the design and creation of custom probes cause probe-specific dye methods to be more
expensive and technical (Adams, 2020). The accuracy of the cheaper intercalating dyes
methods and the probe-specific dye methods is comparable, if correctly conducted (Taja-
dini et al., 2014). Although, the limit of detection (LOD) of low copy targets depends on
protocol optimisation.

2.2.1.3. Quantifying abundance: Curve fitting vs cycle threshold

The exponential limit of the number of duplicates per cycle enables methods that compare
abundance across samples. Assuming all samples reach the exponential growth stage
at the same time then the difference in fluorescence at any cycle of the PCR assay is
dependent only on the original copy number. However, even if the duplication is perfectly
efficient, the amplification curve of duplicates per cycle is not a perfect exponential as
there is a limited window through which the number of duplicates will grow exponentially.
The window is defined by limitations in detecting fluorescence at low abundance and the
exhaustion of resources at high abundance. The original copy number can be inferred
from the fluorescence if a fluorescence threshold is set during the exponential phase and
the number of cycles needed for a sample to reach it are compared. Unfortunately, this
method assumes both that each sample reaches the exponential phase at the same time and
that each cycle doubles the number of duplicates perfectly for each sample (VanGuilder
et al., 2008). An alternative method fits a sigmodal curve to the amplification curve and
uses this model to deduce the cycles required to reach the threshold. The additional fitting
can account for differences in the times to reach the exponential growth phase between
samples and can directly account for deviations in perfect duplication (Swillens et al.,
2008).
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2.2.1.4. Quantifying Abundance: Relative vs absolute

Multiple methods exist for converting cycle threshold measurements, Cq, into quantita-
tive values for sample abundance whilst accounting for experimental and technical noise.
First, qPCR experiments can be designed to measure the relative change in abundance
across samples. Relative abundance measurements depend on the determination of genes
that have constant expression across all samples/conditions. Any change in the gene(s) of
interest across samples can then be detected by comparing ∆Cq or the expressions rela-
tive to the set of constantly expressed genes. Normalising the fluorescence to genes with
constant expression minimises batch effects introduced by sample preparation, reverse
transcription and reactants. Alternatively, the absolute number of copies of a target in a
sample can be estimated. Absolute quantification of a target requires a preliminary ex-
periment where known initial quantities of the gene of interest are measured with qPCR.
Several amplification curves for the gene of interest, with gradually increasing copies of
the gene of interest, are measured to create a collection of standard curves. Next, the
sample from the primary experiment is measured with qPCR and its amplification curve
is compared to the standard curves. The absolute copy number of the gene of interest in
the experimental sample can then be interpolated (Wong & Medrano, 2005; VanGuilder
et al., 2008).

2.2.2. Microarrays

Microarrays facilitated the creation of some of the first high-dimensional data sets in tran-
scriptomics. In the 1980s an assay was published to simultaneously determine multiple
specific cell surface antigens through the use of a matrix of antibodies fixed to a glass
slide (Chang, 1983). The opportunity to quantify multiple characteristics of a sample us-
ing the same chip led other labs to explore attaching oligonucleotides to a slide, inventing
microarrays (Schena et al., 1995). The technology enabled the abundance of thousands of
genes to be measured simultaneously unlocking genome-wide studies of gene expression
regulation across conditions (Gasch et al., 2000). The assay also benefited from the high-
quality sequencing of the genomes of multiple species as oligonucleotide probes could be
designed to investigate any regions of interest (Lander et al., 2001).

Microarrays consist of a glass or silicon substrate with spots of DNA printed in
a regular grid. Each DNA spot is a complement to a different target which fluoresces
when bound with the target. In assays to determine differential expression, two colour
microarrays are used where each spot contains two fluorescent probes; one to detect the
target abundance in the sample of interest and one to detect target abundance in a control
or another sample of interest. A camera detects the level of fluorescence across each spot
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after excitation by a laser which is used to determine the abundance of that target. The
two colour microarray assay measures the fluorescence of the two fluorophores and uses
the ratio to determine changes in expression. As the DNA probes have to be designed
and printed onto the glass plate their complementary targets have to be decided before
conducting the experiment which reduces the opportunity to discover novel regulatory el-
ements (Schena et al., 1995). Microarrays facilitated the development of high-throughput
transcriptomic experiments as RNA transcript abundance can also be investigated by in-
troducing a reverse transcriptase step to create cDNA fragments.

2.2.3. RNA-Seq

The success of the microarray was limited by the requirement of specifying the target
probes prior to the experiment. However, its densely packed array of oligonucleotides
fixed to a solid surface inspired a new sequencing method. For 30 years the primary
method for sequencing unknown DNA fragments was Sanger sequencing with its suc-
cessful application in decoding the human genome (Lander et al., 2001). The method
consists of introducing a di-deoxynucleotide triphosphate (ddNTP) version of one of the
four nucleic acids which induces premature termination of elongation when the poly-
merase incorporates it into a DNA chain. Due to the stochasticity of elongation, the
introduction of ddNTP occurs at different stages of duplication leading to the creation of
a population of different lengths of copies of a target. Separating the population by weight
using electrophoresis creates bands where the chosen nucleic acid has been replaced by
a ddNTP version. Repeating the process by replacing each nucleic acid in turn enabled a
target sequence to be decoded (Sanger et al., 1977). Similar to qPCR, Sanger sequencing
can also be extended to RNA sequencing by introducing a reverse transcriptase step to
make cDNA. The accuracy of the Sanger method means it remains in use today, but the
cost and difficulty of scaling up the method have limited its use.

2.2.3.1. Shotgun sequencing

In the early 2000s, several companies competed to improve microarrays by overcom-
ing the deficiency in requiring DNA targets to be defined before the experiment (Rusk
& Kiermer, 2007). Solexa (now Illumina) developed adapters that could be ligated to
any sample of DNA and facilitate the attachment of the DNA sample to a solid surface.
Fluorescent nucleotides were created that could terminate elongation in a reversible way.
These nucleotides enabled a base-pair by base-pair cycle of elongation with the identity
of the last bound nucleotide being revealed by its colour. Fixing the fragments of DNA
to the surface meant islands of duplicates of the original fragment would be created and
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Figure 2.3: Comparison of RNA-Seq technologies. (A) Illumina sequencers attach short frag-
ments to a solid surface called a flowcell. Fluorescent nucleotides create a clear fluorescent spot
that identifies the last nucleotide to be attached. (B) PacBio sequencers enable long reads by
opening up double-stranded DNA into a circle. A polymerase can loop around the circle attaching
fluorescent nucleotides that identify the next nucleotide in the sequence. (C) Oxford Nanopore
sequencers force nucleotide fragments through protein pores in a membrane. The transmembrane
proteins change the current passing through them in response to the nucleotide sequence. The
changes in the current can be used to determine the nucleotide sequence. Figure adapted from
Stark et al., 2019

a clear fluorescent spot could be detected, Figure 2.3A. Unfortunately, the original tech-
nology only allowed accurate determination of reads with length <50 nucleotides. As
this length is significantly shorter than the majority of sequences of biological interest,
the preparation of samples for Solexa sequencing included a step to break samples into
small fragments, coining the term shotgun sequencing. The size of the fragments is of the
order of 100 nucleotides, which is still larger than the length of reads received from the
sequencing machine. An extension to the single read per fragment method is the paired-
end reads method. Sequencing two reads for each fragment, one at either end, enabled
even more accurate detection. Receiving two reads per fragment also opened the door to
exploring structural variants where fragments were copies of non-adjacent segments of
the genome (Risca & Greenleaf, 2015).
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2.2.3.2. Long read sequencing

Shotgun sequencing propelled molecular biology into an age of affordable, high-throughput
sequencing data. However, the limit in read size from shotgun sequencing made tasks
such as de novo genome assembly and the detection of structural variants difficult. Long
read sequencing technology has now matured with Oxford Nanopore and PacBio offer-
ing solutions to read 1000s of nucleotides at a time. PacBio sequencer uses fluorescent
nucleotides to determine sequences similar to an Illumina sequencer, but instead of bind-
ing fragments to a solid surface, they form single-stranded circles from long segments
of double-stranded DNA (dsDNA). Hairpin-shaped SMRTbell adapters are attached to
either end of a dsDNA segment creating a closed loop that is opened up into single-
stranded circular DNA, Figure 2.3B. A polymerase is attached to the adapters which can
loop around the circle producing multiple copies of both strands of the original dsDNA
segment (Hu et al., 2021). An Oxford Nanopore sequencer consists of a membrane with
100s of transmembrane proteins that alter their electric resistance when deformed by nu-
cleotides moving through them. A current passing through the transmembrane protein
then produces a signal in response to the nucleotides moving through the protein, Figure
2.3C. Machine learning algorithms have been trained to convert the signals in the current
into the sequences nucleotides (Jain et al., 2016).

2.2.3.3. Overview of RNA-Seq based assays

As high-throughput RNA-Seq technology has matured, assays to explore a variety of dif-
ferent transcriptome effects have been developed. With around 80% of the RNA in a cell
being ribosomal, methods to investigate other RNA populations have been developed us-
ing enrichment, through poly(A) tail selection or ribosomal RNA depletion (Stark et al.,
2019). Methods that require samples to be PCR amplified before sequencing can add
unique molecular identifiers (UMI) to their transcripts to check for biases in duplication
(Kivioja et al., 2011). Multiplexing methods now allow samples to be pooled together by
introducing sample unique barcodes to read adapters which enables ultra-high-throughput
methods with one library preparation stage (Craig et al., 2008). RNA-protein interactions
can be discovered by UV cross-linking transcripts to proteins, pulling out the protein of in-
terest, degrading the protein and analysing the remaining RNA (Granneman et al., 2009).
Pulse labelling methods can uncover genome-wide transcript production and degradation
by introducing a labelled nucleotide and measuring changes in the population of tran-
scripts with that nucleotide (Chan et al., 2018). Transcript isomers created by alternative
polyadenylation are uncovered by using adapters that ensure reads are anchored to the
poly(A) tail (Pelechano et al., 2013). Localisation of transcripts to organelles or mem-
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branes can be detected by ultra-centrifugating cell lysate and sequencing the pellet (Iser-
man et al., 2020). Finally, single-cell RNA-Seq technologies are unlocking new cell types
and new sources of heterogeneity between homogeneous samples (Jovic et al., 2022).

2.2.3.4. Biases in RNA-Seq assays

The ubiquitous use of RNA-Seq assays across biology has led to multiple advances in
its accuracy and reliability, but many well-documented biases remain. The fragmentation
step of RNA-Seq methods introduces a significant gene length bias as longer genes create
more fragments (Oshlack & Wakefield, 2009). GC content of genes changes the reliability
of base-calling and alters read-coverage (Dohm et al., 2008). RNA-Seq data sets are
also highly susceptible to batch effects with total reads per run changing by orders of
magnitude (Auer & Doerge, 2010). The choice of RNA extraction and enrichment can
lead to significant changes in differential expression detection in the same samples (Sultan
et al., 2014). Meanwhile, poly(A) anchored reads can initiate elongation from an internal
stretch of adenine instead of the 3’end tail or it can switch templates mid-elongation
(Balázs et al., 2019).
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2.3. Transcriptomic Data Analysis

Modern transcriptomics experiments are acquiring quality, high-throughput data sets at
unprecedented scales. In 2012, the European Bioinformatics Institute (EBI) was one of
the biggest biology repositories in the world with a 20Pb storage facility (EMBL-EBI,
2012). However, by 2021, the upload of new data reached 20Pb a year with the institute
having to explore collaborations with Google and Amazon in order to keep up (EMBL-
EBI, 2021). Also, the creation of the high-dimensional data sets with transcript abundance
of thousands of genes over dozens of conditions exposed biologists to the n << p prob-
lem. The n << p problem is the low statistical power due to the small number of data
points, n, compared to the number of genes and conditions, p. Here, a typical workflow
for the analysis of an RNA-Seq data set is outlined to highlight the growing dependence
on research software in molecular biology.

2.3.1. RNA-Seq data analysis

RNA-Seq analysis consists of three core steps: quality control, alignment and count-
ing (Costa-Silva et al., 2023). The exact quality control steps can change significantly
between types of assay. For example, the enrichment of mRNA transcripts using degra-
dation or poly(A) anchors need to be checked for effectiveness by inspecting ribosomal
RNA content or tRNA levels. Meanwhile in the case of single-cell RNA-Seq checking for
cases where two or more cells may have accidentally been combined (as multiplets are
a common in occurrence in many techniques) is a vital step that is not required for bulk
RNA-Seq methods, (Zheng et al., 2017). However, across all methods it will be required
to check for sequence amplification biases, calling quality and whether each lane has suc-
cessfully detected reads with FASTQC, (Andrews, 2010). Once QC has been completed
UMI-tools and cutadapt may be used to remove any adapters and UMI that have been in-
troduced during the library preparation as these may complicate alignment to the genome
(Martin, 2011; Smith et al., 2017). Also, it is common to trim the 3’ end of reads as errors
in nucleotide callings tend to occur at the end. If the assay also includes multiplexed sam-
ples these need to be detected and separated with a tool such as demultiplex (Laros, 2018).
Once the reads have been trimmed and demultiplexed, then they need to be aligned to the
genome in order to be able to determine which gene they map to. A variety of genome
aligners are available depending on organism and computing infrastructure limitations.
BowTie2 is an accurate aligner but it struggles to align mRNA transcripts with introns
(Langmead & Salzberg, 2012). Other aligners like STAR or HISAT2 are much better at
aligning reads across introns, (Dobin et al., 2013; Kim et al., 2019). It is vital that quality
control steps are conducted after the alignment step with MultiQC (Ewels et al., 2016).
If the vast majority of reads do not align to the genome of an organism then there could
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be a contaminant present. Visualising reads on a genome browser, such as the integrated
genome browser (Freese et al., 2016), is also important to check for artefacts, stranded-
ness and poly(A) anchoring if appropriate. Once the sequences have been aligned the next
step is to remove PCR duplicates if UMIs are present again using UMI-tools. If reads are
aligned to exactly the same sequence and they have exactly the same UMI, then they are
considered duplicates and can be flattened to just one read. Finally, with the deduplicated
aligned reads fully processed featureCounts can then count the number of reads to each
gene (Liao et al., 2014; Conesa et al., 2016).

2.3.1.1. RNA-Seq analysis pipelines

The complexity of analysing high-volume RNA-Seq data sets has led to the development
of scalable, flexible and reproducible analysis pipelines. Assay-dependent quality control
steps, from removing adapter sequences to mapping to different genome annotations, are
often completed by software packages written in different scripting languages. Workflow
languages, such as Nextflow, are able to integrate the inputs and outputs of software in
a domain-agnostic manner (Tommaso et al., 2017). A community of bioinformaticians
are bringing together standardise modules using Nextflow which can be cherry-picked to
create the best pipeline for any specific RNA-Seq assay (Ewels et al., 2020). Furthermore,
as differences in software versions contribute to different outcomes workflow languages
are being combined with containers: such as singularity and docker (Tommaso et al.,
2015).

2.3.2. Detecting differential expression

Determining changes in the expression of genes across conditions is a common RNA-Seq
data analysis task, but differential expression analysis is easily confounded by RNA-Seq
biases (Soneson & Robinson, 2018). RNA-Seq data sets need to be normalised to remove
gene length and sequencing run-dependent biases introduced during reverse transcription
and amplification. Sequencing bias can be removed by normalising to internal controls.
Internal normalisation commonly consists of converting mapped reads into transcripts per
million (TPM). Transcripts per million divides the number of mapped reads mapped to a
gene by the length of that gene and the total number of reads mapped in that sequencing
run. Therefore, it accounts for the total read variation between runs and the gene length
biases. However, dividing by the total number of reads in a run introduces a dependence
on the behaviour of a subset of highly expressed genes that constitute the majority of the
transcriptome (Zhao et al., 2020). Alternatively, several methods have been developed
to detect genes that are expressed at constant levels across all conditions, i.e. quantile
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normalisation (Evans et al., 2018), median of mean ratio (Anders & Huber, 2010) and the
trimmed mean of the m-values (Robinson & Oshlack, 2010). Any changes in the stable
genes can then be assumed to be due to sequencing bias so normalising all other genes by
the number of reads mapped to stable genes can help remove the bias.

Statistical methods to determine significant changes in expression have been de-
veloped to account for the low replication and high variability of discrete RNA-Seq data.
Originally, a statistical method developed to analyse microarray experiments was applied
to RNA-Seq data. Linear Models of Microarray Data (limma) was developed to detect
changes in the ratios of the fluorescence of target probes corresponding to genes of in-
terest across conditions (Smyth, 2005). Although limma has been successfully applied
to several RNA-Seq experiments (Ritchie et al., 2015), the noise structure of continuous
fluorescence values is fundamentally different from the integer counts of RNA-Seq data.
Regression on integer data sets is more accurately modelled by discrete distributions such
as a Poisson distribution (Cameron & Trivedi, 1998). However, Poisson models are lim-
ited in their ability to model noisy data as its variance must equal its mean by definition.
edgeR (Robinson & Oshlack, 2010) and later DESeq (Anders & Huber, 2010) offered an
alternative noise model specifically for RNA-Seq data by using a negative binomial dis-
tribution as an overdispersed Poisson count model. These methods increased statistical
power despite the low number of replicates typical of RNA-Seq experiments by sharing
information across genes to determine the overdispersion parameter of the negative bino-
mial. A further improvement to modelling the dispersion of RNA-Seq data sets in DE-
Seq2 included a regression step on the gene-wise dispersions with respect to their means.
Shrinking the dispersion parameter of a gene towards the regression model trained across
all genes enhanced the statistical power when detecting differential expression (Love et
al., 2014).

2.3.3. Downstream analysis of transcriptomic data sets

Overcoming the n << p problem has been a fruitful task for applied statistics with robust
methods being developed for sharing expression behaviour across genes and conditions
(Gui et al., 2005). In investigations of linear covariates, robustness to noise and outliers
can be improved by using alternative loss functions, such as the least absolute deviation,
or the introduction of penalising terms, such as the Ln-norm of the regression coefficients
(Wu & Ma, 2015). Reducing the dimensionality of data sets to emphasise regions of in-
terest has also become standard through methods such as principle component analysis
(Wall et al., 2005). A variety of machine learning architectures have also been success-
fully applied to big data across biology ranging from detecting cancer to predicting gene
expression (Liang et al., 2015; Xie et al., 2017; Tang et al., 2019). However, the effec-
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tiveness of an algorithm is decided by the quality of the software that implements it.
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2.4. Research Software Engineering

The development of high-throughput, multi-omic experiments across the biological sci-
ences has led to an unprecedented demand for software for research. In the late 90s less
than 20% of research papers mentioned the use of software in their research, but by 2021
over 70% of publications stored on PubMed cited the use of software. Software devel-
oped specifically to answer research questions has rapidly become a cornerstone of the
modern empirical method (Schindler et al., 2022). However, academia has been slow to
incorporate software development practices into training programs and to create official
career paths for experts in research software development. The academic position of re-
search software engineer was only coined in the late 2000s (Prause et al., 2010) with the
creation of the society of software engineers being founded in 2010.

2.4.1. Software development practices

Figure 2.4: Comparison of two common software development practices. A Waterfall consists
of a linear sequence of tasks each of which must be fully completed before moving on to the next.
B Agile focuses on gaining feedback as soon as possible by quickly implementing small changes
and using feedback to influence the next design stage.

The simplest software development practice that biologists can implement when
writing any code is don’t repeat yourself (DRY). DRY encourages programmers to write
short and specific functions to solve regularly occurring tasks. Minimising the number of
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repetitions helps reduce errors; which can be introduced by imperfect copying, improves
readability, and enables faster debugging as compartmentalising tasks into separate func-
tions enables testing of each function separately (Thomas & Hunt, 1999). However, DRY
does have limits as the focus on general abstractions can lead to unreadable code. For
example, a correctly design suite of tests is intended to help diagnose bugs during the
development stage. Abstracting error messages to the shortest, most general form can
invalidate their usefulness in diagnosing bugs.

Research projects that involve more extensive computational analysis can benefit
from incorporating the structure given by software development methods used in industry.
A common software development method is called waterfall or plan-driven development.
Waterfall introduces a structure to the coding practice by outlining a series of stages that
are completed linearly, Figure 2.4A. It starts with a detailed specification before moving to
development and implementation. Although the traditional implementations of waterfall
encourage a strict sequential structure to the completion of a software development task,
modified waterfall methods enable a degree of flexibility as adjacent steps can overlap en-
abling some aspects of the design to change as the software is implemented (McConnell,
1996).

Agile is an alternative branch of software development methods that focuses on
getting regular feedback and deviates from the waterfall ethos of leaving testing to a later
stage. They prioritise creating a minimal viable product as soon as possible and testing its
functionality. The specification of an agile project be altered and redefined as the project
develops, Figure 2.4B. The principles behind the agile development method are outlined
in the agile manifesto, agilemanifesto.org. The inclusion of agile practices in biomedical
research suggests the iterative nature of exploratory research combines effectively with
the flexibility of agile software development(Kane et al., 2006).

Two common agile practices in industry that have already been successfully im-
plemented in research software development are scrum and extreme programming (Sletholt
et al., 2011; Sadath et al., 2018). Scrum is the modern archetypal agile method (Schwaber
& Sutherland, 2020). Instead of fixing the development schedule the project is broken
into sprints. Each sprint iteratively adds some functionality which is reviewed, tested and
implemented before moving on to the next. Constantly reviewing and testing the code
enables programmers to catch bugs early and to receive feedback on whether the initial
functionality is useful and achievable. As its name suggests extreme programming pushes
the principles of agile programming to the extreme (Beck & Andres, 2004). Updates to
the software are tested and implemented on a weekly basis. In addition, programmers are
expected to conduct paired programming; two programmers work together at all times
with only one coding while the other verbally dictates what should be added. Although

https://agilemanifesto.org/principles.html
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this reduces the number of lines of code written per developer, constantly reviewing each
other’s code reduces the number of errors which is assumed to negate any reduction in
productivity.

Despite there being multiple software development methods available in industry,
there remains a need for a general method that meets the demands of research software de-
velopment in an academic environment, (Cereci & Karakaya, 2018). The variety of team
sizes, project times scales, software development expertise and the usage of research soft-
ware for exploratory analysis leads to difficulties in finding similarities between projects
that can be used to build development methods (Hannay et al., 2009; Gomez-Diaz & Re-
cio, 2019). Hybrid software development methods that combine the overarching structure
of waterfall with the flexibility of agile could meet the hypothesis-driven and exploratory
demands of research software development (Pathak & Saxena, 2012).

2.4.2. Open source software development

The growing demand for research to be open access has led to almost 25% of all pub-
lications on the web to be openly available in some form (Khabsa & Giles, 2014). The
demand for research software that is openly available on public repositories, therefore,
is also increasing. Open source research software can also have improved findability,
accessibility and reproducibility. Open science research overall is linked with increased
citations, funding bodies placing more weight on open access policies and open projects
tend to get more coverage in the media (McKiernan et al., 2016). However, these ad-
vantages are only achievable if quality coding practices are implemented using public
repositories (Prlić & Procter, 2012). A modern parable for open source software develop-
ment comes from the epidemiological modelling of the spread of COVID-19 by Prof Neil
Ferguson at Imperial College London. Crucial to the justification of national lockdowns
to kerb the spread of COVID-19, the model was actually developed 13 years prior using
undocumented, closed source C++ code. After six weeks of intense revisions and refac-
toring, with direct help from Microsoft and GitHub software architects, the model code is
now the perfect example of open source research software github.com/mrc-ide/covid-sim.

2.4.3. Software documentation

2.4.3.1. The importance of quality documentation

The literature on developing useful and usable bioinformatics software is unanimous on
the need to document how and why to use a package (da Veiga Leprevost et al., 2014;
Taschuk & Wilson, 2017; Wilson et al., 2017). Furthermore, the widely popular Find-
able, Accessible, Interoperable and Reusable (FAIR) principles for scientific data now

https://github.com/mrc-ide/covid-sim
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has a similar set of principles for FAIR research software and documentation is at the
forefront: "R1. Software is described with a plurality of accurate and relevant attributes"
(Barker et al., 2022). Widely used software repositories, such as Bioconductor, demand
long-form documentation outlining the decisions made in creating a package as well as
how to interact with it in order for the package to be accepted (Gentleman et al., 2004).
Documentation acts as "a resource for learning and a second role: as an advertisement for
the software project" and the current health of a project (Geiger et al., 2018). As well as
being best practice for ensuring code usability, quality documentation can also improve
the quality of the code itself. Documentation of technicalities and a suitable code of con-
duct can help develop a community of maintainers that can fix bugs, update dependencies
and add functionality together (The Turing Way Community, 2022). Open source docu-
mentation also combats unconscious knowledge as developers of the code can overlook
key pieces of information for using the software that can only be rectified by new users
contributing to the package (Hermann & Fehr, 2022).

2.4.3.2. Factors contributing to poor documentation

Software is published with inadequate documentation because writing software docu-
mentation is a neglected step in software development. In a 2017 GitHub survey of OSS
contributors, 93% reported that “incomplete or outdated documentation is a pervasive
problem” but “60% of contributors say they rarely or never contribute to documentation”
(Geiger, 2017). Software documentation typically is the least credited part of software
development with little time or funds allocated to its development. In industry, documen-
tation writers are first to go in times of economic difficulty (Forward & Lethbridge, 2002).
In academia, research posts are only for a few years so there is little time, or motivation,
for the developer to respond to user queries (Hermann & Fehr, 2022). Simultaneously,
writing software documentation requires the most diverse set of skills and experiences
to enable people from different backgrounds and knowledge to engage at an appropriate
level (Geiger et al., 2018).

Software documentation needs to meet multiple demands and engage users with
different skill sets in order to be adequate. Previous research found common issues were
based on factually incorrect statements in the documentation, sections of code/functions
without any documentation at all or documentation becoming out of date with the latest
package versions. Other issues discuss the difficulty at which API documentation could
be found and searched at all, exactly what terms meant in specific contexts and not having
quality translations of documentation in other languages. As expected, a complete lack of
documentation is the most common issue but on the other extreme is dense, unintelligible
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documentation that is difficult to maintain and search (Aghajani et al., 2019).

2.4.4. Suggestions for improving software documentation

Understanding the purposes of different types of documentation can help improve the
overall quality of research software documentation. Previous studies have recognised
three categories of documentation: documentation of decisions, what problem does this
software solve and why was this particular method chosen to solve it; documentation of
product, what is contained within this software implementation and how do users interact
with it; and documentation of technicalities, how did the developers create the software
and how can maintainers contribute to it. Any software intended to be shared contains
some product documentation, but few research software projects outline technical details
and fewer still mention any decisions made in development (Geiger et al., 2018).

Documentation methods need to be developed to structure the writing of docu-
mentation to meet the needs of multiple users and tasks. Diataxis is a framework for
creating documentation using its two axes of knowledge: theory vs practice and acquisi-
tion vs application. They separate software documentation into four rough types: Tutori-
als, practical, and application knowledge; How-tos, practical, and acquisition knowledge;
references, theoretical, and acquisition knowledge; and explanations, theoretical, and ap-
plication knowledge, diataxis.fr. Following a systematic approach to developing software
documentation helps projects cover the range of needs of documentation users from first-
time users to regular maintainers.

The solutions to improving research software documentation target the three main
causes: lack of understanding of how to document software, loss of focus on the audience
and lack of time allocated to writing documentation, (Rios et al., 2020). Developers of
research software need to be taught the pedagogy of software documentation and the
tools available to support documentation. Institutes such as the Software Sustainability
Institute and the Turing Institute are supporting training and learning resources, but little
is mentioned in formal data analysis training. Similar to the frameworks developed for
software development, documentation frameworks need to be popularised to acknowledge
the continued effort required to keep documentation relevant, accurate and searchable.

Researchers and software developers need to be rewarded for creating usable and
documented software packages. Recognising and correctly citing the use of software
should be as important as citing research papers. Long-lasting code requires long-term
funding which needs to be supported by suitable grants judged on appropriate criteria
(Goble, 2014). Funding bodies and journals have acknowledged across the board that
research data needs to be FAIR. The FAIR principles for research software need to be
incorporated into funding decisions to reward those who create usable software (Hong

https://diataxis.fr/
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et al., 2022). Finally, encouraging open source research development will improve docu-
mentation as both benefits from contributions from a diverse and inclusive community of
maintainers (Strasser et al., 2022).



Chapter 3

Materials and Methods

3.1. Statistical Methods

The list of statistical methods described has been curated to cover the methods imple-
mented in this thesis. A comprehensive overview of methods to explore data in the
p >> n regime, where p is the number of features and n is the number of data points,
is beyond the scope of this section. This section draws broadly from several sources: the
Elements of Statistical Learning (Hastie et al., 2009), Bayesian Data Analysis (Gelman
et al., 2014) as well as relevant review papers (Wu & Ma, 2015; Greener et al., 2021).
A more representative view of available statistical methods can be found in the original
literature.

The list also reveals a pragmatic approach to the frequentist vs Bayesian debate on
statistical inference. Philosophically, the idea that there is an objective truth to be found
for any inference task, which motivated the methods within the frequentist ideology, has
been unhelpful at best in the pursuit of scientific knowledge. The Bayesian method of
incorporating prior knowledge into a model and exploring uncertainty in your results by
sampling from a posterior distribution offers a highly applicable structure for compart-
mentalising sources of error. However, the efficiency at which frequentist methods can be
applied and the quality of available software implementations using them means they are
useful tools in high-throughput data analysis. Their use as methods to highlight fruitful
avenues for further exploration is distinct from their misuse as arbitrators of truth.

3.1.1. Correlation metrics

The initial exploration and quality checking of a data set typically includes the determina-
tion of a linear dependency between variables. The Pearson correlation coefficient, R, is a
metric for determining positive, negative or uncorrelated linear dependencies between two

26
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variables. The correlation coefficient between two random variables x and y is defined as

R =
∑i(xi −µx)(yi −µy)

σxσy

where µx, µy are the mean values for x and y and σx, σy are the standard deviations of
x and y. Alternative correlation metrics have been developed that enable the exploration
of non-linear monotonic relationships between variables, such as the Spearman’s rank
correlation coefficient.

3.1.2. Linear regression

Predicting observations from linear combinations of variables, or combinations of trans-
formed variables, is the most studied model in statistics as well as being the starting basis
of many non-linear models. A linear model with input vector XT = (x1,x2, ...,xp) has the
form

f (X) = β0 +∑
j

x jβ j

where β j are the coefficients of interest to be determined. Assuming Gaussian noise with
constant variance, σ2, on the observation, y,

y = f (X)+ ε ε ∼ N
(
0,σ2)

we get the likelihood of getting this observation given the predictor variables from

L(β ,σ2;X ,y) = (2πσ
2)−1/2 exp

(
− 1

2σ2 (y− f (X))2
)
.

The task of linear regression is to find the values of β that maximise the likelihood func-
tion L(β ,σ2;X ,y). In frequentist statistics, the objective is to find the point values of
maximum likelihood denoted β̂ . The most common method to determine β̂ is to min-
imise the residual sum of least squares (RSS) over N observations,

RSS(β ) =
N

∑(y− f (X))2.

Writing the above in matrix form, with y being the vector of observations and X the matrix
of predictor values for each observation,

RSS(β ) = (y−Xβ )T (y−Xβ ),
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differentiating with respect to β and setting to zero gives the β̂ that minimises the RRS

β̂ = (XT X)−1XT y

It can be proved that the β̂ that minimises the RSS maximises L(β ,σ2;X ,y) as defined
above, (Hastie et al., 2009).

3.1.3. Penalised linear regression

In standard linear regression, the introduction of more predicting variables will always
increase accuracy on a training set as the model begins learning patterns in the noise. As
biological data sets often contain multiple possible predictors and are based on stochastic
processes that are inherently noisy a model needs to select biologically relevant predictors.
Penalised linear regression enables variable selection by introducing additional terms to
the likelihood that penalise the inclusion of predictors. The penalty acts on the coefficients
of all predictors creating penalised coefficients, β̂ , with general definition

β̂ = argminβ{L(β ;x,y)+penλ (β )}.

The penalty function penλ (β ) has a parameter λ that can be optimised to increase
the penalty of adding coefficients and reduce the complexity of the model. A common
penalty function is the Ln norm acting on the magnitudes of the coefficients

penλ (β ) = λ ∑
j
|β j|n.

The L1 and L2 norms are regularly implemented with the corresponding penalised re-
gression methods called lasso and ridge regression (Hoerl & Kennard, 1970; Tibshirani,
1996). The choice of norm does have a significant effect on the regression with the L1

norm able to set penalised coefficients exactly to zero, but the L2 norm able to deal with
collinearity in a more intuitive way by pulling the coefficients of collinear terms to the
same value rather than arbitrarily setting some to zero. Furthermore, work to create a
compromise between the two norms has created the elastic-net penalty

λ ∑
j
(α|β j|2 +(1−α)|β j|)

where α is an additional parameter to be optimised (Zou & Hastie, 2005). This version
attempts to combine with variable selection properties of the L1 norm with the collinearity
properties of the L2 norm.
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3.1.4. Bayesian hierarchical models

The Bayesian view of probability is that it represents a reasonable expectation of an event
given what we know (Cox, 1946). The fundamental basis of a Bayesian model is Bayes’
Theorem

P(θ |D) =
P(D|θ)P(θ)

P(D)
,

which states that the probability of getting certain parameter values given the data, P(θ |D),
is equal to the likelihood of getting this data given the parameters, P(D|θ), multiplied by
the probability distribution over all possible values of the parameter, P(θ), divided by the
probability of all possible data points, P(D). P(θ |D) is known as the posterior distribu-
tion, P(θ) is the prior distribution and P(D|θ) is the likelihood function. The theorem
was published by Reverend Thomas Bayes in 1763, but the majority of the modern in-
terpretation of Bayesian statistics was developed independently by Pierre-Simon Laplace
from 1774 onwards.

Bayesian hierarchical models are designed if the prior distribution itself contains
parameters, φ ,

P(θ ,φ |D) =
P(D|θ ,φ)P(θ |φ)P(φ)

P(D)
.

The higher tiered priors may act across multiple θ enabling information to be shared
across data points to counter the p >> n problem. As an example, consider a Bayesian
implementation of linear regression. Instead of finding the optimum value of the coeffi-
cients, β̂ , we are interested in the posterior distribution given the training data, P(β |D).
We can use the same likelihood function, but we need to define a prior distribution on
the values of P(β ). We can recreate the feature selection properties of lasso regression
if we use double-exponential distribution centred on zero for the values of β . The data,
through the likelihood function, must then shift the probability mass above or below zero
to suggest non-zero β values. Alternatively, a hyperparameter can be introduced to the
double-exponential distribution to select a bias term other than zero. The hyperparameter
could be trained across all terms in the linear model possibly learning that most β s are
actually 1.

3.1.5. Gaussian processes

Gaussian processes are a highly applicable tool for Bayesian inference. Gaussian pro-
cesses are an extension of a multivariate normal distribution to infinite dimensions. It is
a collection of random variables with any finite subset having a joint Gaussian distribu-
tion (Rasmussen & Williams, 2005). The collection is indexed by a variable typically
representing time as Gaussian processes were originally developed to filter and smooth
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noise time-series data. A Gaussian process is fully defined by a mean function, m(t), and
co-variance function, k(t, t ′), of a real function f (t)

f (t)∼ GP
(
m(t),k(t, t ′)

)
m(t) = E[ f (t)] k(t, t ′) = E[( f (t)−m(t))( f (t ′)−m(t ′))].

Unlike linear regression, Gaussian processes act on function space rather than the weight
space of the β coefficients. This means a Gaussian process is able to approximate prac-
tically any function and is far more flexible when fitting data that is non-linear and/or
correlated. The definition of the covariance function can give the Gaussian process a va-
riety of useful properties and defines the prior distribution in the Bayesian paradigm. The
squared exponential is a common covariance function,

k(t, t ′) = exp
(
− 1

2
|t − t ′|2

)
which is infinite differentiable leading to a very smooth Gaussian process. Akin to any
Bayesian method, test data points, f (t∗), can be sampled by conditioning the joint Gaus-
sian prior distribution on any given training observations, f (t),

f (t∗) | t∗, t, f (t) ∼ N
(

k(t∗, t) k(t, t)−1 f (t), k(t∗, t∗)− k(t∗, t) k(t, t)−1 k(t, t∗)
)

.

3.1.6. Model selection

Rigorous assessment criteria are needed to select the best model between a group with
different sets of predictors or with different penalty terms, i.e. λ . Ideally, the model
with the lowest prediction error for all possible data would be selected. However, since
any data set is a subset of all possible data the prediction error of a model can only be
approximated. K-fold cross-validation is a popular method to approximate the prediction
error by splitting the available data into K equal-sized groups and calculating the mean
prediction error when each of the groups in turn is excluded from the train set and used as
the validation set

CV ( f̂ ) =
1
K ∑

i
L(yi, f̂−k(i)(xi))

where f̂−k(i)(xi) is the model trained without the ith group. The model with the lowest
cross-validation error is then selected.

Alternatively, the Akaike information criterion (AIC) and the Bayesian informa-
tion criterion (BIC) can be used to assess models instead of the approximate prediction
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error.
AIC =− 2

N
log L(y, f (x))+2

d
N
,

BIC =−2 log L(y, f (x))+d log(N)

where is d the degrees of freedom, typically the number of predictors (Akaike, 1971;
Schwarz, 1978). The AIC is derived from the extension of the maximum likelihood prin-
ciple over the parameters space to include uncertainty over the dimensionality of the pa-
rameters, not just the values of the parameters. Borrowing from information theory, the
distance between the ideal model and a candidate model can be measured with the Kull-
back–Leibler divergence. The AIC is the asymptotically unbiased estimate of the discrep-
ancy in the Kullback–Leibler divergence between models of different dimensionality.

In the Bayesian paradigm, if we have the posterior probability of two different
models, Pr( fa|X ,Y ) and Pr( fb|X ,Y ) we can calculate the posterior odds

Pr( fa|X ,Y )
Pr( fb|X ,Y )

.

Model fa would be selected if the posterior odds > 1, else fb is selected. However, using
Bayes theorem

Pr( fa|X ,Y )
Pr( fb|X ,Y )

∝
Pr(X ,Y | fa)

Pr(X ,Y | fa)

which is known as the Bayes factor. Under some approximations of normality of Pr(X ,Y | fa)

it can be shown that

log Pr(X ,Y | fa)≈ log Pr(X ,Y | fa)−
d
2

log(N)

which is −1/2×BIC. Comparing the BIC values of multiple models is approximately
equivalent to comparing the posterior odds of the models. It is important to note that both
AIC and BIC contain approximations that do not hold in all cases. A suitable example of
model selection with AIC and BIC is with nested models, i.e. when one model contains a
subset of predictors contained in the other model.

3.1.7. Model evaluation

Once a model has been selected, its effectiveness at predicting the observed data can
be evaluated. The coefficient of determination, R2, represents the fraction of the total
variance in the observed data that is explained by the model. R2 is a common goodness-
of-fit metric for linear models and generally defined as
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R2 = 1− SSres

SStot

SSres = ∑
i
(yi − ŷi)

2

SStot = ∑
i
(yi − ȳ)2,

where yi is an observed value, ȳ is the mean of the observed values, and ŷi is the predicted
value. In linear regression, the coefficient of determination can also be defined as the
square of the correlation coefficient. This limits the value of R2 to between 0 and 1.
Although in the general case, the coefficient of determination can be negative, i.e. when
SSres > SStot .

3.1.8. Multiple hypothesis testing

Testing whether an experimental result is statistically significant given some approximate
model of the process creating the data is a mainstay of modern research. The decision
on where to place the boundary on what is or is not significant is ultimately decided by
the researcher’s concern about Type I errors; falsely declaring a result significant when
it actually arose from the variation in the data, and Type II errors; falsely declaring a
result insignificant when it is in fact unexpected. As high-throughput experiments enable
researchers to test thousands of hypotheses simultaneously the susceptibility to Type I
errors increases dramatically as more outliers are expected to be detected. For example,
in a frequentist manner, define a result to be significant if there is less than 5% chance
a result like it, or more extreme than it, occurs given the null hypothesis is true. If we
test 100 results using this method, we would expect 5 results to exceed this threshold
even if all the results are insignificant, each being Type I errors. If we test 10,000 results
then 500 Type I errors are expected. Two common methods to account for the increase
in Type I errors when testing multiple hypotheses are the Bonferroni correction and the
False Discovery Rate (FDR) (Bonferroni, 1936; Benjamini & Hochberg, 1995a). The
Bonferroni correction scales the threshold, α , at which a result is considered significant
by the number of tests being conducted, N,

αBon =
α

N
.

The correction is known to be conservative leading to more Type II errors and lower
statistical power. The FDR is the ratio of Type I errors, V , to total number of results
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called significant, S,

FDR = E
(V

S

)
.

The FDR method attempts to keep the FDR constant by changing the threshold of signif-
icance given the total number of tests to be conducted and the number of results already
tested, j,

αFDR = α
j

N
.

The FDR method is implemented by ranking the results according to their p-value and
comparing the p-value to a scaled αFDR.

3.2. tidyqpcr Software Development

tidyqpcr was developed using the open software development best practices taught by the
eLife Innovative Leaders Program elifesciences.org/labs. Following the Mozilla Open
Leaders resources, we developed user personas to describe the types of users that would
want to use our software. We created a development pathway with clear targets for the
minimal viable product and subsequent updates to the MVP mozillascience.github.io. The
development followed the Extreme programming paradigm with continuous integration
and testing using GitHub Actions. Updates were small and often, sometimes paired pro-
gramming was implemented to develop significant updates. All updates were first added
to individual branches before being pulled into the protected main branch after code re-
view. Unit testing was implemented using the testthat R package with a minimal test
coverage of 80% (Wickham, 2011). A full code review was completed following the
Google literature google.github.io/eng-practices/. Function documentation was created
using the software package roxygen2 whilst the detailed examples were created using
Rmd vignettes (Wickham et al., 2021; Wickham & Seidel, 2022). The code was devel-
oped using git version control. A permissive licence, Apache-2.0, is used to share the code
enabling users to modify the source code to their own problems. Decision-making was
conducted in an open manner using GitHub issue tickets and significant software changes
were denoted by GitHub tags to enable users to revert to older versions. Infrastructure
to encourage inclusive and encouraging inputs from new contributors was provided by
introducing a code of conduct created by rOpenSci.

3.2.1. User interviews

We explored how users interacted with tidyqpcr by conducting 6 semi-structured, ex-
ploratory interviews. The interviewees consisted either of academic colleagues who were
known to have conducted qPCR previously or were intending to conduct research in the
near future, 3.1. User interviews for tidyqpcr were conducted and recorded using zoom.

https://elifesciences.org/labs/bced51c5/innovation-leaders-2020-a-summary
http://mozillascience.github.io/working-open-workshop/personas_pathways/
https://google.github.io/eng-practices/review/
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Position Coding Experience qPCR Experience
Undergraduate student Novice Python user No prior experience

Senior post-doctoral re-
search assistant.

Intermediate R user
Conducting qPCR for
>10 years

Research assistant Intermediate R user
Conducted 1000s of
qPCR experiments

PhD student Confident R user
Conducted several
qPCR experiments

PhD student Novice R user
Conducted several
qPCR experiments

PhD student Intermediate Python user
Conducted several
qPCR experiments

Table 3.1: Overview of the coding and qPCR experience of tidyqpcr interviewees

The audio was then transcribed using otter.io rather than the default zoom transcriber as
otter.io allows you to introduce specialist vocabulary (such as tidyqpcr, TaqMan, ect.) to
aid accuracy. Once the transcripts were available they were split into two halves: the
semi-structured interview and the user task. The semi-structured interview and the user
task sections were combined for all the user interviews. Each combined section was then
analysed separately. The text mining R packages tm and pluralize were used to prepro-
cess the transcripts and extract frequently used words (Feinerer et al., 2008; Rudis &
Embrey, 2020). The text was pre-processed by removing whitespace, numbers and com-
mon words; converting all plural nouns to singular; and changing all letters to lowercase.
The frequency of each word was then counted and any generic words regularly occurring
within the transcript were removed, i.e. that, like and thing. Finally, the word frequency
matrix was used to create the text cloud with the R package wordcloud (Fellows, 2018).

3.3. Limitations of Composability of Cis-Regulatory Elements in Messenger
RNA

I did not conduct any of the experimental assays discussed in this thesis. The experiments
were done by Jamie Auxillos and Weronika Danecka with help from Abhishek Jain and
Clemence Alibert. I did contribute to the planning of the qPCR, construct design, plate
reader and RNA-seq assays conducted in the lab. I outline the protocols here for comple-
tion.
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3.3.1. Strains and media

Saccharomyces cerevisiae strain BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0) was
used as the wild-type strain in this study, and the host for all yeast plasmid transforma-
tions. For all quantitative assays, plasmid-transformed strains were grown in synthetic
complete medium without uracil (SC-Ura), containing 0.69% yeast nitrogen base without
amino acids and with ammonium sulfate (Formedium, Norfolk, UK), 0.193% amino acid
drop-out supplement mixture (Formedium, Norfolk, UK) and 2% glucose. To prepare
BY4741 for transformation, we grew it in YPDA medium, containing 2% peptone, 1%
yeast extract, 2% glucose and 0.004% adenine.

3.3.2. Construction of chimeric reporter plasmids

All fluorescence reporter plasmids were constructed by Golden Gate assembly using the
YeastFab system as described in (Garcia-Ruiz et al., 2018). Promoters, coding sequences
and terminators were either amplified from the yeast genome or synthesised by a commer-
cial vendor (IDT) and then cloned into a parts accepting plasmid (HcKan_P for promoters,
HcKan_O for coding sequences and HcKan_T for terminators) by Golden Gate assem-
bly using Bsa1-HFv2 (NEB). A detailed protocol for Golden Gate assembly is available
at protocols.io, doi:10.17504/protocols.io.bkqrkvv6. Using these parts libraries, the pro-
moters, coding sequences and terminators were assembled together into the transcription
unit acceptor plasmid (POT1-ccdB) by Golden Gate assembly using Esp3I (NEB); these
are low-copy centromeric plasmids with URA3 selection marker, as described in (Garcia-
Ruiz et al., 2018). Plasmid inserts were confirmed by Sanger sequencing (MRC PPU
DNA Sequencing and Services, Dundee). DNA sequences used in this study are sum-
marised in Supplementary Tables B4 and B5. Assembled plasmids were transformed into
yeast BY4741 using lithium acetate transformation (Gietz & Woods, 2002), and selected
in SC-URA agar plates to isolate successful transformants.

The mCherry coding sequence is as used in (Garcia-Ruiz et al., 2018), which in
turn was amplified from the mCherry sequence in (Sharon et al., 2012). The mTurquoise2
coding sequence is as used in (Lee et al., n.d.).

3.3.3. Fluorescence measurements: Plate reader analysis of strain growth and fluo-
rescence

Yeast with plasmids were grown in a 96-well deep well plate (VWR) containing 100µl of
SC-Ura medium with 2% glucose and grown for ~12 hours at 30°C in a shaking incubator
set at 250 rpm. The next day, the cultures were diluted to an OD of 0.2. For each sample,
3 technical replicates of 200µl were transferred to a 96-well black microtiter plate (Corn-
ing) and grown according to the protocol described in (Lichten et al., 2014). The Tecan

http://dx.doi.org/10.17504/protocols.io.bkqrkvv6
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Infinity M200 series plate reader was set at the temperature of 29.9 (range of 29.4-30.4°C)
with linear shaking (6 mm amplitude at 200-220 rpm). OD measurements were carried
out at an absorbance wavelength of 595 nm with a measurement bandwidth of 9 nm with
15 reads. mCherry fluorescence measurements were carried out with an excitation wave-
length at 585 nm and an emission wavelength of 620 nm (excitation bandwidth of 9 nm
and emission bandwidth of 20 nm) with the gain set at 100. mTurquoise2 fluorescence
measurements were carried out with an excitation wavelength at 434 nm and an emission
wavelength of 474 nm (excitation bandwidth of 9 nm and emission bandwidth of 20 nm)
with the gain set at 60.

Plate reader data were analysed using omniplate software (Swain et al., 2016).
Omniplate accounts for autofluorescence and fits a model to the time series data using
Gaussian processes to infer the time of maximum growth rate for each well. We min-
imised growth-dependent effects by using the fluorescence at maximum growth rate for
all of our protein fluorescence experiments. Each fluorescence measurement was also
normalised by OD to remove dependency on cell number, so every protein fluorescence
measurement is recorded as fluorescence per OD at max growth rate. A detailed pro-
tocol for setting up and conducting the plate reader assay is available at protocols.io,
https://dx.doi.org/10.17504/protocols.io.bbicikawdoi:10.17504/protocols.io.bbicikaw. The
log2 fold change in fluorescence per OD at max growth rate with respect to the tPGK1
construct of each promoter set were deduced using a linear model with terminators as
predictors. p-values were calculated using t-tests and converted into p.adj values using
the FDR (Benjamini & Hochberg, 1995b).

3.3.4. RNA measurements: Strain growth, RNA extraction, RT-qPCR, RNA-Seq
and analysis

Yeast with plasmids were grown in a 24-well deep well plate (4titude) containing 1.5 ml
of SC-Ura for ~20 hours at 30°C in a shaking incubator set at 250 rpm. The next day,
the OD was diluted to a starting OD between 0.15-0.2 in a 12-column deep well reservoir
plate (4titude) to a total volume of 7 ml. Diluted cultures were grown at 30°C in a shaking
incubator set at 90 rpm to an OD of 0.5-0.7 then pelleted by centrifugation. Pelleted cells
in the plate were stored at -80°C.

To extract RNA, we adapted a silica column DNA/RNA extraction protocol from
Zymo Research (Irvine, California, USA). The pelleted cells were thawed and individu-
ally resuspended in 400 µl of RNA binding buffer (Zymo), then transferred to 2 ml screw-
cap tubes containing zirconia beads, lysed using the Precellys Evolution homogeniser then
pelleted by centrifugation for 1.5 minutes. The supernatant was transferred to a Zymo
Spin IIICG column (Zymo) and then centrifuged. The flow through was mixed with 1
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volume of ethanol then transferred to a Zymo Spin IIC column (Zymo) and centrifuged.
This flow through was discarded and 1 volume of DNA/RNA Prep buffer (Zymo) was
added and then centrifuged. The column was washed with 700 µl of Zymo DNA/RNA
Wash buffer (Zymo) and then centrifuged. The column was washed a second time, but
with 400 µl of Zymo DNA/RNA Wash buffer (Zymo). The column was centrifuged
once more to remove residual wash buffer in the column. Lastly, 30 µl of nuclease free
water was added to the column and then eluted. All centrifugation steps in the RNA
extraction protocol were carried out at 12,000g for 1 minute unless otherwise stated.
A detailed protocol for yeast growth and RNA extraction is available at protocols.io,
doi:10.17504/protocols.io.beetjben.

The quantity and quality of the RNA were measured using both a spectrophotome-
ter (DS-11, DeNovix, Wilmington, Delaware, USA) and Fragment Analyser (Agilent). 4
µg of RNA was treated with DNAse1 (Thermo) and then inactivated using the RapidOut
DNA removal kit (Thermo) according to the manufacturer’s protocol. 2.5 µl of Random
primer mix (NEB) was added to the mixture and then separated into 2 PCR tubes (one for
-RT and one for +RT) then denatured at 70°C followed by cooling on ice. Reverse tran-
scription (RT) master mix was prepared, containing 2 µl of First Strand synthesis buffer,
0.75 µl of 10mM dNTP mix, 1.5 µl of nuclease free water, 0.25 µl of RNase inhibitor
and 0.5 µl of SuperScript IV Reverse Transcriptase (Invitrogen) per reaction. 5 µl of the
RT master mix was added to the denatured RNA and then incubated at 25°C for 5 minutes
then 55°C for 1 hour. The cDNA was diluted with 200 µl of nuclease free water.

Target cDNAs were measured by quantitative PCR with Brilliant III Ultra-Fast
SYBR Green qPCR master mix (Agilent) using a Lightcycler 480 qPCR machine (Roche).
We measured all +RT reactions in technical triplicate, and negative control -RT samples
using one replicate. We used the manufacturer’s software to calculate the quantification
cycle (Cq) for each individual well using the fit points method and exported both raw flu-
orescence and Cq data. All primer sets were thoroughly validated by serial dilution and
by confirming amplicon size. Sequences are available in Supplementary Table B6.

The RT-qPCR data was analysed using our tidyqpcr R package version 0.3. For
each biological replicate, ∆Cq values were calculated by normalising the median mCherry
Cq values by the median Cq values of the three reference genes (RPS3, PGK1 and URA3).
For the constructs with motif insertions in terminators, ∆∆Cq values were calculated by
normalising mCherry ∆Cq by that of control construct mod_NNN strains (with the cor-
responding promoter) for tRPS3 and tTSA1 constructs. For the constructs with motif
deletions in terminators, ∆∆Cq values were calculated by normalising mCherry ∆Cq by
that of the WT terminator (with the corresponding promoter) for tPIR1 constructs. Com-
plete scripts for qPCR analysis, quality control, and figure generation are available online

https://dx.doi.org/10.17504/protocols.io.beetjben
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at github.com/DimmestP/chimera_project_manuscript/.

RNA-seq libraries were prepared using QuantSeq 3’ mRNA-Seq Library Prep Kit
REV for Illumina (Lexogen Gmbh, Vienna Austria). See doi:10.1016/bs.mie.2021.03.020.
500 ng of RNA (not treated with DNaseI) was used as input and the manufacturer’s pro-
tocol was followed without modifications. The number of amplification cycles was de-
termined using PCR Add-on Kit for Illumina (Lexogen). The quality of the library was
measured using Fragment Analyzer NGS Fragment Kit (1-6000bp) (Agilent). Pooled
libraries were then sequenced using NextSeq 500/550 (Illumina) with paired-end reads
using Custom Sequencing Primer to obtain 3’-end reads.

5PSeq libraries were prepared as described in (Zhang & Pelechano, 2021) with
modifications to the reverse transcription step: anchored oligo(dT) was used instead of
oligo(dT) to allow for sequencing of 3’-ends and random primers were not used. The
library was sequenced using NextSeq system (Illumina) with paired-end reads.

RNA-Seq alignment and quality control were conducted using a pipeline available
online at github.com/DimmestP/nextflow_paired_reads_pipeline, written in Nextflow (Tom-
maso et al., 2017). Quality control was conducted with FASTQC and MultiQC reports
(Ewels et al., 2016) and adapters were removed with Cutadapt (Martin, 2011). Align-
ment was conducted with HISAT2 (Kim et al., 2019), followed by processing with SAM-
tools (Li et al., 2009) and BEDTools (Quinlan & Hall, 2010). The sacCer3 (R64-2-1,
GCA_000146045.1) genome build was used for alignment and transcriptome annotation
was originally taken from the Saccharomyces Genome Database (Ng et al., 2020). 5PSeq
reads contain UMIs, which were used to deduplicate reads using UMI-tools (Smith et al.,
2017); QuantSeq reads do not. Counts to genomic regions of interest were calculated
using FeatureCounts (Liao et al., 2014). For 5PSeq data, 5’P ends were also analysed
using the fivepseq pipeline Nersisyan et al., 2020. Alternative Poly(A) site usage was
tested using a Mann–Whitney U test (Mann & Whitney, 1947) on relative reads mapped
to a 9 nucleotide window centred on the major Poly(A) site. p-values were calculated by
comparing construct relative counts to wildtype relative counts and converted into p.adj
values using the FDR (Benjamini & Hochberg, 1995b).

3.3.5. Determining 3’UTR decay motifs

We initially selected 69 3’UTR motifs to investigate from three separate studies of cis-
regulatory elements suspected to regulate mRNA decay (Shalgi et al., 2005; Hogan et al.,
2008; Cheng et al., 2017). To select a short list of motifs to test for context dependence, we
determined the contribution of each motif to a linear model predicting half-life. Following
(Cheng et al., 2017), we quantified the effect of motifs on transcript half-life using a linear
model predicting half-life on the basis of codon usage, 3’UTR length, and 3’UTR motif

https://github.com/DimmestP/chimera_project_manuscript/
https://doi.org/10.1016/bs.mie.2021.03.020
https://github.com/DimmestP/nextflow_paired_reads_pipeline
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frequency.
log2(λ

1/2
g ) = ∑

c
βc pcg +∑

m
αmnmg + γωg + ε

where λ
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g is the half-life of gene g, βc is the coefficient associated with codon c, pcg is the

proportion of gene g’s coding sequence that corresponds to codon c, γ is the coefficient
associated with 3’UTR length, ωg is the 3’UTR length of gene g, αm is the coefficient
associated with motif m, nmg is the number of occurrences of motif m in gene g’s 3’UTR,
and ε is the noise term. To choose 3’UTR lengths and to assess which sequence to use
for the 3’UTR motif search, we used the median 3’UTR length estimates (precisely, the
median length of clustered major transcript isoforms) reported from the TIF-seq analysis
in (Pelechano et al., 2013).

We removed motifs that did not significantly contribute to half-life by using a
greedy model selection algorithm that minimises the Akaike information criterion (AIC).

AIC = 2k−2ln(L̂)

where k is the number of parameters in the model and L̂ is the maximum value of the
likelihood function (Akaike, 1998). We implement this motif comparison using the R
function step (Ripley & Venables, 2002; R Core Team, 2020), to iteratively add the motif
which reduces the AIC of the model the most until the penalty for adding news terms
overcomes the benefit of including a new motif. This procedure was run on each decay
data set independently. p-values were calculated use t-tests and converted into p.adj values
using the FDR (Benjamini & Hochberg, 1995b).

The variance explained by the codon usage, 3’UTR length, and motif presence
features are estimated in three ways for the linear model trained on the (Chan et al., 2018)
data set. The motif presence feature is the total contribution to the linear model when the
counts of the all of the shortlisted motifs are included together. The codon usage feature
is the total contribution to the linear model when the counts of all codons are included
together. The first way to estimate variance explained was with each feature individually
as separate regression models. Then, features were added in descending order of their
individual explained variance to create three models: codon, codon + motif and codon
+ motif + 3’UTR length. The variance explained by the joint models are denoted the
cumulative variances explained. Finally, starting with the full model with all three features
the drop in variance explained when one of the features is removed was reported.

We selected the specific versions of the HWNCATTWY and TGTAHMNTA mo-
tifs by running two additional linear models predicting half-life that inferred separate
coefficients for each version of its consensus sequence. Coefficients were reported for the
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significant motif versions (Supplementary Table B7, B8). We chose instances with similar
effect size, statistical significance, and number of occurrences in native transcripts. We
chose TTTCATTTC for HWNCATTWY and for TGTAHMNTA chose TGTACAATA
over TGTATATTA specifically to avoid the 5nt stretch also found in ATATTC.

3.3.6. Design of modified 3’UTRs for testing the effects of mutated motifs

RPS3 was chosen as the first 3’UTR for inserting motifs into as it was the only termi-
nator in the characterized library that did not contain any of the 69 original motifs of
interest. The tRPS3 3’UTR-terminator was modified to incorporate three 9 nt insertion
sites for motifs (M1, M2 and M3). The M1 was inserted 24 nt downstream of the stop
codon, M2 was inserted 15 nt downstream of M1 and the final insert M3 was inserted
4 nt downstream of M2 (Figure 5.3A). These positions were selected based on key de-
sign criteria, including; minimal perturbations of RNA secondary structure as predicted
by RNAfold (Lorenz et al., 2011), position of motifs in native 3’UTRs and position of
other CREs important for transcriptional control (Supplementary Figure B3, Supplemen-
tary Table B9). A control tRPS3 3’UTR mod_NNN was designed to incorporate random
bases in each insertion site. Further modified 3’UTR-terminator designs were designed
to incorporate individual motifs of interest previously identified, within the insertion sites
described (Figure 5.3A).

We chose an alternative 3’UTR for screening the effects of inserting motifs of in-
terest by searching for characteristics similar to RPS3. To this end, median-length 3’UTRs
were extracted from the (Pelechano et al., 2013) dataset filtered for the following criteria;
1) does not contain any of the original 69 motifs of interest, 2) < 300 nt in length, 3) from
a highly expressed gene, 4) synthesisable as a gBlock by our manufacturer (IDT). The
3’UTR from TSA1 met these criteria.

Similar to the modified tRPS3 designs, in tTSA1 we designed three 9 nt motif
insertion sites: M1 21 nt downstream of the stop codon, M2 20 nt downstream of M1, and
M3 24 bp downstream of M2 (Figure 5.3A). The tTSA1 mod_NNN construct contained
random bases in the M1, M2 and M3 sites, with the motif insertions in other modified
constructs as for tRPS3.

To design deletion constructs we selected a native 3’UTR that contained the motifs
of interest. Again, median-length 3’UTRs were extracted from the Pelechano et al. (2013)
dataset filtered for the following criteria; 1) contains at least 3 shortlisted motifs of inter-
est, 2) a highly expressed gene, 3) synthesisable. The PIR1 terminator chosen for motif
deletion contains one copy each of the ATATTC and TGTAHMNT motifs, and 3 copies of
the HWNCATTWY motifs (Figure 5.4A), although did not contain the putative stability
motif GTATACCTA.
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The mutation of motifs for their removal from the PIR1 3’UTR was carried out
so that: 1) at least 50% of the motif sequence (specifically the motif consensus sequence)
was mutated to a base that does not correspond to the consensus sequence, 2) GC content
was minimally altered, 3) Mutations that resulted in a limited change in the predicted
secondary structure and minimum free energy (MFE) according to RNAfold (Lorenz et
al., 2011), see Supplementary Table B9).

The native and modified candidate 3’UTRs were screened for the presence of
Esp3I and BsaI sites within the sequence. For incorporation into the YeastFab system,
the sequence ‘agcgtgCGTCTCgTAGC’ was added to the 5’-end of the 3’UTR and the
sequence ‘CCTCcGAGACGcagcac’ was added to the 3’-end of the 3’UTR. To check if
the sequences were synthesisable, 100 nt downstream of the native 3’UTR was added
to the candidate construct and the sequence was checked at the IDT gBlock entry form
(eu.idtdna.com/site/order/gblockentry).

3.3.7. Determining motif effect on abundance

A linear model predicting construct ∆Cq’s using the presence or absence of the four se-
lected motifs was trained on each promoter-terminator pairing separately. The model in-
cluded a term to account for interactions between the TGTAHMNTA and HWNCATTWY
motifs The linear model also included a term for batch effects, between the 2 experimen-
tal batches of 3 biological replicates for each set of constructs, because this improved the
quality of model fit. The model was:

∆Cq =
4

∑
m=1

αmnm +βerep + γnint + ε

where nm is the copy number of motif m in the construct, erep is which experimental batch
the construct was part of and nint is the interaction term with value 1 if both TGTAHM-
NTA and HWNCATTWY motifs are present. p-values were calculated use t-tests and
converted into p.adj values using the FDR (Benjamini & Hochberg, 1995b).

3.3.8. Predicting changes in transcript abundance from changes in half-life

A simple kinetic model of the production and decay of transcripts was used:

∅ k−→ m

m δ−→∅

https://eu.idtdna.com/site/order/gblockentry
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The steady state solution for the average number of transcripts, ⟨m⟩, is

⟨m⟩= k
δ

where k is the rate of transcription, which can include multiple active states, and δ is the
rate of decay for the transcript (Sánchez & Kondev, 2008).

Now consider a control transcript m0, and a similar transcript with an altered ter-
minator ma. Assuming the alterations to the terminator of the host gene have a minimal
impact on the transcription rate, the above equation says that the ratio of predicted abun-
dance ⟨ma⟩ to the control transcript abundance, ⟨m0⟩, is the same as the ratio of their
half-lives:

⟨ma⟩
⟨m0⟩

=
δ0

δa
=

λ
1/2
a

λ
1/2
0

This gives a linear effect on the log-scale abundance

log⟨ma⟩= ∆ logλ
1/2 + log⟨m0⟩

and because PCR quantification cycle Cq is proportional to log2(m), this directly leads to
a linear effect on Cq.

All analyses made extensive use of the tidyverse and ggplot2 (Wickham, 2016;
Wickham et al., 2019).



Chapter 4

tidyqpcr: Quantitative PCR Analysis in
the tidyverse

4.1. Introduction

Quantitative PCR is the most common technique for the quantification of DNA and RNA.
The specificity and sensitivity of the assay have led it to be considered the gold standard
for nucleotide detection and quantification in medicine, legislation and academia (Ku-
bista et al., 2006). However, qPCR experiments, especially assays requiring a reverse
transcriptase step, are susceptible to several reliability issues if poorly designed (Bustin,
2002). Nevertheless, the widespread use of qPCR across distinct disciplines has enabled
the creation of countless protocols, equipment and analysis methods without consistent
standards (Bustin et al., 2021). The limitations and varying quality of qPCR experiments
have led to a reproducibility crisis with significant consequences for academia (Garson
et al., 2009) and public health (Bustin, 2013).

qPCR assays are susceptible to multiple biases that can cause highly variable or
unrepeatable results (Bustin, 2002). Lab specific protocols for the extraction, pipetting
and storage can introduce variation, with samples having R2 = 0.4 between extraction
methods (Bustin & Nolan, 2017; Dagnall et al., 2017). The position of a sample on a
qPCR plate can also have a significant contribution to measured expression with one study
showing 10% of the variation between replicates was due to well position (Eisenberg et
al., 2015). Positional effects can be introduced as edge wells may be more susceptible to
evaporation or thermal gradients may be uneven across the plate. Finally, qPCR experi-
ments that include a reverse transcriptase step can determine Cq values that differ by up
to 91-fold according to the choice of reverse transcriptase and sensitivity to original RNA
concentration (Ståhlberg et al., 2004). As different reverse transcriptases interact with
RNA secondary structures in different ways, the effect is not consistent across targets
(Williams et al., 1992; Brooks et al., 1995).

43
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In an effort to improve the reproducibility of qPCR results guidelines were cre-
ated for publishing qPCR data called the Minimum Information for the Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines (Bustin et al., 2009). They
provide a thorough checklist of every detail that needs to be reported in order to enable
another researcher to accurately repeat an experiment. Over time they developed their
own file format, the Real-Time PCR Data Markup Language or RDML, to standardise
the way scientists describe their experiments which users can upload to an open source
database (Lefever et al., 2009; Ruijter et al., 2015). The guidelines have been around for
over a decade, but they are still not widely implemented with as little as 4% of qPCR
articles citing them (Nour et al., 2020).

In order to improve the reproducibility of qPCR analyses, we propose the devel-
opment of a novel analysis package that uses detailed documentation and open software
practices to teach and facilitate transparent and quality-controlled qPCR analysis. In ad-
dition, the dependence on proprietary software for the calculation of threshold Cq values
and quality control graphs remains a stumbling block for reproducible and trustworthy
analysis. We believe a novel package developed in the programming language R, a lan-
guage regularly used by biologists, could increase the quality of qPCR assays from initial
experimental design to the final publication of results. The consistent structure of qPCR
data also provides an opportunity to apply scalable data analysis practices. Cq values
are the variables of interest for most qPCR experiments and they are inherently separated
into values from independent wells. Therefore, developing functions that can take advan-
tage of this regular, independent structure to Cq values can lead to a comprehensive and
efficient analysis of data sets of varying sizes.

Data analysis practices have been developed to enable efficient and scalable analy-
sis by modularising analysis pipelines and standardising the structure of data sets. Google’s
MapReduce and Hadley Wickham’s split-apply-combine focus on separating the analysis
into independent functions and applying each function to subsets of the full data set before
combining the results to produce a final summary (Dean & Ghemawat, 2004; Wickham,
2011). Modularising the analysis follows the DRY philosophy as a task, such as calcu-
lating the mean and standard deviation, can be encapsulated in one function but applied
to different subsets of the data. Designing analysis programs in a modular way also sim-
plifies the task of parallelising the process, which leads to a scalable method as large data
sets can be subsetted into manageable chunks according to the computation resources
available at run-time (Chua et al., 2004).

To supplement the application of modular analysis practices, there is a broader
idea of structuring data in a tidy format to ensure no information is lost when it is split
into subsets (Wickham, 2014). Data is considered tidy if it follows a strict row and column
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structure. Each column must hold all values of a variable and each row holds a separate
observation. Unfortunately, data in the wild is often organised with combinations of ob-
servations and variables being spread across columns and rows. However, ensuring each
row contains all the information from an observation simplifies the grouping and splitting
of a data set. If all functions in an analysis pipeline accept and output data in a tidy form
then the entire analysis can be applied to different groupings of data leading to a more
comprehensive analysis.

The split-apply-combine paradigm developed by Hadley Wickham has been in-
corporated into the R programming language through the tidyverse. The tidyverse suite
of data analysis packages contains functions covering tasks from graph plotting to con-
ducting statistical tests which all follow a tidy architecture (Wickham, 2014). The im-
plementation of the split-apply-combine paradigm within the tidyverse is facilitated by
the group_by function. Passing a variable held in the column of a tidy data set to the
group_by function splits the data into groups of observations with the same value in that
column. All functions within the tidyverse are then applied to each group separately and
their results are combined. In addition, the functions inside the tidyverse are templates for
user-friendly software development. Their source code is accessible and comprehensible
as they follow a strict coding style and contain extensive documentation. The functions
are also intuitive to learn as they follow a verb-object naming convention that states what
they do and what they act on.

Here, we outline the development of tidyqpcr, an R package built within the
tidyverse which implements the MIQE guidelines to facilitate scalable, transparent and
quality-controlled qPCR analysis. We begin by outlining the continued need for better
design and analysis of qPCR data through a review of current software. tidyqpcr is then
introduced as an R package that helps users create publication-ready figures of normalised
qPCR results. tidyqpcr packages the principles outlined in the MIQE guidelines for the
easy design, analysis and reporting of reproducible and accurate qPCR results. Well-
documented functions and intuitive structure help users conduct reproducible research
without depending on checklists. The chapter ends by discussing improvements to the
package motivated by a series of user tests and code reviews as well as future extensions
to its functionality.

4.2. Results

4.2.1. qPCR analysis software review

We review the current software landscape for analysing qPCR data and outline the con-
tinued need for scalable, user-friendly, and MIQE-compliant analysis software. In the last
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two years, the use of qPCR in the global response to the COVID-19 pandemic has driven
the development of new packages to support the reliable detection of COVID-19. How-
ever, the last published review of qPCR analysis packages was Pabinger et al., 2014. The
review covered 27 different open-source packages with the R package qpcR highlighted
as the tool with the most comprehensive functionality. It also described the varying qual-
ity of documentation, lack of compliance with the MIQE guidelines, inconsistent input
and output file formats, and the use of CLIs over GUIs across the reviewed packages. A
review of qPCR analysis software released since 2014 is described below in order to A)
determine the need for another qPCR analysis package and B) discern any generalisable
changes in qPCR analysis software since the last review.

A list of qPCR analysis software was gathered through searches on GitHub, bio-
conda, bioconductor, CRAN, and Google Scholar. All of the software packages reviewed
are freely available for use and are open source. The majority of the packages were re-
leased after the previous published review. However, HTqPCR, qpcR, ReadqPCR, and
NormqPCR are included for completeness as they are dependencies for several of the
newer packages. The packages are grouped according to their primary usage: Web Apps
require a server and typically provide a website for users to conduct analyses, R and
Python packages primarily need to be downloaded and ran locally, and Misc requires
other proprietary software. A table summarising the main functionality of all reviewed
software can be found in Appendix A.

4.2.1.1. Software descriptions

Web Apps

QuantGenius A PHP web-app published in Feb 2017 for the quantification of
target abundance using standard curves. Users manually copy Cq values for each target
into the GUI and can export results as a comma separated file or excel file. The app
automatically highlights samples that are outliers, are outside the limit of detection or
have poor efficiency, but does not check melt/amplification curves. It does not contain
any functions for conducting statistical analyses or for producing graphs. QuantGenius
has not been updated since publication (Špela Baebler et al., 2017).

ELIMU-MDx A PHP web-app published in Oct 2019 for the storage and analysis
of clinical qPCR data. The app extracts Cq values from the input RDML file and stores
results as an RDML file. The PHP backend is able to deduce relative and absolute abun-
dance as well as detect samples that are outliers, are outside the limit of detection or have
poor efficiency. Users need to set up their own apache or nginx server to run analyses and
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store the database. It does not contain any functions for conducting statistical analyses
or for producing graphs. ELIMU-MDx was last updated in Dec 2020 (Krähenbühl et al.,
2019).

PIPE-T An extension to the Galaxy web-based bioinformatics platform published
in Oct 2019 for the relative quantification of qPCR data. It accepts Cq values for each
sample/replicate/condition as separate tab separated files and outputs tab separated files.
The extension facilitates a variety of Cq normalisation methods, mainly provided through
the R package HTqPCR. QC can be conducted by flagging samples with Cq levels outside
user defined thresholds, but no melt/amplification curves are available. There are also
functions to test for significant differential expression in two condition experiments and
to impute missing data. PIPE-T has not been updated since publication (Zanardi et al.,
2019).

SATqPCR A standalone web-app published in Aug 2019 for the relative quantifi-
cation of qPCR data. It accepts up to two tab separated text files as input: one contains a
table of Cq values and primer efficiencies with columns representing different genes and
rows representing samples and the other optional file relates samples to different factors
for t-test or anova statistical tests. It outputs summary statistics and normalised Cq val-
ues in text files and as bar charts in PNG format. The software cannot calculate primer
efficiencies but, if efficiencies are provided by the user, it can use primer efficiencies in
the relative quantification calculation. It does not have any functionality to plot melt/am-
plification curves, detect outliers or interpolate missing data. The app does contain an al-
gorithm to automatically detect the most stable genes and use them as normalising genes.
The app is an update to a previous R package called RqPCRAnalysis, but has not been
updated itself since publication. (Rancurel et al., 2019).

Python packages

Auto-qPCR A standalone web-app with Python back-end published in Oct 2021
for the relative and absolute quantification of qPCR data. It accepts a comma separated
file or text input file with specific column names, such as well, sample name, target name,
and Cq value. It outputs text files and bar charts in PNG format with normalised ∆Cq,
∆∆Cq or absolute copy number results. Users can download the python code to run the
app locally or use the online server. The function for calculating relative Cq values does
not include primer efficiency. The software does not process melt or amplification curves
but uses a standard deviation cutoff for outlier identification. It also can conduct a 1 or
2-way anova to test for significance. Auto-qPCR has not been updated since publication
(Maussion et al., 2021).

qpcr A python package released in Aug 2021 for the relative quantification of
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qPCR data. It accepts comma separated files and excel files in a variety of different
formats to import different combinations of experiments, targets and samples. It outputs
text files and bar charts in JPEG format with normalised ∆∆Cq values. The software
does not process melt or amplification curves but uses a standard deviation cutoff for
outlier identification. It does not contain any functions for conducting statistical tests but
can calculate primer efficiencies and use them in the ∆∆Cq calculations. qpcr was last
updated in Feb 2022 (Kleinschmidt, 2022).

R Packages

Chainy An R Shiny web-based app published in May 2017 for the relative quan-
tification of qPCR data. It accepts inputs in multiple forms including RDML files and
several proprietary qPCR analysis software output files. It outputs a zip file of summary
statistics and normalised Cq values in comma separated files and as bar charts in PNG
format. The software can calculate Cq values and efficiencies directly from amplification
curves using the qpcR package or accepts pre-determined values. It can determine stable
normalising genes using the NormqPCR package and flags outlying samples that do not
fit the sigmoidal amplification curve. The app can also determine significant fold changes
between samples using a permutation test. Chainy was last updated in Aug 2020 (Mallona
et al., 2017).

shinyCurves An R Shiny web-based app published in Oct 2021 for detecting viral
infections from diagnostic qPCR assays. The app accepts excel spreadsheet and RDML
file inputs from BioRad’s proprietary analysis software CFX Maestro Software, Roche’s
LightCycler® Software, Agilent’s Aria software and Applied Biosystems® qPCR analy-
sis software. It outputs the results as comma separated files. The plate designs are either
96 or 384 wells and users can flag control wells if they follow specific formats. It extracts
Cq values from excel spreadsheets and determines if samples are Positive, Negative or
Undetermined for viral load depending on user defined thresholds. It can quantify abun-
dance using a standard curve if the input files contain serial dilutions. Users can conduct
QC by viewing melt and amplification curve plots created by the R package qpcR and
define a standard deviation cutoff for outlier identification. It does not contain any func-
tions for conducting statistical analyses. shinyCurves has not been updated since release
(Olaechea-Lázaro et al., 2021).

LEMming An R script published in Sept 2015 for the relative quantification of
qPCR data. It proposes a linear error model for qPCR experiments which it uses to nor-
malise Cq values without the use of normalising genes. This novel normalising method
can confound the treatment effects with some systematic errors. Therefore, if normalising
genes have been verified, the standard ∆Cq method is recommended. It does not provide
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any methods to read in qPCR data and creates an R S4 class object as output. It does
not conduct any standard QC checks such as plotting amplification curves or checking
for outliers. It does include how to conduct several different differential expression tests.
LEMming has not been updated since release (Feuer et al., 2015).

pcr An R package published in May 2018 for the relative quantification of tran-
script abundance. It does not provide any methods to read in qPCR data but expected the
input to be structured with each row a different sample and each column a target gene.
The package creates an R data.table of summary statistics and ggplot2 figures. If 100%
primer efficiency is assumed, it can calculate ∆Cq. Otherwise, it requires serial dilu-
tions to create standard curves and deduce relative abundance. The package also includes
functions to conduct t-tests, Wilcoxon signed-rank tests and ANOVA. However, it always
normalises to one normalising gene. It does not conduct any standard QC checks such
as plotting amplification curves or checking for outliers. However, if the assay includes
serial dilutions then amplification efficiency can be checked before analysis. pcr was last
updated in April 2020 (Ahmed & Kim, 2018).

HTqPCR An R Bioconductor package published in Dec 2009 for the relative
quantification of qPCR data. It contains several functions to read in several proprietary
qPCR analysis software files. It outputs normalised Cq values and summary statistics as
an S4 class object as well as several plots. The software does not plot melt or amplification
curves as QC, but does allow users to define a standard deviation cutoff for outlier identifi-
cation. There are also functions to determine batch effects, spatial effects and hierarchical
interactions across samples and experiments. It can normalise genes using the standard
∆Cq method or, in the case of unreliable normalising genes, it can normalise by quantile
means and rank-invariant normalising factors. The package also contains functions to test
differential expression with linear models, Mann-Whitney test or t-tests. HTqPCR core
functionality has not been changed in 10 years, but it is maintained by the R Bioconductor
community (Dvinge & Bertone, 2009).

ReadqPCR and NormqPCR A pair of R Bioconductor packages published in
July 2012 for the relative quantification of qPCR data. ReadqPCR contains functions
for reading in raw Cq value files from several proprietary qPCR analysis software files.
They output normalised Cq values and summary statistics as S4 class objects as well
as several plots. The software does not plot melt or amplification curves, but uses a
user defined standard deviation cutoff for outlier identification. NormqPCR can select
reliable normalising genes and impute missing values. It does not contain any methods
for detecting statistically significant differential expression. ReadqPCR and NormqPCR
were last updated in July 2018 (Perkins et al., 2012).
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qpcR An R package released in 2008 for selecting the best sigmoidal model to
fit to the amplification curve of each qPCR target for the accurate determination of Cq
values and PCR efficiency. It does not provide any methods to read in qPCR data, but
outputs an S3 object with summary statistics. The package contains several methods to
determine the model with the best fit which is then used to determine threshold Cq values
and efficiency. It can detect sample outliers, calculate relative and absolute abundances,
and plot summary data. qpcR was last updated in June 2018 (Ritz & Spiess, 2008).

Misc

Spreadsheet A guide published in Dec 2021 for standardising the use of spread-
sheet software to determine relative abundance. It does not describe how to calculate
primer efficiencies but does use them in the ∆Cq calculations. It outlines the use of t-tests
to determine statistically significant differences. The guide does not process melt or am-
plification curves but suggests using a standard deviation cutoff for outlier identification.
It does not suggest how to plot any summary statistics (Ng et al., 2021).

4.2.1.2. Summary

Novel qPCR analysis packages continue to be released despite packages being avail-
able across platforms for decades and the fundamental principles of qPCR remaining
unchanged. Similar to the conclusions of the Pabinger et al review, the packages have a
wide range of functionality, documentation and compliance with the MIQE guidelines.
Two reoccurring issues with the reviewed software are the lack of quality control checks
and the inconsistent approaches to removing data points that are considered outliers. Over
the last 8 years, there has been an increase in GUI-based apps, but most sacrifice scalabil-
ity and reproducibility to maximise ease of use. The R package qpcR remains the most
comprehensive analysis package for qPCR data. However, the depth of its functionality is
limited by its documentation. The package includes a description for every function and
its arguments, but it does not provide enough information for deciding between alternative
options or to justify the arguments it sets as default. The package also does not provide an
example workflow to show how its functions can be combined to complete an analysis.
In addition, the software architecture does not follow the tidy paradigm.

4.2.2. tidyqpcr: Quantitative PCR Analysis in the tidyverse

tidyqpcr addresses the need for a qPCR analysis package that balances functionality,
documentation, and quality control to facilitate reproducible and best-practice-compliant
analysis. It is intended to be flexible enough to analyse qPCR data from any nucleic acid
source - DNA for qPCR or ChIP-qPCR, RNA for RT-qPCR - on any scale - 96, 384,
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Figure 4.1: Block diagram showing the functionality of tidyqpcr. tidyqpcr has been designed
to contribute to the design and analysis of qPCR experiments. tidyqpcr contains functions to aid
in the design of balanced plates for manual or automatic loading across several common qPCR
experiments and plate sizes. tidyqpcr facilitates reproducible analysis by separating each analysis
step into a distinct function to create a human-readable analysis pipeline.
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Figure 4.2: Developing tidyqpcr using the tidyverse packages grants access to a larger
ecosystem of data analysis packages. The triangle contains the core tidyverse packages used
to develop tidyqpcr. The wider ecosystem of packages all follow the same split-apply-combine
paradigm and can be applied to any data analysed by tidyqpcr enabling statistical analysis or en-
hanced reproducibility.

1536+ well plates. Currently, tidyqpcr has functions that support relative quantification
by the ∆Cq method and calculating primer efficiencies, but not yet absolute quantification,
Figure 4.1. A key component of tidyqpcr is its comprehensive documentation that teaches
users how to use tidyqpcr and explains tidyqpcr’s design decisions. These openly acces-
sible teaching materials help to improve an entire qPCR experiment, from plate design to
publication ready figures. The package follows the FAIR principles - Findable, Accessi-
ble, Interoperable, and Reusable - to ensure every stage of the analysis is transparent and
verifiable. tidyqpcr is available to use now and can be downloaded from our GitHub page,
github.com/ropensci/tidyqpcr/.

4.2.2.1. tidyqpcr design principles

Flexible and scalable analysis Within the R programming language, the tidyverse suite
of packages has pioneered the use of tidy analysis. Mimicking the tidy structure in the cre-
ation of tidyqpcr not only opens the way to flexible analysis enabled by simply following
the tidy data paradigm but it also directly allows access to a plethora of open-access and
scalable data analysis tools already created in the tidyverse, Figure 4.2. Once users famil-
iarise themselves with the tidy paradigm, they can conduct advanced downstream analysis
such as linear regression analysis, complex visualisation and statistical summaries.

Experimental design In tidyqpcr, we help experimentalists decide how to set
up their experiment by providing several plate plan helper functions built around block

https://github.com/ropensci/tidyqpcr/
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designs. This enables samples to be spread across the plate and minimises well position
biases but still contains regular patterns for loading with multi-channel pipettes, Figure
4.3. We also describe in detail different plate design strategies that users can explore
depending on their pipettes and plates. Users can exclude loading samples into edge
wells with the provided helper functions. We are also exploring introducing the automatic
generation of loading recipes for common liquid handlers so users with access to the
appropriate equipment can ensure the loader and plate plan match identically. Grouping
biological/technical replicates so they are placed in the neighbouring wells can lead to
systematic biases in the results. In an ideal situation, different samples and their replicates
should be allocated entirely random well positions. However, if the sample loading is
manual, then having inconsistent plans across plates will complicate the loading process
and increase the likelihood of a mistake. Ultimately, having an incorrect map of samples
in wells is significantly more detrimental to any analysis than systematic bias. tidyqpcr
provides a balance between easy loading and good experimental design principles.

MIQE-compliant results tidyqpcr follows the MIQE-guidelines for analysis by
allowing multiple normalising genes by default in the delta-Cq calculation. Helper func-
tions are also provided for the design of serial dilutions plates for primer calibration and
are available together with functions to calculate linearity, R2 and plots to display be-
haviour across multiple primers. Importing the fluorescence across all cycles is also
available so that quality control graphs for the melt and amplification curves across all
wells can be seen, Figure 4.4. There are also default functions to plot Cq values across
the plate to see biases, such as edge well bias. The vignettes also outline a reproducible
analysis pipeline to standardise the analysis so reviewers can check it. All vignettes also
describe the use of technical replicates, biological replicates and wells that contain RNA
samples without reverse transcriptase.

4.2.2.2. Functionality

Overview tidyqpcr provides the functionality to aid with the implementation of qPCR
assays from design to analysis. The design of complex plate plans is facilitated with the
use of general plate formatting and labelling functions such as label_plate_rowcol
and create_blank_plate. Meanwhile, helper functions that create commonly used
96 and 384 well plates are provided: create_colkey_4diln_2ctrl_in_24 and
create_rowkey_4_in_16. Once the plate has been designed, users can import the
completed qPCR assay data from proprietary qPCR software. There are default func-
tions for imported Roche LightCycler® data read_lightcycler_1colour_raw

but users can create functions to import data from other machines as long as the end
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Figure 4.3: tidyqpcr facilitates flexible, modular plate design. (A) Single repeatable block con-
taining important well information: Sample_id, target_id, RT and bio_rep number. (B) Alternative
plate design with alternate sample replicates. Useful for pipetting with multichannel pipettes. (C)
Full 96 well plate design based on the repeatable block of panel A. Shows a MIQE-compliant plate
with 3 technical replicates, 2 biological replicates and -RT controls.
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Figure 4.4: Extensive vignettes teach users MIQE-compliant analysis. (A) Amplification
curve plots verifying that curves of the control samples without reverse transcriptase (dotted lines)
do not overlap with the samples of interest. (B) Melt curves showing double-stranded DNA frag-
ments become single-stranded above the threshold temperature for samples of interest.

data frame is in a tidy format. The import functions can be used to import threshold Cq
values calculated from the qPCR machine or the Cq values across cycles for the entire
time course. There are functions to conduct quality control on the imported data, as re-
quired by the MIQE guidelines. calculate_drdt_plate calculates the derivative
of the melt curve enabling the user to confirm amplification occurs only at one temper-
ature. Plate effects such as the reduction of efficiency at edge wells can be inspected
using display_plate_value. Before the experiment of interest can be conducted,
the amplification efficiency of the primers must be tested in order to ensure the assump-
tions of the qPCR threshold Cq comparisons are valid. Users can calculate primer ef-
ficiency with calculate_efficiency_bytargetid which enables calculations
across targets given appropriate dilution assay data. Finally, on the completion of the
quality control steps, user can calculate ∆Cq and ∆∆Cq values from any combination of
samples and targets using calculate_deltacq_bysampleid and calculate_
deltadeltacq_bytargetid. The mechanics around calculating ∆Cq across repli-
cates and plates is enabled by the group_by function in the tidyverse applied on the
key variables sample_id and target_id. We chose the name target_id to hold
information about the target of the qPCR primers and sample_id to hold the condi-
tion/strain/biorep information from each sample. Both words are necessary in the plate
data frame in order to use tidyqpcr functions. The decision to name them sample_id

and target_id was a balance between being specific enough to avoid ambiguity, but
general enough to enable a variety of qPCR assays to be incorporated.
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Use Case

An example use case is now described to show the power of tidyqpcr to analyse a
complex 96-well qPCR assay. The data set is an assay inspecting the change in expression
of 16 genes associated with the yeast stress response, as provided by Dr Edward Wallace.
Yeast samples are exposed to heat shock in the presence of transcriptional inhibitors.
The two transcriptional inhibitors are Phenanthroline and Thiolutin. Therefore, there are
six conditions: no inhibitor present with and without heat shock, Phenanthroline with
and without heat shock, and Thiolutin with and without heat shock. There are three
technical replicates, two experimental replicates and each sample has a control which has
not had any reverse transcriptase added. The example code will design the plate for this
experiment, read in the results of the Roche LightCycler® qPCR machine and calculate
normalised Cq values for all target-condition combinations.

The first stage of conducting a qPCR experiment with tidyqpcr involves designing
a plate with the label_plate_rowcol function, Listing 4.1. It requires three data
frame arguments: a blank plate data frame holding the shape and number of wells to be
used, a rowkey data frame holding row-wise experimental metadata and a colkey data
frame holding column-wise experimental metadata. The blank plate data frame can be
any custom shape or size and follow any labelling system as long as each column and row
is uniquely identifiable. tidyqpcr does provide boilerplate 96, 384 and 1024 well plates.
The tidyqpcr example vignettes encourage users to hold target_id data in the rowkey
data frame and sample_id data in the colkey data frame. This leads to entire rows
containing the same primer and technical replicates and controls being grouped together.
Creating the rowkey in the example is straightforward as there is the same number of
rows as target_ids so the mapping is one-to-one. In other cases, if the number of
target_ids is a factor of the number of rows then the target_ids are replicated
until all rows are filled. This pattern is an easy way of introducing biological replicates
onto a plate. Designing the colkey can be more complicated as different combinations
of conditions, replicates and controls need to be included. Similar to the rowkey, if the
number of unique samples is a factor of the number of columns then they can be repeated
in blocks to represent the technical replicates and -rt control. Although it is not strictly
necessary to use label_plate_rowcol to create a plate, we designed the function to
encourage the users to design the plate in a logical row-wise and column-wise manner.
This leads to an intuitive and reproducible method to load the plate which minimises
mistakes and increases efficiency.

After the qPCR experiment has been conducted, the next step is to read in the
results, Listing 4.2. The function read_lightcycler_1colour_cq is the default
function in tidyqpcr for reading in the calculated threshold Cq values held in the ex-
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1 # list target_ids of primer sets
2 target_id_levels <- c("HOR7",
3 "HSP12", "HSP26", "HSP78",
4 "HSP104", "RTC3", "SSA4",
5 "PGK1", "ALG9", "HHT2",
6 "HTB2", "RPS3", "RPS13",
7 "RPS15", "RPS30A", "RPL39")
8

9 # Set up experimental samples
10 heat_levels <- c("-", "+")
11 heat_values <- factor(
12 rep(heat_levels, each = 3),
13 levels = heat_levels)
14 drug_levels <- c("C", "P", "T")
15 drug_values <- factor(
16 rep(drug_levels, times = 2),
17 levels = drug_levels)
18 condition_levels <- paste0(
19 drug_levels,
20 rep(heat_levels, each = 3))

20 condition_values <- factor(
21 condition_levels,
22 levels = condition_levels)
23

24 # create plate plan
25 rowkey <- tibble(
26 well_row = LETTERS[1:16],
27 target_id = factor(

target_id_levels,
28 levels = target_id_levels))
29

30 colkey <- create_colkey_6_in_24(
31 heat = heat_values,
32 drug = drug_values,
33 condition = condition_values)
34

35 plateplan <- label_plate_rowcol(
36 create_blank_plate(
37 well_row = LETTERS[1:16],
38 well_col = 1:24),
39 rowkey, colkey)

Listing 4.1: Example tidyqpcr code for designing a 96-well qPCR plate for an assay with 16 target
stress response genes across 6 conditions.

cel file format used by the Roche LightCycler® software. The complementary function
read_lightcycler_1colour_raw enables the user to load the Cq values across
the entire time course for plotting quality control figures. Users using qPCR machines
other than a Roche LightCycler® currently need to create their own function for reading
in Cq data. The plate plans defined above can then quickly match the Cq values with
the sample metadata. It is vital that the row and column labelling used by the qPCR ma-
chine is repeated correctly in the plate design data frame. As can be seen in the example
code, the scalability of tidyverse functions enables tidyqpcr to easily incorporate multiple
experimental replicates without significant changes in the pipeline.

Finally, to complete this example analysis the function calculate_deltacq_
bysampleid will normalise all the Cq values from the targets of interest to the normal-
ising genes, Listing 4.3. Following the MIQE guidelines, this function can accept multi-
ple target_ids as normalising genes and calculate a mean or median value to subtract
from all targets of interest. Again, using the flexibility of the tidyverse the mean Cq across
any combination of samples, replicates and experiments can be calculated. This is pos-
sible because tidyqpcr consistently follows the tidy paradigm across all function outputs.
The comparison of expression across all conditions and targets is plotted using ggplot2,
Figure 4.5.

Function definitions and Documentation

tidyqpcr functions are designed following the tidyverse guidelines for compati-



4.2. Results 58

40 file_path_cq_plate1 <-
41 system.file("extdata",
42 "Edward_qPCR_TxnInhibitors_
43 HS_2018-06-15_
44 plate1_Cq.txt.gz",
45 package = "tidyqpcr")
46

47 plate1 <- file_path_cq_plate1 %>%
48 read_lightcycler_1colour_cq() %>%
49 left_join(plateplan,
50 by = "well") %>%
51 mutate(biol_rep = "1",
52 plate = "1")
53

54 file_path_cq_plate2 <-
55 system.file("extdata",
56 "Edward_qPCR_TxnInhibitors_
57 HS_2018-06-15_
58 plate2_Cq.txt.gz",
59 package = "tidyqpcr")

60 plate2 <- file_path_cq_plate2 %>%
61 read_lightcycler_1colour_cq() %>%
62 left_join(plateplan,
63 by = "well") %>%
64 mutate(biol_rep = "2",
65 plate = "2")
66

67 # combine data from both plates
into a single data frame

68 plates <- bind_rows(plate1,
69 plate2) %>%
70 unite(sample_id, condition,
71 biol_rep, sep = "",
72 remove = FALSE)

Listing 4.2: Example tidyqpcr code for reading threshold Cq values from LightCycler® qPCR
machines and combining them with the designed plate plan.

70 platesnorm <- plates %>%
71 filter(prep_type == "+RT") %>%
72 calculate_deltacq_bysampleid(
73 ref_target_ids = "PGK1")
74

75 platesmed <- platesnorm %>%
76 group_by(sample_id, condition,

biol_rep, heat, drug,
target_id) %>%

77 summarize(
78 delta_cq = median(delta_cq,
79 na.rm = TRUE),
80 rel_abund = median(rel_abund,
81 na.rm = TRUE))
82

83 ggplot(data = platesmed) +
84 geom_point(aes(x = target_id,
85 y = rel_abund,
86 shape = biol_rep,
87 colour = drug),
88 position = position_jitter(
89 width = 0.2,
90 height = 0)) +
91 facet_wrap(~heat, ncol = 3) +
92 scale_y_log10("mRNA relative

detection",
93 labels = scales::

label_number()) +
94 theme(axis.text.x =
95 element_text(angle = 90,
96 vjust = 0.5))

Listing 4.3: Example tidyqpcr code for calculating ∆Cq across multiple plates and plotting sum-
mary results across target genes.
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Figure 4.5: tidyqpcr can be used to quickly analyse multi-plate, multi-target, and multi-
sample qPCR assays.

ble functions, Listing 4.4. The verb-object naming convention is followed throughout
to help ensure each function is clearly named according to its purpose. The first argu-
ment of any tidyqpcr function is the primary data frame to be acted on. This allows
the pipe operators commonly used in tidyverse code to continue their primary func-
tion. The input data frame is expected to be in the long tidy format and the outputs of
any tidyqpcr function are also a data frame in a long tidy format. The definition of the
calculate_deltacq_bysampleid function has been copied below as an example
of a typical function code. The function groups Cq values by sample_id and subtracts
the normalising target_id values from all Cq values in each group. Therefore, Cq,
sample_id, and target_id are vital variables and are checked to be in the supplied
data frame before the function attempts to calculate ∆Cq. Once the presence of the re-
quired variables is asserted, the function calculates ∆Cq and adds it as a new variable to
the data frame. The function is entirely scalable as the internal group_by function can
handle any number of sample_id and the ∆Cq’s can be calculated by any number of
normalising target_ids.

Preceding the function definition is several commented lines documenting the de-
tails and use cases of the function, Listing 4.5. First, a brief description of the function,
its input arguments and expected output are provided. Then, its dependencies on other
functions both inside tidyqpcr and in other R packages are listed. Finally, short examples
showing the use of the function are outlined. This preamble is converted into markdown
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1 calculate_deltacq_bysampleid <-
2 function(cq_df,
3 ref_target_ids,
4 norm_function = median)
5 {
6

7 assertthat::assert_that(
8 assertthat::has_name(
9 cq_df,

10 c("target_id",
11 "sample_id",
12 "cq")))
13

14 cq_df %>%
15 dplyr::group_by(
16 .data$sample_id) %>%

17 dplyr::do(
18 calculate_normvalue(
19 .data,
20 ref_ids = ref_target_ids,
21 value_name = "cq",
22 id_name = "target_id",
23 norm_function =
24 norm_function)) %>%
25 dplyr::rename(
26 ref_cq =
27 .data$value_to_norm_by) %>%
28 dplyr::ungroup() %>%
29 dplyr::mutate(
30 delta_cq =
31 .data$cq - .data$ref_cq,
32 rel_abund =
33 2^ -.data$delta_cq)}

Listing 4.4: Function definition for the calculate ∆Cq method within tidyqpcr. This example
showcases the use of the group_by function provided by the core tidyverse package dplyr to
split the Cq values by sample_id and apply the calculate_normvalue on each group
separately.

formatted help documentation by the R package roxygen2 (Wickham et al., 2021). This
documentation is accessible using the base help command once tidyqpcr has been down-
loaded and as a standalone documentation website hosted by rOpenSci.
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1 #’ Calculate delta cq to normalize
2 #, quantification cycle (log2-fold)
3 #’ data within sample_id.
4 #’
5 #’ This function implements
6 #’ relative quantification by the
7 #’ delta Cq method. For each
8 #’ sample, the Cq values of all
9 #’ targets (e.g. genes, probes,

10 #’ primer sets) are compared to
11 #’ one or more reference target
12 #’ ids specified in
13 #’ ‘ref_target_ids‘.
14 #’
15 #’ @param cq_df a data frame
16 #’ containing columns ‘sample_id‘,
17 #’ value_name (default ‘cq‘) and
18 #’ tid_name (default ‘target_id‘).
19 #’ Crucially, sample_id should be
20 #’ the same for different technical
21 #’ replicates measuring identical
22 #’ reactions in different wells of
23 #’ the plate, but differ for
24 #’ different biological and
25 #’ experimental replicates. See
26 #’ tidyqpcr vignettes for examples.
27 #’ @param ref_target_ids names of
28 #’ targets to normalize by, i.e.
29 #’ reference genes, hydrolysis
30 #’ probes, or primer sets. This can
31 #’ be one reference target id,
32 #’ a selection of multiple target
33 #’ ids, or even all measured
34 #’ target ids. In the case of all
35 #’ of them, the delta Cq value
36 #’ would be calculated relative to
37 #’ the median (or other
38 #’ ‘norm_function‘) of all measured
39 #’ targets.
40 #’ @param norm_function Function to
41 #’ use to calculate the value to
42 #’ normalize by on given scale.
43 #’ Default is median, alternatively
44 #’ could use mean.
45 #’
46 #’ @return data frame like cq_df
47 #’ with three additional columns:
48 #’ ref_cq, cq value for reference
49 #’ target ids;
50 #’ delta_cq, normalized value;
51 #’ rel_abund, normalized ratio.

52 #’ @export
53 #’ @importFrom tidyr %>%
54 #’ @importFrom stats median
55 #’ @importFrom rlang .data
56 #’ @examples
57 #’ # create simple cq dataset
58 #’ # with two samples, two
59 #’ # targets and 3 reps
60 #’
61 #’ cq_tibble <- tibble(
62 #’ sample_id = rep(
63 #’ c("S_1", "S_1", "S_1",
64 #’ "S_2", "S_2", "S_2"),
65 #’ 2),
66 #’ target_id = rep(
67 #’ c("T_1",
68 #’ "T_norm"),
69 #’ each = 6),
70 #’ tech_rep = rep(1:3, 4),
71 #’ well_row = rep(
72 #’ c("A", "B"),
73 #’ each = 6),
74 #’ well_col = rep(1:6, 2),
75 #’ well = paste0(well_row,
76 #’ well_col),
77 #’ cq = c(10, 10, 10, 12,
78 #’ 12, 11, 9, 9,
79 #’ 9, 9, 9, 9))
80 #’
81 #’ # calculate deltacq using
82 #’ # reference target_id
83 #’ # called ’T_norm’
84 #’
85 #’ # use case 1:
86 #’ # median reference
87 #’ # target_id value
88 #’
89 #’ cq_tibble %>%
90 #’ calculate_deltacq
91 #’ _bysampleid(
92 #’ ref_target_ids = "T_norm")
93 #’
94 #’ # use case 2:
95 #’ # mean reference target_id
96 #’ # value
97 #’
98 #’ cq_tibble %>%
99 #’ calculate_deltacq

100 #’ _bysampleid(
101 #’ ref_target_ids = "T_norm",
102 #’ norm_function = mean)

Listing 4.5: Function documentation for the calculate ∆Cq method within tidyqpcr as structured
by the roxygen2 R package.
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1 test_that("Unit test for the calculate_deltacq function",
2 {
3 simulated_48_well_plate_plan <-

create_blank_plate_96well() %>%
4 dplyr::filter(well_row %in% c("A", "B",
5 "C", "D")) %>%
6 dplyr::mutate(
7 target_id = rep(c("Target_1", "Target_2",
8 "Target_3", "Target_4"),
9 each = 12),

10 sample_id = rep(rep(c("Sample_1", "Sample_2",
11 "Sample_3"),
12 each = 4),
13 times = 4),
14 tech_rep = rep(c(1, 2, 3, 1),
15 times = 12),
16 prep_type = rep(c("+RT", "+RT",
17 "+RT", "-RT"),
18 times = 12))
19

20 calculated_48_well_plate_with_deltacq <-
21 calculate_deltacq_bysampleid(
22 simulated_48_well_plate_with_cq %>%
23 dplyr::filter(prep_type == "+RT"),
24 ref_target_ids = "Target_3") %>%
25 dplyr::arrange(well_row, well_col)
26

27 expect_equal(calculated_48_well_plate_with_deltacq,
28 simulated_48_well_plate_with_deltacq)})

Listing 4.6: Function test for the calculate ∆Cq method within tidyqpcr as structure by the testthat
R package.

Tests

tidyqpcr follows software development best practices by incorporating unit tests
for all vital functions within the package, Listing 4.6. 95% of all functions within tidyqpcr
are covered by a test. The development of tidyqpcr uses the continuous integration avail-
able in GitHub as a GitHub Action runs each unit test to check for bugs with every commit
to the repository. The tests consist of small use cases where the simplest expected outcome
from each function is compared to the actual output. Functions with multiple possible be-
haviours according to optional arguments have multiple tests to ensure functions perform
as expected.

4.2.3. Reviewing and improving tidyqpcr

4.2.3.1. Themes derived from semi-structured interviews

We conducted a series of semi-structured interviews to explore current practices in qPCR
experimental design and analysis. These interviews were conducted over Zoom with the
video recorded by Zoom’s proprietary software over a period between 45 and 90 minutes.
The interview explored whether users were aware of the MIQE guidelines and if they cur-
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rently executed any QC measures. We also wanted to know about the typical experiments
users conducted; i.e. qPCR machine, reagents, and plate plans. Finally, we wanted to
explore what software users currently used to analyse their results and if they were in-
terested in learning R based analysis. The questions guiding the interview are available
in Appendix A. The six interviewees covered several academic roles from senior post-
doctoral research assistants to undergraduates. The interviewees had varied experiences
in programming-based analysis and in conducting qPCR assays. The transcripts from the
interviews are available at doi:10.5281/zenodo.7101606. Once the interview was com-
pleted the interviewers were introduced to tidyqpcr and asked to complete a user test.

Several key themes relating to the design and analysis of qPCR experiments ap-
peared across the interviews, Figure 4.6. In terms of the design of qPCR assays, all
interviewees reported doing RNA not DNA quantification. The inclusion of three tech-
nical replicates was typical although some users had a process of removing outliers. It
also was not common practice to check amplification curves or confirm linear efficiency.
Overall, few were aware of the MIQE guidelines and few recall published data giving QC
results, analysis code or detailed protocols. In addition, no one reported trying to recre-
ate any other published data set and a regular theme of not trusting conclusions based on
qPCR results alone was common. In terms of the analysis of qPCR data Excel remains a
common piece of software for the analysis and design of plates. Users almost universally
depend on proprietary qPCR analysis software to determine Cq values. Few were aware
of the concept of ’tidy’ data outside of users already using R packages based on the tidy-
verse. Although most users are confident they could re-analysis their own results no one
reported that their analysis was openly available for reviewers to access.

4.2.3.2. rOpenSci review and JOSS submission

In order to ensure tidyqpcr followed best software development practices and to verify the
reliability of its functions, we submitted the package for an rOpenSci code review. rOpen-
Sci offers transparent, constructive and open reviews of R packages that lower barriers to
working with local and remote scientific data sources. A successful rOpenSci review can
then be submitted to the Journal of Open Source Software (JOSS), enabling the software
development work to be officially acknowledged with a citation. The submission to JOSS
was published in June 2022, doi:10.21105/joss.04507.

The rOpenSci review highlighted several issues with tidyqpcr’s implementation,
including: insufficient compliance with FAIR software practices, failing CRAN software
repository checks, and the inclusion of redundant functionality. rOpenSci requires all
submitted software to be Findable, Accessible, Interoperable and Reusable (FAIR) and

https://doi.org/10.5281/zenodo.7101606
https://joss.theoj.org/papers/10.21105/joss.04507
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Figure 4.6: A text cloud showing the keywords repeatedly used across the semi-structured
interviews. The greater the frequency of a word the larger it appears in the figure.

follow the practices of the CodeMeta Project (https://codemeta.github.io/). rOpenSci re-
quired us to add an codemeta.json file which standardises how the metadata associated
with the software is held, such as maintainer details or software dependencies. Stan-
dardising the format of the metadata ensures a) all the data required to reuse a piece of
software is available, and b) search functions can be developed to find software based on
different metadata tags. Acceptance into rOpenSci suite of peer-reviewed packages also
includes submission to the R package repository CRAN. However, the example data sets
and extensive vignettes included in the tidyqpcr package led to it being over 5Mb, which
is too large to be hosted on CRAN. We managed to reduce the package size by converting
the example data set files to compress zip files. It was also highlighted that some func-
tions originally packaged within tidyqpcr to aid with producing interpretable graph labels
appeared out of place. We removed these plot helper functions as the scales package also
provided the functionality (Wickham & Seidel, 2022).

4.2.3.3. User Feedback

Following the Agile software development practice, feedback from users was used to
influence development priorities at regular intervals. Feedback was acquired from mul-
tiple sources: user testing following the user interviews outlined above, an independent

https://codemeta.github.io/
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code review by a bioinformatics research assistant and the rOpenSci code review. The
task-based user test section of the interview focused on three main themes of tidyqpcr:
block-based plate planning, tidyverse-based API and conducting reproducible analysis.
An independent code review following the Google code review guidelines was conducted
by a colleague who had not previously contributed to the development of tidyqpcr. An
overview of major improvements to tidyqpcr’s functionality, usability, and documentation
in response to user feedback is available in Table 4.7.

4.2.3.4. Future functionality

tidyqpcr is a fully functional package for the analysis of qPCR data using SYBR Green as-
says from Roche LightCycler® qPCR machines. However, there remain several planned
improvements to enable tidyqpcr to easily analyse data from other qPCR assays and ma-
jor additions to complete its aim to analyse qPCR data in an entirely open way according
to the MIQE guidelines. First, to extend the import functions to read formats from other
qPCR machines we intend to incorporate the plater R package (Hughes, 2016). This pack-
age follows the same tidy data principles as tidyqpcr, but is built to read data formats from
a variety of plate-based experimental assays. Next, tidyqpcr has only been tested to work
on SYBR Green qPCR assays. Fluorescent-quenched probe-based qPCR assays allow
multiplexing so each well can measure multiple targets. Acquiring suitable fluorescent-
quenched probe data and adding documentation on how tidyqpcr can be used to analyse
such assays would also lead to additional functionality.

The previous improvements enhance the use cases of tidyqpcr, but tidyqpcr needs
additional functionality to fulfil its aims to be MIQE-compliant and entirely open source.
The major additions are: to include primer efficiency into ∆Cq calculations, to provide
methods to determine appropriate normalising genes, to import and export qPCR meta-
data in RDML form, and to calculate threshold Cq values itself. geNorm is an established
method for incorporating primer efficiency into Cq values Meanwhile, the R package Nor-
mqPCR already contains the functionality to determine appropriate normalising genes to
determine ∆Cq values from a group of candidate genes. Integrating the geNorm method
and NormqPCR functionality within the calculate_normvalue is a priority. As the
default file type for MIQE-compliant qPCR analysis, creating the functionality to update
RDML files using the RDML R package would increase the ease of conducting MIQE-
compliant qPCR assays (Roediger et al., 2017). Finally, tidyqpcr needs to remove its
reliance on the threshold Cq value calculations conducted by proprietary software. There
are multiple methods to determine threshold Cq values with most being available within
the qpcR R package described above. Rewriting the comprehensive set of functions in
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Issue Solution

Functionality
tidyqpcr contains helper
functions to create 96 and
384 well plates but 1536-
plate wells are not sup-
ported.

Created a helper function to automatically
create 1536-plate as well as a function to
produce a "pick list" based on the plate to
facilitate the use of robotic sample load-
ers.

Quality control should in-
clude a method for check-
ing for positional effects
on a qPCR plate.

Created the display_plate_value function
to visualise threshold Cq values across
the plate following the user-defined plate
plan.

Usability

Determining general but
intuitive names for func-
tion arguments.

Depending on the assay used the mea-
surement variable could be called Primer
Set (for SYBR dye-style) or a fluorescent-
quenched probe. Rather than commit-
ting to a specific assay, we decided on the
more general term target_id.

The benefit of using
tidyqpcr over the other
available packages re-
mains unclear.

The GitHub Repo README file now
contains a summary table comparing
functionality and MIQE compliance
across tidyqpcr and its popular alternative
packages.

Documentation
Current package vignettes
overwhelm new users as
they introduce the ba-
sic concepts of tidyqpcr
on multi-condition, multi-
target data sets.

The interviewee provided a simpler 96-
well plate data set for us to use as an ex-
ample. We created a simpler vignette in-
troducing the basic concepts of tidyqpcr
using this data set for users to understand
before moving on to the larger example.

Table 4.7: The tidyqpcr development cycle included regular opportunities for users to suggest
improvements.
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qpcR to follow a tidy format usable by tidyqpcr should complete the open source require-
ment from tidyqpcr’s statement of intent.

4.3. Conclusion

qPCR remains one of the most widely used microbiology assays with uses across medicine,
law and biology. However, awareness of what is required for someone else to repeat an
experiment remains a key obstacle in ensuring reliable, reproducible results. Solutions
have been widely published, such as the MIQE guidelines, but few publications appear
to follow them. In addition, surveying the current qPCR analysis software landscape it
is clear that there remains a gap in accessible, reproducible and scalable analysis pack-
ages. A combination of low levels of awareness and high levels of required effort impedes
the publication of protocols and analyses in an open way. The consequences of the lack
of reproducibility continue to have a detrimental effect on the quality and reliability of
conclusions based on qPCR data. In summary, there remains a demand for methods that
support and teach the best practices in qPCR assay design and analysis.

Here, we have described the R package tidyqpcr which aims to facilitate the anal-
ysis of qPCR data in an open, reproducible and reliable way. Created using best practices
in open source software development, the tidyverse suite of data analysis packages and
the MIQE guidelines we believe this tool can help experimentalists improve the quality
of their analysis and the confidence in their results. We utilised multiple documentation
formats to enable users to access the required level of detail for their expertise. Step-by-
step workflows are provided in detail in the vignettes with specific reference to the MIQE
guidelines and experimental plans that include controls, replicates, and block designs.
More experienced programmers can take advantage of the complete function documenta-
tion to cherry-pick the steps they require and combine them with the plethora of tidyverse
packages to create bespoke pipelines of their own. We believe that the extensive work put
into ensure the package is open and accessible will manifest in to users contributing their
own improvements and functions to the package. The initial response from users outside
of our lab has been positive suggesting this package can improve the quality and clarity
of results across the wider research community.



Chapter 5

Limitations of Composability of
Cis-Regulatory Elements in Messenger
RNA

5.1. Introduction

5.1.1. Discovering sequence determinants of gene expression

Since the beginning of molecular biology, biologists struggled to explain the size of the
genomes of eukaryotes (Mirsky & Ris, 1951), It was quickly understood that only a frac-
tion directly encoded protein sequences (Thomas, 1971). Around the same time, scien-
tists were discovering that RNA and protein synthesis within cells can be regulated by
hormones (Ui & Mueller, 1963). In addition, investigations into carbon regulation in
bacteria discovered the promoter as a sequence adjacent to a coding sequence which reg-
ulated expression through the initiation of transcription (Jacob et al., 1964). All of this
work led to the theory that a significant portion of the non-coding genome was dedicated
to the regulation of expression. The theory included the classification of sequences that
either affect the expression of its own gene; for example, promoters, or signal changes in
the expression of other genes; for example, hormones (Britten & Davidson, 1969).

Today, these two types of regulatory sequences are called cis-regulatory elements
(CRE) and trans-regulatory elements. Massively parallel approaches now characterise
smaller CREs by exploring a large library of promoter elements with a single termina-
tor (Sharon et al., 2012), or conversely a library of terminators with a single promoter
(Shalem et al., 2015). Cis-regulatory elements include: sequences imbuing mRNA sec-
ondary structures, RNA binding protein motifs, and enhancer regions (Li et al., 2015).
The possible effects of regulatory elements have also been expanded to include contri-
butions to localisation, degradation, and translation. Meanwhile, trans-regulatory ele-
ments include: transcription factors (Spitz & Furlong, 2012), splicing regulators (Will

68
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& Lührmann, 2011), and RNA-binding proteins (Bleichert & Baserga, 2010). However,
the line between trans- and cis- regulatory elements is becoming increasingly blurred
(Savarese & Grosschedl, 2006).

Computational methods continued to be developed for the discovery and quan-
tification of cis-regulatory elements, such as sequence motifs recognised by regulatory
proteins. Prominent methods for mapping CRE sequence-function relationships include
predicting functional data with short sequence features, often using linear models (Shalgi
et al., 2005; Cheng et al., 2017; Vijayabaskar et al., 2019) or, directly comparing the
sequences of genes with similar characteristics to determine the presence of short con-
sensus sequence motifs (Hogan et al., 2008; Kretz et al., 2013) using motif discovery
software (Elemento et al., 2007; Bailey et al., 2015). Both of these approaches make the
implicit assumption that the contribution of a short CRE is independent of context so that
the effect of combining motifs is composed of a linear sum (on the appropriate scale) of
the individual CRE contributions. The approximation that short CREs act independently
helps to find elements that have clear contributions and to simplify a vast search space
that would be made exponentially larger by accounting for CRE interactions. However,
framing the search for CREs around independent contributions from short motifs over-
looks multi-part motifs, interactions between motifs, and motifs that may be active only
in specific contexts.

5.1.2. From regulatory elements to modular cloning

The discovery of regulatory elements with predictable contributions to gene expression
opened the door to the idea of creating synthetic genes. Technology developed over the
later half of the 20th century has turned the creation of synthetic genes into an indus-
try. First, the discovery of restriction enzymes allowed the precise cutting of DNA using
designed recognition sites. The original type I and type II restriction enzymes, which
cut within the recognition site, (Meselson & Yuan, 1968; Arber & Linn, 1969; Kelly &
Smith, 1970; Smith & Welcox, 1970) was followed by the type IIS restriction enzyme,
which cut a few base pairs upstream of the recognition site (Pingoud et al., 2014). Type
IIS enzymes keep the recognition site intact after cleavage, enabling complex multi-step
processes. Next, the understanding of the recombination mechanisms enabled the pasting
of multiple different segments of DNA together (Jackson et al., 1972; Cohen et al., 1973).
Then, ten years after the discovery of promoters scientists transformed E.coli cells with
a synthetic, replicating plasmid which expressed resistance to the antibiotic tetracycline
(Cohen et al., 1973). The tools for separating and combining segments of DNA into repli-
cating plasmids laid the groundwork for integratable cassettes of interchangeable genetic
parts and the origins of modular cloning. Up to then, work was mostly completed in
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prokaryotes, but work to efficiently transform yeast (Beggs, 1978) and later mammalian
cells (Capecchi, 1989) enabled access to more complex synthesis machinery and more
complex proteins. The creation of polymerase chain reaction dramatically increased the
efficiency of transforming organisms and accessing new genes as regions of genomes
could be selected and amplified by designing primers (Saiki et al., 1988). The inven-
tion and improvement of these tools culminated in the creation of synthetic circuits and
regulatory elements at the turn of century (Elowitz & Leibier, 2000; Gardner et al., 2000).

The last 20 years of pioneering synthetic biology research as been defined by
the standardisation of libraries of regulatory parts. BioBricks is the de facto library of
choice that pioneers the "pick and mix" paradigm (Knight, 2003). Shifting the focus from
fundamental cell biology to metabolic engineering, users no longer need to understand
specific genomes to find suitable regulatory parts, but instead focus on the end product.
Bioengineering is quickly becoming a staple of industry with the production of high-
value compounds with high yields and reduced waste (Krivoruchko & Nielsen, 2015).
Genetically modified organisms have now been created to detect oil spills, arsenic in
water and even the presence of specific viruses (Willardson et al., 1998; Tancharoen et
al., 2019; Wan et al., 2019).

Intrinsic to the success of synthetic biology is the development of modular pro-
cesses to assemble genetic parts (Curran et al., 2013; Andreou & Nakayama, 2018;
Garcia-Ruiz et al., 2018; Lee et al., n.d.). Several groups have constructed standard-
ised libraries comprising promoter (including 5’UTR) and terminator (including 3’UTR)
parts, which can be combined to achieve desired expression of synthesized proteins. The
characterisation of all possible promoter-terminator pairings is impractical, so standard-
ised libraries generally characterise parts independently, for example testing many pro-
moters with the same coding sequence and terminator (Lee et al., n.d.). Because these
experiments do not measure interactions between different parts, they rely on the untested
assumption that those parts have more or less identical effects across different contexts.
The majority of interactions between parts are negligible, but unpredictable behaviour at
crucial stages of genetic pathways continues to hamper synthetic biology projects (Kittle-
son et al., 2012).

5.1.3. Current limitations in predicting gene expression

The unpredictability of the expression of synthetic constructs highlights the current lim-
itations in our understanding of gene expression. Currently, the most common solution
to this problem is to take advantage of the scale of high throughput assays now available.
Automation of construct transformation, growth and characterisation is enabling 1000s
of variants to be compared at the same time point. Massively parallel report assays can
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now test thousands of constructs with high throughput sequencing and flow cytometry
and those that behave as expected can be selected (Kosuri et al., 2013; Inoue & Ahituv,
2015). However, this remains a costly and high expertise endeavour that highlights how
much there remains to be understood about gene regulation.

The continued development of statistical models to accurately predict gene ex-
pression from DNA sequences offers another route to better predict behaviour without
needing to conduct additional experiments (Li et al., 2015). However, many CRE finding
algorithms tend to rely on models of independent effects, that is, composability. More
complex models that can account for non-linear interactions typically hide their decision-
making. Interpreting the decisions made from "black box" machine learning algorithms
(Guidotti et al., 2018) could be significant in understanding the biological mechanisms
through which gene expression is regulated. Understanding gene regulation pathways
requires a more balanced approach that enables interactions but in an interpretable way.

Here, we explore the limitations of composability beyond regulatory regions with
a focus on interactions between regulatory sequence motifs. We first show the changing
regulatory behaviour of terminator sequences paired with different promoters and cod-
ing sequences. We measure the fluorescence of 120 chimera constructs and highlight
the irregular but significant changes in gene expression between contexts. Then, we in-
vestigate whether the changes in regulatory behaviour are reflected in the cis-regulatory
elements within these regions. We conduct an analysis of contributions to half-life from
suspected cis-regulatory elements using published data sets and create a shortlist of motifs
of interest. Then, we show that these motifs on their own have different contributions to
gene expression depending on context. Finally, we confirm motif contributions to gene
expression using RNA-Seq experiments and explore possible positional effects on motif
behaviour.

5.2. Results

5.2.1. Terminator effects on gene expression depend on cis-regulatory context

To investigate the context dependence of terminator regions, we created a library of 120
constructs (Figure 5.1A), containing all combinations of 6 promoters (including 5’UTR),
2 coding sequences, and 10 terminators (including 3’UTR). We selected promoters and
terminators from native yeast genes spanning a variety of different expression patterns
and functions (Table 5.1). To choose specific sequence lengths for the terminators of our
constructs, we referred to published measurements of median 3’UTR length (Pelechano et
al., 2013) because sequences that are necessary and sufficient for efficient transcriptional
termination are found upstream of the termination site (Guo & Sherman, 1996). For
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Gene
Name

Systematic
Name

Median
3’UTR
Length

Construct
Terminator
Length

Usage Function

PGK1 YCR012W 158 189 S Glycolysis
RPS3 YNL178W 86 200 M&S Ribosomal
RPS13 YDR064W 92 200 S Ribosomal
PAB1 YER165W 150 200 S RNA Binding
HSP26 YBR072W 164 200 S Heat Shock
CLN2 YPL256C 203 200 S Cell Cyclin
SRO9 YCL037C 543 545 S RNA Binding
TOS6 YNL300W 256 256 S Cell Wall
SUN4 YNL066W 198 198 S Cell Wall

PMA1 YGL008C 421 421 S
Trans-
membrane
ATPase

TSA1 YML028W 112 219 M Redox Homes-
tasis

PIR1 YKL164C 235 358 M Cell Wall

Table 5.1: Summary of the terminator library. The common gene name from which the ter-
minator is extracted is included alongside its systematic name. The median 3’UTR reported by
(Pelechano et al., 2013) is a median over the lengths of each distinct isoform they detect. The
usage of each motif is signified by S, for promoter-terminator swaps, or M, for motif insertion or
deletion. A short summary of the protein function is included.

terminators with measured lengths under 200nt, we used the standardised parts length of
200nt from the YeastFab library. The 2 coding sequences (CDS) expressed mCherry or
mTurquoise2 fluorescent proteins, which are bright fluorophores with only 30% amino
acid identity (Shaner et al., 2004; Goedhart et al., 2012).

Measuring fluorescence with a plate reader showed that, as expected, promoter
choice dominated overall protein output. We observed up to 100-fold changes in fluores-
cence between the 4 highest expressing promoters (Supplementary Figure B1A) and the
2 lowest expressing promoters (Supplementary Figure B1B; mCherry log2 fold change
= 7.33, p.value = 0.000). Expression from the stress-induced pHSP26 was notably more
variable than from pPGK1 and pRPS’s, across biological replicates, when combined with
both coding sequences and a variety of terminators. We also confirmed that most differ-
ences in protein outputs are accounted for by changes in mRNA abundance by checking
a subset of mCherry constructs using RT-qPCR (R = 0.888, Figure 5.1D).

Terminators also affect protein output with 5-fold changes in fluorescence seen
within the same promoter-CDS sets (pPGK1-mTurq-tPMA1 log2 fold change = -2.73,
p.value =1.19× 10−41), relative to the tPGK1 terminator of each group (Figure 5.1B,
Supplementary Tables B1 and B2). We focus on constructs with high-expression pro-
moters due to the poor signal-to-noise ratio at low expression levels. The interaction of
coding sequence and terminator is seen most clearly for tPAB1. tPAB1 is consistently
the most highly expressed terminator in mTurquoise2 constructs but is more variable in
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Figure 5.1: Terminator contributions to gene expression are promoter, coding sequence and
length dependent. (A) Design of chimeric reporter constructs with all combinations of 6 promot-
ers, 2 fluorescent proteins, and 10 terminators, on a centromeric plasmid. Terminators highlighted
with an asterisk have a terminator length longer than the library standard of 200bp because they
have a median 3’UTR length greater than 200bp according to (Pelechano et al., 2013). Panel
created by Jamie Auxillos. (B) Relative protein abundance from each terminator, normalized to
a reference terminator tPGK1 for each matched promoter. The plot shows statistical summaries
(mean and standard error) of at least 6 replicates for high-expression promoter data shown in Fig-
ure 1A. (C) RT-qPCR mRNA results targeting the mCherry ORF for pRPS3-mCherry-tRPS3 and
pSRO9-mCherry-tSRO9 constructs with different terminator lengths. (D) mCherry fluorescence
correlates with RT-qPCR mRNA abundance for 3 promoters paired with all 10 terminators. Note
that both axes use a log2 scale.
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mCherry constructs. Meanwhile, tPGK1 highlights the interactions of promoter and ter-
minator. tPGK1 is one of the most highly expressed terminators when paired with pPGK1
and pHSP26, but is up to 40% lower in expression when paired with pRPS3 or pRPS13.
Overall, our results show that the contributions of terminators (including 3’UTRs) to gene
expression depend on other parts within the gene.

We further investigated the effects of terminators on mRNA levels by compar-
ing constructs with extended vs truncated terminators. It is known that disrupting the
transcription termination signal lowers expression (Guo & Sherman, 1996; Shalem et al.,
2015). However, standardised parts libraries often assume a fixed terminator length for
all genes, which is likely to omit the termination signal for genes with longer terminators.
In the case of the YeastFab parts library (Guo et al., 2015) the fixed terminator length is
200bp. We compared a gene with a median 3’UTR length less than 200bp, RPS3 to a
gene with a median 3’UTR length greater than 200bp, SRO9. The median length of the
native RPS3 3’UTR is 86nt (Pelechano et al., 2013); truncating the terminator to 86bp or
59bp reduces transcript protein output by almost 2-fold (86bp Fold Change = 0.544, p-
value = 2.6×10−4; 59bp Fold Change = 0.517, p-value = 7.8×10−6; Figure 5.1C). The
median length of the native SRO9 3’UTR is 543nt (Pelechano et al., 2013); extending
the terminator length to 543bp increases transcript protein output by almost 2-fold (Fold
Change = 0.581, p-value = 0.01; Figure 5.1C). This validates the ability of our assay to
detect known regulatory signals affecting transcription termination while highlighting the
importance of using well-informed annotations to construct parts libraries for synthetic
biology. Note that we used the longer 543bp SRO9 terminator, and a similarly extended
421bp PMA1 terminator, for the main set of constructs (Figure 5.1).

5.2.2. Candidate cis-regulatory elements contribute to transcript decay rates

Next, we investigated how the regulatory effects of CREs contained within terminator
regions depend on their context. First, 69 suitable CREs to test for context dependence
were found through a literature search. All were suspected sequence motifs for mRNA
binding proteins, several directly associated with proteins involved in mRNA degradation
(Shalgi et al., 2005; Hogan et al., 2008; Cheng et al., 2017). Any motifs that were found
in fewer than 6 gene 3’UTRs, as annotated by (Pelechano et al., 2013), were removed.

We quantified the regulatory effects of the remaining 38 candidate motifs by
applying a linear model predicting half-life to 2 recent transcriptome-wide analyses of
mRNA decay that used metabolic labelling (Sun et al., 2013; Chan et al., 2018). These
datasets are loosely correlated in their half-life measurements across 4188 genes reported
in both datasets, R = 0.63 (Figure 5.2A). However, (Chan et al., 2018) estimated substan-
tially smaller half-lives. (Chan et al., 2018) also had greater coverage of genes in the yeast
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genome, 5529 vs 4304, and used multiple time points to determine half-lives. Following
(Cheng et al., 2017), we constructed a linear model to predict the half-life of a transcript
using the counts of motifs in its 3’UTR, the length of the 3’UTR, and the relative codon
usage in the coding sequence of each transcript (see Material and Methods). The linear
model performed similarly on both datasets by explaining 44% and 41% of the variability
in half-lives for the (Chan et al., 2018) and (Sun et al., 2013) datasets respectively (Figure
5.2C). This predictive power is comparable to the squared correlation between the datasets
(R2 = 0.40). Motifs that did not significantly contribute to the model were automatically
filtered out using a greedy algorithm maximising the Akaike information criterion (AIC)
during both training stages. Approximately 1.7% of the variance is explained by 7 signif-
icant motifs, with 42.0% explained by codon usage (Supplementary Table B3), consistent
with previous analyses (Presnyak et al., 2015; Cheng et al., 2017). The top 7 most signif-
icant motifs from the (Chan et al., 2018) data showed similar regulatory behaviour when
tested on their own in the (Sun et al., 2013) data, except for TGTAAATA which was
stabilising in one dataset and destabilising in another, as we later discuss (Figure 5.2B).

We selected 4 motifs for exploring context dependence: TGTAHMNTA, GTAT-
ACCTA, HWNCATTWY, and ATATTC (Table 5.2). TGTAHMNTA and GTATACCTA
were chosen as they had the largest coefficients amongst significant decay and stability
motifs, respectively. HWNCATTWY was chosen due to its statistically significant effect
in both datasets and, as it co-occurs with TGTAHMNTA in 68 native 3’UTRs, because it
could be used for testing motif interactions. The final selected motif was ATATTC, as it is
a statistically significant decay motif in both datasets, and it has been previously shown to
lower mRNA abundance when inserted in reporter constructs (Cheng et al., 2017). Func-
tionally, TGTAHMNTA is the binding motif for Puf4p, and HWNCATTWY is associated
with Khd1p/Hek2p-bound transcripts (Hogan et al., 2008). However, it is not known how
ATATTC and GTATACCTA affect mRNA decay.

5.2.3. Quantification of differential expression due to motif insertion or mutagenesis
in multiple 3’UTRs

To quantify the effects and composability of selected motifs in different contexts, we
designed a further set of reporter constructs (Figure 5.3A). We first chose the riboso-
mal protein terminator tRPS3, as it was the only terminator in our initial library that did
not contain any of the selected motifs. We selected thioredoxin peroxidase terminator
tTSA1 as the second host terminator because it also lacks selected motifs and has a sim-
ilar length to tRPS3. In each host terminator, we chose 3 motif insertion sites, selecting
for: minimum impact on transcript secondary structure, avoiding known transcription
termination elements, and matching the positions of motifs in native genes. Having 3
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Figure 5.2: A linear model of transcript half-life quantifies the effect of candidate terminator
motifs on half-life. (A) Correlation between the 2 transcript half-lives (λ ), in minutes, reported
in the (Chan et al., 2018) and (Sun et al., 2013) datasets. (B) Predicted contributions to log2 half-
life for chosen motifs in the (Chan et al., 2018) and (Sun et al., 2013) datasets. The motifs were
chosen using a linear model with the length of the 3’UTR and the relative codon usage of each
gene as the base covariates and a greedy algorithm selecting the motif counts that increased the
AIC. (C) Predicted vs actual transcript half-lives calculated by a linear model of codon and motif
usage trained on the (Chan et al., 2018) and (Sun et al., 2013) datasets.
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Consensus Seq Inserted
Motif

Deleted
Motif

Source Chan
Coef

Chan
p.value

Sun
Coef

Sun
p.value

Notes

GTATACCTA GTATACCTA GTATACCTA Shalgi 0.500 1.9e-02 0.280 0.3300 Unknown

ATATTC ATATTC ATATTC Cheng -0.075 1.4e-03 -0.170 0.0000 Decay
motif

HWNCATTWY TTTCATTTC CTTCATTTC
ATACATTAT

AATCAT-
TAT

Hogan -0.084 4.9e-06 -0.061 0.0026 Khd1/Hek2
associated

motif

TGTAHMNTA TGTACAATA TGTACATTA Hogan -0.230 0.0e+00 -0.056 0.1800 Puf4p
binding
motif

Table 5.2: Summary of shortlisted motif characteristics. The first 3 columns hold the consensus
sequence for each motif and the exact versions deleted from or inserted into the host terminators.
Then, we report the paper from which the motif was selected from; (Hogan et al., 2008), (Cheng
et al., 2017) or (Shalgi et al., 2005). Next, the coefficient given by the linear model predicting
either the (Chan et al., 2018) or the (Sun et al., 2013) half-life datasets is included for each motif.
Finally, the table includes notes on motif functions.

insertion sites enabled us to quantify combinations of motifs, including duplicates of
weaker motifs to increase the likelihood of detecting a clear effect on gene expression.
We chose TGTACAATA and TTTCATTTC sequences as explicit versions of the TG-
TAHMNTA and HWNCATTWY consensus motifs respectively, and checked that these
explicit versions have similar predicted effects on half-life transcriptome-wide (Supple-
mentary Tables B7, B8). Altogether, 7 variant terminators were designed for these 2 host
terminators: the wildtype terminator, a control to test the insertion sites with randomly
generated sequences, 4 testing the effects of inserting each motif individually and a final
variant to test interactions between the TGTAHMNTA and HWNCATTWY motifs. We
created a construct library by pairing each terminator with three different promoters; its
native promoter pairing (pRPS3 or pTSA1), the high-expression promoter pPGK1, and
the low-expression promoter pSRO9.

Motifs predicted to contribute to half-life when inserted into an RPS3 terminator
are seen to have the predicted effect on mRNA abundance in the tRPS3 reporter con-
structs (Figure 5.3B). We measured mRNA abundance by RT-qPCR across 6 biological
replicates, each quantified in 3 technical replicates and normalised by the ∆Cq method
against values from 3 reference mRNAs (see methods). Insertion of 2 copies of ATATTC
(mod_NAA) generally lowers the mRNA abundance, as much as 4-fold when paired
with the pRPS3 promoter. Insertion of either TGTAHMNTA (mod_NTN), or 2 copies of
HWNCATTWY (mod_HNH), tends to decrease mRNA abundance, and their combined
insertion (mod_HTH) tends to decrease mRNA abundance even further. The putative sta-
bility motif GTATACCTA (mod_NGG) does not consistently or strongly affect mRNA
abundance. However, a comparison of the WT and control (mod_NNN) terminators does
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show that the creation of the insertion sites alone affects mRNA levels (Supplementary
Table B10).

Inserting the same motifs into our second host terminator gives qualitatively simi-
lar results (Figure 5.3C). Decay motifs generally lead to decay, although ATATTC (mod_
NAA) has a weaker effect in tTSA1 than in tRPS3, and TGTAHMNTA (mod_NTN)
has a stronger effect in tTSA1 than tRPS3. The putative stability motif GTATACCTA
(mod_NGG) again has little effect.

We next quantified the effects of removing decay motifs from a native yeast ter-
minator. We selected the cell wall protein PIR1 as our host terminator as it is only
258 bp (Pelechano et al., 2013) and a de-novo-synthesizable terminator that contains
the ATATTC, TGTAHMNTA, and HWNCATTWY motifs. We designed 8 terminators
in which the motif occurrences in tPIR1 were replaced by scrambled sequences (Figure
5.4A). We found that the removal of almost any decay motif from tPIR1 results in an
increase in mRNA levels (Figure 5.4B; Supplementary Table B11).

We confirmed that motif-dependent changes in mRNA abundance are reflected in
protein abundance by measuring the fluorescence from a subset of reporter constructs with
native promoter-terminator pairings (Supplementary Figure B2). The high correlation
(R = 0.96,0.68,0.86 for tRPS3, tTSA1 and tPIR1 constructs respectively) demonstrates
that these combinations of decay motifs that change mRNA abundance also change the
protein output, as expected.

Comparison of mRNA abundance across all constructs (Figure 5.3B, 5.3C, 5.4B)
shows motif contributions change in magnitude but not direction depending on the context
of the rest of the construct. The insertion of almost any decay motif into tTSA1 or tRPS3
results in a decrease in mRNA abundance, and the removal of these from tPIR1 results in
an increase in mRNA abundance. However, the quantitative effects vary depending both
on the immediate motif context in the host terminator and the more distant context given
by the promoter.

5.2.4. Motif effects on gene expression depend both on terminator context and pro-
moter pairing

We compared the effects of cis-regulatory motifs on mRNA abundance to predicted ef-
fects inferred from the transcriptome-wide measurements of half-life. First, we trained a
linear model using the RT-qPCR results to estimate the change in log2 mRNA abundance
(i.e. ∆Cq) due to the presence of a motif in each promoter and terminator combination.
Using a simple model of transcript production and decay, we can argue that changes in
mRNA abundance are directly proportional to changes in mRNA half-life (see methods).
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Figure 5.3: Motifs inserted into RPS3 and TSA1 host terminators change transcript abun-
dance in RT-qPCR measurements. (A) Design of motif insertion sites in native RPS3 and TSA1
terminators, highlighting random insertion used as a negative control. Panel created by Jamie
Auxillos. (B) Fold changes in transcript abundance for tRPS3 constructs paired with 3 promot-
ers: pRPS3, pPGK1 and pSRO9. (C) Fold changes in transcript abundance for tTSA1 constructs
paired with three promoters: pTSA1, pPGK1 and pSRO9. Each diamond represents a biological
replicate, averaged over 3 technical replicates. The vertical line represents the mean of all 6 bi-
ological replicates. Fold changes are relative to the abundance of the mod_NNN construct, i.e.
2∆∆Cq (see methods).
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Figure 5.4: Motifs removed from PIR1 host terminators change transcript abundance in
RT-qPCR measurements. (A) Design of PIR1 constructs with combinations of motifs replaced
by random nucleotide sequences. Panel created by Jamie Auxillos. (B) Fold changes in transcript
abundance for tPIR1 constructs paired with 3 promoters: pPIR1, pPGK1 and pSRO9. Each di-
amond represents a biological replicate, averaged over 3 technical replicates. The vertical line
represents the mean of all 6 biological replicates. Fold changes are relative to the abundance of
the WT construct, i.e. 2∆∆Cq (see methods).
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Therefore, we compared the estimated change in log2 mRNA abundance to that predicted
due to changes in log2 half-life for each motif, estimated from our transcriptome-wide
analysis of the (Chan et al., 2018) dataset. The effect of motifs in reporter constructs is
correlated with the predictive model, but the strength of the correlation depends on con-
text (Figure 5.5A). Constructs with inserted motifs (i.e. tRPS3 and tTSA1 constructs) had
a lower correlation with predicted effects than constructs with deleted motifs (i.e. tPIR1
constructs). Interestingly, motif effects on mRNA abundance appear to be greater than
that predicted from their effect on half-life when their host terminator is paired with its
native promoter.

We next directly compared the estimated coefficients for the effect of each mo-
tif on mRNA abundance across promoter-terminator pairing (Figure 5.5B). The effect of
a motif depends on terminator context. For example, ATATTCA reduces mRNA abun-
dance substantially more when inserted in tRPS3 than in tTSA1 (pRPS3-tRPS3 log2 Fold
Change = -0.99, p-value = 1.5×10−13; pTSA1-tTSA1 log2 Fold Change = -0.26, p-value
= 7.3×10−3). Meanwhile, TGTAHMNTA significantly reduces mRNA abundance when
inserted in tTSA1, but not tRPS3, whichever promoter is chosen (pRPS3-tRPS3 log2
fold Change = -0.18, p-value = 0.37; pTSA1-tTSA1 log2 fold Change = -1.30, p-value
= 1.0× 10−7). Promoter choice also influences the magnitude of the contribution of a
motif to mRNA levels. For the ATATTC, TGTAHMNTA and HWNCATTWY motifs, the
greatest reduction in mRNA abundance occurred when native promoter-terminator pair-
ings are measured. This is true for all 3 decay motifs across all 3 host terminators, except
for HWNCATTWY in pRPS3-tRPS3 constructs (Supplementary Table B12).

Regulatory interactions between different motifs also change depending on host
terminator and promoter context. We included an interaction term that quantifies how
the effect of including both HWNCATTWY and TGTAHMNTA together differs from the
sum of the effects of including these motifs individually. The combination of TGTAHM-
NTA and HWNCATTWY in tRPS3 has no significant effect beyond a simple sum of their
individual effects when paired with pPGK1 (p-value = 0.39). However, when tRPS3 is
paired with pRPS3 or pSRO9, the combination has a greater effect than expected from
the sum of the individual effect of each motif (pRPS3 log2 fold Change = -0.47, p-value
= 0.0015; pSRO9 log2 fold Change = -0.37, p-value = 0.02). The combination of TG-
TAHMNTA and HWNCATTWY in tTSA1 has no additional effect (pTSA1 p-value =
0.67, pSRO9 p-value = 0.91), except when paired with pPGK1, where it has a lesser
effect than expected (log2 fold Change = 0.33, p-value = 0.02). Finally, the combina-
tion of TGTAHMNTA and HWNCATTWY in tPIR1 has no significant additional effect
(Supplementary Table B12).
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Figure 5.5: Promoter and terminator context alter the regulatory effect of motifs. (A) Pre-
dicted change in transcript abundance inferred from transcriptome-wide motif contributions to
half-life, compared to RT-qPCR measurements of reporter transcript abundance. The y-axis shows
statistical summaries (mean and standard error) of 6 replicates for data shown in figures 4 and 5.
The fold change is relative to the mod_NNN construct in each promoter-terminator pairing for the
tRPS3 and tTSA1 sets, and relative to the WT constructs for tPIR1 sets. Native promoter panels
show the promoter paired with the terminator from the same set, e.g. pRPS3 with tRPS3. (B)
Motif contributions to fold changes in mRNA abundance for reporter constructs with different
promoter and terminator contexts. This is calculated by a linear model with a coefficient for the
effect of each motif in each set, applied to ∆Cq against 3 reference genes. The last column shows
the interaction term between TGTAHMNTA and HWNCATTWY.
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5.2.5. Inserting motifs into terminators shifts poly(A) site usage downstream

We next mapped poly(A) site usage in a subset of reporter constructs, for 2 reasons. First,
changes in poly(A) site usage might mean that motifs placed in our reporters were unin-
tentionally absent from the mature mRNA. Second, we wanted to know if motif effects on
mRNA abundance might be due to changes in the poly(A) site usage. We chose three con-
structs with large effect sizes in the qPCR results: mod_NAA, mod_HTH and mod_NTN,
together with WT and mod_NNN controls, within three promoter-terminator contexts:
pRPS3-tRPS3, pPGK1-tRPS3 and pTSA1-tTSA1. For these constructs, we performed
poly(A)-site proximal paired-end sequencing of 3’ mRNA-Seq libraries following Lexo-
gen’s oligo(dT) priming QuantSeq protocol (Moll et al., 2014 and see methods). Read 1
allows precise inference of poly(A) site position while read 2 generally overlaps the CDS
and allows distinguishing terminators in native loci from reporter constructs. We mapped
the reads to genome sequences extended by the relevant reporter plasmid sequence.

We detected 1000s of reads on each reporter construct, which is enough to quantify
expression confidently as well as to assign poly(A) sites. We checked that counts of all
other RNAs are highly correlated between samples, giving us confidence that changes in
construct detection are meaningful (Supplementary Figure B5). Transcript abundance,
relative to mod_NNN, correlates strongly with qPCR results for most constructs (Figure
5.6A). However, some constructs were detected as more abundant by RNA-seq for reasons
that are unclear.

We display the poly(A) sites as the cumulative fraction of poly(A)-site reads
mapped at each location downstream of construct stop codons, out of all reads mapped
to the terminator (Figure 5.6B). We confirmed that in other genes the poly(A) site loca-
tions were highly reproducible across samples, giving us confidence that changes in re-
porter poly(A) sites are meaningful (Supplementary Figure B6). Poly(A) sites are in the
same relative positions in native loci and the constructs with wild-type terminator (Sup-
plementary Figure B7). Then, we compared 3’end positions of reads between modified
and wild-type reporter constructs to determine the poly(A) site usage. In both wild-type
and mod_NNN tTSA1 constructs, the relative usage of major poly(A) sites does not sig-
nificantly change (Site 1 p-value = 0.068 and Site 2 p-value = 1). Surprisingly, tRPS3
mod_NNN constructs appear to be using a novel upstream poly(A) site, that appears in
about 50 percent of reads and is located upstream of the 3rd motif insertion site (Site 1
p-value = 0.016; Figure 5.6B).

Next, we compared changes in poly(A) site usage between constructs with differ-
ent inserted motifs. We highlight the 2 major poly(A) sites for the tRPS3 constructs and
2 for the tTSA1 constructs (black vertical lines on the mod_NNN constructs in Figure
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5.6B) and track the cumulative fraction of reads upstream of each major site. However,
for tRPS3 constructs, there is a distinct shift to downstream poly(A) sites in constructs
with verified decay motifs inserted, rather than random sequences. There are also smaller
differences in poly(A) site usage between constructs with different motifs (Supplementary
Figure 5.6C, Supplementary Table B13).

We then asked whether modifications in the 3’UTR region impact 5’-3’ degra-
dation following mRNA decapping, using the 5PSeq method targeted to the 3’-end re-
gions of mRNA (Pelechano et al., 2016). 5PSeq can detect changing ribosome dynamics
through 5’-3’ co-translational degradation, however, the novel modification to 5Pseq here
uses an anchored oligo(dT) reverse primer so detects only the poly(A)-site proximal re-
gion of the mRNA instead of the entire coding sequence. The 5Pseq counts per gene
are highly reproducible between samples (Supplementary Figure B5B), and the abun-
dances of reporter mRNAs from different constructs correlate well between 5PSeq and
QuantSeq data (Supplementary Figure B5C). Our 5PSeq data finds no detectable changes
in 5’-phosphorylated intermediates between wild-type and modified reporter constructs,
and thus does not indicate detectable changes in ribosome dynamics near the 3’ end of
transcripts (Supplementary Figure B7, B9). It does confirm the behaviour of the inserted
motifs correlates with RT-qPCR results and that an upstream alternative polyadenylation
site is introduced in the tRPS3 constructs (Supplementary Figure B4). Moreover, the
poly(A) site distribution for each construct matches that obtained from QuantSeq data,
suggesting that 3’UTR isoforms are not differentially degraded using this pathway re-
gardless of the motifs inserted (Supplementary Figure B8, Supplementary Table B14).
Finally, the abundances of different reporter mRNAs from different constructs correlate
well between 5PSeq and QuantSeq data (Supplementary Figure B5C).

Overall, poly(A) site mapping showed that most reporter mRNAs retained the
expected poly(A) site and motifs, except for a new alternative poly(A) site in tRPS3
mod_NNN constructs. This highlights the potential for unexpected consequences from
composing cis-regulatory elements, even when introducing “random” insertions of no
known function.

5.3. Conclusions

This work explored the limitations of composability in cis-regulatory elements. The ef-
fects of interacting promoter and terminator regions have been well documented in the
synthetic biology literature (Ito et al., 2013; Dhillon et al., 2020). However, the standard
narrative describes this degree of unpredictability as a nuisance obstructing the creation
of reliable genetic circuits and high-value products (Kittleson et al., 2012). The focus on
creating reliable components with predictable contributions overlooks the evidence for
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Figure 5.6: Inserting motifs into RPS3 and TSA3 terminators changes 3’UTR length. A
subset of constructs were chosen to investigate changes in poly(A) site usage: WT, mod_NNN,
mod_NTN, mod_NAA, and mod_HTH; within three promoter-terminator contexts: pRPS3-
tRPS3, pPGK1-tRPS3, and pTSA1-tTSA1. (A) Comparison of construct transcript abundance as
independently measured by RT-qPCR and RNA-Seq assays. Transcript abundance was normalised
to the median abundance of plasmid URA3, genomic PGK1, and RPS3 or TSA1 transcripts for
each construct. Fold change is relative to the mod_NNN construct in each promoter-terminator
context. The black diagonal line represents the expected values if RNAseq and RT-qPCR re-
sults correlated perfectly. (B) Cumulative count of reads mapped downstream of WT (grey) and
mod_NNN (golden) construct stop codons as fraction of total reads mapped to the constructs ter-
minator. The x-axis shows the terminator sequence of the mod_NNN construct with inserted ran-
dom motifs highlighted with a black background. WT reads have been shifted downstream to align
with the mod_NNN sequence by accounting for motif insertion sites. Major poly(A) sites have
been highlighted by a black vertical line. (Left) shows the poly(A) sites for the pRPS3-tRPS3 and
pPGK1-tRPS3 promoter-terminator constructs. (Right) shows the same for the pTSA1-tTSA1
constructs. (C) Similar to Figure B but with each motif insertion construct plotted separately.
Columns designate cumulative plots from different terminator constructs and rows designate cu-
mulative plots from different promoter contexts.
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a far more complex picture of regulatory mechanisms that is biologically interesting in
itself.

We first built on current literature to show the variability in contribution to gene
expression from terminators from known regulatory genes in response to different coding
regions and promoters. As expected, our protein fluorescence results showed up to 100-
fold changes by promoter choice alone and then up to 5-fold by terminator choice. Then,
we highlighted significant changes in several terminator contributions to gene expression
across contexts. We highlighted the quantitative limitations of the assumption of com-
posability with 1.5-fold change in the relative effect of terminators depending on coding
sequence and promoter choice.

We extended our understanding of this unexplained behaviour by testing the regu-
latory behaviour of cis-regulatory elements within the terminator, namely short sequence
motifs within the 3’UTR. We showed that the analysis of published data sets can enhance
experimental design by building on previous work by Cheng et al., 2017 and shortlisted
several prospective 3’UTR motifs using a linear model predicting half-life. Inserting or
removing these motifs from three native host terminators, we showed that three of the four
motifs performed as expected on their effect on transcript levels as measured by RT-qPCR.
Furthermore, the magnitude of their contributions changed for all motifs across promoter
and host terminator. TGTAHMNTA had no measurable effect when inserted into tRPS3
but had the expected effect in tTSA1, ATATTC had the expected effect in tRPS3 but lit-
tle effect in tTSA1, and HWNCATTWY can either decrease or increase mRNA levels
when removed from tPIR1, depending on the promoter. Also, the two tPIR1 constructs
with different mutated HWNCATTWY motifs had different expression levels suggesting
HWNCATTWY has a position-dependent effect. However, the exact sequences of the two
HWNCATTWY motif instances did also differ by 4 nucleotides. Interestingly, when two
motifs were inserted/removed together their combined contribution also changed across
contexts.

RNA-Seq results confirmed our conclusions on the effect of motif insertions on
gene expression. pRPS3-tRPS3 and pTSA1-tTSA1 constructs show similar relative abun-
dances in the RT-qPCR results as the RNA-Seq results. However, pPGK1-tRPS3 re-
sults were skewed due to the unexpectedly low abundance of mod_NNN constructs in
the RNA-Seq results, which all other constructs were normalised to. We investigated if
positional effects could be contributing to the differing behaviour. In TSA1 the poly(A)
site usage was unchanged between WT and the insertion constructs. However, in RPS3
a new alternative poly(A) site had been unintentionally introduced in between insertion
sites 2 and 3 for all constructs. Although we tried to avoid altering elements that affect
poly(A) sites in native terminators, the creation of a novel poly(A) site is likely due to
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the inserted motifs extending the distance between the efficiency elements and the native
poly(A) sites. Another possible explanation for the novel poly(A) site is that motifs 2
and 3 were inserted into a conserved element of tRPS3. As TGTAHMNTA and ATATTC
were both inserted in site 2 (and ATATTC is also inserted into site 3) there is a chance that
their behaviour is affected in RPS3. Interestingly, despite all tTSA1 constructs having 2
ATATTC motifs they had less effect on transcript level than in tRPS3, which had just one
copy in nearly 50% of transcripts. ATATTC could need to be close to a Poly(A) site, so
the novel poly(A) site in tRPS3 is actually beneficial, but ATATTC is not near a poly(A)
site in tPIR1 and still had a greater effect than in tTSA1. Meanwhile, TGTAHMNTA
could be disrupted by the proximity to the novel poly(A) site. Although, it is interesting
that only in tRPS3 is the combined effect of HWNCATTWY and TGTAHMNTA syner-
gistic. Further constructs with motifs inserted in different positions across a terminator
are required to confirm the positional effects.

Our results support long-standing mechanistic observations that CRE contribu-
tions depend on the presence of other CREs in the host gene. Promoter and terminator
sequences are known to share transcription factors common to initiation and termination
by forming gene loops (O’Sullivan et al., 2004). Promoter sequences have also been
shown to have contributions to mRNA degradation by interacting with trans-regulatory
elements that have binding motifs on mature mRNA (Bregman et al., 2011). Within ma-
ture mRNA, CREs associated with stability and degradation can require proximity to the
Poly(A) tail in order to interact with deadenylation factors that initiate degradation (Dut-
tagupta et al., 2005; Geisberg et al., 2014; Cheng et al., 2017). Several RNA binding
protein motifs located in the 3’UTR have also been shown to depend on the presence of
specific secondary structures, such as hairpin loops, in order to be effective (Olivier et al.,
2005; Aviv et al., 2006; Geisberg et al., 2020).

We believe that the study of interactions between cis-regulatory elements is an un-
derstudied research area. It promises to improve the predictability of contributions to gene
expression required to enhance the design of synthetic pathways and is also a fruitful re-
gion for discovering novel mechanisms through which cell regulate their expression. We
have shown that changes in contributions according to context can affect cis-regulatory
elements such as motifs as well as regions like terminators. We have also shown that
changes in contributions due to co-occurring motifs can be measured using linear interac-
tion terms trained on RT-qPCR data. Our work designing suitable insertion sites into host
terminators to detect these changes also offers a framework to inspect context effects on
cis-regulatory elements at scale. Finally, this work also showcases the usefulness of our
R package tidyqpcr as our analysis of complex, multi-experimental RT-qPCR data is en-
tirely open, reproducible and quality controlled, github.com/DimmestP/chimera_project_

https://github.com/DimmestP/chimera_project_manuscript
https://github.com/DimmestP/chimera_project_manuscript
https://github.com/DimmestP/chimera_project_manuscript
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manuscript.
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Chapter 6

DiffFracSeq: A Bayesian Model for the
Detection of Differential Fractionation
of Sequencing Data

6.1. Introduction

Localisation of RNA populations to specific sub-cellular compartments is used to regu-
late gene expression across the tree of life (Das et al., 2021). A ubiquitous example is the
distinct populations of RNA found to be localised to the nucleus or the cytoplasm. Most
mRNA transcripts are localised in the cytoplasm in order to be translated (Köhler & Hurt,
2007). Many non-coding RNA (ncRNA) transcripts, such as those that facilitate splicing,
are localised to the nucleus (Will & Lührmann, 2011). In plant and animal cells, mi-
croRNA (miRNA), long non-coding RNA (lncRNA) and small interfering RNA (siRNA)
contribute to gene expression regulation through splicing, degradation or translation path-
ways specific either to the nucleus or cytoplasm (Hombach & Kretz, 2016). Localisation
also aids in the transportation of secretory proteins as their mRNA transcripts are co-
translationally translocated to the endoplasmic reticulum (Jan et al., 2014).

Localisation can enable rapid changes in gene expression in response to stress or
facilitate precise changes at highly sensitive stages of cell cycles. In response to stimuli,
such as heat stress, surplus mRNA transcripts can be collected into stress granules where
translation may be suppressed (Anderson & Kedersha, 2009). Previous studies have
shown that between 10%-15% of mRNA transcripts are localised to granules when ex-
posed to stress (Khong et al., 2017; Treeck et al., 2018). The mRNA transcripts enriched
in stress granules are characterised by poor translatability and long coding region/3’ UTR
length (Khong et al., 2017). Granules of ribonucleoproteins, such as processing bodies (P-
bodies), also facilitate the tight regulatory control of translation without degrading mRNA
(Buchan & Buchan, 2014). In C. elegans, oogenesis includes the release of nuclear-bound

89
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Figure 6.1: Summary of two different fractionation experiments and comparison of detect-
ing differential fractionation with DESeq2 vs DiffFracSeq. The top panel summarises a frac-
tionation experiment by Iserman et al that investigates the transcriptome of stress granules formed
by yeast cells in response to heat stress (Iserman et al., 2020). The middle panel summarises a
fractionation experiment by the ENCODE consortium to compare the nuclear and cytoplasmic
transcriptomes in lymphoblastoid cells (Dunham et al., 2012). Both panels highlight the stages
at which RNA-Seq samples are taken: one before fractionation, NTot , and two after fractionation,
NSup and NPel . The bottom panel outlines the task of detecting differential fractionation using
noisy RNA-Seq transcript counts. The RNA-Seq count models behind DESeq2 and DiffFracSeq
are also summarised with key differences highlighted in red.

.
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P-bodies into the cytoplasm during prophase I (Voronina et al., 2011). Meanwhile, mu-
tations that affect the formation of ribonucleoprotein granules are associated with several
human diseases (Mackenzie et al., 2017).

Several RNA-Seq assays have been developed to investigate RNA localisation by
isolating and comparing RNA populations in different sub-cellular compartments. Frac-
tions of mRNA from organelles of different densities can be separated by centrifuging
cell lysate. Centrifuging using a sucrose gradient or by repeatedly centrifuging the su-
pernatant under increasing speeds can separate a sample into multiple fractions (Dunham
et al., 2012; Hu et al., 2017; Iserman et al., 2020). Experiments can also include an im-
munopurification step after centrifugation to further purify samples with compartments of
interest (Khong et al., 2017). Alternatively, fractions of freely floating vs protein-bound
mRNA can be separated by orthogonal organic phase separation (Queiroz et al., 2019).

Despite the development of multiple fractionation-based RNA-Seq assays, there
are no statistical methods designed to detect differential fractionation. Previous studies
to determine changes in transcript abundance across different fractions have had to use
statistical software developed to determine differential expression across conditions. DE-
Seq (Anders & Huber, 2010), edgeR (Robinson & Oshlack, 2010) and Cuffdiff (Trapnell
et al., 2010) have been used in attempts to determine differential fractionation in yeast
and human data sets (Hubstenberger et al., 2017; Khong et al., 2017; Treeck et al., 2018;
Matheny et al., 2019). Unfortunately, these methods address sequencing bias by assuming
only a subset of genes will experience biologically significant differences across condi-
tions. Under this assumption, the change in the average gene is not biological, but must
be down to sequencing bias; predominately the batch-specific library size. Quantile nor-
malisation techniques, such as the median of medians used by DESeq, attempt to find an
average gene to normalise to across the conditions and reduce the sequencing bias (An-
ders & Huber, 2010). However, the assumption breaks down in cases where the majority
of genes are expected to have different expressions across RNA-Seq samples. For ex-
ample, in assays that extract RNA from different fractions, changes in abundance across
the entire transcriptome may be expected. These methods also estimate sequencing bias
a priori and any uncertainty in their values is not included in the tests for differential
expression.

This work presents DiffFracSeq, a Bayesian statistical model specifically designed
to detect differential fractionation. The chapter outlines an alternative way of normalising
RNA-Seq data sets from different fractions using the additional information that can be
gathered when measuring subsets of a complete sample. The normalising method uses
the transcript counts of samples taken before fractionation to enable reliable inference of
RNA-Seq batch-specific scale factors within the Bayesian model, rather than relying on
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a priori estimations. First, the model behind DiffFracSeq is introduced and its ability to
model noisy RNA-Seq transcript counts is tested using a simulated data set. The simu-
lated data set is also used to show the limitations of using quantile normalisation methods
in experiments with global changes in the transcriptome by using DESeq2 to detect dif-
ferential fractionation (Love et al., 2014). Then, DESeq2 and DiffFracSeq are applied to
two experimental data sets, outlined in Figure 6.1, and their ability to detect differential
fractionation is compared. DiffFracSeq is an open-source R software package that will
enable even more sensitive comparisons of transcript localisation across conditions and
cell types.

6.2. Results

6.2.1. Bayesian hierarchical model

The DiffFracSeq model reliably detects differential fractionation by: A) using RNA-Seq
counts taken from a sample before fractionation as a quasi-replicate to provide additional
information with which to normalise the counts taken from the fractionation samples,
and B) including the determination of batch-specific scale factors within the Bayesian
framework rather than depending on a priori estimations. The normalisation of the counts
from different fractions can be aided by the counts from a pre-fractionation sample if the
sum of transcripts counts from sub-fractions is assumed to equal the counts from the total
body; i.e. NTot = NA +NB. Summing the counts across all fractions accounts for the
expected global changes in their transcriptomes, but any difference between this sum and
a sample from the total body can be assumed to come from sequencing bias rather than
biological effect. Therefore, the sample taken before fractionation can be considered a
quasi-replicate that enables information to be shared across fractions to account for the
sequence bias.

The Bayesian model determines values for noiseless transcript counts λ , overdis-
persion parameters φ , and batch-specific library scale factors a. The noise of transcript
counts from RNA-Seq data is modelled by a negative binomial with mean λ and overdis-
persion parameter φ , as RNA-Seq transcript counts are positive integers and overdisper-
sion is often present (Cameron & Trivedi, 1998; Robinson & Smyth, 2007). The Diff-
FracSeq model contains three negative binomial distributions: one for samples from the
total body and one for each of the two sub-fractions Figure 6.2. The three negative bino-
mial distributions each have an overdispersion parameter: φ Tot , φ A and φ B, that is shared
across genes and conditions. Separate mean parameters for transcript counts are learnt
for the sub-fraction negative binomials: λ A and λ B, and their sum is used as the mean
for the total negative binomial. The λ parameters are determined in log space to help the
model fit the broad range of transcript count levels expected across an entire genome. In
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Figure 6.2: Plate diagram summarising the basic Bayesian hierarchical model behind Diff-
FracSeq. Shaded circles represent observed variables, in this case the unnormalised RNA-Seq
transcript counts, and white circles represent latent variables learnt by the model. Circles placed
within a square plate have separate random variables for each possible value associated with that
plate, i.e. the aA circle is within the Rep plate and Con plate as there is a aA for each replicate and
condition.

addition to the mean transcript count parameter, each negative binomial has a total reads
scale factor term: aTot , aA, aB, that is unique to the condition and replicate used. The
R package RStan is used to sample from the posterior distribution, the core stan code is
available in Appendix C.

6.2.2. Overview of the simulated test data set

The validity of DiffFracSeq as a model of RNA-Seq fractionation data sets was first tested
using a simulated data set. The simulated data set consisted of 300 genes with total tran-
script counts, XTot , sampled from a lognormal distribution to simulate the range of gene
expressions in an RNA-Seq data set. The fractionation of total transcripts into fractions A
and B were simulated by sampling the ratio of transcripts, γ , between fractions A and B
from a beta distribution. The parameters of the beta distribution were set to simulate three
regimes, Figure 6.6A. The first regime, beta(2,2), randomly allocates genes such that
50% of genes have transcripts that are biased to be in fraction A and 50% of genes have
transcripts that are biased to be in fraction B. The second regime, beta(4,2) introduces a
marginal bias towards fraction B in the global transcriptome with ≈ 70% of genes having
transcripts that are biased to be in fraction B. The final regime, beta(4,1) represents the
largest differential fractionation effect as only a specific subset of genes, ≈ 15%, have
transcripts that are biased to be in fraction A, and ≈ 85% are in fraction B.

The noiseless total counts and fraction ratios were then converted into noisy RNA-
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Figure 6.3: Overview of the simulated data set used in this study. Simulated mRNA transcript
counts between two fractions in three regimes: all genes are randomly allocated a fraction, most
genes have a marginal bias towards fraction B, and the majority of transcripts are in fraction B but
transcripts from a specific subset of genes are found in fraction A.

Seq counts to test the DiffFracSeq model. First, noiseless counts from the two fractions
were created by multiplying the noiseless total counts by the simulated ratios, γgcXTot

g

and (1−γgc)XTot
g . The batch-specific scale factor parameter, α , is introduced to represent

the varying total reads expected from every replicate, condition and fraction sequencing
run. Noise typically associated with RNA-Seq data sets was introduced to the ideal gene-
wise transcript counts by sampling from a negative binomial with mean equal to the ideal
value times by the scale factor creating the training data, NA, NB and NTot . An appropriate
overdispersion parameter value of 100 was estimated from experimental count data. Three
data points are sampled for each gene in each of the two fractions and the three regimes
to create three replicates, Figure 6.3.
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Figure 6.4: Comparison of noisy transcript counts sampled from DiffFracSeq’s posterior
distribution to the simulated ground truth. Noisy transcript counts for all genes in the total
sample and both fractions as sampled from DiffFracSeq vs from the simulated ground truth.

6.2.3. Posterior checks using the simulated test data set

Posterior checks confirm the reliability of the DiffFracSeq model as it correctly recreates
the simulated test data set. The three replicates of noisy NTot , NA and NB counts from each
regime of the simulated data set are used to train the DiffFracSeq model. 1000 samples
of all parameters are taken from the posterior distribution after a 1000 iteration burn-in.
The median value of the 1000 samples is used as a summary statistic for all parameters.
NTot , NA and NB counts from the simulated data set are compared to the posterior samples
taken from the DiffFracSeq model, Figure 6.4. The counts sampled from the DiffFracSeq
model show the model explains the majority of the variation in the counts from the ground
truth with R2 values of 0.999 and 0.996 for counts from the two fractions. Counts from the
total sample vary more from the ground truth, R2 = 0.792, likely due to the distribution
being explored in linear space, to enable the addition of fractions A and B, rather than log
space.

6.2.4. Detecting differential fractionation using DESeq2

The detection of differential fractionation with DiffFracSeq is compared to the results of a
widely used R package for detecting differential expression using a priori normalisation,
DESeq2. To run DESeq2, the counts for a given condition were combined as one matrix
with every column holding a different fraction and replicate. The design matrix passed
to DESeq2 consisted of whether the counts of a gene came from fraction A or fraction
B only, design_matrix = ~fraction. This method was repeated separately for
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1 column_data_simulated <- data.frame(fraction = factor(rep(c("pel",
2 "sup"),
3 3)),
4 condition = factor(rep("Random",
5 6)))
6

7 rownames(column_data_simulated) = colnames(fractionation_count_matrix_simulated)
8

9 DESeq2_data_set_simulated_random <- DESeqDataSetFromMatrix(
10 countData = fractionation_count_matrix_simulated[,c("random_1_pel", "random_1_sup",
11 "random_2_pel", "random_2_sup",
12 "random_3_pel", "random_3_sup")

],
13 colData = column_data_simulated[1:6,],
14 design = ~fraction)
15

16 DESeq2_data_set_simulated_random <- DESeq(DESeq2_data_set_simulated_random)
17

18

19 DESeq2_result_simulated_random <- results(DESeq2_data_set_simulated_random)

Listing 6.1: Example R code for using DESeq2 to detect differential fractionation in the
random regime of the simulated data set.

each of the three conditions, Listing 6.1. As well as the determination of normalisation
factors, DESeq2 also estimated shrinkage and calculated significance differences using a
Wald test following the standard workflow outlined in its documentation.

6.2.5. Detecting differential fractionation with DiffFracSeq and DESeq2 with the
simulated ground truth

The simulated ground truth in gene-wise differential fractionation reveals DiffFracSeq’s
ability to allow changes in the global transcriptome. However, DESeq2’s normalisation
method confounds batch-specific effects with global changes in expression. The log2 ratio
of transcript counts between the two fractions as calculated by DESeq2 and DiffFracSeq
were compared to the log2 ratio of noiseless counts in the simulated data set, γ/(1− γ),
Figure 6.5A. The coefficient of variation for the predicted log2 ratio and ground truth is
greater than 0.95 for both methods in all regimes. Genes considered to be differentially
fractionated in faction B over fraction A are highlighted in blue. For the DiffFracSeq
model, a gene is considered to be significantly localised to fraction B if 97.5% of the
λ B samples are greater than all of the λ A samples for that gene in that regime. This
method provides a suitable summary statistic to compare to DESeq2’s frequentist p-value,
although DESeq2’s results also have an FDR-based multiple-testing correction which is
not applied to the DiffFracSeq model p-values.

The disparity between the models is revealed as the difference in the global tran-
scriptome between the two fractions increases across the three regimes in the simulated
data sets. The log2 ratios from DiffFracSeq consistently match the ground truth across all
conditions and magnitudes. However, the log2 ratios from DESeq2 shift below the ground
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truth for all genes as the fraction transcriptomes change from a balanced 50%-50% ran-
dom regime to an asymmetric 85%-15% specific regime. The shift in log2 ratios across all
genes is explained by a divergence in DESeq2’s normalisation scale factors in the regimes
with asymmetric transcriptomes, Figure 6.5B. In the balanced random regime, DESeq2’s
normalisation scale factors all follow the same linear relationship with the ground truth
scale factor. For the asymmetric marginal and specific regimes DESeq2’s normalisation
scale factors for fraction A diverge from the scale factors from fraction B. Therefore, the
absorption of global changes in transcriptome by DESeq2’s scale factors limits its ability
to detect fractionation.

The shift in DESeq2’s log2 ratios is reflected in the detection of significant dif-
ferential fractionation across all transcript counts. Across all genes, DESeq2 has a larger
false discovery rate (FDR) in the marginal and specific regimes than DiffFracSeq. In both
cases, over 50% of genes detected to be differentially fractionated by DESeq2 are false
positives, but all genes detected by DiffFracSeq are true positives. Although DESeq2
does have a better FDR in the random regime, 0 vs 0.01, its true positive rate (TPR) is
less than DiffFracSeq, 0.78 vs 0.93, Figure 6.5C. This behaviour is replicated over the 60
least abundant genes and the 60 genes with the smallest change between the conditions,
Figure 6.5D. Overall, genes determined to be differentially fractionated by DiffFracSeq
are more likely to be true positives than those determined by DESeq2.

6.2.6. Overview of the experimental test data sets

DiffFracSeq is shown to handle the scale of real experimental data sets by analysing the
results of a ≈ 16,000 gene fractionation experiment. The experimental data set compares
the nuclear and cytoplasmic transcriptomes of human cells. The data set is from the
Encyclopedia of DNA Elements (ENCODE) consortium (Dunham et al., 2012). The
data set consists of total, nuclear and cytoplasmic poly(A) RNA transcripts from a human
GM12878 lymphoblastoid cell line. The fractions were separated using centrifugation and
include two biological replicates which have a high correlation, Figure 6.6A. The reads
were already aligned to the hg38 human reference genome and counted by the RSEM
software (Li & Dewey, 2011) following the standard ENCODE analysis pipeline (Luo
et al., 2020). It was downloaded from the ENCODE portal with the following identifiers:
ENCSR000COR, ENCSR000COQ, ENCSR000CPO.

Finally, DiffFracSeq’s ability to detect changes in the fractionation of the tran-
scripts of a gene across conditions is tested using a multi-temperature yeast data set (Is-
erman et al., 2020). This experimental data set is from a paper investigating the tran-
scriptomes of heat-induced stress granules at 30◦C, 40◦C and 42◦C in Saccharomyces

cerevisiae. Stress granules were isolated in pellets by 18,000g centrifugation before their
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Figure 6.5: Comparison of DESeq2 and DiffFracSeq performance a simulated data set. A
Predicted vs ground truth log2 ratio of transcripts in fraction A to fraction B. The first row presents
the results determined from DESeq2 and the second row presents the results from DiffFracSeq.
The results from the three regimes in the simulated data set are shown across the columns. B
Comparison of DESeq2 values of RNA-Seq run specific total read scale factors to the ground
truth. C True positive rates (TPR) and false discovery rates (FDR) of the two methods across three
regimes for all genes. D Similar to C but across the 60 least abundance genes and the 60 genes
with the smallest change between fractions.
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Figure 6.6: Overview of the two experimental data sets used in this study. (A) Correlation
between two biological replicates of nuclear vs cytoplasmic mRNA transcript counts in a human
lymphoblastoid cell line from the ENCODE project (Dunham et al., 2012). (B) Correlation be-
tween two biological replicates of mRNA transcript counts in heat-shock-induced stress granules
vs freely floating in Saccharomyces cerevisiae cells. The dataset includes three temperature con-
ditions: optimal 30C, mild 40C heat-shock, and extreme 42C heat-shock (Iserman et al., 2020).

transcriptomes were extracted and sequenced. Samples from the total transcriptome were
taken before centrifugation and samples of the unbound transcriptome were taken using
the supernatant post-centrifugation. Two highly correlated biological replicates are avail-
able on GEO with accession GSE131176, Figure 6.6B. The reads were already aligned
to the S288C reference genome (release R64-2-1) and counted using the STAR aligner
(Dobin et al., 2013). The Saccharomyces data set also includes a deletion strain in each
of the three temperatures, but it is not used here.

6.2.7. Quantifying fractionation in the experimental data sets

In contrast to DESeq2, DiffFracSeq trained on the ENCODE data set suggests the nuclear
transcriptome is more selective and that it predominately consists of ncRNA. Similar to
the results from the simulated data set, the correlation in log2 fraction ratios between the
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two methods is high, but DiffFracSeq is able to suggest a more asymmetric distribution
in total transcript counts between the two fractions, 6.7A. DiffFracSeq determines that
over 90% of poly(A) tailed RNA transcripts are significantly localised to the cytoplasm,
compared to 30% for DESeq2. Over half of the 234 genes that DiffFracSeq detects as
nuclear localised are associated with ncRNA, according to the PANTHER database (Mi
et al., 2013). DESeq2 detects almost 20 times more genes as fractionated to the nucleus,
70% of which are known to be mRNA.

The use of the total transcriptome sample as a quasi-replicate allows DiffFracSeq
to detect differential fractionation without any experimental replicates. The results from
training DiffFracSeq using one of the replicates in the ENCODE data set were compared
to the results when using both. The results between using one and two replicates are
correlated, R = 0.84 with 185 determined to be differentially expressed using either data
set, 6.7B. However, 49 genes are only detected to be significantly localised to the nu-
cleus when using both replicates and 367 additional genes are detected to be significantly
localised when using just one replicate. A similar analysis is not available when using
DESeq2 as it requires at least two replicates for each RNA-Seq sample.

DiffFracSeq can detect global changes in the stress granule transcriptome as tem-
peratures increase. DESeq2 and DiffFracSeq were trained on the Iserman et al data set
on the yeast stress granule transcriptome at 30◦C, 40◦C and 42◦C. DiffFracSeq and DE-
Seq2 have similar correlations in log2 ratio across the temperatures. However, there is
a global shift in ratios between the two methods at 30◦C that reduces as the tempera-
ture increase to 40◦C and 42◦C, Figure 6.7C. DiffFracSeq detects an increasing number
of genes that are differentially fractionated to the stress granule across temperatures with
144, 956, and 2,174 genes selected at 30◦C, 40◦C, and 42◦C respectively. DESeq2 detects
a relatively consistent number of genes as differentially fractionated to the stress granule
across temperatures with 1,952, 2,196, and 1,862 genes selected at 30◦C, 40◦C, and 42◦C
respectively.

The 40◦C stress granule transcriptome as determined by DiffFracSeq lacks tran-
scripts from genes that are crucial for fundamental cellular processes. A gene ontology
analysis was conducted using PANTHER on genes detected to be differentially fraction-
ated in the pellet at 40◦C by DiffFracSeq or by DESeq2. Genes associated with primary
metabolic processes, including those associated with processing organic substances and
nitrogen compounds, are significantly underrepresented in the DiffFracSeq subset. The
DESeq2 subset of genes included the same number of genes associated with primary
metabolic processes as would be expected if the same number of genes were randomly
sampled from the yeast genome. Instead, the DESeq2 subset was enriched with genes
relating to localisation and transmembrane transport.
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Figure 6.7: Comparison of DESeq2 and DiffFracSeq performance on two experimental data
sets. (A) DESeq2 vs DiffFracSeq predicted log2 ratio of transcripts in the nucleus to the cyto-
plasm from the ENCODE data set. The colour denotes whether DiffFracSeq or DESeq2 consider
the gene to be differentially fractionationed to the nucleus. The two tables show the associated
biotype of genes considered differentially fractionated either by both methods or by DESeq2 only,
as retrieved from PANTHERdb. (B) DiffFracSeq predicted log2 ratio of transcripts when trained
with both or only one of the biological replicates in the ENCODE data set. (C) DESeq2 vs Diff-
FracSeq predicted log2 ratio of transcripts in the supernatant to the pellet from the Iserman et al
data set. The wild type samples across three temperature conditions are shown across the columns.
The colour denotes whether DiffFracSeq or DESeq2 considers the gene to be differentially frac-
tionationed to the stress granule. The two tables show the top three terms in a gene ontology
analysis conducted on genes that are considered differentially fractionated either by DESeq2 only
or by DiffFracSeq only in the 40◦C condition. The second column of each table denotes whether
the GO term is overrepresented (+) or underrepresented (−) in the gene group.
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6.2.8. Extending DiffFracSeq to include a generalised linear model on transcript
counts

DiffFracSeq’s Bayesian model was extended to determine whether changes in transcript
counts across conditions were due to changes in the overall RNA abundance in each frac-
tion or changes in the ratio of RNA abundance between fractions. The original model
enabled comparisons of transcript counts between fractions of the same sample by ac-
counting for differences in the global transcriptomes of each fraction. However, the com-
parison of transcript counts from the same fraction across samples with different condi-
tions, i.e. counts in stress granules across different temperatures, remains unsolved as the
counts from each condition are normalised to different quasi-replicates, i.e. total tran-
script counts prior to centrifugation. This problem can be addressed by re-introducing the
normalising assumption used by DESeq2 and applying it to total transcript counts across
conditions. Assuming the majority of genes have constant transcripts counts in the total
transcriptome across all conditions allows for the determination of batch-specific scale
factors between samples and conditions. DiffFracSeq can then detect relative changes in
the total expression of a subset of genes.

Decomposing changes in the transcript counts of a fraction across conditions was
enabled by introducing a linear model of latent counts, λ A, λ B, with three terms: µBase,
µCon, and µFrac. µBase is shared across all conditions and fractions and represents the base
expression of a given gene. µCon is shared across fractions and represents the change
in the overall expression of a given gene across conditions. µFrac is unique to fraction
B for each condition and represents the change in fractionation of a given gene across
conditions. µBase has a broad normal prior to enable the model to correctly determine
the range of transcript abundances across a genome. The prior distributions for µCon and
µFrac are normal distributions with zero mean to encourage the model to set parameters
to zero if it believes there are no changes across conditions. The linear model with normal
noise shares the same variance parameter, σ2, across all conditions, fractions and genes.
Finally, a hyperparameter, α , was added as the mean of the scale factor prior distribution
to enable the model to find an appropriate average value for the scale factors given the
high variability of this parameter across batches.

6.2.9. Detecting relative changes in fractionation and expression across conditions

In response to heat-shock, DiffFracSeq determines an increase in transcripts localised to
stress granules and a global reduction in expression. Over 1/5 of genes have a significant
increase in the fraction of transcripts found in stress granules over the change from 30◦C
to 40◦C. Comparing 30◦C to 42◦C, even more genes are detected to have an increase in
fractionation to stress granules, 2421 genes compared to 1407 genes at 40◦C. As temper-
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Figure 6.8: Plate diagram summarising the complete Bayesian hierarchical model behind
DiffFracSeq. A generalised linear model of transcript counts across conditions was introduced
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Figure 6.9: Detection of differential fractionation and differential expression across the Is-
erman data set. Changes in log2 fold expression, µCon, vs changes in log2 fold ratio between
fractions, µFrac, between all pairs of the three conditions. Genes in the top left quadrant are over-
expressed at the higher temperature and more localised to the stress granule. Genes in the bottom
right quadrant are underexpressed in the higher temperature and are more localised to the cyto-
plasm. Genes that DiffFracSeq detects as differentially fractionated and differentially expressed
across the pair of conditions are highlighted in blue.

ature increases from 30◦C to 40◦C DiffFracSeq detects 2373 genes in the yeast genome
as significantly underexpressed, i.e. over 97.5% of µCon

40◦C samples are significantly lower
than all µCon

30◦C samples for a particular gene. DiffFracSeq detects only 1945 genes as un-
derexpressed for the transition from 30◦C to 42◦C. However, as DiffFracSeq is detecting
nearly 1/3 of the yeast genome as differentially expressed across conditions the normal-
ising assumption is likely invalid and conclusions about changes in total expression are
unreliable.

DiffFracSeq uncovers general behaviours in genes in response to heat shock.
Overall, there is a negative correlation between genes predicted to have an increase in
overall expression and genes that change to be more concentrated in the supernatant, -
0.539, -0.557, and -0.646. Four categories of behaviour in response to heat stress can
be detected by DiffFracQuant: increase in total expression and increase in localisation to
the stress granule, decrease in total expression and decrease in localisation to the stress
granule, increase in expression and decrease in localisation, and decrease in expression
and increase in localisation. For example, 191 genes at 42◦C and 72 genes at 40◦C are
detected to increase in expression and fractionation to stress granules as temperature in-
creases from 30◦C 6.9.



6.3. Conclusion 105

NTot
grc NFrac

grc f

λ Frac
gc f

φ Tot

φ Frac
f

aTot
cr

aFrac
cr f

α

µFrac
gc fµCon

gc

µBase
g

σ2

Frac

Rep

Gene

Con

Figure 6.10: Plate diagram summarising an improved multi-fraction model for DiffFracSeq.
The next iteration of the Bayesian hierarchical model behind DiffFracSeq will enable the normal-
isation and detection of differential fractionation in RNA-Seq experiments with more than two
sub-fractions.

6.3. Conclusion

This chapter introduced DiffFracSeq as a novel Bayesian model for analysing RNA-Seq
data and, to our knowledge, the only statistical model specifically designed to detect dif-
ferential fractionation. The inclusion of pre-fractionation counts as a quasi-replicate to
help normalise sub-fraction counts enables the Bayesian model to accurately determine
batch-specific scale factors. The ability of the model to perform even with a single repli-
cate data set and to extract changes in total transcript abundance as well as relative frac-
tions from data sets with multiple conditions means it is a versatile tool in exploring
fractionation data sets.

DiffFracSeq’s has been shown to outperform DESeq2 in detecting differential
fractionation using a simulated data set. DESeq2’s inflated false positive rate is revealed
when fractions contain global changes in their transcriptomes. Even in the 50%-50% ran-
dom regime, when DESeq2’s normalisation method successfully accounts for the batch-
specific scale factors, DiffFracQuant has a better true positive rate when detecting signifi-
cant differential fractionation than DESeq2. This behaviour is repeated across genes with
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the lowest overall expression and the smallest effect sizes.

DiffFracSeq can determine asymmetric transcript abundances between fractions
at scale with the human nuclear-cytoplasmic data set. Of the ≈ 16,000 uniquely mapped
genes, DiffFracSeq only determined 234 genes as having transcripts localised to the nu-
cleus compared to 4708 genes detected by DESeq2. A recent study by Zaghlool et al

also analysed the GM12878 cell line, together with three other human cell lines, and sim-
ilarly determined 4500 transcripts that are localised to the nucleus using DESeq2, see
(Zaghlool et al., 2021) Supplementary Figure 2. However, DiffFracSeq’s result correlates
with the original ENCODE analysis that placed the majority of protein coding transcripts
in the cytoplasm without using DESeq2, (Djebali et al., 2012) Figure 3.

DiffFracSeq can determine relative changes in fractionation across conditions in
a yeast stress granule data set. Gene ontology analysis of the heat stress granule tran-
scriptome according to DiffFracSeq shows it lacks key transcripts associated with key
metabolic processes. However, the same analysis using the DESeq2 transcriptome shows
enrichment for transmembrane proteins in contradiction to other stress granule studies
(Unworth et al., 2010; Khong et al., 2017). As temperature increases, DiffFracSeq de-
tects more genes as differentially fractionated to the stress granule, but DESeq2 does not
have a clear pattern. DiffFracSeq also detects a correlation between genes that are over-
expressed under stressed conditions and increase the fraction of their transcripts in the
cytoplasm. However, further exploration of changes in total expression is limited by the
breaking of the underlying normalising assumption used to compare expression across
conditions.

DiffFracSeq can only determine relative changes in RNA abundance in each frac-
tion and cannot estimate overall changes in total RNA abundance per cell. The model can
be enhanced to allow normalisation using external RNA spike-ins so that changes in total
RNA abundance per cell can be measured across conditions. The model behind DiffFrac-
Seq can be further expanded by modelling counts from more than two fractions, Figure
6.10. The linear sum of sub-fraction counts can theoretically be extended to include any
number of sub-samples NTot = ∑

i
Ni. Enabling more fractions to be normalised could

unlock more use cases for the software as it could also be used to characterise libraries of
constructs by comparing fractions from cell sorting assays. Entire libraries of synthetic
constructs can be characterised by sorting pools of constructs by some desired character-
istic, for example high protein fluorescence, which are subsequently sequenced (Sharon
et al., 2012). Alternatively, the linear model predicting latent transcript counts could be
improved by letting users define their own design matrices. The latent count linear model
is fixed to determine separate coefficients for each condition, but users may be interested
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in exploring interactions between conditions. For example, the Iserman et al data set also
includes stress granule samples from a mutant strain across the three temperatures which
could be directly compared to the wild type. This assumption enabled DiffFracSeq to
detect differential expression and fractionation across conditions, but this functionality is
not applicable in many cases.

The software containing the two-fraction model is available to download from
GitHub, github.com/DimmestP/ DiffFracSeq, and has been shown to be successful at
investigating localisation across organisms and subcellular fractions. DiffFracSeq has the
functionality to improve the quality of experiments across biology from the uncovering
of novel regulatory mechanisms in fundamental cell biology to the characterisation of
constructs libraries in synthetic biology.

https://github.com/DimmestP/DiffFracSeq


Chapter 7

Discussion

Technology developed over the last 40 years has enabled investigations into the regulatory
mechanisms that cells use to control their gene expression at unprecedented resolutions.
Meanwhile, recent trends in molecular biology continue to emphasise the use of high-
throughput experiments and the application of novel machine learning analysis methods.
Massively parallel reporter assays using multiplexed RNA-Seq and flow cytometry tech-
niques are allowing researchers to test the expression levels of hundreds of thousands of
constructs (Sharon et al., 2012; Shalem et al., 2015; Klein et al., 2020). Google Deep
Minds’ AlphaFold changed expectations of machine learning applied to complex biolog-
ical problems with the accuracy and scale of its protein folding predictions (Jumper et al.,
2021). In transcriptomics, deep-learning techniques continue to be successfully applied
to RNA degradation prediction with increasing accuracy (Wayment-Steele et al., 2022;
He et al., 2023).

Investigations with larger data sets and more extensive analysis methods are dis-
covering subtle mechanisms that are easily confounded by experimental noise. As the
volume and detail of data sets continue to increase the likelihood of mistaking experi-
mental noise for biological phenomena also increases. Inadequate analysis of noisy data
sets is contributing to a reproducibility crisis across biology. This thesis shows how qual-
ity research software can support rigorous statistical methods and improve the design and
conclusion of experiments.

In chapter 4, the R package tidyqpcr was introduced as an open-source R pack-
age for the analysis of qPCR data. The widespread usage of qPCR across biology and
medicine was described as well as the lack of understanding of best practices in the design
and analysis of qPCR experiments. The current software landscape was reviewed showing
there are some open-source packages with extensive functionality, but their steep learning
curves lead users to search for alternatives. tidyqpcr was shown to combine best practices
in qPCR experimental design as outlined by the MIQE-guidelines together with the latest
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developments in data analysis provided by the R tidyverse. The development of exten-
sive documentation together with feedback from user interviews and an rOpenSci code
review has ensured that tidyqpcr is accessible to prospective users with varying coding
experiences. tidyqpcr is a freely available tool for analysing qPCR data that is down-
loadable from GitHub, github.com/ropensci/tidyqpcr/, with an associated publication in
doi:10.21105/joss.04507 JOSS.

Chapter 5 described the use of tidyqpcr together with the rigorous analysis of
published data sets and the integration of data from multiple experiments to detect sub-
tle interactions between regulatory elements. We showed that the terminator sequence
of mRNA transcripts can have different contributions to protein fluorescence when paired
with different promoters and ORFs. Furthermore, we showed that context-dependent con-
tributions to gene expression can also be detected for short cis-regulatory elements. We
selected motifs within the 3’UTR sequence of terminators and showed that they also ex-
press different contributions to gene expression when inserted into different constructs
terminators and paired with different promoters. The contributions of the chosen mo-
tifs were further supported by poly(A) anchored RNA-Seq and comparison of construct
3’UTR sequences.

The results from chapter 5 contribute to the growing evidence for a more com-
plex picture of cis-regulatory elements with consequences for computational and syn-
thetic biology. Motifs that are dependent on other sequences have previously been de-
tected by high-resolution maps of protein-RNA interactions. These maps have discovered
gapped, multi-partite motifs (Olivier et al., 2005) and motifs that must be repeated in
the same transcript to be effective (Gu et al., 2004; Jackson et al., 2004). Therefore,
computational methods to find motifs, such as the MEME Suite (Bailey et al., 2015),
need to include motifs that: are varied in length, contain gaps between conserved se-
quences, do not act independently, and/or occur more than once per transcript (Frith et
al., 2008). In synthetic biology, the unpredictability in the expression of combinations
of otherwise well-characterised regulatory elements has led some experiments to depend
on time-consuming directed evolution assays to overcome mis-matches in component ex-
pression levels (Yokobayashi et al., 2002). Developing methods that introduce pools of
combinations of suitable CREs when characterising synthetic libraries can help design
more reliable synthetic pathways (Kosuri et al., 2013).

In chapter 6, a Bayesian hierarchical model was introduced that can rigorously
detect differential fractionation if combined with appropriate experimental design. We
began by outlining the assumptions of normalising techniques that enable the detection of
differential expression despite known biases in RNA-Seq. These assumptions are shown
to break down when analysing data from fractionation-based RNA-Seq assays that in-

https://github.com/ropensci/tidyqpcr/
https://joss.theoj.org/papers/10.21105/joss.04507
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vestigate the localisation of RNA transcripts. DiffFracSeq was described as a Bayesian
hierarchical model that normalises and detects differential fractionation without the as-
sumptions of other techniques. The performance of DiffFracSeq is shown to outperform
DESeq2 on three data sets when detecting changes in fractionation. DiffFracSeq is a
freely available tool for normalising RNA-Seq data sets that are investigating RNA tran-
script localisation and is downloadable from GitHub github.com/DimmestP/DiffFracSeq

7.1. Future Work

tidyqpcr is a fully functional qPCR analysis package that has contributed to the research of
several labs. However, the package is missing functionality that would extend its applica-
tion and contribute to its overall aim of removing any dependence on proprietary software.
Adding functions to read alternative qPCR data file formats, calculate Cq values directly
from amplification curves and enable the analysis of qPCR assays other than SYBR Green
remain priorities. There also remains work to be done on promoting its comprehensive
documentation as a teaching resource both for conducting reproducible analysis and for
implementing MIQE-compliant qPCR experimental design. The development and organ-
isation of tidyqpcr workshops inspired by the widely successful Carpentries workshop for
coding and data science will help grow tidyqpcr’s user base.

The limitations of composability of cis-regulatory elements can be further ex-
plored through the creation of a larger construct library which can be characterised using
high-throughput gene expression assays. Several questions remain about the composabil-
ity of the four 3’UTR motifs explored in chapter 5. First, is the behaviour of these motifs
observed in the three host terminators representative of their behaviour across the yeast
genome? Second, are positional effects changing motif behaviour, particularly with re-
spect to distance from the poly(A) tail? Finally, the design of more constructs that include
multiple motifs together could uncover new interactions between motifs. The extended
construct library could be characterised by high-throughput flow cytometry to determine
protein fluorescence and multiplexed RNA-Seq to determine transcript abundance.

DiffFracSeq is currently able to analyse experiments with two fractions and two
conditions. The first development of DiffFracSeq would be to allow normalisation using
external RNA spike-ins so that total expression levels can be compared across conditions.
DiffFracSeq could be further extended by enabling more complex design matrices. The
inclusion of more than two fractions would enable it to be applied to more experimental
assays. Furthermore, allowing design matrices that facilitate interactions between multi-
ple conditions and between fractions will enhance the quality of the conclusions that can
be deduced with DiffFracSeq. The implementation of the R package that contains the
DiffFracSeq model needs further development. The function documentation needs to be

https://github.com/DimmestP/DiffFracSeq
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enhanced and a vignette describing a typical DiffFracSeq workflow remains to be written.
Investigating the default priors and the method for posterior sampling could also lead to a
reduced run time.
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A.1. tidyqpcr User Questionnaire

A.1.1. Subject questionnaire

Estimated Time : 20 Minutes

Tell me about your experience with qPCR experiments.

Question notes:

• RNA or DNA qPCR ?

• primers only or probe sets?

• How many qPCR experiments in last year/two?

• How many planned in next 6 months?

• How difficult would it be to reanalyse/repeat your own qPCR experiment?

Describe how qPCR experiments are used/presented in published papers related to
your research.

Question notes:

• Recount a time where you questioned results/conclusion from qPCR experiments

• Did you attempt to reanalyse/recreate their qPCR data?

Describe the design of your most recent qPCR experiment.

Question notes:

• Technical/biological/experimental replicates?

• Plate design?

• Software to design plate (excel?)

• Methodology for ordering samples

• Number of wells?

• Typical number of probes?
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• Primer efficiency calculation?

• MIQE best practises qPCR guidelines?

• How did you load your plates - single-channel pipette, multichannel pipette, elec-
tronic or manual, automatic loading with what robot?

• What qPCR instrument did you use?

• How do you tell if your experiment worked - what do you do for quality control?

Describe the analysis pipeline of your most recent RT-qPCR experiment.

Question notes:

• GUI / Terminal / R based?

• Proprietary software?

• See, understand and repeat every step?

• Customisable, paper ready output graph?

• Whats the biggest frustration? (is there something you know you should be doing
but don’t)

• Would it be easy to redo an experiment (because something went wrong) using the
same analysis?

• The features you require from qPCR software

What is your previous R programming / terminal experience?

Question notes:

• Previous courses?

• Previous obstacles?

• Familiar with the concept of tidy data?

• Interest in learning?
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A.1.2. tidyqpcr worksheet

Estimated Time : 40 minutes

Follow installation instructions on github.com/ewallace/tidyqpcr.

Read through the vignette on plate designing

Create a example plate design for the following experiment:

• 8 by 12 well plate

• Three Biological Replicates

• Three Technical Replicates + “-RT” control

• One strain: “WT”

• Two conditions: + and - “menadione”

• Four probes: "PGK1","ALG9", " HHT2", "HTB2"

Read through the instructions on conducting qPCR analysis with tidyqpcr in the
multifactor vignette

Load in the example plate plan using data (tidyqpcr_plateplan) and associated ex-
perimental data.

Normalise raw data and produce plot of differential expression under two stresses.

https://github.com/ewallace/tidyqpcr
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A.2. Software review table

Platform Normalisation Method of Cq
determination

Quantification
method

Plots
summary
statistics

QuantGenius Web To ref genes N/A Absolute
(Standard

Curve)

No

ELIMU-MDx Web To ref genes N/A Absolute
(Standard

Curve) and
Relative

No

shinyCurves Web/R N/A N/A Relative No

PIPE-T Web Numerous
methods (from

HTqPCR)

N/A Relative No

SATqPCR Web To ref genes N/A Relative Yes

Auto-qPCR Web/Python To ref genes N/A Absolute
(Standard

Curve) and
Relative

Yes

Chainy Web/R To ref genes Several
methods to
determine
gradient of
Amp curve

Relative Yes

LEMming R Linear Error
Mode

N/A Relative No

pcr R To ref genes N/A Relative (delta
Cq or standard

curve)

Yes

HTqPCR R Ref genes,
quartile mean,
rank-invariant
normalising

feature

N/A Relative Yes

ReadqPCR/
NormqPCR

R To ref genes N/A Relative No

qpcR R Numerous
methods

Fitting multi
parameter

logistic curve

Relative and
absolute

Yes

qpcr python To ref genes N/A Relative Yes

Spreadsheet Misc To ref genes N/A Relative No
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Scalability Summary
statistics

Outlier
identification

Calculate
primer

calibration

Use primer
efficiency

QuantGenius Requires copy
and pasting

input

No Yes No No but filters
based on it)

ELIMU-MDx If you can
create RDML

files

No No No No

shinyCurves If in correct
excel format
and sample
NT/control
positions

No Manual No No

PIPE-T If files in tab
separated

format

two condition
tests

Yes No No

SATqPCR If files in tab
separated txt

format

t-test or
ANOVA

No No Yes

Auto-qPCR If input files in
right format

t-test or
ANOVA

Yes No No

Chainy Manual upload
of files

permutation
approach

equivalent to
the REST
software

Yes Yes Yes

LEMming If imported
into R

t-test and
Wilcoxon

signed-rank
test

No No No

pcr If imported
into R

t-test, ANOVA
and

signed-rank
test

No Yes No

HTqPCR Yes t-test, Mann-
Whitney Test

and limma
package linear

models

Yes No No

ReadqPCR/
NormqPCR

Yes No No No No

qpcR Yes F-test for
model

selection

Yes Yes Yes

qpcr If input files in
right format

No Yes Yes Yes

Spreadsheet No t-test No No Yes
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QC Reproducible Copy number Input
QuantGenius No melt/amp

curve. Highlights
outliers, outside

LOD and
efficiency

No Yes Copy and paste
each target and
reference gene

separately

ELIMU-MDx No melt/amp
curves. Checks
LOD, efficiency
and control Cq

If you can host it No RDML, excel

shinyCurves Both melt/amp
curve with qpcR

Yes (If you
identify the same

outliers)

Yes csv, (custom) xlsx,
xls

PIPE-T No melt/amp
curve. Highlights
outliers, outside

LOD and
efficiency

Yes No tsv

SATqPCR No Yes No txt

Auto-qPCR Filters out
samples with SD

cutoff. No
melt/amp curve

Yes Yes csv, txt

Chainy Plots amp curve
and highlight

outliers that dont
fit sigmoidal

Yes No RDML, csv, raw
qPCR machine
excel, plate plan

LEMming No Yes No R data.frame

pcr No Yes No R data.frame

HTqPCR No melt/amp
curve. Functions

to plot wells,
conduct PCA, calc
variation. Can flag
High Cq value and

high variable
samples

Yes No raw qPCR
machine excel

ReadqPCR/
NormqPCR

No melt/amp
curve. Functions

to pairwise results
across

replicates/plates.
Can impute

missing values.
flag High Cq

value and high
variable samples

Yes No raw qPCR
machine excel

qpcR Yes Yes No R data.frame

qpcr Filters out
samples with SD

cutoff. No
melt/amp curve

Yes No csv, (custom)
excel

Spreadsheet Filters out
samples with SD

cutoff. No
melt/amp curve

No No (custom) excel
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Output GUI Last
update

Release
date

Number of
wells

Normalising
gene

selection
Quant
Genius

txt, xls Yes 2017 Feb 2017 Feb Unlimited No

ELIMU-
MDx

RDML,
excel

Yes 2020 Dec 2019 Oct Unlimited No

shinyCurves csv, png Yes 2021 Oct 2021 Oct 96 or 364 No

PIPE-T tsv, PNGs Yes 2019 Nov 2019 Nov Unlimited No

SATqPCR txt, png Yes 2019 Aug 2019 Aug Unlimited stability
parameter

and
coefficient
of variation

Auto-qPCR csv, png Yes 2021 Oct 2021 Oct Unlimited No

Chainy csv, png Yes 2020 Aug 2017 May Unlimited Yes
(geNorm
method

from Nor-
mqPCR)

LEMming R
data.frame

No 2015 Sept 2015 Sept Unlimited No

pcr R
data.frame
and plots

No 2020 April 2018 May Unlimited No

HTqPCR R S4 object
and plots

No N/A 2009 Dec Unlimited No

ReadqPCR/
Nor-

mqPCR

R S4 object
and plots

No 2018 July 2012 Jul Unlimited Yes
(geNorm or
NormFinder)

qpcR R S3 object
and plots

No 2018 June 2008 July Unlimited Yes

qpcr txt, jpg No 2022 Feb 2021 Aug Unlimited No

Spreadsheet excel No N/A N/A Unlimited No
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B.1. Chapter 5 Supplementary Tables

mCherry
pRPS3

Terminator log2 fold change p.adj
tPMA1 -1.8667482 0.0e+00
tSUN4 -1.3307405 0.0e+00
tSRO9 -1.1145008 0.0e+00
tTOS6 -1.0278710 0.0e+00
tHSP26 -0.4661509 4.9e-05
tRPS13 0.5234415 1.5e-05
tCLN2 0.5464283 1.1e-05
tPAB1 0.6018695 2.2e-06
tRPS3 0.8958268 0.0e+00

pHSP26
Terminator log2 fold change p.adj

tPMA1 -1.6289649 0.0e+00
tSUN4 -1.2574579 8.0e-07
tSRO9 -1.1746048 3.4e-06
tTOS6 -0.5805808 1.1e-01
tRPS13 -0.1965647 1.0e+00
tCLN2 -0.1252409 1.0e+00
tPAB1 -0.0616474 1.0e+00
tHSP26 0.0319040 1.0e+00
tRPS3 0.1164520 1.0e+00

pRPS13
Terminator log2 fold change p.adj

tPMA1 -2.0853624 0.0e+00
tSUN4 -1.2491007 0.0e+00
tSRO9 -1.0162570 0.0e+00
tTOS6 -0.9791352 0.0e+00
tHSP26 0.3061052 7.2e-03
tRPS13 0.4382561 4.1e-04
tCLN2 0.4762219 2.0e-04
tPAB1 0.5324084 4.7e-05
tRPS3 0.5549583 2.9e-05

pPGK1
Terminator log2 fold change p.adj

tPMA1 -1.8971163 0.00
tSRO9 -1.3729199 0.00
tSUN4 -1.0917919 0.00
tTOS6 -0.9565605 0.00
tRPS13 -0.2020877 0.14
tRPS3 0.0381100 1.00
tPAB1 0.0650108 1.00
tHSP26 0.0881576 1.00
tCLN2 0.2156118 0.12

Supplementary Table B1: Tables showing changing contributions to gene expression from
terminators paired with different promoters and coding sequences. log2 fold change is cal-
culated with respect to the PGK1 terminator of each promoter-coding sequence set. p.adj
values are FDR-adjusted t-test pvalues.
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mTurq
pRPS3

Terminator log2 fold change p.adj
tPMA1 -2.4173566 0.000
tSUN4 -1.8362856 0.000
tTOS6 -1.2512970 0.000
tSRO9 -0.7268833 0.000
tRPS13 -0.0881267 0.330
tHSP26 0.1310147 0.300
tCLN2 0.2638312 0.015
tRPS3 0.3529039 0.001
tPAB1 0.6543571 0.000

pHSP26
Terminator log2 fold change p.adj

tPMA1 -1.5432817 8.4e-06
tSUN4 -1.2474233 3.0e-04
tSRO9 -1.0514050 2.7e-03
tTOS6 -0.6661552 1.2e-01
tHSP26 -0.5293229 3.0e-01
tRPS13 -0.3155979 1.0e+00
tCLN2 -0.1610090 1.0e+00
tRPS3 -0.0913532 1.0e+00
tPAB1 0.1215476 1.0e+00

pRPS13
Terminator log2 fold change p.adj

tPMA1 -2.0420263 0.0e+00
tSUN4 -1.7210314 0.0e+00
tTOS6 -0.8907257 0.0e+00
tSRO9 -0.5765566 3.0e-07
tRPS13 0.0611790 5.0e-01
tHSP26 0.1966032 6.8e-02
tRPS3 0.2642338 1.5e-02
tCLN2 0.2901645 9.0e-03
tPAB1 0.5886753 2.0e-07

pPGK1
Terminator log2 fold change p.adj

tPMA1 -2.7277132 0.0000
tSUN4 -1.5208626 0.0000
tSRO9 -1.3242251 0.0000
tTOS6 -0.8517308 0.0000
tRPS13 -0.3294545 0.0390
tHSP26 -0.3162353 0.0390
tRPS3 -0.1138039 0.7200
tCLN2 -0.0457990 0.7200
tPAB1 0.4671738 0.0019

Supplementary Table B2: Tables showing changing contributions to gene expression from
terminators paired with different promoters and coding sequences. log2 fold change is cal-
culated with respect to the PGK1 terminator of each promoter-coding sequence set. p.adj
values are FDR-adjusted t-test pvalues.
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CRE Individual Drop Cumulative
Codon Usage 42.0% -40.5% 42.0%

Motifs 3.2% -1.6% 43.7%
3’UTR Length 0.6% 0.0% 43.7%

Supplementary Table B3: Variance explained by each type of CRE in the half-life model
applied to data from Chan et al (2018). Variance explained was estimated in 3 different ways.
The individual variance explained by a linear model containing each type of CRE on its own. The
drop in variance explained when one type of CRE is removed from the full model. The cumulative
variance explained when each CRE is added to the linear model in sequence; starting with codon
usage, then adding motifs and finally 3’UTR length.

mCherry construct sequences are available on the manuscript GitHub repo.
https://github.com/DimmestP/chimera_project_manuscript/tree/main/

supplementary_data_chapter/data/mCherry_fluorescence_reporter_dna_
sequences.csv

Supplementary Table B4: Table showing the DNA sequences for all mCherry reporter con-
structs.

mTurq construct sequences are available on the manuscript GitHub repo
https://github.com/DimmestP/chimera_project_manuscript/tree/main/
supplementary_data_chapter/data/mTurq_fluorescence_reporter_dna_

sequences.csv

Supplementary Table B5: Table showing the DNA sequences for all mTurq reporter con-
structs.

Primer name Primer sequence Purpose
mCh_F7 AGGACGGCGAGTT CATCTA qPCR primer for mCherry ORF
mCh_R7 CCCATGGTCTTCTT

CTGCATTA
qPCR primer for mCherry ORF

RPS3_F1 TCGCTGACGGTGT
CTTCTACG

qPCR primer for RPS3 ORF

RPS3_R1 TCGGTCTTGGTTGGA
GTGACA

qPCR primer for RPS3 ORF

RPS13_EF CTAGAAATGCTCCAGC
TTGGTTCAA

qPCR primer for RPS13 ORF

RPS13_ER TCAAACCCTTTCTCG
CGTACTTG

qPCR primer for RPS13 ORF

PGK1_F2 GCTGCTTTGCCAAC CATCAA qPCR primer for PGK1 ORF
PGK1_R2 TCGTTTCTTTCACCG

TTTGGTC
qPCR primer for PGK1 ORF

mTu_F2 TTGGGGTGTTCAATG
TTTTGC

qPCR primer for mTurq2 ORF

mTu_R2 TGAACATAACCTTCT
GGCATGG

qPCR primer for mTurq2 ORF

Supplementary Table B6: Primer sequences created for all qPCR experiments.

https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mCherry_fluorescence_reporter_dna_sequences.csv
https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mCherry_fluorescence_reporter_dna_sequences.csv
https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mCherry_fluorescence_reporter_dna_sequences.csv
https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mTurq_fluorescence_reporter_dna_sequences.csv
https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mTurq_fluorescence_reporter_dna_sequences.csv
https://github.com/DimmestP/chimera_project_manuscript/tree/main/supplementary_data_chapter/data/mTurq_fluorescence_reporter_dna_sequences.csv
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Motif Total Count Coef p.value
CTTCATTTC 14 -0.52197 0.00474
ATTCATTTC 22 -0.44858 0.00577
TAGCATTTT 19 -0.43109 0.00934
TTGCATTTT 46 -0.27615 0.01088
CTGCATTTT 15 -0.47916 0.01162
TTTCATTTC 42 -0.27049 0.01421
AAACATTTC 13 -0.46682 0.01904
CTGCATTAT 10 -0.53910 0.02027
TTTCATTTT 103 -0.14469 0.03671
CTGCATTTC 6 -0.63943 0.03775
TTACATTAC 18 -0.43018 0.03918
TTCCATTAT 15 0.37314 0.04106
ATGCATTTT 31 -0.26015 0.04115
CATCATTAT 16 -0.38091 0.04879
ATTCATTAT 39 -0.22684 0.04928

Supplementary Table B7: Selecting the HWNCATTWY motif, TTTCATTTC. Summary of
the number of occurrences and contributions to a linear model predicting half-life for each possible
version of the HWNCATTWY motif.

Motif Total Count Coef p.value
TGTATATTA 83 -0.51920 0.00000
TGTATCATA 17 -0.67490 0.00004
TGTATAATA 72 -0.27914 0.00066
TGTACCATA 6 -0.98705 0.00115
TGTACACTA 16 -0.56750 0.00373
TGTACAATA 27 -0.37788 0.00551
TGTAACATA 19 -0.44503 0.00687
TGTATACTA 36 -0.30274 0.00863
TGTACATTA 26 -0.29426 0.02791

Supplementary Table B8: Selecting the UGUAHMNUA motif, TGTACAATA. Summary of
the number of occurrences and contributions to a linear model predicting half-life for each possible
version of the UGUAHMNUA motif.
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Terminator Construct Minimum free energy
(kcal/mol)

RPS3 WT -6.10
RPS3 mod_NNN -11.50
RPS3 mod_NTN -13.00
RPS3 mod_NAA -7.40
RPS3 mod_NGG -10.80
RPS3 mod_HNH -5.50
RPS3 mod_HTH -7.40
TSA1 WT -6.90
TSA1 mod_NNN -10.14
TSA1 mod_NTN -10.60
TSA1 mod_NAA -8.90
TSA1 mod_NGG -9.80
TSA1 mod_HNH -6.10
TSA1 mod_HTH -6.67
PIR1 WT -28.00
PIR1 mod_ANHHH -30.60
PIR1 mod_NTHHH -27.70
PIR1 mod_ATNHH -28.40
PIR1 mod_ATHNH -27.00
PIR1 mod_ATNNN -30.40
PIR1 mod_ANNNN -32.60
PIR1 mod_NTNNN -30.10

Supplementary Table B9: Table showing minimum free energies of 3’UTR constructs with
inserted/deleted motifs.
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mod_NAA
Promoter Terminator Fold change p.adj

pRPS3 tRPS3 0.2541415 8.0e-07
pSRO9 tRPS3 0.4656789 1.0e-03
pPGK1 tRPS3 0.5245889 1.5e-03
pTSA1 tTSA1 0.6826257 3.0e-02
pPGK1 tTSA1 0.8142880 1.2e-01
pSRO9 tTSA1 1.0662162 4.2e-01

mod_NTN
Promoter Terminator Fold change p.adj

pTSA1 tTSA1 0.4065174 3.7e-05
pPGK1 tTSA1 0.5367128 1.5e-03
pSRO9 tTSA1 0.5755669 4.3e-04
pRPS3 tRPS3 0.8833831 2.7e-01
pSRO9 tRPS3 0.9947510 9.5e-01
pPGK1 tRPS3 1.0568824 8.1e-01

mod_HNH
Promoter Terminator Fold change p.adj

pTSA1 tTSA1 0.6247665 0.0029
pPGK1 tRPS3 0.6645988 0.0150
pPGK1 tTSA1 0.6954945 0.0150
pRPS3 tRPS3 0.7238204 0.0210
pSRO9 tRPS3 0.8151770 0.0240
pSRO9 tTSA1 0.8734047 0.4000

mod_HTH
Promoter Terminator Fold change p.adj

pTSA1 tTSA1 0.2786772 6.0e-07
pRPS3 tRPS3 0.3352986 1.0e-04
pSRO9 tRPS3 0.4865148 2.9e-04
pSRO9 tTSA1 0.4909374 1.1e-03
pPGK1 tTSA1 0.5889067 1.5e-03
pPGK1 tRPS3 0.5891336 1.8e-03

mod_NGG
Promoter Terminator Fold change p.adj

pTSA1 tTSA1 0.8299585 0.1100
pPGK1 tRPS3 1.0221923 0.8500
pPGK1 tTSA1 1.0470925 0.8100
pSRO9 tTSA1 1.1112799 0.3700
pRPS3 tRPS3 1.1957891 0.2700
pSRO9 tRPS3 1.5013874 0.0017

WT
Promoter Terminator Fold change p.adj

pPGK1 tTSA1 0.7338775 0.130
pTSA1 tTSA1 0.7371346 0.110
pPGK1 tRPS3 0.9530783 0.830
pSRO9 tTSA1 1.0705360 0.620
pRPS3 tRPS3 1.3474065 0.033
pSRO9 tRPS3 1.4012037 0.093

Supplementary Table B10: Tables showing fold changes in transcript abundance of
promoter-terminator constructs with different inserted motifs. Tables are sorted by fold
change which is calculated with respect to the mod_NNN construct of that promoter-
terminator pairing.
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mod_NTHHH
Promoter Terminator Fold change p.adj

pSRO9 tPIR1 1.096403 0.4200
pPGK1 tPIR1 1.165855 0.0500
pPIR1 tPIR1 1.399047 0.0038

mod_ANHHH
Promoter Terminator Fold change p.adj

pPGK1 tPIR1 1.379786 0.01500
pPIR1 tPIR1 1.536283 0.00380
pSRO9 tPIR1 1.725748 0.00045

mod_ATNHH
Promoter Terminator Fold change p.adj

pPGK1 tPIR1 1.021209 0.830
pSRO9 tPIR1 1.134849 0.400
pPIR1 tPIR1 1.231856 0.012

mod_ATHNH
Promoter Terminator Fold change p.adj

pSRO9 tPIR1 0.9330330 0.73
pPGK1 tPIR1 0.9777246 0.81
pPIR1 tPIR1 1.0788127 0.67

mod_ATNNN
Promoter Terminator Fold change p.adj

pSRO9 tPIR1 1.161598 0.230
pPIR1 tPIR1 1.209994 0.180
pPGK1 tPIR1 1.267952 0.018

mod_ANNNN
Promoter Terminator Fold change p.adj

pSRO9 tPIR1 1.482810 0.0200
pPGK1 tPIR1 1.599674 0.0015
pPIR1 tPIR1 2.126692 0.0002

mod_NTNNN
Promoter Terminator Fold change p.adj

pSRO9 tPIR1 1.287386 0.0460
pPGK1 tPIR1 1.578562 0.0004
pPIR1 tPIR1 1.685034 0.0038

Supplementary Table B11: Tables showing fold changes in transcript abundance of
promoter-terminator constructs with different deleted motifs. Tables are sorted by fold
change which is calculated with respect to the WT construct of that promoter-terminator
pairing.
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ATATTC
Promoter Terminator log2 fold change p.adj

pRPS3 tRPS3 -0.9881481 0.0e+00
pSRO9 tRPS3 -0.5512963 2.4e-05
pPGK1 tRPS3 -0.4653704 5.2e-05
pPIR1 tPIR1 -0.4017119 1.3e-03
pPGK1 tPIR1 -0.3524806 3.5e-04
pTSA1 tTSA1 -0.2754167 7.3e-03
pSRO9 tPIR1 -0.1625775 2.1e-01
pPGK1 tTSA1 -0.1481944 1.6e-01
pSRO9 tTSA1 0.0462500 6.8e-01

TGTAHMNTA and HWNCATTWY
Promoter Terminator log2 fold change p.adj

pRPS3 tRPS3 -0.4656481 0.0015
pSRO9 tRPS3 -0.3685185 0.0210
pPGK1 tRPS3 -0.1268519 0.3900
pPIR1 tPIR1 -0.0872287 0.2800
pSRO9 tTSA1 -0.0170833 0.9100
pTSA1 tTSA1 0.0669444 0.6700
pPGK1 tPIR1 0.0843282 0.1900
pSRO9 tPIR1 0.1539836 0.0760
pPGK1 tTSA1 0.3288889 0.0200

TGTAHMNTA
Promoter Terminator log2 fold change p.adj

pTSA1 tTSA1 -1.2986111 1.0e-07
pPGK1 tTSA1 -0.8977778 5.2e-05
pSRO9 tTSA1 -0.7969444 3.3e-04
pPIR1 tPIR1 -0.7679716 2.4e-05
pSRO9 tPIR1 -0.3607687 4.4e-02
pPGK1 tPIR1 -0.3570995 7.0e-03
pRPS3 tRPS3 -0.1788889 3.7e-01
pSRO9 tRPS3 -0.0075926 9.7e-01
pPGK1 tRPS3 0.0798148 7.2e-01

HWNCATTWY
Promoter Terminator log2 fold change p.adj

pTSA1 tTSA1 -0.3393056 0.0013
pPGK1 tRPS3 -0.2947222 0.0069
pPGK1 tTSA1 -0.2619444 0.0100
pRPS3 tRPS3 -0.2331481 0.0200
pPIR1 tPIR1 -0.1563889 0.0120
pSRO9 tRPS3 -0.1474074 0.2000
pSRO9 tTSA1 -0.0976389 0.3500
pPGK1 tPIR1 -0.0711111 0.1600
pSRO9 tPIR1 0.0729630 0.2800

GTATACCTA
Promoter Terminator log2 fold change p.adj

pTSA1 tTSA1 -0.1344444 0.190
pPGK1 tRPS3 0.0158333 0.900
pPGK1 tTSA1 0.0331944 0.750
pSRO9 tTSA1 0.0761111 0.460
pRPS3 tRPS3 0.1289815 0.200
pSRO9 tRPS3 0.2931481 0.011

Supplementary Table B12: Tables showing fold changes in transcript abundance of motifs
in different contexts. Tables are sorted by fold change.
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tRPS3 Site 1
promoter label max_rel_counts p.adj

pPGK1 WT 0.0013042 0.016
pPGK1 mod_NTN 0.1052831 0.016
pRPS3 WT 0.0013267 0.016
pRPS3 mod_NTN 0.0819971 0.035
pPGK1 mod_HTH 0.1007454 0.420
pRPS3 mod_HTH 0.1161378 0.530
pPGK1 mod_NAA 0.1248866 0.640
pRPS3 mod_NAA 0.1769533 0.970

tRPS3 Site 2
promoter label max_rel_counts p.adj

pPGK1 mod_HTH 0.3172375 0.016
pPGK1 mod_NTN 0.3945115 0.016
pRPS3 mod_NTN 0.3940147 0.016
pPGK1 mod_NAA 0.2223265 0.420
pRPS3 mod_HTH 0.3281569 0.530
pPGK1 WT 0.1708060 0.640
pRPS3 WT 0.1697265 0.970
pRPS3 mod_NAA 0.2062429 0.970

tTSA1 Site 1
promoter label max_rel_counts p.adj

pTSA1 mod_NTN 0.1389566 0.016
pTSA1 mod_HTH 0.1610745 0.027
pTSA1 mod_NAA 0.1503364 0.027
pTSA1 WT 0.1715484 0.068

tTSA1 Site 2
promoter label max_rel_counts p.adj

pTSA1 mod_NAA 0.3671093 0.64
pTSA1 mod_HTH 0.3198939 0.70
pTSA1 WT 0.4000555 1.00
pTSA1 mod_NTN 0.3519398 1.00

Supplementary Table B13: Tables showing relative usage of the two major Poly(A) sites in
tRPS3 and tTSA1 terminators across constructs. p values are calculated using a two-sided
Wilcoxon signed rank exact test with respect to the mod_NNN construct.

tRPS3 Site 1
promoter label p.value max_rel_counts

pRPS3 WT 0.20 0.0013634
pRPS3 mod_NNN 0.32 0.1016874
pRPS3 mod_HTH 1.00 0.0937931
pRPS3 mod_NTN 1.00 0.0651922
pRPS3 mod_NAA 1.00 0.1047647

tRPS3 Site 2
promoter label p.value max_rel_counts

pRPS3 mod_NAA 0.16 0.2064649
pRPS3 mod_NNN 0.16 0.1988836
pRPS3 mod_HTH 0.28 0.3016092
pRPS3 WT 0.62 0.1012708
pRPS3 mod_NTN 0.92 0.3802624

Supplementary Table B14: Tables showing relative usage of the two major Poly(A) sites
in tRPS3 across constructs as detected by 5PSeq. p.values are calculated by comparing
the rel_counts of the same construct across the two RNA-seq methods using a two-sided
Wilcoxon signed rank exact test.
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B.2. Chapter 5 Supplementary Figures

Supplementary Figure B1: Both terminator and promoter contribute to gene expression. (A)
Protein abundance estimated by mCherry and mTurquoise2 (mTurq) fluorescence for 10 termina-
tors paired with 4 high expressing promoters. Fluorescence and OD were measured in cultures
grown in a plate reader and reported at the time of the maximum growth rate of each sample (see
methods). Each diamond represents a biological replicate, averaged over 3 technical replicates.
The vertical line is the mean of all 6 biological replicates. (B) Same as panel B, but for 2 low
expressing promoters. Negative fluorescence values arising from instrument noise dominating
measurements of constructs with negligible fluorescence are automatically set to 0.
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Supplementary Figure B2: Relative protein abundance correlates with relative mRNA abun-
dance for reporter constructs with modified 3’UTRs. (A) Fold changes in RT-qPCR vs fold
changes in mCherry fluorescence for all terminator constructs in the pRPS3-mCherry-tRPS3 and
pTSA1-mCherry-tTSA1 pairings. Transcript abundance is relative to the mod0 construct of each
promoter-terminator pairing. (B) Fold changes in RT-qPCR vs fold changes in mCherry fluores-
cence for all terminator constructs in the pPIR1-mCherry-tPIR1 pairing. Transcript abundance is
relative to WT construct of the promoter-terminator pairing. The mean and standard error calcu-
lated over 6 biological replicates are plotted for each construct.
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Supplementary Figure B3: Relative positions of ATATTC, TGTAHMNTA and HWNCAT-
TWY motifs in native 3’UTRs. Histogram shows the counts of the motif occurrences in 3’UTRs
relative to the total length of 3’UTR, where 0 would be starting exactly at the stop codon and 1
would be at the reported poly(A)-site. See (methods or ref to data repository) for details.
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Supplementary Figure B4: Decapped constructs measured by 5Pseq match mature con-
structs measured by QuantSeq. pRPS3-tRPS3 constructs were chosen to investigate changes
in poly(A) site usage across 5’ decapped transcripts flagged for decay. (A) Comparison of con-
struct transcript abundance as independently measured by qPCR and RNA-Seq assays. Transcript
abundance was normalised to the median abundance of plasmid URA3, genomic PGK1 and RPS3
transcripts for each construct. Fold change is relative to the mod_NNN construct in each promoter-
terminator context. The black diagonal line represents the expected values of RNAseq and qPCR
results correlated perfectly. (B) Cumulative counts of reads mapped downstream of WT (grey) and
mod_NNN (golden) construct stop codons as a fraction of the total reads mapped to the constructs
terminator. WT reads have been shifted downstream to align with the mod_NNN sequence by
accounting for motif insertion sites. Major poly(A) sites have been highlighted by a black vertical
line. Constructs also used in the QuantSeq analysis have their QuantSeq cumulative graphs plotted
in dotted lines. (C) Similar to Figure B but with each motif insertion construct plotted separately.
Columns designate cumulative plots from different terminator constructs.
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Supplementary Figure B5: High correlation in transcript counts between samples for both
RNA-Seq assays. (A) Correlation heat map of DESeq2 normalised log2 pseudocounts across
all genes for each sample pair in the QuantSeq assay. From top to bottom on the y-axis (left to
right on the x-axis) the terminator contexts are pRPS3-tRPS3, pPGK1-tRPS3 and pTSA1-tTSA1.
(B) Similar correlation heat map for all sample pairs in the 5PSeq assay. (C) Comparison of
mean log2 abundance of construct mRNA transcripts as measured by 5PSeq and QuantSeq. Only
5 terminator constructs were measured by both methods and only in the pRPS3-tRPS3 context.
Transcript abundance for each sample is normalised to the median of the genomic PGK1, TSA1
and RPS3, and the plasmid URA3 genes to match the normalisation used in the qPCR analysis.
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Supplementary Figure B6: Poly(A) site usage for genomic PGK1, TSA1 and RPS3 termina-
tors remains the same across samples for each RNA-Seq assay. Cumulative counts of reads
mapped downstream of native genomic gene stop codons as a fraction of the total reads mapped
to the terminator. Each line plots the cumulative counts of a separate sequencing run (including
two tech reps per sample) which is given a unique colour. Relative usage of poly(A) sites remains
similar across samples and across RNA-seq assays. Higher variability in QuantSeq PGK1 poly(A)
site usage is due to low overall transcript counts.



B.2. Chapter 5 Supplementary Figures 136

Supplementary Figure B7: Poly(A) site usage remains the same for genomic TSA1 and RPS3
terminators as for plasmid expressed WT constructs in QuantSeq and 5PSeq. Cumulative
counts of reads mapped downstream of WT stop codons for native genomic terminators and plas-
mid construct terminators as a fraction of total reads mapped to the constructs terminator. Each
line plots the cumulative counts of a separate sequencing run (including two tech reps per sample)
which is given a unique colour. Expressing constructs from a low copy number plasmid does not
seem to affect poly(A) site usage.
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Supplementary Figure B8: Construct poly(A) site usage across 5PSeq and QuantSeq. Rela-
tive counts of reads mapped downstream of construct stop codons as a fraction of the total reads
mapped to the constructs terminator. Peaks represent the position of major poly(A) sites. Repli-
cates are plotted on top of each other where available.
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Supplementary Figure B9: 5PSeq data finds no detectable changes in 5’-phosphorylated in-
termediates between reporter constructs. Relative counts of 5’ end reads of 5’-phosphorylated
intermediates as a fraction of the total 5’ end reads mapped to the terminator. Results for plasmid
constructs are plotted alongside selected genomic genes for comparison.
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C.1. Chapter 6 Supplementary Code

DiffFracSeq Stan Code
1 data {
2 // Number of RNAs
3 int<lower=1> NRNA;
4

5 // Number of replicates
6 int<lower=1> NREP;
7

8 // Number of conditions
9 int<lower=1> NCON;

10

11 // Note: These are all integers
12 // columns t, s, p
13 int<lower=0> tot_obs[NCON, NREP, NRNA];
14 int<lower=0> sup_obs[NCON, NREP, NRNA];
15 int<lower=0> pel_obs[NCON, NREP, NRNA];
16 }
17 parameters {
18 // Normalising factors
19 real scale_factor_mean;
20 real<lower=0> tot_scale_factor[NCON, NREP];
21 real sup_scale_factor[NCON, NREP];
22 real pel_scale_factor[NCON, NREP];
23

24 // latent counts
25 vector[NRNA] base_count;
26 vector[NRNA] total_count_condition[NCON];
27 vector[NRNA] frac_count_condition[NCON];
28

29 // latent count prior parameters
30 real norm_alpha;
31 real<lower=0> norm_beta;
32

33 // dispersion parameter for counts
34 real<lower=0> phi[3];
35 }
36

37 transformed parameters{
38 // latent counts
39 vector[NRNA] sup_latent[NCON];
40 vector[NRNA] pel_latent[NCON];
41

42 for(con in 1:NCON){
43 sup_latent[con] = base_count + total_count_condition[con];
44

45 pel_latent[con] = sup_latent[con] + frac_count_condition[con];
46 }
47 }
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1 model{
2

3 norm_alpha ~ normal(7,2);
4 norm_beta ~ normal(2,1);
5

6 for(con in 1:NCON){
7

8 scale_factor_mean ~ normal(0, 0.5);
9 tot_scale_factor[con] ~ normal(10, 0.1);

10 pel_scale_factor[con] ~ normal(scale_factor_mean, 0.1);
11 sup_scale_factor[con] ~ normal(scale_factor_mean, 0.1);
12

13 phi ~ normal(100, 10);
14

15 // latent counts
16 base_count ~ normal(norm_alpha, norm_beta);
17 total_count_condition[con] ~ normal(0, 1);
18 frac_count_condition[con] ~ normal(0, 1);
19

20

21 for(rep in 1:NREP){
22 // fractions
23 sup_obs[con, rep] ~ neg_binomial_2_log(sup_scale_factor[con, rep] +
24 sup_latent[con],
25 phi[2]);
26

27 pel_obs[con, rep] ~ neg_binomial_2_log(pel_scale_factor[con, rep] +
28 pel_latent[con],
29 phi[3]);
30

31 // count distn negative binomial with specified means
32 // total
33 tot_obs[con, rep] ~ neg_binomial_2(tot_scale_factor[con, rep] *
34 (exp(pel_latent[con]) +
35 exp(sup_latent[con])),
36 phi[1]);
37 }
38 }
39 }
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