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Abstract

Antibiotic resistance is a major global health challenge, and there is still much to

learn about how antibiotics work to inhibit the growth of bacterial populations. In

many real infections, bacteria grow in small populations where stochastic effects

can be important, especially because even a single surviving bacterium can lead to

regrowth of an infection. Microfluidic droplets offer an opportunity to study this

heterogeneity under well-controlled experimental conditions. Creating numerous,

monodisperse microenvironments from the same initial bacterial suspension gives

multiple micro-experiments which run in parallel, allowing the study of individual

bacterial growth and response to stress (for example, antibiotics). This approach

results in a rich data set which can be compared with predictions from both

deterministic and probabilistic theoretical models, producing insight into the

growth dynamics and antibiotic response of small populations, which are often

hidden in conventional large-scale experiments.

In this thesis I present a study of small populations of bacteria using microfluidic

droplets and theoretical modelling. Chapter 1 provides motivation for the study

of small bacterial populations and background on β-lactam antibiotics (the class

of antibiotics investigated in Chapters 5–6) and β-lactamase enzymes.

Chapter 2 outlines the experimental methodology and the image analysis

procedure. Principally, this involves encapsulating bacteria into picolitre volumes

of growth media and imaging using fluorescence and brightfield microscopy for

4–7 hours. A Matlab workflow is used to count the number of bacteria in each

droplet over the course of an experiment. Chapter 3 explores the heterogeneous

growth dynamics by comparing hundreds to thousands of growth trajectories of

clonal populations of E. coli.

Deterministic and probabilistic models were developed to understand the response

of small populations of β-lactam resistant bacteria to β-lactam antibiotics, as
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described in Chapter 4. The effect of stochastic bacterial loading into droplets

as well as stochastic growth are compared to the deterministic case in Chapter

5, in which the survival of bacterial populations under a range of antibiotic

concentrations, with different initial numbers of bacteria, is explored. These

simulations predict a range of concentrations of antibiotic where stochastic effects

lead to the survival of a proportion of the population, while a deterministic mean-

field theory would predict success of the antibiotic treatment.

In Chapter 6 these predictions are tested experimentally and it is found that,

in droplets, some populations of E. coli survive at concentrations of ampicillin

beyond the bulk MIC determined by equivalent plate reader experiments.

Dormant cells are visible in droplets but not in plate reader experiments, and we

propose that some of the growth observed in bulk plate reader experiments might

be biomass (filamentous) growth rather than (healthy) division. This implies that

bulk experiments may not reveal the whole picture and need to be interpreted

with care.

Finally, in Chapter 7 a model is used to investigate the possibility of cooperative

behaviour in mixtures of resistant and sensitive bacteria in droplets. This explores

the extent to which bacteria with no intrinsic resistance could survive exposure to

antibiotics when in the presence of bacteria which produce β-lactamase enzymes,

a phenomenon which is of rising ecological interest and clinical concern.
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Lay Summary

In this thesis, I present a study of the growth and death of small populations
of bacteria. Generally, when we perform experiments in the biophysics or
microbiology lab, we measure billions of bacterial cells growing exponentially.
However, this means we average the behavior of all the individual bacteria,
and, moreover, the measurement is dominated by fast growing or the fittest
bacteria. In contrast, measurements on individual bacterial cells have revealed
great diversity, including variation (heterogeneity) in growth rates and response
to stresses.

Differences between individual bacteria in a population are especially relevant in
the context of antibiotics. Antibiotics are a central part of modern medicine, and
are highly effective in killing or inhibiting bacteria. However, some infections are
resistant to treatment. Variation in stress responses within genetically identical
bacterial populations implies that some bacteria may be able to survive antibiotic
exposure, even if the population on average is susceptible. This has clinical
consequences of reinfection, as well as increasing the risk of evolving resistant
mutations.

Up to now, studies of variation among individual bacteria have mainly focused
on tracking single cells. There have been few studies of how bacterial variability
plays out in the context of small, growing populations despite this describing
many infections. In this thesis, we explore the heterogeneity of small populations
by exploiting microfluidic droplet technology and computational modelling.

Droplets containing 1–10 initial bacteria can be used as an intermediate
scale between single-cell and traditional large-scale measurements. Droplet
methodology has the potential to generate large datasets for statistical analysis
of thousands of identically prepared small populations. Encapsulating small
numbers of cells into picolitre droplets, we are able to study both how small
populations of bacteria grow and how they respond to the presence of antibiotic.

In this thesis, we specifically study the situation where bacteria produce
antibiotic-degrading enzymes. Beta-lactamase enzymes are commonly produced
as a resistance mechanism to beta-lactam antibiotics (which include penicillins).
Previous work has shown that these enzymes can reduce the antibiotic concen-
tration not just for the enzyme producer, but also for other bacteria. Here we
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investigate the effects of this on a small population level.

The work reported in this thesis develops and uses microfluidic droplet technology
to study small-population growth and death of bacteria. Some of the key results
are: (i) that growth of bacteria in the absence of antibiotic can be understood with
simple stochastic mathematical models; (ii) antibiotic-resistant, beta-lactamase-
enzyme-producing bacteria can survive at higher concentrations of antibiotic in
droplets than in large populations of the same average density; (iii) response to
antibiotics is complicated, involving bacterial filamentation, which may alter the
chances of survival at a local level.
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Chapter 1

Background

1.1 Overview

This chapter provides context and motivation for the study of small bacterial

populations. Background information is given on beta-lactam antibiotics, which

is the class of antibiotics investigated in this thesis, and the global antibiotic

resistance problem. Droplet-based microfluidics, the experimental methodology

used in this thesis, is explained, as well as the advantages of the technique for

studying heterogeneity in small populations of bacteria.

1.2 Studying bacteria in small populations

The experiments presented in this thesis utilise droplet microfluidics to track

the dynamics of small bacterial populations (1–100 cells). This enables us to

investigate stochastic aspects of the population growth and death dynamics that

would not be accessible in traditional microbiological experiments. Droplets are

especially relevant for mirroring the confined environment which occurs when

infectious bacteria grow inside human cells (e.g. tuberculosis bacteria inside

macrophages [1]).

Many infections start from small numbers of bacteria. Therefore to learn

about the early dynamics of infections we need to study the dynamics of small

populations. For example, small populations can die out following a few random
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death events, while larger populations are very unlikely to randomly go extinct.

In the food industry it is highly important to understand how small bacterial

populations grow inside food, since even a few contaminating bacteria can cause

infection. Small bacterial populations are also relevant in the pores between soil

granules and on plant roots and leaves.

1.2.1 Intrinsic heterogeneity within clonal populations of

bacteria

In Chapter 3 we explore the uninhibited growth of E. coli populations, grown from

a single colony. We expect to see a range of behaviours between the small droplet

populations because many phenotypic traits vary among clonal cells. Examples

include growth rate, cell length, persistence (subpopulations of cells which do

not grow) and competence for DNA transformation [2, 3]. In small populations,

the effects of this variation will be much more apparent compared to in a large

population.

There is growing evidence that this noisy behavior can offer fitness benefits, and

is sometimes adaptive [4]. Phenotypic heterogeneity, i.e. noisy gene expression,

provides a dynamic source of diversity, in addition to the diversity derived from

genotypic changes such as genome rearrangements and mutation. A distribution

of states amongst clonal cells or organisms (the ‘survival machines’[5]) can mean

some proportion of the population is able to survive a stress (and thus the genome

survives and goes on to be reproduced), when a homogeneous population might

go extinct (along with the genome). Furthermore, there is growing evidence

of evolutionary selection for diversity-generating mechanisms in microorganisms

[3, 6]. For example, quorum sensing, originally thought only to direct an entire

bacterial population to act in unison, has been shown to also control heterogeneity

in gene expression [7, 8].

Heterogeneous response to antibiotics

Antibiotic response is an important theme of this thesis, where survival of a

few bacteria can drastically affect the outcome of a population. In Chapter 6

we investigate the response of E. coli to ampicillin exposure in small droplet

populations.
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The survival of low levels of bacteria is important when evaluating, for example,

the risk of food contamination and infectious diseases because inoculum sizes of

just a few cells can cause infections [9–14]. This is also relevant to reinfections

because even a small number of cells surviving antibiotic treatment can regenerate

a population. Furthermore, spatially separated infections can act as distinct

small populations and respond to local concentrations of antibiotics, particularly

notable because a nonuniform drug distribution can accelerate the emergence of

resistance [15].

The antibiotic response of small populations can be very different to that of large

populations. For example, population level processes such as the inoculum effect

(see Section 1.3.5) can result in survival in cases where an isolated bacterial cell

would not survive [16]. However there are other environments where phenotypic

variation between individual cells offers an advantage over a homogeneous

population [17]. In an unpredictable, rapidly changing environment, diversity

within genetically identical populations sometimes allows a community to survive

a stress that kills the majority of the population (i.e. the cells which are resistant

to the temporary stress survive and can repopulate the environment once the

stress is gone).

Persistence is one example of phenotypic heterogeneity which can be a mechanism

of resistance; where otherwise sensitive bacteria survive antibiotic exposure by

simply not dividing. This occurs when a genetically homogeneous microbial

population splits into two distinct sub-populations with different growth and

survival properties (or strategies) as a result of reversible phenotype switching

[18]. Growth bistability, such as this, can be caused by the stochastic production

or expression of a protein with detrimental effect on growth, resulting in different

growth rates of subpopulations expressing or not expressing the toxic protein [19].

Several studies have investigated the response of small populations of bacteria

to antibiotics. Heterogeneous resistance and its evolution in bacteria has been

studied in droplets [20], and the effects of different antagonistic drug pairs

on single cells has been observed in mother machines [21] (both methods are

discussed below). Coates et al. found that low concentrations of antibiotic might

be sufficient to eradicate a small bacterial population, especially at the scale when

division and extinction are probabilistic. A population will undergo extinction

if cells die more frequently than they divide; bactericidal antibiotics induced

stochastic fluctuations in the bacterial population size, increasing the probability

of extinction [22]. Alexander et al. determined that low concentrations of
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antibiotic may also be sufficient to significantly reduce the likelihood of de novo

emergence of resistance. This is because a cell with a resistant gene must first

evolve, but then must also successfully replicate and grow [23]. A study of

high and low noise gene expression (for genotypes of S. cerevisiae), found each

was advantageous under different environmental conditions. Specifically, with

increasing concentrations of antibiotic, the strain with more noisy gene expression

performed better [4].

These studies have demonstrated the stochastic nature of eradicating bacteria

with antibiotics, as well as the importance of studying small population responses

in addition to large population responses, because the findings of one cannot

always be simply extrapolated to the other. Controlling the heterogeneity

which allows partial survival is important for reducing the risk of resistance,

food preservation, clinical antimicrobial treatments and understanding natural

microbial populations [6].

Heterogeneity in evolution

Although it is not the topic of this thesis, evolution also happens differently

in small populations compared to large populations. In particular, ‘genetic

drift’, in which mutants take over a population randomly, even when they are

not fit, is much more important in small populations. In addition, mutation

rates themselves may be subject to stochastic variation among cells in the

population. Heterogeneity has been shown to be a factor in spontaneous mutation

frequencies not induced by antibiotic treatment [24]. Bacterial competence for

transformation (the ability of cells to bind to and to take up exogenous DNA)

is another mechanism controlled by heterogeneous molecular fluctuations rather

than genetic differences in a population; phenotypic diversity means that only a

fraction of the population are competent at a given time [3].

1.2.2 Traditional study of bulk bacterial populations

Bacterial behaviour converges to a homogeneous response as the population size

increases, and this response is what is frequently measured. Heterogeneous

behaviour is often lost when studying large populations of bacteria because we

measure the largest or average response. Bacterial populations which start with

over 100 cells appear to behave deterministically, even when the underlying law

4



is stochastic [2]. However, small microbial populations do not fit deterministic

models where heterogeneity is not considered [25].

Standard microbiology methods involve measuring populations of 105 − 109

bacteria and monitoring the growth of cells suspended in well-mixed liquid media

or growing as colonies on plates of growth medium solidified with agar.

In large bacterial populations, fluctuations in the population size are negligible,

and the growth of the population can be well described using deterministic

equations. However, if the population grows exponentially, the fastest-growing

subpopulation will dominate these conventional measurements, and phenotypic

variations within the initial inoculum will be hidden from view, as data is

averaged across thousands or millions of cells in a sample. In addition, dormant

subpopulations of cells will not be visible in a traditional growth assay (although

they may be detected as persister cells in a killing assay). Measurements which

give a good indication of the population as a whole, can miss bacteria which

are no longer growing; a particular issue when studying the effect of antibiotics

[26]. Antimicrobial susceptibility testing is usually performed either in liquid

culture or on plates, i.e. in large bacterial populations. Testing for antimicrobial

susceptibility with a population size of 5× 105 − 109 CFU mL−1 does not detect

the stochastic response which occurs in small populations.

Optical density (OD) measurements of microbial growth are one of the most

common techniques used in microbiology because they are fast and non-

destructive. Light is directed through the sample and a detector is used to

make a turbidity measurement. However, the OD value is often not proportional

to the cell number. The Beer-Lambert law can only be applied for microbial

cultures of low densities where there is limited scattering or other interactions.

The proportionality constants strongly depend on a number of factors; for

example, cell size, shape or refractive index of the growth media [27]. Therefore

the interpretation of optical density must be done with care, and with the

knowledge that filamentous cells and dormant sub-populations can be missed

or misinterpreted.

Homogeneous liquid solutions of bacteria are not representative of most natural

environments, and therefore results are not always applicable in vivo. Further-

more, results are not always comparable to other laboratory growth methods. The

method of growth can affect bacterial behaviour, and this should be considered

when concluding the outcome of an experiment. For example, the growth of
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crowded bacteria on plates can generate different evolutionary and extinction

outcomes than in well-mixed liquid cultures [28].

1.2.3 Methods of studying small populations

Methods which enable the study of small populations of cells are becoming

increasingly relevant as the prevalence and impact of individual cell heterogeneity

is becoming more recognised [29]. Small bacterial population experiments allow

us to distinguish between deterministic and stochastic regulation of bacterial

gene expression. This includes confirming the roles of cell ageing, the cell cycle,

metabolic rhythms and epigenetic modifications (heritable phenotype changes

that do not involve alterations in the DNA sequence) in causing phenotypic

heterogeneity [6]. In this thesis, we use microfluidic droplets as a way to study

small populations. Other studies have used different methods.

Traditional methods of growth can be adapted to study small populations.

Agarose pads can be used with a very diluted cell suspension, and then viewed

under the microscope. This has been a very useful technique, but is typically

limited to a small number of fields of view, containing few cells. Additionally,

after a short time the fields of view fill with cells, such that they can no longer be

analysed [30]. Similarly, single cells have been studied using standard well-plate

methods, with serial dilutions to ensure only one cell remains. However this can

be very labour intensive and the number of populations which can be studied

separately is limited [22].

Flow cytometry can be used to detect single cells, coupled with downstream

processing, often via fluorescence activated cell sorting (FACS). Cell populations

can be sorted based on their fluorescent or light scattering characteristics [31, 32].

Many FACS instruments can then sort single cells into a container—such as a

96-well plate—allowing cells to be isolated and grown. This method requires

correctly calibrated, expensive equipment and is a one-time measurement,

however, therefore experimental procedures allowing the study of numerous single

cells (or small populations) over long periods of time, in parallel, are interesting

and promise new insight into the the stochastic nature of biological mechanisms.

Microfluidic techniques allow the study of small volumes and are highly efficient

research tools. By creating structures with micrometre dimensions, individual

cells can be manipulated and analysed in rapid and low-volume studies and
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diagnostics. Mother machines are a popular microfluidic device used for this

purpose. Cells are grown single-file within narrow growth-channels that are

perpendicularly connected to a main flow-channel that supplies nutrients and

washes away cells extruding from the growth channels. The mother cell at the

bottom of the growth channel can, in principal, be studied for an unlimited

period of time, which means that a mother cell of E. coli can divide for hundreds

of generations [33].

Mechanical constraints have been shown to effect growth in devices such as the

mother machine because bacteria adapt to the constrictions [33, 34]. It has been

found that cell dimensions generally decrease as the channel length increases

and width decreases. In particular, E. coli adapt to the restrictive channel

environment by becoming narrower and longer in comparison to the same strain

grown in liquid culture. Cell width at birth and average mother cell volume has

been shown to increase with channel width, and this also impacts the doubling

time, which increases as a function of length [35].

This response to spatial structure must be taken into account when comparing

results from mother machine experiments to those from unconfined bulk growth.

Droplet-based microfluidics, which address many of the limitations described

above, are discussed in Section 1.4.1.

1.3 Antibiotic Response and Resistance

Antibiotics are drugs that are used to treat bacterial infections in humans and

other animals. Antibiotics either kill microorganisms (bactericidal antibiotics)

or stop them from reproducing (bacteriostatic antibiotics), allowing the immune

system to remove them. Antibiotics can be grouped into classes based on their

chemical structure and their mechanism of action [36]. My thesis focuses on the

beta-lactam or β-lactam class of antibiotics, which act by inhibiting bacterial cell

wall synthesis.

1.3.1 β-lactam antibiotics

β-lactam antibiotics are the oldest class of antibiotics (the first antibiotic to be

discovered, penicillin, is a β-lactam [37, 38]) and they remain amongst the most
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Figure 1.1 Hospital sector defined daily doses (DDD) of antibacterials for
the UK, showing that β-lactam antibacterials are consistently the
most used from 2013–2019 (52% in 2019). ATC group J01 is
a therapeutic subgroup of antibacterials for systemic use in the
Anatomical Therapeutic Chemical Classification System, developed
by the World Health Organization (WHO). Figure generated from
ESAC-Net data submitted to The European Surveillance System
(TESSy) [40].

widely used group of antimicrobial agents for the treatment of bacterial disease

in humans [39, 40]. In 2013, β-lactams accounted for 65% of the worldwide

antibiotics market [41], and they account for half of all antibacterials used

systemically in the UK hospital sector (see Figure 1.1).

β-lactam antibiotics contain a β-lactam ring in their molecular structure (see

Figure 1.2). The first β-lactam antibiotics to be discovered were active only

against Gram-positive bacteria, but the development of broad-spectrum β-lactam

antibiotics, which are active against various Gram-negative organisms, vastly

increased their usefulness and consumption rate. In particular, broad-spectrum

penicillins, which are used for management and treatment of bacterial infections,

are of major clinical relevance [42–44].

Mechanism of action

β-lactam antibiotics are bactericidal because they inhibit bacterial cell wall

synthesis. The targets for β-lactam antibiotics are enzymes involved in synthesis
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Figure 1.2 Skeletal structural formula of (a) the β-lactam ring, (b) the core
structure of all penicillins, with the β-lactam ring highlighted in blue,
and (c) the R-group for ampicillin. A four-membered lactam ring
is a cyclic amide, and here the nitrogen atom is attached to the β-
carbon atom, relative to the carbonyl.

of the peptidoglycan cell wall, known as penicillin-binding proteins (PBPs). β-

lactams inhibit the last step in the synthesis of peptidoglycan by binding to

(acylating) the transpeptidases which cross-link the peptides which hold together

the peptidoglycan mesh. Inhibition of peptidoglycan synthesis causes cell lysis,

possibly due to disturbance of the balance between synthesis and hydrolysis of

the peptidoglycan. The peptidoglycan layer is important for cell wall structural

integrity and for maintenance of turgor pressure, especially in Gram-positive

organisms, where this is the outermost and primary component of the cell wall

[39]. Because the interior of the cell is under turgor pressure, disruption of the

peptidoglycan can cause rapid cell lysis.

Ampicillin

Ampicillin is the antibiotic we use for the experiments presented in this thesis.

Ampicillin is a β-lactam antibiotic which is widely used for the treatment of a

variety of infections. It is still featured on The WHO Model Lists of Essential

Medicines, since being first listed in 1977 [45].

Ampicillin molecules (shown in Figure 1.2) contain an amino group which helps

the antibiotic pass through the pores of the outer membrane of Gram-negative
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bacteria. Ampicillin acts as an irreversible inhibitor of the penicillin-binding

proteins; transpeptidase, carboxypeptidases and endopeptidases enzymes, which

are needed by bacteria to make the cell wall [46].

Filamentation

It is important to note that E. coli uses different peptidoglycan synthesis machin-

ery for cell elongation and for cell division (pole formation)—the elongasome and

divisome respectively. Different β-lactam antibiotics bind to different components

of the elongasome and divisome, such that they inhibit elongation and division to

different extents. Therefore low doses of β-lactam antibiotics can cause changes in

cell morphology. Antibiotics that inhibit elongation cause cells to become round

(e.g. mecillinam) while antibiotics that inhibit division cause cells to turn into

long filaments (e.g. aztreonam and ampicillin) [47]. Images of filamentous cells

at various stages of ampicillin exposure are shown in Figure 1.3. Filamentation

will become relevant in Chapter 6 of this thesis (Section 6.3.5).

Interestingly, for the antibiotic ampicillin (which is used in this thesis), filamenta-

tion can sometimes be a tolerance or persistence strategy. Persisters are a slowly-

growing or dormant subpopulation of cells which can survive antibiotic treatment

and resume normal growth when the antibiotic stress is lifted. During ampicillin

treatment, persister cells have been shown to exhibit filamentous morphology,

getting longer over time rather than lysing [48]. Filaments formed under these

conditions still often lyse within a few hours [49]. This means that this survival

strategy only works if the exposure to antibiotic is short.

Filamentous cells have been found to build up a reserve of ATP (the principal

molecule for storing and transferring energy in cells) during antibiotic treatment,

perhaps to prepare for when the antibiotic stress is removed [48]. However, the

success of this strategy is varied; when the antibiotic is removed, some of these

filamenting cells are able to resume growth normally, although some fail to do so.

In one study, only 1.5–3% of the analysed filamentous cells recovered and reverted

back to normal growth [50]. This means that only a fraction of the filamentous

cells can be considered filamentous persisters.
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Figure 1.3 Epifluorescence microscopy images of E. coli K-12 and Evo3A cells,
which become filamentous during exposure to ampicillin. Image
taken from [48].

1.3.2 Antibiotic resistance

Bacteria evolve over time in response to environmental pressures, including

antibiotic exposure. Because of the widespread use (and misuse) of antibiotics,

there is an increasing selective pressure for resistance. This is a rising threat

to global health; antibiotic resistant infections have been predicted to cause 10

million annual deaths by 2050 [51]. As an example of the prevalence of antibiotic-

resistant strains, a 2009 study of samples from healthy children found that 40.2%

of the 92 E. coli strains detected were resistant to ampicillin [52]. In this thesis we

will investigate the response of a resistant strain of E. coli to ampicillin exposure.

This strain is resistant because the bacteria produce beta-lactamase enzymes

which degrade β-lactam antibiotics.

1.3.3 β-lactamase enzymes

In Gram-negative bacteria, the most common mechanism of resistance to β-

lactam antibiotics is the production of β-lactamase (beta-lactamase) enzymes

which degrade the antibiotic by hydrolysis of the amide bond of the β-lactam

ring (see Figure 1.2) [53, 54]. More than 300 types of β-lactamase enzyme have

been identified.

As antibiotic degradation can benefit the whole population of bacteria, the

production of β-lactamase can result in groups of bacteria surviving concen-

trations of antibiotic above the concentration that would kill isolated bacterial

cells. Therefore, β-lactamase production can be thought of as a cooperative
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phenomenon. This inhibition can allow clinical infections to survive antibiotic

treatment, sometimes even protecting neighboring cells of sensitive (non-β-

lactamase-producing) strains [55, 56]. In this thesis I will present experiments

and simulations with β-lactamase producing bacteria.

1.3.4 The minimum inhibitory concentration (MIC)

The minimum inhibitory concentration (MIC) is a quantitative measure of the

effect of an antibiotic on a given strain of bacteria. The MIC is the lowest

concentration of antibiotic that, under defined in vitro conditions, prevents visible

growth of bacteria within a defined period of time [57]. The MIC value indicates

the level of susceptibility of the organism to a particular antibiotic agent [58].

Clinically, the procedures and doses for antibiotic therapy are often based on the

antimicrobial MIC value [59–61].

From a practical point of view, a standard protocol is used to determine the ability

of a micro-organism to produce visible growth when exposed to an antimicrobial

agent. This is done either in broth containing serial dilutions of the antimicrobial

agent or on a series of agar plates. Careful control and standardisation is required

for intra-laboratory and inter-laboratory reproducibility of MIC values. It is

generally accepted that broth MIC values are reproducible to within one doubling

dilution [57, 58].

Limitations

The MIC has advantages as a standardised measure of activity of an antibiotic

against a microorganism, however, the MIC is an inherently uncertain mea-

surement. An MIC is obtained using an assay that determines in vitro the

concentration that prevents visible growth. On plates, colonies need to grow

large enough to be counted by eye, and in liquid media, visible growth can start

at bacterial densities as high as 107 − 108 CFU mL−1 [59]. The concentration

measured as the MIC is therefore not the concentration at which growth is

inhibited, but rather the concentration at which observable growth is inhibited.

Furthermore, the MIC value does not give an indication of the mode of action

of the antibiotic. Even with no visible growth, there may still be viable cells

if the drug had a bacteriostatic effect on the bacterial species tested. Growth

may resume after the removal of the drug, if persister cells remain. Alternatively,

12



there may be partial inhibition resulting in impaired and reduced growth rates

and consequently no visible growth within the time given [58]. In addition,

there was no correlation found between MIC values and resistance mechanisms

such as β-lactamase enzyme activity [62]. No direct inference should be made

between the bacterial response measured in the laboratory and the in vivo

response because the MIC is not a good pharmacodynamic indicator for the

relationship between antibiotic concentration and antibiotic effect for the range

of physiological environments found in the human body [63].

1.3.5 Inoculum effect

It is often observed that larger inocula (initial bacterial population size) have

higher apparent MIC values, particularly when the strain produces an enzyme

capable of destroying the antibiotic. This dependence of antibiotic response on

the inoculum size is called the inoculum effect [64].

Inoculum effects have been observed for a wide range of bacterial species and

antibiotics [64]. The inoculum effect implies that bacterial populations of different

densities can respond differently to the same antibiotic treatment. As a result,

antibiotic treatments that would be successful for early bacterial infections may

fail to eradicate infections that have reached a critical population density. From

a clinical point of view, an inoculum effect is defined as an eightfold or greater

increase in the measured MIC, upon testing with a 100-fold higher inoculum than

is standard [58].

An inoculum effect is frequently seen when testing the β-lactam antibiotic suscep-

tibility of a bacterial isolate that produces β-lactamase enzymes [58]. β-lactamase

enzymes inactivate β-lactam antibiotics, reducing the local concentration of

antibiotic in the area around an enzyme-producing bacterium. Therefore, the

surrounding bacteria experience a lower antibiotic concentration, and are able to

survive the exposure. Artemova et al. found that the MIC for E. coli expressing

β-lactamase varied by three orders of magnitude depending upon the initial cell

density [65]. In Chapter 6, we will investigate at the responses of small and large

bacterial populations to β-lactam antibiotics.
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1.3.6 Single-cell MIC

It is acknowledged that the MIC is a flawed measure of antibiotic susceptibility

because the concentration we measure often depends on the inoculum size. A

different metric can be used instead to control for the inoculum effect; the single-

cell MIC (scMIC). The scMIC value can be over an order of magnitude smaller

than the MIC, as individual bacteria are generally more susceptible to antibiotics

than large populations [65]. The single-cell MIC is measured with the same

techniques used to find the MIC, but with low density (diluted) initial cultures

or very small volumes (such as microfluidic droplets). The lowest concentration

of antibiotic which prevents growth is determined, quantifying the inhibitory

effect of the antibiotic at low initial bacterial densities [65], or per bacterial cell

[20, 66]. It has been shown that both the selection for more resistant pre-existing

mutants, as well as selective pressure towards the emergence of new mutations

which increase the scMIC, happens at an antibiotic concentration corresponding

to the scMIC regardless of the density of the bacterial population. This means

the scMIC is a more relevant quantity than the MIC when studying evolutionary

dynamics [65].

1.3.7 β-lactamase production as a social interaction

Social interactions, in which organisms cooperate with one another to mutual

benefit, are widespread among humans and animals. A large body of work studies

the factors that allow the evolution and stable maintenance of cooperative traits,

in which individuals sacrifice some of their fitness to benefit other individuals

in the population. These traits are evolutionary stable when the cooperation

is between closely-related individuals. It is now widely understood that bacteria

can also show cooperative traits and form a crucial part of sustainable ecosystems

[67–70].

Cooperating organisms are vulnerable to the emergence of ‘cheaters’, that

benefit from the efforts of the cooperator organisms, but do not pay the fitness

cost themselves. For example, in Pseudomonas, secretion of iron-sequestering

molecules benefits not just the secreting cells but also their neighbours [71].

Here, a ‘cheater’ is a bacterial strain that does not produce the iron-sequestering

molecule.
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Production of β-lactamase enzymes can be viewed as a cooperative trait, since

surrounding bacteria benefit from the reduction in antibiotic concentration. In

the context of β-lactamase production, ‘cheaters’ are antibiotic-sensitive cells

that do not produce β-lactamase enzymes, but benefit from the reduction in

antibiotic concentration. As they do not pay the cost of making β-lactamase, the

sensitive cells are expected to have a higher fitness in the absence of antibiotic.

This concept was explored by Yurtsev et al. who showed that the presence of β-

lactamase-producing resistant bacteria allow otherwise sensitive bacteria to thrive

at antibiotic concentrations 100-fold higher than their MIC [32].

In Chapter 7 the dynamics of mixed populations of β-lactamase producers and

non-producers is explored using simulations. Interspecies interactions can alter

antimicrobial sensitivity profiles within polymicrobial biofilm communities, which

may in part explain why antimicrobial therapies often fail to eradicate chronic

infections [72]. There is clinical evidence to suggest that cooperative β-lactamase

production is the cause of an increased failure rate of penicillin therapy in

eradicating polymicrobial infections [56]. Coexisting organisms can even have

the opposite response to antibiotics in comparison to the isolated species [73].

Since polymicrobial infections are common, it is important to understand these

cooperative effects at the interspecies level as well as in populations of the same

species.

1.4 Microbiology in droplets

Microfluidic droplet methodologies are used in many disciplines to study phenom-

ena in small, isolated volumes. The rapid rate of production (from 0.1–2kHz)

results in large numbers (often over 1000 droplets) of picolitre environments

with identical conditions; ideal for precise comparative experiments. In these

droplets, reagents and reaction products are contained within a controlled

microenvironment. The monodispersity of the droplets means that they can be

used as effective repeats of biological and chemical assays [74–76].

Droplet microfluidics have many medically relevant applications, such as diagnos-

tics, biomaterial synthesis [77] and in the field of molecular discovery, in screening

for new drugs. Initial screening of a chemical library can be done with thousands

of droplets, resulting in precise measurements of dose-response relationships using
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minimal quantities of reagents [78].

Within microbiology, using microfluidic devices to create monodisperse droplets

offers many advantages for quantitative small population or single-cell studies, be-

cause they generate numerous, simultaneous, directly comparable environments.

This can help remove unwanted biological and environmental variables. Droplets

were used by Pan et al. to isolate the effect of varying medium conditions,

such as pH and nitrogen concentration, on the growth of C. reinhardtii [79].

Encapsulating bacteria in droplets also facilities long-term population studies,

with examples including over 240 hour experiments [80] and those with incubation

times of up to 2 weeks [81].

Droplets provide separate compartments in which species or reactions can be iso-

lated and thus enables the analysis of products such as proteins secreted by cells,

alongside the cells themselves. Examples of these studies include the detection of

antibodies [82]; the detection antibiotics synthesised by actinobacteria [81]; and

the synergistic interactions of microbial communities [83].

The micrometre scale of the droplets allows us to observe behaviour that would be

masked in large populations (as discussed above in Section 1.2.1). For example,

when measuring spatial distribution of motile E. coli [84] and growing biofilms in

3D cultures (to observe cellular differentiation within the mircrostructure) [85].

Microfluidic droplets allow the study of heterogeneity across multiple commu-

nities, simultaneously. Such as the heterogeneous evolution of resistance to

antibiotics, where droplets make it possible to detect a resistant sub-population

that comprises only 1× 10−6 of the population [20]. Droplets have also been used

to encapsulate different species of bacteria together, and characterise microbial

communication (e.g. a study into quorum sensing using florescence microscopy

with a GFP and RFP strain [86]).

Encapsulating bacteria into droplets using microfluidic devices offers several

advantages over bulk growth. One of the main advantages is replication: each

droplet can be investigated as an independent experiment, allowing parallel

study of thousands of replicate populations, in contrast to standard microbiology

experiments in which 96 parallel samples (in a microplate) constitutes a high-

throughput experiment. Droplets offer advantages over other microfluidic growth

methods, which generally use chambers to contain cells (such as the mother

machine) because constriction can affect bacterial growth (see Section 1.2.3).

In contrast, by encapsulating bacteria in droplets, cells are unconstrained within
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a confined environment (showing similar doubling times to bulk growth [34, 79])

and are also unaffected by neighboring droplets (or the bacterial populations they

contain).

There are many detailed review articles which give an overview of device

fabrication, droplet formation and applications of droplet based microfluidics

[74, 76, 87–89].

1.4.1 Forming microfluidic droplets

Microfluidic devices manipulate the flow of liquids inside micrometre-sized

channels and chambers. These devices enable the study of small volumes and

fluid behaviour on a microscale. Performing experiments at the microscale has

additional practical advantages, including easier control of variables (such as

temperature), as well as reduced wastage because small volumes of reagents

are used. Droplet production using microfluidic devices offers the opportunity

to rapidly create numerous isolated environments, with considerable control

over droplet size and uniformity, resulting in multiple replicates within a single

experiment.

In the majority of cases, droplets are produced by simply engineering the

geometry of microscale channels to manipulate input fluids [76, 88]. Most

methods for forming droplets are passive, negating the need for moving parts;

the most common geometries are shown in Figure 1.4. Droplets are produced in

these devices when two immersible fluids, with independently controlled flows,

meet at a junction. Droplets can either be water-in-oil (water-based droplets in

a continuous oil medium) or oil-in-water. The specific aqueous phase, oil phase

and surfactant combination is selected to optimise droplet properties (such as

stability, monodispersity and size) [90]. The fluids are generally driven by syringe

pumps or pressure pumps, in which either a volume flow rate or applied pressure

is kept constant, respectively. The local flow field is determined by the geometry

of the junction, the flow rates and the fluid properties (such as viscosity). Local

fluid stresses caused by interfacial tension between the two phases deform the

liquid interface at the intersection where the two phases meet and lead to the

production of droplets. Capillary pressure acting to resist deformation as well

as upstream pressure from restriction at the junction both act to drive ‘pinch

off’. The wettability of the nearby channel walls is another important factor,

determining which liquid phase is dispersed [91].
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Figure 1.4 Schematic paired with an image of the three most common
geometries used to generate droplets in microfluidic devices. From
left to right these are: cross flow or T-junction (where the fluid
of one phase is sheared by a second immiscible phase flowing
perpendicularly), flow focusing or elongational flow (where immisible
fluids are accelerated through a small gap) and capillary (a channel
inserted inside another, so that the fluid to be encapsulated emerges
from the end of the capillary into a parallel flow of the continuous
phase). Scale bars show 100 µ)m. Panel from [74].

The physical parameters that dominate droplet formation are characterised by

the capillary number Ca = µU
Y

, where µ (Pa s) is the viscosity and U (m s−1) is

the characteristic velocity of the continuous phase and Y (N m−1) is the surface

tension of the water–oil interface. With increasing capillary number, different

flow regimes are encountered (squeezing, dripping and jetting regimes). Other

non-dimensional quantities are also relevant, especially at high flow rates and

when using larger dimension geometries. These include the Weber number, We,

(the relative importance of inertia with respect to interfacial tension), the Bond

number, Bo, (the relative importance of gravitational forces with respect to

interfacial tension) and the Reynolds number, Re, (the relative importance of

inertial forces with respect to viscous forces) [88].

Once produced, droplets can be manipulated, incubated and sorted in various

ways [74]. Dilutions or changes in concentration can be achieved by splitting or

fusing drops—often achieved simply using channel geometries—or with active

techniques such as pico-injection—typically triggered by an electrical field,

electro-coalesence or electrode-free injection to change the chemical environments

of specific droplets [80]. Multiple merging, mixing and re-splitting events can be

used to perform serial dilutions, to generate concentration gradients, or to initiate

and terminate reactions. This can be used for rapid chemical and biological
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screens such as DNA-binding assays, using only nanolitres volumes of sample

[92].

Droplets can be sorted by deflection through a variety of forces, both in-device [93]

and with external methods such as fluorescence-activated cell sorting (FACS) or

mass spectrometry [76]. Fluorescence-activated droplet sorting (FADS), is an in-

device method of sorting, using fluorescent markers, often attached to ‘reporter’

bacteria, [81, 88]. A label-free FADS method has been demonstrated for the

screening of cyanobacteria and microalgae, using intrinsic chlorophyll fluorescence

in photosynthetic cells to measure differences in biomass [94].

In conjunction with the various techniques for manipulation, droplets and their

contents are often ultimately imaged in some way. Fluorescence and bright-

field microscopy imaging can be used to follow reactions or growth cycles within

a microfluidic device over significant time periods, in thousands of individual

droplets, for both qualitative analysis and to generate statistics for population

studies [95, 96]. Alternatives to optical detection are also used, such as vibrational

spectroscopy or mass spectroscopy, allowing a non-destructive measurement of

molecular composition and structure [74, 76].

Microfluidic device fabrication

Microfluidic devices are made from inert materials, typically glass or polymers.

Polymer-based microfluidic devices offer cost, accessibility and biocompatibility

benefits. There are many direct and replication approaches for the manufacturing

of microfluidic devices [97]. In this thesis, we use a master mould to create

Polydimethylsiloxane (PDMS) devices because once one master is created, it can

be used to manufacture numerous devices in a typical biolab setting (without the

need for specialist equipment or a clean room).

These master moulds are made by spin coating SU8 to the desired channel depth

on a silicon wafer. The wafer is baked and then exposed to UV light through a

custom photomask (a mask fabricated with a CAD generated device design). The

wafer is baked a second time, and then a rinsed in propylene glycol methyl ether

acetate (PGMEA) until only the crosslinked SU8 remains, creating a positive

mould of the design. Many identical PDMS devices can then be made using this

mould. This process is illustrated in Figure 1.5 and detailed elsewhere [98, 99].
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Figure 1.5 Schematic of the fabrication of master mould (left) and PDMS
replica microfluidic device (right). Figure taken from [98].

1.4.2 Encapsulation of bacteria into droplets

Encapsulating bacteria into monodisperse, picolitre-size droplets can be achieved

simply by using a bacterial suspension (in growth media) as the aqueous phase

in the methods detailed above. The arrival of cells at the water–oil interface

is random while the production of droplets is continuous. The concentration

of bacteria in a well-mixed suspension is constant and therefore so is the mean

number of bacteria in the droplets. Hence the number of bacteria per droplet is

dictated by Poisson statistics, due to the random dispersion of cells within the

encapsulated phase.

The Poisson distribution is discrete, and describes the number of events

happening at a particular time, when these events are stochastic but happen

at a fixed rate (in this case, the number of bacteria arriving at a droplet as it

forms). This rate is characterised by an average value, λ:

P (k, λ) =
λke−λ

k!

where, in this context, P is the probability of a droplet containing k bacteria,
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Figure 1.6 Poisson distributions. Graph showing the probability, P (k, λ) of
droplets containing k cells, with plots for λ values of 0.5, 1, 2
and 3. Each line shows an example distribution for 1000 randomly
generated values at every λ value.

when using an aqueous phase concentration which gives an average number of λ

bacteria per droplet. Figure 1.6 shows a plot of this probability distribution for

various values of λ.

Because it is an intrinsic property of encapsulated bacteria, Poisson statistics

are often used as a methodological validation of droplet microfluidic techniques

[88, 95].

Poisson distributions are also formed with serial dilutions [9], but in droplets,

we have a direct measurement of the initial number of cells before growth. The

advantage of this passive encapsulation, is that we can study a distribution of

initial bacteria encapsulated in the droplets. Growth and antibiotic response can

be studied and compared between small populations with different starting sizes.

An additional benefit of stochastic confinement, is that because cell density is

increased, the encapsulation process can decrease the time needed to detect

bacteria or measure response to antibiotics [100]. There is an inherent inefficiency

due to the production of empty droplets, which can be inferred from the Poisson
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equation and the resulting distributions (displayed in Figure 1.6). This reduces

the number of filled drops when using low concentrations, but empty droplets

are useful for checking the results of image analysis and can be used to provide

background measurements if required by the image analysis methodology.

Complications arise when there is an experimental requirement for a specific

initial number of cells, as in the case of single-cell studies. At low bacterial

concentrations, for example at λ = 0.05, the majority of droplets will be empty

(95%), but those that do contain cells, 98% of these will only have one [9]. There

are numerous methods to overcome this single-cell Poisson limitation, including

droplet sorting or organising the bacterial cells prior to droplet formation [88, 101].

In this thesis, we will exploit the Poisson distribution of initial bacterial numbers

in Chapters 3 and 6, as it provides a way to sample and compare different bacterial

concentrations (i.e. different initial inoculum sizes) within the same experiment.
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Chapter 2

Methods and method development

This chapter details both the experimental and image processing methodology

that are used in this thesis to measure the growth of fluorescent bacteria in

picolitre droplets. The methodological starting point of my research was the

device detailed in the thesis of previous PhD student, Daniel Taylor [99], and

in our joint paper [96], which also contains analysis performed by me on Daniel

Taylor’s data. In this chapter, I describe a redesign of the microfluidic device to

improve performance, together with improved analysis methods.

2.1 Overview

To facilitate the study of the dynamics of small populations, bacteria were put

into monodisperse picolitre droplets to form spatially separate communities. The

bacterial growth within individual droplets was then tracked over time. Section

1.4 includes a discussion of droplet microfluidics methodologies as well as the

microbiological experiments they facilitate.

Specifically, in my work, fluorescent bacteria were diluted such that droplets are

filled with 0–10 initial cells. The droplets were stored in a 10 µm deep microfluidic

reservoir in which bright-field and fluorescence images are taken every 10 minutes

over multiple fields of view, (FoV) for 4–6.5 hours. The experimental method is

described in detail below in Section 2.2.

The resulting array of paired images for each field of view (FoV)—bright-field
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Figure 2.1 An example field of view (FoV) in the droplet reservoir. Showing
(left to right) a bright-field image, fluorescence image in CFP and
a binarised, processed image. In the processed image, the red circles
show where the droplet boundaries have been detected using the
brightfield image and the bacteria identified from the fluorescent
image are shown in white. The numbers indicate the droplet ID, a
unique number used to track the droplet throughout the experiment.
Droplets on the image boundary are ignored. Scale bars show 100
µm.

images of the droplets, and fluorescent images of the bacteria—was analysed

to obtain counts of bacteria at each timestep, within each droplet (which was

assigned a unique ID number). Figure 2.1 shows an example FoV in bright-

field, where we can see the droplets; the corresponding fluorescence image, where

we can see the bacteria; and the analysed image, where the droplet boundaries

and the bacterial cells have been identified. The image analysis methodology is

described fully in Section 2.3.

The image processing results in a dataset of droplet radius, droplet location and

size of the bacterial population, for each individual droplet at every timestep.

This can be used to obtain growth trajectories (as in Figure 3.1) which can then

be analysed further. As each data point is linked to a raw image, any unusual

trends or outliers in the data can be easily investigated post-analysis by referring

back to the original images.

In the following sections, the experimental and image processing methodologies

are described in more detail.
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2.2 Experimental method

I first present an overview of the experimental method, in Section 2.2.1, then, in

Sections 2.2.2–2.2.6, I explain and describe novel aspects of the methodology that

I established during my PhD research. A more detailed experimental protocol

can be found in Appendix B.

Throughout this thesis, each experimental run is referred to using the letters A–

D, with the ampicillin concentration given in brackets, in mg mL−1. Experiments

A(0)–D(0) are uninhibited droplet experiments with no antibiotic, the results of

which are explored in Chapter 3. A full list of experiments is given in Table 6.1.

2.2.1 Overview of the microfluidic droplet method

Device preparation

The microfluidic device was made with PDMS (Polydimethylsiloxane) using a

master mould as in described by Taylor et al. [96] (see Section 2.2.2 for a

discussion of the device design). Outlets and inlets were created using a biopsy

punch and glass capillaries. Channels were created by attaching the PDMS to

a large glass slide (76×38 mm). The device was then secured into a customised

chamber (see Section 2.2.3), and a surface treatment was applied to make the

channels fluorophilic (see Section 2.2.5).

Bacterial preparation

Three single colonies were grown up overnight in 6 mL of M9 minimal medium

supplemented with glucose at 0.4 wt% (recipe given in [96]). M9-based media was

chosen for this study due to its low levels of auto-fluorescence. In the morning,

25 µL of one of the overnight cultures, or 50 µL if using a Y-junction to introduce

the aqueous phase (see Section 2.2.6), was used to inoculate 10 mL of M9-glucose

media. The diluted culture was incubated at 37◦C with shaking for a further 1.5

hr. This was sufficient time for the bacteria to exit lag phase and we therefore see

growth in exponential phase at the start of the droplet experiments (see Figure

3.2).
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Bacterial strain: RJA003

The bacteria used in these experiments was RJA003, a strain of E. coli carrying a

chromosomal cyan fluorescent protein (CFP). It was created by P1 transduction

from strain MRR of Elowitz et al. into MG1655 [102, 103]. This strain was

sequenced to identify the β-lactamase it produces as blaTEM-116 (a class A

broad-spectrum β-lactamase TEM-116) with accession WP 000027050.1.

Device setup

The device was mounted on the microscope in a chamber that allows it to be

surrounded by water to maintain high humidity and a constant temperature

(see Section 2.2.3). The oil phase inflow (FC-40 with Pico-Surf™ surfactant,

see Section 2.2.4) was started at a low flow rate using a NE-300 (one-channel)

syringe pump.

After 1.5 hours, the bacterial suspension was removed from the incubator. The

optical density (OD) of the bacterial culture was measured immediately before it

is used, to check adequate growth. A 1 mL syringe was filled with the bacterial

culture. Air bubbles were removed and the syringe was attached to the aqueous

inlet of the microfluidic device using tubing. The remaining bacterial culture was

then placed back into the 37◦C incubator.

Epoxy was applied to secure the tubing to the glass capillaries and to ensure

water-tightness. Once the epoxy was dry, the lid of the chamber was secured,

the whole chamber submerged in a water bath and a pump engaged to create a

closed-system (see Section 2.2.3 for discussion of the chamber). The device was

surrounded by water throughout the experiment to maintain high humidity (to

prevent droplet evaporation) and a constant temperature.

Antibiotic: ampicillin

Ampicillin was used in the droplet experiments presented in Chapter 6 as an

example of a β-lactam antibiotic (see Section 1.3.1).

The stability of ampicillin is highly dependent on environmental factors such

as temperature, pH and the solvent [104]. Ampicillin was measured to have

a half-life of ≈30 hours in Citric Acid-Disodium Phosphate Buffer at 35 ◦C,
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with an ionic strength of 0.5 M and pH 6.85 [105]. Pharmokinectic factors

make in vivo dynamics more complex; accelerating the degradation. Plasma

concentrations of an ampicillin dose decline with a half-life of about 80 minutes

in adults (elimination half-life increases to 2.4–5.0 hours in infants) [106].

We expect the conditions of the droplet experiments to result in a half-life

between these two values, and therefore we expect some decline of concentration

independent of the bacterial β-lactamase action, although we still presume

significant antibiotic concentrations throughout the experiment, as 6.5 hours

should be below the in vitro half-life.

To minimise this degradation, a fresh stock sample (at 100 mg mL−1) was removed

from the freezer and diluted to the desired concentration shortly before use (see

Table B.1). Two separate syringes, one filled with the bacterial suspension and

the other with the ampicillin solution, were attached to a Y-connector, which

was attached to the aqueous inlet of the device with 1 cm of tubing (see Section

2.2.6). In this case, a two-channel Harvard Apparatus PHD ULTRA™ syringe

pump was used to dispense both aqueous phase inputs at the same rate.

Droplets

To achieve monodisperse droplets of the desired size, flow rates were adjusted

once droplet generation was established (i.e. once the oil and aqueous phases were

meeting at the flow-focusing junction). A discussion of the flow rates is given in

Section 2.2.2. Once monodisperse droplets filled the reservoir, the tubing at both

the inlets was cut to stop the flow.

Microscopy

Images are taken using a Nikon eclipse Ti2 microscope with a 20× plain Apo

λ objective (OFN25 Ph2 DM, 0.75 NA, with air immersion) and a Hamamatsu

ORCA-flash 4.0 digital camera (model C13440-20CU). The microscope stage was

operated with a Nikon TI2-S-JS stage joystick. A magnification of 20× was

chosen as a compromise between individual cell resolution and a reasonable scan

time (the full reservoir is approximately 400 fields of view at 20× magnification

and a scan was completed every 10 minutes). A higher objective would increase

the time for a complete scan and would therefore increase the time between data
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points for each droplet population. A lower objective would decrease the accuracy

of the image analysis and bacterial counts.

Nikon NIS-Elements imaging software [107] was used to operate the microscope

and the ND-acquisition (N-dimensional image acquisition) functionality was used

to set up automated imaging of the entire device for 4–6.5 hours. After this time,

the bacterial count for some droplets in the uninhibited experiments reaches ≈150

bacteria (see Figure 3.1), after which image analysis starts to fall down [96].

Example images of full droplets are shown in Figures 2.15 and A.13; the bacteria

were observed to swim throughout the experiment and were still able to divide

exponentially (see Figure 3.2). The length of the experiments was kept consistent

for comparative purposes, although it would be possible, and interesting in

future to perform longer measurements for the antibiotic experiments presented

in Chapter 6 (perhaps with a lower image acquisition rate).

Before each experiment, the microscope was checked for Köhler illumination,

calibrated and adjusted for optimum imaging in the bright-field and CFP (Cyan

Fluorescent Protein) channels, including 2×2 binning. The area of the scan was

tested to ensure it was correctly centred and covered the whole reservoir whilst

maintaining the Nikon Perfect Focus System (PFS). The ND acquisition was set

to image both channels, at each field of view (FoV) in the selected area, every 10

minutes (a multi-channel, multi-point, timelapse image scan).

During the image acquisition

As soon as the image acquisition scan is running, the bacterial culture was again

removed from the incubator and a second optical density measurement was taken.

This provides a reference for the concentration of the bacterial culture at the start

of the droplet imaging. Throughout the 4–6.5 hour experiment, the water flow and

temperature were checked intermittently to ensure the droplets were maintained

at a constant temperature. The scan focus and the captured microscope images

were also checked regularly.

2.2.2 Integrated microfluidic device

In the previous version of the microfluidic device (designed by Dan Taylor [99]),

the droplet generator and reservoir were separate, connected by a piece of tubing.
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During my PhD, I designed a new integrated two-level device. Combining the

reservoir and droplet generator into one device drastically reduced the time

difference between droplet generation and the droplets reaching the reservoir;

therefore reducing the time gap before imaging. This can now be as low as 3

minutes (see Table 6.1), in comparison to 90 minutes in the original device [96].

Another advantage of this design is that more droplets are pushed into the outer

chambers of the reservoir, since they enter over a wide transition zone rather than

at a central inlet, as in the previous design. This means that all four reservoir

chambers are filled with droplets for imaging, rather than the majority flowing

into the central two chambers, as was previously the case.

The new device utilises the established design for the droplet generator, which

creates droplets at a flow-focusing junction (see Section 1.4.1 for background).

Figure 2.2 Schematic demonstrating the droplet shape in the generator and the
reservoir on each side of the device step. The flow is from left
to right, indicated by the arrow. This is to scale and represents
a droplet with a volume of 65 pL with a 25 µm radius.

The generator and reservoir have different heights, since droplets need to be

compressed in the reservoir for optimal imaging of the bacteria. Therefore the

integrated device needs to be multi-level, as shown in Figure 2.2. It has been

verified using the original device that the bacteria remain in focus in droplets

contained in a channel with a height of 11.5 µm [96].

To this end, a multi-layer master mould was made with SU-8 resin on a silicon

wafer (manufactured by Micrux technologies [108]). This is a patterned template

which can be used to cast numerous PDMS devices (see Section 1.4.1 for

description of the fabrication process). Figure 2.3 shows the generator (in pink)

and the reservoir (in purple) as separate layers, which were used to make two

masks. These masks were used to make channels of different depths, so that there

is a step in height between the generator and reservoir which the droplets travel

through. Figure 2.4 shows a microscopy image of droplets traversing through the

step, from the generator to the reservoir. Figure 2.2 the change in droplet shape
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Figure 2.3 The CAD of the connected device design used to create the master
mould. The generator (in pink) was made with a channel depth of
35 ± 5 µm, and the droplet reservoir (purple) has a channel depth
of 10 ± 3 µm. The two designs shown are identical, except for the
step width (indicated with arrows), which are 4 mm (upper) and 7.2
mm (lower). Scale bar shows 4 mm.

as it moves through the device.

Two-level master moulds are intrinsically more complex than single-level master

moulds. Tension and alignment difficulties result in a higher likelihood of mistakes

in fabrication; this can create points of weakness, which are exacerbated with

each use, which results in lower reusability than a single-level mould. To mitigate

alignment problems in the manufacturing process, a 2 mm overlap between the

generator and reservoir layers (the pink and purple layers in Figure 2.3) was

included in the design, perpendicular to the step. This means that instead of the

masks needing to be positioned exactly where the arrows indicate, there is an

allowance for the horizontal position of the step, which reduces the risk of a gap

between the layers.

The new design also includes a central reference point in the reservoir to allow

the ND acquisition scan to be aligned easily. The microscopy scan is aligned

by positioning the central FoV over the objective and then inputting a scan

size which surrounds this central point. This is the only support outside of the

reservoir chambers, and is therefore easy to identify (see Figure 2.8). Now this

alignment step only requires finding the reference point, and creating a grid with

covers the area of the whole reservoir.
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Figure 2.4 Microscope image taken of droplets moving through the step of the
device. Droplets are moving left to right from the 35 ± 5 µm layer
to the 10 ± 3 µm reservoir. The droplets appear to increase in
diameter in this 2D image, as a constant volume is squashed in the
z-direction. Droplet shape is deformed when moving through a region
where the carrier-fluid velocity is changing.
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Flow rates

Two versions of the two-level device were made, with different lateral widths of

the zones in which droplets transition from generator to reservoir. Both versions

are shown in Figure 2.3, with arrows indicating the transition steps. In the device

with the narrower, 4 mm transition step (the upper design), the flow rate used

for the oil phase was 120 µL hr−1 while in the device with the wider, 7.2 mm

transition step (the lower design), it was 160 µL hr−1. The flow rate for the

aqueous phase (containing the bacteria) was set at 35 µL hr−1 if a Y-junction

was used or 60–70 µL hr−1 if there was only one aqueous syringe. These flow

rates can be adjusted if needed (for example, if blockages impede the flow).

2.2.3 Device chamber

As part of my PhD research, I designed a custom chamber to maintain

the microfluidic device in a humid temperature-controlled environment on the

microscope stage. Previously an 3D-printed open chamber was used, which the

device was secured into using a silicon glue [99]. Because the microscope slide had

to be supported on all sides, this restricted how much of the device was accessible

for imaging. In the new chamber, the slide was fastened along just two lengths

using a perspex clamp secured with screws onto an O-ring beneath. Photos B.1

and B.2 show the chamber and how the microfluidic device (which is mounted in

the centre of a glass slide) was secured.

Combining this new chamber design with larger than standard glass slides (76×38

mm) allowed the whole droplet reservoir to be imaged; specifically, we were able

to image 25× 16 = 400 FoV, compared with 14× 18 = 252 FoV in the old device

[96]. This increases the number of imaged droplets from 300–1000 to 1000–5000.

A lid was added to prevent splashing of water onto on the microscope (since the

stage moves whilst scanning) and maintain a consistent temperature. Inlets and

outlets were inserted to connect the water pump. Small holes were made in the lid

for the microfluidic device tubing and a bubble trap was included. The chamber

was made in the School of Physics mechanical workshop at the University of

Edinburgh by technician Andy Garrie.

We also needed to ensure that bacteria are maintained at the desired temperature

before they enter the microfluidic device. The syringe containing the bacterial
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suspension was not heated but at least 8 cm of the tubing leading to the device

was kept inside the chamber (when using a Y-junction, this could be reduced

to 4 cm). The maximum time from syringe start to droplet production of the

experiments presented in this thesis is 34 minutes (see Table 6.1). This means

that all bacteria that end up in droplets had been at the desired temperature as

soon as the water bath was started (since at 70 µL hr−1, the fluid in the 0.8 mm

ID tubing moves 14 cm per hour).

2.2.4 Surfactant

Pico-Surf™ is a proprietary biocompatible surfactant which can stabilise water-

in-oil droplets up to a size of 110 µm, or 700 pL [109].

In the two-level device, droplets experience a step in the device height as they

travel from the generator to the reservoir, illustrated in Figure 2.2. Droplets

travel through a step junction rather than a glass capillary and a tube, as in

the previous version of the device. In comparison to the original protocol, the

surfactant concentration was increased from 2.5% to 6–7% to ensure that the

droplets could withstand the stresses of travelling from the generator (35 µm in

depth) to the reservoir level of the device (10 µm in depth). These stresses are

visualised in Figures 2.4 and 2.5 which show deformation of droplets due to the

step in channel height and collisions with channel supports. The flow rate of

the carrier fluid (the oil phase) was also increased in comparison to the original

methodology, since in the connected device higher flow rates are required to push

the droplets under the step.

To create a solution of Pico-Surf™, 6–7 % of Pico-Neat™ by weight was mixed with

FC-40 (a fluorocarbon oil immiscible with water). Pico-Neat™ is highly viscous,

so to dissolve it completely into the FC-40, it was left overnight on a magnetic

stirrer.

Each solution of Pico-Surf™ can behave slightly differently because it is a polymer

mixture. Each new lot of Pico-Surf™ was therefore checked to tune the conditions

(primarily the flow rates) of the experimental setup to ensure reproducibility [109].

33



Figure 2.5 Fluorescent image of moving picolitre droplets (from left to right)
filled with fluorescein, taken using a 10× objective. We can see
the droplets deforming as they move around each other and the
microfluidic supports.
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2.2.5 Surface treatment

Pico-Glide™ is a surface coating agent that is used to enhance the performance

of droplet-generating microfluidic devices and ensure stability of the droplets.

It is a specialised chemical solution containing 0.5% (w/w) functional, fluo-

rous polyether polymer that is chemically reactive to plasma-etched glass and

polydimethylsiloxane (PDMS) surfaces. Pico-Glide™ forms a uniform and dense

fluorophilic layer which is covalently bonded to the microfluidic channel surfaces

[110].

Prior to using a device for an experiment, a syringe was half filled with air, and

0.05 mL of Pico-Glide™ was gently pushed into the channels through the outlet

of the device. In the integrated device design (Section 2.2.2), this fills quickly (in

less than 90 s) and so could be done the day of the experiment if required. It was

left to sit in the channels for at least 30 minutes to allow the fluorophilic layer to

form.

2.2.6 Introduction of antibiotic

To introduce the antibiotic immediately before droplets are formed, we used a

Y-connector to combine separate inflows of a solution of antibiotic and dispersion

of bacteria just before the aqueous inlet. In the original protocol, developed by

previous student Dan Taylor, antibiotic was added to the bacterial culture before

it was loaded into the syringe [96]. However this does not allow the study of early-

time responses to antibiotic. Using the Y-connector method, droplets that reach

the reservoir have been in contact with the antibiotic for between 3–37 minutes at

the start of imaging (see Table 6.1). The antibiotic and bacterial suspension are

both pushed through the Y-junction at the same rate to ensure both are flowing

evenly. It was then attached to the aqueous inlet of the device using epoxy.

Validation of the Y-junction

It is important that every droplet contained the same concentration of antibiotic.

Both the bacterial suspension and the antibiotic solution were pushed through

a Y-junction through a short length of tubing and then into the aqueous inlet

section of the device, so there was opportunity for mixing prior to the droplet
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formation at the flow-focusing junction. However because the tubing dimensions

are so small (0.8 mm ID), the flows meeting at the Y-junction were well within

the laminar range, with a Reynolds number of 0.006 (flow is considered laminar

below 2300)1. This is not necessarily a problem, as mixing can occur when both

flows are forced together at an angle. Furthermore, even if the two fluids are

not well mixed when they reach the flow-focusing junction where droplets are

created, we would still expect the bacteria and antibiotic to be combined in the

right proportions.

To test the function of the Y-junction experimentally, I performed an experiment

where droplets were filled with fluorescein, a widely used fluorescent dye. Firstly,

droplets were made from a 100% solution of fluorescein. A second device was then

used to generate droplets using a Y-junction connected to the same solution of

fluorescein and a syringe filled with water. By using the same flow rates for both,

as in the experimental protocol, generated droplets should each contain 50% of

the fluorescein.

Using fluorescence microscopy I then measured the fluorescence intensity per

pixel within the droplets, as a measure for fluorescein concentration. Figure 2.6

shows the distribution of fluorescence per pixel taken for droplets filled with 100%

fluorescein compared to droplets made using a Y-junction with a 50:50 mixture

of water and fluorescein.

The low value of the coefficients of variation for the measured intensities (0.049

and 0.068 for 100% and 50% fluorescein, respectively) are an indication that

the Y-junction combines the two fluid streams homogeneously. Unfortunately

there is a non-linear dependence between the measured fluorescence intensity

and fluorescein concentration, which means that this measurement does not

quantitatively confirm the 1:1 dilution ratio at the Y-junction. The dilution

ratio was instead validated by considering the details of the Poisson distribution

of droplet populations, as discussed in Section 2.5.3.

1The values for velocity were taken for a flow rate of 35 µL hr−1, and the dynamic viscosity
and density values were used for water at 37◦C [111].
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Figure 2.6 Histograms from the Y-junction experiment with fluorescein. Pixel
values were normalized by the area of the droplets. The mean pixel
values for each histogram are 1750 (Y) and 6316 (100% fluorescein).
This is for a sample of 44 and 65 droplets respectively. The
mean of the background distributions were 152 (Y) and 366 (100%
fluorescein). Images were taken with a 10× objective and 20 ms
exposure.
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Figure 2.7 Flow chart of the image analysis process for a experimental dataset.
Raw bright-field and fluorescent images are analysed to generate
data for each droplet population. Diamonds indicate manual
optimisation, and squares indicate steps which are executed with
algorithms written in Matlab.

2.3 Image analysis

Each droplet experiment produces thousands of bright-field and fluorescence

microscopy images of droplets and bacteria in the reservoir. Our image

analysis protocol must match the bright-field boundary of the droplets with

the corresponding fluorescent bacteria. The images were stitched or structured

together to combine fields of view (FoV), after which the images were processed

to detect droplets and count the bacteria in each droplet population, for every

timestep. In my work, I built upon the image analysis protocol developed by

previous PhD student, Daniel Taylor [96, 99]. In the following sections, I describe

this protocol and highlight the improvements that I made to it.

2.3.1 Stitching the fields of view together

An early stage of the image processing was the stitching together of multiple

fields of view (FoV) into a single image. A typical scan of the reservoir (with a

20× objective) has at least 240 FoV. This process was not trivial because there

is typically a small overlap between adjacent fields of view (due to the way the

microscope scans the device). This can be done in several ways.
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Figure 2.8 A stitched bright-field image of the whole reservoir which was
generated using the Nikon NIS-Elements software. This was stitched
from 33 separate FoV taken with a 4× objective. This reservoir is
filled with 4600 droplets. The scale bar shows 1mm.

Stitching with Nikon NIS-Elements

We can process the raw microscopy images using the inbuilt microscope software,

Nikon NIS-Elements [107]. First, the raw Tiff files need to be imported as a

sequence. The sorting is automated if the files are saved in the format ‘t xy c ’,

which gives each image a unique number for time (t), field of view (xy) and

channel (c). This sequence can then be converted into an ND2 format (a file type

used by Nikon software), which can then be stitched to a ‘large image’. Figure

2.8 shows a fully stitched image using this method. Stitched files are very large as

it contains images for all FoV, for every time step, for both channels. Therefore

it needs to be split into smaller files, which each contain multiple (≈ 10) FoV

for every timestep. This generally results in 20-30 stitched files which we export

in a Tiff format. Once these sections have been exported, they can then be

downloaded from the microscope computer and processed as arrays of (x, y, t)

for each channel.

Stitching with Matlab

Sometimes the Nikon software stitching fails (or the experiment was performed

on a different microscope with a different software). In this case, one option was

to stitch with an in-house Matlab code developed by previous student Dan Taylor

[99]. This places the individual images in the correct position, (x, y), for each
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timestep, t, into a 3D array of (x, y, t) for both the bright-field and fluorescence

channels. As with the software stitching above, the set of images from a full

experiment was too large to process as one array, so the FoV were split into

sections.

This method relies on a good calibration of the stage position, although some

alignment errors can be fixed if they are consistent over the full set of images.

Analysis without stitching

The main advantage of stitching the fields of view together is that droplets which

cross the boundary of a FoV can be included in the analysis. However these

boundary droplets are somewhat prone to errors. In the new two-level device I

was able to image many more droplets than with the old device, meaning that

it became less important to analyse every droplet. For most of my experiments,

I therefore performed the analysis without any stitching. Here, I arranged the

fields of view into a structure, and then simply processed the FoV individually,

discounting any droplets that crossed the boundary of the image (see Section

2.3.2).

Other benefits include: only having to store one set of raw data (and not the

additional stitched arrays); saving time by not having to stitch and load large

files; and the fact that we can adapt our thresholding of the fluorescence images

for different fields of view (see Section 2.3.3). It was also easier to match droplet

images to the data when investigating possible errors or unusual bacterial counts,

because each FoV had a bright-field image, a fluorescence image and a data

structure with the same field name.

2.3.2 Droplet detection

As established by previous student Dan Taylor [96, 99], droplet outlines were

detected using a circular Hough transform (CHT), an intensity-gradient based

approach which remains robust in the presence of noise or varying illumination

in an image. Matlab has an inbuilt function for this, called ‘imfindcircles’. The

application ‘Circle Finder’ was used to visualise the fitting parameters.

We use a dark object polarity because the droplet outlines are darker than the

background. A Two-Stage or 2-1 CHT method was used, where the normal to
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Figure 2.9 Image of the droplet boundary detection for one FoV using the Circle
Finder application, a UI for the ‘imfindcircles’ Matlab function. 24
droplets are detected (outlined in dashed orange). We see the droplets
are much smaller than the reservoir supports, allowing them to be
easily distinguished. The range of radius values were selected to be
65–85 pixels, the edge threshold was 0.06 and the sensitivity was
0.95.

each detected edge point is calculated, and the common intersection point is used

to find the centre of the circle. A radius histogram of the distances from this

centre point to the detected edge points is used to identify the most probable

radius [112].

The radius range, edge threshold and sensitivity are manual parameters for the

droplet detection algorithm. The radius range indicates the range of acceptable

droplet radii (in pixels). The upper limit of the range must be smaller than 140

pixels to avoid detecting the microfluidic channel supports (see Figure 2.9). The

edge gradient threshold sets the gradient threshold for determining edge pixels in

the image, it is a scalar value in the range 0–1. More circular objects are detected

as we lower the threshold value. The sensitivity factor is the sensitivity for the

circular Hough transform accumulator array, it is also a scalar value in the range

0–1. More circular objects are detected with a higher sensitivity factor, however

higher sensitivity values also increase the risk of false detection. The Matlab

code ‘imfindcircles’ does not find circles with centers outside the domain of the

image, which helped reduce the number of partial boundary droplets detected in

the analysis.
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Outside bounds

A boundary check was used to remove objects that appear to be partial droplets.

This is particularly important when using the FoV analysis with no stitching,

as there are more boundaries per experiment. Droplets detected outside the

perimeter of the image (the FoV or stitched array) were removed. Figure 2.9

shows 4 detected droplets which would be removed from the dataset. Overall

this reduces uncertainty in the analysis as droplets on the boundary are more

likely to be tracked incorrectly and could be counted twice if split across two

FoV. This also avoids imprecise or fluctuating bacteria counts, as bacteria can

swim in and out of the part of the droplet which is imaged.

2.3.3 Bacteria detection

Individual bacteria were detected by first thresholding the fluorescence mi-

croscopy images. Groups of pixels in these binary images were then labelled

as objects, and counted as bacteria. The optimisation of these two steps

are described below. The aim was to get as accurate a count as possible,

using automated methods, to create large datasets with thousands of droplet

populations. There will always be some uncertainty in this process; even counting

manually has an associated error (it is easy to miss a bacterial cell at the edge

of a droplet, and it is sometimes difficult to distinguish cells due to aggregation

etc.).

Thresholding

Thresholding is a type of image segmentation, where we binarize the pixel

intensities of an image to make the image easier to analyse. After thresholding

the fluorescence images, each group of bright pixels is counted as an individual

bacterial cell. This removes the need for sophisticated background subtraction.

The original image analysis process used a single absolute threshold value for the

entire stitched dataset, which was optimised by minimising the difference between

a manually counted sample and the output of the algorithmic count [96, 99].

In my research, I investigated instead the use of adaptive thresholding, including

Otsu’s method and integral image thresholding. In Otsu’s method, the grey-

level histogram of a greyscale image is normalized and regarded as a probability
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distribution. For a 16-bit greyscale image there are 65,536 levels of grey. Otsu’s

method aims to separate the histogram of grey-scale values into two classes, in the

optimum way. The algorithm searches for the threshold that minimizes the intra-

class variance, defined as a weighted sum of variances of the two classes [113].

Unfortunately, when used on the raw fluorescent images, the result is biased

towards very bright fluorescent dust and anomalies, which make the threshold

not sensitive enough to the bacteria. This was especially the case with stitched

images (containing multiple FoV), where in almost all cases, the accuracy of the

counts was found to be lower than using an absolute threshold.

Integral image thresholding is a form of thresholding that takes into account

spatial variations in illumination. Here, a different threshold value is computed

for each pixel in the image. The Matlab function ‘adaptthresh’ computes a locally

adaptive threshold that can be used with the ‘imbinarize’ function to convert an

intensity image (the raw fluorescent array) into a binary image. The result is a

matrix the same size as the image array containing normalized intensity values

in the range 0–1. The threshold is based on the local mean intensity (using

first-order statistics) in the neighborhood of each pixel [114]. This technique for

thresholding makes the assumption that the image contains primarily background

pixels and that the foreground pixels are distributed spatially across the image.

This makes the individual FoV images from the droplet experiments a particularly

good candidate for this type of thresholding. The integral image thresholding

allows for variation in bacterial brightness and in background lighting across the

device—particularly as each FoV is binarised individually—where an absolute

threshold does not.

A manually selected sensitivity value determines which pixels get thresholded

as foreground pixels, specified as a number in the range 0–1. High sensitivity

values reduce the contrast needed to threshold a pixel as foreground, at the risk

of including some background pixels. The range of sensitivity values (from 0–

1) used to analyse the experiments in this thesis was 0.44-0.501. This relatively

small range of sensitivity values indicates that the algorithm is appropriate for our

experiments, since the optimal parameter is similar across different experimental

runs.

In both the adaptive and absolute thresholding methods, a sensitivity or threshold

value was selected for each experiment by comparing a sample of manually

counted droplet populations to a range of algorithmic counts. This sample was

taken from 2–4 different timesteps in a minimum of 4 different FoV. The method
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Figure 2.10 Schematic showing the 8-connected pixels (highlighted in orange)
to a central (blue) pixel. Pixels are considered connected if their
edges or corners touch.

of least squares was then used to select the optimum sensitivity value.

In future work, there are other methods which could be explored to improve

the bacterial image analysis. Watershed transformations could be used to

eliminate the effect of bacterial clumps by segmenting the images of the cells.

Machine learning or basic object detection could be used to replicate the manual

identification of fluorescent objects as bacteria. Movement of the living bacteria

between frames could be used as a check to distinguish between fluorescent

artefacts and live bacterial cells.

Bacteria as objects

Once the images had been thresholded, bacteria were detected as connected-

pixel objects in the binarised image. Two adjoining pixels are considered part of

the same object if they are connected along the horizontal, vertical, or diagonal

direction. Figure 2.10 shows the 8-connected pixels in orange. The minimum

number of pixels that were counted as a bacteria object is the final manual

parameter to be optimised. For my experiments with E. coli using a 20×
objective, this was mostly set at 2 pixels, or 3 if the images were particularly noisy.

The optimality of this parameter was checked using the same least squares method

used for the threshold sensitivity value (and should be checked in combination

with the threshold value); by minimizing the sum of the difference between the

algorithmic and manual counts from a set of sample of images.
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2.3.4 Tracking droplets and counting bacteria

Once all the parameters were optimised (as discussed above), each FoV (or

stitched section) was passed in turn through the circle-finding, tracking and

bacterial counting codes in Matlab. The array of brightfield images for all

timesteps were input into the ‘imfindcircles’ function, along with the manually

optimised sensitivity, threshold edge and radius range values. This function

detects circles using a Hough Transform and stores their respective positions

and size. The output of this is an array of circle (droplet) centres in (x, y) co-

ordinates, with the corresponding timestep and radii (see Section 5.2.2 of Daniel

Taylor’s thesis [99]).

This array was then input into ‘track.m’ [115], a Matlab tracking code which

constructs trajectories from a scrambled list of particle coordinates determined

at discrete times. An estimate of the maximum distance that a droplet can move

in a single time interval (movement of droplets between frames) is set at 75 pixels

for all the analysis presented in this thesis. The output gave a list containing

the original data rows with an additional column containing a unique ID number

corresponding to each identified droplet trajectory; (x, y, t, ID, radius).

The corresponding fluorescence images were then thresholded (see 2.3.3). We

were now able to count the bacteria within the detected droplets by using the

position and radius of the droplet to create a mask area. The Matlab function

‘bwlabel’ returns a label matrix that contains labels for the 8-connected objects

found in the masked binarised image [116]. A Matlab script then counted number

of labelled 8-connected objects (the bacteria) for each droplet.

This resulted in an array of droplet coordinates and radii, with a corresponding

bacterial count at each timestep, for every droplet in the FoV; (x, y, t, ID,

radius, count). Every droplet was represented by an individual row for each

timestep. The final data array was contained in a Matlab structure which has a

field corresponding to each FoV.

This structure could then be manipulated for graphical interpretation or data

analysis. For example, it was converted into an array of bacteria counts over

time, as shown in Figure 2.11, to plot growth curves for each droplet.
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Figure 2.11 The structure of an output array, with the FoV number and droplet
ID number labelled on row 1 and 2 for every column. This allows
easy comparison of the data and the original images. Each column
displays the bacterial count for an individual droplet, where each
row is a different timestep (T0, T1, T2,...).

2.4 Image analysis of bacterial cell size

A parallel image analysis protocol was developed to quantify the size of bacterial

cells in each droplet in addition to the number of cells. This is particularly

relevant for the ampicillin experiments presented in Chapter 6, where we observe

filamentous growth.

Our main image analysis method involves counting a group of pixels as an object,

and each object as a bacterial cell. We set a minimal bacterial size of 2–3 pixels in

order to remove noise, but we do not set a maximal size. Therefore, larger groups

of pixels can be used to identify phenomena like aggregation (where multiple

bacteria are counted as a single object) or filamenting (where a given bacterial

cell has a larger pixel area than normal).

Figure 2.12 shows the distribution of the object (bacteria) sizes, in pixels, for

a dataset of uninhibited bacteria. The peak size in the distribution occurs at 9

pixels and the vast majority of the detected objects are smaller than 100 pixels.

The ratio of pixels to µm in 1D is 0.68 µm/px (see Section 2.6), and therefore

each pixel represents an area of 0.46 µm2. The modal object area is therefore

9×0.46 = 4.2 µm2, which we attribute to the projected area of a single bacterium

in uninhibited conditions.

2.4.1 Filamentation

Filamentous cells are found in many populations of E. coli, particularly in

stationary phase or when the population is exposed to stress [48–50], see Section

1.3.1 for background. In microfluidic mother machine experiments, Wang et al.

46



Figure 2.12 Distribution of bacterial cell size (in pixels). A sample of
870464 bacterial cells taken from experiment A(0), from droplet
images throughout the experiment (33 timesteps, corresponding to
a cumulative time of 5.5 hours). The frequency is plotted on a log
scale to show the full range of the data.

Figure 2.13 Filamentation of a bacterial cell in a droplet after 3.3 hr of
uninhibited growth. The red circle shows the droplet boundary. The
raw CFP image is shown on the left, and the thresholded image
is shown on the right. We can see that the filamentous cell is
one mass of connected pixels, and therefore counted as one cell in
the thresholded image. This droplet image is from zero-antibiotic
experiment A(0). Scale bars show 50 µm.
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found that the rate of filamentation significantly increased as bacteria aged for

more than 50 generations [33]. As the growth rates in our droplet experiments

were slow (see Table 3.2) and the bacteria are only observed for up to 6.5 hours,

we do not reach this threshold and therefore we see relatively few filamentous cells

in the uninhibited droplet experiments. However, filamentous cells were common

in our experiments when low concentrations of ampicillin are added (see Section

6.3.5).

Individual cells of E. coli are rod-shaped and are approximately 0.8 µm wide

(corresponding to 1–2 px) and 2.5 µm long (corresponding to 4–5 px), which is

consistent with our observation of a modal projected area of 9 px [117]. Filaments

are observed in the droplet experiments with a pixel size ranging from 55–1000

pixels. The number of pixels which represent a single bacterium depends on the

length of the cell, the orientation in 3D, overlapping or clustering of bacteria, the

focus of the image (blurring can make the bacteria appear bigger) and threshold

value. Fluctuations of these factors between successive timesteps can cause

transient drops in the pixel number associated with a given cell, which do not

represent an actual fluctuation in filament length (for example, the maximal size

shown in Figure 2.14).

Figure 2.13 shows a filamentous cell in a droplet which also includes many non-

filamentous cells. For simplicity, a lower cut-off of 70 pixels was used to sort the

data into filamentous cells and non-filamentous cells. A 70-pixel bacterial cell

covers an area of 32 µm2.

Figure 2.14 displays the image analysis output for the droplet shown in Figure

2.13, of bacterial count, the summed size (in pixels) and the maximal size of all

detected objects. For this filament-containing droplet (shown in Figure 2.13), the

maximum bacterial size follows the same trend as the count and the total pixel

sum. The maximum cell size is almost as many pixels as the combined pixel

size of all the bacteria, because the filamentous cell is far larger than the other

non-filamentous cells (which we can infer from the low mean size).

2.4.2 Aggregation

Aggregation between bacteria of the same type (autoaggregation or flocculation)

is a common phenomenon for many types of bacteria. Autoaggregation is also

often among the first steps in forming biofilms and suspended bacterial aggregates
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Figure 2.14 Example plot for a droplet containing a filamentous cell (a droplet
from uninhibited experiment A(0)). The LH axis shows the total
sum, the mean and the maximum bacterial pixel size within the
droplet over the course of the experiment. The RH y-axis shows
the bacterial count (yellow). The total pixel sum, maximum cell
size and bacteria count all increase at a similar rate throughout the
experiment. An image of the droplet is shown in Figure 2.13.
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Figure 2.15 Image of a droplet after 5 hr of growth, showing overcrowding or
aggregation of bacteria. The red circle shows the droplet boundary.
The image on the left shows the raw CFP image, and the image
on the right shows the binary theresholded image. The algorithmic
count found a bacteria number of 78. This droplet image is from
zero-antibiotic experiment A(0). Scale bars show 25 µm.

can offer protection from environmental stresses whilst maintaining mobility [118].

In droplets, aggregation (a biological or chemical phenomenon) or over-crowding

(the breakdown of the image segmentation and analysis at high densities), both

mean that particularly at later times, the count can fluctuate [96]. Figure 2.15

shows a florescence image of a droplet containing bacteria after 5 hours of growth.

We can see that in the thresholded image, some of these bacteria are grouped

as one object where they will be counted by the algorithm as one (large) cell.

Figure 2.16 illustrates the effect of this on the image analysis output by plotting

the bacterial count, the summed size (in pixels) and the maximal size of all

detected objects, for a droplet population in an experiment without antibiotic.

In particular, we can see that the maximal object size is sometimes very large due

to bacterial aggregation, and fluctuates significantly as bacteria swim in and out

of proximity to each other, in contrast to the maximal object size given by the red

dashed line in Figure 2.14, which can be attributed to a filamentous bacterium.

The mean size remains constant throughout the experiment, indicating that

the individual bacterial size is not increasing. This analysis of object sizes as

well as bacterial counts could allow us to identify filamentation or aggregation

without manually looking at every image. Note that this identification process

is not utilised for the filamentation analysis presented in Chapter 6 (Section

6.3.5) because we do not observe aggregation or high bacterial densities in

droplets containing antibiotic. We therefore simply treat high-pixel-number cells

as filamentous.
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Figure 2.16 A plot of a single droplet population throughout the experiment
A(0). The sum of the thresholded pixels is shown in black on the
LH axis, and grows in a comparable curve to the count, shown in
blue on the RH axis. The average size of each bacterial cell (RH
axis) is consistent throughout, whereas the maximum size (RH axis)
fluctuates as the bacteria move and aggregate. Fluorescence image
of the droplet is shown in Figure 2.15.
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2.5 Validation of the methodology

As part of my PhD research, I developed several different procedures to ensure

both the image analysis and device were performing as expected.

2.5.1 Checking for errors in the bacterial count

In every experiment, the output data was checked for count accuracy. A minimum

of 5% of droplets in each dataset were checked, and these were selected to

represent the entire spatial and temporal range of the experiment.

A Matlab script was used to find columns in the dataset with unexpectedly

high counts (using a cut-off value). If a systematic error was seen, this was

corrected and the whole detection and counting code was run again on the raw

images. For example, sometimes it was necessary to have different threshold

parameters for different time periods, which may not have been identified in the

initial optimisation. Other obvious outliers (such as rapidly changing counts)

were manually identified and either corrected or deleted.

Counting errors can be caused by many different factors; several bacteria in close

proximity can be counted as one; a dim bacterial cell can be missed by a high

threshold value; the droplet boundaries can be misaligned; or fluorescent dust can

be incorrectly counted as a cell. I performed an extensive analysis of the origin of

counting errors for a sample dataset for E. coli grown in the original microfluidic

device. The results are presented in [96].

For selected datasets presented in this thesis, I compared the algorithmic count

to a manual count. I observe a 2% error in the bacterial count per droplet in

a 45 droplet sample from experiment A(10), and a 3.5% error in a sample of

81 droplets from experiment A(0). None of these errors were caused by droplet

fitting issues, suggesting that the analysis with individual fields of view and the

removal of boundary-crossing droplets improves accuracy (for a stitched dataset

6% of errors were caused by droplet detection issues [96]).

In general, the percentage error is higher for lower bacterial counts, since a

miscount of one cell represents a large deviation from an actual population of

zero, one or two bacteria. This is sometimes hard to spot, and is more important

in droplet experiments with antibiotic, where number of bacteria is low. To
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increase the accuracy of the death dynamics we report, a droplet population is

defined to have died if the bacterial count is equal to zero for two consecutive

timesteps.

2.5.2 Comparing bacterial counting to integrated droplet

fluorescence

In previous droplet studies [66, 80, 81, 94, 95, 119], growth trajectories of bacteria

in droplets were measured using the integrated fluorescence intensity of the

droplet as a proxy for bacterial number. Therefore I compared the results

of our automatic bacterial counting algorithm to measurements of integrated

droplet fluorescence, as well as analysing the variation in fluorescence levels among

individual bacteria.

Figure 2.17 shows a comparison of bacterial counts measured using our algorith-

mic method, to total droplet fluorescence values. A similar analysis is shown in

Figure 3b in [96]. To evaluate total fluorescence, pixel values are summed over

an entire droplet and this sum was normalised by the droplet area to control

for background fluorescence, which scales with area. There is a weak correlation

between droplet count and integrated fluorescence, with significant noise.

Our image analysis process results in counts of bacteria by using thresholding and

counting each group of binarised pixels as a cell (as described in Section 2.3.3).

This avoids the noise which occurs when quantifying intensity or integrating

fluorescence output [120] and the pitfalls associated with binning and proxy

methods.

Pixel intensity for objects identified as bacteria

The noisy total droplet fluorescence data in Figure 2.17 is potentially caused by

the different fluorescence levels of individual bacteria, due to intrinsic variation

in the expression of fluorescence genes. There may also be artefacts associated

with imaging, e.g. due to differing depths within a droplet. Figure 2.18 shows

distributions of the fluorescence of individual bacterial cells. To obtain this data,

the bacteria in the raw fluorescent images were segregated using a mask of the

thresholded sections. These masked sections were then labelled as objects, as in

the standard counting protocol (described in Section 2.3.3). However, instead

53



Figure 2.17 Plot of integrated droplet fluorescence, normalised by droplet area,
against our algorithmic bacteria count. The data points represent
1245 droplet populations tracked over the entire experimental run
(therefore different data points can represent images taken at
different timesteps). The Pearson correlation coefficient is 0.21
(with a p-value < 0.001). The best fit line is shown in black; with
equation y = 1.46x+ 1890.
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of each group of thresholded pixels being counted as one bacterial cell, the

thresholded section was used as a mask to identify the corresponding pixel values

in the raw images. This produced a summed fluorescence value for every bacterial

cell in every droplet. These values are plotted as a histogram in Figure 2.18 (a).

There was a wide range of summed fluorescence pixel values, and some of this

variation is due to the range of bacterial sizes.

In panel (b) of Figure 2.18, the fluorescence values are normalised with respect

to the size of the bacterial objects, giving an average fluorescence value per pixel

for each identified bacterium. When compared to the background, we see that

the pixels in objects identified as bacteria have a generally higher fluorescence

value and show more variation. The fact that some bacterial pixels are lower in

fluorescence than the background arises from the adaptive thresholding method

(see Section 2.3.3). The fact that the fluorescence varies between individual

bacteria justifies our use of discrete bacterial counting rather than integrated

fluorescence, as in previous studies.

2.5.3 Analysis of droplet loading statistics

When bacteria are initially loaded into the droplets, we expect the numbers of

bacteria per droplet to follow a Poisson distribution. This is because at the

flow-focusing junction, the encapsulation of each bacterium into a droplet is an

independent random event. The concentration of the bacterial culture controls

the mean number of bacteria per droplet (the control parameter of the Poisson

distribution, which we call λ), see Section 1.4.2. Checking whether encapsulation

numbers follow the expected Poisson distribution is a common validation method

for encapsulation studies [88, 95]. I therefore investigated the distribution of

initial bacterial numbers per droplet to check whether the image analysis and

the Y-junction method of introducing antibiotic (see Section 2.2.6) was operating

correctly. Poisson statistics can also confirm that the delay between droplet

generation and is droplet imaging is negligible.

Figure 2.19 shows the relationship between the mean and the variance of

the initial bacterial numbers for the experiments performed in the absence of

antibiotic (see Chapter 3). For a theoretical Poisson distribution, these should

be equal (indicated by the dotted red line). For our datasets, we find that the

variance is greater than the mean, suggesting that there is another factor at play.
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Figure 2.18 Histograms of pixel values for individual bacterial cells. (a)
Distribution of the pixel values of bacteria taken from the raw
TIFF fluorescence images. This is a sample of 808488 bacteria
across all 33 timesteps from ≈1500 droplets in 166 different FoV.
(b) Distribution of pixel values normalised by the pixel size of each
bacterial cell. This sample contains 546661 bacteria, detected over
all timesteps. The background is taken from empty droplets and
the surrounding areas from 3 separate FoV (a sample of 5.4× 105

pixels). This data is a subsection of experiment A(0) (see Table
3.1).
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Figure 2.19 Plot of mean vs. variance of the initial bacteria distributions for
experiments with no antibiotic. For a Poisson distribution the
mean and the variance should be equal; the dotted red line shows
the expected 1:1 trend.

Figure 2.20 The initial bacterial counts of uninhibited growth experiment A(0),
which had 2743 tracked droplets, shown in black. The shaded
green area is the range of 10,000 repeated samples of Poisson
distributions (of size 2743) computationally generated with a fitted
λ value of 1.79 (see Table 2.1). This method was chosen to include
the variation caused by drawing from a finite sample size. Error
bars show a 3.5% uncertainty in the experimental bacterial counts.
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To see whether our data was produced by a Poisson process we compared the

distribution of initial bacterial numbers to Poisson distributed values. The λ

parameter is found using a Matlab script which iteratively compares the least

squares difference between the initial distribution of the data and generated

Poisson distributions for a range of λ values. Table 2.1 shows the fitted parameter

values.

Figure 2.20 shows the range of computer-generated Poisson values compared to

the experimental data. The uncertainty in the bacterial count (see Section 2.5.1),

is displayed as 3.5% error bars on the number of droplets containing each count of

bacteria. Although visually the Poisson fit is quite good for droplet populations

of 0, 1 and 3, the measured frequency of more populated droplets (5–9 bacteria)

is higher than the Poisson fitted range.

A Pearson’s chi-squared test was used to establish the goodness-of-fit, using a

custom R script developed by Alexander et al. [23]. Deviation from a Poisson

distribution was determined at a 5% significance level, with degrees of freedom

equal to the number of categories (defined here as subsets containing at least five

droplets) reduced by two. According to the goodness-of-fit test, the experimental

data showed significant deviation from a Poisson distribution when compared to

expected distributions with both a λ value equal to the mean (λ=2.02, χ2
7 = 312,

p < 1× 10−10) and the fitted value (λ=1.79, χ2
7 = 590, p <1× 10−10). Thus we

reject the null hypothesis that this data represents a Poisson distribution. We

discuss in the next section how this deviation can be accounted for by considering

bacterial growth.

Poisson distributions with growth

In our experiments, the first measurement of bacterial counts is taken 3–37

minutes after encapsulation into droplets (see Table 3.1). Therefore the bacteria

have some time to proliferate after they are encapsulated and before the first

image is taken. We therefore tested whether a model which includes growth after

Poisson encapsulation could explain our initial count data.

To do this, I used a simulation approach. In the simulation, an initial bacterial

number is chosen for each droplet from a Poisson distribution, then exponential

growth of that population is simulated using the experimentally determined

growth rate. Growth was simulated in discrete timesteps using a tau-leaping
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Experiment OD (600 nm) Y Total droplets NZ droplets Mean Fitted λ

A(0) 0.1034 y 2743 2189 2.02 1.79
B(0) 0.0573 n 1524 201 0.164 0.14
C(0) 0.0667 n 385 45 0.218 0.09
D(0) 0.0362 n 592 484 3.33 N/A*
E(0) 0.0315 y 626 626 0.860 0.81

Table 2.1 Initial parameters for the zero antibiotic experiments, presented in
Chapter 3. The (post) OD value of the bulk bacterial suspension is
given. The Y column indicates whether a Y-junction was used for the
introduction of bacteria (y, yes or n, no). The NZ (non-zero) droplets
indicates the number of droplets containing bacteria. The mean is the
calculated mean number of initial bacteria per droplet (calculated over
all analysed droplets). Fitted λ values were tested in increments of
0.01, by comparing 100 computer-generated Poisson samples, the size
of the corresponding droplet number, to the experimental distribution.
*Experiment D(0) is omitted from the fitting as the image analysis
was started at 50 minutes, and so the populations of bacteria are no
longer Poisson distributed.

method to account for the stochastic nature of growth. The output parameters

of this model are the best fitting Poisson parameter λ and the time of growth (or

delay).

Minimisation of the residual sum of squares (RSS) (the difference between the

experimental frequency and the simulated value) was used to find the optimal

λ value and growth time. Figure 2.21 shows the dependence of the RSS and

therefore the fit quality of λ for different growth times. The minima of these

curves shifts left as the growth time increases, as would be expected. For longer

growth times (50 and 60 min) we see the minima are at higher values than the

non-grown fits. Whereas for shorter amounts of simulated growth (5–25 min),

the minima values are lower than for the non-grown fits.

Figure 2.22 shows an example of the resulting distributions of the fits compared

to the experimental bacterial counts, with (in purple) and without (in green)

growth. This plot shows that Poisson loading plus exponential growth appears

to explain the data better than the Poisson distribution alone; see, for example,

the data for droplets containing 2 bacteria. When we account for 15 minutes of

exponential growth in the model, we are able to fit the entire dataset. This is a

reasonable growth time, as the actual experimental delay between droplet loading

and imaging for this dataset was between 21–31 minutes (see Table 3.1).
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Figure 2.21 Minimising curves of the residual sum of squares between generated
Poisson distributions and the initial population numbers. The x-
axis shows the tested λ value. The dotted line shows the fit without
growth, the coloured lines show the fit for various growth times, in
minutes. Growth was simulated in discrete 5 minute intervals.

Characterising the impact of the imaging delay

The delay between the droplet generation and droplet imaging is important. If

this gap is too long, then bacteria could start to grow or die in the droplets before

the first images are taken, and they would be characterised with an incorrect

initial population number. This would obscure inferences we could make about

our results. The delay for each experiment is given in Table 6.1. These values

are calculated as the difference between the time the tubing is cut (when droplets

stop being produced) and the start of the scan. A range of 10 minutes is given

to account for the range of travelling times for droplets in different areas of the

reservoir, as well as the difference between the start and end position of the scan.

We can use the initial distribution of bacteria to verify that we are capturing

the important early death dynamics. Figure 2.23 shows the bacterial count per

droplet for the first timestep of experiment A(10), with an overlay of randomly

generated Poisson distributions (as in Figure 2.20), using the mean bacterial

number per droplet as the λ value.

According to a Pearson’s chi-squared goodness-of-fit test (implemented identically
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Figure 2.22 This plot shows the initial bacterial count (data) for experiment
A(0), in crosses. Poisson-distributed samples were generated in
Matlab, with a size corresponding to the number of droplets in the
dataset (here, 2743). This was repeated 100 times to calculate the
ranges shown. The λ values used were; the calculated mean of the
data, 2.02 (magenta); the best fitted λ value, 1.79 (blue); and the
best fitted with growth λ, 1.62, with 15 minutes of simulated growth
(green).

61



as for the dataset A(0), described above), the deviation from a Poisson

distribution is not significant (λ=0.496, χ2
2 = 1.33, p = 0.515) and thus we do not

reject the null hypothesis that the data was drawn from a Poisson distribution.

This gives us confidence that the death rate isn’t so high such that we miss

the early dynamics. For this experiment, the time delay between the droplet

generation (i.e. the Poisson distribution) and the first measurement was 16–26

minutes.

As well as showing that this order of time delay is negligible for our experiments,

the good fit for a Poisson distribution also indicates the Y-junction methodology

is working as expected (the mean number of bacteria reaching the junction is

constant).

Furthermore, we can compare Figure 2.23, which shows a dataset of bacterial

populations under antibiotic stress, where we do not see bacterial proliferation,

to Figures 2.20 and 2.22, which show a dataset of uninhibited bacterial growth.

We see a good fit to Poisson statistics for the droplet populations with suppressed

growth, whereas the datasets for bacteria with uninhibited growth do not show

a good fit without growth in the model. This supports our hypothesis that the

bacterial proliferation is the underlying cause of the deviation from a Poisson

distribution.

2.6 Concentration of bacteria within the droplets

The small volumes we use to encapsulate the bacteria result in a high inoculum

concentration even when there is only one cell. Picolitre-volume droplets

containing a small number of bacteria have similar (or higher) concentrations

of bacteria per mL to the concentrations used in traditional bulk microbiology

experiments (see Figure A.5). This is useful to calculate for comparisons between

the two.

The average droplet radius in the reservoir is 81 ± 6.5 pixels (calculated using

the mean droplet size of 3 different experiments presented in Chapter 6). Pixel to

µm ratio was calculated using the known diameter of the device supports (which

are 200 µm) as 0.68 µm/px. This means the average droplet (reservoir) radius is

55 ± 4.4 µm. For some experiments with polydisperse droplets, this range will

be far greater. For the experiments in this thesis, we analyse a maximum droplet
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Figure 2.23 Initial bacterial counts from experiment A(10) (at 10 mg mL−1 of
ampicillin, the highest concentration tested in droplets), for 1789
droplets, shown in black. The shaded green area shows the range
of values generated from 10,000 computer-sampled (size 1789)
Poisson distributions using the mean experimental bacterial number
(per droplet) as the λ value (λ= 0.496). This representation was
chosen to include the variation caused by drawing from a finite
sample size. Here we see a consistent overlap between the Poisson
distributions and the experimental data. Error bars show a 3.5%
uncertainty of the experimental bacterial counts.
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Number of bacteria 1 2 3 4 10
Concentration (mL−1) 1.1× 107 2.2× 107 3.3× 107 4.4× 107 1.1× 108

Table 2.2 Bacterial concentrations for a range of population sizes contained in
a droplet with a volume of 91 pL (9.1 ± 1.5× 10−8 mL).

radius range of 60–140 pixels (40.8–95.2 µm).

Droplets in the reservoir are squashed and therefore are not circular (see schematic

in Figure 2.2). We approximate the shape as a cylinder of height, h, equal to the

channel depth, surrounded by half a torus. We can use the second theorem of

Pappus to calculate the volume of the half torus shape; the volume of a solid of

revolution is the product of the revolution distance (2πR), and the area of the

planar cross section (πr
2

2
). We can therefore calculate the droplet volume as:

V olume = πr2ch+
1

4
π2h2rc.

In all the droplet experiments, we use the same microfluidic master mould (see

Section 2.2.2), so channel height, h is fixed at 10 µm. The radius of the cylinder,

variable rc is determined by subtracting h
2

from the total radius (measured from

microscopy images). The average droplet therefore, has an rc value of 55 − 5 =

50±4 µm. This gives a volume of 90877 ± 14500 µm3, 91 ± 15 pL or 9.1 ±
1.5× 10−8 mL per droplet. This is slightly less than the volume of a cylinder

with radius 55 µm, and height 10 µm: π ·552 ·h =95033 µm3, 95 pL or 9.5× 10−8

mL, as we would expect.

We can use this volume to calculate the concentration of bacteria in a droplet with

a given population number. Table 2.2 shows the concentration of the inoculate

for a range of example population numbers. We can see that even with one

bacterial cell, the droplet concentration is far higher than the standard inoculum

for measuring the MIC.

2.7 Summary

This chapter has outlined the experimental method for making microfluidic

devices and using these to create and image thousands of picolitre droplets

containing bacteria. Section 2.3 described the image analysis procedure used to

convert these images into datasets of droplet populations and Section 2.4 describes

64



how I used the same images to additionally assess the extent of filamentation and

aggregation. This data allows us to obtain large numbers of population growth

trajectories. Section 2.5 validated the methodology, finding that the bacterial

count results were accurate to within an error of 3.5%.

Bacterial population data generated using these methods is presented and further

analysed in Chapters 3 and 5. An investigation of filamentation is used in Chapter

6 to fully understand the impact of antibiotic on the growth dynamics of these

small populations.
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Chapter 3

Heterogeneous growth of

uninhibited bacteria

3.1 Introduction

Intrinsic noise fundamentally limits the precision of the regulation of gene

expression. This means that bacterial division and survival include stochastic

processes. Stochastic effects in gene expression account for the large amounts

of cell-to-cell variation observed in isogenic populations [102]. Heterogeneity can

be a beneficial part of many biological processes, and can allow the survival

of a genome in times of stress. See Section 1.2.1 for discussion of intrinsic

heterogeneity within clonal populations of bacteria and its relevance.

Experimental techniques which take averages of large populations, such as

absorbance measurements or counting colonies on an agar plates, can mask

distributions and variability in the growth of individual cells; thus obscuring

the heterogeneous behaviour of the bacteria. It is known that individual cells

systematically deviate from population-level growth laws, and therefore are not

represented well by these measurements [95, 121].

Instead, new methods have been developed to study the heterogeneous behaviour

of individual microorganisms. Mother machines are a popular microfluidic device

used for this purpose. Here the mother cell can, in principal, be studied for an

unlimited period of time. This means that a mother cell of E. coli can be observed

for hundreds of generations [33]. See Section 1.2.3 for a review of methods used
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to study small populations.

For the experiments in this thesis, we have chosen to use droplets in order to

study the dynamics of small populations of cells that are not subjected to the

geometrical constraint imposed by the mother machine. Imaging bacteria growing

in multiple replicate droplets can improve our ability to understand and quantify

stochastic behavior within small populations. See Section 1.4 for a discussion of

the advantages of using droplets.

In this chapter, the results and analysis of four microfluidic droplet experiments

are presented. Small populations of bacteria were encapsulated in droplets to

study the growth dynamics over many hours. Analysis of this bacterial growth

without antibiotic or other environmental stresses shows heterogeneous growth

within the inoculating culture, grown from single a colony of E. coli. We are able

to directly measure the distribution of droplet-population growth rates (Section

3.3.2) and see heterogeneity in the final population sizes of the droplets (Section

3.3.3). We find a significant distribution of droplet-population growth rates; and

that the population growth rate of some droplets to be lower than the bulk rate,

because the faster growing cells dominate these large-population experiments. We

also identify a number of droplet populations which do not grow at all (Section

3.3.5).

We use this data to investigate the possible inheritance of growth rate. If there is

a growth rate distribution of fast and slow growing E. coli cells at the start of the

experiment and this trait is inherited, then we might expect droplets with larger

initial populations to have higher overall growth rates (since a droplet starting

with more bacteria would have a higher probability of containing a fast-growing

cell). However, we find that the droplet-population growth rates do not follow

this trend (see Figure 3.5), and this therefore suggests no (or weak) inheritance

of growth rate for the strain of E. coli tested.

Furthermore, because we can precisely count the number of bacteria in each

droplet population (at multiple timesteps), we have large datasets which we can

use to compare to theoretical predictions. Here we use an analysis based on

the Bellman–Harris model to investigate whether our experimental data fits this

framework (Section 3.3.4). This also gives us a way to determine single-cell

division time statistics from our population-level measurements.

This analysis helps demonstrate the vast potential of the rich experimental

datasets to generate biological insight, particularly alongside the raw images of
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the droplet populations obtained from every experimental run.

3.2 Method

The experimental and image analysis methodologies are detailed comprehensively

in Chapter 2. These are briefly summarised below.

Uninhibited growth experiments were completed with an ampicillin resistant,

CFP strain of E. coli (RJA003). The data presented below is from four repeat

experiments, with different inoculates, completed on different days.

A single colony was taken from an agar plate and grown overnight in 6 mL of

M9+gl media. On the day of the experiment, 25 µL of this bacterial suspension

was further diluted in 10 mL of media and placed in a 37◦C incubator for 1.5 hr

to ensure that the bacteria were in the exponential growth phase. The optical

density (OD) was checked at this stage; the OD (at 600 nm) of the initial bacterial

suspensions for the experiments in this chapter range from 0.009–0.023. This

suspension was then used as the aqueous input for a microfluidic device to create

picolitre droplets. The design for the microfluidic device is explained in Section

2.2.2. The device was secured in a water bath which ensured humidity and a

temperature of 37◦C throughout the experiment (see Section 2.2.3). The droplets

were then imaged within the device every 10 minutes using brightfield (to image

the droplet boundaries) and CFP fluorescence (to image the bacteria) microscopy,

for 5.5–6.6 hr. See Appendix B for a step-by-step experimental protocol.

These microscopy images were then converted into a dataset of bacterial number

per droplet, for each timestep. The image analysis process is explained in Section

2.3.

3.3 Results and analysis

3.3.1 Data

1See Figure A.1 for the growth curves from experiment E(0), which were not included here
as we did not observe growth in droplets.
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Figure 3.1 Growth curves of the droplet populations in the experiments with zero
antibiotic. Panels show data from experiments: (a) A(0), (b) B(0),
(c) C(0) and (d) D(0), which are detailed in Table 3.11. Each line
corresponds to the number of bacteria in a particular droplet over the
course of an experiment. Grey sections of the growth curves indicate
a range of time when images were either not taken or unable to be
analysed. Note that the data for D(0) begins from 40 minutes.
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Figure 3.1 displays raw data extracted from the droplet experiments once the

image analysis is complete and manual error checks have been performed. Each

panel of Figure 3.1 shows the growth curves measured of all the individual droplets

for each experiment (A–D). These growth tracks represent the number of bacteria

at each timestep, in the populated droplets that were able to be tracked for the

complete experiment, which is up to a maximum of 2189 droplet populations in

A(0).

Table 3.1 lists the experiments, which are each coded with a letter to distinguish

them and the concentration of antibiotic given in brackets. The total number

of droplets is listed, but it is important to note that some of these are empty,

and so the number of populated droplets is also given, which corresponds to the

number of lines on the corresponding panel in Figure 3.1. The range in fractional

occupancy is due to the range of concentrations of the bacterial suspension used

to make the droplets. There is an intrinsic delay between when the droplets are

formed and the imaging (measurement) begins. This has been drastically reduced

in comparison to previous methods (see Section 2.2.2), but is still relevant on

the scale of bacterial division. The delay time is listed in Table 3.1 for each

experiment.

The image analysis for experiment D(0) is started from 40 minutes as there was

droplet movement within the device at the fourth timestep. This interrupted

the droplet tracking and so the data presented is from after this movement had

stopped.

The droplet trajectories exhibit a wide range of population growth rates, even

within an individual experiment. This represents heterogeneous growth rates of

subpopulations of the same clonal inoculum. This is explored in Section 3.3.2.

There is also a wide range of final population numbers (from 0 to 135 bacteria)

resulting from the diverse growth rates, as well as the Poisson distribution of

initial population sizes. In Section 3.3.3 we separate these factors to confirm that

the population size is heterogeneous even between droplets with the same initial

number of bacteria.

For completeness, an example of an experiment where there was no observed

growth is included in Appendix A, in Figure A.1. This is likely due to choosing a

single colony from the plate to grow the overnight culture, which then by chance

didn’t grow any further. This is an example of the heterogeneous nature of

bacterial colonies.
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Experiment Total droplets Populated droplets Delay (min)

A(0) 2743 2189 21–31
B(0) 1524 201 3–13
C(0) 385 45 27–37
D(0) 592 484 9–19
E(0) 1126 626 1–10

Table 3.1 Zero-antibiotic experiments. Total droplets is the number of droplets
tracked for the entire time range of the experiment (at least 5 hours,
which is 31 timesteps). The delay is calculated as the difference
between the time the tubing is cut (and droplets stop being produced)
and the start of the scan. A range of 10 minutes is given to account
for the range of travelling times for droplets in different areas of the
reservoir, as well as the difference between the start and end position
of the scan.

3.3.2 Growth rates

With thousands of individual growth tracks, we are able to investigate the

heterogeneity of growth dynamics between these populations. Bacteria are

geometrically unconstrained within droplets and growth is conducted under

uninhibited growth conditions. Therefore growth is expected to be in the

exponential phase. Figure 3.2 shows the natural logarithm of the growth curves

from experiments A–D (which are plotted in Figure 3.1). A simple linear

regression was performed on the straight section of the data, from 0–240 minutes,

to assign an exponential growth rate for each droplet population.

A distribution of population growth rates is observed between droplets within

each experiment. This heterogeneity is present despite the bacteria being from a

single colony and and all droplets being kept under identical growth conditions.

Figure 3.3 shows these distributions. Each colour of histogram represents the

growth rates for droplet populations from each experiment. The mode of the

data is similar across all the experiments, as the histogram peaks only differ by

1.5× 10−3 min−1.

A second level of comparison can be made between the growth rates for the droplet

populations between experiments, A–D. Table 3.2 shows the mean droplet-

population growth rate for each experiment, as well as the standard deviations

and the absolute range (the difference between the maximum and minimum)

of the growth rates. The simple average of the mean population growth rate

for all droplet experiments (discarding the non-growing experiment, E(0)) is
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Figure 3.2 Log plots of the growth tracks for experiments (a) A(0), (b) B(0),
(c) C(0) and (d) D(0). Growth rate is calculated by fitting the first
240 minutes of data for each droplet population growth tracks to a
straight line (except for D(0) which is fitted to a straight line using
data from 40–140 minutes). Grey sections of the growth curves
indicate a range of time when images were either not taken or unable
to be analysed.
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Exp. Mean GR (min−1) DT (min) Range (min−1) SD (min−1) CV

A(0) 0.0099 70 0.0183 0.0017 0.17
B(0) 0.0073 95 0.0194 0.004 0.55
C(0) 0.0088 79 0.0130 0.0024 0.28
D(0) 0.0085 81.5 0.0330 0.0044 0.52
E(0) 0.00058 1201 0.0177 0.0022 3.2

Table 3.2 Growth rates (GR) of each zero-antibiotic experiment (Exp.),
determined using linear fits to the natural log of the bacterial number
for data from 0–240 minutes (except for D(0), which is taken between
40–140 minutes, as this is the available data). The doubling time
(DT) is calculated using the mean growth rates. The range is
calculated by subtracting the minimum droplet population growth rate
from the maximum. Coefficient of variance (CV ) is calculated by
dividing the standard deviation (SD) by the mean growth rate.

0.0086 ± 0.0012 min−1. It is interesting that we see a fairly consistent mean

droplet-population growth rate across the experiments, but a high variance

between the growth rates of droplet populations within these experiments. The

coefficient of variation (CV ) in population growth rates for experiments A(0),

B(0), C(0) and D(0) are between 0.17–0.55. However the CV between the four

mean population growth rates of the droplet experiments is 0.11. Therefore the

spread of population growth rates differs more between clonal droplet populations

than between repeats of the experiment with different initial colonies. By

sampling thousands of bacteria, we converge towards an average value. The

two experiments with the fastest mean growth rates, A(0) and C(0), have the

lowest CV values, whereas the slower growing experiments, B(0) and D(0), have

a much larger spread with CV values of over 0.5.

This data is in contrast to bulk optical density (OD) measurements where a

single growth rate is measured for the whole population. Using a plate reader

we determined the typical bulk growth rate for RJA003 in M9 minimal media

to be 0.0066± 0.002 min−1. The plate reader results are plotted in Figure A.11.

Perhaps surprisingly, the mean bulk growth rate is lower than the mean droplet

growth rate, when we would expect the fastest growing bacteria to dominate the

plate reader. However these two values are equivalent within the uncertainty of

the measurements, so we cannot draw a meaningful conclusion from these two

values.

We can compare the variation that we observe between droplet populations to

growth variation measured from single cells using time-lapse microscopy. Stewart
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Figure 3.3 Histograms showing the distribution of growth rates for the droplet
populations. Colours indicate the experiments A(0), B(0), C(0) and
D(0). The mean and range of the growth rates are given in Table
3.2
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Figure 3.4 The coefficient of variation (CV ) values of droplet population growth
rates, separated by initial population size (N0), for experiments
A(0)–D(0). The CV was calculated by dividing the standard
deviation of the droplet population growth rates by the mean droplet
population growth rate, for each subset of data.

et al. measured repeated cycles of reproduction by individual E. coli cells, finding

a difference of up to 5% between the growth rates of sibling pairs. This arises

from intrinsic sources of stochasticity and reproductive asymmetry, where upon

division, the cell that inherits the old pole grows slower than the cell with

the new pole [30]. Koutsoumanis et al. measured the growth rate, for 213

microcolonies of Salmonella Typhimurium, originating from a single cell. They

found a range of 0.005 to 0.022 min−1, with a CV of 0.205 (20.5%), demonstrating

high variability in the growth dynamics [2]. Whilst not directly comparable to

the droplet-population growth rates, these single-cell measurements demonstrate

the underlying stochasticity which is likely to be a source of the variability we

measure amongst the droplet populations, in addition to the added dispersion of

Poisson distributed initial bacterial numbers.

We can explore the effect of the initial population size on the heterogeneity of the

growth rate by separating the experimental data into subsets. Figure 3.4 shows

the CV values for the growth rates of droplets with the same initial population

number. This plot indicates that the heterogeneous growth rates of the droplet

populations do not simply result from the range of initial population sizes. In

particular, droplets which begin with one bacterial cell do not have a lower
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variance in population growth rate than those which start with more bacteria.

Although we note that the sample sizes vary significantly between the subsets,

due to the Poisson distribution of the bacteria, therefore at higher values of N0

there may only be 1–2 droplet populations available to include in the comparison.

We can also utilise the subsets of data to see if there is any correlation between

initial number and population growth rate. One could hypothesise that if the

growth rate is dictated by an initial distribution of fast and slow growing cells,

we might expect droplets with larger initial populations to have higher growth

rates; since a droplet starting with more bacteria would have a higher probability

of containing a fast-growing cell.

As we can see in Figure 3.5, we do not see faster growth in populations with

more initial bacteria, as we might expect if fast division was inherited. Instead

we see shallow gradients (a slight negative correlation between initial number and

growth rate for experiments A(0), B(0) and D(0), and a slight positive gradient

for the fit to experiment C(0)), which indicates there isn’t a correlation. This

is consistent with mother-machine experiments which show that a cell forgets

immediately upon division how fast it was growing in the previous cell cycle

[33], although there is evidence for weak growth rate correlations under certain

conditions [122], this is not detectable in these droplet experiments.

Overall, our results suggests that the heterogeneity between droplet population

growth rates has a nuanced and intrinsic underlying source.

3.3.3 Comparing initial and final bacteria counts

The distribution in growth rates, discussed above, naturally causes a distribution

in population size over time. The effect of initial population size on final

population size is shown in Figure 3.6. There is a consistently positive correlation,

however we can see that the final population size data is noisy; droplets that start

with two bacteria are less than twice as populated by the end of the experiment

than those that started with a single cell (and so on). This indication of saturation

could due to competition for nutrients within the droplet (as minimal media was

used). Correlation values for each experiment are shown in Table 3.3. The wide

distribution of population sizes is presumably an effect of cell-to-cell variability,

amplified by exponential growth. Growth rate variability between individual cells

has been shown to, in general, lower population growth [122], so perhaps this has
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Figure 3.5 Population growth rate as a function of initial population size
(N0), for experiments A(0)–D(0). Each point represents the mean
population growth rate of each subset of droplets (separated by initial
bacterial number). The black dashed lines show the linear fit for each
set of data. Error bars show the standard error of the mean.
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Experiment Gradient R-value P-value

A(0) 11.4 0.676 1.06× 10−292

B(0) 6.25 0.187 0.0079
C(0) 9.98 0.478 0.0009
D(0) 5.66 0.527 6.14× 10−36

Table 3.3 The fit gradient between the initial and final droplet populations
of bacteria. The R-value is the correlation coefficient between the
initial and final counts per droplet. The P-values correspond the
probability of obtaining results at least as extreme as the observed
results, assuming that the null hypothesis (that there is no correlation
between initial and final population numbers) is correct. Values close
to 0 correspond to a significant correlation and a low probability of
observing the null hypothesis.

Experiment Initial number Final number Factor

A(0) 5538 126001 22.8
B(0) 241 5328 22.1
C(0) 83 1807 21.8
D(0) 1951* 30947 15.9

Table 3.4 The total initial number of bacteria and the total final number of
bacteria for each experiment. This was done by summing over all
droplets. The factor is the final number divided by the initial number.
*Initial number for D(0) starts at 40 minutes.

an effect on the final population numbers. There is also an uncertainty in the

initial division time (as the bacteria are not synchronised), which will have the

greatest impact on the first observed divisions.

Reassuringly, when we look at the experiments as a whole and we compare the

final and initial bacterial populations, we find that the bulk population increases

by a similar factor across the experiments (see Table 3.4)2. This suggests that

the heterogeneity we see in Figure 3.6 is a result of droplet-to-droplet variation

which we observe only by measuring and analysing individual small populations.

3.3.4 Stochastic dynamics of bacterial growth

Thousands of droplets observed over multiple hours enable us to observe

heterogeneity in growth amongst clonal populations. The distributions of droplet-

2We exclude experiment D(0) as here the initial bacterial numbers are calculated after 40
minutes of growth.
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Figure 3.6 Plots of initial population number per droplet against the final
population number (each data point represents a droplet). Each
panel shows the data for experiments (a) A(0), (b) B(0), (c) C(0),
(d) D(0). The linear fit to each set of data is shown in red. The
linear regression values are given in Table 3.3.

79



population growth rate and final population number (Figures 3.3, 3.5 and 3.6) are

some ways to quantify the heterogeneity, but do not provide much insight into

the origin of this stochasticity. In this section we use a theoretical framework

developed by Barizien et al., which takes into account various contributions to

stochastic growth dynamics probabilistically and allows us to investigate single-

cell behaviour from our population-level measurements [95]. This analysis has

also been performed on a previous set of experimental droplet data [96].

Bellman-Harris branching process

The analysis is based on the classical Bellman–Harris (BH) model, which describes

a stochastic branching process [123]. A single bacterium is born at time t = 0 and

lives for a random time, τi, drawn from a fixed cumulative distribution function.

In our work we assume a birth process where, at time τi, each bacterium splits

into two daughter cells. These descendants have the same properties as the

original bacterium and are independent of its predecessor and each other; there

is no memory or inheritance of division time. From this model, a distribution of

population size at a given time, t, can be derived.

The BH model predicts that both the mean and the standard deviation of the

bacterial number, N(t), grow exponentially with the same exponent, α, tending

to n1e
αt and n2e

αt at long times. The values of the constants α, n1 and n2,

depend on the underlying distribution of division times. For droplets which start

with a single bacterium, the coefficient of variation, CV1, is given by the standard

deviation of N(t) divided by the mean of N(t), which tends to a constant value n2

n1
.

For droplets with an initial population of k bacteria, the coefficient of variation,

CVk, for the number of bacteria in these droplets is described by [95]:

CVk →
(

1√
k

)
n2

n1

= CV1

(
1√
k

)
. (3.1)

Furthermore, for the case where the initial bacterial numbers are Poisson-

distributed (as for the droplet experiments), the coefficient of variation of N(t),

CVλ, (computed over non-empty droplets) obeys the relation [95]:

CV 2
λ =

1− e−λ

λ

(
n2

n1

)2

+
1− (λ+ 1)e−λ

λ
=

1− e−λ

λ
CV 2

1 +
1− (λ+ 1)e−λ

λ
, (3.2)

where λ is the parameter of the Poisson distribution (the mean initial bacterial
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number, computed over all droplets including the empty ones). The coefficient of

variation, CV , is a statistical measure of the dispersion of data points in a data

series around the mean. It allows us to make comparisons between our droplet

experiments and other growth studies which might have (very) different mean

values for the growth rates and sample size.

Comparing the experimental data to the Bellman-Harris model

Using our datasets of bacterial count over time, we can see whether the BH model

represents the growth dynamics in the droplets. Firstly, I divided the droplet

trajectories into groups according to their initial population size. Otherwise, the

dominant effect on the variance of the number of cells at a given time is the

variance due to the initial distribution, and not the heterogeneity of the division

times. For each group of trajectories, the mean, standard deviation and the

coefficient of variation of population size, were computed as functions of time.

Figure 3.7, shows the mean *(a) and standard deviation (b) to be exponential

over time, for subsets of droplets with each initial bacteria number, k. Figure

3.8 shows the CV of population size at each timestep for droplets with different

initial starting numbers. We can see that the CV values are constant over time

(with very low gradients between −1× 10−1 and 2.1× 10−4 min−1), consistent

with the BH model. Statistical tests were performed to confirm these datasets do

not show an upward or downward trend. These results are given in Table A.1.

A Mann-Kendall test [124] showed that there is insufficient evidence to reject

the null hypothesis (that there is no trend, as expected) for all subsets apart

from those for k = 5 and 7. Using a Lilliefors test, we found all datasets to

be normally distributed, signifying that the values are symmetric and clustered

about the mean.

A linear fit of these CV values was taken to compare the experimental variance

of the population size with the BH prediction, shown in Figure 3.9. Each point

represents a measured CV of population size for each subset of initial number, k.

We see good agreement with the theoretical relationship given in Equation 3.1.

We can also assess whether the BH model accounts for the variance in population

size across the whole dataset by utilising Equation 3.2, which incorporates the

variance in population size from both the Poisson distribution and the intrinsic

BH stochasticity. This gives us a value for CVλ which we can then compare to

the CV value from the full dataset (CVtot, calculated using a linear fit of mean
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Figure 3.7 Plots showing the exponential increase over time of (a) mean number
of bacteria and (b) standard deviation of the population number.
Different colours correspond to different initial population numbers
of the droplets, k. This data is from experiment A(0).

Figure 3.8 Coefficient of variation (CV ) value plotted against time, for droplets
starting with 1–8 bacteria, indicated with different colours (droplets
with 9–11 starting bacteria were omitted due to having less than 4
samples). These are expected to be approximately constant. This
data is from experiment A(0).
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Figure 3.9 Coefficient of variation (CV ) values of population size for droplets
starting with 1–8 bacteria (k) scale with 1√

k
as predicted by Barizien

et al.’s generalisation of the Bellman-Harris theory. Droplets with
9–11 initial bacteria were omitted as there were less than 4 samples.
CV values were calculated using a linear fit of standard deviation
over mean, for 5.8 hr (350 min) of data collection. The dashed line
shows the theoretical correlation as predicted by the BH model (Eq.
3.1). The error bars were calculated using bootstrapping with 1000
resamplings. This plot shows the results of the Barizien analysis for
dataset A(0). The corresponding plots for experiments B(0)–D(0)
are shown in Figure A.2.
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and standard deviation of the population size over time, within all of the non-

empty droplets). Evaluating the coefficient of variation across all the non-empty

droplets in the A(0) dataset (2189 droplets), we find that CVtot = 0.758 ± 0.04.

The value for CV1 is calculated using a linear fit of mean and standard deviation

of the data from droplets with an initial population of 1 bacterium and the mean

initial bacterial number for experiment A(0) is λ = 2.02 ± 0.11 (see Table 2.1),

therefore CVλ =
√

0.418 = 0.65± 0.2, which is in agreement with CVtot.

Inferring single-cell division time statistics

Although we don’t track individual bacteria within the droplets, application of

the BH analysis allows us to infer single-cell division time statistics. We can

calculate population-level parameters using the experimental datasets; α is the

exponential growth rate for the subset of droplet populations that start with 1

cell (k = 1); n1 and n2 are the prefactors of the mean and standard deviation of

the distribution of population size. Assuming that the single-cell division times

are Gaussian distributed, Barizien et al. [95] showed that the values of these

constants depend on the underlying distribution of division times:

α =
ln(2)

τ

2

1 +
√

1− 2ln(2)cv2
, (3.3)

where τ is the mean single-cell lifetime and cv is the coefficient of variation of the

single-cell division time distribution, cv = σ
τ

(which is distinct from CV1(t), the

coefficient of variation of the population number of droplets which start with a

single-cell). The population growth rate, α, is therefore a function of the growth

rate when the heterogeneity of division times is neglected ( ln(2)
τ

), multiplied by

a factor which increases with cv (a larger cell-to-cell variability of the division

times increases the apparent growth rate of the whole population).

In addition, the relationship between cv, CV1 and the prefactors n1 and n2 is:

exp

[
(2 ln 2)cv

1 +
√

1− (2 ln 2)cv2

]
=

1 +
(
n1

n2

)2
1
2

+
(
n1

n2

)2 =
1 +

(
1

CV1

)2
1
2

+
(

1
CV1

)2 . (3.4)

Table 3.5 shows the calculated values for α and τ for each uninhibited droplet

experiment. Alpha (α) was determined using a linear fit to a log plot of the

k = 1 droplet population count; CV1 is taken from Figure 3.7; and Equation
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Experiment k = 1 α ± cv ± τ ±
A(0) 694 0.0105 0.0001 0.167 0.02 66.7 0.72
B(0) 168 0.0087 0.0006 0.282 0.04 81.9 3.6
C(0) 15 0.0092 0.0008 0.146 0.08 75.8 6.5
D(0) 47 0.0091 0.0008 0.282 0.114 78.4 5.5

Table 3.5 Values for each zero antibiotic experiment of α, the exponential
growth rate for the droplet populations that start with one bacterium
(k = 1); cv, the coefficient of variation single-cell division-time
distribution; and τ , the mean single-cell lifetime. Errors calculated
by bootstrapping 1000 resamples of the k = 1 dataset. Column 1 gives
the number of droplets in each experiment which start with one cell.

3.4 was then solved for the coefficient of variation of the single-cell division-time

distribution, cv. The values for cv and α were then used to calculate the mean

single-cell lifetime, τ , by rearranging Equation 3.3. The relationship between the

population-scale growth rate and single-cell-division can be visualised in Figure

3.10, where we can see that the values from the droplet experiments are close

together, which means that the individual cells had similar division times across

the experimental replicates, as we might expect.

Summary

By using this BH theoretical framework, I have demonstrated that we can infer

individual-cell parameters from the population-level data measured in the droplet

experiments. This enables the study of heterogeneity in cellular response to

external factors, without the need to distinguish between cells in the analysis.

Furthermore, our image analysis methodology offers more accurate data for this

analysis than was originally presented by Barizien et al. (where fluorescence was

used as a proxy for the size of the bacterial population and droplets could not be

sorted according to the initial population size) [95].

A good fit with the BH model suggests that the growth dynamics we observe in

the droplets is possibly a Markov process, in which the probability of each division

event depends only on the state attained in the previous event, meaning that we

do not observe the inheritance of growth rate. We find that growth dynamics

are congruent with the Bellman-Harris model, and also with other measurements

of single cell growth dynamics from literature. We determine values of cv in a

range of 0.167–0.282, which can be compared to a cv ≈ 0.19, calculated from
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Figure 3.10 Plot illustrating the relationship between α, the exponential growth
rate for the droplet populations and τ , the mean single-cell division
time (values given in Table 3.5). Equation 3.3 is plotted in black
(different experimental values of cv have overlapping lines on this
scale, inset shows the theoretical range in black). Corresponding
values of α and τ are shown in circles for each experiment (A–D).
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growth data of E. coli on agarose pads [122, 125]. Wallden et al. measured the

growth rates of single cells in fast, intermediate, and slow growth conditions using

a microfluidic device. The division time (τ) for experiment A(0) is equivalent

to a growth rate of 0.01 min−1, which corresponds to the intermediate growing

conditions in this experiment, which had a cv of 0.234 in a sample of 1217 cells.

They found that cell-to-cell variation in division timing and cell size was mainly

driven by variations in growth rate [126].

3.3.5 Non-growing bacteria

Very few droplet populations die when there is no antibiotic stress. Survival

fractions of the uninhibited droplet populations are between 0.955–0.99 (see

Figure 6.6). Here we define survival fraction as the proportion of droplets with

any surviving bacteria (representing a subpopulation which could hypothetically

repopulate or reinfect a larger volume). However, not all these surviving bacteria

grow.

Table 3.6 shows the number of non-growing droplet populations in each experi-

ment. Droplets with growth rates less than 0.0005 min−1 for the first 4 hours

were categorized as slow (or non) growing. Sustained fluorescence was used

to distinguish between non-growing cells and dead cells; this classification was

supported by observing the movement of non-growing bacteria between timesteps.

When checking the images of a sample of 30 droplets, I found 35% of these

populations were filamentous (such as in Figure A.13), 60% were slow growing

populations and the remaining 5% were dying populations.

The slow-growing populations we observe in the zero-antibiotic droplet experi-

ments are interesting because they are potential persister populations. As we

observe them in the absence of imposed environmental stress, this suggests

that the existence of a small fraction of non-growing bacteria is a stochastic or

spontaneous phenomenon, rather than necessarily a direct response to antibiotic

(or other environmental stress).

Persisters are phenotypic variants that survive antibiotic treatment in a dormant

state. Persistence could be a bet-hedging strategy, part of the phenotypic

heterogeneity generated under uncertain conditions. Antibiotic-tolerant persister

cells are thought to cause relapsing infections and antibiotic treatment failure in

various clinical setups [127, 128].
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However, the proportions of non-growing populations we observe in the uninhib-

ited droplets are small compared to the large number of non-growing populations

we find when we expose the bacteria to ampicillin (see Section 6.3.3 and Figures

6.3 and 6.6). Therefore we can conclude that they probably do not play a major

role as persisters in the response to antibiotic stress. Although it is possible that

some non-growing cells within growing droplet populations would be masked by

this analysis.

Persistence is generally categorised into two types; spontaneous persistence

and stationary phase–induced persistence [129]. Spontaneous persisters are a

rare phenotypic phenomenon in most strains; only a small fraction of bacteria,

typically 10−3–10−6, switch to a persister state during exponential growth and

survive exposure to antibiotics, which allows the population to regrow [130].

Therefore the non-dividing bacteria we see here are unlikely to be persisters in

this sense.

Stationary phase–induced persistence, however results from delayed growth

resumption when stationary-phase bacteria are diluted in fresh media. An

increase of the persister subpopulation is observed when cells enter stationary

phase. Variation in recovery time can be due to cell damage or could represent

an ecological survival strategy [18]. These cells could also be regarded as

contamination from the original overnight growth which failed to reenter the

exponential growth phase. It has been demonstrated that the majority of

persisters in batch culture experiments come from the stationary-phase inoculum.

These bacteria do not divide after dilution in fresh medium and throughout

antibiotic treatment but resume growth and form colonies when plated [127].

In addition, older cells cease growing after approximately 100 divisions (a study

by Stewart et al. found this at a frequency of 4.6×10−4 [30]). This is another

potential cause of the non-growing cells, but it is unlikely to be a major source

in the droplet experiments due to the short time-scale over which we observe the

bacteria.

3.4 Discussion

The microfluidic device and image analysis protocol allows us to count individual

bacteria during unconstrained growth in droplets. This facilitates a study of small
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Experiment Number Fraction

A(0) 10 0.005
B(0) 9 0.04
C(0) 0 0
D(0) 27 0.06

Table 3.6 Droplets with slow growing populations (or with no growth within the
experiment). The numbers have a high uncertainty of ±30%, as these
low counts and low gradient fits are prone to error. The fraction is
calculated by dividing the number of slow growing populations by the
number of populated droplets.

bacterial populations, without the need for proxy measures of population size

such as integrated droplet fluorescence. This chapter demonstrates the potential

for analysis on the data generated from droplet experiments. Variability can

be obscured in large population studies, and the system can seem to behave

deterministically, even though the underlying law is stochastic [2]. Whereas with

these large, precise datasets we can quantitatively and statistically investigate

the growth dynamics of small populations.

We can plot the growth trajectories for multiple small populations of E. coli

bacteria (Figure 3.1), and measure the distributions in population growth rates

(Section 3.3.2) and final population sizes (Section 3.3.3). We have found that

the heterogeneity we see between droplet populations is exacerbated by, but

not solely due to the initial Poisson distribution. These results can provide

a baseline measure of the variability in growth in uninhibited environments to

which comparisons can be made for the cases in which ampicillin is present in the

environment (Chapter 6).

We identified a fraction of non-growing bacterial populations (Section 3.3.5),

which cannot be detected in bulk experiments. These cells could be in a persister

state, which is an important phenomenon to study as this behavior reduces

the effectiveness of antibiotic treatments. The proportion of these non-growing

bacteria when there is no antibiotic stress allows us to differentiate between

spontaneous behavior and reactive behavior when comparing to the antibiotic

experiments (in Chapter 6). Droplets could a good candidate for future persister

studies, particularly because our experimental methodology allows us to easily

check the raw images associated with each data point. This means we can

distinguish between bacteria which are alive, filamentous or dead, and confirm

that a data point is not an artefact in the image.
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We find good agreement with the Bellman–Harris model, which assumes that

individual cell lifetimes are independent. We are also able to infer parameters

of the single-cell lifetime distribution from population trajectories. This type of

analysis shows it is possible to extract single-cell information from our population-

level measurements. This type of analysis could help distinguish between different

stochastic growth models.

We assume in the BH model that cell division events are independent, and the

division times are drawn from a fixed Gaussian distribution. This means that each

bacterium divides after a time selected from a Gaussian distribution of single-cell

division times, with a fixed mean and standard deviation. Our results fit this

model well, but not exactly. Figures 3.9 and A.2 show approximately linear trends

for droplets starting with different numbers of bacteria (which should follow the

same asymptotic behavior as the droplets that start with one bacteria, if each

cell acts independently). Loose growth rate correlations between generations or a

non-Gaussian distribution of division times could be the cause of this, and might

obstruct other underlying mechanisms.

We infer that the inheritance of growth rate is not strong, as a system with

inherited growth rates would not fit the BH model. This conclusion is supported

by Figure 3.5, which shows that the growth rates of subpopulations of the droplet

data do not appear to be dependent on N0, and so a larger sample of initial

bacteria (with a higher probability of containing a fast-growing cell) does not

seem to impact the ultimate population growth rate, as we would expect if this

trait was inherited. This is consistent with other studies of inter-generational

memory [2].

Instead, there are many other hypotheses for the underlying causes of heteroge-

neous growth in bacteria, for example, due to the asymmetric behavior of the

new and old poles of the daughter cells [30]. Although other studies have found

no clear dependence between the age of a cell and the growth rate [33]. In

addition, different rates of growth can display different mechanistic behavior; E.

coli can appear as a ‘sizer’ during slow growth and an ‘adder’ during fast growth

[126]. Another study found a link between cell size and the single-cell growth

rate [131]. This all implies that the underlying growth mechanisms are complex

and intertwined with other processes.

It would be interesting to design an experiment using droplet methodology—and

the large, precise datasets which are produced—to investigate and distinguish
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between these different underlying behaviors.
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Chapter 4

Simulating β-lactamase-producing

bacterial populations: method

In this chapter, deterministic and probabilistic models are developed to under-

stand the response of small populations of β-lactamase-producing bacteria to

β-lactam antibiotics.

Computer simulations allow us to explore the behavior of complex systems and

provide a mathematical framework for the underlying mechanisms. The results

of simulations can be compared to experimentally measured values or responses,

to gain insight into the factors which might determine a particular outcome. A

model can provide a way to test a hypothesis that is difficult to directly measure

with experiments. Alterations to a model can often be made with a shorter time

commitment and smaller financial investment than would be required for the

equivalent change in an experimental setup or procedure. Therefore, simulations

can be used to inform the planning of future laboratory experiments, indicating

parameters which are most likely to result in the desired outcome. In addition,

simulations can usually generate far larger amounts of data than can be achieved

experimentally.

Due to these advantages, many models have been developed to investigate

biological systems, including the behavior of resistant bacteria. Disease outcome

models can be used to estimate the infection rate, as well as the clinical and

public health consequences of antibiotic-resistant bacteria [132]. Models have

also be used to study the connection between single-cell growth dynamics and

population fitness. Lee et al. present a stochastic model to find a mechanistic
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interpretation of population-level responses to antibiotic exposure, which predicts

a proportionality between bacterial growth rate and the lysis rate [133]. Yurtsev

et al. use a model to describe the cooperative population dynamics of resistant

and sensitive bacteria [32], which is the starting point for the model presented in

this chapter.

Using mathematical models, I aim to simulate an experiment in which resistant

bacteria are exposed to antibiotic stress whilst encapsulated in multiple droplets

in order to track the population dynamics over time. Microfluidic droplets

provide multiple replicate enclosed environments, enabling the study of multiple

small populations of bacteria. Careful matching of the parameters between the

simulations and our experimental setup should offer insight into the results we

obtain experimentally.

In this model, the effect of the β-lactamase enzymes is modelled implicitly by

including degradation of the antibiotic (i.e. decreasing antibiotic concentration)

when there are resistant bacteria present. It is expected that this will make

survival more likely in more populated droplets, since more antibiotic is degraded

if there are more β-lactamase-producing bacteria in a droplet. Therefore droplets

containing greater numbers of bacteria could potentially survive at a higher

concentration of antibiotic than droplets containing fewer bacteria. The effect

of stochastic bacterial loading into droplets and stochastic growth are compared

to the deterministic cases. I explore these different growth dynamics to allow us

to investigate under what circumstances a group of bacteria can ‘save itself’ when

exposed to a β-lactam antibiotic. The key result is that stochasticity can result

in some droplets surviving at higher concentrations than would be possible in a

deterministic population.

The model is based on previous work by Yurtsev et al. [32], who simulated

the growth of mixtures of resistant and sensitive bacteria in the presence of

antibiotics. They used deterministic models to study the evolution of resistance

via the spread of a plasmid that encodes a β-lactamase enzyme. This work

showed that coexistence between resistant and sensitive cells is possible at

antibiotic concentrations above the MIC of the sensitive cells, because β-

lactamase production by the resistant cells acts as a cooperative trait, protecting

the sensitive cells.

Here, however, our purpose is different. We seek to understand the behaviour of

small populations encapsulated in microfluidic droplets, rather than a large pop-
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ulation evolution study. These droplet populations mimic some natural habitats,

especially in spatially structured environments where bacterial populations are

initially small. I adapted one of the models proposed by Yurtsev et al. (Model 4

in reference [32]) to simulate multiple small populations (or droplets) on a time

scale similar to the droplet experiments in this thesis, where we grow multiple

encapsulated small populations of bacteria (Chapter 6). I use the same rate

equation for the degradation of antibiotic (see Section 4.4), as well as a Heaviside

step function to determine a state of either exponential growth or exponential

death, depending on a defined antibiotic concentration (see Section 4.2.2). My

simulations include a death condition for the resistant strain which is not present

in the original paper and I also introduce Poisson-distributed initial bacterial

numbers (see Section 4.3.1) as well as Tau-leaping growth and death dynamics

(Section 4.3) to investigate the impact of stochasticity on survival.

This chapter provides a detailed description as well as validation of the model.

The results of the simulations are presented in Chapter 5, where we explore the

survival of bacterial populations under a range of antibiotic concentrations, with

different starting numbers of bacteria. A further aim of these simulations is to

make predictions for the possible outcomes of the droplet experiments that will be

discussed in Chapter 6. The model is adapted in Chapter 7 to include a sensitive

strain of bacteria and model cooperation between small populations of resistant

and sensitive strains.

4.1 Simulation overview

Starting conditions

In our simulations, we model a resistant (β-lactamase producing) strain of E. coli

bacteria. The population is characterised by a starting number of cells (N0), a

growth rate (γG), a death rate (γD), and a single-cell MIC (scMIC). If the local

antibiotic concentration is above the single-cell MIC, the bacteria will die, and

below this scMIC threshold, the bacteria will grow.
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Droplets

To mimic our experimental setup, we simulate multiple discrete populations or

droplets. Essentially, this simply means running the simulation multiple times,

each time modelling a different droplet population. Within a droplet, the input

antibiotic concentration is converted from µg mL−1 into molecules per droplet

(see Section 4.5.3). We assume each droplet is well-mixed system and therefore

treat the antibiotic concentration as uniform (see Section 4.4).

Growth and death dynamics

Bacterial growth and death are implemented either deterministically or stochas-

tically in our simulations. Deterministic growth and death dynamics give us an

insight into the behavior of large populations, and comparison with stochastic

dynamics can reveal the impact of heterogeneity on the survival of replicate

droplet populations. Deterministic growth and death are modeled by integrating

a set of differential equations with a defined timestep, dt (given explicitly

in Section 4.2.2). Stochastic growth is modeled using Gillespie’s tau-leaping

algorithm [134], which is detailed in Section 4.3.2.

Effect of β-lactamase

Each resistant bacterium is assumed to contain a fixed number of β-lactamase

enzyme molecules, which degrade the antibiotic at a fixed rate. Therefore the

total degradation rate is proportional to the number of resistant bacteria that are

present (see Section 4.4). This implies that population size has a direct impact

on survival, as a greater number of bacteria results in a lower concentration of

the antibiotic over time. This is an inoculum effect, which plays out at the small-

population-level of droplets, when some droplets have different starting numbers

of bacteria than others.

This small-population inoculum effect can be seen in Figure 4.1, where the larger

populations of bacteria are able to survive an antibiotic treatment which kills the

smaller population of bacteria (with identical antibiotic susceptibility, growth

and death rates). Figure 4.1 also shows that for surviving populations, antibiotic

degradation reduces the level of antibiotic to a concentration below the scMIC,

allowing regrowth of the population.
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Figure 4.1 Three examples of growth simulations of a strain with a scMIC
of 1 µg mL−1 (the equivalent of 1.72× 108 molecules per 100
picolitre droplet), with different initial starting numbers of bacteria
(N0 = 6, 5 and 3). The plots show number of bacteria (left)
and the corresponding amount of antibiotic (right) against time,
for simulations run with a starting antibiotic concentration of 5
µg mL−1 (5 ×scMIC). In 2/3 simulations (shown in orange and
green, starting with 6 and 5 bacteria, respectively 1), the population
survives; in the other simulation (starting with 3 bacteria) it does
not. Growth and death are modelled deterministically (see Section
4.2.2).
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Figure 4.2 Schematic illustrating the four categories of droplet simulations.
The top left corner shows the fully deterministic (DET) case,
and the bottom right shows the fully stochastic (STOC) case.
Filling refers to the initial bacterial number distribution within the
droplets (deterministic or Poisson distributed). Growth is modelled
either exponentially (deterministic) or modeled with tau-leaping
(stochastic).

Sampling of droplet populations

In our droplet experiments, bacteria are distributed according to Poisson statistics

since the encapsulation of each bacterium is an independent event (where the

mean is controlled by the overall bacterial density; see the background discussion

of Poisson distributions was given in Section 1.4.2). Poisson encapsulation

means that within a single experiment, some droplets have smaller initial

populations while others have larger initial populations. To investigate the

effects of Poisson encapsulation, the model was designed to enable comparison

between deterministic (homogeneous) and stochastic (Poisson-distributed) initial

population sizes. This is outlined in Sections 4.2.1 and 4.3.1 below. Figure 4.2

1Note that each droplet population immediately drops by one bacterium after the first
timestep.
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illustrates the four classes of model that we investigate with our simulations,

which include the two types of population distributions and the two types of

growth methods.

4.2 Deterministic droplet filling and bacterial

dynamics

Deterministic models are appropriate for modelling bulk populations. They also

provide a useful baseline for comparison to stochastic models, which allows us to

assess the effects of stochasticity on the growth and survival of small populations.

4.2.1 Deterministic distribution of initial bacterial numbers

If we assume that droplets are populated deterministically, then all our replicate

simulations start with the same initial number (N0) of bacteria, input by the

user. From an experimental point of view, this can be interpreted as the bulk

concentration of bacteria in the inoculating culture, multiplied by the droplet

volume. This scenario is represented in the top row of the schematic in Figure

4.2.

4.2.2 Deterministic growth and death dynamics

We model growth exponentially, from an initial bacterial number (N0) with a

fixed growth rate of γG:

N(t) = N0e
γGt. (4.1)

Death is modelled identically, with a fixed death rate of γD. Therefore

the deterministic growth and death processes can be expressed as differential

equations:

dN

dt
=

{
γGN a < scMIC

−γDN a ≥ scMIC

}
, (4.2)

where a is the concentration of antibiotic. Bacteria grow exponentially at rate

γG if the antibiotic concentration (a) is below the single-cell MIC (scMIC), and

they die exponentially if the antibiotic concentration is above the single-cell MIC.
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We note that the death rate takes a single fixed value, γD, if the antibiotic

concentration, is above the single-cell MIC; it does not depend on the amount by

which a exceeds scMIC.

We model β-lactamase enzymes implicitly, and it is assumed that they are able to

uniformly decrease the concentration of antibiotic within a droplet (see Section

4.4). Therefore the antibiotic concentration, a, is reduced at a rate which is

dependent on the number of resistant bacteria, N :

da

dt
= −DN, (4.3)

where D is the degradation rate constant.

Growth and death are simulated in discrete time steps (dt) and so Equations (4.2)

are solved approximately using a first order Taylor expansion. The bacterial

population, N , is increased each timestep by dN = N × γG × dt, where γG is

the growth rate (in min−1) and dt is the timestep (in minutes). For death, the

population is decreased as dN = −N × γD × dt, where γD is the death rate (in

min−1). We do not allow the population size to become negative (N > 0).

When counting bacteria or plotting trajectories of bacterial population size,

bacterial numbers are rounded down to the nearest whole integer. However the

simulation algorithm operates with fractional numbers of bacteria.

We assume that the bacteria are always in exponential growth phase with no

saturation, since our aim is to characterise small population dynamics. Inherently

these dynamics occur at early times, where we do not experimentally observe

saturation of growth.

Solving the deterministic growth model analytically

The deterministic model is simple enough that we can solve it analytically,

without the need for simulations. If the initial antibiotic concentration a0 is high,

such that a0 > scMIC, the bacterial population density decreases exponentially

according to Eq. (4.4):

N(t) = N0e
−γDt. (4.4)

The size of the bacterial population at the start of the experiment is fixed for every

droplet at N0. Substituting this into Eq. (4.3), for the antibiotic degradation, we
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find that:
da

dt
= −DN0e

−γDt, (4.5)

which can be integrated to give:

a(t) = a0 −
DN0

γD

(
1− e−γDt

)
. (4.6)

Therefore, as expected, the antibiotic concentration decreases in time. Since the

antibiotic degradation is assumed to be constant (per resistant bacterium), we

can solve for the time, τ at which the antibiotic concentration becomes lower

than the single-cell MIC. Setting a = scMIC in Eq. (4.6) we find:

e−γDτ = 1− γD(a0 − scMIC)

DN0

(4.7)

and hence,

τ = − 1

γD
ln

[
1− γD(a0 − scMIC)

DN0

]
. (4.8)

We can see from this that if γD(a0 − scMIC) > DN0 then τ → ∞, i.e. the

antibiotic concentration never becomes lower than the scMIC, and the bacterial

population will all die. To get eventual regrowth of the population we need τ

to be finite, i.e. γD(a0 − scMIC) < DN0. This implies that the initial bacterial

population, N0, has to be greater than a threshold value, nT :

nT =
γD(a0 − scMIC)

D
(4.9)

We can use this result to verify our numerical implementation of the deterministic

growth dynamics. Figure 4.1 shows population trajectories for three simulations

at an initial antibiotic concentration of 5 µg mL−1, with initial bacterial

population sizes of N0 = 3, 5 and 6. For a droplet volume of Vd = 10−7 mL

(100 pL), and a degradation rate of D = 5.8× 10−9 µg min−1 (parameter values

are discussed in Section 4.5.3); we see that nT = 0.045(5−1)Vd
D

= 3.1 bacteria.

And indeed, we see that the droplet population where N0 = 3 does not survive,

whereas the other populations, where N0 > nT , survive the antibiotic exposure.

Solving for τ , we find that when N0 = 5, τ = 21.5 min and when when N0 = 6,

τ = 16.2 min. The plots in Figure 4.1 show that the minimal population size

occurs at these calculated τ times.
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Figure 4.3 Schematic of droplets filled with bacteria. The top row illustrates
deterministic filling; with each droplet containing 3 cells, and the
bottom row illustrates a Poisson-distributed population; with a λ
(mean) value of 3.

4.3 Stochastic droplet filling and bacterial

dynamics

By implementing stochastic droplet filling and dynamics we can better repre-

sent the true experimental conditions; where different droplets are generated

containing different numbers of bacteria, and the bacterial growth and death

dynamics can also be stochastic. This will allow us to assess whether stochasticity

can change the survival outcome of the droplet populations when exposed to

antibiotic.

4.3.1 Stochastic distribution of initial bacterial numbers

To mimic the experimental procedure of creating droplets from a well-mixed

suspension of bacteria in media, in the simulations we select the initial number of

bacteria from a Poisson distribution. A mean value for the number of bacteria per

droplet (λ) is input by the user, which represents the concentration of bacteria

in the inoculating culture, multiplied by the droplet volume. Varying the value

of λ in the simulations corresponds to varying the density of bacteria in the

inoculating culture in the experiment. The schematic in Figure 4.3 illustrates

the difference between droplets filled with a fixed (deterministic) or Poisson

distributed (stochastic) number of bacteria. For stochastic filling, some droplets

have more bacteria than the average while others have fewer bacteria than

average. We hypothesise that stochastic droplet filling may allow survival at

higher antibiotic doses, since droplets with a higher initial number of bacteria

will benefit from a ‘droplet-level’ inoculum effect, making them harder to kill.
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Analytical prediction for bacterial survival in the stochastically distributed

model

Building on our analytical calculations for the deterministic model (Section 4.2.2),

we can also solve for the probability that the initial population number N0 >

nT , the threshold value for survival (see Eq. (4.9)) when the droplets are filled

stochastically. As discussed above, the initial population size, N0, of each droplet

is sampled from a Poisson distribution. Therefore the probability of a droplet

being filled with a given value of N0 is P (N0) = λN0e−λ

N0!
, where λ is the mean

bacterial number. If bacterial growth is deterministic then for a given value of λ,

the fraction of droplets that survive antibiotic treatment is equal to the fraction of

droplets for which N0 > nT , or in other words, the Poisson probability of getting

N0 > nT . This is given by:

P (N0 > nT ) = 1− e−λ
bnT c∑
i=0

λi

i!
= 1− Γ(bnT + 1c, λ)

bnT c!
, (4.10)

where Γ is the upper incomplete Gamma function. Eq. (4.10) is plotted in

Figure 4.4 and compared with the outcome of simulations in which the initial

bacterial number is sampled from a Poisson distribution (while bacterial growth

is modelled deterministically). There is good agreement between the simulation

results and the analytical prediction for the 1000 simulated droplet populations.

This validates our implementation of the stochastic filling model.

4.3.2 Stochastic proliferation and death

Bacterial proliferation and death are themselves stochastic processes, since

individual bacteria show heterogeneous cell lifetimes and response to antibiotics.

This has been studied in experiments with mother machines [121] as well as in

other microfluidic growth chambers [22].

In our simulations, we model stochastic bacterial proliferation and death

dynamics using the tau-leaping or τ -leap method [134]. The τ -leap algorithm

was originally developed to model the time evolution of a well-stirred chemically

reacting system. It provides an efficient way to simulate Markovian systems

(systems in which the possible events are independent Poisson processes). To

model bacterial proliferation and death using τ -leaping, we assume that the birth

and death processes have no memory, i.e. they are Poisson processes with a
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Figure 4.4 Plot of Eq. (4.10), showing the probability that the initial bacteria
number (N0) is larger than nT (P(N0 > nT )), for different values of
λ. The survival fractions (SF) for simulations of 1000 droplets are
plotted alongside. These simulations were performed with Poisson-
loading and deterministic growth and death, with a scMIC of
1 µg mL−1, at initial ampicillin concentrations of 5 µg mL−1 and
10 µg mL−1. The nT values for the simulated parameters were
nT = 3.1 for 5 µg mL−1 and nT = 6.98 for 10 µg mL−1.
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constant rate. In other words, a bacterium is equally likely to proliferate or die

at any point in its lifetime. This assumption, although incorrect, is commonly

made in modelling bacterial dynamics.

In the deterministic model, the rate of population growth is directly proportional

to population size. In this stochastic model, the infinitesimal deterministic

increase, dN , is replaced by the probability of a proliferation event (N → N + 1)

during an infinitesimal time interval [134, 135]. In our model we use the

Estimated-Midpoint τ -leap Method [134], so we compute the expected state

change (dN) during each simulation timestep using a Poisson distribution with

a mean value equal to the state change that would happen in the deterministic

model (outlined above in Section 4.2.2).

The τ -leap method requires dt to be small because we assume that none of the

propensities change appreciably during one timestep. In our model, a timestep

that is too large would mean that we would not capture accurately the feedback

between proliferation/death and changes in antibiotic concentration. Therefore

we bound the relative change of N in each dt by a specified tolerance. If dN >

N then a warning appears during the simulation, indicating that dt should be

decreased for simulations with those parameters. For the results presented in this

thesis, a dt of 0.1 minutes (6 seconds) is used, which is small enough to satisfy

the conditions for the tau-leaping algorithm when simulating small populations,

while still allowing for computational efficiency (see Section 4.5.3).

Figure 4.5 shows growth curves for bacteria simulated with τ -leap dynamics, in

the absence of antibiotic. We see varied growth trajectories and a range of final

population numbers, unlike in the deterministic model.

Validation of stochastic growth dynamics using the Yule-Furry process

Our τ -leaping growth was validated by comparing the simulation results to

analytical predictions for the case of a bacterial population undergoing stochastic

growth (with no death). This stochastic growth process, in which the proliferation

of each bacterium is modelled as an independent Poisson event, is known as

a Yule-Furry (YF) process, starting from a single bacterium. For the YF

process an analytical result is available for the probability of obtaining N

bacteria at a given time: PN(t) = e−γGt(1 − e−γGt)N−1 [136], where PN(t) is

the probability of N bacteria at a given time, t, and the parameter γG is the
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Figure 4.5 Tau-leaping growth of 50 droplet populations, simulated with a mean
growth rate of 0.01 min−1. Initial starting numbers were selected
from a λ=5 Poisson distribution. Final bacterial counts range from
9 to 253 bacteria after 300 minutes of simulated time.
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Figure 4.6 Histogram showing the number of droplets with a population of N
bacteria after 300 minutes of τ -leaping growth (in blue), compared
to the Yule-Furry prediction for the probability distribution, PN (300)
(in orange). The simulation was run for 10,000 droplets, each
starting with a single bacterium, and dt= 0.01 minutes. At 300
minutes of deterministic growth, N = e(0.01×300) = 20.09. The
mean of the YF distribution is 20.005 bacteria and the mean of the
simulated data is 20.38 ± 0.43 bacteria (the uncertainty given here
is the standard deviation, calculated using bootstraps of resampled
data).

proliferation rate. For populations that start with more than a single bacterium

(i.e. N0 > 1), this probability distribution can be extended because we can

regard each individual bacterium as undergoing an independent YF process [136]:

PN0,N(t) =
(
N−1
N0−1

)
e−N0γGt(1− e−γGt)N−N0 .

In Figure 4.6 we compare the results of simulations run with only growth and no

death (i.e. with no antibiotics), to the YF analytical prediction. The droplets

were all deterministically filled with N0=1 bacterial cell. The histogram of

simulated bacterial numbers (in blue) is in good agreement to the YF prediction

(shown in orange) and the mean of the simulated data (20.38 ± 0.43 bacteria)

within the range of the YF calculated mean (20.005 bacteria).
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4.4 Modelling β-lactamase enzyme action

The action of the β-lactamase enzymes is modelled implicitly through a degra-

dation rate for the antibiotic, and it is assumed that these enzymes uniformly

decrease the concentration of antibiotic within a droplet. The antibiotic

concentration is reduced at a rate that is proportional to the number of resistant

bacteria in the droplet (see Equation 4.3).

4.4.1 Assumption of a well mixed system

A key assumption of our model is that there is good mixing such that the

antibiotic molecules and β-lactamase enzyme activity are distributed evenly

throughout each droplet. A back-of-the-envelope calculation can be used to

justify this. In the following calculation we show that the time it would take

for an antibiotic molecule to diffuse across a droplet is less than the simulation

timestep, dt.

We use the Stokes-Einstein relation for the diffusion constant, da of an antibiotic

molecule: da = kBT
6πηr

, where r is the size of an antibiotic molecule and η is the

viscosity of the media. We can approximate the size of an ampicillin molecule,

r, as one nanometre, and we assume a temperature, T , of 37◦C (310 K). We

suppose that the viscosity, η, of the media is similar to water at this temperature

(7× 10−4 Pa s). This results in a diffusion constant, da =6.5× 10−10 m2s−1,

which is similar to the literature value of 3× 10−10 m2s−1 for a nanometre sized

particle [137].

For diffusive motion the mean square displacement (msd) scales linearly with

time as: msd(τ) = 6dτ , so that the typical time to cross the entire droplet of size

(r ≈50 µm) is the diffusion time τ= 0.64 s. This is smaller than the timestep,

dt = 0.1 min, used in the simulations, and is much smaller than the timescales

of bacterial growth or death dynamics. Therefore it is reasonable to take the

antibiotic concentration as homogeneous.

Furthermore, in reality, we expect there to be active mixing in the droplet

caused by the motility of the bacteria, so the homogenisation of the antibiotic

concentration would actually be faster than that predicted with diffusion alone.
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4.4.2 Rate of antibiotic degradation

The degradation of antibiotic by β-lactamase is an enzymatic reaction. Such

reactions are usually described by Michaelis-Menten (MM) theory. In our case,

Michaelis-Menten theory would suggest that the rate of antibiotic degradation,
da
dt

, should be given by:
da

dt
=

kcatba

a+KM

, (4.11)

where a is the antibiotic concentration, b is the enzyme concentration, and kcat

and KM are the Michaelis-Menten parameters. The parameter kcat represents the

turnover number of the enzyme; the maximum number of enzymatic reactions

catalysed per unit time, which can be defined as the maximum reaction rate,

Vmax, per enzyme: kcat = Vmax
b

. The other MM parameter, KM represents the

substrate concentration at which half the active sites of the enzymes are filled by

antibiotic substrate molecules. It describes the affinity of the antibiotic to the

active site of the enzyme [138].

IfKM is small, we are in a regime where the enzymes are saturated with antibiotic,

and the rate of degradation will remain constant. In this regime we can simplify

Equation 4.11 by taking KM � a:

da

dt
= kcatb. (4.12)

We take the enzyme concentration, b as proportional to NR since we assume each

bacterium contains an equal amount of β-lactamase. Therefore we can write the

degradation rate in terms of the number of resistant bacteria present, NR, and

combine the constants into a single value, D:

da

dt
= −DNR(t), (4.13)

where D = Ekcat and NR = b
E

, if E is the number of enzymes per bacterium.

Eq. (4.13) is now identical to Eq. (4.3), used in the simulations. Therefore

our approach is equivalent to Michaelis–Menten kinetics in the case where the

enzymes are saturated.

The actual value of the degradation rate constants are heavily dependent on the

specific properties of the β-lactamase enzyme, the particular β-lactam antibiotic,

and the environment in which the catalytic reaction takes place. Furthermore,
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these parameters can be difficult to experimentally measure, particularly those

which are interdependent.

In our model, we use a value of D = 107 ampicillin molecules per resistant cell

per minute, following Yurtsev et al. [32] in which the degradation rate (Vmax)

was determined to be 106 molecules s−1cell−1. This is consistent with Lee et al.

[133], in which the maximum rate of hydrolysis was taken to be 1× 105–1× 106

per enzyme hour (1.7× 103–1.7× 104 min−1).

Below we briefly consider other literature reports of the kinetic parameters for

ampicillin degradation, to assess the possible range of plausible values for D and

the accuracy of our assumption that KM < a.

kcat is a measure of the rate of hydrolysis per enzyme (Vmax
b

) and is thus a constant

for an enzyme under given conditions. The value of kcat for β-lactamase vary

widely depending on the strain of bacteria, the type of β-lactamase enzyme, and

the antibiotic it is hydrolysing. A study by Nikaido et al. reported kcat values

ranging from 0.01 to 1900 s−1 (0.6 – 1.14× 105 min−1) depending on the β-lactam

antibiotic studied. Ampicillin degradation rates were found to vary from 6.5 to

1160 s−1 (390 – 7× 104 min−1), for different bacterial strains [139]. Another

study found a range of kcat values from 200 to 2417 s−1 (12000–1.45× 105 min−1)

for two types of class A β-lactamase enzymes [140].

KM is a measure of affinity between the enzyme active site and the antibiotic

molecules. The value of KM depends on the specific enzyme–substrate system

under particular reaction conditions (such as temperature, pH and ionic strength).

For β-lactamase and ampicillin, KM has been measured at 0.9–37 µM for β-

lactamase produced by E. coli [139], 122–255 µM for β-lactamase produced by

Staphylococcus aureus [141], 15± 2µM for CTX-M-15 from Enterobacter cloacae

and 124–290 µM for class A β-lactamases, SHV-1 and S130G [140]. We have

chosen to make the assumption KM < a for mathematical simplicity. This

characterises a system where the enzymes have a high affinity for the antibiotic

molecules.

It would be interesting in future work also to investigate the case where KM > a,

for which we would need to use the full Michaelis-Menten form in the dynamical

equations. However we don’t expect that this would significantly change the main

results of the study.

To obtain our parameter D, we multiply kcat by the number of enzymes per cell,
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E. Lee et al. [133] have suggested that β-lactamase is produced at a maximum

rate of 0.1 µMhr−1 (approximately 105 enzymes per minute in a 100 pL droplet),

implying that for a generation time of ≈ 60 min (on poor media), a cell could

contain up to 6× 106 enzyme molecules. However, the protein copy number per

cell for E. coli has been found to peak at 3× 105 [142]. Therefore, using the kcat

values above, the range of possible values for D is ≈ (105 · 0.6 to 105 · 1.45× 105),

or approximately 6× 104 – 1.5× 1010 antibiotic molecules degraded per resistant

cell, per minute. The value that we use, D = 107 antibiotic molecules per resistant

cell per minute, falls within this range.

4.5 Model specifications, assumptions and

parameters

4.5.1 Technical structure

The simulation code is written using object orientated programming in Python.

It is based around three classes; Strain, Droplets and Experiment.

An instance of a strain population object is created with inputted attributes of

mean initial number of bacteria (λ), a growth rate (γG), death rate (γD) and

single-cell MIC (scMIC). An instance of the droplet object is then defined

with total number of droplets, the resistant strain object, the initial antibiotic

concentration (a0 in µg mL−1), the time increment (dt) and the duration (Tend)

of the experiment. The mean initial bacterial number, λ is converted within the

simulation into an initial bacterial population number for every droplet, N0.

We can then call the method ‘run’ which needs inputs for the growth type (see

Section 4.3.2) and loading type (see Section 4.3.1). This method initiates a growth

experiment object with the input parameters, and runs the simulated experiment

for each droplet. The number of bacteria, N , is updated as an attribute of Strain

(Strain.N), after every dt.
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Figure 4.7 The survival fraction for fully stochastic simulations of 100, 1000
and 10000 droplet populations. Each simulation was run for 300
simulated minutes with the same initial conditions; λ = 5 at
concentrations of antibiotic 0–25 µg mL−1, in intervals of 0.5 µg
mL−1.

4.5.2 Verifying the simulation output

Figure 4.7 shows typical outputs from our replicate simulations, for samples of

100, 1000 and 10000 droplets. We plot the fraction of droplets that survive

(defined as the fraction of droplets with a non-zero population after 300 minutes

of simulated time), as a function of the antibiotic concentration. As expected

the survival fraction decreases as the antibiotic concentration increases above the

single-cell MIC (which here is 1 µg mL−1) with a tail of surviving droplets at high

concentrations. Although noisier, the same trend is visible even for the fractions

of the 100-droplet simulations.

In the following results chapter (Chapter 5) the data presented is for simulations

with 1000 droplets, as this is the same order of magnitude as the number of

droplets measured experimentally (see Table 6.1).
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Parameter Value Unit Source

λ 5 bacteria n/a
scMIC 1 µg mL−1 n/a
Droplet volume 1× 10−7 mL Experiment
Tend 300 min Experiment
Growth rate, γG 0.01 min−1 Sec. 4.5.3
Death rate, γD 0.045 min−1 Sec. 4.5.3
AB deg. rate, D 1× 107 cell−1 min−1 Sec. 4.4
Simulation timestep, dt 0.1 min Sec. 4.3.2

Table 4.1 Default parameters for all droplet simulations. Chosen to be
comparable to experimental values, to run the simulation correctly
or to be consistent to aid comparison. The survival of the droplet
populations is calculated at Tend = 300 simulated minutes.

4.5.3 Parameter values

Parameter values were selected to mirror the experimental conditions as far as

possible. Unless otherwise stated, all simulations were run for 1000 droplets,

similar to the experimental number, and the survival of a bacterial population

in a droplet was evaluated after 300 minutes of simulated time (5 hours). The

droplet experiments are run for a comparable length of time, with microscope

images taken every 10 minutes over the course of 4–7 hours.

Droplets created in the microfluidic device are of picolitre size, see Section 2.6.

Measurements of our experimental droplets show an average volume of 91± 15

pL. For the model, we round this up to be 1× 10−7 mL.

Our simulated growth rate, γG and death rate, γD are fixed in the deterministic

case, and are used to calculate the mean dN for the τ -leap calculation in the

stochastic model.

The simulation timestep is set to 0.1 minutes (6 seconds) for all simulations,

which is small enough to satisfy the conditions for the tau-leaping algorithm (see

Section 4.3.2) while still allowing computational efficiency. A λ value of 5 was

chosen to fill the droplets with a range of low initial population numbers (1–10).

This is slightly higher than the initial populations in the droplet experiments we

present (see Table 2.1). Table 4.1 shows the default parameter values used for

the simulations presented in Chapter 5. More details are given in the subsections

below.
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Growth rate

The growth rate, γG=0.01 min−1 was chosen to match the highest experimental

droplet growth rate measurement in our uninhibited droplet experiments (see

Table 3.2). Changing the growth rate does not impact the survival of the droplet

populations in this model, although it does affect the population size. This is

discussed in Section 5.3.4. Using a fixed growth rate is a simplification since

we know that individual bacteria show variable growth rates (see Chapter 3).

Including a growth rate distribution would be an interesting avenue to explore in

future work.

Death rate

In these simulations, we use a value of -0.045 min−1. for the antibiotic-mediated

death rate, γD. This is based on the work of Yurtsev et al. who experimentally

measured a death rate of 2.8 hr−1 (0.046 min−1) for a sensitive strain of E.

coli exposed to ampicillin [32]. This value for the death rate is higher than the

measured death rates from our droplet experiments, which reached a maximum

of -0.0095±0.002 min−1 (see Figure 6.9). The effect of using different death rates

is investigated in Section 5.3.4.

Experimentally, it has been shown that bacterial growth rate can affect the

efficacy of antibiotics. The lysis rate of a bacterial population has been shown

to depend linearly on the instantaneous growth rate of the population [133, 143]

(faster growing bacteria are generally killed faster by β-lactam antibiotics). For

simplicity, and because we did not vary growth rate in our experiments, the

relationship between growth rate and death rate was left out of our model. This

dependence could be implemented in future work.

We also note that in our model, the death rate does not depend on the antibiotic

concentration. This simplifies the model, but it is widely accepted that death rate

typically increases with antibiotic concentration [144]. Including a dependence

of death rate on antibiotic concentration would be another useful extension in

future work.
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Antibiotic concentration

In our model, the antibiotic concentration is tracked in units of molecules per

droplet volume, rather than µg mL−1. Ampicillin is used as the β-lactam

antibiotic in all the simulations presented since this antibiotic was used in our

experiments. The molar mass of ampicillin is 349.406 g mol−1 [145], which is

equivalent to 5.8× 10−16 µg per molecule. The user-defined initial antibiotic

concentration (a0), in µg mL−1 is converted into molecules per droplet using:

amolecules =
a0Vdroplet

5.8× 10−16
(4.14)

where Vdroplet is the droplet volume in mL.

4.6 Discussion

The model presented in this chapter is designed to mirror a droplet experiment,

to allow us to explore underlying small-population dynamics. In the following

chapter, the simulation model is used to understand the effects of stochasticity in

droplet loading and bacterial dynamics on the survival of antibiotic treatment.

Using our simulation method, we can easily run multiple replicate droplet

simulations and predict the number of droplets with a surviving population after

a chosen time. We can then repeat this procedure for different parameter values,

in particular, varying the average droplet loading, λ, and the initial antibiotic

concentration, a0. These parameters are also easy to vary experimentally, but

simulations offer the advantage that many more parameter values can be tested

in a short time, allowing a wider exploration of the system’s behaviour. Moreover,

in the simulations we can track how the antibiotic concentration changes in time,

which we cannot do in our experiments. We can also run many more replicate

simulations than the number of replicate droplets we can track experimentally.

Features of the model which could be changed in future work to increase its

accuracy and breadth include; adding saturation of the growth dynamics to mimic

the effects of nutrient depletion within the droplets; adding heterogeneity in the

growth and death rates; introducing a dependence between death rate and the

antibiotic concentration; and including a more detailed model of the enzyme

kinetics.
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Chapter 5

Simulating β-lactamase-producing

bacteria: results

5.1 Introduction

Small populations of β-lactamase-producing bacteria were simulated in the

presence of β-lactam antibiotics. This chapter presents the simulation results,

leading to predictions for the droplet experiments presented in Chapter 6. The

methodology and parameters of the model are outlined in Chapter 4.

In Gram-negative bacteria, such as E. coli, the most common mechanism of

resistance to β-lactam antibiotics is the production of β-lactamase enzymes, which

degrade the antibiotic molecules by hydrolysing the amide bond of the β-lactam

ring [53, 54]. The degradation of the antibiotic by enzyme-producing bacteria

reduces the antibiotic concentration for the entire population (assuming rapid

diffusion of the antibiotic). This can result in a population of bacteria being

able to survive treatments of antibiotic above the single-cell minimum inhibitory

concentration (scMIC). Consequently, the observed MIC, when measured at the

standard population size of 5 × 105 CFU mL−1, is higher (often by an order

of magnitude) than the concentration that that inhibits the growth of smaller

population sizes [65]. This dependence of antibiotic effect on the initial size of

the bacterial population is a well-studied phenomenon known as the inoculum

effect. The MIC and scMIC are defined and discussed in Section 1.3.4. The

inoculum effect is discussed in Section 1.3.5.
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In our simulations, we capture the inoculum effect by modelling a well-

mixed system in which the antibiotic concentration decreases at a rate that is

proportional to the number of resistant bacteria. Furthermore, our simulations

allow us to explore the effects of stochasticity in both initial population size and

growth/death dynamics. For small droplet populations, these stochastic effects

can be very significant. In particular, stochasticity can lead to some droplets

having a higher-than-average population size, which in turn allows these droplet

populations to survive at higher antibiotic concentrations than would be predicted

for a bulk system.

Therefore our simulations predict a range of concentrations of antibiotic where

stochastic effects in a population that is subdivided into droplets, lead to the

survival of part of the population, while a deterministic mean-field theory would

predict the success of the antibiotic treatment, i.e. complete elimination of the

bacterial population. Thus, we show that splitting the population gives an extra

survival benefit on top of the regular inoculum effect.

We first discuss results for a single parameter set (with a fixed bacterial density

and antibiotic concentration), comparing the various deterministic and stochastic

versions of the model (Section 5.2). Next, we vary the parameters of the model

to explore the effects of changing bacterial density and antibiotic concentration

(Section 5.3).

5.2 Predictions of the different model variants for

a single parameter set

A droplet experiment starts with many identically prepared populations, each

with the same concentration of antibiotic. Comparisons between droplet

populations allow us to see heterogeneity in the survival responses and growth

outcomes of clonal populations of bacteria. In our model, a single parameter set

is analogous to a single droplet experiment.

In this section we compare simulation predictions for the four categories of the

model (shown in Figure 4.2). To allow comparison of survival probabilities

between the various model types, these simulations were all run for 10 droplet

populations, with an initial antibiotic concentration of 5 µg mL (5 ×scMIC),

and a mean initial population size of 5 bacteria per droplet.
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Figure 5.1 Example of a fully deterministic 10-droplet simulation, with an
initial antibiotic concentration of 5 µg mL−1 (5×scMIC). The
simulations start with exactly 5 initial bacteria per droplet, with a
scMIC of 1 µg mL−1 (the equivalent of 1.72× 108 molecules per
100 pL droplet). The graphs show the number of bacteria (left)
and the corresponding amount of antibiotic (right) against time. All
10 droplet populations follow identical exponential growth and death
dynamics.

5.2.1 Deterministic model

In the fully deterministic version of the model we fill each droplet with an

identical number of bacteria and simulate growth and death as deterministic

first order processes. Figure 5.1 shows an example of a deterministic simulation

output: all the droplet populations show identical dynamics for both the bacteria

and antibiotic. Furthermore, we can see that all droplet populations survive

the antibiotic treatment even though the concentration is 5 × the single-cell

MIC value (displaying a small-population version of the inoculum effect). In

these simulations, the bacterial population initially decreases, but once the

antibiotic concentration has been reduced below the single-cell MIC, the growth of

bacteria is no longer inhibited and the population shows regrowth. The antibiotic

concentration continues to decrease whilst the droplet population regrows.

5.2.2 Stochastic droplet loading

Understanding the effects of the stochastic encapsulation of bacteria in a

microfluidics experiment was one of the motivations for constructing the model.

In our model, the rate of antibiotic degradation differs between droplets based
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Figure 5.2 Example of a 10-droplet experiment, with deterministic dynamics,
but Poisson-distributed initial population numbers (with a λ value
of 5). The single-cell MIC was 1 µg mL−1 (the equivalent of
1.72× 108 molecules per 100 picolitre droplet) and initial antibiotic
concentration was 5 µg mL−1 (5×scMIC). The graphs show number
of bacteria (left) and the corresponding amount of antibiotic (right)
against time.

solely on the initial population size, N0 (see Section 4.2 for the mathematical

representation of this dependence). In a simulation of 10 deterministically loaded

droplet populations, shown in Figure 5.1, each droplet contains exactly 5 initial

bacteria, a total of 50 bacteria. In the simulation of 10 Poisson-loaded droplet

populations, shown in Figure 5.2, the total initial population is still ≈50 bacteria.

From an experimental perspective, this is equivalent to an initial suspension of

5× 108 cells mL−1, distributed in droplets of volume 100 pL.

The key difference between the simulations in Figures 5.1 and 5.2, is that in the

fully deterministic model, all the populations behave identically, which results in

the survival of either all or none of the populations. Whereas when we introduce

Poisson loading, the survival outcome diverges between droplet populations.

In the example plotted in Figure 5.2, the survival fraction of the droplet

populations is 0.9 (9/10 droplets survive the antibiotic treatment). However for

this set of parameters, the survival fraction could range from 0.3–1, depending

on the distribution of the bacteria amongst the 10 droplets.

5.2.3 Stochastic proliferation and death dynamics

In reality, individual proliferation and death events are stochastic. Therefore

we included stochastic dynamics in the model via a tau-leaping algorithm, as
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Figure 5.3 Example of a 10-droplet experiment, with stochastic dynamics,
but fixed initial population numbers (each droplet starting with
5 bacteria). The scMIC was 1 µg mL−1 (the equivalent of
1.72× 108 molecules per 100 picolitre droplet) and initial antibiotic
concentration was 5 µg mL−1 (5×scMIC). The graphs show number
of bacteria (left) and the corresponding amount of antibiotic (right)
against time.

discussed in Section 4.3.2.

Figure 5.3 shows simulation trajectories of 10 droplet populations, all with fixed

initial N0 = 5 bacteria, i.e. with deterministic droplet loading, but simulated with

stochastic proliferation and death dynamics. In this particular example we obtain

a survival fraction of 0.7 (as 7 droplet populations survive the antibiotic exposure).

However for this set of parameters, the survival fraction for 10 simulated droplets

can range from 0.4–1.

With stochastic dynamics, in Figure 5.3, we observe a broad range of final

population sizes, from 0 to 130 bacteria, in comparison to the deterministic

dynamics of Figure 5.1, where all droplets finish with 30 bacteria.

5.2.4 Fully stochastic model

Incorporating both the stochastic bacterial loading and stochastic prolifera-

tion/death dynamics, demonstrated above, leads us to the fully stochastic version

of the model, which is also the most realistic representation of the droplet

experiments.

Running the fully stochastic model for 10 droplets at 5 µg mL−1 and average

loading, λ= 5 bacteria per droplet, we obtain a wide range of final population
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Figure 5.4 Example of a 10-droplet experiment, with stochastic dynamics
and stochastic initial population numbers. The initial antibiotic
concentration was 5 µg mL−1 (5×scMIC), with 5 initial bacteria
per droplet, each with a scMIC of 1 µg mL−1 (the equivalent of
1.72× 108 molecules per 100 picolitre droplet). The graphs show
number of bacteria (left) and the corresponding amount of antibiotic
(right) against time.

sizes, as well as final antibiotic concentrations, as shown in Figure 5.4. In this

example we obtain a survival fraction of 0.6. However for simulations with these

parameters, the survival fraction for 10 droplet populations can range from 0.3–1,

due to the stochastic nature of the model.

The final number of bacteria, after 300 minutes of simulated time, is ≈320, which

is higher than for the deterministic case (30 bacteria × 10 droplets = 300 total

bacteria), despite 4 of the stochastically grown droplet populations dying. The

final number of bacteria can vary due to the different initial droplet populations,

as well as the stochastic death and growth dynamics. Figure 5.5 shows the

distribution of the final bacterial number for the fully stochastic simulation

(for 500 repeats of the 10-droplet simulation). The final population sizes are

distributed around the deterministic value of 300 bacteria, but 72.6% of the

stochastic simulations result in a higher final number.

To explore the behaviour of the fully stochastic model, we investigated how the

survival fraction depends on the droplet loading. Figure 5.6 shows the outcome of

a single simulated droplet experiment, in which 1000 droplets were initialised with

stochastic loading, with a mean value λ = 5. The replicate simulations were then

binned by the initial number of bacteria, and survival probability was computed

as a function of the initial droplet loading. The blue curve shows the distribution

of initial population sizes (which follows a Poisson distribution with λ = 5). The
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Figure 5.5 This histogram shows the final number of bacteria, over all 10
droplets, from 500 repeats of the fully stochastic simulation at an
initial antibiotic concentration of 5 µg mL−1. In the equivalent
deterministic case, the final number of bacteria is always 300.
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Figure 5.6 The fraction of droplets which survived a fully stochastic growth
simulation with an initial antibiotic concentration of 10 µg mL−1,
plotted as a function of the initial number of bacteria in the
droplet. This simulation of 1000 droplet populations included
stochastic filling and stochastic dynamics. The blue curve shows
the distribution of the number of droplets with a given initial
population size (right-hand axis). The crosses show the survival
fraction of the droplet subpopulations, with error bars showing the
standard deviation of 1000 bootstrap resamplings of the data. For
the corresponding deterministic model, nT=6.98 (see Section 4.2.2).

crosses show the fraction of surviving droplets for a given initial loading. Clearly,

the initial loading strongly impacts the survival fraction. Survival probability

increases for droplets with more initial bacteria, but we also see that these highly

loaded droplets are rare.
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5.3 Simulating the effect of varying antibiotic

concentration, bacterial density, growth and

death rates

Next we present results for many different simulated droplet experiments, in which

we vary the key parameters. This allows us to determine the effect of different

initial antibiotic concentrations and different initial bacterial densities. We first

discuss the inoculum effect: dependence of the apparent MIC on bacterial density.

Next, we discuss the survival probability of the resistant bacteria under increasing

antibiotic stress, followed by the results for different values of the bacterial loading

density. Finally, we investigate the impact of varying the bacterial growth and

death rates within our model.

5.3.1 Inoculum effect: dependence of the MIC on bacterial

density for droplet populations

In our model, bacteria in a droplet survive if the antibiotic concentration

is less than the user-defined single-cell MIC parameter (scMIC). We can

define an apparent MIC, for a population that is encapsulated into droplets,

as the concentration of antibiotic for which only a small percentage1 of droplet

populations survive. This apparent MIC is not expected to be the same as the

scMIC. In fact, in the fully deterministic case, due to the way that we model

antibiotic degradation (see Section 4.4), we observe a proportionality between

the apparent MIC and the density of β-lactam-producing bacteria for the small

population sizes we are studying (as more bacteria are able to produce more

enzymes which degrade more antibiotic molecules per timestep). We therefore

find a positive, linear relationship between the inhibitory concentration and

bacterial density for the fully deterministic case; this is shown in Figure 5.7 (in

dark green).

This result fits well with a study of a β-lactamase-carrying E. coli strain by

Scheler et al., who found that the amount of antibiotic needed to inhibit growth

remained approximately constant when normalised to the antibiotic concentration

per bacterium, over a wide range of bacterial densities [66]. We also measured the

1The effect of defining the MIC with different percentages is explored below in Figure 5.7.
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inoculum effect experimentally; Figure A.12 shows the results for a set of plate

reader experiments, where higher bacterial densities survive higher antibiotic

concentrations.

This relationship is perturbed when stochastic filling and stochastic dynamics are

added to the simulations. Figure 5.7 plots the apparent MIC at each bacterial

loading density for partially and fully stochastic simulations. The relationship

between apparent MIC and bacterial density is still linear, but the data shows a

shift, in that the apparent MIC is higher for the stochastic simulations compared

to the deterministic case. The shift is greatest for the fully stochastic model

(in red), compared to the cases of only stochastic loading or only stochastic

dynamics. In panel (a), we have chosen to define the MIC as the concentration of

ampicillin that reduced the number of droplet populations by 90% (a commonly

used cutoff, sometimes referred to as MIC90 [146]). Panels (b) and (c) show that

whilst the deterministic result is the same regardless of the cutoff percentage, the

stochastic response is highly dependent on how one defines, or indeed, is able

to measure ‘survival’. In particular, the choice of defining the apparent MIC at

less than 50% of droplet populations (panel (b)) leads to almost no difference

between deterministic and stochastic results. It should be noted, however, this

definition is not relevant for the following results presented in this Chapter,

which are reported as absolute survival fractions of droplet populations, without

a percentage cutoff (although one could imagine a non-zero survival fraction

representing the sensitivity of a laboratory measurement).

Therefore, our simulations show (i) an inoculum effect in which the apparent MIC

has a linear relationship with the bacterial density, as shown experimentally [66],

and (ii) an additional shift in the apparent MIC that is caused by the stochasticity

of bacterial loading into droplets and the stochasticity of bacterial growth and

death dynamics. Our results strengthen previous suggestions [65] that the single-

cell MIC is a more reliable parameter for describing intrinsic bacterial resistance

to antibiotics than the MIC, as it is typically measured.

5.3.2 Survival probability as a function of antibiotic

concentration

Next, we perform a series of 1000-droplet simulations, for antibiotic concentra-

tions in the range 0–25 µg mL−1. In each simulation, we record the fraction
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Figure 5.7 The dependence of the apparent MIC on the mean number of initial
bacteria, λ, per droplet for each mode of the model. This dependence
is linear for the deterministic case (the dark green dashed line).
The relationship is still approximately linear in the simulations
with added stochasticity (in growth/death and bacterial distribution),
but the apparent MIC is increased. Each simulation was run for
1000 droplets and the inhibitory concentration was taken as the
concentration where less than (a) 10%, (b) 50% and (c) 1% of droplet
populations survive.
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Figure 5.8 The survival fraction of droplet populations at different concentra-
tions of antibiotic. Survival is defined as any number of bacteria in
a droplet and is calculated at 300 minutes of simulated time. All
droplets started with a bacterial population of λ=5. Separately, both
stochastic bacterial filling (light green ‘- -’) as well as stochastic
growth (orange ‘×’) have a positive effect on survival probability.
Combining Poisson distributed bacteria and stochastic growth (red
‘×’) leads to the potential of survival at the highest concentrations
of antibiotic.
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of surviving droplet populations after 300 minutes. This mirrors the droplet

experiments presented in Chapter 6.

We compare the survival curves for simulations with both deterministic and

stochastic filling and dynamics (see Figure 4.3), whilst keeping the mean bacterial

loading density constant (≈ 5 bacteria per droplet, or ≈ 5000 cells per 1000-

droplet simulation). In Figure 5.8 we see that, in the deterministic case, there is

a sharp cutoff for survival at 7 µg mL−1. This is much higher than the scMIC

concentration of 1 µg mL−1. This is because for concentrations in the range 1–

7 µg mL−1, the antibiotic degradation is fast enough to reduce the concentration

in the droplet to below 1 µg mL−1 before all the bacteria die, and therefore the

population can start to regrow. The effect is a manifestation of the same inoculum

effect that was discussed in the previous section.

Furthermore, adding stochastic elements to the simulation changes the shape of

the survival curve. Rather than being a step function, it acquires a stretched out

‘tail’. Importantly, we now see surviving droplets at concentrations that are more

than double the apparent MIC of the deterministic simulations. We also see that

separately, stochastic dynamics and stochastic filling have similar effects on the

survival probabilities. These effects are in some way additive, since we find that

the fully stochastic model results in the highest survival fractions.

We also note that the stochastic simulations show notably lower survival fractions

at concentrations below the deterministic MIC (i.e. below 7 µg mL−1). In the

deterministic case, all droplet populations survive for concentrations lower than

this apparent MIC value, whereas up to 50% of these populations do not survive

in the stochastic models. This is because some droplets have bacterial densities

below the average of 5 bacteria per droplet in the stochastic case.

5.3.3 Effect of bacterial loading density of bacteria on

survival curves

As discussed above, increasing the number of bacteria per droplet increases the

rate at which the antibiotic is degraded and therefore increases the apparent

MIC. Figure 5.9 shows survival curves as a function of antibiotic concentration for

different values of the droplet loading parameter, λ. As expected, higher droplet

loading leads to increased survival, both in the deterministic case (dashed lines

in Figure 5.9) and in the stochastic case (crosses in Figure 5.9). By increasing
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Figure 5.9 Survival fraction vs. antibiotic concentration at three different λ
values. Survival fraction of the droplet populations was calculated
after 300 minutes of simulated time. The deterministic case, where
the initial number of bacteria is identical in every droplet and equal
to λ, is shown with dashed lines. The survival fraction for the fully
stochastic case (growth and loading), is shown with crosses. Each
simulation was run for 1000 replicate droplets and the scMIC was
kept constant at 1 µg mL−1.
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the λ value we can see the protective effect that the resistant strain is able to

achieve when in more populated droplets, i.e. higher concentrations of bacteria

are able to survive higher concentrations of antibiotic.

Once again, we are able to see that the stochastic model results in survival at

far higher concentrations of antibiotic than the deterministic model. For high

densities of bacteria (on the order of bulk microbiology experiments), we would

expect the effects of stochasticity to disappear.

5.3.4 Effect of growth and death rate on survival curves

The results presented above were obtained for simulations with constant growth

and death rates for comparative purposes. Next, we explore how our results

depend on the bacterial growth and death rates. Growth rate, for example, could

be changed experimentally by changing the growth medium, while death rate

might be affected by factors including the osmolarity of the medium. Moreover,

faster-growing bacterial populations also show faster lysis rates when exposed to

antibiotic [133].

Figure 5.10 shows that in this model, the survival of a droplet population is

independent of the bacterial growth rate. Figure 5.10 shows a plot of survival

fractions for multiple 1000-droplet simulations, for a range of growth rates, where

all other parameters were kept constant. For this parameter set, the antibiotic

concentration is below the (apparent) deterministic MIC value, so the survival

probability is 1.0 for all the deterministic simulations, and it is somewhat lower

(0.8) for the stochastic simulations. In both cases, the survival fraction is

independent of the bacterial growth rate. This is because within each droplet

the bacteria do not grow when the antibiotic concentration is over the single-cell

MIC.

We note that the growth rate does affect the final population sizes in the surviving

droplets. However, because we define survival as the presence of any number of

living bacteria, this does not influence the survival fraction.

Survival of the droplet population is sensitive to the death rate, however. Figure

5.11 shows this dependence for the stochastic and deterministic case. For

the deterministic case, there is a threshold death rate below which all droplet

populations survive; above this threshold no bacteria survive. For the stochastic
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Figure 5.10 Dependence of survival fraction on the bacterial growth rate.
Simulations were run for growth rates of 0–0.05 min−1 in intervals
of 0.001 (doubling times of ∞–14 minutes). Each simulation was
repeated for 1000 droplets with λ = 5, scMIC = 1 µg mL−1, at an
initial antibiotic concentration of 5 µg mL−1 and a fixed death rate
of 0.045 min−1.

case, the survival fraction varies smoothly from 1 to 0 upon increasing the death

rate. This is because in the model, survival depends on the degradation of

the antibiotic to below a threshold single-cell MIC value, before the bacterial

population is all killed. The slower the death rate, the longer the β-lactamase

enzymes have to degrade the antibiotic molecules before the population becomes

extinct.

5.3.5 Dynamical trajectories of droplet population growth

and death

It is also interesting to investigate how the bacterial numbers in each droplet

change prior to the defined ‘survival cutoff time’ of 300 minutes. To this end,

we performed 1000-droplet simulations for an average loading of 5 bacteria

per droplet, and recorded the distribution of population sizes, N(t), across

the droplets. This simulation was then repeated for a range of antibiotic
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Figure 5.11 Dependence of survival fraction on the bacterial death rate.
Simulations were run for death rates of 0–0.125 min−1 in intervals
of 0.0025 (half times of ∞–5.5 minutes). Each simulation was
repeated for 1000 droplets with λ = 5, scMIC =1 µg mL−1, at an
initial antibiotic concentration of 5 µg mL−1, and a fixed growth
rate of 0.01 min−1.
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concentrations, from 0 to 25 µg mL−1. Figure 5.12 shows the results, presented

as heatmaps. Each panel shows the distribution for a different time point in

the simulations, to give an indication of the growth and death dynamics prior to

the survival count at 300 minutes (which is shown in Figure 5.8). We can see a

spread in population sizes at all times for the fully stochastic case, which can be

compared to the deterministic case indicated by the black dotted line (where all

1000 droplets have the same population size at any given time).

On the first panel, at T1, we can see that all the deterministically filled droplets

start with 5 bacteria (represented by the vertical dotted line). Whereas the for

the stochastically filled droplets, a Poisson distribution with λ = 5 is shown in

green; with the darkest greens (the highest proportion of droplets) at 5 bacteria.

At T30 we can see that growth is suppressed for the majority of droplets above

the antibiotic concentration of 5 µg mL−1, and this trend continues for T60 and at

T180. At later times the growth trajectories are spread in the stochastic model,

particularly for droplets containing low antibiotic concentrations. However, at

high concentrations of antibiotic (above 20 µg mL−1), we see that almost all the

droplet populations are zero.
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Figure 5.12 Heatmap showing the number of bacteria (x-axis) at four time
points (T, in minutes) of the simulation. A simulation of 1000
droplets was run with a starting population λ=5, for each antibiotic
concentration (in steps of 0.5 µg mL−1), shown on the left hand
axis. The colour shows the number of droplets at each population
size (colourbar scale shown on the right) for droplets simulated
with stochastic growth and filling. The dotted black line shows the
deterministic case.
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5.4 Discussion

This model indicates that the survival probability of a droplet population is

heavily dependent on both the antibiotic concentration (a0) and the initial

number of bacteria (N0), in that particular droplet (see Figure 5.9).

Populations that initially contain more than one bacterium are able to survive at

concentrations above the single-cell MIC (as shown for the populations in Figures

5.8 and 5.12 which start with an average of 5 bacteria). As suggested by previous

work [65], by growing together, resistant bacteria are able to cooperate with

each other and increase the collective apparent MIC above the single-cell MIC.

Thus, in both the deterministic and stochastic cases, our model predicts a strong

small-population inoculum effect. The addition of simple stochastic elements to

the model leads to increased survival in comparison to the deterministic cases.

Figure 5.8 shows that either stochastic filling or stochastic growth has a dramatic

effect on the probability of survival beyond the (apparent) deterministic MIC. As

is clear in Figure 5.12, there is survival in the stochastic case when there is none

in the deterministic case.

Subdivision of a population into ‘droplets’ mimics spatial heterogeneities that

are found in natural environments. Therefore we might expect real bacterial

populations in spatially structured environments to survive higher antibiotic

concentrations than suggested by bulk MIC experiments. Our results suggest

that in the face of β-lactam antibiotics, bacteria are stronger in groups, and that

structural stochastic effects should be taken into account as they lead to a range

of survival probabilities that are not seen when we only consider a deterministic

model. This means an infection might unexpectedly survive treatment, especially

in situations where there is structure, such that small bacterial populations are

isolated from one another and the bacteria exist in isolated communities.

A key feature of our model is the definition of a fixed single-cell MIC for individual

bacterial cells. Experimental work suggests that antibiotic efficacy is determined

by the amount of antibiotic per bacterial colony forming unit (CFU), not by the

absolute antibiotic concentration [66]. In addition, it has been shown (both in

vitro and in vivo) that the scMIC is the level of antibiotic concentration which

leads to the selection of resistant mutants [65]. Therefore our model helps us

translate from the dynamics of individual cells to the population level, which is

important to predicting the response and evolution of the larger population.
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The results presented in this chapter provide motivation for the small population

droplet experiments that we discuss in Chapter 6. The model predicts that with

Poisson loading we expect some droplet populations to survive at higher antibiotic

concentrations than in a bulk experiment with the same average bacterial density.

Moreover, survival of individual droplets should be correlated with their initial

bacterial number, N0. In reality, we do see survival of droplet populations in

Chapter 6, but this is only correlated with the initial population number, at

certain antibiotic concentrations (see Figure 6.6). This suggests different or

additional underlying dynamics than those we have assumed for this model, at

least for the particular strain of bacteria and the β-lactam antibiotic studied.

5.4.1 Future amendments or extension of the simulation

There are a number of ways which we might extend the current model, which

could perhaps better represent and aid the understanding of the experimental

data. Currently, growth and death are modelled at fixed rates (see Sections 4.5.3

and 4.5.3). However experimentally we see a distribution of growth and death

rates between droplet populations (see Figure 3.3 and Figure 6.9), so it would be

interesting to include growth rate heterogeneity among the individual bacteria.

Another observable difference between the simulation and the experimental

results in Chapter 6, is the suppression of division when the bacteria are exposed

to antibiotics. Therefore, it would be interesting to investigate the effect of

including persistence or filamentation responses in the model. Additionally, as

discussed earlier in Chapter 4, we could explore in more detail the modelling of

the antibiotic degradation using a full Michaelis-Menten model.
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Chapter 6

Exposure of β-lactamase-producing

bacteria to antibiotics: experiments

6.1 Introduction

The production of β-lactamase enzymes is the most common defense mechanism

against β-lactam antibiotics in Gram-negative bacteria. This is relevant clinically

as β-lactam antibiotics are amongst the most widely used classes of antibiotic

in medicine. β-lactamase production is an intrinsically cooperative form of

resistance, as the hydrolysis of the β-lactam antibiotic molecules reduces the

global concentration and therefore benefits any surrounding sensitive organisms.

This is consistent with observations that the inoculum effect is known to be

particularly pronounced for β-lactamase-producing strains, such that the density

of a culture has a significant impact on the MIC [64]. Section 1.3 includes

a background discussion of β-lactam antibiotics and β-lactamase-mediated

antibiotic resistance.

In this chapter I present an experimental investigation of the population dynamics

of β-lactamase-producing bacteria in the presence of a β-lactam antibiotic. In

my experiments I used the β-lactam antibiotic ampicillin and a β-lactamase-

producing strain of E. coli, RJA003, which is fluorescent in the cyan channel (see

Section 2.2.1).

Bulk-scale 96-well plate experiments were performed using a plate reader for

a range of bacterial starting densities to measure the inoculum effect in large
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populations. These results were then complemented by droplet experiments,

which allowed us to measure the dynamics of small populations under the

same range of antibiotic concentrations. In the droplet experiments, the direct

observation of individual bacterial cells using fluorescent microscopy allowed us

to detect the survival of even a single bacterium in a droplet. It is important

to understand the effect of antibiotics on this scale as infections can be caused

by very small populations, with infectious doses sometimes as low as a single

bacterial cell [13, 14].

Passively distributing the bacterial suspension into droplets allowed us to sample

a range of initial population sizes and therefore to test how initial bacterial

number affects survival as well as other dynamics of the small populations.

The results of the plate reader and droplet experiments can be compared to the

simulation predictions that were presented in Chapter 5. Our simulations pointed

to the existence of a small-population inoculum effect, where droplets containing

higher numbers of resistant bacteria contained more β-lactamase and therefore

showed faster rates of antibiotic degradation; making them more likely to survive

antibiotic treatment. Here, we will compare our bulk plate reader experiments to

the predictions of the deterministic simulation model, and we will compare our

droplet experiments to the predictions of the stochastic version of the simulations.

6.2 Plate reader experiments

Bulk-scale growth experiments in a plate reader were performed to assess the

large-population response of a β-lactamase-producing E. coli strain, RJA003, to

ampicillin. Experiments were performed over a range of antibiotic concentrations

and a range of starting bacterial densities to allow us to observe the inoculum

effect as well as the MIC.

6.2.1 Plate reader procedure

A microplate reader was used to measure the growth response of RJA003 at

various bacterial densities to a range of ampicillin concentrations, using optical

density (OD) measurements every 10 minutes over 24 hours. Optical density

measurements are a frequently used, well-documented method for measuring
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bacterial growth [27]. To avoid the selection of an atypical variant clone,

bacteria from 4–5 colonies on an agar plate were mixed and incubated in M9+gl

(0.4%) media to prepare an overnight bacterial suspension [58]. On the day of

experiment, 200 µL of the overnight suspension was diluted in 10 mL of fresh

M9+gl (0.4%) media and placed back in the 37°C incubator for 1.5 hours. The

96-well plate was prepared with media and ampicillin (see Figure 6.1) and was

placed on ice. The bacterial culture was then diluted with fresh medium to achieve

4 different bacterial densities. The bacterial suspension was then pipetted into

the wells as shown in Figure 6.1, so that each well contained 200 µL of liquid.

The plate setup was designed to achieve 3 replicate wells for each combination of

bacterial density and antibiotic concentration .

The 96-well plate was then placed into the microplate reader (BMG CLARIOstar

Plus) and incubated at 37°C, taking OD readings at 600 nm, every 10 minutes

for 13–24 hours. Between readings, the 96-well plate was shaken at 600 rpm in a

double-orbital mode to maintain aerobic conditions throughout the experiment.

Three sets of plate reader experiments were performed (PR1–3), for different

ranges of antibiotic concentration.

To calibrate the bacterial densities, we also took an additional OD measurement

for each of the inoculating suspensions (using a Cary 4000 UV-Vis spectrometer),

before performing a series of dilutions on agar plates for colony counting (CFU

measurements). Figure A.5 shows the results of this calibration.

6.2.2 Plate reader results

The three plate reader experiments, PR1–3, showed consistent results. For clarity,

we focus here on the results of experiment PR3. Analysis of the other plate

reader experiments can be found in Appendix A. The plate reader results all

display a clear inoculum effect. As shown in Figure 6.2, growth is observed

at all concentrations of ampicillin (up to 1.25 mg mL−1) for every replicate of

the highest bacterial density (B1, 5.05× 106 CFU mL−1), indicated in green

on the schematic. However for the lower densities of bacteria (B2–B4), no

growth is observed at the higher antibiotic concentrations, indicated in red on

the schematic. To verify that our plate reader experiments show a real inoculum

effect, we also tested whether the growth rate of uninhibited (antibiotic-free)

populations depended on initial bacterial density. Figure A.11 shows that there

is no such dependence.
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Figure 6.1 Diagram of 96-well plate setup used in the three experiments, PR1–
3. Each colour represents a different antibiotic concentration (A)
(this range was different for each experiment). Columns 1–3, 4–
6, 7–9 and 10–12 contain bacterial suspensions of decreasing cell
density (B). Each well contained 200 µL of liquid; for rows B–G,
100 µL of ampicillin and 100 µL of the bacterial suspension at the
appropriate dilutions; row A (orange) was filled with 100 µL of the
bacterial suspension and 100 µL of media, and row H (green) was a
control, with 200 µL of M9+gl media.
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Susceptibility to antibiotic stress strongly depends on the bacterial strain and

type of antibiotic. Even for a given antibiotic, effectiveness can vary drastically;

for example, in a test of 9 antimicrobials on 27 E. coli ATCC 25922 strains,

ampicillin was found to have the widest MIC range of 1–≥128 µg mL−1 [147].

For the strain used in these experiments, we expected to find a high MIC value,

because RJA003 is resistant to β-lactam antibiotics (see Section 2.2.1). Standard

MIC assays are conducted using bacterial suspensions of ≈5× 105 CFU mL−1 to

minimise variability (the CLSI recommends testing between 2–8× 105 CFU mL−1

[58]). In my plate reader experiments, this bacterial density lies between B3–B4

in PR3 and PR2 (Figures 6.2 and A.7). Therefore we find the MIC, as defined

in the standard way, to be 0.375–0.625 mg mL−1. We note that even at the

highest bacterial density tested, no growth was detected in the plate reader for

concentrations of ampicillin higher than 1.25 mg mL−1 (see Figure A.6).

We also note that Figure 6.2 shows an apparent increase in the lag time (delay

before the start of growth) as the bacterial density decreases. However this is

likely to be caused by the detection threshold for the OD measurements, rather

than an actual change in lag time.
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Figure 6.2 Grid of plate reader (OD600, y-axis) growth curves over time (in
minutes, x-axis) from experiment PR3. Each plot shows 3 replicates
for each combination of initial bacterial density and ampicillin
concentration. Ampicillin concentration is increasing top to bottom
(values given in mg mL−1). The top row shows uninhibited growth.
Bacterial density is decreasing left to right (from B1 to B4), with
initial concentrations of 5.05× 106, 1.65× 106, 7× 105, 2× 105

CFU mL−1. The OD values were corrected with the corresponding
control subtracted as a baseline. The schematic shows growth as
green, while late growth (that starts after 1000 minutes) is shown
in dark green; yellow shows growth for some, but not all of the
replicate wells; red indicates no growth. The arrows show increasing
ampicillin concentration (A) and bacterial density (B).
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6.3 Droplet experiments

Next, I performed a set of droplet experiments, in which small populations of

bacteria exposed to ampicillin were individually monitored over the course of 4–

6.5 hours. I used the same strain of E. coli as in the plate reader experiments

above, and a similar range of ampicillin concentrations. For comparison of the

bacterial densities in the droplet and plate reader experiments it is useful to note

that a single bacterial cell in a droplet corresponds to ≈1.1× 107 CFU mL−1 (see

Section 2.6). The droplet experiments aimed to investigate how the inoculum

effect observed in the plate reader plays out in small populations. The droplet

experiments produce a far richer data set than our plate reader experiments, with

thousands of replicates for each condition, as well as images that can be analysed

to determine possible physiological changes in response to antibiotic.

One motivation for our droplet experiments was the simulation predictions of

Chapter 5. In these simulations, stochastic encapsulation of bacteria in droplets

allowed bacteria to survive at higher antibiotic concentrations than would have

been possible in bulk populations. This was because some droplets had a higher

than average bacterial density, hence cooperative degradation of the antibiotic

was predicted to be more effective in these droplets. As we shall see, however,

the results of our droplet experiments are considerably more complex than the

simulation predictions.

6.3.1 Droplet experiment procedure

The experimental method was the same as that outlined in Chapter 2, and used

in Chapter 3 to study uninhibited growth in droplets, except that in this chapter,

ampicillin is introduced prior to bacterial encapsulation, via a Y-junction. The

Y-junction methodology was introduced in Chapter 2, Section 2.2.6.

In contrast to the plate reader experiments, for the droplet experiments we did

not vary the density of the starting bacterial inoculum. Instead, the Poisson

loading of the droplets (discussed in Sections 1.4.2 and 2.5.3) led naturally to a

range of initial population sizes within each experiment.

The procedure was as follows. A single bacterial colony was picked from a plate

and grown overnight. On the day of the experiment, the overnight culture
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suspension was diluted into fresh media (50 µL into 10 mL) and placed in a

37◦C incubator for 1.5 hr, after which the bacteria grow exponentially. A 1 mL

syringe was filled with this culture and attached to a Y-junction along with a

solution of ampicillin (prepared at 2× the desired experimental concentration).

The microfluidic device was mounted onto a microscope and a second syringe

containing a mix of oil and surfactant was attached to the oil inlet. The Y-

junction was then fixed to the aqueous inlet of the microfluidic device, and the

fluids were pushed through the channels using syringe pumps to create picolitre

droplets (see Section 2.2 for description and justifications of the microfluidic

methodology and detailed experimental procedure). The droplets were then

imaged every 10 minutes in brightfield (to image the droplet boundaries) and

in the CFP channel (to image the bacteria), for up to 6.5 hours. Appendix B

provides a step-by-step protocol.

These microscopy images were then converted into a dataset containing the

numbers of bacteria in each droplet (as well as other quantities such as total

biomass), for each timestep, using the image analysis methods explained in

Section 2.3.

6.3.2 Droplet experiments: qualitative observations

In total, fifteen droplet experiments were performed for ampicillin concentrations

in the range 0.625–10 mg mL−1; these are listed in Table 6.1. Repeat experiments

are labeled A–D and the ampicillin concentration, in mg mL−1, is given in

brackets. Each experiment involved the observation of 385–5999 droplets which

were able to be tracked throughout the entire experiment. This includes empty

droplets which did not contain any E. coli. Delay refers to the time between

droplet production and the first image acquisition. A range of 10 minutes is

given to account for the range of travelling times for droplets in different areas of

the reservoir, as well as the difference between the start position and end position

of the scan. Baltekin et al. were able to detect inhibited growth of E. coli from

ampicillin after 11 minutes [148]. Of the experiments presented in this thesis,

53% (8/15) are within this time (see Table 6.1). The impact of the imaging delay

is further discussed in Section 2.5.3.

Figure 6.3 shows trajectories of the bacterial count, for hundreds of replicate

droplets, for each of the experiments. The range of initial bacterial counts, arising

from the Poisson loading, can be seen in the variation in the bacterial counts (on
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Figure 6.3 Growth curves for the ampicillin droplet experiments, each panel
corresponds to a separate droplet experiment (listed in Table 6.1).
Each line represents a droplet population. Antibiotic concentration
is increasing down the left column in mg mL−1, and repeat
experiments are labelled A–D. We see there is no division when there
is ampicillin present.
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the y-axis of each panel) at time zero. The most obvious observation that emerges

from Figure 6.3, is that the bacterial count does not increase over time for any

concentration of ampicillin, even though the bacterial density in the droplets is

higher than in the plate reader experiments, for which we did see growth up to

concentrations of 1.25 mg mL−1 (see Section 2.6). Apart from a very small number

of divisions observed within the first hour during experiments with the lowest

antibiotic concentration, the fluctuation in bacterial counts are artefacts from the

image analysis (amplified by the hundreds or thousands of droplet populations

represented in each plot), and do not represent division. This apparent paradox

is somewhat resolved when we examine images of the bacteria in our droplets.

Figure 6.4 shows three example droplets—these images clearly show that the

bacteria are filamenting, i.e. growing without dividing.

Filamentous growth can be detected by plotting the total bacterial area (which

we term ‘pixel sum’) as a function of time, rather than the bacterial count. Figure

6.5 compares this ‘pixel sum’ to the bacterial count, for experiment A(0.625) with

an ampicillin concentration of 0.625 mg mL−1. It is clear that the total biomass

in the droplet is increasing, i.e. growth is happening, even though the bacterial

count is not increasing. Filamentous growth in the droplets will be analysed in

more detail in Section 6.3.5.

6.3.3 Killing dynamics of the droplet populations

In droplets we are able to count individual fluorescent bacteria. If we assume that

bacteria which fluoresce are alive (whereas killed bacteria lyse, such that they no

longer appear in the fluorescence channel), then we can count the number of

surviving bacteria at different times in our experiment. This gives a much more

detailed picture of antibiotic killing than would be possible in a bulk (e.g. plate

reader) experiment. For ease of quantification, we define ‘survival’ as follows:

a droplet containing a non-zero number of bacteria after 5 hours of antibiotic

exposure2 is classed as a surviving population. The survival fraction (SF) is then

calculated as the number of droplets with surviving populations divided by the

number of droplets containing bacteria at the start of the experiment. Figure 6.6

1Exceptions due to technical problems that arose during the runs are; experiment D(1.25),
which has 26 timesteps; A(0.625), which has 28 timesteps (spanning over 5 hrs); and B(1.25),
which has 24 timesteps (spanning over 5 hrs).

2Five hours corresponds to 31 timesteps in the complete datasets. The survival fraction for
D(2.5) is calculated at T26 or 4.3 hr.
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Experiment Total droplets Delay (min)

A(0) 2746 11–21 (+10)
B(0) 1524 3–13
C(0) 385 27–37
A(0.625) 2439 27–37
A(1.25) 925 6–16
B(1.25) 5999 10–20 (+90)
C(1.25) 747 3–13
A(2.5) 1997 24–34
B(2.5) 1309 5–15
C(2.5) 1068 12–22
D(2.5) 1316 17–27
A(5) 2661 9–19
B(5) 988 9–19
C(5) 477 9–19
A(10) 1789 18–28

Table 6.1 A list of the droplet experiments presented in this thesis, with the
ampicillin concentration given in brackets in mg mL−1. ‘Total
droplets’ refers to the number of droplets that were tracked over the
entire experimental run (at least 5 hours or 31 timesteps)1. ‘Delay’
is calculated as the time delay between when the tubing is cut (when
droplets stop being produced) and the start of the scan. The additional
time in brackets is due to discarding of initial timesteps during image
analysis.

Figure 6.4 Three example droplets from experiment A(0.625), at 333 minutes.
Panel (a) shows the raw CFP image and (b) shows the binary
processed image. Droplet 1 has a bacterial count of 2 and a pixel
sum of 26. Droplet 2 has a bacterial count of 3 and a pixel sum of
349. Droplet 3 has a bacterial count of 2 and a pixel sum of 200.
Scale bars show 50 µm.
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Figure 6.5 Trajectories of bacterial count, (a), and pixel sum (total area occu-
pied by bacteria), (b), for the droplet experiment at 0.625 mg mL−1

ampicillin (experiment A(0.625)). Droplet trajectories in which
filamentation was observed are shown in colour, while trajectories
in which no filamentation was observed are shown in black. The
grey area indicates a gap in the measurements due to a technical
problem.
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Figure 6.6 Total survival fraction (of droplet populations) plotted as a function
of initial ampicillin concentration. For clarity, the antibiotic
concentration is also indicated by colour (see legend), where different
points of the same colour represent experimental replicates. Error
bars show a 95% confidence interval based on binomial statistics.

shows the survival fraction as a function of the antibiotic concentration, for all

the droplet experiments. Unsurprisingly, we find that the higher the antibiotic

concentration, the lower the survival fraction for the droplet populations.

Interestingly, however, we see a non-zero number of surviving droplet populations

even at the very highest concentration (10 mg mL−1), and many droplet

populations survive well above the classical MIC value, which from our plate

reader experiments can be estimated as 0.375–0.875 mg mL−1 (see Section 6.2.2).

Figure 6.6 also shows that there is significant variation in the droplet survival

fractions between replicate experimental runs. This is particularly evident for

ampicillin concentrations of 2.5 and 5 mg mL−1 (in purple and green), which

have large ranges of total survival fractions.
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Figure 6.7 Survival fraction displayed as a function of initial number of
bacteria per droplet. Each panel shows data from experiments
with a different antibiotic concentration; different colours indicate
replicate experiments. The coloured dashed lines show the theoretical
prediction for the null model. The ampicillin concentrations and
total survival fractions, were as follows: (a) 0.625 mg mL−1: 0.9489,
(b) 1.25 mg mL−1: 0.8007, 0.8428, 0.9512, (c) 2.5 mg mL−1:
0.8955, 0.6694, 0.1193, 0.1604, (d) 5 mg mL−1: 0.8675, 0.9358,
0.3604, (e) 10 mg mL−1: 0.0797. Black dotted lines indicate the
total survival fraction across all droplets (removed from some panels
for clarity). Error bars show a 95% confidence interval, given by
1000 bootstrapped resamples of each dataset.
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Testing for collective effects in bacterial survival

If bacteria are able to protect each other via antibiotic degradation, then we

might expect the bacteria in droplets which are more highly populated to have

better survival chances. To test this, we separated the droplet data into subsets

of initial number (N0). Figure 6.7 shows survival fractions, plotted versus initial

bacterial population size, for all the ampicillin droplet experiments. The dashed

lines indicate the theoretical survival fraction predicted by a null model in which

there is no cooperativity, i.e. each bacterium has an equal chance of being

killed, irrespective of initial population size. In this model, the probability that

a droplet population with N0 bacteria survives would scale as 1 − (1 − SF1)
N0 ,

where SF1 is the survival probability for droplets with 1 initial bacterium, in that

experimental run. This is because the probability that all bacteria are killed, i.e.

that the droplet population does not survive, is (1− SF1)
N0 . Positive deviations

from the theoretical model—particularly for droplets with higher initial bacterial

numbers—might indicate cooperative survival effects.

Figure 6.7 shows fairly good agreement between the experimental data and

the null theoretical model for the lowest antibiotic concentration (panel (a)

0.625 mg mL−1) and the higher concentrations (panels (d) 5 mg mL−1 and

(e) 10 mg mL−1), suggesting that there is no measurable cooperativity in these

environments.

However for the intermediate antibiotic concentrations (panel (b) 1.25 mg mL−1

and (c) 2.5 mg mL−1), some of the datasets deviate from the theory. In particular,

in some experiments, the survival fraction appears to decrease with the initial

number of bacteria (although this would need to be confirmed with statistical

testing). Intriguingly, this is the case only for some replicate experimental runs:

other replicates do seem to follow the theoretical prediction.

The heterogeneity between replicate experimental runs, which is apparent in

Figure 6.6 and Figure 6.7 merits careful consideration. At first, we thought this

heterogeneity might arise from differences in the optical density of the inoculating

culture. Despite following a standardised protocol (Section 2.2.1), the initial OD

can vary between runs. Therefore in Figure 6.8 we plot the survival fraction as a

function of the initial OD of the inoculating culture, for all droplet experiments.

This plot shows no clear trend, suggesting that the initial OD does not explain the

variability between replicate runs. In our experiments, the inoculating bacterial

cultures originate from single E. coli colonies (see Section 6.3.1). It is possible
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Figure 6.8 Total survival fraction plotted against the initial bacterial density of
the inoculating culture (an OD600 measurement taken separately at
the start of each experiment; see Section 2.2.1). Different colours
represent experiments with different ampicillin concentrations, in
mg mL−1. For experiments using the Y-junction3, the OD reported
here is half the value measured of the bacterial dispersion, to take
into account the 1:1 dilution that occurs when the bacterial dispersion
is mixed with the antibiotic solution at the Y-junction prior to the
droplet forming junction. Error bars represent a 95% confidence
interval based on binomial statistics.

that differences between these initiating colonies has carried over into our droplet

experiments. This issue will be discussed in more detail later.

6.3.4 Quantifying kill times

While at least some droplet populations survive in all our experiments, many of

the bacteria die when exposed to ampicillin. It is useful to quantify the rate of

killing by antibiotic since this could be compared, for example, to classical kill

3All antibiotic droplet experiments use a Y-junction to introduce the bacteria and ampicillin,
however some of the uninhibited droplet experiments do not (see Table 2.1).
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Figure 6.9 Rate of decline of the total bacterial population (summed across
all droplets), for each droplet experiment. Death rate was
calculated by fitting the bacterial count to an exponentially decreasing
function. Colours represent experiments with different ampicillin
concentrations in mg mL−1 (concentration values are offset on the
x-axis for clarity). Error bars indicate the range of fits made with
1000 sets of bootstrap resampled data.
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curves for bulk populations. One way to quantify the killing rate is by tracking

how the bacterial counts decrease in time. By fitting the total bacterial counts

to an exponentially decreasing function, we can extract a killing rate for each

droplet experiment. Figure 6.9 shows these killing rates, using the bacterial

number, summed across all (initially non-empty) droplets.

The highest death rate occurred for the experiments A(10), D(2.5) and C(2.5);

these correspond to experiments where the survival fraction was below 0.16

droplet populations (see Figure 6.7). Th maximum total death rate was

0.0095±0.0018 min−1, equivalent to a rate of 0.57±0.1 hr−1. The uncertainty

represents the large range of death rates between droplet populations, and the

heterogeneous response to the ampicillin. Due to the low population sizes, these

values don’t fully represent the lysis dynamics.

As an alternative way to quantify killing, we also measured the time taken for

extinction of individual droplet populations. We define a droplet population as

being extinct when the bacterial count is measured to be zero for two consecutive

timesteps. Figure 6.10 shows the plot of mean extinction time (across droplets) for

each experiment. As might be expected, we observe a general trend of a shorter

time to extinction with increasing antibiotic concentration. Indeed, ampicillin has

been shown to kill faster at higher concentrations in previous studies with bulk

populations. In future work it would be interesting to compare the extinctions

times measured in our droplets with bulk kill curves performed under comparable

conditions [26, 143].

Figure A.4 shows the distribution function for the times at which a droplet

population can be characterized as extinct; the mean of each of these distributions

is shown as a separate point at the relevant concentration on Figure 6.10. For

antibiotic concentrations 1.25, 2.5 and 5 mg mL−1, repeat experiments at each

concentration yielded a variety of distributions, shown in different colours on

panels (b)–(d), which illustrates the heterogeneous response between the droplet

populations.

6.3.5 Analysis of filamentous growth

As mentioned earlier, bacterial counts do not tell the full story, since we also

observe filamentous growth at low levels of antibiotic exposure; where cells

continue to elongate but do not divide (see Section 1.3.1). We also sometimes
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Figure 6.10 Plot showing the average time to droplet population extinction as
a function of antibiotic concentration. Each point represents the
mean time of death for droplet populations within an individual
droplet experiment (different points of the same colour represent
experimental replicates). This data is the mean of the time
distributions shown in Figure A.4.
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observe filamentous cells in the droplet experiments with no antibiotic (see Section

2.4), but they are seen much more frequently in the presence of ampicillin. In

this section we will quantify the likelihood of filamentation in the presence of

ampicillin compared to the uninhibited experiments. The fact that we detect this

filamentation demonstrates the benefit of our microfluidic droplet methodology,

where we observe cells directly with microscopy, compared to bulk experiments,

e.g. with the plate reader, where we only detect overall biomass density.

To quantify filamentation in our image analysis protocol, we assign a cell size in

pixels for every bacterial cell in the droplets. We then use a cutoff size of 70 pixels

to distinguish between filamentous and non-filamentous cells. The measured cell

size is dependent on the chosen threshold value, the image quality and a number

of other factors (see Section 2.4.1). The risk of mis-identifying an aggregate (or

multiple cells) as a filament is low for the experiments with ampicillin as there is

no aggregation observed and almost no division so the bacterial number remains

low throughout.

Figure 6.4 shows example droplets to illustrate the shapes and sizes of the

filamentous and non-filamentous cells, and how they relate to the 70-pixel cutoff.

By thresholding the fluorescent image of the bacteria in panel (a), we obtain a

mask of each cell. The number of pixels which represent each cell (cover the area

of the cell in the microscopy image), is used to give an approximate measure of

size. Droplet 2 is an example of a droplet population containing filamentous and

non-filamentous cells. At this time, the filaments cover an area of 197 and 129

pixels, whereas the non-filamentous cell is represented by 23 pixels. Droplet 1

contains no filamentous cells despite having the same antibiotic concentration as

its neighboring droplets, with bacterial sizes of 10 and 16 pixels. Since each pixel

represents 0.46 µm2 (Section 2.4), our 70-pixel cutoff size corresponds to an area

of 32 µm2. See Figure A.3 for example distributions of bacterial sizes.

Quantifying the abundance of filamentous cells

In our experiments, ampicillin appears to induce filamentation at low concentra-

tions, but not at higher concentrations. Table 6.2 shows the number of filamen-

tous bacteria detected in experiments with different antibiotic concentrations.

To ensure accurate counting of the number of filamentous cells, we incorporated

a checking procedure, in which we compare the trajectory of the number of

objects larger than 70 px (i.e. potential filaments), with the trajectory of the
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number of non-filamentous-bacteria, i.e. objects smaller than 70 px. To create

a new filament, a non-filamentous bacterium needs to transition into a filament.

Therefore, we expect the number of filamentous cells (small objects) to decrease

by 1 in the same timestep as the number of filaments (large objects) increases

by 1. If this happens, then the new large object is counted as a filament. This

checking procedure reduces errors due to artefacts (e.g. debris) being mistaken

for a filamentous cell.

Table 6.2 shows that the experiment with the highest fraction of filamentous cells,

when compared to the initial bacterial count, is the droplet experiment with the

lowest ampicillin concentration tested; 0.625 mg mL−1, at 24%. We note that this

fraction was calculated by dividing the observed number of filaments (produced at

any time during the experiment) by the number of bacteria that were present at

the beginning of the experiment. We consider this a good approximation because

we see almost no division in the presence of antibiotic (see Figure 6.3). However,

the situation is different for the uninhibited growth experiment, where we see

bacterial growth, and little or no death. For the uninhibited growth experiment,

therefore, the fraction of filaments was calculated by dividing the number of

filamentous cells by the total bacterial count at the end of the experiment.

Figure 6.11 shows the biomass plots for two repeat droplet experiments at

1.25 mg mL−1; A(1.25) and B(1.25)4. We can see that A(1.25) (panel (a)) is a

noisier dataset, and the pixel sum within any droplet population (each indicated

by an individual trajectory) reaches a maximum of only 300 pixels. B(1.25)

(panel (b)) contains clearer subsets and shows growth for the populations in the

filamentous subset. However, compared to experiment A(0.625), even the biggest

filamentous populations cover an area a factor of ≈2 lower than the area covered

by the bacteria in A(0.625) (see Figure 6.5), again suggesting that the conditions

for filamentous growth are optimised at lower antibiotic concentrations.

The mean time to filamentation is similar for all the ampicillin concentrations

tested, including the uninhibited experiment (see Table 6.2). This indicates that

although the concentration of ampicillin affects the probability of a bacterial cell

filamenting, it does not greatly impact the time it takes to filament.

4The repeat C(1.25) was not included because some images have focus or halo-ing issues,
making the object-size analysis noisy (see Figure A.14).
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Experiment N0 Nf Fraction Rate (min−1) Mean time (min) SD (min)

A(0) 5537 2799 0.022* 5.9 240 68
A(0.625) 4323 1041 0.24 3.2 232 80
A(1.25) 1104 90 0.081 0.24 242 99
B(1.25) 1111 106 0.095 0.47 225 64
A(2.5) 2077 0 0 0 n/a n/a
A(10) 888 0 0 0 n/a n/a

Table 6.2 The total number of filaments (Nf ) is defined as the number of
bacteria we see transition from the non-filamentous to filamentous
subset. The fraction of filaments is calculated by dividing the number
of filaments by the initial bacterial count (N0), *apart from the
uninhibited case in which we instead divide by the final bacteria count
(which for A(0) is 126001 bacteria). Rate of filamentation, in min−1

was calculated using a linear fit to the cumulative sum of filaments
counted over time. The mean time to filamentation is the average
of the times at which we identify a switch from the non-filamentous
to filamentous subset (this is granular as images are taken every 10
minutes). The standard deviation (SD) of these times is also given.

Figure 6.11 Trajectories of pixel sum (the total area occupied by bacteria) for
two repeat experiments performed at 1.25 mg mL−1; (a) A(1.25)
and (b) B(1.25). Droplet trajectories in which filamentation
was observed are shown in colour while populations in which no
filamentation was observed are shown in black.
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Rate of biomass growth for filaments

We observe in our experiments that filamentous cells grow in the presence of

antibiotic, even though there is no cell division (Figure 6.5). Therefore it is useful

to measure the growth rate in terms of increase in biomass, or area, rather than

in terms of division rate. Previous work has suggested that ampicillin-induced

filaments grow exponentially [26]; our data also suggests exponential growth (see,

e.g., Figure 6.11(b)). Therefore we can extract a growth rate by fitting a straight

line to the natural log of the cell area (in pixels) as a function of time.

It is also useful at this stage to classify droplets according to whether or not

they show filamentation. Any droplet which contains a cell of size 70 pixels or

more, at any time, will be labelled as a ‘filamentous’ droplet population (shown

in coloured trajectories in Figure 6.5 and Figure 6.11). It is important to note

that this label does not mean that all of the bacteria contained in the droplet are

filamentous, nor that filaments are present for all timesteps.

Figure 6.12 compares growth rates calculated for bacterial count (panel (a))

and pixel sum (panel (b)). In each panel, growth rate histograms are shown

for the filamentous droplet populations (in green), and the non-filamentous

droplet populations (in blue). For growth rates computed from bacterial

counts (panel (a)), both filamentous and non-filamentous droplet populations

show approximately zero growth on average. However the difference between

filamentous and non-filamentous subsets is evident in the pixel sum growth in

panel (b). For growth rates computed using the pixel area, filamentous droplets

show a positive model growth rate of 6.4× 10−3 min−1 while non-filamentous

droplet populations show approximately zero average growth.

Interestingly, the model growth rate for the filamentous droplets is comparable

to the average uninhibited population growth rate, 8.6± 1.2× 10−3 min−1, which

is discussed in Section 3.3.2.

Probability of filamentation

The probability of filamentation for a given bacterial cell seems to depend on

whether other bacteria (or filaments) are present. This is shown in Figure 6.13,

where we track the dynamics of the filamentous and non-filamentous cells, for

droplets with different starting population sizes (N0). In this figure, the solid
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Figure 6.12 Histograms of the growth rates of individual droplet populations
at an ampicillin concentration of 0.625 mg mL−1 (experiment
A(0.625)), using (a) bacterial count and (b) pixel sum as a proxy
for biomass growth. Each droplet was categorised as ‘filamentous’
or ‘non-filamentous’ according to the criteria described in the text.
The green data corresponds to filamentous droplets, while the blue
data corresponds to non-filamentous droplets. Growth rates were
calculated using linear fits to the natual log of the growth curves
shown in Figure 6.5. The mean growth rates in panel (a) are
−6.2× 10−4 min−1 for the filamentous subset and −5.3× 10−5

min−1 for the non-filamentous subset (i.e. net population decline),
but in (b) the mean pixel sum growth rates are positive; 6.4× 10−3

min−1 and 2.2× 10−4 min−1 for filamentous and non-filamentous
respectively.
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Figure 6.13 This figure displays subsets of experimental data, separated into
initial population size, N0 (indicated with colours). The number
of filamentous and non-filamentous bacterial cells over time are
indicated with straight and dashed lines, respectively. The number
of bacteria is normalised by N0 for each subset. Each panel
represents data from experiments: (a) A(0.625), (b) A(1.25), (c)
B(1.25) and (d) A(10). The grey sections indicate a gap in the
experimental data.
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lines show the number of detected filaments, which increases in time, and the

dashed lines show the number of detected non-filamentous cells, which decreases

in time, as non-filamentous cells either die or change into filaments. The colour

coding indicates the initial population size. All datasets have been scaled by the

initial population size for ease of comparison. This figure indicates that bacteria

in droplets with higher initial population numbers (N0= 5–8) are more likely to

become filamentous. This is particularly evident in panel (a), which shows data

from droplets exposed to an ampicillin concentration of 0.625 mg mL−1. Panels

(b) for A(1.25) and (c) for B(1.25) are nosier, with less filamentation overall, but

again they show less filamentation in the droplets that start with only a single

bacterium.

In panel (d) for A(10) there is no filamentation or division, therefore in panel (d)

the dotted lines show just the killing dynamics of the non-filamentous population.

The effect of initial population size on the probability of filamentation can be quite

drastic. For example, for experiment A(0.625), in panel (a), after 190 minutes

of exposure to ampicillin, an individual bacterial cell is 25× more likely to show

filamentous growth if it is randomly sampled from a droplet with N0 = 7 vs. a

bacterial cell that is sampled from a droplet with N0 = 1. Continuing to focus on

experiment A(0.625); of the 4323 total initial bacteria, 1041 showed filamentous

growth during the experiment. These filamentous cells were all contained within

482 droplets, out of the 2439 non-empty droplets in the experiment.

Figure 6.14 analyses the probability of filamentation at the level of whole

droplets. Here droplets are categorised as filamentous or non-filamentous (using

the criterion described earlier), and according to their initial population size. It

is clear from Figure 6.14 that droplet populations that start with more bacteria

are more likely to show filamentation. For example, the fraction of filamentous

droplets within the subset of N0 = 1 is only 0.049. As there is no division (see

Figure 6.5), these droplets start with one bacterium, which either filaments (with

probability 0.049) or does not. For droplets that contain 2 bacteria initially,

we might expect that the chance of observing filamentation in these populations

is ≈ 0.049 × 2 = 0.098, if the bacteria behave independently. However Figure

6.14 shows that the probability of these droplets containing a filament is actually

higher, 0.14 for droplets that start with 2 bacteria. Indeed, almost all droplets

with N0 > 5 contain a filament, while the expected proportion for droplets with

N0 = 5 would be ≈ 0.049 × 5 = 0.245. This implies that the presence of other

bacteria has a strong effect on the filamentation probability.
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Figure 6.14 Stacked bar graph showing the fate of droplet populations depends
on the initial population size. Data is shown from experiment
A(0.625). Droplets that showed filamentation (at any time
during the experiment) are shown in green, while droplets in
which no filamentation happened (at any time) are shown in
blue. Filamentation predominantly happens in droplets that start
with higher population sizes. From 2439 droplets, 482 show
filamentation, 1490 contain only non-filamentous bacteria, and
the rest (467) are empty. The fraction of droplets in which
filamentation happens (of droplets which contain bacteria) is 0.24,
these 482 droplets account for 39% of the of the total initial
bacteria.
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A simple theoretical model for filamentation dynamics

We can construct a null model of the dynamics of non-filamentous cells in a simple

way, if we assume that non-filamentous cells can either convert to filamentous

cells at rate f or lyse (i.e. die) at rate d. We will assume that both of these are

independent Poisson processes, i.e. that there is no population-size dependence

of the filamentation rate. Therefore the number of non-filamentous cells follows

a simple death process, with rate d + f . The mean number of non-filamentous

cells, M(t), at a given time, t, therefore should be:

M(t) = N0e
−(d+f)t,

and the variance, V should be:

V (t) = N0e
−(d+f)t · (1− e−(d+f)t).

And therefore:

V (t) = M · (1− M

N0

). (6.1)

This can be understood by considering the switch of each of the initial bacteria,

N0, as an independent stochastic event that happens in time t, with probability

exp−(d+f)t. Therefore the variance can be found by considering a binomial

sampling of N0 trials with the same probability.

Figure 6.15 tests this theoretical prediction against our experimental data. The

number of non-filamentous bacteria was counted at every time point, for all

droplets. The variance of the data is plotted versus M · (1 − M
N0

), with colour

coded datasets, according to the initial population size of the droplet, N0 (each

cross corresponds to a different timestep). The ‘total’ result for each experiment,

displayed in black crosses, was calculated using the mean and variance of the

non-filamentous bacterial count over all the non-empty droplet populations .

Here, N0 was taken as the sum of the initial bacterial number measured over all

droplets. The dashed line shows the theoretical prediction from Eq. 6.1. For the

highest antibiotic concentration, 10 mg mL−1, we do not see any filamentation;

this dataset (panel (d)), appears to fit the theoretical model well, showing that

bacterial death can be treated as a Poisson process. However, the datasets for

lower antibiotic concentrations, where there is significant filamentation, deviate

from the model, especially for droplets with larger numbers of initial bacteria.
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This supports our previous observations that filamentation is more likely when

more bacteria are present in a droplet (because subsets of higher N0 deviate more

from the null model where filamentation occurs at an independent rate).

Does filamentation affect the survival chances of droplet populations?

It has been suggested that filamentation could increase the survival chance of

bacterial populations in the face of environmental challenges [50]. Therefore it is

interesting to ask whether droplets containing filamentous cells are more or less

likely to survive the exposure to ampicillin in our experiments and also, whether

they are able to offer protection for other bacteria.

Figure 6.16 addresses this question, by plotting the survival fractions as a function

of initial droplet population size, for ‘filamentous’ droplets, i.e. droplets where

filamentation happened during the experiment, and ‘non filamentous’ droplets,

i.e. non-empty droplets where no filamentation happened. Panel (a) shows

data for experiment A(0.625) with 0.625 mg mL−1 ampicillin. Here it appears

that filamentous droplets are actually somewhat less likely to survive than non-

filamentous ones, across all initial population sizes. From my experimental

measurements, we are unable to distinguish here between cause and correlation.

Perhaps filamentation offers no particular advantage in terms of population

survival (it may even be detrimental), and does not provide enhanced cooperative

benefits. Or alternatively, these filaments could have formed as a (possibly

beneficial) response to a higher environmental stress, and therefore the lower

survival fractions could be a result of the more stressful conditions rather than

the filamentous response.

Panels (b) and (c) show data from the two experiments with 1.25 mg mL−1

ampicillin. Here the results for the filamentous and non-filamentous droplets are

indistinguishable. Once again it appears that filamentation does not increase the

survival chances of a population.

It would be interesting to investigate in more detail the process by which

filaments die. For example, do filaments always reach a fixed size before dying?

Qualitatively, we observe a wide range of cell sizes (see Figure A.3) and the lysis of

filaments at different times and different sizes throughout the experiment. These

size and time distributions would be interesting to quantify in future work.

5Data for experiment B(1.25) begins at 90 minutes (see Table 6.1).
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Figure 6.15 Test of the theoretical model for filamentation dynamics. The
number of non-filamentous bacteria at time t is sampled at every
time point, for all non-empty droplets. This is plotted versus
M.(1 − M

N0
), where M(t) is the mean number of non-filamentous

bacteria and N0 is the number of bacteria in the droplet at the start
(each cross corresponds to a different timestep). Colours indicate
the initial number of bacteria, N0 in the droplets. The calculation
for the total dataset is shown in black crosses. The dotted black line
indicates theoretical calculation from Eq. 6.1. Panels show data
from experiments: (a) A(0.625), (b) A(1.25), (c) B(1.25)5and (d)
A(10).
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Figure 6.16 Survival fraction for filamentous and non-filamentous droplet
populations. Orange shows the survival fractions of droplets
which contained filamentous bacteria, blue shows survival fractions
for droplets in which no filamentation happened. The different
panels show data from different experiments, with the ampicillin
concentration labelled: (a) A(0.625), (b) A(1.25) and (c) B(1.25).
The uncertainty represented by the error bars were calculated using
bootstrap resampling.
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6.4 Discussion

In this chapter, we presented a set of experiments with a β-lactamase-producing

strain of E. coli, for a range of ampicillin concentrations. In the bulk experiments,

we see a clear inoculum effect, as we expected from our simulations (Chapter 5)

and from previous literature. In droplets, however, we obtained some unexpected

results. Our results showed that the survival of small populations in droplets

is indeed enhanced for droplets that start with more bacteria, but this can

be explained with a null model where each bacterium is killed independently.

Our replicate experiments show quantitatively different, but qualitatively similar,

results. Moreover, our experiments revealed that bacteria tend to filament in the

presence of ampicillin (in accordance with previous literature, but not accounted

for in our model) [127]. Bacteria that filament continue to grow (without dividing)

in the presence of antibiotic, but they do not have enhanced survival compared

to non-filamentous cells. Intriguingly, our data also showed that the probability

for a cell to filament appears to depend on the number of other bacteria that are

in the droplet.

In our experiments, some bacteria survive to the end of the experiment without

either filamenting or proliferating. These cells are apparently dormant and we

might identify them as persister cells [127–130]. The droplet technology makes

it very easy to identify these cells. Whilst they may also be present in the

plate reader experiments, because they do not contribute to growth they remain

undetected. Interestingly, non-growing cells were also detected in the uninhibited

droplet experiments in Chapter 3, where we measured up to 6% of droplet

populations as either no- or slow-growing. In the droplets with antibiotics the

proportion of non-growers is much higher, at 8–95% depending on the conditions

(survival fractions are displayed in Figure 6.6). In Chapter 3, for the uninhibited

case, we hypothesised that these dormant cells could be due to stationary phase

contamination of the initial bacterial suspension, but the high percentages of

non-growing, surviving bacteria after antibiotic exposure imply other factors at

play. For example, ampicillin might trigger a transition to a dormant state.

The possibility of a large proportion of dormant, but living cells in a population

treated with a supposedly bactericidal antibiotic could be relevant for clinical

treatment, especially if apparently killed infections might regrow [149]. Alterna-

tively, growth suppression such as this could allow the natural immune response

to eradicate an infection [150]. Another important point that emerges from
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our results is that OD measurements do not distinguish between the increase

of biomass and bacterial division [27]. In our droplet experiments, we observe no

cell division but a large number of growing filamentous cells at low concentrations

of ampicillin (Figures 6.5 and 6.11). The analysis of these filamentous bacteria

(Section 6.3.5) is possible post-experiment because we have raw microscopy

images for each droplet population. This is a major advantage of combining

droplet microfluidics with microscopy.

Filamentous growth is associated with an increase in phenotypic heterogeneity;

altered fluorescence levels and varying bacterial length distributions are often

observed [50]. This behavior could be interpreted as part of a noise-based survival

strategy. It appears from our data that the presence of other bacteria or other

filaments could be a trigger for other bacteria to do the same. Alternatively,

there could be environmental factors within particular droplets which caused the

cells to filament in concert. For example, if these droplets were harsher micro-

environments, this would perhaps explain the lower survival fractions for these

droplet populations (Figure 6.16).

For the ampicillin experiments, tracking the dynamics of the total pixelated area

presents a more representative picture of the response of the population than

simply tracking the cell numbers—although the latter approach worked well for

the uninhibited experiments in Chapter 3. In this chapter, we have assumed

that cells which are still fluorescent at the end of the experiment are alive. To

properly test this, we would need to see whether such cells can regrow when

antibiotic is removed. However, in the current experimental setup, we can’t know

whether restoration of normal growth for the filamentous cells would occur if the

antibiotic was removed. In the case of filaments, it is known that cells can remain

metabolically active and continue with DNA replication even when division is

inhibited. Upon removal of stress, filamentous E. coli cells have been observed

to divide randomly at one of the possible division sites along the filament [151]

(see Section 1.3.1). However removal of antibiotic from the droplet populations

is beyond the scope of these droplet experiments.

An important confounding factor in our experiments is that replicate experiments

produced quantitatively different results for the droplet population survival

fraction. We determined that this was not correlated with the initial optical

density of the starting culture. We suppose that it could be due to heterogeneity

in the single colonies used to inoculate the overnight cultures that eventually

produced our inoculating bacterial suspensions. In hindsight, more than one
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starting colony could be used to start out cultures (as is standard protocol, used

in our plate reader experiments). Alternatively, we could alter the experimental

procedure, to carefully to grow the inoculum to steady state before the start

of the experiment by repeated dilution of an exponentially growing culture.

This, however, would involve a significantly longer protocol, since a culture must

undergo approximately 8 generations in exponential phase to achieve steady state

growth [152]. Future experiments could also explore the effects of using a higher

initial inoculum in the droplets. We would perhaps see a stronger inoculum effect

at higher bacterial densities.

6.4.1 Comparing plate reader and droplet data

Bacterial response to ampicillin concentrations between 0.1 and 25 mg mL−1 were

tested in the plate reader, which is a larger range than the concentrations tested

in droplets (0.625–10 mg mL−1). In the plate reader experiments we see growth

at late times for antibiotic concentrations up to 1.25 mg mL−1 for the higher

bacterial densities, but not for the lower ones. This increase in the MIC with

the increase of bacterial density demonstrates the inoculum effect, which is often

found for β-lactamase-producing strains. In contrast, none of our antibiotic-

treated droplet populations showed any proliferation during the course of the

experiment (Figure 6.3). We do note however that our droplet experiments were

considerably shorter than the plate reader experiments. The observed growth in

the plate reader typically happened after 500 minutes, which is much longer than

the entire duration of our droplet experiments. We could speculate therefore that

growth might be observed in droplets too, if we were to observe them over a much

longer time.

Comparison of the bacterial density between the plate reader and droplet

experiments is not trivial. Encapsulating even one bacterium in a picolitre droplet

results in a bacterial density of 107 CFU mL−1 (see Table 2.2). Therefore the

droplet populations are actually at higher density than the populations in most

of our plate reader experiments (even when a bacterial suspension of the same

density is used to generate the droplets). Figure A.5 shows the initial bacterial

densities in CFU mL−1 used in the plate reader experiments. The only plate

reader experiment for which the bacterial density is greater than the average

bacterial density in our droplet experiments is B1 in PR1 (Figure A.6). When

comparing our droplet results in Figures 6.3, 6.6 and 6.13 to the plate reader

169



experiments, we should bear in mind that the bacterial densities in the plate

reader are lower. It is interesting therefore to observe that we have higher

bacterial densities in the droplets without observing the strong inoculum effect

that would normally happen at these bacterial concentrations. However, the

inoculum effect in the plate reader was only observed at long times (longer than

the droplet experiments).

Considering, for example, the bacterial density B1, the highest density used in

the plate reader experiments, we see growth at all antibiotic concentrations in

the plate reader, but we do not see any proliferation in our droplet experiments.

We do however, observe the growth of filaments. Therefore we can infer that

the growth we observe in the plate reader is likely to be filamentous growth

rather than cell division. This is a phenomenon that is well documented; for

example, other studies have found the number of CFU per milliliter remains

constant during the prelytic increase in OD on ampicillin exposure (Figure 2 in

[143]). The turbidity measurement of optical density is not always proportional

to cell number, and does not allow us to distinguish between different causes of

increased absorption [27]. We can infer from the droplet experiments that any

increase in OD for samples containing over 0.625 mg mL−1, is likely to be solely

due to filamentous growth.

An important hypothesis which arises from this data comparison is that the

inoculum effect which we observe in the plate reader experiments might actually

be a filamentous-inoculum effect. Indeed, in Section 6.3.5 we determine that the

probability of filamentation, per bacterium, is higher in larger droplet populations

than smaller populations. This suggests that we might expect more filamentation

in our plate reader experiments with higher bacterial densities. In future, it would

be interesting to repeat the plate reader experiments, taking regular samples for

microscopy to determine the presence or absence of filaments.

Interestingly, some of the heterogeneity that we observe in our replicate droplet

experiments, for example in the survival fractions for the experiments at 2.5

and 5 mg mL−1 (Figure 6.6), is also apparent in the plate reader experiments.

The schematic illustrating the outcomes of our plate reader experiments (inset

to Figure 6.2) is coloured yellow to indicate where there is growth in some, but

not all, replicate wells at the same ampicillin concentration. In Figure 6.2 we see

that only one replicate well grows at 0.625 mg mL−1 at bacterial concentration

B4. In addition, the growth curves for the lowest bacterial density are more

heterogeneous between replicate wells—even in the uninhibited case—than for
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the higher bacterial densities. Perhaps because the lower concentrations, with

smaller initial populations, display more stochastic behavior. This heterogeneity

is also apparent in Figures A.6 and A.7.

6.4.2 Comparing experimental data to the simulation

predictions

There are clear differences between the outcome of our experiments and the

simulation predictions made in Chapter 5. Unlike in the simulations, in our

droplet experiments we do not see any cell division in the droplets with antibiotic,

at least over the timescale of the experiment. The effects of temporarily

nonproliferating bacteria which are tolerant of bactericidal antibiotics would be

an interesting topic to explore in future simulations. It would also be very

interesting to include filamentous growth in our simulations, perhaps with a

density-dependent filamentation rate.

In the simulations presented in Chapter 5 we predicted that some droplet

populations would survive far above the bulk (apparent) MIC. This is indeed

observed in the data, with 8% of droplet populations surviving in the 10 mg

mL−1 experiment (which is 20× the MIC determined using the plate reader

experiments). The range of antibiotic concentrations explored in the simulations

were much lower than the experimentally measured MIC, however, so it is hard

to make a quantitative comparison for the particular strain of E. coli we studied.

Our simulations provided a useful starting point for exploring what might happen

in our experiments, and for informing the experimental design. However this

chapter has shown that the experimental reality proved to be more complex than

the simulation model.
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Chapter 7

Simulating mixed populations of

β-lactamase producers and

non-producers

7.1 Introduction

Using the same basic model as in Chapters 4 and 5, a model with both a

sensitive and resistant strain was developed to simulate cooperative behavior.

This ‘cheating’ model gives insight into cooperative dynamics by simulating the

growth of two different strains in small, confined (droplet) populations. Our

model is a simplified version of the model developed by Yurtev et al. [32]

which predicts conditions that enable coexistence between resistant and sensitive

cells. Unlike this evolutionary model, we do not give the sensitive strain a faster

uninhibited growth rate (although a metabolic cost is something which could be

explored in future work) and we do not include a lag time. We simply explore

the dependent dynamics (without evolution) when sensitive bacteria are in the

presence of β-lactamase-producing bacteria and are exposed to antibiotic.

The sensitive and resistant sub-populations can be interpreted as different strains

of bacteria or as sensitive and resistant sub-populations of the same strain; a

wild-type and a β-lactamase-producing mutant-type. Coexistence or cooperation

between different species can be viewed in the context of social evolution theory.

A sensitive strain can act as a cheater if it is protected from stress or benefits
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from resource production by a different strain, but does not incur the cost

of synthesising the public goods. In a well-mixed community, the cheater is

sometimes able to to dominate since it has a lower fitness cost [71, 153]. Under

other circumstances, however, cheating behavior can promote ecological diversity

and optimise resources [154].

The production and degradation of antibiotics are types of cooperative behavior

and play an important role in maintaining biodiversity within natural microbial

communities [155]. Many infections are polymicrobial, i.e. they contain

more than one microbial strain or species. In these polymicrobial infections,

interspecies interactions can influence the outcome of antibiotic treatment. In

particular it has been suggested that polymicrobial interactions sometimes lead

to increased antibiotic tolerance and greater spread of resistance [72, 156, 157].

The degradation of antibiotic by β-lactamases is one example of a resistance

mechanism which can aid the surrounding species; in some cases, in detriment

to the survival of the enzyme-producing bacteria [73, 158]. This protection of

sensitive strains by β-lactamase producing strains is a well-studied phenomenon

both in vitro and in clinical settings [56].

In this chapter we simulate mixtures of β-lactamase producers and non-producers,

in droplets. We ask whether segregation of the population into droplets enhances

cooperation or not. We also compare deterministic and stochastic models of

droplet loading and birth-death dynamics (these categories of model are explained

in detail in Sections 4.2 and 4.3).

7.2 Method

The same model presented in Chapter 4 was adapted to simulate mixtures

of resistant and sensitive bacteria. As in the original model, the resistant

strain degrades the antibiotic molecules (via the production of β-lactamase

enzymes) but here we introduce a sensitive strain which does not. Therefore the

antibiotic concentration is reduced in the presence of resistant bacteria, but is

not affected by the presence of the sensitive bacteria. In this model, resistant and

sensitive bacteria are characterised by different single-cell MIC (scMIC) values—

the sensitive strain has a lower scMIC. The higher single-cell MIC of the resistant

strain reflects the extra protection due to localisation of the β-lactamase enzymes

in the periplasm [133, 159, 160], i.e. we expect the β-lactamase-producing cells to
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be less vulnerable than the sensitive cells. Both resistant and sensitive bacteria

grow when the antibiotic concentration is below their defined scMIC values, and

die when the antibiotic concentration is above the scMIC.

We compare deterministic and stochastic versions of the model, represented by

the schematic in Figure 4.3. As in Chapter 5, we incorporate deterministic and

stochastic growth, as well as deterministic and stochastic loading of the bacterial

population into droplets (see Chapter 4 for the detailed method description and

justification). We assume that the two populations are independent apart from

their indirect interaction via antibiotic degradation—for example, we do not

simulate competition for nutrients.

Mathematical representation

The deterministic growth and death of both the resistant (NR) and sensitive (NS)

populations are modelled exponentially:

dNR

dt
=

{
γGNR a < scMICR

−γDNR a ≥ scMICR

}
, (7.1)

dNS

dt
=

{
γGNS a < scMICS

−γDNS a ≥ scMICS

}
, (7.2)

where γG is the growth rate, γD is the death rate, scMICR is the single-cell

MIC of the resistant bacterial strain and scMICS is the single-cell MIC of the

sensitive bacterial strain. Note that we use the same growth and death rates for

both strains. Meanwhile, the antibiotic concentration decreases at a fixed rate,

per resistant bacterium, in a manner that is identical to our earlier model, given

in Section 4.2:
da

dt
= −DNR. (7.3)

Stochastic growth and death is modelled with a tau-leaping algorithm [134], using

the same rate constants as in the deterministic model. Section 4.3.2 gives details

of the stochastic dynamics methodology.
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Parameter Value Unit

scMICR 1 µg mL−1

scMICS 0.1 µg mL−1

Droplet volume 1× 10−7 mL
Tend 300 min
Growth rate, γG 0.01 min−1

Death rate, γD 0.045 min−1

AB deg. rate , D 1× 107 cell−1R min−1

Simulation timestep, dt 0.1 min

Table 7.1 Default parameters for the droplet simulations. These parameters
were chosen to be comparable to experimental values or to be
consistent with our resistant-only simulations. Survival of a droplet
population is assessed after a simulation time of 300 minutes (Tend).

Parameter values

Table 7.1 gives the default parameter values used in the simulations presented

below. We assume that the sensitive bacteria have a single-cell MIC 10× lower

than the resistant bacteria, but the same growth and death rates as the resistant

strain. We assume the same growth and death rates for both the resistant and

sensitive strains for simplicity. In an equivalent experimental setup, this would

be a reasonable approximation if the resistant and sensitive strains differ only

by the presence or absence of the ampicillin resistance cassette. The implicit

modelling of the β-lactamase enzymes and the antibiotic degradation rate (D)

are discussed in Section 4.4. The numerical values of the parameters are the same

as in Chapters 4 and 5, and are detailed in Section 4.5.3.
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Figure 7.1 Dynamical trajectories for 1000 simulated droplets each with an
initial population of 1 sensitive and 1 resistant bacterial cell, with
an initial antibiotic concentration of 2 µg mL−1. Panels show
(a) population dynamics of the sensitive strain, (b) population
dynamics of the resistant strain, (c) the total growth curves, (d)
the antibiotic concentration over time. In all panels, individual
trajectories correspond to individual droplets. For these simulations,
the fraction of droplets with surviving resistant bacteria was 0.465.
The fraction of droplets with surviving sensitive bacteria was 0.102.

7.3 Results

7.3.1 Simulations with equal starting numbers of resistant

and sensitive bacteria

As an illustration, we first simulate 1000 droplet populations, with each droplet

initially containing 1 sensitive bacterial cell and 1 resistant bacterial cell (i.e. we

do not account for stochastic droplet filling). Trajectories from the simulations are

plotted in Figure 7.1. The starting antibiotic concentration is set at 2 µg mL−1,
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which is above the single-cell MIC of both strains. The simulations are run with

stochastic growth and death dynamics, so the outcome is different in replicate

droplet simulations. The panels show growth curves for the sensitive strain,

the resistant strain and the total population (a–c respectively) as well as the

antibiotic concentration in panel (d) for each individual droplet. Panel (d) shows

clearly that the antibiotic concentration plateaus at a non-zero value for a large

proportion of the droplet populations; these correspond to droplets where the

resistant population has been eliminated. While in droplets where resistant

bacteria survive, the antibiotic concentration eventually falls to zero.

Without the resistant bacteria present, none of the sensitive strain would survive

the antibiotic treatment at 2 µg mL−1, which is 20× the scMICS. In this

example, 47% of the initial 1000 droplet populations contained surviving bacteria

by Tend. Of these ≈20% contained mixtures of sensitive and resistant bacteria,

while the other ≈80% contained only resistant bacteria. Of the 10% of the initial

1000 droplets containing surviving populations of sensitive bacteria, we see a

wide range of final sensitive population size, up to 77 bacteria (see panel (a)).

Figure 7.2 shows these final sensitive population numbers plotted against the

final resistant population numbers. As we simulate the growth and death of each

strain separately, we see that there is no correlation between the final number

of resistant bacteria and the final number of sensitive bacteria. Instead, because

larger population numbers are less probable, we actually see that if the population

of one strain is large (e.g. > 30 bacteria), the other strain is unlikely to also have

a large population.

In addition, Figure 7.2 highlights the impact of the stochastic dynamics, as the

deterministic version of the model results in the death of all the sensitive bacteria,

under the same parameters.

7.3.2 Varying the initial number of resistant bacteria

Since resistant bacteria can protect sensitive bacteria by degrading the antibiotic,

we expect that the survival probability for the sensitive bacteria will depend on

the number of resistant bacteria that are initially present. To explore this, we ran

a series of simulations, starting with 1 sensitive bacterium and a range of initial

numbers of resistant bacteria. For each starting condition, we ran 1000 replicate

simulations and measured the survival fractions for the resistant and sensitive

bacteria. Figure 7.3 shows the results, plotted as a function of the initial number
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Figure 7.2 Plot showing the final population numbers of both strains. Each cross
gives the population numbers for an individual droplet. The growth
tracks for the simulations with stochastic dynamics are shown in
Figure 7.1. The deterministic outcome of the simulations is given
in black, where no sensitive bacteria survive.
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Figure 7.3 Plot showing the fraction of droplets containing surviving resistant
bacteria (red) and surviving sensitive bacteria (blue), for 1000
simulated droplet populations at a range of initial resistant bacterial
numbers (1–25). All droplets began with 1 sensitive bacterium. The
initial antibiotic concentration was set at 10 µg mL−1. Crosses
represent the stochastic simulations and the dashed line shows the
deterministic case.
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of resistant bacteria.

We see the effect of increasing the population of resistant bacteria—increasing the

number of enzymes and therefore protection. All droplets begin with 1 sensitive

bacterial cell (NS,t=0 = 1) and a set number of resistant bacteria (varied on

the x-axis). For simplicity, these were fixed starting numbers (and not Poisson

distributed). In Figure 7.3, the green deterministic line shows that both resistant

and sensitive population survive if the initial number of resistant bacteria is

greater than 7. In other words, in the deterministic model, there is never a

scenario where the resistant population survives but the sensitive population dies

out. This is in some sense an artefact of the deterministic model, since the

sensitive population can regrow even if the ‘number’ of remaining bacteria is less

than 1 (but greater than 0).

The red and blue data in Figure 7.3 show the survival fractions for the resistant

and sensitive subpopulations for the simulations with stochastic (tau-leaping)

birth and death dynamics. In this case we do see a difference in survival

fraction between the resistant and sensitive subpopulations, partially because

in the stochastic simulations the sensitive bacteria cannot regrow if their number

becomes less than 1. Here we see that some droplet populations survive with

NR,t=0 < 7 but that the sensitive bacteria are only 50–70% likely to survive even

when NR,t=0 > 15, where 100% of the resistant droplet populations survive. This

is probably because the initial number of sensitive bacteria is very low (NS,0 = 1),

and the initial antibiotic concentration is high. Even for a high number of resistant

bacteria, it takes time before the antibiotic is degraded to below the single-cell

MIC of the sensitive strain. During this time there is a probability that the only

sensitive bacterium will be killed.

7.3.3 Varying the initial number of sensitive bacteria

Increasing the number of sensitive bacteria does not cause the antibiotic to

degrade more rapidly, however it can help prolong the survival of the sensitive

population until the antibiotic concentration is brought to below the scMICS,

and growth can resume.

We ran a similar set of simulations as above, but here we varied the initial

number of sensitive bacteria, whilst maintaining a constant number of initial

resistant bacteria. At an antibiotic concentration of 10 µg mL−1, as was used
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Figure 7.4 Survival fractions for the resistant and sensitive strains, plotted as
a function of initial number of sensitive bacteria, for simulations of
1000 droplets. Each droplet started with 10 resistant bacteria. The
data labelled ‘stoc’ were simulated with stochastic growth and death
dynamics.

for the simulations in Figure 7.3, droplets with only 1 initial resistant bacterial

cell do not survive. Therefore we ran simulations with initial resistant bacterial

populations of 10. Figure 7.4 shows that under these parameters, all droplet

populations survive in the deterministic model. In the simulations with stochastic

dynamics, ≈0.8 of the droplets have surviving resistant populations. The fraction

of surviving sensitive populations increases as the initial number of sensitive

bacteria increases, up until it reaches (but never exceeds) the survival fraction of

the resistant populations.

7.3.4 Including stochastic droplet filling

Up to now, we did not include stochastic droplet filling in our simulations.

Loading the droplets with Poisson distributed initial bacterial numbers mirrors

the experimental droplet generation (see Sections 1.4.2 and 4.3). To obtain a
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Figure 7.5 Survival fractions for the resistant and sensitive strains, plotted as a
function of initial antibiotic concentration, for simulations of 1000
droplets. The simulations labelled ‘stoc’ include stochastic droplet
filling and stochastic growth-death dynamics; the simulations labelled
‘det’ are entirely deterministic. In all simulations, the mean initial
number of resistant bacteria, λR, was 5. The mean initial number
of sensitive bacteria, λS was (a): 1, (b): 5 and (c): 10. Survival is
greatly increased at high antibiotic concentrations in the stochastic
simulations.
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complete picture, we now simulate the mixed sensitive-resistant system, including

stochastic droplet filling, for a range of initial antibiotic concentrations and a

range of initial ratios of the sensitive and resistant strains.

Figure 7.5 shows the survival fractions of the sensitive and resistant strains,

for 1000 simulated droplets at a range of antibiotic concentrations, for three

different mean values for the starting number of sensitive bacteria (λS = 1 (a),

5 (b), 10 (c)). In all cases, the mean initial number of resistant bacteria was

5 (λR = 5; which is exactly 5 resistant cells per droplet in the deterministic

case). As expected, in all ratios, the survival fraction decreases as the antibiotic

concentration is increased.

The deterministic model produces step functions, for both the sensitive and

resistant bacteria. However, unlike in Figures 7.3 and 7.4, the survival of the

resistant strain does not guarantee the survival of the sensitive bacteria. We see

surviving resistant populations at higher antibiotic concentrations, at which we

do not get any surviving sensitive bacteria.

As in Chapter 5, we see that stochasticity in droplet filling and growth dynamics

leads to survival at much higher antibiotic concentrations. For example, in panel

(c), over 10% of sensitive populations survive at 11 µg mL−1, which is a factor

of 110 greater than the scMICS and is a factor of 1.8 greater than the antibiotic

concentration at which the deterministic model predicts no survival. Therefore

we see that stochastic dynamics and Poisson-distributed encapsulation in droplets

can greatly enhance survival, not only of resistant bacteria, but also of sensitive

bacteria that co-exist with resistant ones.

Comparing panels (a), (b) and (c) in Figure 7.5, we see that the survival fractions

for the resistant and sensitive strain differ greatly when the initial number of

sensitive bacteria is small, (a), but are similar when the initial number of sensitive

bacteria is large, (c). This echoes the finding of Figure 7.3, that a small sensitive

population can easily die out before the antibiotic has been degraded, but a large

sensitive population is more likely to survive until the resistant bacteria have

degraded the antibiotic. Therefore, the protective effect of the resistant bacteria

is greater when the number of sensitive bacteria is high. This is interesting,

because it contrasts with the standard picture of social evolution theory, in which

‘cheating strategies’ work better for small cheater populations.
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Figure 7.6 Results for the survival fraction of sensitive and resistant subpop-
ulations, for simulations of 1000 droplets at varying ampicillin
concentrations. All simulations start with (mean) numbers of 5
resistant and 1 sensitive bacteria. Panel (a) shows results for
deterministic filling and stochastic birth-death dynamics, while panel
(b) shows results for stochastic filling and deterministic birth-death
dynamics. Both panels show the results from the fully deterministic
simulations in dashed lines for comparison.

Separating the two sources of stochasticity

In Chapter 5, we found that stochastic filling and stochastic birth-death dynamics

had similar effects on the survival of resistant populations in droplets. We want

to investigate whether this is still the case for mixtures of sensitive and resistant

bacteria. Figure 7.6 separates the effects of tau-leaping birth-death dynamics and

Poisson loading on the survival of the droplet populations. Panel (a) shows the

results for deterministic filling and stochastic birth-death dynamics, while panel

(b) shows the results for stochastic filling and deterministic birth-death dynamics.

We start these simulations with λ values of 1 sensitive and 5 resistant bacterial

cells per droplet, the same parameters as (a) in Figure 7.5.

Interestingly, the two sources of stochasticity have very different effects on the

sensitive population—although the survival curves for the resistant population are

similar in both cases. For stochastic birth-death dynamics, we see increased killing

of the sensitive population. This is probably because stochastic death events lead

to extinction of small sensitive populations before the resistant population has

had time to degrade the antibiotic. In contrast, stochastic filling increases the

range of antibiotic concentrations at which the sensitive strain can survive. This

is because stochastic filling produces some droplets with large initial numbers of
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resistant bacteria, that are able to protect the sensitive strain.

7.4 Discussion

In this chapter, I presented simulations of mixtures of resistant and sensitive

bacteria, encapsulated in droplets. Resistant bacteria can protect sensitive

bacteria by producing enzymes which degrade the antibiotic. Inspired by previous

work on macro-scale populations [32] we were interested in how the protection

of the sensitive bacteria by the resistant bacteria would play out in small

droplet populations. Our results show that indeed, a small number of resistant

bacteria can protect sensitive bacteria, and that this effect is greatly enhanced by

stochastic encapsulation in droplets. Moreover, the protection is greatest when

the initial number of sensitive bacteria is highest. This happens because having

more sensitive bacteria present reduces the chances of stochastic extinction of the

sensitive subpopulation before the antibiotic has been degraded.

In our model, the sensitive strain benefits from the presence of the resistant

strain, but the resistant strain experiences no interaction with the sensitive strain;

within a droplet, the dynamics of the resistant population is unaffected by the

presence or absence of sensitive bacteria. This is of course unrealistic—in a real

picolitre droplet we would expect competition for nutrients and space between

the two strains. However, since competition for nutrients is mainly relevant at

late times, when the droplet population becomes large, it seems unlikely that it

would affect our main results, which are mostly dependent on what happens at

early times 1. In other words, the key event in our simulations is whether or not

the sensitive population becomes extinct before the antibiotic has been degraded;

this is determined while nutrients would still be abundant.

In this model, the resistant bacteria always have a better outcome than the

sensitive populations. This is partially because we did not include any fitness cost

for producing the β-lactamase enzyme. We could include such a cost by decreasing

the growth rate of the resistant strain relative to that of the sensitive strain.

However, in this model, a growth rate reduction of the resistant strain would

not impact the survival probabilities of the resistant population (only the final

population numbers). This is because the early-time dynamics, which determine

1Especially because we start with small numbers of bacteria and calculate survival fractions
after 300 minutes of growth, which is only ≈4.3 doubling times.
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survival, is dominated by death. In fact, a fitness cost such as a slower growth

rate of the β-lactamase-producing cells could reduce the survival probabilities of

the sensitive population, which is dependent on the rate at which the resistant

population is able to degrade the antibiotic to below the sensitive single-cell

MIC (this rate would be lower if the resistant cells took longer to reproduce).

We would expect to obtain different results in a model where a second dose of

antibiotic is added, after regrowth has happened; in this case, a fitness cost would

be relevant. Interestingly, our model behaves quite differently to the well-known

‘cheater’ scenario of social evolution theory. Here, the sensitive bacteria do not

act as cheaters, since any fitness cost for the resistant bacteria (even if it were

present) would start only at late times, once survival of the resistant strain has

already been determined. This distinction arises because in our model the crucial

factor is survival of small populations rather than net population growth.

It would be interesting to perform a set of droplet experiments equivalent to

these simulations. This would allow a quantitative investigation to assess the

extent of the protection that β-lactamase-enzyme-producing bacteria can offer.

In previous work, Yurtsev et al. investigated cooperative effects between β-

lactamase producers and non-producers for larger populations of 105 cells [32]. A

droplet experiment would not only allow us to investigate smaller populations, but

also provide access to a range of population ratios, because the initial bacterial

numbers will vary droplet to droplet due to the stochastic loading. Since we

are able to count individual bacteria, we could correlate the fate of sensitive

cells with the number of resistant cells in each droplet. This could be especially

interesting as the results of these simulations have suggested that distributing

the bacteria using Poisson statistics increases the chance of survival compared

to the deterministic (bulk) case (see Figure 7.6). Investigating the dynamics of

these small populations in a confined picolitre volume could show whether there

a critical density of resistant bacteria needed to protect sensitive cells.

186



Chapter 8

Conclusions

8.1 Perspectives on the work presented in the

thesis

Biophysical and microbiological studies of bacterial growth and antibiotic re-

sponse usually involve very large populations. However, clinical infections can

start with a small number of bacteria. Individual bacteria can show strong

heterogeneity in growth parameters and stress response. Therefore it is also

important to study bacterial growth and death on a small population scale. The

droplet methodology and image analysis techniques used in this thesis allow us to

generate large datasets for statistical analysis of many identically prepared small

bacterial populations. This thesis has demonstrated the validity and utility of

microfluidic droplets for such studies. In particular, we can track in detail the fate

of bacterial populations over many droplets, which combined with mathematical

modelling, provides a way to understand how single-cell heterogeneity plays out

in small populations.

This droplet-based bacterial growth approach allows us to address many questions

at the intermediate scale between single cells and large populations. Do

spatially separated small populations behave differently from the equivalent bulk

populations? What information is lost when we study bulk populations of billions

of bacteria? Faster or more resistant bacteria dominate traditional bacterial

growth assays, obscuring our picture of the slow-growing bacteria within the

population. Bacterial populations can sometimes survive environmental stresses
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by virtue of a small subpopulation of non-growing or slowly growing cells that

are not killed; these are often known as persisters. These slowly growing or non-

growing bacteria provide a pool of cells from which the population can recover

after the environmental conditions have improved. These bacteria are undetected

in bulk experiments, but can be observed in droplet experiments (see Section

6.3.3). We note that it is important to track growth in droplet populations,

rather than just looking at individual cells, since heterogeneities among cells are

amplified in the exponential growth process. Therefore the distribution of traits

generated in a growing population can differ than that among individual cells.

It can also be argued that droplets better represent some natural environments

than a well-mixed suspension in a flask. For example, droplets could mimic the

interior of a host cell, or localised pockets within an infection that are exposed to

a different local concentration of antibiotic. Furthermore, droplets might mimic

the small niches found, e.g. in soil [15, 81].

An important feature that distinguishes our method from previous work is the

use of image segmentation to identify cell counts in each droplet. Being able to

count the absolute numbers of bacteria in each droplet is a great improvement

over proxy methods used in previous work. For example it allows us to accurately

sort our data according to initial population size. This means we can test density-

dependent hypotheses, including the Bellman-Harris model predictions in much

more detail than in previous work [95], and is also very useful in comparing our

antibiotic data (Chapter 6) to our simulation predictions from Chapter 5.

In Chapter 3 we present the baseline heterogeneity observed for small populations

undergoing uninhibited growth. This is useful for later comparison to experiments

performed with antibiotic stress (Chapter 6). It also provides fundamental

insights in its own right, since it allows us to test models for stochastic population

growth. In particular, we showed that the data for uninhibited growth of E.

coli populations in droplets was well fitted by the Bellman-Harris model, which

assumes no inheritance of division times. This sort of data could be used in future

to try to distinguish between different models for stochastic bacterial growth

dynamics.

In Chapters 4–7, we focus on the effect of antibiotic on small population dynamics.

In particular, we investigate populations of bacteria that produce β-lactamase;

antibiotic degrading enzymes. Because the benefits of antibiotic degradation

are collective, these populations are expected to show cooperative (density-

dependent) effects. For macro-scale populations it is already known that β-
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lactamase-producing bacteria can protect their neighbours, leading to a so-called

‘inoculum effect’, where high density populations are less susceptible to β-lactam

antibiotics. However, we predicted using simulations that for small populations,

stochasticity in droplet filling and growth-death dynamics would allow survival

of antibiotic treatment at even higher concentrations.

In Chapter 6, our macro-scale experiments agreed well with the simulation

predictions, showing an inoculum effect. However, our droplet experiments

revealed complexity that had not been predicted in our simulations. Specifically,

we observed that bacteria formed filaments in response to the ampicillin

antibiotic. Moreover, we found that replicate experiments often did not give the

same quantitative results (although qualitative trends were robust). Further work

is needed to fully understand the effects of filamentation on bacterial survival and

collective response, and to achieve fully reproducible experimental conditions.

The insights that we gained into the antibiotic response—in particular filamenta-

tion, were possible because of our use of microscopy as a method of measurement.

Since we had stored images for every droplet at every time point, we could refer

back to the raw images of the droplets post-experiment. This allows us to check

for errors and, if required, adjust the analysis. If a growth trajectory shows

unexpected dynamics, we can easily extract the image series corresponding to

that droplet and inspect the images to see what has happened. This retrospective

investigation also provides a useful way to confirm biological phenomena in a

particular droplet, such as the onset of bacterial aggregation. Further image

analysis can then be developed to investigate this, if required. The study of

filamentation presented in this thesis (Sections 2.4 and 6.3.5) is an example of

such post-experiment analysis. By quantifying the size, as well as the number

of cells within a droplet, we were able to quantify filamentation and detect that

biomass growth was occurring in the presence of antibiotic even though there

was no cell division. This demonstrates the potential of this type of dynamic

image-based droplet methodology.

8.2 Suggestions for future work

The work presented in this thesis suggests several promising avenues for future

work.

189



Improvements to image analysis

In this thesis, we developed image analysis methods to count bacteria in droplets

automatically. However, these methods could be improved in future work. In

particular a more sophisticated image analysis could be employed using machine

learning techniques such as object detection, to identify bacteria and track

droplets. This type of approach has been demonstrated for tracking the growth

of individual E. coli bacteria in 2D on agar pads; identifying the cell poles and

growth rates in time lapse videos taken with a 100× objective [161]. In our

experiments, improving the accuracy of the final data sets would allow us to

compare our results to mathematical models with more accuracy, potentially

allowing us to distinguish between alternative models, e.g. for stochastic bacterial

growth.

In addition, reducing the manual optimisation steps required for every experiment

would reduce the time required for the analysis.

Regrowth of bacterial populations in the presence of antibiotic

A striking discrepancy between our simulation predictions (Chapter 5) and our

experimental data (Chapter 6) is that in the simulations, droplet populations

are predicted to regrow after the antibiotic is degraded below the scMIC, but

in our experiments, we observe suppressed growth in droplets when ampicillin is

present. Studies have shown regrowth after long times [48–50] and it is not clear

whether conditions in our droplets prevent regrowth, or whether the experiment

was simply too short. It would be an interesting to extend the experiments

in Chapter 6 by imaging for longer than the current 4–6.5 hours. To make

this possible, the frequency of imaging could be reduced from once every 10

minutes to every 30–60 minutes to give a coarser dataset which takes up less

disk space. Alternatively, to determine whether bacteria are alive at the end of

the experiment, we could distribute the droplets on agar plates containing fresh,

antibiotic-free medium to see if colonies begin to grow. This would also provide an

interesting way to independently verify our results on survival fraction (Chapter

6).
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Closer focus on β-lactamase producers

Our simulation study revealed that literature values for kinetic parameters for

β-lactamase enzymes vary widely. This made it hard to generate quantitative

predictions for our experiments. Although we did observe the inoculum effect in

our bulk experiments, as predicted, there were significant discrepancies between

our droplet results (Chapter 6) and our simulation predictions (Chapter 5). It

would be interesting to investigate further with a wider range of experimental

parameters.

Adjustments could be made to the experiment, such as increasing the density of

the initial bacterial suspension; changing the strain to one that produces more

β-lactamase; testing a different β-lactam antibiotic; and including a colorimetric

dye that directly measures β-lactamase activity. This would allow a more detailed

investigation of the response of small populations to β-lactams and the possible

cooperative effects of β-lactamase production.

Mixed populations of β-lactamase producers and non-producers

Despite their ubiquity, the dynamics of interacting microbial populations has

hardly been investigated at the level of small populations. Therefore it would be

very interesting to extend our clonal droplet experiments to mixed populations

of β-lactamase producers and non-producers.

The clonal population studies in this thesis could be extended to include

different strains of bacteria. This topic was investigated at a preliminary

level using simulations in Chapter 7, but I did not have time to study it

experimentally. Future work could include an experimental test based on the

simulation predictions of Chapter 7, using microfluidic droplets. In other words,

a multi-species experiment with a β-lactam antibiotic, to measure cooperation

between a sensitive and resistant strain of bacteria. To interpret the data, the

two strains would need to be distinguishable using different fluorescent proteins,

for example.
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Using droplets for growth of difficult bacteria

In this thesis, I have used microfluidic droplets to study the dynamics of small

populations of bacteria in the presence and absence of antibiotic. However,

droplets may also provide a promising way to support the growth of bacteria

or other microorganisms which are otherwise difficult to culture in laboratory

conditions. This is because in the small microenvironment provided by a droplet,

competitor bacteria may be absent, allowing an ‘unculturable’ species to more

easily become established. Combining droplet microfluidics as used in this thesis,

with traditional cell sorting systems may allow the isolation and co-cultivation of

some ‘unculturable bacteria’ [125].

Using droplets to culture difficult bacteria is especially relevant for the discovery

of new drugs. Natural products from bacteria account for half of all commercially

available pharmaceuticals. Since 1987, no new class of antibiotics has been

successfully developed (only derivatives and variations of previously discovered

classes have been released for clinical use) [162]. Arguably, this is in part a

result of the limited bacterial diversity we are currently able to study [125].

Employing microfluidic droplet generation methodology, could give insight into

the antimicrobial properties of a range of metabolites from otherwise difficult to

study species [79, 81, 83].
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Appendix A

Extra figures

A.1 Uninhibited droplet experiment with no

growth

During the batch of uninhibited experiments, one of the overnight cultures did

not grow in the droplets, despite there being no antibiotic present. Figure A.1

shows the same data on two different scales, to show the 626 individual growth

tracks and the lack of growth in comparison to the other uninhibited growth

plots, shown in Figure 3.1.

Figure A.1 The growth curves of the droplet populations in experiment E(0).
These are included to show that some overnight cultures simply do
not grow any further whilst observed in droplets. Panels (a) and (b)
show the same data on different y-axes scales.

193



A.2 Bellman–Harris analysis

The Bellman-Harris analysis for data from experiments B(0), C(0) and D(0)

are shown in Figure A.2. Chapter 3, Section 3.3.4 includes a discussion of the

analysis and shows the results for data from experiment A(0). Table A.1 shows

the statistical test results for the CV (t) values of population size for each subset

of initial bacterial number (see Figure 3.8).

k 1 2 3 4 5 6 7 8
Mann-Kendall 0 0 0 0 1 0 1 0
M-K p-value 0.59 0.039 0.25 0.031 0.003 0.077 0.0008 0.71
Lilliefors 0 0 0 0 0 0 0 0
Lilliefors p-value 0.029 0.24 > 0.5 > 0.5 > 0.5 0.05 0.031 0.018

Table A.1 Statistical test results for the CV (t) values of population size for
subsets of droplet populations (with initial bacterial number, k) from
experiment A(0) (data shown in Figure 3.8). The Mann-Kendall (M-
K) tests were completed using a Matlab script [124] and the Lilliefors
tests were completed using an inbuilt Matlab function. A significance
level, α of 1% was used for both tests. There is insufficient evidence
to reject the null hypothesis (of no trend) if the result is zero.
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Figure A.2 CV of population size for droplets with initial bacterial number, k.
Panels show, from top to bottom, experiments B(0), C(0), D(0).
The red dotted line shows theoretical correlation. CV values were
calculated using a linear fit of the standard deviation over the mean
of population number, for each subset of data. Error bars were
calculated using bootstrapping with 1000 resamplings.
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Figure A.3 Plot of bacterial sizes measured at all timesteps throughout
the droplet experiments with initial ampicillin concentrations of
0.625 mg mL−1, 1.25 mg mL−1 and 10 mg mL−1 (data from
experimental replicate A for each concentration). We see the
number of filaments (cells with a pixel number above 70 px) is far
higher for the 0.625 mg mL−1 experiment.

A.3 Ampicillin droplet experiments

Droplet experiments with ampicillin are presented in Chapter 6. Figure A.3

shows the bacterial sizes for three example ampicillin concentrations, to illustrate

the difference in distributions. Figure A.4 shows the distribution of the droplet-

population extinction times, for each concentration of ampicillin studied (see

Section 6.3.4).
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Figure A.4 Extinction time of droplet populations in experiments: (a) 0.625 mg
mL−1, (b) 1.25 mg mL−1, (c) 2.5 mg mL−1, (d) 5 mg mL−1, and
(e) 10 mg mL−1. Experimental replicates are shown in different
colours. These histograms correspond to the average data shown in
Figure 6.10. To reduce error caused by count fluctuations, the death
of a droplet population (which was initially non-empty) was defined
as when two consecutive bacterial counts were equal to zero. The
time of extinction was taken as the time of the first count equal to
zero which was followed by another zero count. These time values
have a precision of 10 minutes due to the time required to image
the whole device.
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A.4 Bacterial density range

Before each droplet experiment, the density of the bacterial culture that was used

as the aqueous phase was characterized by an OD600 measurement. To calibrate

the measured OD in terms of CFU mL−1, I followed a standard plating procedure

and the results are shown in Figure A.5.

Figure A.5 Plot of initial OD and CFU per mL, measured by plating the
bacterial suspensions used in the plate reader experiments shown
in Figures 6.2, A.6 and A.7. Linear fit (red) indicates the linear
correlation, y = 4.3× 108x − 34000 with correlation coefficient,
R=0.94 and a p-value of 6.7× 10−6.
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A.5 Plate reader plots

There were three repeats of the plate reader experiment with different concen-

trations of RJA003 and ampicillin. Figures A.6 and A.7 are plotted below,

and Figure 6.2 is shown in Chapter 6, where the results from the plate reader

experiments are discussed in comparison to the droplet experiments. A schematic

is shown alongside the data to help interpret the results, with each square

representing the outcome of a particular combination of bacterial density (B)

and antibiotic concentration (A). Growth is shown as a green square, growth at

late times is shown in dark green, yellow shows growth for some, but not all, of

the repeats and red indicates no growth.

Figures A.8 A.9, A.10) show the log plots of the plate reader data for PR1–3.

Linear fits to the straight sections of the natural log of the data were used to get

a value of growth rate in the uninhibited wells. Sections of at least 240 minutes

(4 hours) or 24 data-points were used to get a representative rate. The growth

rates are plotted in Figure A.11. The mean bulk growth rate for RJA003 in M9

minimal media was determined to be 0.0066 ±0.002 min−1 (the uncertainty is

given from the standard deviation of the data).
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Figure A.6 PR1. Grid of OD600 (y-axis) plate reader measurements over
time (x-axis, in minutes). Each plot shows 3 replicates for
each combination of initial bacterial density and ampicillin
concentration. Ampicillin concentration is increasing top to bottom
(values given in mg mL−1). Initial bacterial density is decreasing
left to right (B1 to B4). These values (from B1 to B4) are
1.25× 107, 3.15× 106, 1.45× 106, 6.5× 105 CFU mL−1. The
top row shows uninhibited growth. The OD values plotted are
corrected with the corresponding control subtracted as a baseline.
The schematic shows growth as green, while late growth (that starts
after 400 minutes) is shown in dark green. Yellow shows growth for
some but not all of the replicate wells. Red indicates no growth. The
arrows show increasing ampicillin concentration (A) and bacterial
density (B).
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Figure A.7 PR2. Grid of OD600 (y-axis) plate reader measurements over
time (x-axis, in minutes). Each plot shows 3 replicates for
each combination of initial bacterial density and ampicillin
concentration. Ampicillin concentration is increasing top to bottom
(values given in mg mL−1). Initial bacterial density is decreasing
left to right (B1 to B4). These values (from B1 to B4) are
6.77× 106, 4.17× 106, 6.50× 105, 4.00× 105 CFU mL−1. The
top row shows uninhibited growth. The OD values plotted are
corrected with the corresponding control subtracted as a baseline.
The schematic shows growth as green, yellow shows growth for some
but not all of the replicate wells and red indicates no growth. The
arrows show increasing ampicillin concentration (A) and bacterial
density (B).
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Figure A.8 Log plots for PR1, data shown in Figure A.6. Grid of OD600 (y-
axis) plate reader measurements over time (x-axis, in minutes).
Each plot shows 3 replicates for each combination of initial bacterial
density and ampicillin concentration. Ampicillin concentration
is increasing top to bottom (values given in mg mL−1). Initial
bacterial density is decreasing left to right (B1 to B4).
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Figure A.9 Log plots for PR2, data shown in Figure A.7. Grid of OD600 (y-
axis) plate reader measurements over time (x-axis, in minutes).
Each plot shows 3 replicates for each combination of initial bacterial
density and ampicillin concentration. Ampicillin concentration
is increasing top to bottom (values given in mg mL−1). Initial
bacterial density is decreasing left to right (B1 to B4).
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Figure A.10 Log plots for PR3, data shown in Figure 6.2. Grid of
OD600 (y-axis) plate reader measurements over time (x-axis, in
minutes). Each plot shows 3 replicates for each combination of
initial bacterial density and ampicillin concentration. Ampicillin
concentration is increasing top to bottom (values given in mg
mL−1). Initial bacterial density is decreasing left to right (B1 to
B4).
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Figure A.11 Plot of bulk growth rate of uninhibited bacteria against initial
OD600. Growth rates were calculated using a linear fit to the
log plots of the OD curves shown in Figures 6.2, A.6 and A.7.
The mean growth rate is 0.0066 ±0.002 min−1. Colours indicate
separate experimental repeats. There does not appear to be a
relationship between growth rate and the initial bacterial density
(measured with OD). The curves from PR1, B4 and PR2, B2 are
excluded as this growth does not appear exponential (the log plot
does not fit a linear model).
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Figure A.12 Plate reader survival fraction plot with data from experiment PR2
(see Figure A.7), showing a similar inoculum effect shape as we see
in the deterministic model (Figure 5.9). Bacterial concentrations
are increasing from B4 to B1.

A.6 Droplet images
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Figure A.13 Example CFP image of a FoV with droplet populations under
uninhibited conditions after 5.5 hours of observed growth. One
droplet contains a very long filament; this cell did not divide
throughout the experiment. Surrounding droplets contain many
bacteria (image from experiment A(0)). Adaptive thresholding is
able to distinguish bacteria despite distribution of cell brightness.

Figure A.14 Filamenting at later times at low antibiotic concentrations. The
thresholding is inaccurate due to the ‘halo’ of fluorescence around
the filaments, causing the bacteria count to be more than 1 per
droplet. The population in droplet 16 dies between 270 and 280
minutes but the population in droplet 23 bacteria survives the whole
experiment (image from experiment C(1.25)).
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Appendix B

Droplet experimental protocol

Preparation:

Make device

Every droplet experiment is performed with a new microfluidic device. These

are produced in-house using a master mould (see Section 1.4.1). It is important

that bubbles are removed from the liquid Polydimethylsiloxane (PDMS) before it

sets and that the channels are kept dust-free. The steps to make a PDMS device

using a master mould are as follows:

• Clean and prepare master mould,

• Mix 10 parts elastomer to 1 part crosslinking agent to form PDMS,

• Remove bubbles (using a vacuum),

• Pour PDMS into mould and set in oven at 90◦C,

• Cut device out of mould,

• Punch holes for inlets and outlets with a (1 mm) biopsy punch,

• Insert (1 mm OD, 0.75 mm ID) thin-wall single-barrel glass capillaries into

the inlet and outlet holes,

• Flush inlets and outlets with compressed air to remove debris,
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• Place device on clear tape to remove any debris or dust,

• Bond device to (cleaned) glass slide using a plasma oven,

• Epoxy glass capillaries to secure to the device.

Mount device into chamber

Place the device into the chamber (see Section 2.2.3) and secure with the screws.

Apply enough pressure to ensure water-tightness, without cracking the slide. A

device in the sealed chamber is shown in Figure B.1.

Surface treatment

Defrost Pico-Glide™ surface treatment. Add 0.05 mL of Pico-Glide™ to a 1 mL

syringe already filled with 0.5 mL of air. Attach via tubing to the outlet of the

device and slowly push through. Pico-Glide™ should be left in channels for at

least 30 minutes to make them fluorophilic (see Section 2.2.5).

Grow bacteria overnight

Take 3 single colonies from an M9+gl agar petri dish to make 3 separate bacterial

cultures in 6 mL of M9+gl(0.4%) media. Incubate overnight with shaking at 37◦C.

Experiment day:

Dilute overnight bacterial suspension

Dilute one of the overnight samples; 25 µL in 10 mL of M9+gl media, or 50 µL

if using a Y-junction for the aqueous phase. Place this diluted suspension back

in the 37◦C incubator for 1.5 hours.
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Start the oil phase

Mount the chamber containing the device using the custom metal stage onto

the microscope. Fill a 1 mL syringe with ≈0.8 mL of FC-40 and Pico-Surf™ mix.

Remove bubbles from the syringe and then attach the tubing to the syringe. Push

oil through tubing until ≈2 cm from the end. Place tubing through the chamber

lid, and attach onto oil inlet. Check syringe pump settings (correct width of

syringe etc.). Start syringe pump to initially fill channels (at a rate of 40–70 µL

hr−1).

Set up the microscope ND acquisition scan (in NIS elements)

Check Köhler illumination set-up; adjust position of condenser as needed.

Spatially calibrate the objective. Ensure the light path is correct for scanning

and stitching a large image (‘Flip’ selected). Check bright-field and fluorescence

settings and focus. Inspect the device (especially the generator) to spot any

issues (e.g. blockages in channels). Check the ND acquisition settings, ensuring

the correct switching of settings between the two channels (filter, illumination,

exposure, binning, capture bit number and auto-scaling). Ensure PFS (the

Perfect Focus System) is selected and that the shutter is closed between time

loops (to reduce fluorescence overexposure).

Antibiotic

If antibiotic is being used, prepare dilution using frozen ampicillin stock

(according to Table B.1). The concentration was made to be twice the desired

final experimental concentration, as the ampicillin solution is introduced into the

device at the same rate as the bacterial suspension, to achieve a 1:1 ratio.

Start the aqueous phase

Remove bacterial suspension from incubator (after 1.5 hours). Take an initial

Optical Density (OD) measurement at 600 nm (using M9 media as the baseline

measurement). Fill a 1 mL syringe with the bacterial suspension, remove the

air bubbles, attach tubing to syringe and insert tubing through the lid of the

chamber (see Figure B.1). Start infusing at a flow rate (of ≈80 µL hr−1).
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M9+gl media Stock ampicillin Concentration Exp. concentration
1975 25 1.25 0.625
1950 50 2.5 1.25
1900 100 5 2.5
1800 200 10 5
1600 400 20 10

Table B.1 Ampicillin dilutions. Experimental (exp.) concentrations of
ampicillin, made from frozen stock of 100 mg mL−1 ampicillin and
M9+gl media. Concentrations are given in mg mL−1 and volumes in
µL.

If antibiotics are being used, attach two syringes, containing the bacterial

suspension and the antibiotic solution (through the chamber lid) to a Y-junction,

and push through both liquids. Attach the Y-junction to the aqueous inlet

capillary with ≈1 cm of tubing and start the flow rates at ≈40 µL hr−1 on a

dual-syringe pump to ensure a 1:1 ratio.

Epoxy tubing

Apply epoxy to ensure water-tightness and prevent tubing sliding off glass

capillaries when water is added to the chamber. Wait for the epoxy to dry.

Make sure there is flow through both the oil and aqueous inlets. Screw the lid

onto the chamber; ensure that the tubing contacting the bacteria is submerged

and that excess tubing does not cover the reservoir area (this would interrupt the

microscope light path whilst imaging).

Water bath

Carefully remove the chamber from the microscope, whilst the syringe pumps

are still going, without pulling on the tubing. Submerge the chamber into 37◦C

water. Fill pump-tubing with water using the pump, starting with the outlet,

and attach to create a sealed loop. Remove bubbles from the chamber, ensure it

is completely filled with water, and then close the bubble-trap.

Remove excess water from the outside and re-mount onto microscope (once the

chamber is warm, it is often harder to fit into the microscope mount; remove

mount from the microscope and apply more force or alternatively, submerge

mount and device together). Submerge tubing into the water bath to maintain
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the water temperature in the chamber. Set the water bath temperature to ≈40◦C,

and adjust accordingly. Attach temperature probe to the chamber. Secure mount

in place with tape to prevent movement during the scan.

First droplets

Monitor the device using the microscope, and once the first droplets start to be

generated, adjust the flow rates to achieve monodispersity. The rate of the oil

phase should be set at 120 µL hr−1 for the device with the smaller step-width,

and 160 µL hr−1 for the device with the larger step width (see Section 2.2.2 and

Figure 2.3). The aqueous phase (containing the bacteria) is set at 35 µL hr−1, if

a dual-syringe pump with a Y-junction is used, or 60–70 µL hr−1 if there is only

one aqueous solution. These flow rates should be adjusted as necessary.

Cut tubes, adjust scan settings and begin scan

Once monodisperse droplets fill the reservoir, cut the tubing and stop both the

syringe pumps. Check the focus and exposure for the bright-field and fluorescence

channels and check that the PFS is working correctly. Test the area of the scan;

it needs to cover all, or as much as possible of the reservoir, but not go over

the limits of the chamber, and not beyond the range of the PFS. If stitching,

complete a test scan, then import and stitch these images (as outlined in Section

2.3.1) to check the calibration and light path settings. Create and start the full

ND acquisition (in time, channel and FoV).

Take OD and dilute bacterial suspension for plating

Once the scan is successfully running, remove the bacterial suspension from the

incubator and take a second OD measurement at 600 nm.

If plating, successively dilute bacteria at a ratio of 20:180 µL in PBS. Repeat ×3,

then add 5 µL of each dilution in a wheel to ×3 agar plates. Put the plates in an

incubator to grow overnight.
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Figure B.1 Image of custom chamber, filled with water, containing a
microfluidic device. The large slide is held in place with plastic
clamps onto an O-ring. Inlet and outlet tubes pass through holes in
the lid. The water pump (seen in background) is connected to the
chamber through the red plastic fittings.

Continue to intermittently check the microscopy images from the scan,

microscope focus, chamber temperature and water flow.
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Figure B.2 Image of the prototype custom chamber containing the an original
microfluidic device (where the generator and reservoir are made
separately and connected by tubing) on a standard microscope slide.
During use, all the screws are inserted before adding water.
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C.-C. Lo, P. S. Chain, S. J. Hallam, and C. L. Hansen, “A programmable
droplet-based microfluidic device applied to multiparameter analysis of
single microbes and microbial communities,” Proceedings of the National
Academy of Sciences, vol. 109, no. 20, pp. 7665–7670, 2012.

[120] J. C. Waters, “Accuracy and precision in quantitative fluorescence
microscopy,” J Cell Biol., vol. 185, no. 7, pp. 1135–1148, 2009.

[121] S. Taheri-Araghi, S. Bradde, J. T. Sauls, N. S. Hill, P. A. Levin, J. Paulsson,
M. Vergassola, and S. Jun, “Cell-size control and homeostasis in bacteria,”
Current Biology, vol. 25, no. 3, pp. 385–391, 2015.

224



[122] J. Lin and A. Amir, “The Effects of Stochasticity at the Single-Cell Level
and Cell Size Control on the Population Growth,” Cell Systems, vol. 5,
no. 4, pp. 358–367, 2017.

[123] R. Bellman and T. Harris, “On age-dependent binary branching processes,”
Ann. Math., vol. 55, pp. 385–391, 1952.

[124] S. Fatichi, “Mann-Kendall Test,” MATLAB Central File Exchange, 2009.

[125] E. J. Stewart, “Growing unculturable bacteria,” Journal of Bacteriology,
vol. 194, pp. 4151–4160, 2012.

[126] M. Wallden, D. Fange, E. G. Lundius, Baltekin, and J. Elf, “The
Synchronization of Replication and Division Cycles in Individual E. coli
Cells,” Cell, vol. 166, no. 3, pp. 729–739, 2016.
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