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Abstract

Autonomous driving (AD) has gained much attention in recent years due to its many

potential benefits such as improving safety and increasing efficiency. However, AD is a

difficult problem with challenges such as handling interactions with other vehicles and

predicting the future behaviour of human drivers. This often takes place in complicated

urban environments where information is missing due to occlusions. AD methods must

also be accurate and effective while still being efficient enough to run in real time.

In this thesis, several novel AD methods are presented which contribute towards

solving some of the problems of AD. In particular, the focus is on planning, prediction

and goal recognition (GR) methods which are interpretable by humans and formally

verifiable. Interpretability can increase user trust of AD systems and aid with debugging

issues with such systems. Having the ability to formally verify propositions made about

AD methods can help ensure safety and compliance with regulations.

The first novel method is Interpretable Goal-based Prediction and Planning (IGP2)

which integrates GR through inverse planning with Monte Carlo tree search (MCTS) to

achieve a full planning and prediction system. IGP2 is evaluated in several urban driving

scenarios and is shown to successfully recognise other vehicle’s goals and improve driv-

ing efficiency. The second method is Goal Recognition with Interpretable Trees (GRIT).

GRIT makes use of learned decision trees trained to infer a probability distribution over

the goals of other vehicles. An evaluation across two vehicle trajectory datasets shows

that the inference process of GRIT is fast, accurate, interpretable and verifiable. The

third method is Goal Recognition with Interpretable Trees under Occlusion (OGRIT).

Similarly to GRIT, OGRIT makes use of learned decision trees for GR. Through an

evaluation across two vehicle trajectory datasets with significant occlusions, OGRIT is

also shown to handle information missing due to occlusions and can make inferences

across multiple scenarios using the same learned models, while still remaining fast,

accurate, interpretable and verifiable. This thesis contributes three novel methods which

work towards allowing autonomous vehicles to accurately and efficiently infer the goals

of other vehicles in complex, partially occluded urban environments, and then predict

their future behaviour and plan accordingly.
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Lay Summary

Autonomous driving (e.g. self-driving vehicles) has seen increasing attention in recent

years as it has many benefits such as improving safety and efficiency of vehicles.

However, autonomous driving is very difficult as autonomous vehicles need to interact

with human drivers and pedestrians and predict what they will do next. These interactions

can be especially complicated in urban settings, where many parts of the surrounding

area could be hidden from view by obstacles. Autonomous driving methods must also

make accurate predictions and effective decisions very fast so that vehicles can quickly

react to their surroundings.

In this thesis, three new autonomous driving methods are presented, which address

the problems mentioned above. In particular, the focus is on methods for planning the

future actions of an autonomous vehicle, predicting the behaviour of other road users,

and recognising the goals of other road users. We focus is on methods which can be

easily understood and interpreted by humans. We also focus on methods which can be

verified to always follow specified rules relating to their input and output.

The first novel method is Interpretable Goal-based Prediction and Planning (IGP2),

which is a full planning and prediction system. IGP2 first infers the goals of other

vehicles, by planning from their point of view. IGP2 then generates a plan for the ego

vehicle, which takes into account the goals of the other vehicles. An evaluation in

several different simulated situations shows that IGP2 can accurately recognise the

goals of other vehicles and improve driving efficiency. The second novel method is

Goal Recognition with Interpretable Trees (GRIT). GRIT recognises the goals of other

vehicles, using models which have a tree-like structure. These models are trained on

data from real vehicles. An evaluation using two datasets shows that GRIT is fast,

accurate, interpretable by humans, and verifiable. The third method is Goal Recognition

with Interpretable Trees under Occlusion (OGRIT). Similarly to GRIT, OGRIT makes

use of models which have a tree-like structure. However, OGRIT also has the ability

to handle situations where information is occluded from the point of view of the ego

vehicle. In addition to this, the same OGRIT models can be applied across multiple

different scenarios, while still being fast, accurate and verifiable.

This thesis contributes several novel methods for autonomous driving. These meth-

ods allow autonomous vehicles to accurately predict the behaviour of other vehicles and

plan accordingly, in a manner which is fast, human interpretable, can generalise, and

handles situations where the surrounding are only partially visible.
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Chapter 1

Introduction

Autonomous driving is a difficult problem, but has enormous potential benefits. Ap-

proximately 1.35 million people are killed in road traffic crashes each year [1], many

of which are caused by human error. Autonomous vehicles (AVs) have the potential to

significantly reduce this figure by improving safety and reducing human error [2]. AVs

could also significantly reduce the cost of urban mobility, and reduce the need for indi-

vidual car ownership. Another benefit is improved efficiency in many areas. AVs could

improve fuel efficiency through smoother acceleration, platooning, and coordination

with other AVs. Autonomous taxi services which operate continually could reduce the

need for car parks in cities, opening up urban space for other uses [3].

Since the DARPA Grand Challenges for autonomous vehicles from 2004-2007

[4, 5], there has constantly been growing interest and progress in this field. AVs serve

as an important real-world test bed for artificial intelligence (AI) and robotics methods.

Building AV systems requires a diverse range of hardware and software technology

from many different fields. On the software side, the problem is often broken down into

sub-problems such as perception, prediction, and planning [6]. The task of perception

involves using raw data from various sensors such as cameras, LIDAR and radar to

infer the state of the vehicle’s surroundings [7, 8]. Prediction refers to predicting the

future states of other road users. Planning systems and control systems must make

decisions and act by controlling aspects of the vehicle such as steering, acceleration and

braking. One of the greatest remaining challenges for prediction and planning in AVs

is interaction with human driven vehicles. Human driving behaviour can be difficult

to model, and there is a diverse long tail of uncommon scenarios that can arise while

driving. Planning and prediction methods which are interpretable allow people to reason

about how methods will generalise to scenarios which they have not yet been tested on.

1



2 Chapter 1. Introduction

It is also important to have methods for validating planning and prediction methods, as

autonomous driving is a safety critical task.

In contrast to the modular approach, a different approach to autonomous driving is

end-to-end learning [9, 10, 11]. When using this approach, a machine learning system

is trained to act directly based on sensory input. This approach requires vast amounts of

data, which can be collected through simulation or vehicles operating in the real world.

In recent years, there has been increasing interest in interpretable or explainable AI.

For systems that make decisions which affect people’s lives significantly, or are safety

critical, such as autonomous driving, there is a growing recognition of the importance

of having autonomous systems with interpretable decision-making processes [12].

Regulations which codify the "right to an explanation" for some types of automated

decision-making have already been created [13], and regulators may create similar

rules for AVs. Another benefit of interpretability is that users may have greater trust

in interpretable systems [14], leading to faster adoption of AVs. There are still many

situations in which AVs make mistakes that human drivers would be unlikely to make,

and interpretability allows systems to be debugged more easily.

As autonomous driving is a safety critical task, it is important to have the ability

to validate that planning and prediction systems will act as intended when deployed.

However, validating planning and prediction systems empirically could require billions

of miles of real or simulated driving [15]. An alternative approach is to use verifiable

planning and prediction methods. Verifiability refers to the ability to prove that certain

statements about a system will always hold true, with the aim of guaranteeing safety

under all possible situations [16, 17].

Despite the recent progress in AVs, there are still open problems. It is desirable for

planning and prediction methods to be accurate, fast to compute, interpretable, veri-

fiable, generalisable, and handle occlusions. Existing methods fail at one or more of

these objectives. For example, one of the earliest approaches for planning was finite

state machines [18, 19, 20], which are both fast to compute and highly interpretable.

However, these require plans to be handcrafted for predefined scenarios, resulting in

poor generalisation to new situations. Deep neural networks have been widely applied

to perception, prediction, decision-making, and end-to-end learning, often achieving

high accuracy [21]. However, these models typically have millions of learned param-

eters, which makes them impossible for humans to directly interpret. One approach

to interpretable prediction infers the goals of other agents by assuming that they are

approximately rational and then performing inverse planning [22, 23]. Such methods
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can give accurate predictions and allow intuitive explanations to be extracted, but the

inverse planning process is computationally expensive.

1.1 Aims and Objectives

The objective of this thesis is to study and develop planning and prediction methods for

AVs. More specifically, the aim is to develop methods for AVs which are fast, accurate,

interpretable, verifiable, generalisable, and handle occlusions. These desiderata are

defined as follows:

• Fast: Planning and prediction methods must have the ability to make decisions

and inferences in real time, in order to be useful for AVs. We define this as making

decisions or inferences with a latency of 100 milliseconds or lower.

• Accurate: In order for the plans and predictions to be useful, they must be

accurate. The proposed methods should have comparable or better accuracy than

related state-of-the-art methods.

• Interpretable: The proposed methods should produce plans and predictions in

a manner that can be easily interpreted by humans. As defined in Section 2.2,

methods should have algorithmic transparency or simulatability.

• Verifiable: It should be possible to formally prove that the outputs of methods

will always obey constraints which are specified using propositional logic.

• Generalisable: The proposed methods should have the ability to make plans or

predictions across multiple scenarios using the same models in each scenario.

• Handle Occlusions: The proposed methods should have the ability to function

and make plans and predictions in partially observable scenarios where informa-

tion is missing due to occlusions.

1.2 Contributions

In this thesis, the contributions are a literature review of related work, along with several

novel planning and prediction methods for AVs. In particular, the focus is on goal

recognition (GR), which involves inferring the long-term goals of agents. The main

contributions of this thesis are:
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• A literature review of research related to planning and prediction for AVs, inter-

pretable AI, and formal verification. From this review, it was found that existing

planning and prediction methods for AVs do not satisfy all the objectives of being

fast, accurate, interpretable, verifiable, generalisable, and handle occlusions. The

literature review is presented in Chapter 2.

• An AV planning and prediction method, named Interpretable Goal-based Predic-

tion and Planning (IGP2) [24]. IGP2 makes use of inverse planning to perform

GR used for multi-modal trajectory prediction. An integration of these predictions

with Monte Carlo Tree Search (MCTS) is used to obtain optimised plans for the

ego vehicle, giving a full planning and prediction system. An evaluation of IGP2

across several simulated urban driving scenarios and two open-world towns is

presented, and it is shown that IGP2 achieves accurate goal recognition, efficient

driving, and interpretable plans and predictions. This method is described in

Chapter 4.

• An AV goal recognition method, named Goal Recognition with Interpretable Trees

(GRIT) [25]. GRIT can make fast inferences due to its straightforward inference

process, which makes use of learned decision trees (DTs). GRIT is evaluated

across four different urban driving scenarios using data from two different vehicle

trajectory datasets, and it is shown that GRIT achieves comparable accuracy to a

neural network baseline. It is also shown that properties of the learned DTs can

be formally verified using an off-the-shelf satisfiability modulo theories (SMT)

solver. Even if verification fails, the solver provides a counterexample which can

teach us more about the learned model. It is also shown that inferences made

by GRIT can be easily interpreted by humans thanks to the interpretable input

features used and shallow DT depth. This method is described in Chapter 5.

• An AV goal recognition method which can handle occlusions, named Goal Recog-

nition with Interpretable Trees under Occlusion (OGRIT) [26]. OGRIT can handle

occlusions and generalise across multiple scenarios, while still being fast, accu-

rate, interpretable and verifiable. Two new datasets of occluded regions are also

introduced, named the inDO and rounDO datasets, along with an open-source

tool that can be used to detect occluded regions in other datasets. An evaluation

of OGRIT on the inDO and rounDO datasets is presented, and OGRIT is shown

to have accuracy close to that of a neural network based GR method, while still
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being fast, accurate, interpretable and verifiable. This method is described in

Chapter 6.

1.3 Limiting Assumptions

Throughout this thesis, some limiting assumptions are made in order to simplify the

problem. For each of the GR methods presented in this thesis, a set of goals are generated

for each non-ego vehicle, for example taking a certain junction exit or going straight

on at a junction. The assumption is made that the actual goal of the non-ego vehicle

belongs to this set, but in rare cases vehicles may have other goals, for example parking

at the side of the road.

For the method named IGP2 described in Chapter 4, the assumption is also made

that vehicles only perform manoeuvres and macro actions from a known library. It is

also assumed that vehicles are rational and plan to minimise a known cost function

while driving to their goal.

In the method named GRIT presented in Chapter 5, it is assumed that the envi-

ronment is fully observable by the ego vehicles, though this assumption is relaxed in

Chapter 4 and Chapter 5. Another limitation of GRIT is that new models must be trained

for each scenario the method is applied to, so the method cannot be applied to previously

unseen scenarios where there is no training data available.

Some of these limitations are addressed by the method named OGRIT which is

presented in Chapter 6. OGRIT can handle missing information due to occlusions, and

can use the same learned models across multiple scenarios. However, occlusions from

the point of view of non-ego vehicles are not taken into account. In addition to this, the

scene is modelled in 2D when detecting occlusions, and the height of obstacles is not

taken into account.

All methods described in this thesis focus solely on planning and prediction, and

make the assumption that perception of the surrounding scene has already been per-

formed by a separate module. The simplifying assumption is made that the output of

the perception module is perfectly accurate. However, it is important to note that in a

real deployment, the perception output may be noisy or incorrect.

1.4 Publications

Research presented in the following publications make up parts of this thesis:
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• S. V. Albrecht, C. Brewitt, J. Wilhelm, B. Gyevnar, F. Eiras, M. Dobre, and S.

Ramamoorthy, “Interpretable goal-based prediction and planning for autonomous

driving,” in IEEE International Conference on Robotics and Automation, 2021.

My contributions to this publication included contributing to the design, imple-

mentation and evaluation of the method. Wilhelm and Gyevnar also contributed

to the design, implementation and evaluation of the method. Eiras, Dobre, Ra-

mamoorthy and Albrecht also contributed to the design of the method.

• C. Brewitt, B. Gyevnar, S. Garcin, and S. V. Albrecht, “GRIT: Fast, interpretable,

and verifiable goal recognition with learned decision trees for autonomous driv-

ing,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,

2021.

My contributions to this publication included the design, implementation, evalu-

ation of the method, and writing the main text of the publication. Gyevnar and

Garcin contributed to the implementation and evaluation of baseline methods,

and gave advice and feedback on the text of the publication. Albrecht contributed

to the design of the method, and gave advice and feedback on the text of the

publication.

• C. Brewitt, M. Tamborski, S. V. Albrecht, Verifiable Goal Recognition for Au-

tonomous Driving with Occlusions, NeurIPS Workshop on Machine Learning for

Autonomous Driving, 2022.

This publication is also under review for the International Conference on Intel-

ligent Robots and Systems (IROS) 2023. My contributions to this publication

include the design, implementation, evaluation of the method, and writing the

majority of the text of the publication. Tamborski contributed to the implementa-

tion and evaluation of baseline methods, and writing some text of the publication.

Albrecht contributed to the design of the method, and gave advice and feedback

on the text of the publication.



Chapter 2

Related Work

There have been ever-increasing amounts of research in methods for autonomous driving

in recent years. In this chapter, it is described how the research presented in this thesis

relates to existing research. In Section 2.1, an overview is given of autonomous driving

methods, with a focus on planning methods in Section 2.1.1 and prediction methods

in Section 2.1.2. An overview is also given of work in the field of interpretable AI

in Section 2.2, and discuss its application in autonomous driving. In Section 2.3 it is

discussed how formal verification has been applied to autonomous driving methods.

2.1 Autonomous Driving

There are many approaches to autonomous driving. Some methods take a modular

approach, where the whole task is subdivided into easier subtasks which are solved

by separate modules, as shown in Fig. 2.1. The task of perception is usually given its

own module. Perception takes raw data from sensors as input, and extracts information

about the vehicle’s surroundings [7, 8]. Extracted information can include aspects such

as the local road layout, road signs, road markings and the positions and velocities of

other vehicles and pedestrians. This information can then be passed to other modules

which perform tasks such as motion planning and prediction. After a trajectory has

been planned, a low level control module can then be used to track this trajectory by

controlling steering, braking and acceleration. The methods presented in this thesis

follow the modular approach. Planning and prediction is the main focus of this thesis,

and existing approaches for solving these tasks will be reviewed in the following

subsections.

7
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Sensor 

input Perception Prediction Planning Control Control


output

Figure 2.1: Modular approach to autonomous driving using sequential prediction and planning.
The red block represents input, blue blocks represent intermediate steps, and the green block
represents output.

2.1.1 Planning and Decision-Making

The aim of planning is usually to select a path, trajectory or immediate action which

aims to bring the vehicle to a goal location, while minimising a cost function, sometimes

subject to constraints. Most planning methods for AVs can be categorised as either

sequential planning, behaviour aware planning, or end-to-end planning [27]. Sequential

planning uses a pipeline approach, where perception and prediction are performed first

before passing their output to a planning module. This adds more modularity to systems

and can simplify their design. However, there are some situations where the actions

of the ego vehicle can affect the actions of other road users, and sequential planning

fails to take this into account. Behaviour aware planning methods couple planning and

prediction together. These methods can more accurately model interaction between

the ego vehicle and other road users, but tend to be more complex than sequential

planning methods. End to end planning involves directly training machine learning

models to make decisions when given raw sensor input. These have the potential to learn

intermediate representations that achieve better performance than hand designed repre-

sentations. However, the intermediate representations learned by end-to-end methods

may be uninterpretable.

2.1.1.1 Sequential Planning

Some sequential planning methods use lattice planning to plan over a discretised

action space while checking for collisions [28, 29]. Other approaches used random

sampling-based planning [30], such as rapidly exploring random trees (RRT) [31, 32]

or deterministic sampling-based planning, such as Fast Marching Tree (FMT*) [33, 34].

These methods can explore large state spaces, although with a large computational cost.

Another planning approach is to use constrained optimisation or model predictive control

[35, 36, 37, 38, 39, 40, 41] to find an optimal trajectory, while satisfying constraints

such as collision avoidance. These methods converge only to local optima, but this

is often still sufficient for deployment. Sequential planning methods such as these
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can be efficient and simplify design of the system. However, such methods do not

take into account how the actions of the ego vehicle affect the actions of other road

users. In contrast, the planning method presented in Chapter 4 is a form of behaviour

aware planning, which takes into account interaction between the ego vehicle and other

vehicles.

2.1.1.2 Behaviour-Aware Planning

Behaviour aware planning methods can be seen as combined planning and prediction

methods. Such methods can model interaction more accurately than sequential planning

methods, and can be much more interpretable than end-to-end planning methods. One

of the earliest approaches are finite state machines, where plans are handcrafted for a set

of predefined scenarios [18, 19, 20]. This approach is highly interpretable, but cannot

generalise to scenarios outside the predefined set. Another approach is to use decision

trees to select manoeuvres or paths from a set of candidates [42, 43].

Sadigh et al. [44] modelled interaction as a dynamical system which was solved

using MPC, and modelled how humans react to the ego vehicle’s actions by assuming

they are optimising a known loss function. However, this approach may fail and lead to

dangerous situations if the human model is inaccurate. One solution is to model a joint

distribution over the actions of the ego vehicle and other agents [45, 46]. During and

Pascheka [47] discretise the action space and evaluate all possible interactions. However,

this has exponential complexity and quickly becomes intractable as the number of agents

increases. This can be made more tractable by performing a game tree search, where

some branches can be pruned [48]. Another way to make the problem more tractable

is to use Monte Carlo Tree Search (MCTS) to prioritise exploring more promising

interaction sequences [49], while using a simple lane following model for other vehicles.

Similarly to this, MCTS is used as part of the method described in Chapter 4, but

MCTS is integrated with a more accurate motion prediction method based around

goal recognition. By assuming that followers are completely dominated by leaders,

complexity in the number of agents can be reduced from exponential to quadratic [50].

Complexity can be further reduced to linear by modelling interaction as a Stackleberg

game [51].

A different approach is to model the problem as a Markov Decision Process (MDP).

Actions can then be selected by simulating forward and choosing the actions leading

to the lowest cost [52]. A similar approach is to model the problem as a POMDP

[53, 54, 55, 56], where the hidden variables can represent the intentions of other road
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users, potentially hidden objects, or observation uncertainty. Solving these POMDPs

exactly is usually intractable, so approximate solvers are generally used. Finally, another

approach is to train machine learning models to make decisions. Vallon et al. [57]

trained a support vector machine from human data to make lane change decisions based

on features giving information about surrounding vehicles. However, such methods may

require large amounts of training data, in contrast to the MCTS based planning method

described in Chapter 4, which does not require any training data.

2.1.1.3 End-to-End Learning

For end-to-end autonomous driving, models are trained to perform some element of

planning given raw sensor data such as LIDAR or images from cameras as input. There

are two general approaches to end-to-end learning: Imitation learning (IL), where

a model is trained from human example via supervised learning, and reinforcement

learning (RL), where an agent learns to act based on its own experiences, usually in

simulation. Some imitation learning methods involve training a neural network to map

directly from a camera image or LIDAR to a steering angle [9, 10, 11]. Bojarski et al.

[58] showed that convolutional neural networks (ConvNets) trained in such a way can

learn to extract features from images representing road markings and other vehicles.

Some other methods do not select actions directly, but instead used ConvNets to propose

paths and identify drivable areas given camera images [59, 60]. Xu et al. [61] trained

a model to select discrete actions such as go straight, turn left, or turn right based

on video input. One drawback of IL methods is that the human demonstrations used

as training data may not cover the entire state space. Data relating to situations such

as near-collisions may be missing, as collecting such data would be dangerous. One

solution to this is to train reinforcement learning agents in a simulated environment.

Wolf et al. [62] trained a Deep Q-Network in simulation to select discrete actions,

while other methods such as Deep Deterministic Policy Gradient [63] can be trained for

continuous action spaces. One drawback of training in simulation is that models trained

on rendered images may not transfer to real life images. One way to address this issue is

to train a generative neural network to generate realistic images to be used while training

[64]. An advantage of end-to-end planning methods over modular approaches is that

their internal components are optimised to maximise the overall system performance,

rather than intermediate objectives chosen for their human interpretability. However,

interpretability is often desirable, even if it means sacrificing some performance by

other metrics. Deep neural networks such as those used for end-to-end learning are
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notoriously difficult to interpret, and can often behave in unexpected ways if used in

situations not represented in their training data. In contrast to such end-to-end learning

methods, the methods presented in this thesis are easily interpretable by humans, and the

methods described in Chapter 5 and Chapter 6 are verifiable using formal verification.

2.1.2 Motion Prediction

Considering all physically possible actions of other agents can lead to an explosion of

uncertainty, for which there is no safe plan. This is known as the freezing robot problem

[45]. To solve this problem, behavioural models of other agents are needed. One of the

simplest models assumes that agents will continue to travel at a constant velocity [65].

A more realistic model is the Intelligent Driver Model (IDM) [66, 67], which models

distance keeping for following vehicles by assuming they act as if using adaptive cruise

control. However, IDM does not take into account manoeuvres such as turning and lane

changes.

Some methods such as the method presented in Chapter 4 output a probability

distribution over trajectories, rather than a single trajectory. Hoermann et al. [66] used

a particle filter to estimate distributions over IDM parameters, and then propagated

forward to obtain a distribution over trajectories. Another approach modelled trajectory

distributions as Gaussian processes [45].

In Section 2.1.2.1, methods which make use of deep neural networks for motion

prediction are discussed. In Section 2.1.2.2 methods which assume vehicles follow a

distinct set of manoeuvres are reviewed. In Section 2.1.2.3 an overview is given of how

goal recognition has been applied to autonomous driving. Finally, in Section 2.1.2.4 a

description is given of how inverse reinforcement learning methods have been used to

infer cost functions for road users.

2.1.2.1 Deep Neural Networks

In recent years, there have been a growing number of methods which use deep neural

networks (DNNs) to model distributions over trajectories given the scene history [68, 69,

70, 71, 72, 73, 74]. Although such methods can achieve a high accuracy, neural networks

are black box models that are not easily interpretable. In addition to this, neural networks

often have millions of learned parameters, making verification intractable [75]. One

approach is to train a variational autoencoder (VAE) to generate trajectories [76, 77].

Another approach trains DNNs to output the parameters of Gaussian Mixture Models,
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to represent multimodal distributions over trajectories [68, 49]. Such methods which

use DNNs can achieve high accuracy up to short time horizons, but are inherently

difficult to interpret and verify. In contrast to this, the methods presented in Chapter 5

and Chapter 6 are shown to be interpretable and verifiable.

2.1.2.2 Manoeuvres

A common approach in agent modelling is to assume that agents are following one of

a distinct set of behaviours [78, 79]. When such methods are applied to autonomous

driving [80, 81, 55, 82], the behaviours can represent manoeuvres such as lane following,

changing lane, or turning. These approaches usually infer distributions over possible

current manoeuvres for vehicles, so that the rest of the manoeuvre can be predicted.

Manoeuvres are used in the method described in Chapter 4, where the assumption is

made that other vehicles are using manoeuvres from a known set, and then planning is

performed over the same set of manoeuvres.

2.1.2.3 Goal Recognition

Another general approach known as goal recognition or intent recognition is to first

infer distributions over the goals or intentions of other agents, before predicting their

trajectories. Some methods use this approach to infer whether a vehicle intends to yield

while the ego vehicle is merging using a simple Bayesian model [80] or probabilistic

graphical model [52]. Other methods dynamically generate a set of possible goals

based on the local road layout, such as taking an exit at a junction, or reaching the

visible end of a lane [83, 56]. This can allow accurate long term predictions to be made.

One approach to goal recognition is through inverse planning [22, 23], where optimal

plans are computed from the perspective of the other agent. Hanna et al. presented

a goal recognition method named GOFI [84] which uses inverse planning to infer

occluded factors. GOFI builds directly on the inverse planning based method presented

in Chapter 4. Recent work by Antonello et al. [85] presented a trajectory prediction

method which is a fusion of neural networks and inverse planning. Inverse planning-

based methods can be accurate, interpretable and handle occlusion. However, these

methods are typically slow and unverifiable due to the complexity of inverse planning.

In Chapter 4, it is shown how inverse planning-based goal recognition can be integrated

with an MCTS planner to create a full planning and prediction system for autonomous

driving.
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2.1.2.4 Inverse Reinforcement Learning

Many prediction methods rely on the assumption that other agents are rational and are

attempting to minimise a known cost function. However, specifying a cost function

that accurately reflects human preferences can be very difficult. Inverse Reinforcement

Learning (IRL) methods can be used to learn cost function parameters from human

driving data. Maximum entropy IRL [86] was used to learn a cost function represented

by a weighted sum of features, through principles of matching feature expectations

while maximising entropy. This approach was later extended as maximum entropy

deep IRL [87], which represented the cost function with a ConvNet. Deep IRL can

learn spatial relationships in the data, but loses interpretability. In addition, Finn et al.

[88] found that IRL can be prone to overfitting unless domain specific regularisation

techniques are used. Sadigh et al. [89] presented an alternative approach to IRL which

does not require human demonstrations, but instead asks humans to show preferences

between two trajectories. In contrast to the cost functions learned through data using

IRL, in Chapter 4 a cost function with hand designed parameters is used, which kept

the method simpler and did not require any training data. Methods such as IRL could

potentially be used to automate this process, but that is outside the scope of this thesis.

2.2 Interpretable AI

There are many motivations for having interpretable models and algorithms. One

motivation is trust, or faith in a model’s performance and robustness. Increased user

trust in AVs may significantly increase their adoption [90, 91, 92]. Although evaluation

metrics can be used to empirically evaluate a model, such metrics may not accurately

reflect real life objectives. Many real life objectives such as safety, legality and ethics

are difficult to represent as objective functions or evaluation metrics. In the EU, a

regulation giving the "right to an explanation" has been passed, and requires that

automated decisions should be contestable [13]. Interpretability is also important in

situations where the deployment environment may differ from data used for training and

evaluation [93]. For example, AVs may be deployed to geographic locations different

from where the system was evaluated, where people follow different driving styles and

social conventions. Additionally, previously untested scenarios may occur. Interpretable

models allow people to reason about how systems will generalise to unseen scenarios

and data distributions which differ from those used in training and evaluation.
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There is not a single widely agreed upon of definition of interpretability, however

it generally refers to having an understanding of the mechanisms of a model. Lipton

[12] identified several different types of interpretability, including simulatability, de-

composability, and algorithmic transparency. Simulatability is the perhaps the strictest

form of interpretability, and refers to whether a human can reasonably examine the

entire model at once, and manually compute its output. An example of such a model

is a shallow decision tree [94]. For decision trees, the time to compute the output,

given by the path to a leaf node, grows more slowly than the total size of the model,

given by the number of nodes. As the size of a decision tree grows large, it may lose

simulatability. Decomposability refers to the ability to understand what the parameters

of a model represent. For example, in a decision tree used in autonomous driving to

make a decision whether to overtake [43], a node may have an intuitive interpretation

such as "the speed of the vehicle ahead is less than 5 metres per second". The methods

presented in Chapter 5 and Chapter 6 are decomposable in this manner, due to their

usage of decision trees with interpretable features. Linear regression models also have

this type of interpretability, where weights represent the importance of different fea-

tures. Algorithmic transparency refers to whether the learning algorithm itself is well

understood. For example, linear models can be shown to have a convex loss surface

and are guaranteed to find a unique global optimum. Other methods such as heuristics

used to train DNNs can be shown empirically to achieve good performance, but lack

a formal theory of how they achieve such results. The system presented in Chapter 4,

named IGP2, has algorithmic transparency due to its use of high level manoeuvres to

interpret vehicle trajectories. Gyevnar et al. [14] have extended this work and present a

method of generating natural language explanations for decisions made by IGP2.

One method of achieving some weak interpretability without sacrificing any perfor-

mance is post-hoc interpretation, where an opaque model is used to make decisions, and

then an explanation is generated afterwards. An example of this is to train a deep neural

network to generate text explanations of an agent’s decisions, using human explanations

as training data [95, 96, 97]. This method can generate plausible sounding explanations,

but such explanations may not faithfully represent how the agent actually arrived at its

decisions. Another form of post-hoc interpretation is through surrogate models. Simple

surrogate models which are simulatable can be used to assign feature importance for an

input of a black box model [98, 99, 100]. However, such methods ignore how the black

boxes work internally, and may not lead to sound interpretations. Another approach is

to produce saliency maps which visualise the parts of an image that an agent is focusing
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on, based on the magnitude of the gradient of the model output with respect to each

pixel in the input image [101]. However, this approach does not explain why those parts

of an image led the agent to makes its decisions.

2.2.1 Decision Trees

Decision trees (DTs) are tree-structured models which are traversed iteratively from a

root node to a leaf node by making a decision at each node based on a feature from a set

of input features. An output value is specified at each leaf node. As discussed in Section

2.2, DTs are easily interpretable by humans if they are not too deep and if the features

are interpretable. DTs can be constructed by hand by an expert, or can be trained from

data to perform classification or regression. The methods presented in Chapter 5 and

Chapter 6 make use of DTs to infer the likelihood of long term goals for vehicles.

2.2.1.1 Decision Tree Training

There are several methods of training decision trees directly from data. Trees are

usually trained in a greedy top down manner. ID3 [102] can be used to train DTs for

classification based on categorical features. At each node, the feature which maximises

information gain is selected. C4.5 [103] is an extension of ID3 which allows for scalar

features. Classification and Regression Trees (CART) [104] is similar to C4.5, but can

also perform regression. At each node, CART finds a splitting value for each scalar

feature which minimises mean squared error. As the depth of a DT grows, the expected

number of training samples present at each node decreases exponentially, which can

lead to severe overfitting. Trees are iteratively grown up to a specified depth, after which

they can be pruned to help reduce overfitting. In the work presented in 5, DTs are trained

using CART. CART is then built on in 6 to introduce a novel DT training algorithm

which can handle missing data.

2.2.1.2 Handling Missing Data with Decision Trees

There are many existing methods which allow DT inference with missing data [105].

Some methods compute the expected inference based on the distributions over the values

of missing features [106, 102]. However, such methods introduce more complexity

into the DT inference process. This reduces their interpretability, and may make such

methods unverifiable. Another approach is lazy decision trees [107], where a new DT is

trained for each inference made. However, this is computationally expensive and is not
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suitable when inferences are needed in real time. As part of the work in Chapter 6, a

novel DT training algorithm is introduced, which is designed to handle missing feature

values while resulting in DTs which have fast, interpretable and verifiable inference.

2.2.1.3 Knowledge Distillation

In many domains, DNNs can achieve higher accuracy than DTs, likely due to their

more powerful representational capabilities of DNNs. Another reason for this could be

that DTs can easily overfit [108]. However, the better accuracy of DNNs comes at the

expense of interpretability. One method of improving this trade off is to use knowledge

distillation to train DTs to model the input-output mapping of a DNN. DTs trained in

such a way often achieve better performance than DTs trained directly from data. The

idea of model distillation [109] was presented as a way to compress the knowledge of a

large and cumbersome DNN into a smaller, more efficient DNN. Rather than training

directly on the training data, the smaller DNN is trained on the outputs of the larger

DNN, which contain more information than the training labels. A similar approach can

be used to train DTs by replacing the smaller DNN with a DT. Craven and Shavlik

[110] presented a method for training DTs while using a neural network as an oracle to

generate samples from a distribution similar to the training data. An alternative method

is to use CART to train a DT on the outputs given by a DNN on existing training data

[108]. Another approach trained a soft decision tree, where logistic regression over all

over the features is performed at each node [111]. This increases the complexity of the

model, reducing its interpretability. Several methods have distilled DNNs into gradient

tree boosting models [112, 113, 114], which is claimed to improve interpretability over

a DNN. However, such models rely on combining large numbers of DTs, which leads

to poor simulatability as discussed in Section 2.2.

2.3 Formal Verification

Autonomous driving is a safety critical application, and it is important to have the ability

to verify properties of planning and prediction methods. One approach is to empirically

evaluate methods, however this can require billions of miles of real or simulated driving

[15]. Another approach is to formally verify that certain properties of planning and

prediction methods will always hold true under all conditions [16, 17].

DTs can easily be verified due to the simplicity of their inference process. Bastani et
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al. [94] presented a method named VIPER which uses DTs to represent reinforcement

learning policies, and used an off-the-shelf satisfiability modulo theories (SMT) solver

to verify properties of the policy. VIPER first learns a neural network policy using

reinforcement learning, and then uses imitation learning to learn a DT policy with

similar behaviour. More recently, Schmidt et al. [115] used a similar approach to train a

DT policy for autonomous driving. One drawback of such approaches is that a formal

model of the environment is required, which may not accurately represent the real world

environment. In contrast to this, in our goal recognition methods described in Chapters

5 and 6 we formally verify properties of our methods without needing any environment

model. To the best of my knowledge, there is no existing related work which applies

verification to GR or motion prediction for AVs.

As discussed in Section 2.1, many decision-making and motion prediction methods

for AVs make use of DNNs. There has been significant work in developing methods

for formally verifying neural networks [116]. However, these are typically small fully

connected networks, ranging from hundreds of parameters [116] to hundreds of thou-

sands of parameters [117]. DNNs such as those mentioned in Section 2.1.2.1 typically

have millions of learned parameters and more complicated network architectures such

as recurrent neural networks [76] or graph neural networks [118], making verification

intractable.

2.4 Related Work and Desiderata

In this section, we include an analysis of how related planning and prediction methods

perform when considering the desiderate defined in Section 1.1. In Table 2.1, we show

whether each of the methods satisfy or do not satisfy each of the desiderata. For brevity,

we do not included every single related work. We instead include a representative

state-of-the-art method from each of the families of methods discussed in this chapter.

As can be seen in table Table 2.1, none of the existing works surveyed satisfy all the

stated desiderata.
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Table 2.1: Comparison of planning and prediction methods for autonomous driving. It is desirable
for methods to be fast, accurate, interpretable, verifiable, handle occlusions, and generalise across
multiple scenarios.

Method Fast Accurate Interp. Verif. Occl. General.

Lattice Planning [28] ✓ ✓ ✓ × × ✓
MPC [37] × ✓ ✓ × × ✓
PILOT [38] × ✓ × × × ✓
FSM [18] ✓ × ✓ ✓ × ×
SafeVIPER [115] ✓ ✓ ✓ ✓ × ×
MCTS [49] × ✓ ✓ × × ✓
Dave-2 [11] ✓ × × × ✓ ✓
DQN [62] × ✓ × × ✓ ✓
MPDM [82] × ✓ ✓ × × ×
Flash [85] × ✓ × × × ✓
GOFI [84] × ✓ ✓ × ✓ ×
Explainable DNN [97] × ✓ ✓ × ✓ ✓
PRECOG [76] ✓ ✓ × × ✓ ✓



Chapter 3

Problem Definition

In this thesis, we present several novel planning and prediction methods for autonomous

driving, with a particular focus on goal recognition. This chapter presents a formal

definition of the planning and goal recognition problems for autonomous driving. The

notation introduced in this chapter is then used in following chapters, which introduce

our novel methods.

3.1 Planning Problem

Let I be the set of vehicles in the local neighbourhood of the ego vehicle (including

itself). At time t, each vehicle i∈ I is in a local state si
t ∈ S i, receives a local observation

oi
t ∈ O i, and can choose an action ai

t ∈ A i. We write st ∈ S = ×iS i for the joint state

and sa:b for the tuple (sa, ...,sb), and similarly for ot ∈ O,at ∈ A . Observations depend

on the joint state via p(oi
t |st), and actions depend on the observations via p(ai

t |oi
1:t).

In our system, a local state contains a vehicle’s pose, velocity, and acceleration (we

use the terms velocity and speed interchangeably); an observation contains the poses

and velocities of nearby vehicles; and an action controls the vehicle’s steering and

acceleration. The probability of a sequence of joint states s1:n is given by

p(s1:n) =
n−1

∏
t=1

∫
O

∫
A

p(ot |st)p(at |o1:t)p(st+1|st ,at)dot dat (3.1)

where p(st+1|st ,at) defines the joint vehicle dynamics, and we assume independent local

observations and actions, p(ot |st) = ∏i p(oi
t |st) and p(at |o1:t) = ∏i p(ai

t |oi
1:t). Vehicles

react to other vehicles via their observations oi
1:n.

We define the planning problem as finding an optimal policy π∗ which selects the

19
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actions for the ego vehicle, ε, to achieve a specified goal, Gε, while optimising the driving

trajectory via a defined reward function. Here, a policy is a function π : (Oε)∗ 7→ Aε

which maps an observation sequence oε
1:n to an action aε

t . A goal can be any subset of

local states, Gε ⊂ S ε. In this case, we focus on goals that specify target locations and

“stopping goals” which specify a target location and zero velocity. Formally, define

Ωn =
{

s1:n
∣∣sε

n ∈ Gε∧∀m < n : sε
m ̸∈ Gε

}
(3.2)

where sε
n ∈ Gε means that sε

n satisfies Gε. The second condition in (4.2) ensures that

∑
∞
n=1

∫
Ωn

p(s1:n)ds1:n ≤ 1 for any policy π, which is needed for soundness of the sum in

(4.3). The problem is to find π∗ such that

π
∗ ∈ argmax

π

∞

∑
n=1

∫
Ωn

p(s1:n)Rε(s1:n)ds1:n (3.3)

where Ri(s1:n) is vehicle i’s reward for s1:n. We define Ri as a weighted sum of reward

elements based on trajectory execution time, longitudinal and lateral jerk, path curvature,

and safety distance to leading vehicle.

3.2 Goal Recognition Problem

Expending on the preliminaries established in Section 3.1, the observations from the

point of view of the ego vehicle between times a and b are denoted by oε

a:b. We assume

a set of possible goals Gi
t = {g

i,1
t ,gi,2

t , ...} for each vehicle i at time t, where a goal is

a subset of states gi,k
t ⊂ S i such as a target location. We define the problem of goal

recognition under occlusion as the task of inferring the probability distribution over goals

based on past observations, P(gi,k
t |oε

1:t ,φ), where φ represents static scene information

such as the road layout and static obstacles.



Chapter 4

Interpretable Goal-based Prediction

and Planning

4.1 Introduction

An important problem in autonomous driving is predicting the intentions and future

trajectories of other vehicles [6]. The problem is made significantly harder by the require-

ment to make accurate predictions in real time based on partially missing observations

involving complicated multi-agent interaction.

One approach to make trajectory prediction tractable in autonomous driving is to

make the assumption that vehicles use distinct manoeuvres from a finite set, for example

turn, lane-change, lane-follow and stop [80, 119, 82, 55, 120, 81]. After observing

the trajectory driven by a vehicle, the current manoeuvre of that vehicle is detected

using a classifier. These methods have a significant limitation, as they can only detect

the manoeuvre that the vehicle is currently executing. If a planner makes use of such

predictions, it can only plan over timescales around the length of detected manoeuvres.

A different approach is to first define a set of possible goals (for example junction

exits) for each non-ego vehicle, and then generate a trajectory from the vehicle’s current

observed state to each goal [23, 83, 56]. Methods using this approach can generate

predictions over long durations, but cannot make predictions with high confidence

unless the vehicle closely follows the generated trajectory.

Many recent trajectory prediction methods for autonomous driving have made use

of deep learning [121, 76, 68, 69, 70, 77, 122]. There are now many large datasets

available with data gathered by vehicles using sensors such as radar, video and LIDAR,

and these datasets have been extensively used to train prediction models. Despite this,

21
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is it still a difficult problem to make reliable predictions several seconds into the future,

partly because of the highly coupled nature of traffic behaviour. One of the largest

limitations of deep learning methods is that interpretable predictions are difficult to

extract in a manner that can be easily integrated with hierarchical planning methods, all

through there has been some recent progress in this area [123].

In order to predict the future manoeuvres of a vehicle, it is necessary to understand

the reasons behind its past manoeuvres, as this can provide insight into its intended

goals [78]. Knowing the goals of other vehicles can aid in predicting their future actions

and trajectories, which is important for long-term planning. Our research, with examples

given in Figure 4.2, shows how this type of reasoning can help address the issue of

overly-conservative autonomous driving [124]. Additionally, by basing predictions

on the interpretation of observed trajectories in terms of high-level manoeuvres, it is

possible to intuitively understand and analyse the system, as well as justify its decisions.

These concepts of interpretation and explanation are crucial [125] as we work to increase

the trustworthiness of autonomous systems [126].

To this end, we propose Interpretable Goal-based Prediction and Planning (IGP2)

which leverages the computational advantages of using a finite space of manoeuvres, but

extends the approach to planning and prediction of sequences (i.e., plans) of manoeuvres.

We achieve this via a novel integration of rational inverse planning [22, 127] to recognise

the goals of other vehicles, with Monte Carlo Tree Search (MCTS) [128] to plan optimal

manoeuvres for the ego vehicle. Inverse planning and MCTS utilise a shared set of

defined manoeuvres to construct plans which are explainable by means of rationality

principles, i.e. plans are optimal with respect to given metrics. We evaluate IGP2 in

simulations of diverse urban driving scenarios, showing that (1) the system robustly

recognises the goals of other vehicles, even if significant parts of a vehicle’s trajectory

are occluded, (2) goal recognition enables our vehicle to exploit opportunities to improve

driving efficiency as measured by driving time compared to other prediction baselines,

and (3) we are able to extract intuitive explanations for the predictions to justify the

system’s decisions.

We introduce Interpretable Goal-based Prediction and Planning (IGP2) as a solution

that combines the computational benefits of using a finite set of manoeuvres with the

ability to plan and predict sequences of manoeuvres. This is achieved by integrating

rational inverse planning [22, 127] for recognising the goals of other vehicles with

Monte Carlo Tree Search (MCTS) [128] for planning optimal manoeuvres for the ego

vehicle. Both inverse planning and MCTS use a common set of defined manoeuvres
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to create plans that can be explained through rationality principles, meaning they are

optimal according to certain metrics. We tested IGP2 in simulations of various urban

driving situations and found that (1) it robustly recognizes the goals of other vehicles

even when parts of their trajectory are occluded, (2) it enables the vehicle to drive more

efficiently, and (3) it can provide intuitive explanations for the predictions to justify the

decisions made by the system.

To summarise our contributions:

• A combined goal recognition and multi-modal trajectory prediction method which

makes use of rational inverse planning.

• Combining goal recognition with MCTS planning to search for optimal plans for

the ego vehicle.

• Evaluation in simulated urban driving environments demonstrating the effective-

ness of the system in accurately identifying the goals of other vehicles, increasing

driving efficiency, and allowing interpretation of the predictions and plans of the

ego vehicle.

4.2 Preliminaries and Problem Definition

Let I be the set of vehicles in the local neighbourhood of the ego vehicle (including

itself). At time t, each vehicle i∈ I is in a local state si
t ∈ S i, receives a local observation

oi
t ∈ O i, and can choose an action ai

t ∈ A i. We write st ∈ S = ×iS i for the joint state

and sa:b for the tuple (sa, ...,sb), and similarly for ot ∈ O,at ∈ A . Observations depend

on the joint state via p(oi
t |st), and actions depend on the observations via p(ai

t |oi
1:t).

In our system, a local state contains a vehicle’s pose, velocity, and acceleration (we

use the terms velocity and speed interchangeably); an observation contains the poses

and velocities of nearby vehicles; and an action controls the vehicle’s steering and

acceleration. The probability of a sequence of joint states s1:n is given by

p(s1:n) =
n−1

∏
t=1

∫
O

∫
A

p(ot |st)p(at |o1:t)p(st+1|st ,at)dot dat (4.1)

where p(st+1|st ,at) defines the joint vehicle dynamics, and we assume independent local

observations and actions, p(ot |st) = ∏i p(oi
t |st) and p(at |o1:t) = ∏i p(ai

t |oi
1:t). Vehicles

react to other vehicles via their observations oi
1:n.
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Figure 4.1: Overview of the IGP2 system.

We define the planning problem as finding an optimal policy π∗ which selects the

actions for the ego vehicle, ε, to achieve a specified goal, Gε, while optimising the driving

trajectory via a defined reward function. Here, a policy is a function π : (Oε)∗ 7→ Aε

which maps an observation sequence oε
1:n to an action aε

t . A goal can be any subset of

local states, Gε ⊂ S ε. In this case, we focus on goals that specify target locations and

“stopping goals” which specify a target location and zero velocity. Formally, define

Ωn =
{

s1:n
∣∣sε

n ∈ Gε∧∀m < n : sε
m ̸∈ Gε

}
(4.2)

where sε
n ∈ Gε means that sε

n satisfies Gε. The second condition in (4.2) ensures that

∑
∞
n=1

∫
Ωn

p(s1:n)ds1:n ≤ 1 for any policy π, which is needed for soundness of the sum in

(4.3). The problem is to find π∗ such that

π
∗ ∈ argmax

π

∞

∑
n=1

∫
Ωn

p(s1:n)Rε(s1:n)ds1:n (4.3)

where Ri(s1:n) is vehicle i’s reward for s1:n. We define Ri as a weighted sum of reward

elements based on trajectory execution time, longitudinal and lateral jerk, path curvature,

and safety distance to leading vehicle.
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Macro action: Manoeuvre sequence (manoeuvre parameters in brackets):
Continue lane-follow (end of visible lane)
Continue next exit lane-follow (next exit point)
Change left/right lane-follow (until target lane clear), lane-change-left/right
Exit left/right lane-follow (exit point), give-way (relevant lanes), turn-left/right
Stop lane-follow (close to stopping point), stop

Table 4.1: The set of macro actions used by our system. Each macro action is composed of one
or more manoeuvres which have their parameters automatically set.

Macro action: Additional applicability condition:
Continue —
Continue next exit Must be in roundabout and not in outer-lane
Change left/right There is a lane to the left/right
Exit left/right Exit point on same lane ahead of car and in correct direction
Stop There is a stopping goal ahead of the car on the current lane

Table 4.2: Additional applicability conditions for each macro action used in our system.

4.3 IGP2: Interpretable Goal-based Prediction and Plan-

ning

Our methodology is based on two assumptions: (1) each vehicle has an unknown goal

from a set of potential goals, and (2) each vehicle acts according to a plan constructed

from a finite set of predefined manoeuvres.

The diagram in Figure 4.1 illustrates the components of our proposed system called

IGP2. In summary, IGP2 approximates the optimal ego policy π∗ for the ego vehicle

as follows: First by potential goals for each non-ego vehicle are identified, and then

plans are generated for each goal. The probabilities of each goal and the predicted

trajectories of each non-ego vehicle are then used in a simulation process using Monte

Carlo Tree Search (MCTS) algorithm to determine the optimal plan over manoeuvres

for the ego vehicle. To make the process more efficient and limit the search depth

required, both the inverse planning and the MCTS use a shared set of macro actions

that concatenate manoeuvres using contextual information. The system’s components

are further explained in the following sections.

4.3.1 Manoeuvres

We make the assumption that at any given time, each vehicle is executing a manoeuvre

from the following list: lane-follow, turn-left/right, lane-change-left/right, stop, give-way.

Applicability conditions and termination conditions are specified for each manoeuvre
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ω. As an example, the lane-change-left macro action, can only be executed if there is

a lane to the left of the vehicle with the same driving direction, and the manoeuvre

terminates when the vehicle reaches the new lane and is correctly aligned with it. Some

manoeuvres have adjustable parameters, for example the "follow-lane" manoeuvre has

a parameter that determines after what distance it should terminate.

If applicable, a manoeuvre specifies a local trajectory ŝi
1:n to be followed by the

vehicle, which includes a reference path in the global coordinate frame and target

velocities along the path. For convenience in exposition, we assume that ŝi uses the

same representation and indexing as si, but in general this does not have to be the case

(for example, ŝ may be indexed by longitudinal position rather than time, which can

be interpolated to time indices). In our system, the reference path is generated via a

Bezier spline function fitted to a set of points extracted from the road topology, and

target velocities are set using domain heuristics similar to [129].

If a manoeuvre is applicable, it specifies a local trajectory ŝi
1:n which should be

followed by the vehicle. This trajectory includes a path specified in the global coordinate

frame, along with target velocities at each point along the path. To generate the reference

path, we fit a Bezier spline function to a set of points based on the road layout, and then

set the target velocities using domain heuristics similar to [129].

4.3.2 Macro Actions

Macro actions specify common sequences of manoeuvres and automatically set the free

parameters (if any) in manoeuvres based on context information such as road layout.

Table 4.1 specifies the macro actions used in our system. The applicability condition

of a macro action is given by the applicability condition of the first manoeuvre in the

macro action, as well as optional additional conditions, which are specified in Table 4.2.

The termination condition of a macro action is given by the termination condition of the

last manoeuvre in the macro action.

4.3.3 Velocity Smoothing

To obtain a feasible trajectory across manoeuvres for vehicle i, we define a velocity

smoothing operation which optimises the target velocities in a given trajectory ŝi
1:n. Let

x̂t be the longitudinal position on the reference path at ŝi
t and v̂t its target velocity, for

1≤ t ≤ n. We define κ : x→ v as the piecewise linear interpolation of target velocities

between points x̂t . Given the time elapsed between two time steps, ∆t; the maximum
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velocity and acceleration, vmax/amax; and setting x1 = x̂1,v1 = v̂1, we define velocity

smoothing as

min
x2:n,v2:n

n

∑
t=1
||vt−κ(xt)||2 +λ

n−1

∑
t=1
||vt+1− vt ||2

s.t. xt+1 = xt + vt∆t

0 < vt < vmax, vt ≤ κ(xt)

|vt+1− vt |< amax∆t

(4.4)

where λ > 0 is the weight given to the acceleration part of the optimisation objective.

Eq. (5.5) is a nonlinear non-convex optimisation problem which can be solved, e.g.,

using a primal-dual interior point method (we use IPOPT [130]). From the solution of

the problem, (x2:n,v2:n), we interpolate to obtain the achievable velocities at the original

points x̂t .

4.3.4 Goal Recognition

We assume that each non-ego vehicle i seeks to reach one of a finite number of possible

goals Gi ∈ G i, using plans constructed from our defined macro actions. We use the

framework of rational inverse planning [22, 127] to compute a Bayesian posterior

distribution over i’s goals at time t

p(Gi|s1:t) ∝ L(s1:t |Gi)p(Gi) (4.5)

where L(s1:t |Gi) is the likelihood of i’s observed trajectory assuming its goal is Gi, and

p(Gi) specifies the prior probability of Gi.

The likelihood is a function of the reward difference between two plans: the reward

r̂ of the optimal trajectory from i’s initial observed state si
1 to goal Gi after velocity

smoothing, and the reward r̄ of the trajectory which follows the observed trajectory

until time t and then continues optimally to goal Gi, with smoothing applied only to the

trajectory after t. The likelihood is defined as

L(s1:t |Gi) = exp(β(r̄− r̂)) (4.6)

where β is a scaling parameter (we use β = 1). This likelihood definition assumes that

vehicles drive approximately rationally (i.e., optimally) to achieve their goals while

allowing for some deviation. If a goal is infeasible, we set its probability to zero.

Algorithm 1 shows the pseudocode for our goal recognition algorithm, with further
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details in below subsections.

4.3.4.1 Goal Generation

A heuristic function is used to generate a set of possible goals G i for vehicle i based

on its location and context information such as road layout. In our system, we include

goals for the visible end of the current road and connecting roads (bounded by the ego

vehicle’s view region). In addition to such static goals, it is also possible to add dynamic

goals which depend on current traffic. For example, in the dense merging scenario shown

in Figure 4.2d, stopping goals are dynamically added to model a vehicle’s intention to

allow the ego vehicle to merge in front.

4.3.4.2 Manoeuvre Detection

Manoeuvre detection is used to detect the current executed manoeuvre of a vehicle (at

time t), allowing inverse planning to complete the manoeuvre before planning onward.

We assume a module which computes probabilities over current manoeuvres, p(ωi), for

each vehicle i. One option is Bayesian changepoint detection (e.g. [131]). The details

of manoeuvre detection are outside the scope of our paper, and in our experiments

we use a simulated detector (cf. Sec 4.4.2). As different current manoeuvres may hint

at different goals, we perform inverse planning for each possible current manoeuvre

for which p(ωi)> 0. Thus, each current manoeuvre produces its associated posterior

probabilities over goals, denoted by p(Gi |s1:t ,ω
i).

4.3.4.3 Inverse Planning

Inverse planning is done using A* search [132] over macro actions. A* starts after

completing the current manoeuvre ωi which produces the initial trajectory ŝ1:τ. Each

search node q corresponds to a state s ∈ S , with initial node at state ŝτ, and macro

actions are filtered by their applicability conditions applied to s. A* chooses the next

macro action leading to a node q′ which has the lowest estimated total cost1 to goal

Gi, given by f (q′) = l(q′)+h(q′). The cost l(q′) to reach the node q′ is given by the

driving time from i’s location in the initial search node to its location in q′, following

the trajectories returned by the macro actions leading to q′. A* uses the assumption that

all other vehicles not planned for use a constant-velocity lane-following model after

1Here we use the term “cost” in keeping with standard A* terminology and to differentiate from the
reward function defined in Sec. 4.2.
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Algorithm 1 Goal recognition algorithm
Input: vehicle i, current manoeuvre ωi, observations s1:t

Returns: goal probabilities p(Gi|s1:t ,ω
i)

1: Generate possible goals Gi ∈ G i from state si
t

2: Set prior probabilities p(Gi) (e.g. uniform)
3: for all Gi ∈ G i do
4: ŝi

1:n← A*(ωi) from ŝi
1 = si

1 to Gi

5: Apply velocity smoothing to ŝi
1:n

6: r̂← reward Ri(ŝi
1:n)

7: s̄i
1:m← A*(ωi) from s̄i

t to Gi, with s̄i
1:t = si

1:t
8: Apply velocity smoothing to s̄i

t+1:m
9: r̄← reward Ri(s̄i

1:m)

10: L(s1:t |Gi,ωi)← exp(β(r̄− r̂))
11: Return p(Gi|s1:t ,ω

i) ∝ L(s1:t |Gi,ωi) p(Gi)

their observed trajectories. We do not check for collisions during inverse planning. The

cost heuristic h(q′) to estimate remaining cost from q′ to goal Gi is given by the driving

time from i’s location in q′ to goal via straight line at speed limit. This definition of

h(q′) is admissible as per A* theory, which ensures that the search returns an optimal

plan. After the optimal plan is found, we extract the complete trajectory ŝi
1:n from the

manoeuvres in the plan and initial segment ŝ1:τ.

4.3.4.4 Trajectory Prediction

The method performs multi-modal trajectory prediction, as predictions are made for

multiple possible goals. Our system also predicts multiple plausible trajectories for a

given vehicle and goal. This is required because there are situations in which different

trajectories may be (near-optimal) but may lead to different predictions which could

require different behaviour on the part of the ego vehicle. We run A* search for a

fixed amount of time and let it compute a set of plans with associated rewards (up

to some fixed number of plans). Any time A* search finds a node that reaches the

goal, the corresponding plan is added to the set of plans. Given a set of smoothed

trajectories {ŝi,k
1:n|ωi,Gi}k=1..K to goal Gi with initial manoeuvre ωi and associated

reward rk = Ri(ŝi,k
1:n), we compute a distribution over the trajectories via a Boltzmann

distribution

p(ŝi,k
1:n) ∝ exp(γrk) (4.7)

where γ is a scaling parameter (we use γ = 1). Similar to Eq. (4.6), Eq. (4.7) encodes

the assumption that trajectories which are closer to optimal are more likely.
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(a) Scenario 1 (S1) (b) Scenario 2 (S2)

(c) Scenario 3 (S3) (d) Scenario 4 (S4)

Figure 4.2: IGP2 in 4 test scenarios. Ego vehicle shown in blue. Bar plots show goal probabili-
ties for non-ego vehicles. For each goal, up to two of the most probable predicted trajectories
to goal are shown with thickness proportional to probability. (a) S1: Ego’s goal is blue goal.
Vehicle V1 is on the ego’s road, V1 changes from left to right lane, biasing the ego prediction
towards the belief that V1 will exit, since a lane change would be irrational if V1’s goal was to go
east. As exiting will require a significant slowdown, the ego decides to switch lanes to avoid
being slowed down too. (b) S2: Ego’s goal is blue goal. Vehicle V1 is approaching the junction
from the east and vehicle V2 from the west. As V1 approaches the junction, slows down and
waits to take a turn, the ego’s belief that V1 will turn right increases significantly, since it would
be irrational to stop if the goal was to turn left or go straight. Since the ego recognised V1’s goal
is to go north, it predicts that V1 will wait until V2 has passed, giving the ego an opportunity to
enter the road. (c) S3: Ego’s goal is green goal. As V1 changes from the inside to the outside lane
of the roundabout and decreases its speed, it significantly biases the ego prediction towards the
belief that V1 will take the south exit, since that is the rational course of action for that goal. This
encourages the ego to enter the roundabout while V1 is still in roundabout. (d) S4: Ego’s goal is
purple goal. With two vehicles stopped at the junction at a traffic light, vehicle V1 is approaching
them from behind, and vehicle V2 is crossing in the opposite direction. When V1 reaches zero
velocity, the goal generation function adds a stopping goal (orange) for V1 in its current position,
shifting the goal distribution towards it since stopping is not rational for the north/west goals.
The interpretation is that V1 wants the ego to merge in front of V1, which the ego then does.
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Algorithm 2 Monte Carlo Tree Search algorithm
Returns: optimal manoeuvre for ego vehicle ε in state st

Perform K simulations:
1: Search node q.s← st (root node)
2: Search depth d← 0
3: for all i ∈ I \{ε} do
4: Sample current manoeuvre ωi ∼ p(ωi)

5: Sample goal Gi ∼ p(Gi |s1:t ,ω
i)

6: Sample trajectory ŝi
1:n ∈ {ŝ

i,k
1:n |ωi,Gi} with p(ŝi,k

1:n)

7: while d < dmax do
8: Select macro action µ for ε applicable in q.s
9: ŝτ:ι← Simulate µ until it terminates, with non-ego vehicles following their sampled trajectories

ŝi
1:n

10: r← /0

11: if ego vehicle collides during ŝτ:ι then
12: r← rcoll

13: else if ŝε
ι achieves ego goal Gε then

14: r← Rε(ŝt:n)

15: else if d = dmax−1 then
16: r← rterm

17: if r ̸= /0 then
18: Use (4.8) to backprop r along search branches (q,µ,q′) that generated the simulation
19: Start next simulation
20: q′.s = ŝι; q← q′; d← d +1
Return manoeuvre for ε in st , µ ∈ argmaxµ Q(root,µ)

4.3.5 Ego Vehicle Planning

To compute an optimal plan for the ego vehicle, we use the goal probabilities and

predicted trajectories to inform a Monte Carlo Tree Search (MCTS) algorithm [128]

(see Algorithm 2).

The algorithm performs a number of closed-loop simulations ŝt:n, starting in the

current state ŝt = st down to some fixed search depth or until a goal state is reached.

At the start of each simulation, for each non-ego vehicle, we first sample a current ma-

noeuvre, then goal, and then trajectory for the vehicle using the associated probabilities

(cf. Section 4.3.4). Each node q in the search tree corresponds to a state s ∈ S and

macro actions are filtered by their applicability conditions applied to s. After selecting a

macro action µ using some exploration technique (we use UCB1 [133]), the state in the

current search node is forward-simulated based on the trajectory generated by the macro

action µ and the sampled trajectories of non-ego vehicles, resulting in a partial trajectory

ŝτ:ι and new search node q′ with state ŝι. Forward-simulation of trajectories uses a

combination of proportional control and adaptive cruise control (based on IDM [134])

to control a vehicle’s acceleration and steering. Termination conditions of manoeuvres
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are monitored in each time step based on the vehicle’s observations. Collision checking

is performed on ŝτ:ι to check whether the ego vehicle collided, in which case we set

the reward to r← rcoll which is back-propagated using (4.8), where rcoll is a method

parameter. Otherwise, if the new state ŝι achieves the ego goal Gε, we compute the

reward for back-propagation as r← Rε(ŝt:n). If the search reached its maximum depth

dmax without colliding or achieving the goal, we set r← rterm which can be a constant

or based on heuristic reward estimates similar to A* search.

The reward r is back-propagated through search branches (q,µ,q′) that generated

the simulation, using a 1-step off-policy update function (similar to Q-learning [135])

Q(q,µ)← Q(q,µ)+

 δ−1[r−Q(q,µ)] if q leaf node, else

δ−1[maxµ′Q(q′,µ′)−Q(q,µ)]
(4.8)

where δ is the number of times that macro action µ has been selected in q. After the

simulations are completed, the algorithm selects the best macro action for execution in

st from the root node, argmaxµ Q(root,µ).

4.3.5.1 Closed-Loop Simulation

Closed-loop simulation uses a combination of proportional control and adaptive cruise

control (ACC). Two independent proportional controllers control the acceleration and

steering of the vehicle. If there is another vehicle close ahead of the controlled vehicle,

control is given to ACC which keeps the vehicle at a safe distance to the leading

vehicle (our ACC is based on IDM [134]). No velocity smoothing is applied since

the combination of proportional/ACC control achieves approximately smooth control.

Termination conditions in manoeuvres are monitored in each time step based on the

vehicle’s observations.

4.3.5.2 Open-Loop Simulation

Open-loop simulation works in the same way as in A* search (see Sec. 4.3.4.3), by

setting the vehicle’s position and velocity directly as specified in trajectory. Hence,

there is no automatic distance keeping in open-loop control. Velocity smoothing is

applied to the trajectory to improve realism of the prediction. Termination conditions

in manoeuvres such as “wait until oncoming traffic is clear”, e.g. as used in give-way

manoeuvre, are realised by waiting until traffic is predicted to be clear assuming that

non-controlled vehicles use a constant-velocity lane-following model.
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4.4 Evaluation

In this section we present an evaluation of IGP2 across several urban driving scenarios,

and show that: (1) Our goal recognition method can accurately infer the goals of other

vehicles; (2) Driving efficiency, measured as driving time, is improved by robust goal

recognition; (3) Decisions made by the system can be justified by extracting intuitive

explanations. A video showing IGP2 in operation in these scenarios is available at:

https://www.five.ai/igp2.

4.4.1 Scenarios

We use two sets of scenario instances. For in-depth analysis of goal recognition and

planning, we use four defined local interaction scenarios, shown in Figure 4.2. For each

of these scenarios, we generate 100 instances with randomly offset initial longitudinal

positions (∼[−10,+10] meters) and initial speed sampled from range [5,10] m/s for

each vehicle, including ego vehicle. Here the ego vehicle observes the whole scenario.

To further assess IGP2’s ability to complete full routes with random traffic, we use

two random town layouts shown in Figure 4.3. Each town spans an area of 0.16

square kilometres and consists of roads, crossings, and roundabouts with 2–4 lanes

each. Each junction has one defined priority road. The ego vehicle’s observation radius

in towns is 50 meters. Non-ego vehicles are spawned within 25 meters outside the

ego observation radius, with random road, lane, speed, and goal. The total number of

non-ego vehicles within the ego radius and spawning radius is kept at 8 to maintain

a consistent medium-to-high level of traffic. In each town, we generate 10 instances

by choosing random routes for the ego vehicle to complete. The ego vehicle’s goal is

continually updated to be the outermost point on the route within the ego observation

radius. In all simulations, the non-ego vehicles use manual heuristics to select from

the manoeuvres in Section 4.3.1 to reach their goals. All vehicles use independent

proportional controllers for acceleration and steering, and IDM [134] for automatic

distance-keeping. Vehicle motion is simulated using a kinematic bicycle model.

4.4.2 Algorithms & Parameters

We compare the following algorithms in scenarios S1–S4. IGP2: full system using

goal recognition and MCTS. IGP2-MAP: like IGP2, but MCTS uses only the most

probable goal and trajectory for each vehicle. CVel: MCTS without goal recognition,

https://www.five.ai/igp2


34 Chapter 4. Interpretable Goal-based Prediction and Planning

replaced by constant-velocity lane-following prediction after completion of current

manoeuvre. CVel-Avg: like CVel, but uses velocity averaged over the past 2 seconds.

Cons: like CVel, but using a conservative give-way manoeuvre which always waits

until all oncoming vehicles on priority lanes have passed. In the town scenarios we

focus on IGP2 and Cons, and additionally compare to SH-CVel which works similarly

to MPDM [55]: it simulates each macro action followed by a default Continue macro

action, using CVel prediction for non-ego vehicles, then choosing the macro action

with maximum estimated reward. (SH stands for “short horizon” as the search depth is

effectively limited to 1.)

We simulate noisy manoeuvre detection (cf. Sec. 4.3.4.2) by giving 0.9 probability

to the current executed manoeuvre of the non-ego vehicle and the rest uniformly to other

manoeuvres. Prior probabilities over non-ego goals are uniform. A* computes up to two

predicted trajectories for each non-ego vehicle and goal. MCTS is run at a frequency of

1 Hz, performs K = 30 simulations with a maximum search depth of dmax = 5, and uses

rcoll = rterm =−1. We set λ = 10 for velocity smoothing (cf. Eq. (5.5)).

Figure 4.3: Town 1 and Town 2 layouts.

4.4.3 Results

4.4.3.1 Goal probabilities

Figure 4.4 shows the average probability over time assigned to the true goal in scenarios

S1–S4. In all tested scenario instances, we observe that the probability increases with

growing evidence and at different rates depending on random scenario initialisation.

Snapshots of goal probabilities (shown as bar plots) associated with the non-ego’s most

probable current manoeuvre can be seen in Figure 4.2. We also tested the method’s
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robustness to missing segments in the observed trajectory of a vehicle. In scenarios S1

and S3 we removed the entire lane-change manoeuvre from the observed trajectory

(but keeping the short lane-follow segment before the lane change). To deal with

occlusion, we applied A* search before the beginning of each missing segment to reach

the beginning of the next observed segment, thereby “filling the gaps” in the trajectory.

Afterwards, we applied velocity smoothing to the reconstructed trajectory. The results

are shown as dashed lines in Figure 4.4, showing that even under significant occlusion,

the method is able to correctly recognise a vehicle’s goal.
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Figure 4.4: Average probability given to true goal of selected vehicles in scenarios S1–S4. Note:
lines for S1/S3 are shorter than indicated in Tab. 4.3 since possible vehicle goals change after
exit points are reached and we only show lines for initial possible goals.

4.4.3.2 Driving times

Table 4.3 shows the average driving times required of each algorithm in scenarios S1–S4.

Goal recognition enabled IGP2 and IGP2-MAP to reduce their driving times. (S1) All

algorithms change lanes to avoid being slowed down by V1, leading to same driving

times, however IGP2 and IGP2-MAP initiate the lane change before all other algorithms

by recognising V1’s intended goal. (S2) Cons waits for V1 to clear the lane, which in

turn must wait for V2 to pass. IGP2 and IGP2-MAP anticipate this behaviour, allowing

them to enter the road earlier. CVel and CVel-Avg wait for V1 to reach near-zero velocity.

(S3) IGP2 and IGP2-MAP are able to enter early as they recognise V1’s goal to exit the

roundabout, while CVel, CVel-Avg, and Cons wait for V1 to exit. (S4) Cons waits until

V1 decides to close the gap after which the ego can enter the road. IGP2 and IGP2-MAP

recognise V1’s goal and merge in front.

IGP2-MAP achieved shorter driving times than IGP2 on some scenario instances
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S1 S2 S3 S4
IGP2 5.97± .02 7.24± .05 8.54± .05 10.83± .03
IGP2-MAP 5.99± .02 7.23± .05 8.36± .06 10.40± .03
CVel 6.04± .03 9.80± .17 10.49± .09 12.83± .03
CVel-Avg 6.01± .02 11.31± .17 10.49± .09 13.59± .02
Cons 6.01± .02 12.89± .03 10.90± .04 16.78± .02

Table 4.3: Average driving time (seconds) required to complete scenario instances from S1–S4,
with standard error.

(such as S3 and S4). This is because IGP2-MAP commits to the most-likely goal

and trajectory of other vehicles, while IGP2 also considers residual uncertainty about

goals and trajectories, which may lead MCTS to select more cautious actions in some

situations. The limitation of IGP2-MAP can be seen when simulating unexpected

(irrational) behaviours in other vehicles. To test this, we compared IGP2 and IGP2-MAP

on instances from S3 and S4 which were modified such that V1, after slowing down,

suddenly accelerates and continues straight (rather than exiting as in S3, or stopping as

in S4). In these cases we observed a 2-3% collision rate for IGP2-MAP (in all collisions,

V1 collided into the ego) while IGP2 produced no collisions. These results show that

IGP2 exhibits safer driving than IGP2-MAP by accounting for uncertainty over goals

and trajectories.

Figure 4.5 shows the driving times of IGP2 and Cons for the routes in the two

towns. Both algorithms completed all the routes. Goal recognition allowed IGP2 to

reduce its driving times substantially by exploiting multiple opportunities for proactive

lane changes and road/junction entries. In contrast, Cons exhibited more conservative

driving and often waited considerably longer at junctions or before taking a turn until

traffic cleared up. SH-CVel was unable to complete any of the given routes, as its short

planning horizon often caused it to take a wrong turn (thus failing the instance).

4.4.3.3 Interpretability

We are able to extract intuitive explanations for the predictions and decisions made by

IGP2. The explanations are given in the caption of Figure 4.2.

4.4.3.4 Scalability

The goal recognition method can easily scale to make inferences about the goals of

many non-ego vehicles. In the open-world experiments described in Section 4.4.1,

inferences were made for 8 different non-ego vehicles. As the goals of each vehicle are
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Figure 4.5: Driving times (seconds) of IGP2 and Cons for 10 routes in Town 1 and Town 2.

independent, inferences for each vehicle can be made in parallel. The method can be

further parallelised by computing the optimal plans for each goal from the initial and

current position of each non-ego vehicle in parallel.

4.5 Limitations

While IGP2 was shown to be effective in certain scenarios, it is crucial to acknowledge

the limitations of this approach to provide a comprehensive understanding of its applica-

bility in real-world driving situations. IGP2 makes several assumptions that may impact

its performance and accuracy, and our evaluation also has some limitations.

One of the primary limitations of our evaluation is its reliance on simulations,

which may only represent an idealized version of real-world driver behaviour. The

discrepancy between the simulated behaviour and actual driver behaviour may lead to

greater inaccuracies in the method’s predictions when applied to real-world scenarios.

Moreover, IGP2 assumes that vehicles only perform maneuvers and macro actions

from a predefined library. The predefined library may be incomplete or not sufficiently

diverse, leading to situations where the actual actions taken by vehicles are not accurately

captured and predicted by IGP2.

Another assumption made by IGP2 is that non-ego vehicles are approximately ratio-

nal and select actions to minimise a predefined cost function. However, this assumption

may not accurately reflect the preferences of actual agents in real-world driving scenar-

ios. Drivers may have different objectives, driving styles, or preferences, which may not

be accurately captured by the predefined cost function.

Another limiting assumption of IGP2 is that perception of the surrounding scene is
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perfect. However, in real-world scenarios there may be significant noise and inaccuracy

in perception. Such inaccuracies may come from sensor noise or model generalisation

failures.

4.6 Conclusion

In this chapter, we presented an autonomous driving system named IGP2. This system

uses rational inverse planning to recognise the goals of other vehicles and uses this to

inform an integrated planning and prediction system that can operate over long-term

horizons. We evaluated IGP2 across several urban driving scenarios and showed that

IGP2 can accurately identify the goals of other vehicles, leading to improved driving

efficiency. Through these scenarios, we also demonstrated how predictions generated

by IGP2 can be intuitively interpreted, allowing the decisions made by the system to be

explained. IGP2 is designed with a modular architecture, which would allow modules

such as the planner to be replaced with other standard techniques, for example POMDP

planners [136]. IGP2 could also be generalised to other robotics domains in which there

is interaction with other robots or humans. One future direction that could be explored

is to handle goal recognition when there are objects occluded from the view of the ego

vehicle but visible to a non-ego vehicle. Another avenue for future research could be to

account for the irrational biases of humans [137, 71]



Chapter 5

Goal Recognition with Interpretable

Trees

5.1 Introduction

To safely navigate through busy city traffic, autonomous vehicles (AVs) must be able to

predict the future trajectories of other road users, and an effective method of doing this

is to first recognise their goals. For example, the goal of a vehicle could be to take a

certain exit at a junction, as shown in Figure 5.1. There are several desirable properties

for goal recognition methods: these methods must be fast, as AVs must make decisions

in real time and quickly react to new information; and predictions must be accurate to

be useful for planning and navigation. It is also desirable for goal recognition methods

to be interpretable by humans. Regulations which codify the “right to an explanation"

for some types of automated decision have already been created [13], and regulators

may create similar rules for AVs.

Prediction accuracy is typically measured empirically based on statistical averages,

but no guarantees can be given about inferences made [138]. Autonomous driving is a

safety-critical task, and it is important to have ways of validating that prediction methods

will act as intended when deployed. The amount of data required to empirically validate

the safety of an autonomous vehicle is enormous, on the order of billions of miles [15].

An alternative approach to safety validation is to formally verify models of the system

to guarantee safety under all possible conditions [16, 17].

Verification and interpretation are not possible for some prediction methods, such

as those that make use of deep neural networks (DNNs) [76, 77, 68, 69, 70, 71, 72, 73],

due to their complexity and large number of parameters [75]. Another approach to

39
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Figure 5.1: The “Heckstrasse" junction from the inD dataset [139]. Goal locations are shown by
red circles. An example vehicle trajectory is shown by the yellow line.

prediction is to first perform goal recognition, and use this to inform trajectory predic-

tion. One method of goal recognition is planning to a set of possible goal locations

from the perspective of the agent for which we are performing goal recognition on

[83, 56, 86, 140, 84], as described in Chapter 4. Such goal recognition methods can

be used to generate accurate long term trajectory predictions which are explainable

through rationality principles. However, the planning process is computationally com-

plex, making it difficult to run in real time and intractable to verify.

There has been significant previous work on verification of autonomous driving

policies [141, 15]. However, to the best of our knowledge, no existing verifiable predic-

tion methods for AVs. Recent work has shown that decision trees can produce models

which are more easily verified and interpreted than deep neural networks in domains

other than prediction for autonomous vehicles. Bastani et al. [94] used decision trees to

represent a reinforcement learning policy, and showed that certain properties of these

decision trees can be efficiently verified using off-the-shelf satisfiability modulo theories

(SMT) solvers. Liu et al. [108] used knowledge distillation to obtain an interpretable

decision tree from a less interpretable deep neural network for classification. These

works motivate our approach to use decision trees for an interpretable and verifiable

goal recognition method.

In this case, we present Goal Recognition with Interpretable Trees (GRIT), a vehicle

goal recognition method which satisfies the objectives of being fast, accurate, inter-

pretable and verifiable. At the core of this method, we use decision trees which are

trained from vehicle trajectory data. Decision trees are computationally efficient and

highly structured, which allows GRIT to be fast at inference time and interpretable to
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humans. We show how properties of GRIT can be verified automatically by mapping

the learned trees into propositional logic and using an SMT solver [142]. We evaluate

GRIT across four scenarios from two vehicle trajectory datasets [139, 143] and show

that it achieves comparable accuracy to deep learning baselines and performs inference

fast enough to run in real time. We demonstrate by example how the trained decision

trees are human interpretable. We verified several properties of the models, for example

verifying that the probability of a goal is above a threshold if a vehicle is in the correct

lane for that goal. If verification fails, the SMT solver provides a counterexample which

can teach us about the way in which the model works, facilitating inspection and de-

bugging. To the best of our knowledge, GRIT is the first goal recognition method for

autonomous vehicles which has been shown to be verifiable.

5.2 GRIT: Goal Recognition with Interpretable Trees

Our method aims to infer a probability distribution over goals for a vehicle based on

past observations, using models trained from vehicle trajectory data. We use the name

GRIT (Goal Recognition with Interpretable Trees) to refer to the entire training and

inference process. GRIT computes a Bayesian posterior probability distribution over

goals

P(gi|s1:t ,φ) =
L(s1:t |gi,φ)P(gi|φ)

∑g′∈gi
t
L(s1:t |g′,φ)P(g′|φ)

(5.1)

and represents the likelihood L(s1:t |gi,φ) of a trajectory s1:t given goal gi using decision

trees learned from vehicle trajectory data prior to deployment. We assume full observ-

ability, in which case the full trajectory s1:t can be determined from the observations

o1:t

An overview of GRIT’s inference process is shown in Figure 5.2. As input during

inference, GRIT takes the past observed trajectories of local vehicles s1:t and static

scene information φ. As output, GRIT gives a probability distribution over possible

goals for a vehicle. The first step in the inference process is to generate a set of possible

goals for the vehicle. Next, a feature vector is extracted for each goal based on the past

trajectories of all observed vehicles and static scene information. Decision trees are

then used to infer a likelihood for each goal, before inferring a posterior probability

distribution over goals via Eq. (6.1).
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Figure 5.2: Diagram of the overall GRIT inference system.

5.2.1 Goal Generation

In order to perform goal recognition for vehicle i at time t, we first generate a set of

possible goals gi
t = G(si

t ,φ) from the vehicle’s current state and static scene information.

We assume a module G which gives us the possible goals. For example, goals could be

extracted heuristically using road layout and vehicle state, as we do in our experiments.

5.2.2 Feature Extraction

For each vehicle i, for each possible goal gi,k
t at time t we extract a feature vector

xi,k
t = f (s1:t ,g

i,k
t ,φ) which will be used by the decision trees. These features can have

binary or scalar values. We extracted the following features for each vehicle i at each

time t, which were chosen to be easily interpretable: Length of path to goal ∈ R+
0 ; In

correct lane for goal ∈ {0,1}; Current speed ∈ R+
0 ; Current acceleration ∈ R; Angle

in lane ∈ [−π,π); Distance to vehicle in front ∈ R+
0 ; Speed of vehicle in front ∈ R+

0 ;

Oncoming vehicle distance ∈ R+
0 ; Speed of oncoming vehicle ∈ R+

0 .

5.2.3 Goal Types

Depending on a vehicle’s position on the road relative to a goal location, the actions

that vehicle must take to reach that goal can be quite different. For example, con-

sider a vehicle with goal G1 in the scenario shown in Figure 5.1. If the vehicle is
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approaching from the west, then it simply needs to continue straight on to reach its

goal. However, if the vehicle is coming from the north, it needs to enter the T-junction

and cross several lanes of traffic. We address this by considering a set of goal types,

such as straight_on or turn_left. We could in principle train one tree for each goal

that handles all goal types, but this would make the tree more complicated and thus

less interpretable. We split the model up into separate trees for the different goal types

to reduce the complexity of the model and improve interpretability. For each vehi-

cle i at time t, each possible goal location is assigned with a goal type τ
i,k
t from the

set T = {straight_on, turn_left, turn_right,u_turn}. We assume these goal types are

automatically assigned by the goal generation module.

5.2.4 Decision Trees

For each possible goal location/goal type pair, we train a decision tree which takes

the feature values as input and outputs the likelihood L(xi,k
t |g

i,k
t ) of the features given

the goal and goal type. These likelihoods are combined with priors P(g) to obtain a

categorical posterior distribution over goals, as shown in Equation (6.1). To obtain the

output likelihood of the decision tree, we traverse the tree starting from the root based

on the decision rule at each node until a leaf is reached. As shown in Figure 5.6, each

edge in the tree is assigned a weight. The likelihood value at each leaf node is calculated

from the product of the initial likelihood of 0.5 with the weights on each edge leading

to that leaf.

5.2.5 Decision Tree Training

We train each decision tree using the CART algorithm [104]. When using CART, deci-

sion trees are expanded in an iterative manner starting from the root, greedily choosing

the decision rule which maximises a certain criterion, in our case information gain. Cost

complexity pruning [144] is used to regularise the trees, and to aid interpretability the

depth of the trees is limited.

Each decision tree is trained using the set of sampled vehicle states from the training

set for which the relevant goal g is reachable, while having the relevant goal type. These

make up the dataset D = {(x1,y1), ...,(xN ,yN)}, where x j is the set of features, and y j is

the corresponding ground truth goal. A likelihood value is assigned to each node based

on several sample counts: the total number of samples with goal g, Ng = |{ j|y j = g}|,
the number of samples without goal g, Nḡ = N−Ng, the number of samples at node
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n with goal g, Nng = |{ j|x j ∈ Rn ∧ y j = g}|, and the number of samples at node n

without goal g, Nnḡ = Nn−Nng. Each of these counts is regularised using additive

(Laplace) smoothing with hyperparameter α. In many cases, there is an imbalance of

samples between Nng and Nnḡ. To correct for this, we weight samples using the weights

wg = N/Ng and wḡ = N/Nḡ so that the total weight given to samples with true goal g

and ḡ is equal. The likelihood assigned to node n of the tree is then given by:

Ln =
wgNng

wgNng +wḡNnḡ
(5.2)

5.2.6 Verification

One limitation of current prediction methods is the inability to guarantee safety through

formal verification. GRIT can easily be verified due to the computational simplic-

ity of decision tree inference, and the tree representation, which can be mapped into

propositional logic. For example, we can verify that under certain conditions, certain

nonsensical predictions will not be made.

There are some limitations to this approach to verification. Our approach can verify

whether propositions made about the input-output mapping of GRIT will always hold

true. However, our method does not force the model to obey these propositions during

the training phase. In addition, we do not verify how a larger autonomous driving system

would function when integrated with GRIT.

In order to perform verification, we first represented the model using propositional

logic, and then verify a proposition Ψ by proving that ¬Ψ is unsatisfiable. We used the

Z3 SMT solver [142] to perform the verification. In the event that verification of Ψ fails,

the solver provides a counterexample, which can be useful to understand why the model

makes certain predictions.

The decision trees can be represented using propositional logic with equality/inequality

constraints by taking the conjunction of the statements given below. A Boolean variable

Nn is created for each node in the decision tree. The value of the variable is true if the

node is reached, and false otherwise. The variable for root nodes Nroot is always true.

The decision rule at node n is Dn. Dn can represent a Boolean feature x j directly, or an

inequality constraint on a scalar feature cn > x j. For each non-leaf node n, the child node

variables follow the constraints Nntruechild = Nn∧Dn, and Nn f alsechild = Nn∧¬Dn. If a

leaf node is reached, then the likelihood output by the tree for goal g is the likelihood Ln

at that node:

Nlea f =⇒ (L(x|g) = Llea f ) (5.3)
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P(g|x) = L(x|g)P(g)
∑g,τ)′ L(x|g′)P(g′)

(5.4)

Some of the feature values can differ for different goals, such as “in correct lane" and

“path to goal length". However, other features such current speed and acceleration are

constrained to be the same regardless of the goal.

5.3 Evaluation

We evaluated GRIT and several baselines in four scenarios from two vehicle trajectory

datasets. We show that: (1) GRIT has similar or better accuracy than the baselines; (2)

GRIT inference is fast enough to run in real time; (3) the GRIT inference process is

interpretable by humans; (4) properties of GRIT inference can be formally verified. A

video showing GRIT is available at: https://www.five.ai/grit.

5.3.1 Datasets

We evaluate GRIT and the baselines in the inD dataset [139] and the rounD dataset

[143]. Both of these datasets consist of vehicle trajectories recorded at several different

junctions and roundabouts, along with local road layout maps which are provided in the

Lanelet2 [145] format.

We trained and evaluated the models on three scenarios from the inD dataset, shown

in Figure 5.3. These included “Heckstrasse", a T-junction; “Bendplatz", a marked

crossroad with separate lanes for exiting; and “Frankenberg", an unmarked crossroad

[139]. We used one roundabout scenario, “Neuweiler" from the rounD dataset [143].

Each scenario had a number of continuous recordings, with a typical duration of 20

minutes. For each scenario in the inD dataset, we randomly selected one recording for

testing, one recording for validation (used for hyperparameter selection), and used the

rest of the recordings for training. Due to the larger number of recordings in the rounD

dataset, two recordings were randomly selected for validation and testing. The same

split was used for all tested methods.

We manually annotated each of the scenarios with goal locations, as can be seen

in Figure 5.1. These included junction/roundabout exits and visible lane ends. We

determined the ground truth goal of each vehicle by finding the first goal for which the

trajectory passes within a defined distance (1.5m in the Heckstrasse example). Vehicle

trajectories for which none of the predefined goals were reached, were discarded. To

https://www.five.ai/grit
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create training data and test data for GRIT, each trajectory was first trimmed up to the

point where the goal was reached. Following this 11 evenly timed samples were taken

from each trajectory. Each sample contained the state history of the vehicle of interest

up to that point in time, along with the state history of other vehicles from the point at

which the vehicle of interest was first observed.

5.3.2 Baselines

In this section, we describe the baseline methods with which we compared GRIT. To

the best of our knowledge, there are no GR methods which have published results on

the inD or rounD datasets other than those presented in this thesis. To validate this, we

used Google Scholar to search through all works which cite the inD or rounD datasets

and mention "goal recognition" or "intent recognition".

5.3.2.1 GRIT-no-DT

As a first baseline, we have included an ablation of GRIT in which the decision trees

have been removed. This amounts to generating the set of possible goals based on the

current vehicle state and road layout, and then re-normalising the prior probabilities

for these goals to obtain the posterior goal distribution. In some scenarios, the prior

probability of some goals is much higher than others, and simply always predicting the

most common goal could achieve a high accuracy. This baseline gives context to the

results achieved by the other methods by acting as a floor showing what a very simple

method can achieve.

5.3.2.2 IGP2

In contrast to the learning based approaches, we also included the inverse planning

based goal recognition used as part of IGP2, which is described in Chapter 4. This

method finds the optimal plan to each possible goal from both the vehicle’s current

position, and first observed position. The goal likelihood is then calculated based on

the cost difference between these two plans, with a larger difference leading to lower

likelihood. Similarly to GRIT, a Bayesian posterior probability distribution over goals

is then calculated. The predictions made by IGP2 are highly interpretable, however the

planning process used by IGP2 is computationally complex, which makes inference

slow and verification infeasible.
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Table 5.1: IGP2 reward weights and free parameters of macro-actions and manoeuvres used for
each dataset.

Parameters InD dataset RounD dataset
time to goal reward weight 0 0.01
angular velocity reward weight 0 0.01
heading reward weight 1000 10
acceleration reward weight 0 0.01
give way distance 10 10
give way lane angle threshold π/6 π/6
give way turn target threshold 1 1
manoeuvre point spacing 0.25 0.25
manoeuvre max speed speed limit speed limit
manoeuvre min speed 3 3
switch lane target switch length 20 10
switch lane minimum switch length 5 5

The goal recognition module of IGP2 is implemented as described in Chapter 4,

using all macro-actions and manoeuvres to predict trajectories, except Stop. We run the

velocity smoothing module with parameters λ = 10, timestep ∆t = 0.1, amax = 5 and

vmax set to the episode speed limit. To improve convergence during velocity smoothing,

we are using the objective function:

min
x2:n,v2:n

n

∑
t=1

(vt−κ(xt))
2 +λ

n−1

∑
t=1

(vt+1− vt)
2 (5.5)

The reward terms are normalised between 0 and 1 according to their distributions

across both datasets, with values falling beyond three standard deviations of the distri-

bution being clipped. The reward weights and the free parameters of the macro-actions

and manoeuvres are reported in table 5.1.

5.3.2.3 LSTM

As another baseline, we trained a recurrent neural network architecture based on Long

Short-Term Memory (LSTM) [146] for each scenario individually to directly predict

goal probabilities. The input to the LSTM is a raw state sequence si
1:t of vehicle i and

the target for each time step is the true goal Gi
t . Our model architecture is built from a

single-layer LSTM. The hidden unit of each cell has size 64. The outputs of the LSTM

at each time step is pushed through a fully connected (FC) network with one hidden

layer of dimension 725 and ReLU activation. The weights of the FC layer are initialised

using normally distributed Glorot initialisation [147]. We minimise the mean total loss
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cross-entropy using the Adam optimiser [148] with a learning rate of 5×10−4. We train

for 1,000 epochs with early stopping and using a batch size of 10 trajectories. Our FC

layer is regularised with dropout with p = 0.2. We schedule the learning rate to decrease

by a factor of 0.5 if the best validation loss did not improve for 10 consecutive epochs.

5.3.2.4 GR-ESP

We implemented a goal recognition method based on trajectories sampled from the

multi-agent deep generative model (called ESP) of the PRECOG system [76]. We

call this baseline Goal Recognition with ESP (GR-ESP). PRECOG is a deep learning

based model which was shown to make robust, goal-aware planning decisions when

conditioned on goal-positions and was able to accurately estimate the likeliest future

trajectory an agent could take to safely reach a goal. Given K trajectory samples drawn

from ESP for a vehicle, we define the probability of a goal G as the normalised count

of trajectories whose endpoints are closest to G. The generated trajectories of ESP

are fixed-length, therefore we perform repeated sampling to obtain trajectories with a

suitable length.

GR-ESP predicts from t = 0 the joint future state of length T (4 seconds) of all

vehicles given a tuple {s−τ:0,χ}. The first element is the past joint state with length

τ, and χ ∈ Rw×h×8 is composed of feature-maps that represent the road surface, road

markings, and vehicles at t = 0. We downsample our data set to 10 fps, then discretise

it to time-steps using a moving window with a step-size of 0.5 seconds (5 frames)

and a length of τ+T seconds, in our experiments τ = 2. Trajectories in the window

that are shorter than τ+T seconds are padded using a straight-ahead constant-velocity

assumption. We train GR-ESP for 40,000 steps using the original hyper-parameters

and sample K = 100 trajectories per time-step. During testing, if no goals are reached

on the first sampling, then we repeatedly generate new trajectories up to R additional

times. At each repeated generation, we condition on the final τ seconds of the previously

generated future trajectory. We set R = 2 for the rounD scenario and R = 1 otherwise.

5.3.3 GRIT Implementation

We manually annotated each scenario with goal locations and define the possible goals

G(si
t ,φ) for vehicle i at time t as the set of goal locations reachable from si

t under traffic

rules allowed by the local road layout φ. Reachability checking is performed using

functionality built into the Lanelet2 library [145] which uses Dijkstra’s shortest path
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Figure 5.3: All scenarios used from the inD [139] and rounD [143] datasets. Frankenberg (top
left), Heckstrasse (top right), Bendplatz (bottom left) and Neuweiler (bottom right). The red
dots show goal locations.

algorithm.

The prior probabilities for each goal/goal type pair were estimated from their fre-

quency in the training dataset, with Laplace smoothing. The maximum depth of the

decision trees was limited to 7. The parameters for Laplace smoothing and cost com-

plexity pruning [144] were chosen by grid search, with a separate set of parameters

selected for each scenario.

5.3.4 Accuracy and Entropy

One evaluation metric used was accuracy – the fraction of test samples for which the

true goal was assigned the highest probability. Another metric which was examined is

normalised entropy, which is the entropy of the posterior goal distribution divided by

the entropy of a uniform distribution. This gives a measure of the uncertainty of the

model about the vehicle’s goal.

The evolution of accuracy and entropy as the fraction of the trajectory observed

increases is shown in Figure 5.4. Across all methods except GRIT-no-DT, accuracy

increases as the fraction of the trajectory observed increases. Similarly, normalised

entropy tends to decrease as more of the trajectory is observed, showing how the

models become more certain about a vehicle’s goal as more observations are made. The

LSTM model achieved the highest accuracy overall. In the Heckstrasse and Bendplatz
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Figure 5.4: Goal recognition accuracy (left) and normalised entropy (right) for each method on
each scenario. The shaded areas show standard error.
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Figure 5.5: Mean inference time per vehicle in seconds on log-scale with standard error.

scenarios, GRIT achieved a similar accuracy to the LSTM, however GRIT had slightly

lower accuracy than the LSTM in Frankenberg and rounD. The LSTM model could

be extracting more information from the raw trajectory than is represented in the

tree features used by GRIT, leading to higher accuracy than GRIT in some cases. As

expected, the accuracy of GRIT-no-DT is lower than that of full GRIT and LSTM, as it

does not have access to observations other than the set of reachable goals. IGP2 also

achieves lower accuracy than GRIT and LSTM. One reason for this is that the inverse

planning used in IGP2 sometimes fails to find a plan to the true goal, in which case

this goal is given zero probability [24]. The average fraction of samples over time for

which no plan was found to the true goal in each scenario was 0.013 for Heckstrasse,

0.070 for Frankenberg, 0.101 for Bendplatz, and 0.010 for rounD. Another reason for

the lower accuracy could be that the goal priors used for IGP2 are less fine-grained than

those used for GRIT, as IGP2 uses a prior probability for each goal, rather than each

goal/goal type pair. GR-ESP achieves significantly lower accuracy than other methods,

except when the fraction of trajectory observed is very close to one.

5.3.5 Inference Time

A comparison of mean inference times for each method is shown in Figure 5.5. All

methods other than IGP2 are fast enough to run in real time. The fastest method is

LSTM, followed by GRIT. The majority of time during GRIT inferences is taken up

by the feature extraction. GR-ESP is slower than LSTM and GRIT, due to its repeated

sampling process. IGP2 is by far the slowest method due to its computationally intensive

planning process.
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All experiments were carried out on a server with two AMD EPYC 7502 CPUs and

eight Nvidia GeForce RTX 2080 Ti GPUs. The GPUs were used for the neural networks

in both the LSTM and GR-ESP baselines, and all other computation was performed on

the CPUs.

GRIT is highly scalable, as several aspects of the method can be parallelised. If

there are multiple nearby vehicles, the goal inferences for each vehicle are independent

and can be computed in parallel. In addition to this, the feature extraction and likelihood

calculation for each goal can be parallelised. In our implementation of GRIT, we

did not parallelise the method to maintain simplicity, but for practical applications,

parallelisation could easily be implemented.

5.3.6 Interpretability

We found that the trees learned by GRIT were human-interpretable, with an average

depth of 6.19. For example, take the trained decision tree shown in Figure 5.6. If the

top-left leaf node with likelihood 0.291 is reached, an explanation with weights for

each factor can easily be extracted: “Goal G1 straight_on has a likelihood of 0.291

because the vehicle is in the correct lane (weight 1.97) and the vehicle’s angle in lane is

greater than 0.05 radians to the left (weight 0.30)". Examining the scenario in Figure

5.1 shows that this interpretation makes sense. Although a vehicle which reached the

0.291 likelihood leaf node in Figure 5.6 is in the correct lane to go straight on, the fact

that it is angled to the left suggests that it will turn left rather than going straight on,

leading to a low likelihood for the straight_on goal.

5.3.7 Verification

Using the method described in Section 5.2.6, we were able to verify several properties of

our learned trees. In failed verification attempts, the method provided a counter-example

to explain why our original intuition was incorrect, and this knowledge could be useful

for improving the models. Here we give examples for the Heckstrasse scenario, shown

in Figure 5.1. We were also able to prove similar properties in other scenarios. Such

verification is currently not possible with the deep learning models – we never quite

know what these methods will predict. The verification process was relatively fast,

taking an average of 65.2 milliseconds to verify a proposition for each tree.

For formal definitions of each proposition, we use the following notation. The entire

set of features are represented by xg
t , where g is an identifier for a goal, and t is a certain
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0.500
in_correct_lane

0.983
angle_in_lane > 0.05

T: 1.97

0.001

F: 0.00
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T: 0.30

0.990
path_to_goal_length > 77.09

F: 1.01

0.835
angle_in_lane > 0.01

T: 0.84

0.997

F: 1.01

0.204
acceleration > 1.29

T: 0.24

0.951

F: 1.14

0.506

T: 2.48

0.049

F: 0.24

Figure 5.6: Trained decision tree for the Heckstrasse scenario goal G1, goal type straight_on.
Multiplicative weights are assigned to each True (T) and False (F) edge. The first value shown
in each node is the cumulative product of the initial likelihood 0.5 and the weights of edges
traversed so far, representing the likelihood L(x|g). Beneath this, the decision rule for each node
is shown.

timestep or instance of the scene. Individual feature values are represented by xg, f
t ,

where f ∈ F is an identifier for a feature. The identifiers used are: path to goal length:

path, in correct lane: l, speed: spd, vehicle in front speed: f s, vehicle in front distance:

f d, oncoming vehicle distance: ond.

5.3.7.1 Predict goal corresponding to lane

As can be seen from Figure 5.1, if a vehicle is coming from the west, there are two

possible lanes: one marked as the lane for exiting left, and one marked as the lane for

continuing straight on. One reasonable expectation of a goal recognition model would

be that if a vehicle is in the correct lane for a goal, then that goal will be assigned the
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highest probability. We successfully verified the proposition “If the vehicle is in the

correct lane for G2 (turn_left), then G2 is assigned the highest probability", which was

represented as follows:

xG1,l
t ∧¬xG2,l

t =⇒ P(G1|xG1
t )> P(G2|xG2

t )

Verification failed for the equivalent proposition for G1. However, the solver pro-

vided the feature values shown in Table 5.2 as a counterexample, which can still teach us

about the way in which the model works. Despite the fact that the vehicle is in the lane

for G1 (straight_on), the vehicle is angled to the left in its lane, while going at a slow

speed and decelerating, and is still far from the junction entry (path_to_goal_length

78.09 meters). This together is reasonable evidence towards G2 being the true goal, and

in such a case assigning the higher probability to G2 is correct. We also attempted to

verify a relaxed version of this proposition, in which we verify that the probability of

G1 is always above a certain lower bound. We successfully verified that if the vehicle is

in the correct lane for G1, then the probability assigned to G1 is always greater than 0.2.

5.3.7.2 Goal distribution entropy

As a vehicle travels closer towards its goal, a reasonable expectation is that we should

become more certain about what its goal is – that is, the entropy of the distribution over

goals should decrease, or at least stay constant. If there are just two possible goals, then

it is equivalent to show that if one goal has higher probability than the other, then the

probability of the most probable goal will not decrease as the length of the path to the

goal decreases. We represented the proposition as follows:

∧
g∈{G1,G2}

((xg,path
t1 > xg,path

t2 )
∧
f∈F ,

f ̸=path

(xg, f
t1 = xg, f

t2 ))

=⇒ ((P(G1|xG1
t1 )< P(G2|xG2

t1 ) =⇒ P(G2|xG2
t2 )

≥ P(G2|xG2
t1 ))∧ (P(G1|xG1

t1 )> P(G2|xG2
t1 )

=⇒ P(G1|xG1
t2 )≥ P(G1|xG1

t1 )))

We attempted to verify this for the situation where a vehicle is approaching from

the east in the Heckstrasse scenario. However, in this case, the verification failed. If

a vehicle is in a state such as that shown in Table 5.2, the model predicts with high

certainty that a vehicle is going to turn at the junction. The prediction is biased towards
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Table 5.2: Generated counterexample to the proposition: “If the vehicle is in the correct lane for
G1 (straight_on), then G1 is assigned the highest probability". Despite the fact that the vehicle
is in the lane for G1 (straight_on), there is some evidence of G2 being the true goal: the vehicle
is angled to the left in its lane, while going at a slow speed and decelerating, and is still far from
the junction entry.

Features Goal 1 Goal 2
path_to_goal_length 78.09 57.09
in_correct_lane True False
speed 0 0
acceleration -1 -1
angle_in_lane 0.03125 0.03125
vehicle_in_front_dist 32.87 32.87
vehicle_in_front_speed 0 0
oncoming_vehicle_dist None None
goal likelihood 0.04874 0.9242
goal probability 0.2014 0.7985

the goal G2, turn_left due to the vehicle’s angle in the lane, although the vehicle is still

quite distant from the junction entry. However, if the vehicle continues further along the

road and has still not switched lane, the uncertainty over goals can actually increase. In

this situation it makes sense for uncertainty to increase, because the vehicle took actions

that were irrational for the goal it originally started moving towards, showing that our

original intuition was incorrect.

5.3.7.3 Verification across all scenarios

The verification cases mentioned above apply to specific situations in a scenario, how-

ever it is also possible to verify some propositions more broadly across all scenarios.

One such proposition is that changing a single input feature while leaving all other

features unchanged will have a certain effect on the goal likelihood. More specifically,

we ran verification for the proposition “If a vehicle is in the correct lane for a goal then

that goal should have the same or higher likelihood than if the vehicle is not in the

correct lane, if all other features remain unchanged". This proposition was represented

as:

xg,l
t1 ∧¬xg,l

t2

∧
f∈F ,

f ̸=lane

xg, f
t1 = xg, f

t2 =⇒ L(xg
t1|g)≥ L(xg

t2|g)

In total there were 47 goal/goal type pair across all scenarios, each having a sepa-

rate decision tree learned by GRIT. Verification was successful for all but 4 of these
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goal/goal type pairs. Upon inspection of the counterexamples generated in those cases,

the models were still giving reasonable likelihoods given the features. For example,

in one counterexample a vehicle is in the incorrect lane to turn, but is travelling at a

low speed. In such a situation the vehicle could have slowed down in order to turn, so

assigning a high likelihood to turning makes sense.

5.3.7.4 Stopping for oncoming vehicles

It is also possible to verify predictions made by the model in more complicated situations,

such as stopping for oncoming vehicles. Verification was performed across all scenarios

for the proposition “If a vehicle (V1) has stopped, and there is no stopped vehicle in

front of V1, and there is an oncoming vehicle (V2) in a lane which V1 must cross

to reach certain goal, then that goal will have the same or higher likelihood for V1

than if there was no oncoming vehicle V2, all other features being unchanged". This

proposition was represented as:

xg,spd
t1 < 1∧ xg, f s

t1 = 20∧ xg, f d
t1 = 100∧ xg,ond

t1 = 100∧

xg,ond
t2 = 20

∧
f∈F ,
f ̸=ond

xg, f
t1 = xg, f

t2 =⇒ L(xg
t2|g)≥ L(xg

t1|g)

For this proposition, verification was successful for 44/47 of the total goal/goal type

pairs.

5.4 Limitations

It is important to acknowledge the limitations of our method and evaluation. We evalu-

ated GRIT across four different static scenarios. For each scenario, we trained separate

DTs, which could only applied to the same scenario on which they were trained. For

this reason, GRIT cannot be applied to scenarios for which we do not already have

training data.

Another limitation of GRIT is that it assumes full observability. However, in real-

world driving, there is often information hidden due to occlusions. This could cause

some of the features used by GRIT to have missing values, and in such cases GRIT

would fail to make inferences. In addition to this, GRIT also assumes that there is

no noisy in perceptions, when in reality perception of the surrounding scene may be

unreliable.
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One limitation of our evaluation, is that we only evaluated GRIT across four different

scenarios, with possible goal locations manually labelled. Although GRIT achieved

good performance across these scenarios, the four scenarios do not capture the full

range of situations that may be encountered in real-world driving.

5.5 Conclusions

We presented GRIT, a goal recognition method for autonomous vehicles which makes

use of decision trees trained from vehicle trajectories. We have shown empirically

in four scenarios from two vehicle trajectory datasets that GRIT achieves high goal

recognition accuracy and fast inference times, and that the learned tree models are both

interpretable and verifiable. To the best of our knowledge, GRIT is the first verifiable

goal recognition method for autonomous vehicles.

In this work, we trained and tested GRIT on several specific “fixed-frame” scenarios.

Future work could extend GRIT for open-world driving, by training one decision tree

for each goal type across scenarios and dynamically generating possible goal locations.

Recent work [108] has shown that decision trees trained by distilling knowledge from

deep neural networks can achieve higher accuracy than those trained from scratch.

To further improve the accuracy of GRIT, future work could investigate knowledge

distillation from deep neural networks to decision trees. Another extension of GRIT

could be to handle occlusion, as is explored in Chapter 6.





Chapter 6

Goal Recognition under Occlusion

6.1 Introduction

In order to navigate through complex urban environments, autonomous vehicles (AV)

must have the ability to predict the future trajectories of other road users. One method

of doing this is to first perform goal recognition (GR) to infer the goals of other

vehicles, such as taking certain junction exits or roundabout exits. If the goals of road

users are known, this can facilitate prediction of their trajectories over longer horizons

[76, 149, 121]. For example, a planner can be used to plan multiple possible trajectories

to an inferred goal, which can then be used for trajectory prediction, as shown in

Chapter 4.

GR is a difficult task, as there are many criteria that GR methods must fulfill to

be applied successfully to autonomous driving. GR methods must be able to handle

missing information due to occlusions. It is also important that GR methods have the

ability to generalise across many scenarios. Inferences made by GR methods must be

accurate in order to be useful for planning, and they must be fast so that they can run

in real time. GR methods should ideally be interpretable, which can improve user trust

and add debuggability to the method. As autonomous driving is a safety-critical domain,

it is also important that the inference process is verifiable. This can be achieved by

formally proving that certain statements made about the method will hold true under all

possible conditions [16, 17, 115]. Existing GR methods for AVs fail to satisfy all the

requirements of being fast, accurate, interpretable, verifiable, generalisable and able to

handle occlusions.

As described in Chapter 5, GRIT makes use of decision trees trained on vehicle

trajectory data to perform GR for AVs. GRIT is shown to be fast, and reasonably

59
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accurate when compared with deep learning and inverse planning based methods. The

inference process of GRIT is also highly interpretable due to the shallow depth of the

trees and interpretable input features used. Properties of the trained GRIT models can

also be formally verified due to the simplicity of DT inference. However, GRIT makes

the assumption that all vehicles in the local area are fully observable when, in reality,

some of the DT input features can have missing values due to occlusions. In addition

to this, the GRIT models are trained specifically for a given fixed scenario and do not

readily generalise across different scenarios, limiting its applicability in real-world

driving.

We present a novel GR method named Goal Recognition with Interpretable Trees

under Occlusion (OGRIT). OGRIT uses decision trees (DTs) trained with vehicle

trajectory data in order to infer the likelihoods of goals. To handle missing data, we

introduce indicator features which show when certain DT input features are missing.

These indicator features are added to the DT using a novel training algorithm which

uses a one level look-ahead. One DT is trained for each goal type, such as exiting left

at a junction, and the same DT can be used when a goal of that type is encountered

across many scenarios. We evaluate OGRIT across four scenarios from two different

vehicle trajectory datasets, inD [139] and rounD [143]. We show that OGRIT can handle

occlusions and generalise across multiple scenarios, while still being fast, accurate, and

interpretable. We also formally verify that certain propositions about predictions made

by OGRIT will always hold true. For example, we verify that if a certain input feature

is missing due to occlusions, the inferred goal distribution entropy will be greater than

or equal than the entropy if the feature is not missing, all other features being equal.

As the inD and rounD datasets are not already annotated with occluded regions, we

developed a tool to extract occluded regions in 2D trajectory data. We release the tool

and the extracted occlusion datasets, which we name inDO and rounDO. Along with

the original inD and rounD datasets, inDO and rounDO can serve as a benchmark for

AV systems designed to handle occlusions.

In summary, our main contributions are:

• The inDO and rounDO datasets1 of occluded regions, which act as annotations

for two existing vehicle trajectory datasets.

• OGRIT2, a GR method that handles occlusions and is generalisable, fast, accurate,

1inDO and rounDO datasets: https://datashare.ed.ac.uk/handle/10283/4480
2OGRIT code: https://github.com/uoe-agents/OGRIT

https://datashare.ed.ac.uk/handle/10283/4480
https://github.com/uoe-agents/OGRIT
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interpretable and verifiable.

• An evaluation of OGRIT using the inDO and rounDO datasets.

6.2 OGRIT: Goal Recognition with Interpretable Trees

under Occlusion

Our method, OGRIT, can infer a probability distribution over possible goals for a

vehicle in a partially observable environment with data missing due to occlusions. As

shown in Eq. (6.1), OGRIT computes the Bayesian posterior probability of each goal

P(gi,k
t |o1:t ,φ), given a likelihood L(o1:t |gi,k

t ,φ) and prior probability P(gi,k
t |φ) for each

goal:

P(gi,k
t |o1:t ,φ) =

L(o1:t |gi,k
t ,φ)P(gi,k

t |φ)
∑g′∈gi,k

t
L(o1:t |g′,φ)P(g′|φ)

(6.1)

Similarly to GRIT, OGRIT computes the likelihoods L(o1:t |gi,k
t ,φ) via decision trees

trained from vehicle trajectory data. However, the decision trees used for OGRIT use a

novel training algorithm described in Section 6.2.6 which allows them to handle missing

features, while still being highly efficient, interpretable and verifiable.

An overview of the inference process can be seen in Fig. 6.2. As input, OGRIT takes

the static scene information φ and the observation history o1:t . As output, OGRIT gives

the posterior distribution over goals P(gi,k
t |o1:t ,φ) for vehicle i. First, a set of possible

goals is generated based on the current state of the vehicle and the road layout. Next, a

set of base features is extracted for each goal (Section 6.2.2), for example, whether i is

in the correct lane for gi,k
t . A set of occluded regions is detected, which represent the

sections of the roads in the local area which are occluded from the ego vehicle’s point

of view due to objects such as buildings and other vehicles. Using the observations

along with the occluded regions, a set of indicator features is extracted. Each indicator

feature indicates whether certain base features have missing values due to occlusions.

The base features and indicator features are concatenated together to obtain the full set

of features. These features are given as input to the associated decision tree for each

goal, which outputs the likelihood for that goal. Using the goal likelihoods and prior

probabilities, the Bayesian posterior probability for each goal is then computed using

Eq. (6.1). The following subsections will detail each of these components.
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6.2.1 Goal Generation

For each observable vehicle i at time t, we generate a set of possible goals Gi
t using

a goal generator function G(si
t ,φ). The possible goals are generated by starting from

the current lane of vehicle i and performing a breadth first search across the directed

graph of lane connections until the nearest junction exits, roundabout exits, or visi-

ble lane ends are found, and added to the set of possible goals. We assume that the

ego vehicle has access to HD road maps and so can generate goals in occluded loca-

tions. Each goal gi,k
t ∈ Gi

t is assigned a goal type τ
i,k
t ∈ T , and in this work we use T =

{straight-on,cross-road,exit-le f t,enter-le f t,exit-right,enter-right,exit-roundabout}.
We use enter to signify entering a higher-priority road and exit to signify leaving a

higher-priority road. For each goal type, we train one decision tree. Training DTs in

this manner allows OGRIT to make inferences for previously unseen scenarios, as each

decision tree for a certain goal type can be reused when new goals of that type are

encountered.

6.2.2 Feature Extraction

At each point in time t, for each possible goal gi,k
t of each observable vehicle i, a set of

interpretable features is extracted. We refer to these as the base features, represented

by wi,k
t = f (o1:t ,g

i,k
t ,φ). These features can have binary or scalar values, and contain

information extracted from the observation history of vehicle i and other vehicles

nearby, and the static scene information. The base features we use include the following,

which refer to vehicle i: speed; acceleration; angle-in-lane; heading-change-1s; in-

correct lane; path-to-goal-length; junction-heading-change; roundabout-exit-number;

distance-to-vehicle-in-front; speed-of-vehicle-in-front; distance-from-oncoming-vehicle;

speed-of-oncoming-vehicle. Some of the base features may have missing values due to

occlusions, and we represent the set of potentially missing features with M . We use

B to represent the set of features that will never have missing values, and so the set

of base features is M ∪B . For example, if vehicle i is observable, then angle-in-lane

should never have a missing value, but the vehicle in front of vehicle i may be occluded,

causing speed-of-vehicle-in-front to have a missing value.
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path_to_goal_length > 84.73

 

T: 0.39

exit_number_missing

F: 1.32

angle_in_lane > -0.61

T: 1.00

exit_number > 1

F: 1.00

 

T: 1.05

path_to_goal_length > 35.05

F: 0.05

0.000

T: 0.01

0.995

F: 30.18

exit_number > 2

T: 1.18

 

F: 0.03

0.430

T: 0.56

0.926

F: 1.19

Figure 6.1: An illustrative OGRIT tree for the exit-roundabout goal type. Dashed edges cor-
respond to truncated subtrees. The red oval node represents an indicator feature. The blue
octagonal nodes represent potentially missing features (see Section 6.2.4). The goal likelihood at
each leaf node is calculated using the multiplicative weights at each edge and an initial likelihood
of 0.5.

6.2.3 Occlusion Detection

At each time t, we extract the set of regions Ht which are occluded from the point of view

of the ego vehicle using the occlusion detector function h(ot ,φ). For occlusion detection,

we use a two-dimensional top-down representation of the scene, with obstacles such as

cars and buildings represented by polygons, as shown in Fig. 6.3. For each obstacle u,

we find a pair of line segments l1 and l2 from the centre of the ego vehicle to vertices v1

and v2 of u, such that l1 and l2 yield the greatest angle between them. We then extend

l1 and l2 so that their total length from the ego vehicle is 100 meters, obtaining new

endpoints v3 and v4. We declare the area confined by v1, v2, v3, v4 to be occluded by u.

All areas more than 100 meters from the ego vehicle are considered occluded. Once

we have the occlusions for all obstacles, we find the intersection of each lane and those

occlusions. We consider a vehicle to be occluded only if its entire boundary is inside an

occluded region.

6.2.4 Handling Missing Features

The set of potentially missing features M comprises of: roundabout-exit-number;

speed; acceleration; heading-change-1s; distance-to-vehicle-in-front; speed-of-vehicle-
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Observations
and Scene Goal Generation

Goal Probabilities

Occluded Region
Detection

Decision TreesIndicator Feature Extraction

Base Feature Extraction

Figure 6.2: Diagram of the OGRIT inference system. Red represents input and green represents
output.

in-front; distance-from-oncoming-vehicle; speed-of-oncoming-vehicle. We also use a

set of indicator features C which indicate which features are currently missing. The

indicator features are binary features which are true if the corresponding base features

are missing. The function ind : M 7→ C gives the indicator feature for a potentially

missing base feature. At each point in time t, for each observable vehicle i and possible

goal gi,k
t , the set of indicator feature values zi,k

t = f (o1:t ,g
i,k
t ,Ht ,φ) is extracted. The

set of all features used for training and inference is given by L = B ∪M ∪C . These

features are used in learned DTs as shown in Fig. 6.1

6.2.5 Decision Trees

For each goal type τ ∈ T , we train a single DT to be used across multiple scenarios.

Each decision tree takes the set of features xi,k
t = zi,k

t ∪wi,k
t as input, and outputs a goal

likelihood L(xi,k
t |g

i,k
t ). These likelihood values are combined with prior probabilities for

each goal to obtain posterior goal probabilities as shown in Eq. (6.1). For simplicity,

we use uniform prior probabilities. A weight is assigned to each edge in the decision

tree, as shown in Fig. 6.1. The likelihood output at each leaf node of the decision tree is

calculated by starting with an initial likelihood of 0.5 at the root node, and then taking

the product of this with weights of the edges traversed. Each node n in a decision tree

contains a condition which is an inequality on a scalar feature xl > cn, or the value

of a binary feature, equivalent to xl > 0.5. In order to handle missing feature values,

potentially missing features l ∈M are only included in decision nodes if the indicator

feature xind(l) is known to be false.
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6.2.6 Decision Tree Training

Similar to DT training methods such as CART [104], ID3 [102] and C4.5 [150], the

DTs used by OGRIT are trained in a top down manner, starting from the root node and

iteratively expanding the tree by adding more decision nodes. However, the OGRIT

DT training algorithm introduces some novel elements in order to handle features

with missing values. The three main novelties are: 1) Adding indicator features which

indicate that base features are missing; 2) Look-ahead by one level when considering

indicator features during training; 3) Add a term to the cost function when looking

ahead to penalise the additional complexity.

Pseudocode for DT training is shown in Algorithm 3. Decision nodes are added

recursively as shown in Algorithm 4 until a termination condition is met, including

reaching the maximum depth, the number of samples reaching that node fall below a

threshold, or reaching an impurity (entropy) of zero. We use impuritydecrease(c, l,Dn)

to refer to the decrease in impurity when adding the decision rule xl > c to node n of

the decision tree, where Dn is the set of training samples reaching node n. We prune the

tree using cost complexity pruning (CCP) [104]. Decision nodes are iteratively pruned

to minimise the cost function shown in Eq. (6.2), where qn is the impurity at node n, T

is the set of leaf nodes, and λ is a parameter penalising the complexity of the tree:

C(T ) = ∑
n∈T

qn +λ|T | (6.2)

To ensure that no nodes are reached where the relevant feature has a missing value,

we only allow decision rules relating to potentially missing features to be added where

the relevant indicator feature is found to be false in an ancestor node. When using

DT training algorithms such as CART, nodes are expanded one at a time and the

decision rule which achieves the maximum impurity decrease is chosen, without taking

subsequent child decision nodes into account. However, if we naively tried to add

decision rules in this way with indicator features and potentially missing features, it

may give unsatisfactory results. There may be cases where adding a potentially missing

feature leads to a large impurity decrease, but adding the corresponding indicator feature

does not lead to any impurity decrease. As the indicator feature must be added before

the potentially missing feature can be added, in such a case the potentially missing

feature would never be added, despite its effectiveness. To overcome this problem we

look-ahead by one level when considering indicator features and missing features, rather

than using the greedy approach of only considering one decision node at a time. We
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consider a parent which uses the indicator feature and a child which uses the potentially

missing feature. As this operation considers adding two nodes to the decision tree rather

the usual one node, there should be an additional complexity penalty added to the cost

function relative to when we consider adding only one decision node. The same λ

complexity penalty used during CCP can be used as a penalty for adding two decision

nodes at once, as shown in line 11 of Algorithm 4.

Algorithm 3 Train Decision Tree
Input: dataset D
Returns: decision tree T

1: True indicator features Ct ← /0

2: False indicator features C f ← /0

3: T ← decision tree with root node n
4: recursivelygrowtree(n,D,Ct ,C f )

5: T ← prune(T,λ)
6: Return T

Algorithm 4 Recursively Grow Tree
Input: leaf node n on tree T , dataset Dn, true indicator features Ct , false indicator features C f

1: if ¬terminate(Dn) then
2: ∆qn← 0
3: for all l|l ∈ L \M ∨ ind(l) ∈ C f do
4: cl

n← argmaxc(impuritydecrease(c, l,Dn))

5: ∆q←−impuritydecrease(cl
n, l,Dn)

6: if ∆q < ∆qn then
7: cn,qn, ln← cl

n,q, l
8: for all l|l ∈M ∧ ind(l) /∈ Ct ∪C f do
9: Dn f ←{(x j,y j)|¬x j,ind(l)∧ (x j,y j) ∈ Dn}

10: cn f ← argmaxc(impuritydecrease(c, l,Dn f ))

11: ∆q←−(impuritydecrease(ind(l),Dn)+ impuritydecrease(cl
n, l,Dn f )−λ)

12: if ∆q < ∆qn then
13: cn,qn, ln← 0.5,q, ind(l)
14: if ∆qn < 0 then
15: Dnt ←{(x j,y j)|x j,ln > cn∧ (x j,y j) ∈ Dn}
16: Dn f ← Dn \Dnt

17: if ln ∈ C then
18: C ′t ← Ct ∪{ln}
19: C ′f ← C f ∪{ln}
20: else
21: C ′t ← Ct

22: C ′f ← C f

23: recursivelygrowtree(truechild(n),Dnt ,C ′t ,C f )

24: recursivelygrowtree( f alsechild(n),Dn f ,Ct ,C ′f )

We train one DT for each goal type, and each decision tree is trained using a set

of samples for which that goal type is a possible goal. These make up the dataset
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D = {(x1,y1), ...,(xN ,yN)}, where x j is the set of features input to the DT, and y j is a

Boolean value that indicates whether the possible goal is the true goal for the vehicle.

x j,l represents the value of feature l ∈ L for sample j. We use Dn ⊆ D to represent the

set of samples which reach node n of the DT. The likelihood value assigned to each node

is calculated using several sample counts, each of which is regularised using Laplace

smoothing to obtain pseudo-counts. These include the number of samples for which the

possible goal is the true goal, NG = |{ j|y j}|, the number of samples which reach node

n and the possible goal is the true goal, NnG = |{ j|(x j,y j) ∈ Dn∧ y j}|, and the number

of samples at node n where the possible goal is not the true goal, NnḠ = |Dn|−NnG. In

some cases there may be a large imbalance between the number of samples where the

possible goal is and is not the true goal. To compensate this, we weight the samples

where the possible goal is the true goal by wG = N/NG, and weight the samples where

the possible goal is not the true goal by wḠ = N/NḠ. The likelihood value at each node

is then calculated as shown in Eq. (6.3):

Ln =
wGNnG

wGNnG +wḠNnḠ
(6.3)

6.3 Implementation Details

6.3.1 Indicator Feature Implementation

For a target vehicle i on which we are performing goal recognition, the exit_number

feature is missing if in the first frame in which i is visible to the ego vehicle, vehicle i is

already in the roundabout or it is occluded w.r.t. the ego when it enters the roundabout.

The distance-to-vehicle-in-front and speed-of-vehicle-in-front features are missing

if the vehicle in front of i could potentially be occluded w.r.t. the ego vehicle. If there is

a visible vehicle in front of i and no occluded areas in between them, then the feature is

not missing. It is also not missing if there are no occlusions within 30 meters in front

of i, limited to occlusions in the lanes that i would take if its goal was the gi,k
t under

consideration. Instead, the feature is considered missing if there is no visible vehicle

in front, but there is an occluded area within 30 meters from i that is large enough to

contain a hidden vehicle, or if there is a vehicle in front, but there is also an occluded

area in between then two vehicles.

The distance-from-oncoming-vehicle and speed-of-oncoming-vehicle features are

missing if there could be an oncoming vehicle hidden due the occlusions w.r.t the ego
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vehicle. Specifically, we find the points on the different lanes in the junction that the

target vehicle i will cross (assuming its goal is gi,k
t ), and check if there could be an

occluded area that is closer to each of these points than any other visible vehicle in these

lanes. If that’s the case, then there could be a hidden oncoming vehicle, that is closer

to the path i will take than any of those vehicles we can see, which could reveal useful

information about the target vehicle’s goal.

The speed, acceleration, and heading-change-1s features are missing if the target

vehicle i was occluded w.r.t. the ego vehicle in the previous second. To accurately

estimate the speed, acceleration, and heading change of a vehicle, its recent motion over

time must be observed, and so these features have missing values if the i was recently

occluded.

6.3.2 Decision Tree Training

While training the decision trees, we use the following hyperparameter values. The cost

complexity pruning parameter λ = 0.0001 was selected by grid search to maximise the

true goal probability of OGRIT on the validation set. The maximum decision tree depth

is set to 7, to ensure that the learned trees are interpretable. To help avoid overfitting,

the minimum number of training samples allowed at each leaf node is set to 10. For

Laplace smoothing of sample counts, a value of α = 1 is used. We use uniform prior

probabilities for the goal distributions.

6.4 Evaluation

We compare the performance of OGRIT to several baselines across four scenarios

from two vehicle trajectory datasets. We show that OGRIT can achieve fast, accurate

and interpretable inference under occlusion. We run formal verification for several

propositions about inferences made by OGRIT.

6.4.1 Datasets

To train and evaluate our models, we use two datasets: the inDO dataset and the rounDO

dataset. We generate these datasets by using the occlusion detector described in Sec-

tion 6.2.3 to extract occluded regions in the inD dataset [139] and rounD dataset [143].

The inD and rounD datasets consist of vehicle trajectories extracted from videos taken

by drones hovering above junctions or roundabouts. We use three scenarios from the
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(a) Heckstrasse (b) Frankenburg

(c) Bendplatz (d) Neuweiler

Figure 6.3: Detected occlusions in each scenario. Vehicles and buildings are yellow, occluded
regions are green and occluded lanes are red. Goal locations are shown by red dots.

inD dataset, named Heckstrasse, Bendplatz and Frankenburg, and one scenario from the

rounD dataset, named Neuweiler. The data for each scenario is divided into continuous

recordings. In each scenario in the inDO dataset, we hold out one randomly chosen

recording for test, one recording for validation, and use the remaining recordings for

training. Due to the larger number of recordings in the rounDO dataset, we hold out

three recordings for validation and test. During each recording, we extract samples

at one second intervals. At each interval, we consider each vehicle as an ego vehicle,

and extract samples for each of the other target vehicles that are observable by the ego

vehicle up to the point when each target vehicle reaches its goal.



70 Chapter 6. Goal Recognition under Occlusion

6.4.2 Baselines

We compare OGRIT to several baselines, described in the following subsections. To the

best of our knowledge, there are no GR methods which have published results on the

inD or rounD datasets other than those presented in this thesis. To validate this, we used

Google Scholar to search through all works which cite the inD or rounD datasets and

mention "goal recognition" or "intent recognition".

6.4.2.1 OGRIT-Oracle

A version of OGRIT that has access to all occluded information. This method acts as an

upper bound to the performance of OGRIT. For this baseline, the same hyperparameters

were used as OGRIT, described in Section 6.3.2. During training and evaluation, the

values of all features missing due to occlusions were provided to the model. The training

process was also modified so that potentially missing features could be added to trees

even if the corresponding indicator feature had not been added in an ancestor node.

6.4.2.2 GRIT

The GRIT method from Chapter 5, which only uses features from the set B which

are never missing due to occlusions. This method has specialised DTs trained for

each scenario. Similarly to OGRIT, we restrict the maximum tree depth to 7 for fair

comparison. A different cost complexity pruning parameter λ was selected by grid

search for each scenario. We do not allow potentially missing features to be added to

the DTs during training, as GRIT has no way of handling features with missing values.

6.4.2.3 LSTM

Long Short-Term Memory (LSTM) neural network [146]. As input, the LSTM takes

the sequence of observations for the target vehicle, along with a mask sequence which

indicates when the target vehicle was occluded. The position and heading are imputed

with default values during timesteps where the target vehicle was occluded. As output,

the LSTM gives a probability distribution over goals. We trained a separate LSTM

model for each scenario.

As input, the LSTM takes the state sequence si
1:t for the target vehicle i up until the

current timestep t, but during timesteps where i was occluded w.r.t the ego, the state

is replaced with a default value of zero. A mask sequence which indicates when i was

occluded is also given as additional input. We use a single LSTM layer, where each
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hidden unit has cell size of 64. The outputs of the LSTM layer are passed through a

fully connected layer with 725 hidden units.

6.4.2.4 IGP2

In addition to learning-based GR methods, we also use the inverse planning-based GR

method from IGP2 described in Chapter 4. This method functions by using a planner to

find the optimal plan for a goal from both the initially observed and current position of

the target vehicle. The cost difference between the two plans is then used to calculate

the goal likelihood. IGP2 can handle occlusions in observed vehicle trajectories by

using a planner to fill sections of the trajectory missing due to occlusions, as detailed in

[24]. We use same manoeuvres and macro actions as in original work, except for Stop.

We used the goal recognition module of IGP2, implemented as described in [24]. We

used the parameter values of vmax = speedlimit, amax = 5, and ∆t = 0.1 for the velocity

smoother. Similarly to [25], we modify the velocity smoother loss function to improve

convergence by using sum of squares instead of L2 norm.

We used the following parameter values across both datasets: give way distance of

15; give way lane angle threshold of π/6; give way turn target threshold of 1; manoeuvre

point spacing of 0.25; manoeuvre max speed of 10; manoeuvre min speed of 3; switch

lane minimum switch length. For the inDO dataset we used the following parameter

values: time to goal reward weight of 0; angular velocity reward weight of 0; heading

reward weight of 1000; acceleration reward weight of 0; switch lane target switch length

of 20. For the rounDO dataset we used the following parameter values: time to goal

reward weight of 0.01; angular velocity reward weight of 0.01; heading reward weight

of 10; acceleration reward weight of 0.01; switch lane target switch length of 10.

6.4.3 Goal Recognition Accuracy

The mean probability assigned to the ground truth goal by OGRIT and the baselines

is shown in Fig. 6.4. In all scenarios, OGRIT achieves higher accuracy than GRIT.

OGRIT also uses the same learned DTs to generalise across all scenarios, while GRIT

requires specialised DTs for each scenario. The accuracy of OGRIT is close to that of

the oracle, despite not having access to occluded information. In all scenarios other

than Heckstrasse, OGRIT achieves better performance than IGP2. This could be due

to IGP2’s strict assumption that vehicles use manoeuvres from a predefined library. In

addition, OGRIT can use information from the initial observed vehicle state to make
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Figure 6.4: A comparison of mean probability assigned to true goal by OGRIT and several
baselines (see Section 6.4.2). Fraction of trajectory completed is the fraction of time passed
between the first observation of a vehicle and reaching its goal. Shaded areas show standard
error. OGRIT-oracle acts as an upper bound for OGRIT.

inferences about goal likelihood. However, IGP2 only takes into account the vehicle’s

actions after its initial state. The LSTM achieves the best overall performance, which

may be because it learns directly from raw trajectories rather than the handcrafted

features used by OGRIT. However, the LSTM is not interpretable or verifiable due to

its large number of learned parameters.

The largest performance difference between OGRIT and GRIT is found in the

Neuweiler scenario, which contains a roundabout with four exits. In this scenario

we found that the potentially missing feature exit-number has a large impact on the

inferences made. The exit-number for a certain exit-roundabout goal gi,k
t represents the

number of roundabout exits that would be passed by the vehicle i between entering

the roundabout and reaching gi,k
t . Knowledge of the exit-number is important for goal

recognition, as vehicles rarely exit at the same place that they entered and rarely take

the first exit due to the alternative slip roads seen in Fig. 6.3d.
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6.4.4 Inference Speed

We measure the average time taken for OGRIT to compute the posterior probability

over goals, using an AMD EPYC 7502 CPU. This includes the entire inference process

shown in Fig. 6.2. The average inference time of OGRIT was 26 ms. This is fast enough

to make inferences in real time to be used as input to a prediction and planning module.

For comparison, GRIT had a faster inference time of 4.9 ms, due to the lack of occlusion

detection and indicator feature extraction.

6.4.5 Interpretability

We found the that DTs learned by OGRIT are easily interpretable. For example, consider

the DT for exit-roundabout goals shown in Fig. 6.1. If the leftmost leaf node is reached

during inference, we can infer that: “The exit-roundabout goal has a likelihood of

0.0003, because the path to goal length is less than 84.73 metres (weight 1.32), the angle

in lane is greater than than 0.61 radians to the right (weight 0.05), and the path to goal

length is greater than 35.05 metres (weight 0.01)”. The low likelihood makes sense in

this case because the vehicle has turned harshly to the right, while still over 35 metres

from the relevant roundabout exit.

6.4.6 Verification

To perform formal verification the trained model and a proposition to be verified Ψ

are first represented using propositional logic. Next, we can verify that Ψ will always

hold true by using a satisfiability modulo theories (SMT) solver to prove that ¬Ψ is

unsatisfiable. In our case, we use the Z3 solver [142]. In the case that verification fails,

the SMT solver provides a counterexample which can teach us more about the way in

which our model works. We ran verification for three propositions on the trained OGRIT

model. We use xg
t to represent the set of all feature values for goal g at timestep or scene

instance t. The value of feature l ∈ L is represented by xg,l
t . We use feature identifiers:

onm (oncoming-vehicle-missing), xn (exit-number), xnm (exit-number-missing), pth

(path-to-goal-length), an (angle-in-lane).

Goal distribution entropy with vehicle in front occluded: If certain feature values

are missing, a reasonable expectation is that the model should be more uncertain about

the goals of vehicles than if the feature values are not missing. In other words, the

entropy of the goal distribution should be higher if the feature values are missing. In
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the case that there are two goals, a decrease in the probability of the most probable

goal is equivalent to an increase in entropy. For the case that a vehicle is at a junction

where there are straight-on and exit-left goals possible, we successfully verify the

following proposition: “If the oncoming-vehicle-missing indicator feature is true, then

the entropy of the goal distribution should be greater than or equal to the case where the

oncoming-vehicle-missing indicator feature is false, all other features being equal”:

∧
g∈{G1,G2}

((xg,onm
t1 ∧¬xg,onm

t2 )
∧
l∈L ,

l ̸=onm

(xg,l
t1 = xg,l

t2 )) =⇒ ((P(G1|xG1
t1 )< P(G2|xG2

t1 ) =⇒

P(G2|xG2
t2 )≥ P(G2|xG2

t1 ))∧ (P(G1|xG1
t1 )> P(G2|xG2

t1 ) =⇒ P(G1|xG1
t2 )≥ P(G1|xG1

t1 )))

Goal probability with oncoming vehicles occluded: If a target vehicle is stopped at

a junction entrance, one explanation for stopping may be that its goal is enter-right, and

there is an oncoming vehicle which would block its way while turning. Even if oncoming

vehicles are occluded, it would still be reasonable to assign a high probability to the

enter-right goal, as there could be an oncoming vehicle hidden from view. However,

if there are no occlusions and the ego vehicle can see that there are no oncoming

vehicles, then stopping would be irrational for the enter-right goal and enter-right

should be given a low probability. We run verification the proposition: “If a vehicle

is stopped at a junction, angled straight ahead in its lane, and oncoming vehicles are

occluded, then enter-right should have higher probability than if oncoming vehicles are

not occluded and there is no oncoming vehicle”, represented as the following, where

G1 is the enter-right goal:

xG1,onm
t1 ∧¬xG1,onm

t2 =⇒ P(G1|xG1
t2 )≥ P(G1|xG1

t1 )

In this case verification fails and the solver provides a counter example where there

is a stopped vehicle 8.5 metres in front of the target vehicle. In such a case it would be

rational for a vehicle with an enter-right goal to stop, even if there are no oncoming

vehicles.

Exit roundabout goal likelihood with roundabout exit number occluded: When

a vehicle is in a roundabout, it is a reasonable expectation that the goal of exiting to the

same road from which a vehicle entered should have a lower likelihood than other exits.

In the Neuweiler scenario, this corresponds to taking the fourth exit relative to the entry

point. If the exit number for goal g is missing due to occlusions, then the exit-number
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for g could have any value and it would be reasonable to expect that the goal likelihood

should be higher than if the exit-number is known to be four. We verified following

proposition: “If the exit number for goal g is known to be four, then the likelihood of g

should be lower than or equal to the likelihood of g if the exit-number for g is missing

due to occlusions, if path-to-goal-length is 50m, and angle-in-lane is zero, all other

features being equal”:

xg,pth
t1 = 50∧ xg,an

t1 = 0∧ xg,xn
t2 = 4∧ xg,xnm

t1 ∧¬xg,xnm
t2

∧
l∈L ,

l ̸=xnm

xg,l
t1 = xg,l

t2 =⇒ L(xg
t1|g)≥ L(xg

t2|g)

6.5 Limitations

Our method and evaluation have some limitations, which are important to address.

We only evaluated OGRIT across four different static scenarios from two datasets.

These four scenarios do not cover the full range of situations that may be encountered

during real-world driving. In addition to this, the datasets used only contained 2D

information. Because of this, the height of objects could not be taken into consideration

when detecting which objects were occluded.

Another limitation of OGRIT is that it only takes into account occlusions from the

point of view of the ego vehicle. It is also possible that road users could be occluded from

the view of non-ego vehicles, which could influence their behaviour. Taking account of

such occlusions could give additional information useful for goal recognition.

One further limiting assumption of OGRIT is that there is a separate module perform-

ing perception, and the output of this model is perfectly reliable, as long as information

is not occluded. However, in real scenarios there may be innacuracies in perception due

to sensor noise or failure or perception models to generalise.

6.6 Conclusion

We presented a novel autonomous vehicle goal recognition method named OGRIT. We

showed that OGRIT can handle missing data due to occlusions and make inferences

across multiple scenarios using the same model, while still resulting in fast, accurate,

interpretable and verifiable inference.
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Future directions could include considering occlusions from the point of view of the

target vehicle in addition to the ego vehicle. OGRIT also assumes a predefined set of

goal types, which may be incomplete. This could be addressed in future work through

anomaly detection, by declaring the goal "unknown" if the likelihood for all generated

goals is low. Future work could also work towards taking 3D information into account

when detecting occlusions. A similar approach could be used as the method detailed in

Section 6.2.3, but instead of using polygons, polyhedrons could be used to represent

obsticals and occluded regions.



Chapter 7

Conclusion

This thesis presented a study of interpretable and verifiable methods for planning and

prediction in autonomous vehicles (AVs), with a specific emphasis on goal recognition

(GR) techniques. Existing planning and prediction methods have many shortcomings,

and several novel methods have been introduced which address some of these problems.

The contributions introduced by each of these methods are summarised in Section 7.1.

The limitations of these methods are also discussed in Section 7.2, and possible direc-

tions for future work are mentioned in Section 7.3.

7.1 Summary of Contributions

In this thesis, several contributions to the field of planning and prediction for autonomous

driving were provided. In Chapter 4, a GR method was introduced that can be used for

multi-modal trajectory prediction, by making use of rational inverse planning. It was also

shown how this GR method can be integrated with Monte Carlo Tree Search (MCTS)

planning to obtain optimised plans for the ego vehicle, giving the IGP2 autonomous

driving system. An evaluation of IGP2 across several urban driving scenarios was

presented, and it was shown that IGP2 can achieve accurate goal recognition, efficient

driving, and interpretable plans and predictions.

In Chapter 5 an alternative GR method named GRIT was introduced which can make

fast inferences due to its straightforward inference process which makes use of learned

DTs trained using vehicle trajectory data. GRIT was evaluated across four different

urban driving scenarios using data from two different vehicle trajectory datasets and it

was shown that GRIT achieves comparable accuracy to a neural network baseline. It

was also shown that properties of the learned DTs can be formally verified using an off-
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the-shelf satisfiability modulo theories (SMT) solver. It was also shown that inferences

made by GRIT can be easily interpreted by humans thanks to the interpretable features

used and shallow DT depth.

In Chapter 6, a novel GR method named OGRIT was presented which builds on

GRIT and can handle occlusions and generalise across multiple scenarios, while still

being fast, accurate, intereptable and verifiable. In busy urban environments, there is

often information missing due to occlusions caused by obstacles such as buildings

or other vehicles. Two new datasets of occluded regions were introduced, the inDO

and rounDO datasets, which can be used to evaluate how well autonomous driving

methods can handle occlusions, along with an open source tool that can be used to

detect occluded regions in existing datasets. An evaluation of OGRIT on the inDO

and rounDO datasets was also presented and it was shown that OGRIT comes close

in accuracy to a neural network based GR method, while still being interpretable and

verifiable.

7.2 Limitations

The methods presented in this thesis have some limitations that are important to discuss.

In all three of the GR methods presented in this thesis, a set of possible goals are

generated for each non-ego vehicle based on local road layout, for example at junction

exits or visible lane ends. These are expected to be sufficient in the vast majority of cases,

but during real-world driving it is possible the actual goal of a vehicle may not in the set

of generate goals. In addition to this, the IGP2 method described in Chapter 4 makes

several other assumptions. This method was evaluated within simulations which only

represent an idealised version of real-world driver behaviour. When performing GR, the

assumption was made that vehicles only perform manoeuvres and macro actions from a

predefined library, which may be incomplete. It was also assumed that non-ego vehicles

were approximately rational and were selecting actions to minimise a predefined cost

function. It is possible that the predefined cost function would not accurately reflect the

preference of actual agents in real-world driving.

The GRIT method presented in Chapter 5 had several limitations. GRIT was evalu-

ated across four different static scenarios, and required separate DTs to be trained for

each scenario. Because of this, it cannot be applied to new scenarios for which there

is no available training data. GRIT also made the assumption that the environment is

fully observable, but in real-world driving there is often information missing due to
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occlusions. Some of these limitations were addressed by the OGRIT method presented

in Chapter 6. OGRIT generalised across multiple scenarios using the same learned DTs,

and handled data missing due to occlusions. However, OGRIT still has some limitations.

OGRIT was only evaluated across a limited set of four different scenarios, which does

not cover all situations that may be encountered during real world driving. The source

datasets used to evaluate OGRIT only contain 2D information about objects in the scene,

and so the height of objects was not taken into account when occlusions were detected.

In addition, OGRIT only took into account occlusions from the point of view of the ego

vehicle, and not occlusions from the point of view of non-ego vehicles.

Each of these methods also has the limitation of assuming that there is no noise or

inaccurate values in perception. The methods assume that there is a separate module

performing perception, which is perfectly reliable. However, in reality the perception

output could be noisy and unreliable.

7.3 Future Work

There are many avenues by which future work could extend the work presented in

this thesis, and address the limitations mentioned in Section 7.2. In each of the GR

methods presented in this thesis, it was possible that the generated set of possible goals

did not include the actual goal of the vehicle on which we are performing GR. Future

work could address this problem by using anomaly detection, which would declared

the goal to be unknown if the likelihood of all generated goals was low. In such a case,

the ego vehicle could proceed with additional caution. In the IGP2 method described

in Chapter 4, the assumption was made that drivers are behaving rationally. However,

human drivers tend to have predictable irrational biases [137, 71], and future work

could account for these. Another future direction to the extend IGP2 could be to use

multi-agent MCTS to allow AVs to plan cooperatively.

There are also several ways in which future work could build on the research

relating the the GRIT and OGRIT methods presented in Chapter 5 and Chapter 6. These

methods were evaluated using recorded vehicle trajectories from four different fixed

frame scenarios. It would be interesting to evaluate how well these methods perform

on more varied data from open-world driving. Future work could also evaluate how

well these GR methods perform when integrated with a larger planning and prediction

system. For example, these OGRIT could be used to replace the inverse planning based

GR module in the IGP2 planning and prediction system. Although GRIT and OGRIT
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achieved a high accuracy, both of these methods still achieved slightly lower accuracy

than an LSTM neural network in most scenarios. Another direction that future work

could take would be to investigate methods of improving the accuracy of OGRIT.

Recent work has shown that the accuracy of DTs can be improved through knowledge

distillation from neural networks [108]. A similar approach could be tried to improve

the accuracy of OGRIT by distilling knowledge from an LSTM neural network.

Another important direction for future work would be research into how to best

to display the decisions and inferences made by autonomous driving systems to the

passengers of vehicles. There has already been some research conducted to develop

methods to generate natural language explanations [14] for the decisions made by IGP2.

Similarly, future research could investigate methods of generating natural language

explanations for inferences made by GRIT and OGRIT. Presenting visualisations of the

inference process could also be an alternative avenue for improving interpretability. In

addition to this, a quantitative comparison of different explanation methods could be

valuable. For example, a user study could be conducted where users are surveyed about

the interpretability of different explanations [151].

Another direction for future research would be to address noisy and unreliable

perception. IGP2 currently assumes that perception output has no noise. Future work

could improve this by simulating noisy perceptions during each MCTS rollout, which

could results in a plan that is robust to perception noise. For GRIT and OGRIT, per-

ception noise could be handled by assuming distributions over feature values, and then

computing the expectation of the DT output.
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Chapter 5 Appendix

A.1 Learned Decision Trees

In Fig.A.1 to A.7, we show the decision trees that were trained for each goal type for

OGRIT. Red oval nodes represent an indicator feature from the set C , blue octagonal

nodes represent potentially missing features from the set M , and green oval nodes

represent leaf nodes. The rectangular nodes represent decision nodes with base features

which are never missing, from the set B . The goal likelihood at each leaf node is

calculated using the multiplicative weights at each edge and an initial likelihood of 0.5.

In some cases nodes with indicator features are included without the related potentially

missing features being included. This can happen if simply adding the indicator node on

its own leads to an impurity decrease. In some cases simply checking whether a feature

could be missing due to occlusions can give some useful information about the scene.

For example, occlusions may be more likely if there is a large number vehicles present,

so the indicator feature could act as a proxy for checking the number of vehicles present.
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