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Abstract 

 

The transcriptome remains a vast under explored space in genomics. Unlike the genome which 

is linear in nature, the use of alternative transcription start, end, and splicing sites in eukaryotes 

creates the possibility of near infinite differentially expressed RNA. While many expressed 

messenger RNA have been identified through the proteins that they produce, there is still very 

little known about the world of long non-coding RNA (lncRNA). 

 

Long non-coding RNA are a vast unknown space and represent one of the largest frontiers of 

transcriptomics. While little is known about this class of RNA as a whole, there have been 

specific lncRNA which have been found to be crucial components of biological development. 

Given the characteristics of lncRNA there may also be a sub-class that is involved in cell 

differentiation and speciation. In order to explore lncRNA and generate high throughput 

predictions of their functions, I used the chicken as a model and applied comparative genomics 

using newly assembled genomes from other avian species.  

 

Long non-coding RNA present the almost perfect scenario for evading detection from previous 

RNA discovery methods. They have been shown to be poorly conserved across species, with 

generally low expression levels and no downstream product that is immediately identifiable. 

Given these factors, previous RNA detection methods such as expressed sequence tags and 

RNA sequencing cannot provide reliable evidence for the mass identification of lncRNA. 

 

In the first chapter I explore the characteristics of Iso-Seq (Pacific Biosciences long read RNA 

sequencing technology) and methods for processing the data to improve long non-coding RNA 

identification. I also explore the use of non-traditional cDNA library preparation methods 

including cDNA normalization and 5’ cap selection. I found that the ability of long read RNA 

sequencing to provide full length transcript sequences allows for more robust methods of 

lncRNA prediction.  
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In the second chapter, I explore the data processing of long reads. I use a dataset generated by 

Pacific Biosciences using the Universal Human Reference RNA as an example of ideal long read 

data. By using data based on the human transcriptome, I was able to compare my results with 

information from one of the most well annotated and studied transcriptomes. I demonstrate 

the Transcriptome Annotation by Modular Algorithms (TAMA) software that I developed and 

how it can be used to explore the non-coding RNA within the transcriptome.  

 

In the third chapter, I explore the transcriptome constructed from Iso-Seq data on different 

chicken tissue samples. I used the TAMA software along with other tools to make pipelines 

optimized for lncRNA discovery and to perform functional annotation. Using these 

methodologies I identified over 300,000 putative transcript models corresponding to over 

50,000 genes. Of these over 100,000 transcript models appear to be lncRNA which correspond 

to over 38,000 gene loci. The majority of these are predicted as sense exonic and mono-exonic 

lncRNA. While it will require further investigation to produce sufficient evidence that these RNA 

are not the result of transcriptional noise, I have identified a subset of these which appear to 

have functional importance given their co-expression with known genes. I demonstrate that 

while lncRNA appear to be generally lowly expressed, they often express in a tissue-specific 

manner which suggests a possible role in tissue differentiation.  

 

From these investigations, I have found that there are potentially thousands of unannotated 

lncRNA within the chicken transcriptome with characteristics that require new technologies 

such as long read sequencing to identify. These novel lncRNA include a subset which could have 

functional roles in the regulation of cell differentiation.  
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Lay Summary 

 

Ribonucleic acids, more commonly referred to as RNA, are the direct biochemical products 

which are produced from the genome (DNA). While DNA is often thought of as a blueprint for 

life, the information in the genome must be converted in RNA to produce any functional units. 

Most of the currently known RNA are used as sequence templates to create proteins. This 

occurs by converting the sequence of an RNA molecule into amino acid chains which then fold 

into 3 dimensional structures known as proteins. These RNA are called messenger RNA (mRNA) 

are the most closely studied class of RNA. However, there is still a large frontier of undiscovered 

RNA of which we understand very little. The class of RNA with the greatest potential for new 

discoveries both in numbers and significance are known as long non-coding RNA (lncRNA).  

 

LncRNA are special in that they do not get converted into proteins. They also have unique 

properties such as being very unique to each species and being produced at much lower levels 

than mRNA. We have already discovered a few lncRNA which serve vital functions to the 

development of humans and other mammals. It is possible that there are many more lncRNA 

which have important biological functions. Some lncRNA may even be responsible for the 

differences between individuals. 

 

When studying RNA, researchers often focus on specific species known as model organisms. 

Model organisms are selected so that many groups of researchers can build knowledge of one 

species which can then be used to understand related species. This gives researchers a 

foundation of knowledge and commonality for comparing results. In this study, I use the 

chicken (Gallus gallus) as a model organism. The chicken is used as a representation and 

reference for other birds. The chicken provides an ideal model organism for studying lncRNA 

because there is already a great deal of information about its genome, biology and traits, with 

other closely related species also becoming better studied.  
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To discover new lncRNA in chickens, I used a new method of RNA detection called long read 

RNA sequencing. This new technology surpasses previous technologies by allowing for the 

identification of complete RNA sequences. Previous technologies only allowed for the 

identification of short fragments of RNA which then had to be pieced together like a puzzle to 

estimate the real RNA sequence. The ability to see full length RNA sequences on a genome-

wide scale provides a huge advantage for lncRNA discovery. This is due to the generally 

unknown sequence characteristics of lncRNA which make them difficult to reconstruct from 

shorter pieces of information. Using the full length sequence information, I was able to develop 

analysis software and pipelines to distinguish lncRNA from mRNA. By comparing these 

predicted new lncRNA genes to other sources of information such as RNA expression data from 

short read RNA sequencing and previously published genome annotations, I was able to infer 

possible functions and/or relationships for the newly predicted lncRNA.  

 

This study represents one of the first attempts to use long read RNA sequencing for high 

throughput lncRNA discovery and annotation. I demonstrate the power of long reads for this 

type of investigation as well as areas in both the laboratory processing and bioinformatic 

analyses that could be improved to make the overall methodology more powerful.  

 

Using long read RNA sequencing with new RNA processing pipelines and bioinformatic tools, I 

was able to identify tens of thousands of possible novel lncRNA that are expressed from the 

chicken genome.  
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Chapter 1: Introduction 

 

 

1.1 Chicken as a model for long non-coding RNA discovery 

 

1.1.1 Chicken as a model organism 

 

Since the beginning of modern biology, scientists have observed that there is a connection 

between the many different species in the natural world. This understanding was first 

formalized in the use of taxonomy. Taxonomy is a system of organizing organisms based on 

their traits into groupings that signify the closeness between each species. The origin of 

taxonomy in the western world is believed to be ancient Greece [1]. However, the modern form 

of taxonomy was pioneered by Carl Linnaeus in the 18th century [2, 3]. So even before the 

theory of evolution was proposed by Charles Darwin [4], there was a deep understanding that 

there is a special relationship between life forms. As taxonomy developed in modern biology, it 

started to serve as a way for scientists to segment the living world for the purpose of 

understanding the limits of generalization with respect to biological mechanisms [5].  

 

This understanding that fundamental biological processes are shared across species led to the 

use of specific species to conduct experimentation [6], 7]. In the early 20th century scientists 

were focusing on experimentation using a smaller number of species as opposed to the more 

broadly based observational studies that were popular previously. In the mid-20th century, 

scientists chose particular species to study with the idea that discoveries in these species could 

be generalized to species that were in the same or similar taxonomic groupings. This 

understanding was essentially the birth of the model organism as a concept [8]. This was a 

significant step in biology because it opened up much easier paths for scientists to design 

experiments for investigating basic biological functions. For instance, if we wanted to 

understand how cells replicate in humans, we could study how they replicate in mice because 

the basic cell biology will be the same between these two species. 
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As the use of model organisms became more popular, scientists began to scour the taxonomic 

charts to find ideal organism for studying their biological field of interest. These species would 

usually be selected for a combination of features such as ease of handling, ease of breeding, life 

spans, accessibility of tissues or developmental states, and similarity to another organism with 

commercial or medical value [7]. 

 

The first animal model organisms were Mus musculus (mouse) and Drosophila melanogaster 

(fruit fly)[6]. The mouse served as a convenient model to study mammalian biology due to its 

ease of rearing, ease of handling, short life span, and taxonomic relatedness to humans [9]. The 

fruit fly was chosen for the same reasons except instead of similarity to humans they were 

valued for their relation to insects [10]. These first two animal model organisms ,and selection 

of such, demonstrate an important aspect of the selection process which is that as a whole, 

model organisms are more useful when representatives are chosen to cover a large range of 

the taxonomic tree [11]. Thus, it was only natural for new animal model organisms to be 

selected so that they were spaced out across the entire animal kingdom. Species such as 

Caenorhabditis elegans (nematode worms)[12], [13] and Danio rerio (zebrafish)[14] were soon 

to follow as major model organisms [6]. 

 

The modern chicken has been domesticated over thousands of years with the closest wild 

ancestor being the red jungle fowl [15]. Given its long history in captivity, the chicken has also 

been the focus of various biological observations. For example, Aristotle described chicken 

embryos in his works and Darwin wrote descriptions of various chicken breeds [16]. The ease of 

breeding chickens, accessibility of their embryos, and differentiated breeds made chickens ideal 

model organisms to represent the avian species.  

 

As phylogeny began to replace taxonomy and genomics became more sophisticated with the 

advent of DNA sequencing, the objective to map out the tree of life became a unified goal in 

the scientific community [5], 17]. Given the resources needed to sequence and assemble a 
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genome, researchers began stratifying the search by selecting the best candidates for their 

initial searches. The chicken became a vital species to initiate the genomic exploration of birds 

[18][19][20]. In 2004, the chicken genome became one of the first animal genomes to be 

sequenced and assembled. The chicken genome had several characteristics that also made it 

ideal for scientific discovery such as the genome being a third the size of the human genome 

and having long conserved syntenic blocks when compared to mammals.  

 

The sequencing of the chicken led to major discoveries with respect to the evolution of 

vertebrates [21][22][23]. Large scale efforts to explore the chicken transcriptome took place 

around the same time using expressed sequence tags (EST) [24],[25]. EST sequencing is a 

method where RNA is reverse transcribed into cDNA, the cDNA are then incorporated into 

vectors for cloning, and libraries of hundreds and thousands of cloned cDNA inserts are 

subjected to single pass Sanger sequencing [26], [27]. At the time, this process was practically 

the only method of identifying the actual RNA sequences transcribed in living cells. Even then, 

there was debate as to how valuable EST sequencing truly was with the opposing faction 

claiming that RNA sequences could be reliably identified through ab initio predictions from the 

genome assembly[28]. However, EST sequencing became a prominent methodology for 

identifying transcript models for the use of annotating genomes [29]-[30]. While it was possible 

to attain full-length transcript information from EST sequencing, the process had low 

throughput and was expensive. Thus, the majority of EST information gathered were comprised 

of short fragments of transcript sequences. This was certainly true for the beginning of chicken 

transcriptome annotation [24], [25],[31], [32]. Given the difficulty in attaining this type of 

information, it was impressive that the chicken as a model had so much time and effort 

invested into the annotation of its genome. This attention highlights the shared understanding 

of the importance of chicken as a model and the need for further research into chicken and 

avian genomics as a whole.  
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1.1.2 Transcriptome annotation as a concept 

 

Transcriptome annotation is the pursuit of identifying and understanding transcripts. 

Transcripts are the RNA molecules expressed by cells. These RNA molecules are transcribed 

from regions of a genome. In prokaryotes, the production of RNA transcripts is comparatively 

simple with a single region of the genome typically producing a single RNA molecule. However, 

in eukaryotes the use of alternative transcription start and ends sites coupled with alternative 

splicing means that a single genomic locus can produce a myriad of RNA molecules based on 

the combination of the sequences present within that genomic locus. Alternative transcription 

start and end sites occur when the RNA polymerase has multiple locations it can start and end 

within a genomic locus [33]. Splicing is when internal sections of an RNA molecule are cut out 

with the flanking regions rejoined or spliced together. The sections of the transcript that are 

retained are labeled as exons on the genome and the sections that are spliced out are labeled 

introns in the context of the gene loci. Alternative splicing occurs when there are different 

combinations of splicing producing multiple different transcripts from the same locus. Each 

individual genomic loci from which transcripts can be produced is called a gene. Thus in 

eukaryotes a single gene can produce many transcripts. This feature has been proposed as one 

of the important features of eukaryotes that have allowed for the development of more 

complex organisms [34],[35].  

 

Given that transcript sequences are RNA copies of regions of a genome, the most typical 

method of structuring this information is by representing genes as loci within a genome 

assembly. This is in accordance with our understanding of the relationship between the 

genome and the transcriptome. In this view, the genome can be thought of as a giant 

repository of nucleotide sequences that are templates for transcription into RNA to enact 

function. The unit of the transcriptome is the transcript, however the term gene is often used 

to denote a grouping of transcripts.  
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The standard method of ordering transcriptome information is by identifying the locations of a 

gene via coordinates based on a genome, and then identifying the unique transcripts that are 

produced from each gene locus. However, this definition can break down when we try to define 

what exactly a gene is [36]. The classical meaning of a gene was defined before we had 

significant knowledge of the genome or indeed of RNA. Thus for the purposes of this study, I 

will admit that the definition of a gene is vague and not entirely biologically accurate. 

Essentially the term “gene” is somewhat abstract and can be interpreted in different ways. In 

contrast, the term transcript is much more biologically accurate in that we have evidence of 

specific RNA sequences that represent specific transcripts. The term gene in this case is simply a 

higher order class meant to help us group transcripts into similar functions. However, even in 

this definition we can find outliers. For example, within the bounds of a single gene other genes 

can exist within the intronic regions [37]. A single locus can produce transcripts with very 

different functions even if they share overlapping exon sequences. It is also important to note 

that we are typically referring to a single strand and not overlapping expressed regions on 

opposite DNA strands.  

 

In the context of this study, the primary goal of transcriptome annotation was to define all 

expressed transcripts and assign as much function as currently possible using in silico analyses. 

 

 

1.1.3 The application of transcriptome annotation 

 

There are two ways that researchers identify transcripts: directly or indirectly. In the direct 

approach, researchers use tools and methods that are designed to identify the sequences of 

individual RNA molecules. For example, RNA sequencing is a direct method for identifying RNA. 

With the indirect approach, researchers compare non-RNA features to make predictions on 

what RNA might look like in a given transcriptome. For example, using comparative genomics to 

identify similar regions between two or more genomes and then projecting the transcript 

models from a well annotated genome to a lesser annotated genome.  
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With respect to the direct approach of annotation, these methods are all based on technologies 

that allow for the identification of at least a portion of the sequences from RNA that are 

expressed in the species of interest. While these technologies will be covered in more detail 

later on in this chapter, in general it can be said that earlier technologies had lower throughput 

for providing sequence information from RNA. These older technologies were also less capable 

of providing information on full length transcripts [38]. Given these constraints, the process of 

going from sequence data collection to transcriptome annotation was focused on assembling 

partial sequence information from RNA into the best estimate of the full-length transcripts. This 

idea was very similar to how genome assemblies were performed however, the transcriptome 

has intrinsic complexity that makes it more difficult to reconstruct from short pieces of 

information. While the genome can be thought of as practically linear with respect to the 

sequence composition, the eukaryotic transcriptome is comprised of a combinatorial array of 

different RNA sequences where a single genomic locus can produce a multitude of unique 

transcripts.  

 

The innate complexity of the transcriptome means that its exploration requires far more 

sequencing than is required for genome assembly. This is due in part to differential splicing but 

it is also due to the ephemeral nature of RNA expression where different cells at different times 

produce different RNA. This meant that the application of sequencing for transcriptome 

annotation was cost prohibitive for many research groups [39].  

 

Given the high cost of RNA sequencing methods pre-2010, many researchers opted to use the 

information generated from the closest model organism to interpret the genomes of the newly 

studied species [40]. For example, if a researcher were looking into annotating the recently 

assembled genome for a bat species, they would compare their genome to that of the mouse, 

rat, or human to find genes by inference from sequence alignments. In fact there are many 

widely used bioinformatic software which rely on this type of strategy (Augustus, Maker2, etc.) 

and this strategy is used in part by the major public annotators NCBI [41] and Ensembl [42]. One 
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of the core assumptions behind the use of this method of annotating genomes is that we can 

use sequence indicators to gauge the appropriateness of adapting a gene model from one 

species’ genome to another. The sequence indicators include looking at the percent alignment 

of the gene from the model organism to the genome of the species of interest as well as cues 

that are intrinsic to protein coding genes [40]. Since protein coding genes have been found to 

have in general fairly well conserved coding sequence (CDS) regions, the assumption is that the 

CDS regions of the alignment should have few mismatches and that the protein sequence 

should also be somewhat maintained. Thus, splice junctions can be predicted based on the 

assumption that the junctions should preserve the reading frame that would produce a protein 

sequence most similar to the model organism.  

 

This comparative genomics approach to genome annotation was very attractive due to the 

method reducing the need for relatively expensive exhaustive RNA sequencing. However, in 

many cases there were no ground truths to which to compare the results. Thus, all these in 

silico predictions of gene model for newly studied organisms were built on a large number of 

assumptions which were not investigated further to ascertain the truth[43].  

 

The danger of this approach really emerged as the snowball effect in annotation philosophy 

began building a momentum of thought that was seldom questioned as new researchers 

entered the fray. The main issue being that much of annotation had become a self-satisfying 

practice with little in the way of reality checks to verify the validity of published annotations. 

The result of which I believe has yet to surface completely but could potentially involve the 

misunderstanding of results from downstream studies that rely heavily on those annotations. 

This mentality has also heavily biased the opinions in the field that novel genes, which do not 

appear to be similar to what is seen in the closest annotated organism, are noise. Given the 

strong knock-on effect of the traditional comparative genomics method of annotation, we can 

see that the closest annotated organism mostly has an annotation which reflects some chain of 

annotations going all the way back to the closest model organism. Thus through this method 

we have systematically looked away from species-specific gene models as we go along.  
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1.2 Long non-coding RNA 

 

1.2.1 The transcriptome and long non-coding RNA 

 

The term transcriptome has been defined with various bounds over the course of its 

introduction. Given that the first RNA that were discovered were messenger RNA (mRNA) that 

encoded peptide sequences, the initial use of transcriptome referred to all mRNA that were 

expressed. However, as we discovered different classes of RNA the term has evolved to 

encompass the entire range of RNA that exist. This includes classes such as transfer RNA 

(tRNA)[44], ribosomal RNA (rRNA)[45], micro RNA (miRNA)[46], small interfering RNA 

(siRNA)[47], small nuclear RNA (snRNA)[48], and long non-coding RNA (lncRNA)[49] among 

others. In the context of this study, I will define the transcriptome as all naturally occurring 

RNA.  

 

In general, we can breakdown RNA into two major classes: coding RNA (mRNA) and non-coding 

RNA (ncRNA). Coding RNA (otherwise known as messenger RNA) are simply any RNA that are 

translated in cells to produce peptide sequences. However, even this definition can be 

somewhat vague. For instance, nonsense mediated decay (NMD) RNA are translated into 

peptide sequences when they first encounter a ribosome but then are quickly degraded (along 

with the amino acid product) so that they cannot produce any more proteins [50][51]. So while 

NMD RNA may be technically a subset of mRNA because they do get translated, they are 

effectively ncRNA because they never produce any functional proteins [52][53].  

 

On the other side we have non-coding RNA, which essentially encapsulates all other RNA. 

Within the ncRNA class, the sub-classes can be somewhat confusing and do not allow for a  

tree-like organizational structure. The naming of sub-classes is mostly a consequence of the 

order of discovery of different types of ncRNA and their ascribed functional roles. For example, 

ribosomal RNA function within ribosomes and transfer RNA are part of the translation 

mechanism. Then there are sub-classes that use size as the major trait such as small interfering 
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RNA (siRNA) and micro RNA (miRNA). However, overlaps between functions, size, and other 

traits have led to a chaotic naming system. To illustrate, ribosomal RNA are almost always 

referred to as such even though technically they are long non-coding RNA because of their size. 

In fact, it could be argued that rRNA were the first lncRNA to be discovered[54]. This issue with 

classification is a testament to the complexity of the transcriptome and highlights the need for 

care and nuanced descriptions to capture the biological significance of each molecule. 

 

In this study, I define the class hierarchy as being comprised of two main categories: messenger 

RNA and non-coding RNA (ncRNA). I define NMD’s as being part of the non-coding class since 

they do not produce viable proteins. Likewise, any other RNA that do not encode functional 

proteins will be under the non-coding class.  

 

Thus, ribosomal RNA, transfer RNA, and all other RNA classes that do not fall under the mRNA 

class are ncRNA. Prior to the discovery of any non-coding RNA, scientists believed that only 

mRNA were functional and significant. However, as we uncovered the world of non-coding RNA 

we realized how important certain types can be for basic biological functions. Explorations in 

non-coding RNA revealed that RNA has the ability to act as a genome (as in viruses), as protein 

instructions (mRNA), and function similarly to proteins by forming structural units (rRNA). Thus, 

it is important to remember that the class of non-coding RNA, although termed due to a lack of 

a certain type of function, can have other functions some of which we are yet to understand. 

 

As we dig deeper into understanding non-coding RNA, we have picked out sub-classes that we 

were able to confirm as having specific functions (tRNA, rRNA, etc.). However, we still have a 

class that exists only as a catch-all for non-coding RNA of which we have little understanding. 

This is the class of long non-coding RNA (lncRNA). Simply put, lncRNA are defined as any non-

coding RNA greater than 200 base pairs (bp) in length. However, this method of classification is 

generally reserved as a term for RNA that do not exist in other sub-classes such as the 23S 

ribosomal RNA[55] (in prokaryotes) which is around 2,900 bp in length. Thus, the class of 
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lncRNA essentially represents the largest frontier of under-annotated RNA within the entire 

transcriptome.  

 

1.2.2 Long non-coding RNA background 

 

The first lncRNA to be discovered (and the most well-known) which fits the current definition of 

lncRNA’s is XIST. The XIST gene was discovered by Carolyn J. Brown, Andrea Ballabio, and 

Huntington F. Willard in 1991 [56][57]. The XIST gene is integral to the inactivation of the 

additional X chromosome in the females of mammalian species including human and mouse. 

The RNA produced from this gene in humans contain multiple splice junctions, are 

polyadenylated and are about 17 kb in length [58][59]. The fact that XIST is processed in much 

the same manner as mRNA, opened up the field of lncRNA discovery as those features were 

previously thought to be exclusive to mRNA. It also highlighted some of the major challenges 

for identifying lncRNA, namely that they could be misrepresented as mRNA if not analyzed 

properly. 

 

Since the discovery of XIST a small number of genes have been confirmed as functional lncRNA 

in various species but overall the search has been slow and prone to controversy. One other 

notable lncRNA is the HOX Transcript Antisense Intergenic RNA or HOTAIR gene discovered in 

2007[60]. Since its discovery, studies have shown the HOTAIR lncRNA gene to be involved in the 

development of various types of cancer [61][62][63]. While the exact mechanism by which 

HOTAIR is involved in tumorigenesis is still unclear, it demonstrates how crucially functional 

lncRNA can be. 

 

The main reasons for the difficulty of identifying functional lncRNA is somewhat philosophical in 

nature. It is easier to prove that a specific RNA is translated into a protein than to prove that it 

is not. Also unlike mRNA that have well known associated features, lncRNA have not been 

characterized to an extent where we can apply useful general rules for their identification. In 
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addition, even if we can confirm that a specific RNA is non-coding and that we have the correct 

transcript model, it requires in-depth biochemical testing to identify a function.  

 

To make this search even more difficult, researchers have identified two general characteristics 

of lncRNA which are a lack of sequence conservation across species [64][65] and generally low 

expression levels [66]. This makes them difficult to find using comparative genomic approaches 

and with standard sequencing methods.  

 

There may also exist a type of blind spot in the field that is the result of the vast amount of 

work done on annotated model organisms like mouse, human, fruit fly, etc. This has to do with 

the only method of sub-classifying lncRNA which is based on the location with respect to the 

nearest protein-coding gene and the bias against non-spliced transcript models [67].  

 

The location-based classes are intergenic, intronic, sense exonic, and antisense [68]. Intergenic 

lncRNA (lincRNA) are lncRNA that occur in genomic regions with no coding genes. LincRNA are 

the most widely studied as they are separated from genes making it easier to distinguish their 

transcripts from transcriptional noise associated with other genes of whatever class. Intronic 

lncRNA occur within the intronic region of a protein-coding gene. Sense exonic lncRNA have 

exons that overlap on the same strand with a protein-coding gene. Antisense lncRNA occur on 

the opposite strand of a protein-coding gene. There are also two mutually exclusive splicing 

classes termed mono-exonic (single exon) and multi-exonic (2 or more exons).The positional 

classes and the splicing classes can be used in conjunction for finer categorization. 

 

Of these classes, the most difficult to find and least studied are the sense-exonic mono-exonic 

lncRNA. This is due to the difficulty in distinguishing them from the protein-coding genes that 

they overlap. This is where the blind spot can occur, since the model organisms tend to have 

well annotated genomes with almost complete listings of the protein-coding genes. Thus, all 

regions that are spanned by protein-coding genes are essentially dark zones where the search 
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for lncRNA is limited. Actually this extends to any of the positional classes for mono-exonic 

lncRNA which overlap with a protein genic region either on the same strand or opposite strand. 

 

Thus, while well-studied model organisms may at first seem to be ideal for the extension of 

annotations into the realm of lncRNA, they are actually in some ways encumbered by their very 

strengths. 

 

1.2.3 Long non-coding RNA in chickens 

 

While there have been numerous efforts to identify and annotate lncRNA in chicken, these 

studies relied heavily on short read RNA sequencing [69][70][71] and in some cases comparison 

with mammal lncRNA [72]. The issue with using mammal models to compare with the chicken 

genome for the identification of lncRNA is that lncRNA sequences are poorly conserved even 

across species in the same family[64]. Thus, mammalian genomes are simply too disparate to 

avian species with respect to lncRNA. The logic behind this methodology follows a common 

assumption in comparative genomics that functional sequences including genes should be 

conserved across species. While this is certainly true for a set of protein-coding genes that are 

required for basic cellular functions, it seems intuitive that it cannot be true for all genes given 

that at least some set of genes must be responsible for the differentiation of phenotypes that 

we see across species. Thus relying heavily on conservation for the identification of lncRNA in 

chickens results in a very small number of lncRNA that are likely to have little or no role in 

species differentiation (i.e. no chicken-specific lncRNA).  

 

The use of short read RNA sequencing for chicken lncRNA discovery shares many of the issues 

that plagued short read based identification in mammalian species. Certain classes of lncRNA 

were more identifiable using short read technologies such as intergenic lncRNA and multi-

exonic lncRNA. However, this left a number of other classes in the dark. The inherent noisiness 

of short read data coupled with the difficulty in distinguishing real transcript models for lowly 

expressed genes meant that the compromise between sensitivity and specificity made it 
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virtually impossible to have good performance on both ends. Basically, it is a choice of including 

a large number of non-real transcript models in the predictions or discarding a large number of 

potentially real transcript models. 

 

Another issue with both the conservation and short read methods is that they lack the ability to 

characterize full-length lncRNA models. Thus, even if they were able to identify some part of 

the transcript model they were not very strong at producing the full length of the model. This 

was already true for protein-coding genes but is exacerbated in lncRNA where open reading 

frames cannot be used to judge completeness. 

 

The result of these efforts are lncRNA predictions that are usually far too conservative in terms 

of numbers of lncRNA as well as not accurate with respect to the full length of lncRNA 

transcript models. 

 

1.3 Long read transcript sequencing 

 

1.3.1 Background on RNA detection methods 

 

The sequencing of RNA and DNA has changed massively since its inception. While DNA 

sequencing is more well known today and so ubiquitous that RNA sequencing is often mis-

labeled as DNA sequencing in popular news articles, it was actually RNA which was first used in 

nucleotide sequencing development [73]. The reason for this is that RNA offered the easiest 

material to attain in large and relatively pure quantities at the time and its single stranded 

nature made it seem more accessible. The first complete nucleic acid sequence identified was 

that of alanine tRNA from Saccharomyces cerevisiae in 1965 by Robert Holley and his 

collaborators [74][73]. This was done using a ribonuclease-based method. Around the same 

time Fred Sanger was also sequencing RNA using radiolabeled partial-digestion fragments (not 

to be confused with what is commonly called Sanger sequencing today)[75]. 
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In the 1970’s, researchers began developing DNA sequencing methods with the most famous 

method (Sanger sequencing) being developed in 1977 which is also known as a chain 

termination method [76]. This method revolutionized DNA sequencing by making it much easier 

to attain long sequence information. It was also used to indirectly sequence RNA through cDNA 

copies of RNA species (commonly referred to as cDNA libraries). This is probably the start of the 

common practice of developing DNA sequencing techniques which are then adapted for RNA 

sequencing via cDNA libraries. Sanger sequencing or dideoxy chain-termination sequencing is 

based on the use of radiolabeled dideoxynucleotides (ddNTPs) and polyacrylamide gel. The 

DNA would be placed in the gel in 4 different lanes for electrophoresis after undergoing a DNA 

extension reaction with the incorporation of radiolabeled ddNTPs and dNTPs. Each lane would 

be assigned a different nucleotide type to be radiolabeled (i.e. A,T,G, or C). Since the 

radiolabeled ddNTPs halted further extension bands would appear at each length where a 

termination occurred. Thus, by looking at the different band positions from each of the 4 lanes 

one could determine the sequence of the original DNA template.  

 

The next big leap began what is commonly referred to as second generation or next generation 

sequencing. This started with pyrosequencing that was commercialized by 454 Life Sciences. 

454’s pyrosequencing method involved the immobilization of DNA templates on beads within 

individual wells. Single dNTPs were then passed over the flowcell for incorporation causing a 

reaction from the released pyrophosphate products. 

 

However, the technology that rapidly changed the DNA/RNA sequencing world which is 

currently commonly labelled as Illumina/Solexa sequencing was developed by Shankar 

Balasubramanian and David Klenerman[77][78]. Solexa sequencing involved the use of a flow 

cell where DNA is immobilized by oligonucleotides bound to the surface. Bridge amplification is 

used to create densely packed clusters of each DNA template. During sequencing, fluorescent 

dNTPs are added in a sequencing by synthesis method. The clusters of identical DNA templates 

create a stronger fluorescent signal that can be detected consistently which results in very high 

accuracy of base calling. This method also had the advantage of enabling paired end sequencing 
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where the other side of the DNA template could also be sequenced in order to get both ends of 

each DNA fragment. This method was relatively inexpensive with the potential for massive 

throughput and high accuracy. One major downside however, was the limitation on read length 

that was about 500 bp. This limitation is caused by the cluster of DNA getting out of 

synchronization leading to erroneous base calls. Thus, another characteristic of Solexa/Illumina 

sequencing is that the quality of the reads always deteriorate toward the end leading to a bias 

toward the start of the read. 

 

Another technology that was commonly used to detect and quantify RNA is the microarray. 

While this method is useful for cheaply identifying relative gene expression it cannot be used to 

identify novel transcripts and thus does not have any practical usage for genome annotation 

where transcriptome discovery is the primary objective.  

 

1.3.2 Long read RNA sequencing 

 

Long read RNA sequencing, also known as third generation sequencing, was developed after 

what is commonly referred to as Next Generation Sequencing (NGS). Unlike its predecessors 

the focus of long read sequencing was to produce the longest usable reads possible. The main 

motivation for this was to solve issues with genome assembly where short reads were found to 

create problematic scenarios due to repeats and structural variations found in the genomes of 

many species.  

 

The two leaders in long read sequencing are Pacific Biosciences (PacBio)[79] and Oxford 

Nanopore Technologies (ONT)[80]. Both technologies are single molecule sequencing platforms 

that differentiate them from many of the technologies in the second generation sequencing 

era. PacBio sequencing uses a flow cell with microscopic wells termed Zero Mode Waveguides. 

These are designed so that when a laser is directed toward a well, the light is guided into a 

single wavelength that can be distinguished between wells to allow for the basecalling from a 

single molecule reaction from each well. This method of basecalling is coupled with the rolling 
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amplification of a circular single-stranded DNA. The circular single-stranded DNA is actually 

comprised of a typical blunt end double stranded DNA fragment with hairpin structures ligated 

on both ends. This allows the DNA fragment to be sequenced twice with every full pass through 

the circular single strand template. Since the rolling amplification can create very long 

templates (currently an average of 100 kb), the original DNA template can be sequenced many 

times. This multiple sequencing of a single molecule allows the use of intra-read sequence 

comparison to improve overall basecalling accuracy (Figure 1.1). Note that the longer the 

polymerase read (entire length of read generated) and shorter the DNA template (sometimes 

referred to as Read of Insert (ROI)) the higher the overall accuracy of the read will be. 

 

So while the raw error rate for PacBio basecalling is about 10-15%, the overall error rate after 

intra-read correction can be lower than 0.0001%. Another way of putting it would be to say that 

through the use of this method, one can achieve accuracy higher than that of Illumina 

sequencing.  

 

 

Figure 1.1 : A diagram illustrating how PacBio sequencing works. RNA is converted to cDNA. 

The cDNA has hairpin adapters ligated to both ends. During sequencing, a polymerase 
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attaches to the circular template and begins a rolling amplification while situated in the Zero 

Mode Waveguide well. This creates a very long polymerase read which passes through the 

template multiple times. Each pass is split up into sub-reads.  

 

 

Figure 1.2 : A diagram illustrating the differences between the basic bioinformatic pipelines of 

short read and long read RNA sequencing. Red arrows denote bottleneck steps due to 

computational requirements.  

 

Oxford Nanopore Technologies uses a very different approach to produce long reads. As the 

company name would suggest they use nano sized pores set in a thin film. These nanopores 

consist of a special protein that sit inside a hole. The proteins change their conformation as 

different nucleic acids pass through. When there is a voltage potential applied across the film, 

this change in conformation can be detected as localized changes in current. Thus, ONT use 

these current changes to call the bases of the nucleotide sequences as they pass through. 
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This method of sequencing allows for very compact sequencing machines, such as the MinION, 

and can be used for the direct sequencing of RNA molecules. Note that most third and second 

generation methods require cDNA as templates. In general, nanopore sequencing only passes 

through a template once which means that intra-read error correction methods are not used 

thus lowering the overall accuracy. However, the accuracy for ONT sequencing is dependent on 

the basecalling from the current readings that means that the current limitation lies more on 

the bioinformatic side of interpreting the raw signals (also known as squiggles). However 

through improvements in the bioinformatics tools, the accuracy for ONT has been steadily 

increasing over the past few years. They have also produced new flow cells with two aligned 

pores so that they can read twice from the same molecule. Thus, there are a number of 

potential means of improving the accuracy.  

 

Another important consideration is that (at least at the time of this writing), all ONT sequencing 

requires the generation of double-stranded nucleotide sequences. Even for direct RNA 

sequencing, a second cDNA strand must be produced in order to sequence properly. This is 

because the second strand helps to prevent secondary structures that would change the 

kinetics of the nucleotide sequences travelling through the pores. However, it may be possible 

to account for this in some other way in the future. This limitation however, has important 

effects on RNA sequencing because all ONT RNA and cDNA sequencing still relies on the limits 

of reverse transcription, i.e. the length of RNA molecule that can be reverse transcribed before 

the reverse transcriptase falls of the template. 

 

Another consideration with long read RNA sequencing is that typically oligo-dT primers are used 

to prime RNA with poly-A tails. This is to ensure that the 3’ end of the transcripts are captured. 

However this excludes any RNA without poly-A tails and the use of oligo-dT’s can also result in 

internal priming which leads to 3’ truncation of the transcript sequences. There are methods to 

ligate a poly-A tail to all RNA within a sample however this is rarer and allows for the inclusion 
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of 3’ degraded RNA with no robust way of discriminating between 3’ complete and 3’ degraded 

sequences.  

 

Around the start of high throughput long read RNA sequencing, the early adopter researchers 

had to devise their own strategies for analyzing this novel type of data. While the general 

upstream processing to prepare reads for mapping to the genome were provided by the 

sequencing companies. The tools for filtering and interpreting the results after mapping were 

lacking. Many of the early users (and many current users) defaulted to the tools provided by 

PacBio which at the time was called ToFU[81]. The primary tool within the ToFU package was 

called Collapse and its purpose was to remove redundant read information using the read 

mapping information. The output of ToFU was a collection of transcript models that were 

grouped into genes based on genomic overlap between the different models. This concept of 

collapsing was key to developing a deeper understanding of the requirements in downstream 

analysis of long read RNA sequencing data. However, there were still more aspects of the data 

that had not yet been fully understood and were not utilized in ToFU Collapse. ToFU Collapse 

was also designed to be a generalist tool with minimal parameterization control which meant that 

it sufficed for a wide range of experiments but did not exactly optimize for the specific needs of 

each.  Despite this generalist methodology, many of the first papers to be published based on Iso-

Seq data used the ToFU pipeline [82][83][84][85][86]. 

 

The room for improvement on this foundational tool was not lost on the community and several 

groups developed their own tools to solve for the specific challenges they encountered their 

experimental designs. These include tools like TAPIS [87][88], FLAIR[89], Stringtie2[90], and 

TALON[91]. These tools have proved useful for their creators as well as other researchers who 

shared similar ideas as to the objective of their transcriptome annotation. However, they all make 

use of algorithms that are based on certain assumptions which may not be biologically accurate 

or be relevant to the possible situations that occur during long read sequencing.  

 

For example, Stringtie2 was very much developed to be a long read successor to Stringtie[92] 

which is arguably the most popular short read transcriptome assembler. Stringtie2 seems to make 

the assumption that like short reads, long reads should be scaffolded together to make the longest 
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contiguous sequence possible and that this conglomerate longer sequence is what should 

represent a transcript model. This behavior is quite baffling considering the purpose of long 

reads is to provide sequence information on the full length of a transcript. Thus stitching together 

reads in the way that is typically done for short reads is counter to the primary benefit of the 

technology. The typical effect of this behavior is a reduction in the ability to discover novel 

isoforms and an over lower sensitivity of alternative transcripts. This characteristic of Stringtie2 

can be seen in recent studies[93] where there have been comparisoons of different processing 

pipelines. 

 

In general, the tools that have been developed so far have had a greater emphasis on matching 

the more conventional ideas of transcriptome annotation. While this may be good for creating 

results that mirror what has been seen before, this philosophy closes off opportunities to dig 

further into the unknown territory of the transcriptome and especially the non-coding RNA.   

 

Indeed there were many analytical choices that had to be made in order to cope with limitations 

of short read RNA sequencing. Since there was no way of connecting the start of transcription 

with the end of transcription at the transcript level, any alternative transcripts that had similar 

exonic structure to a longer transcript would essentially be lost by assignment of the reads 

originating from those shorter transcripts into the longer transcript model. This was the case with 

early work by GENCODE when annotating the human genome[94][95]. This choice in 

transcriptome assembly meant that there was a bias toward predicting longer transcript models 

with more exons. Also the amount of noise created from short read data make it difficult to 

determine when a single exon transcript model is indeed real or rather just the result of some 

transcriptional or processing noise. These biases created from these limitations of short read data 

are evident in the GENCODE lncRNA study where they report that the predominant number of 

exons for lncRNA is 2 and that there is strong expression correlation between anti-sense lncRNA 

and the protein coding genes they overlap on the other strand. They state the lncRNA seem to 

have fewer exons in general than protein coding genes and yet instead single exon transcripts are 

not identified as the predominant class. Thus these choices have shaped our view of non-coding 

RNA in perhaps an inaccurate way.  

 



 35 

 

  

 

1.3.3 Normalization and 5’-cap selection 

 

One of the major drawbacks to using long read RNA sequencing as compared to short read are 

the cost per read, also referred to as throughput. Especially at the advent of Iso-Seq (the first 

high throughput long read RNA sequencing) the cost per read was orders of magnitude higher 

than a comparable Illumina experiment.  

 

Most RNA sequencing projects fall under what is known as bulk RNA sequencing. This is when a 

sample is comprised of some tissue or other mixture of cell types. Given the heterogeneity of 

cells in these experiments, large differences in the abundance of unique RNA often occur. These 

differential abundances can be caused by either a high or low expression across all cells in the 

sample and/or by the difference between the number of each cell type within the sample. The 

highly expressed genes can make finding lower expressed genes difficult. This is because when 

sequencing for discovery we are essentially applying a random sampling of the original RNA 

library. Thus, more of the reads produced will come from highly expressed genes as compared 

to low expressed genes. In many cases the highly expressed genes make up more than half of 

the RNA library.  

 

Combining gene differential expression with the high cost of long read sequencing creates a 

major challenge for identifying low expressed genes. Given that lncRNA are typically expressed 

at very low levels this means that even though long read RNA sequencing allows for much more 

robust identification of full length RNA, it suffers from not being able to sample lncRNA with 

sufficient efficiency.  

 

Thus in order to address this challenge, a cDNA normalization step can be implemented in 

preparation of the cDNA library prior to sequencing. The objective of cDNA normalization is to 
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create a cDNA library that contains all the unique transcript sequences of the original RNA 

library but with the same relative abundance across all unique transcripts [96]-[97]. This means 

that there is a uniform level of abundance across all unique genes/transcripts. Making the cDNA 

library uniformly distributed maximizes the sampling efficiency during sequencing for 

identifying all transcript sequences present within the original RNA sample. Thus this method 

could theoretically provide significant improvement in the use of long read RNA sequencing for 

the identification of lncRNA.  

 

Another issue pertaining to RNA sequencing in general is the propensity of RNA to degrade 

rapidly[98][99]. Usually this occurs from the 5’ end and runs toward the 3’ end in a linear 

fashion. This phenomenon can be easily observed when looking at mapped short read RNA 

sequencing data where the read coverage across a gene is typically lower at the 5’ end as 

compared to the 3’ end [100][101]. In long read RNA sequencing, this phenomenon is 

manifested as mapped reads that show varying 5’ ends but matching 3’ ends (Figure 1.2).  
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Figure 1.3 : Example of long reads from degraded RNA. The top track shows read coverage 

from short read RNA sequencing. The middle track shows transcript models from the Ensembl 

annotation. The bottom track shows Iso-Seq reads for this genomic locus. The reduction in 

representation on the 5’ end is visible in both the short and long read data. The long read 

data track does not show all reads but rather a representative of each type of read regardless 

of its abundance. 

 

This phenomenon (known as 5’ degradation) is particularly problematic when using long read 

RNA sequencing for three main reasons. The first is that, due to the much lower throughput of 

long read sequencing, there is lower read coverage across the transcriptome that reduces the 

chances of sequencing a full length transcript. In comparison, short read sequencing with higher 

throughput produces much greater coverage per transcript thus increasing the probability of 

sequencing at least one full length RNA. This could result in the improper annotation of a 

truncated transcript model as full length. If the source RNA had been degraded past the start 
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codon, then this would change the coding prediction for the transcript model effectively 

creating an erroneous annotation.  

 

The second reason is, depending on the method of bioinformatic analysis, that even though the 

full-length transcript model was identified, the 5’ degraded models could be classified as 

separate unique transcript models. Thus, the outcome is similar to the first reason but perhaps 

slightly better because the full-length model is at least attained. 

 

The third reason is that essentially all reads produced from degraded RNA are practically 

useless since the primary aim of long read RNA sequencing is for the identification of accurate 

full-length transcript models. Thus, degraded RNA effectively lowers the useful throughput of 

the already low throughput of long read sequencing.  

 

To address this issue, several methods of 5’ cap selection have been developed. In eukaryotes, 

mature RNA are typically modified to have a methylated G at the 5’ end (known as a 5’ cap). 

This modification protects the RNA from rapid degradation once exported to the cytosol. 5’ cap 

selection methods are based on using different strategies for targeting RNA that have the 

methylated G on the 5’ end [102][103][104]. The purpose of this method is to enrich for full 

length RNA that in turn allows for more efficient usage of long read RNA sequencing capacity or 

platforms. 

 

1.4 Bioinformatics 

 

1.4.1 RNA sequencing bioinformatic pipelines 

 

The general pipeline for processing sequencing reads to creating transcriptome annotations 

involves four major steps: read preparation, read mapping, transcriptome assembly, and 

further annotations. However, these steps can vary greatly between processing short read 

versus long read sequencing data. There are also methods for producing transcriptome 
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annotations in the absence of a reference genome assembly[105][106]. Using RNAseq reads to 

produce transcript models without the use of a reference genome is termed de novo 

transcriptome assembly[107][108]. This method is typically used when sequencing a species 

without a genome assembly or with a poorly assembled genome. However, when a good 

genome assembly is available it is almost always preferable to use the primary reference based 

method[109]. This method is also used to explore the parts of the transcriptome that are 

expressed from regions of the genome which are missing from the genome assembly[110].  

 

The first step of any sequencing analysis is to understand the experimental conditions. This 

includes what the objectives of the experiment are and the experimental design. For short read 

sequencing there are different library preparation methods that can be used including the use 

of total RNA, rRNA depleted RNA, and poly-A tail selected RNA. The transcript libraries could be 

prepared to preserve strand information and different fragment sizes can be used. During 

sequencing, there is a selection of read lengths and between sequencing a single end or paired 

ends. All these variables are important to consider when processing the data.  

 

The first step after receiving raw data from a sequencing centre is typically to run a quality 

control check on the reads. This step allows for the identification of the quality drop-off in 

Illumina reads and the presence of adapter sequences that may need to be trimmed from the 

reads. The next step is called trimming and involves the removal of the lower quality ends of 

reads as well as removing adapter sequences[111]. After trimming, the short reads are typically 

ready to be mapped to a reference genome assembly[112][113]. When mapping RNA 

sequencing reads to a reference genome a splice-aware aligner must be used. This basically 

means that the software for aligning the reads to the genome must account for the possibility 

that any given read may represent a region overlapping a splice junction. In these situations 

one half of the read may map thousands of base pairs away from the other half. In some cases 

a read can overlap more than one splice junction making this alignment even more challenging.  
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After mapping, the alignment file is then processed by a transcript assembly tool[114][112]. 

This tool will go through each mapped read and piece them together in the attempt to solve 

the puzzle of what the original RNA sequences looked like[115]. The resulting transcript models 

are represented as regions projected onto the genome assembly. Essentially this means that 

the genome assembly is used as a coordinate system for placing the different features of each 

transcript model.  

 

After transcript assembly, the transcript/gene models can be used for a number of different 

downstream analyses to provide further annotation [42][116][117]. This can include removing 

models that are unlikely to be real, predicting coding potential, predicting open reading frames, 

and matching isoforms to known peptide sequences[118].  

 

For all of these steps in the short read pipeline, there are a wide range of software tools 

developed with a select few attracting the most usage. The most widely used mapper for short 

read RNAseq data is Tophat2 [119] which actually uses the Bowtie [113] aligner but adds on 

splice awareness. The most wide used reference based transcript assembly tools are Cufflinks 

[120] and its successor Stringtie [114].  

 

For long read RNA sequencing data processing the same general principles apply but there are 

differences which require special approaches and methods.  

 

During the read preparation phase, adapters and poly-A tails are removed from the reads so 

that the remaining sequence represents the RNA sequence as it relates to the genome. 

However, in the case of Iso-Seq, there are some additional steps that occur before the trimming 

step and some optional steps that occur after. For Iso-Seq, the data provided by the sequencing 

centre are called subreads. The subreads represent each pass through the template from their 

circular sequencing. In PacBio’s terminology the full read is called a polymerase read and each 

pass is called a subread. Since each polymerase read typically contains multiple subreads, the 

next step of processing uses these multiple passes of the same template to do an intra-read 
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error correction called circular consensus sequence (CCS). During CCS some reads can be 

filtered out based on the quality scores and number of passes. After CCS, the CS reads are then 

trimmed for adapters and poly-A tails. However, during this process the reads are checked for 

artificial concatemers that are discarded. The reads are also oriented 5’ to 3’ during this step. 

After trimming, the reads can either be mapped directly to the reference genome or they can 

be used for another round of error correction using inter-read sequence alignment. This step is 

known as Cluster/Polish. After mapping, we see a big difference in approach compared to short 

read methods. Since the reads are ideally supposed to represent full length RNA, the goal is not 

so much an assembly as it is a collapsing of redundant transcript models and some other data 

filtering. During the collapsing step some algorithms can be applied to remove transcript 

models that are likely to be erroneous. This includes removing models arising from 

transcriptional noise, models derived from degraded RNA, models from truncated cDNA, and 

models with incorrect splice junction coordinates. Since long read technologies produce reads 

with higher error rates, there is more noise around identification of the correct splice junctions. 

Incorrect splice junction predictions can cause changes to the open reading frame that have a 

significant impact on downstream analyses. Thus even after all these filtering steps, there is still 

a need to build in awareness of these issues into downstream methods.  

 

1.4.2 Long non-coding RNA detection methods 

 

Prediction of lncRNA ultimately comes down to answering two questions: is the transcript 

model real and does it produce a protein? With respect to the first question, this strategy is 

usually to use different pieces of evidence to filter out transcript models that look like they may 

be the result of some noise in the full sequencing pipeline. In short read pipelines, the 

prevailing philosophy for removing noise models is to focus on read coverage and bias toward 

multi-exonic models. The reasoning for this is that noise is expected to have a lower read 

coverage than real transcript models and splice junction mapping is unlikely to occur for 

transcriptional noise. This mentality is also the consequence of short read sequencing 

limitations. Given that short reads have a tendency to multi-map across the genome and most 
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reads do not contain a splice junction, there is a tendency for short read data to produce a large 

amount of low coverage mono-exonic models. However, this strategy also means that there is a 

substantial bias against the identification of lowly expressed mono-exonic lncRNA. Even before 

the transcript models are assessed for their coding potential, many possibly real lncRNA could 

be removed from the dataset. 

 

All lncRNA prediction tools are in essence trying to answer the second question of whether or 

not a transcript model represents an mRNA. Thus, all these methods are simply looking for any 

evidence that the transcript in question has coding potential. There are four main ways of 

identifying coding potential: directly matching the sequence of a transcript to a known gene or 

transcript, matching the transcript sequence to a known peptide sequence, identifying k-mer 

patterns that occur frequently in coding genes, and identifying open reading frames. At the 

core of these methods is the idea that if the transcript is protein coding it will have some 

similarity to known protein coding genes. However, a major issue that can complicate this 

assumption is the presence of an incorrectly mapped splice junction that in turn could cause a 

frame shift in the open reading frame. Depending on where this frameshift occurs, a real 

protein-coding transcript could appear to be non-coding due to the disruption of the open 

reading frame. Given the relatively low error rate of short reads and their greater read coverage 

for splice junctions, frame shifts from erroneous splice junction predictions are not as great a 

concern. The lower throughput of long reads leading to lower coverage per gene and the higher 

error rate, erroneous frame shifts are far more abundant in the long read based transcript 

models. 

 

On the other hand, short read transcript models suffer from issues with exon chaining and 

determining transcript start and end sites. These limitations result in models that often 

represent a conglomeration of features that belong to different transcripts and as previously 

mentioned, these issues can cause a significant bias in the types of lncRNA that can be 

identified.  
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While both forms of sequencing have their strengths and weaknesses for identifying lncRNA, 

there are a number of ways that splice junction errors can be dealt with and of course these 

types of errors do not affect mono-exonic models which are more easily identified from long 

read data. Thus, long read RNA sequencing data provides unique advantages over short read 

for the identification of novel lncRNA.  

 

1.5 Objectives 

 

The objectives for this piece of work can be divided into 4 aspects: investigate new technologies 

for lncRNA discovery, apply this technology to the chicken transcriptome, develop pipeline and 

software for lncRNA discovery in chicken, identify ways to annotate predicted novel lncRNA 

genes.  

 

• Investigate new technologies for lncRNA discovery 

o To understand how PacBio Iso-Seq sequencing works both from a biochemical 

perspective and a data analysis perspective. 

• Apply this technology to the chicken transcriptome 

o To understand how PacBio Iso-Seq can be used for the annotation of the chicken 

transcriptome. This includes what problems can be solved with this new type of 

sequencing data and what issues arise.  

• Develop pipeline and software for lncRNA discovery in chicken 

o To create or establish software and pipelines that allow for the processing from 

raw Iso-Seq sequencing reads to a transcriptome annotation.  

• Identify ways to annotate predicted novel lncRNA genes 

o To identify different methods for using the Iso-Seq based annotations along with 
other sources of information for the identification of novel lncRNA. This includes 
finding ways to further classify lncRNA and  establish a foundation for future 
work.  
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Chapter 2: Paper - Normalized long read RNA sequencing in chicken 

reveals transcriptome complexity similar to human 

 

2.1 Introduction and aims 

 

In this chapter I explore the use of long read RNA sequencing along with different cDNA library 

preparation methods for annotation the chicken transcriptome. I analysed Pacific Biosciences 

Iso-Seq sequencing data produced from chicken embryo and chicken brain. I looked at the 

effects of cDNA normalization on transcriptome sampling as well as the use of 5’ cap selection 

for identifying 5’ intact transcripts sequences. I also performed some analyses for identifying 

lncRNA and comparing the predicted lncRNA to the predicted coding genes.  

 

In this study, all work was performed by myself except as further specified: sample collection 

and preparation were performed by Ian R. Paton, Lel Eory contributed to the short read data 

processing, and sequencing was performed by GATC Biotech (Konstanz, Germany). 

 

 

2.2 Research Paper 

 

This research was published as “Normalized long read RNA sequencing in chicken reveals 

transcriptome complexity similar to human” in BMC Genomics [121]. BMC Genomics does not 

require authors to obtain permission to include these papers in their thesis, provided the 

original work is properly cited. 
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Normalized long read RNA sequencing in
chicken reveals transcriptome complexity
similar to human
Richard I. Kuo1 , Elizabeth Tseng2, Lel Eory1, Ian R. Paton1, Alan L. Archibald1 and David W. Burt1,3*

Abstract

Background: Despite the significance of chicken as a model organism, our understanding of the chicken
transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due
to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single
molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap
selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.

Results: We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq.
5′ cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq
sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these,
more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class
that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events
revealed striking similarities between the chicken and human transcriptomes while also providing explanations for
previously observed genomic differences.

Conclusions: Our results indicate that the chicken transcriptome is similar in complexity compared to human, and
provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to
rapidly expand our knowledge of transcriptomics.

Keywords: Iso-Seq, PacBio, Single molecule long read sequencing, Transcriptome sequencing, RNAseq, Chicken, Avian,
Gallus gallus, Genome annotation, Coding RNA, Non-coding RNA

Background
Transcriptome annotation is crucial for a wide array of
biological research areas, including genomics, proteo-
mics, epigenetics, immunology, and phylogenomics [1].
The identification of the full repertoire of transcribed
elements provides information on the functional roles
and relationships of genomic loci which in turn can be
compared to understand a vast array of biological mech-
anisms. However, due to the complexity of transcript
splicing and the limitations of previous technologies, re-
searchers had to choose between low-throughput, costly
methods to generate accurate full-length transcript

models, such as cDNA cloning [2] or high-throughput,
cheaper methods to generate imprecise transcript
models, such as short read RNA sequencing [3, 4]. The
current status of chicken annotation represents a prime
example of this trade off.
The Ensembl chicken annotation (release 83), built

primarily on short read RNAseq and comparative data,
contains 17,108 genes with 17,954 transcripts [5]. These
numbers stand out for two major reasons. The first rea-
son is that the number of genes is far lower than that
found for other vertebrate organisms, for example, the
Ensembl (release 83) human annotation contains 60,675
genes (including coding and non-coding genes). The
difference in the number of genes annotated in the
chicken and human genomes is heavily influenced by
lack of long non-coding gene predictions in the chicken
annotation. While it can be argued that this may
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represent differences between mammals and birds, evi-
dence that many more genes exist in birds can be seen
in the cDNA support track on Ensembl. The second rea-
son is that the current chicken annotation is almost en-
tirely comprised of protein coding genes for which a
single transcript is described. Again this is contrary to
what we know from other vertebrates with the human
annotation (Ensembl release 83) containing 199,184
transcripts (i.e. an average of 3.3 transcripts per
gene). These discrepancies highlight major limitations
to using short read RNA sequencing and comparative
data for building gene and transcript models.
With short read RNAseq data there are three major

transcription characteristics that are difficult to deter-
mine [6]: (i) transcript start sites (TSS) and transcript
termination sites (TTS), (ii) exon chaining, and (iii)
transcriptional noise. If multiple TSS or TTS exist for a
transcribed locus, then interior TSS and TTS can go un-
detected due to combinations of inconsistent read cover-
age, overlapping exons, and overlapping splice junctions.
Thus for any transcript model produced via short read
data, we often cannot determine if there are alternative
TSS and TTS which have not been detected. Similarly,
the process of chaining exons and splice junctions to-
gether to reconstruct full-length transcript sequences
can be problematic. Since a single short read cannot
usually span all splice junctions within a multiple splice
junction transcript, transcript assemblers must predict
which exons are linked to reconstruct the full length se-
quence. However, non-uniform transcript coverage can
obscure the underlying model by suggesting different
splicing events. Even with uniform read coverage, there
are scenarios where the problem of identifying the cor-
rect exon chaining model is intractable (Fig. 1). The
third issue with short read RNAseq data arises from
transcriptional noise. Transcriptional noise becomes
problematic when it occurs within intronic or intergenic
regions. The origin of these reads is unclear and tran-
script assemblers have taken different approaches to
minimizing the influence of transcriptional noise [7–9].
Despite these efforts, there are some clear implications

of the phenomena. For example, due to the possible oc-
currence of transcriptional noise within intronic regions,
it is difficult to determine if a transcript model should
include a retained intron or not. When transcriptional
noise occurs in intergenic regions it can be erroneously
predicted as a gene or it can be fused with a neighbour-
ing gene. When combining these three issues, the uncer-
tainty of short read assembled transcript models
becomes restrictive.
The annotation of most vertebrate genome sequences,

except human and mouse, has been hampered by the
lack of full length cDNA/transcript sequences for the
species of interest and has instead had to largely rely
upon Expressed Sequence Tags (ESTs) and their abun-
dant successors, short read RNA-seq. As a result, the
complexity of transcription of the chicken genome is un-
derrepresented in the current genome annotation and
constrains some analyses. For example, many differential
expression analysis experiments rely on the annota-
tion to define transcription events. Since a large num-
ber of alternative transcript models are likely missing
in many vertebrate annotations, alternative transcrip-
tion dependent mechanisms may have been unknowingly
omitted from these studies.
While these issues are common in short read RNAseq

data, they are practically eliminated with long read
sequencing where the full-length of a transcript may be
sequenced in a single read. With full-length sequencing,
TSS and TTS can be easily defined since the reads span
the entire length of the transcript. Similarly, predicting
exon chaining from probabilistic models is not neces-
sary. Transcriptional noise is reduced and in the cases
where it does occur, it is more easily identified.
With the recent development of Pacific Biosciences

(PacBio) SMRT Iso-Seq sequencing [10], it is now pos-
sible to attain high throughput, full-length transcript se-
quencing. While this technology has huge potential for
transcriptome annotation, it still requires development
for both library preparation and data analyses. Iso-Seq
has been used in previous studies to identify transcript
sequences [11–14], however, there are two main issues

Fig. 1 Short read transcript modelling problem. Example of transcript model that is impossible to resolve using short read data. Given the read
support in yellow, it is impossible to determine which splicing model is real
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with these earlier approaches. The first issue is that
normalization of the RNA libraries was not performed,
thus many low abundance transcripts may not have been
sequenced due to the higher probability for attaining
reads from high abundance transcripts. The second issue
is that transcription start sites could not be confirmed
due library preparation protocols lacking 5′-cap capture,
thus the identified transcript sequences are not guaran-
teed to be full-length.
To address these concerns, we generated PacBio

SMRT Iso-Seq sequencing data from chicken brain and
embryo RNA. Both RNA libraries were normalized to
reduce over-represented transcripts, however we only
performed 5′ cap selection on the embryo library. We
also performed Illumina short read RNA sequencing on
20 tissue types to both verify transcribed loci and com-
pare transcript models.
We identified important considerations for Iso-Seq se-

quencing and data analyses. Using this understanding of
the data limitations, we surveyed the chicken transcrip-
tome to discover transcriptional complexity similar to
the human annotation. This complexity is comprised of
the type and number of alternative transcription events,
previously unannotated biotypes in chicken, and tran-
scriptional sequence variance between species. We have
also identified two classes of long non-coding RNA that
are under-represented in all mammalian annotations.
Our results provide guidance for future Iso-Seq studies

as well as insight into chicken and all vertebrate tran-
scriptomes. The data from this study were submitted to
the European Nucleotide Archive (ENA) and used by
Ensembl for their future chicken annotations.

Results
Processing PacBio data to create a high quality
non-redundant PacBio transcriptome
Strategy for processing of PacBio Iso-Seq reads
Analysing PacBio Iso-Seq data requires a very different
approach as compared to short read RNAseq data. Initial
processing of this type of data focuses on reducing the
final error rate of the acquired transcript sequences.
While the raw error rate of PacBio sequencing is around
11-14% [10], the use of circular sequencing and compu-
tational error correction can greatly increase the final
quality score. The software for achieving this is still in
an early stage of development and evolving rapidly. We
have adopted methodology supported by the PacBio de-
velopment team known as the Iso-Seq pipeline, also
known as the pbtranscript-tofu analysis suite [15], and
incorporated it into our own pipeline (Fig. 2). The
methods used to error correct Iso-Seq reads can have
major implications for the limitations of downstream
analyses. We have identified some major considerations
when processing this type of data.

Raw data error correction
We attained 805,606 reads-of-insert (ROIs) from the
brain and 247,626 ROIs from the embryo libraries. The
lower yield for the embryo project was a result of issues
with loading SMRT cells with a size selection of lower
than 1-kb. Graphs for the read lengths for each size se-
lection are available in additional files (see Additional file
1). Since every ROI sequence should begin with the

Fig. 2 Full pipeline for processing PacBio data
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adapter sequence, we calculated the quality scores for
each ROI by aligning the known adapter sequence to the
adapter sequence within each ROI sequence and dividing
the number of matches in the alignment by the length of
the adapter sequence (see Methods). ROI average quality
scores were 96.1% for brain 1-kb, 95.4% for brain 2-kb,
84.7% for embryo 0.8-kb, and 85.9% for embryo 2-kb. We
ran pbtranscript-tofu pbclassify [15] with the ROIs as
input to attain 515,175 full-length, non-chimeric (FLNC)
transcripts for brain and 138,266 FLNC transcripts for
embryo. After a further round of error correction using
Iso-Seq iterative clustering for error correction (ICE)
tool, from the pbtranscript-tofu analysis suite [15], we
attained 211,292 transcripts for brain and 14,776 tran-
scripts for embryo.
We mapped the resulting transcripts sequences to the

Gallus_gallus_4 genome assembly using GMAP [16].
199,560 transcripts from brain and 11,881 transcripts
from embryo mapped to this genome assembly. This left
11,732 brain and 3028 embryo transcripts unmapped.
The unmapped transcripts are most likely a combination
of transcripts which should map to the unassembled re-
gions of the genome and transcripts which contain large
errors missed in the previous filtering steps.

Collapsing transcript models to reduce redundancy
In previous studies [11–14], no 5′ cap selection was per-
formed, thus possible 5′ degradation was ignored. In
order to understand if the absence of 5′-cap selection in
the library preparation would result in significant loss of
TSS in our final transcript models, we collapsed the
mapped transcript sequences from both the brain and
embryo libraries using two methods from the PacBio
pbtranscript-tofu analysis suite [15]. Both methods as-
sume that the 3′ end is intact, thus any transcript models
with unique TTS are not collapsed. In the first method,
termed Transcription Start Site Collapse (TSSC) (Fig. 3),
transcripts with identical splice junctions and 3′-ends but

varying TSS are collapsed so that only the longest tran-
script is kept. While this method is inappropriate for
libraries which were not 5′-cap selected, we still use the
results from TSSC as a comparison. The second method,
termed Exon Cascade Collapse (ECC) (Fig. 3), is identical
to the first except that transcripts that are missing 5′ end
exons are included in the collapsing group. ECC is a more
aggressive form of collapsing than TSSC and all tran-
scripts that would be collapsed in TSSC would also be col-
lapsed in ECC.
We looked at the ratio of the pre-collapsed transcripts

to the collapsed transcript for each library from each
collapsing method as an indicator of 5′-sequence loss.
Since there should be no 5′ sequence loss for the
embryo library, the ratio of pre-collapsed to collapsed
transcripts in the embryo library is used as a baseline for
this comparison.
From 199,560 brain transcripts after running ICE, we

attained 80,814 TSSC and 55,932 ECC models. From
11,881 embryo transcripts after running ICE, we attained
9368 TSSC and 8468 ECC models. Thus the number of
transcript models drop by 59.5 and 72.0% for TSSC and
ECC methods with the brain data, whereas the embryo
transcript number only decreased by 21.2 and 28.7%, re-
spectively. It is possible that these differences are caused
by real biological differences in transcription start sites,
however, 5′-sequence loss seems more likely and should
not be ignored in the downstream analyses.
To reduce redundancy in our dataset we used the

TSSC method for the embryo sequences and ECC for
the brain sequences. This resulted in 55,932 transcripts
from brain and 9368 transcripts from embryo after col-
lapsing. Although it might seem strange for there to be a
significant amount of collapsing within the embryo data
there are biological reasons for this to occur. For in-
stance, TSS are known to be variable so that otherwise
identical transcripts can have different TSS, as shown by
the evidence of wide promoter regions from cap analysis

Fig. 3 Iso-Seq mapped read collapsing methods. Two methods for collapsing PacBio mapped sequences to remove redundant models:
Transcription Start Site Collapse (TSSC) and Exon Cascade Collapse (ECC). ECC is more aggressive in collapsing
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of gene expression (CAGE) studies [17]. While it is pos-
sible that using the TSSC method for the embryo data
can result in the loss of unique transcript models that
represent different TSS, due to the low coverage (com-
pared to short read RNAseq data) for each transcript, it
is impossible to identify whether differences in the ob-
served TSS are a result of a single wide promoter region
or from multiple distinct promoter regions. For the
purposes of this study, we chose to follow a conservative
approach which meant removing possibly redundant in-
formation at the cost of filtering out some real biological
information.

Filtering out low quality models using post-mapping quality
estimates
Mapping the transcript sequences to the genome can be
seen as a final error correction step. The differences be-
tween the pre-mapped and post-mapped sequences pro-
vide an indication of the error rate for the sequences
after all prior error correction and allows for the filtering
of erroneous models that are a result of poor mapping.
Post-mapped sequences are defined by using the gen-
omic nucleotides for the predicted genomic coordinates
of the mapped transcripts. True sequence variation can
contribute to sequence differences, however the primary
purpose of this transcriptome annotation is to identify
models based on the reference genome. For each tran-
script sequence, we aligned the pre-mapped sequence
with the post-mapped sequence and counted the num-
ber of mismatches within the alignment. We calculated
the error rate by dividing the number of mismatches by
the length of the transcript. Using this method, we se-
lected for transcript sequences with less than 10% error
rate. This resulted in 55,315 brain transcripts and 9206
embryo transcripts, greater than 98% retention for both
sample types (Fig. 4a).
While a 10% error rate may seem high in comparison

to short read data, the distribution of transcripts based
on quality scores/error rates shows that the mode is 99%
quality score. In addition, we are able to attain unique
mappings due to the length of the sequences. Thus while
the error rate makes this data unsuitable for polymorph-
ism detection, it is low enough to provide accurate tran-
script models. There are several possible explanations
for the occurrence of transcripts that did not meet our
10% error rate threshold. The observed discrepancy
between the mapped and pre-mapped sequences could
have resulted from sequencing error, errors in the
reference genome assembly, and/or biological differences
due to the difference between the genomes of the
reference assembly specimen (red jungle fowl) and the
chickens sampled in this project. Due to the ambiguity
of the source of error, we chose to remove these se-
quences from our downstream analyses. Previous studies

did not report using this method of error correction
which may indicate that some of their transcript models
contained erroneous models [13, 14].

Identifying possible transcript truncation due to internal
poly-A regions
Poly-A tail selection is a commonly used method of
attaining transcript sequences with intact 3′-ends [11, 12].
However, internal stretches of A’s can bind to oligo-dT
primers thus resulting in a 3′ truncated transcript se-
quence. In short read RNAseq sequencing this usually
does not pose a large problem because many inserts will
be sequenced and the farthest downstream 3′-end will
usually be selected as the TTS. However, with single mol-
ecule long read sequencing, we make the assumption that
each sequence has an intact 3′-end. To assess whether
this is an appropriate assumption, we investigated the pos-
sible rate of occurrence of poly-A truncation by looking at
the 3′-genomic sequence of each predicted transcript.
The primers used for poly-A tail selection were designed
to bind to a minimum of a stretch of 20 A’s. Due to the
prevalence of insertion/deletion sequencing errors in
PacBio sequencing we used a 30 bp window. Thus for each
PacBio transcript, we extracted the 30 bp downstream gen-
omic sequence and looked for stretches of A’s. If a PacBio
transcript model were a result of internal poly-A trunca-
tion, we should see a stretch of at least 20 A’s within this re-
gion. We allowed one mismatch within a string of A’s and
used the longest string of A’s for our calculations. From the
64,277 identified transcripts, only 700 had a stretch of at
least 20 A’s immediately following their putative TTS in the
genome sequence. Thus, around 1.1% of the deduced tran-
scripts may be artificially truncated (Fig. 4b).
We also looked at the length of poly-A’s within the re-

spective ROI’s as a comparison (The poly-A tails within
the ROI sequences are removed during the pbtranscript-
tofu pbclassify error correction step). If the length of poly-
A’s in the ROI’s (Fig. 4c) are much longer than the length
of internal poly-A’s (Fig. 4b) then the prevalence of in-
ternal poly-A truncation is likely to be minimal. The ROI’s
have an average of 39.6 consecutive A bases in their poly-
A tails and a peak at about 27 bp (Fig. 4c). This matches a
previous study that found a peak of TAIL-seq tags with
poly-A tails of about 20 nt in length [18]. Due to the dom-
inance of true poly-A tails at around 27 bp it is non-trivial
to differentiate transcripts with real poly-A tails from
those that may be truncated due to internal poly-A
stretches. However, since only a maximum of 1.1% of the
transcript models could have internal poly-A truncation,
this issue seems to have a limited effect on Iso-Seq data.
This methodology for identifying possibly truncated tran-
scripts can be used in future Iso-Seq studies to flag and/or
filter transcript models.
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Verifying canonical splice sites
We looked at splice site donor and acceptor intronic dinu-
cleotides to see if they conformed to canonical observations

[19]. The GT-AG donor-acceptor sequence was used by
97.0% of brain transcripts and 98.0% of embryo transcripts,
both very similar to the reported 98.7% in mammals [19]

Fig. 4 Analyses of PacBio sequencing a Quality scores of PacBio sequence before mapping to the genome. b Length of genomic Poly A’s downstream
of PacBio mapped models. c Length of Poly A tails in ROI sequences. d Intronic Donor/Acceptor sites. e Number of exons per transcript for coding and
lncRNA transcripts. f NMD to coding transcript ratio per chromosome in PacBio transcriptome
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(Fig. 4d). While GMAP does have a bias for mapping splice
sites to conform to the canonical GT-AG scenario, the
similarity between the canonical splice site percentages sug-
gests that the splice site predictions are generally accurate.

Merging the transcriptomes from each sample
We merged the brain and embryo transcripts to form
a unified transcriptome annotation to be used for fur-
ther analyses. Merging was performed with the cri-
teria that transcripts were merged if they had the
same exon structures with less than a 10-bp differ-
ence for each exon start/end and less than 20-bp dif-
ference for the transcript start/end. We allowed for
slight differences in exon start/end and transcript
start/end to account for possible mapping errors as a
result of insertion/deletion sequencing errors which
are the most prevalent in Iso-Seq sequencing. When
merging, the transcript with the earlier start site was
used as the new representative transcript. This mer-
ging process resulted in a total of 64,277 distinct tran-
scripts. Only 488 transcripts between the two sets were
merged which translates to 244 shared transcripts. Of the
244 shared transcripts, 176 had the brain transcript as the
new representative model, meaning that for this set, the
brain transcripts had an earlier TSS.
We grouped the transcripts into putative gene

models by clustering transcripts that had at least a
one nucleotide overlap. This resulted in 29,013 puta-
tive genes which we will refer to simply as genes. Of
these, 4579 genes had transcripts from both brain
and embryo libraries with only 621 genes having only
transcripts from embryo libraries. This indicates that
while most genes are transcribed across sample types,
the resulting transcripts differ. Thus providing more
support for the observation that alternative transcrip-
tion plays a significant role in tissue differentiation [20].
However, due to the lack of 5′ cap selection for the brain
dataset, there may be more shared transcripts than we ob-
served simply because we lacked the 5′ end of the brain
transcripts. Since short read data is generally inaccurate
with respect to isoform level quantification, this biological
phenomenon would be very difficult to detect without
long read sequencing.

Estimating gene numbers for unmapped transcripts
Since we were unable to use genomic locations to
group the unmapped transcripts, we instead used the
BLASR [21] mapper to find hits between the unmapped
reads. Reads were grouped if they had same stranded
BLASR hits. 11,732 unmapped reads from the brain
and 3028 unmapped reads from the embryo were clus-
tered into 8812 groups. This indicates a significant
number of genes that are not currently represented in

the Chicken annotations due to gaps in the genome as-
sembly. We excluded these unmapped transcripts from
further analyses due to the uncertainty of the sequence
quality and the effects that would have on the predic-
tion methods we used.

Comparison with previous chicken PacBio transcriptome
sequencing studies
In order to estimate the benefit of library normalization
with respect to the efficiency of transcriptome coverage
for each SMRT cell used, we compared our data to a pre-
vious study [11] where PacBio Iso-Seq long read sequen-
cing was performed on RNA from chicken embryonic
hearts. The embryonic heart study yielded 1,566,465 reads
that mapped to the Gal_gal_4 genome assembly. While
the exact number of unique transcripts was not reported,
9221 novel isoforms were identified. We estimated the
maximum number of unique transcripts that they could
have acquired to be 31,081, which was calculated by add-
ing their number for novel isoforms with the number of
publicly annotated isoforms reported in their paper,
21,860 (16,743 from Ensembl and 5117 from RefSeq). Div-
iding their total possible number of unique transcripts by
the number of reads they produced shows that, at most,
only 2% of their reads were unique. While out of 482,325
mapped reads from our brain library, we found 55,315
(11.5%) unique transcripts. Thus the normalization
method appears to have provided a transcriptome cover-
age efficiency of more than 5 times that of the previous
study [11]. This means that for every SMRT cell used with
the normalization method, 5 SMRT cells would be re-
quired without normalization to achieve the same amount
of transcriptome coverage.
This transcriptome coverage efficiency calculation as-

sumes that the previous study did not achieve full coverage
of the transcriptome for their sample. While it is possible
that they reached full coverage of their sample transcrip-
tome, it seems unlikely since we found evidence for 44,898
transcripts from our chicken heart short read RNAseq data.

Exploring the PacBio transcriptome of the chicken
reference genome
Protein coding and noncoding RNA genes and transcripts
We used three methods to find evidence for protein
coding potential: Blastx [22] with the Uniprot Uniref 90
protein database [23], the Coding Potential Calculator
(CPC) software [24], and the Coding Potential Assess-
ment Tool (CPAT) [25]. Combining the results from the
three methods, we found 43,738 putative protein coding
transcripts from 14,421 genes and 20,539 putative non-
coding RNA transcripts from 17,178 genes (Table 1).
Within the noncoding RNAs (ncRNAs), we found that
23 transcripts were shorter than 200 bp which means
the rest were classified as long noncoding RNAs.
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We noticed a difference in the number of exons be-
tween coding and noncoding transcripts. There were
14,831 noncoding single exon transcripts (72.2%) and
only 5533 protein coding single exon transcripts (12.7%)
(Fig. 4e). Thus within this dataset single exon transcripts
make up the majority of noncoding RNAs.
We classified the lncRNAs by positional relationship to

the predicted protein coding transcripts. There were
12,999 long intergenic noncoding RNAs (lincRNAs), 2675
antisense lncRNA, and 4967 sense overlapping lncRNA.

Nonsense mediated decay products
Nonsense mediated decay (NMD) products are tran-
scribed alternative splice variants from protein coding
genes that are not translated into proteins [26–28].
NMD products have similar sequences to protein coding
transcripts but typically have been spliced so that there
is an early stop codon [27]. We used the NMD predic-
tion rules outlined in NMD studies [27, 29–31], which
state that a premature termination-translation codon oc-
curring at least 50-55 base pairs upstream of a splice
junction provides strong evidence for NMD. Using this
criteria, we identified 4735 putative NMD transcript
candidates within our PacBio data (Table 1).
Although Ensembl did not make NMD predictions for

the Ensembl (release 83) chicken annotation, they did
have predictions for the human and mouse annotations.
We ran our NMD method on Ensembl (release 83) hu-
man and mouse annotations to compare our methods.
Out of 13,401 Ensembl human NMD transcripts, 13,263
were predicted to be NMD using our method (99%
agreement). From our NMD predictions, out of 79,901
Ensembl annotated human protein coding transcripts,
only 909 were predicted to be NMD which equates to a
false discovery rate (FDR) of 6.4%. Similarly for 5229
NMD transcripts in the mouse annotation, 5152 were
predicted to be NMD using our method (99% agree-
ment). Out of 50,706 Ensembl mouse protein coding
transcripts, we predicted only 341 transcripts to be
NMD which equates to an FDR of 6.2%.
When overlapping the PacBio NMD transcripts with

the Ensembl annotation, we found that 4137 NMD tran-
scripts overlapped with 2517 Ensembl genes. We looked

at the ratio of the number of NMD to coding for both
gene level and transcript level per chromosome and
found that all chromosomes had a ratio at gene level be-
tween 0.16 and 0.29 (Fig. 4f ). We ran the same analysis
on the Ensembl (release 83) human and mouse annota-
tions and found similar ratios ranging from 0.12-0.5 and
0.03-0.26 respectively.

Identification and classification of antisense transcripts
In the chicken PacBio transcriptome, there are 13,873
transcripts that are exonic antisense overlapping to at
least one transcript and 6446 genes that are antisense to
at least one gene. We looked at the numbers of coding
and noncoding transcripts with respect to these anti-
sense transcripts and found that there were 7107 tran-
scripts involved in a protein coding to noncoding
antisense overlap, 4765 transcripts involved in protein
coding to protein coding antisense overlap and 2001
transcripts for noncoding to noncoding antisense over-
laps (Table 1). When converting these to gene antisense
overlap pairs we found 1571 protein to noncoding gene
pairs, 1329 protein coding to protein coding gene pairs
and 1036 noncoding to noncoding gene pairs.
Looking at intronic antisense overlap, where transcripts

have at least one exon that overlaps with the intron of an
antisense transcript, we found 2139 transcripts and 1115
genes with at least one antisense intronic overlap (Table 1).
When considering coding predictions we found 354 pro-
tein coding to noncoding, 298 protein coding to protein
coding, and 140 noncoding to noncoding gene pairs.

Transcriptional complexity in the chicken genome
Due to the large number of unique transcripts that were
identified, we were able to make a general assessment of
transcriptional complexity in the chicken genome. We
looked at the ratio of transcripts to genes, retained in-
trons, skipped exons, alternative exon starts/ends, alter-
native TSS and TTS, and single exon transcripts.
We found a ratio of 2.22 for transcripts to genes. This

low number is due to the abundance (19,120 genes of
which 13,265 are lncRNA genes) of genes with single
transcripts many of which are single exon genes. If these
single transcript genes are removed then the ratio in-
creases to 4.56 transcripts to genes (Fig. 5a). These num-
bers are likely an underestimation as we have only
characterised two, albeit transcriptionally complex, tis-
sue types and some lowly expressed transcripts may have
been missed in our brain and embryo libraries.
For assessing alternative TSS we only used the tran-

script sequences from the embryo library since this li-
brary had 5′-cap selection and therefore should have
intact 5′-sequences. We removed all genes with only
one representative transcript since these would by de-
fault have only one TSS. There were 2037 genes that

Table 1 Classification of biotypes for PacBio transcriptome

# of Transcripts Biotype

43,738 Coding RNA

20,516 LncRNA

23 Short ncRNA

4735 NMD transcript

13,873 Antisense Exonic

2139 Antisense Intronic
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matched these criteria and only 73 had only one TSS.
Thus 96.4% of these genes had multiple TSS. The high rate
of multiple TSS genes is presumed to be a combination of
transcription factor binding wobble and alternative

transcription start exons (TSE). If we ignore TSS caused
by wobble and only look at TSE, 594 genes have a
single TSE which means 70.8% of these genes have
multiple starting exons.

Ensembl

Pacbio

TGEA

Bursa TGEA Read Coverage

DPAGT1 H2AFX

a d

e

f

b

c

Retained Intron (RI)

Skipped Exon (SE)

Comparison Transcript

Alternative TSS

Alternative TSE

Alternative TTS

Alternative TTE

Alt. Exon Start (AES)

Alt. Exon End (AEE)

Fig. 5 Alternative splicing. a Comparison of number of alternative transcripts per gene between Ensembl annotations and PacBio transcriptome.
b Classifications for alternative transcripts. c Comparison of rate of occurrence for the different classes of alternative transcripts between Ensembl
human, mouse, and the chicken PacBio Transcriptome. Abbreviations for x-axis labels explained in Fig. 5b. d Comparison between STSE and MT
genes for TGEA transcriptome. e Example of overhang event. f Comparison of the number genes and trranscripts for Ensembl, PacBio and TGEA
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For TTS we use both brain and embryo transcript se-
quences since both libraries had been selected for poly-
A tails. Again all single transcript genes were removed
which resulted in 9893 genes. Only 801 genes had a sin-
gle TTS which means that 91.9% had multiple TTS.
However, if we look at alternative transcription termin-
ation exons (TTE), we find that 2365 genes have a single
TTE which means 76.1% have multiple TTE.
We also looked at occurrences of retained introns and

skipped exons within both brain and embryo transcripts
using only multi-transcript genes. We define retained
introns as exons which overlap an entire intron (Fig. 5b)
from another transcript. There are 3429 multi-
transcript genes which have retained introns which
equates to a rate of 34.7%. We define skipped exons as
exons which are completely overlapped by an intron in
another transcript (Fig. 5c). There were 4939 genes
with at least one occurrence of skipped exons which
equates to a rate of 49.9%.
We looked at alternative exon start (AES) and ends

(AEE). For this set we used both brain and embryo tran-
scripts but only assessed internal exons so that we did
not include TSE and TTE. We also excluded retained in-
tron exons from this set. There were 8006 genes with no
AES which equates to a rate of 19.1%. There were 7952
genes with no AEE which equates to a rate of 19.6%. So
the rates of AES and AEE are quite low as compared to
other alternative splicing events.
We were interested to see if there were any alterna-

tive splicing differences between protein coding and
lncRNA genes. Out of 14,421 protein coding genes,
6597 had only one transcript which gives a multi-
transcript rate of 54.3%. Out of 17,178 lncRNA genes,
15,162 had only one transcript which gives a multi-
transcript rate of 11.7%. Thus lncRNA genes are
much less likely to contain alternative transcripts. We
also noticed that lncRNA transcripts were much more
likely to have only one exon. Out of 20,539 lncRNA
transcripts, 14,831 contained only a single exon.
Whereas, out of 43,738 protein coding transcripts,
there were only 5533 single exon transcripts. LncRNA
transcripts had a rate of 72.2% for single exon tran-
scripts as compared to 12.7% for protein coding tran-
scripts. When adjusting the multi-transcript rate for
only multiple exon genes, there is a rate of 67.0 and
37.0% for coding and lncRNA genes respectively.
Thus even after accounting for the high number of
lncRNA single exon genes, coding genes are more
likely to have alternative transcription.

Comparison of transcriptome assemblies derived from short
and long read RNA sequencing data
We created a tissue gene expression atlas (TGEA) de-
rived from the assembly of short read RNAseq data of

20 tissue types from J-line layer chickens (Table 2) to
compare and independently validate the PacBio tran-
scriptome. We merged the identified transcripts from
each short read RNAseq tissue dataset into a single tran-
scriptome annotation to create the TGEA.
The TGEA transcriptome predicts 78,351 genes

with 190,474 transcripts. Thus the TGEA has 2.7
times the number of genes and 2.96 times the num-
ber of transcripts as compared to the PacBio tran-
scriptome. While this difference is most likely
explained by the inclusion of many more tissue types
in the TGEA as compared to the PacBio transcrip-
tome, there are also some fundamental differences in
the proportion of multiple transcript and single tran-
script single exon (STSE) genes (Fig. 5d). When only
comparing multiple transcript genes, the PacBio tran-
scriptome has 9893 genes while the TGEA transcrip-
tome has 14,220 genes. However, for STSE genes,
PacBio has 13,824 genes while TGEA has 60,576
genes. Thus the ratio of STSE genes to multiple tran-
script genes is 1.40 in PacBio and 4.26 in TGEA. Of
the total STSE genes in the PacBio transcriptome,
12,603 are classified as lncRNA.
We looked at genomic overlap between PacBio and

TGEA transcripts to estimate the transcript coverage
for each dataset. There were 9368 PacBio transcripts

Table 2 Number of transcripts and genes by tissue type for
TGEA transcriptome

Tissue # of Transcripts # of Genes

Kidney 35,867 18,916

Breast Muscle 39,649 22,357

Spleen 41,831 23,546

Heart Muscle 44,898 25,520

Liver 46,523 25,253

Ovary 53,933 24,787

Gizzard Fat 57,922 33,670

Harderian Gland 59,873 33,791

Proventriculus 62,954 37,824

Bursa 63,644 38,673

Skin 68,982 39,211

Left Optic Lobe 75,457 44,567

Thymus 78,491 45,312

Trachea 79,103 46,730

Thyroid 79,440 46,285

Ileum 83,541 48,446

Cerebellum 90,088 54,212

Duodenum 90,665 50,902

Lung 98,514 58,762

Pancreas 106,430 68,006
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which had no overlap with TGEA transcripts. How-
ever, when we guide the transcript assembly for the
TGEA dataset using the PacBio transcripts, we find
that only 18 PacBio transcripts have no coverage.
This indicates that despite the high depth of sequen-
cing and wide tissue coverage of the TGEA dataset, a
large number of transcripts were not predicted even
though there were data to support their existence.
This may be a result of the difficulty in differentiating
transcriptional noise from true transcripts. Thus the
PacBio transcripts missing in the TGEA transcriptome
were difficult to distinguish from noise using short
read data.
There were 108,651 transcripts from 15,633 genes

in the TGEA which overlapped the PacBio transcrip-
tome. So 43% of the TGEA transcripts and 80% of
the TGEA genes are not covered by the PacBio tran-
scriptome. However, of these TGEA models with no
PacBio transcript overlap, 76.6% of the transcripts
and 91.5% of the genes are from single transcript sin-
gle exon genes. While these may represent true tran-
scripts and genes, it is difficult to be sure that these
are not the result of transcriptional noise using only
short read evidence.
We noticed during manual inspection of the PacBio

and TGEA overlaps that some transcript models in
the TGEA transcriptome seemed to be a merging of
two adjacent genes in the PacBio transcriptome. We
call this event an “overhang gene” (Fig. 5e). To inves-
tigate the abundance of these events, we searched for
all TGEA transcripts which overlapped two PacBio
genes. We identified 2515 overhang events where an
upstream and downstream PacBio gene is represented
as one merged gene in the TGEA transcript model.
Of these, 208 events occur where the downstream
gene model has a confirmed start site due to the
presence of transcript models from the embryo data.
Out of these, 79 overhang events have external sup-
port from Ensembl (release 83) chicken annotation
showing that each gene is a separate well annotated
gene. To understand the more general problem of
gene merging we looked at all gene merging events
where one TGEA transcript merged two or more Pac-
Bio genes. We identified 4254 merged gene events in-
volving 10,991 PacBio genes.

Comparison of the PacBio transcriptome with public
annotation
Ensembl and NCBI are the two major sources of public
annotation for the chicken genome. Since the NCBI
chicken annotation contains far fewer transcripts and
genes (6352 and 6027 respectively) as compared to the
Ensembl chicken annotation (release 83) and 96.8% of
the transcripts in NCBI are also contained within

Ensembl, we chose to focus our analyses on the Ensembl
annotation. The Ensembl (release 83) chicken annota-
tion contains 17,108 genes with 17,954 transcripts.
There are 15,508 genes annotated as protein coding, 42
predicted as pseudogenes, 150 ambiguous RNA, and the
rest are an assortment of short noncoding RNA. There
are no annotated lncRNA. It has a ratio of 1.05 tran-
scripts per gene model with only 745 multiple transcript
genes. For these multiple transcript genes, the ratio of
transcripts per gene is 2.14. The PacBio transcriptome
has a ratio of 2.22 transcripts per gene when including
the entire gene set and 4.56 transcripts per gene for
multiple transcript genes (Fig. 5f ). The Ensembl (release
83) chicken annotation contains 969 antisense genes as
compared to 6446 antisense genes for the PacBio tran-
scriptome. These are genes that overlap at least one gene
on the opposite strand.
Out of the 64,277 PacBio transcripts, 21,887 had no over-

lap with Ensembl transcript models and are thus consid-
ered to be novel. Of these, 7414 transcripts had no sense
exonic overlap with any Ensembl predicted transcript but
were either antisense (exonic or intronic) or had a sense in-
tronic overlap. These transcripts could be further classified
based on their coding potential so that 5049 were noncod-
ing and 2365 were protein coding (Table 3). The remaining
transcripts were located in intergenic regions. Of these,
11,880 were predicted to be noncoding while there were
2593 intergenic coding transcripts (Table 3).

Comparative genomics and phylogenomic profiles of
chicken PacBio transcripts
To understand the conservation of these sequences
across birds and other vertebrate species, we mapped
the transcript sequences (using GMAP with default pa-
rameters [16]) onto the genomes of several avian species

Table 3 Classification of coding and noncoding transcripts by
gene overlap

# of
Transcripts

Coding class Exonic
antisense

Intronic
antisense

Intronic
sense

1634 ncRNA Yes No No

1262 ncRNA No Yes No

2047 ncRNA No No Yes

32 ncRNA Yes No Yes

74 ncRNA No Yes Yes

11,880 ncRNA No No No

1478 coding RNA Yes No No

200 coding RNA No Yes No

575 coding RNA No No Yes

55 coding RNA Yes No Yes

57 coding RNA No Yes Yes

2593 coding RNA No No No
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as well as representatives from other vertebrate classes
(Table 4). The avian species with the best genome as-
semblies for each phylogenetic grouping were selected
for this analysis. We used this selection criteria so as to
avoid mapping biases from low quality genome assem-
blies. These mappings do not directly relate to orthologs
but rather provide a general indication of transcript se-
quence conservation between species.
Only 0.2% of the total chicken PacBio transcripts did

not map to any non-chicken species. While 8.8% of the
chicken PacBio transcripts mapped to all species span-
ning 300Mys. Of these, 98.8% were predicted to be pro-
tein coding while 1.2% were predicted to be lncRNA. Of
the lncRNA that mapped to all species, 52.3% were pre-
dicted to be intergenic. When focusing only on avian
species, we see that 61.8% of the chicken PacBio tran-
scripts map to all avian species. From these transcripts
which map to all avian species, we see 82.8% predicted
as protein coding and 17.2% predicted to be lncRNA
(percentages given with respect to the total number of
transcripts which map to all avian species included in
this analysis). Out of the lncRNA transcripts that
mapped to all avian species, 47.1% are classified as
lincRNA. We produced heat maps to display this ana-
lyses with a colour scale indicating the quality percent of
mapping for each transcript (Fig. 6 a-c). The quality per-
cent is defined by the number of matching nucleotides
divided by the total length of the transcript when align-
ing the chicken PacBio transcripts with their projected
sequence when mapped to other species.

Discussion
Noncoding transcripts
Long noncoding RNA
In the Ensembl (release 83) annotation, there are 24,149
lncRNA transcripts predicted in human and 8391 pre-
dicted in mouse. Thus our 20,516 predicted lncRNA
transcripts are similar in number to that found in the
human annotation, which has the highest number of an-
notated lncRNAs of any Ensembl annotated vertebrate
genome. While the mouse annotation usually benefits
from homology based predictions from humans, the lack
of conservation for lncRNA sequences has made hom-
ology methods mostly ineffective. Previous studies have
shown that a large proportion of the human lncRNA are
primate specific [32], which would explain the compara-
tively low number of identified lncRNA in mouse. The
similar numbers of identified lncRNA in the Ensembl
human annotation and the PacBio chicken annotation
suggests that lncRNA are extremely underrepresented in
the annotations of mouse and other species.
The Ensembl annotated lncRNAs are classified into

three main categories: lincRNA, sense overlapping
lncRNA, and antisense lncRNA. However, it is important
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to note that there are no biotype designations for sense
exonic overlapping lncRNA in the Ensembl annotation.
The sense overlapping class is comprised of two Gen-
code defined biotypes termed sense_overlapping and
sense_intronic. Sense_overlapping refers to lncRNA
transcripts that have a protein coding gene within their
introns. Sense_intronic refers to lncRNA transcripts that
occur within the intron of a protein coding gene. Nei-
ther of these correspond to any exonic overlap, thus they
are both sense intronic overlapping lncRNA. There is,
however, a biotype classification labelled “processed_-
transcript” which is defined as a transcript with no open
reading frame. There are transcript models within this
group which meet the criteria for sense exonic lncRNA,
however, due to the lack of evidence to support these
models it is unclear how many represent true sense ex-
onic lncRNA. Thus there are three sub-classes for
lncRNA within the Ensembl annotation with a loosely
defined 4th class which contains sense exonic lncRNA
but not at an annotation level that can be used with high
confidence. This means that the proportion of sense ex-
onic lncRNA in human and mouse is unknown.
For both the human and mouse annotation, lincRNA

make up roughly half of the total, while sense intronic
lncRNA represent less than 10% of the total (Fig. 7a).
Thus proportions of these classes seem to be well con-
served within mammals. However, the relative propor-
tions of the lncRNA sub-classes in the PacBio chicken
annotation are very different. This difference seems to
be due in large part to the inclusion of sense exonic
overlapping lncRNA which make up 17% of PacBio
chicken lncRNA transcripts (Fig. 7a). This difference
could represent real biological differences between
mammalian and avian genomes such that antisense
lncRNA are more common in mammals while sense
overlapping lncRNA are more common in birds. How-
ever, when we used our sense exonic overlap prediction
tool on the Ensembl human and mouse processed_tran-
script models, we found 24,385 and 11,901 sense exonic
lncRNA transcripts respectively. If these numbers are in-
cluded in the proportion of lncRNA types then they
would equate to 48 and 57% respectively. This would in-
dicate that sense exonic lncRNA are actually the most
abundant type of lncRNA. However, due to the dearth of
evidence for these models, it is difficult to say whether
this reflects reality. The proportions of lncRNA sub-
classes within the PacBio chicken annotation may pro-
vide an estimate for the rate of occurrence of sense ex-
onic lncRNA in human and mouse as well as other
vertebrate species.
Another startling contrast between the human/mouse

Ensembl (release 83) annotations and the PacBio chicken
annotation is the proportion of the number of exons for
lncRNA transcripts. In the human/mouse Ensembl

annotations, two exon lncRNA transcripts are the most
commonly occurring (Fig. 7b). However, the PacBio
chicken transcriptome show that single exon lncRNA
transcripts are by far the most abundant. While this dif-
ference could be due to real biological differences be-
tween birds and mammals, no conclusions can be made
because many of the lncRNA prediction methods for the
human and mouse annotations removed single exon
lncRNA models [33]. The practice of removing single
exon lncRNA models is useful when dealing with models
that are assembled from short read data since it is diffi-
cult to ascertain whether these models are truly single
exon transcripts or the result of transcriptional noise.
However, this puts a strong bias against the prediction
of single exon lncRNA transcripts which has likely re-
sulted in the underrepresentation of these transcripts.
Thus the proportion of single exon lncRNA transcripts
in the PacBio chicken annotation may indicate that these
are also the largest group of lncRNA in other vertebrate
species. If this is true, then a large portion of lncRNA
have not been identified due to the practice of filtering
out single exon lncRNA models.

Non-sense mediated decay transcripts
In comparison to the proportion of NMD products in
human and mouse, our NMD predictions for chicken
appear to be similar. Our predictions for NMD in
chicken also show a more uniform ratio of NMD to cod-
ing transcripts across the chromosomes. Since 2517
Ensembl genes have NMD overlap, it appears that NMD
may play a large role in protein expression regulation
within the chicken. Considering the important biological
implications of NMD products [34], the lack of anno-
tated NMD transcripts in the public chicken annotation
could have concealed important gene expression infor-
mation in previous studies.

Antisense genes
The most common pairing for both exonic and intronic
antisense genes is that of a protein coding gene with a
noncoding gene which is supported by reports in mam-
mals [35, 36]. The predominance of the coding to non-
coding pairs suggests that there may be some regulatory
relationship between the coding and noncoding genes in
each pairing. While the mechanism of regulation is still
mostly unknown, it has been proposed that one way in
which an antisense gene can regulate a sense gene is by
inhibiting transcription of the sense gene through tran-
scriptional collision [37]. Thus the protein coding genes
within these antisense pairings may be down regulated
by the transcription of their noncoding antisense part-
ners. In these situations, it is the action of transcription
that is functional as opposed to the transcriptional prod-
uct. Thus the sequence of the antisense partner is

Kuo et al. BMC Genomics  (2017) 18:323 Page 13 of 19



essentially meaningless and almost completely free of se-
lection pressure (aside from exonic overlapping regions).
This would explain why lncRNA sequence conservation
is so low as compared to protein coding genes.
The abundance ranking of antisense pairs from coding

to noncoding, coding to coding, and then noncoding to
noncoding has also been found in mammals [35]. The
consistency of this ranking order within this study and
within mammalian studies stands out as a peculiar coinci-
dence. It suggests that coding to noncoding antisense
regulation is a widely adopted and significant form of
regulation within vertebrates. The coding to coding pairs
may be a relic of ancient genomes where genomic com-
pactness offered some selective advantage. However, it is
perplexing as to why noncoding to noncoding pairs would
be the least abundant. Due to the lack of sequence conser-
vation for lncRNA, many believe that the majority of
lncRNA lack function and refer to them as transcriptional
noise. If they are truly non-functional, then their tran-
scription near functional genes would likely have negative
effects for several reasons. For instance, competition for
access to the region by transcription factors. If lncRNA

are predominantly non-functional, it is more likely for
them to occur near each other and not near useful genes.
Thus lncRNA genes should make up the most abundant
antisense pairs. The growing evidence that noncoding to
noncoding pairs are the least abundant suggests that the
majority of lncRNA are functional and their sequences are
functionally important as well.
The prevalence of exonic pairs over intronic pairs offers

another unintuitive result. Since intronic pairs have less
sequence dependency between the two genes, it seems
more probable for these pairings to arise. Yet there are less
than a sixth of the amount of intronic gene pairs as com-
pared to exonic. This large discrepancy suggests that there
is some functional reason for why antisense exonic pairs
dominate. It may be that the exonic sequence overlap al-
lows RNA binding between the antisense products which
could be used for up or down regulation. If this were the
case, then perhaps the majority of antisense pairings rep-
resent a regulation relationship between the antisense
genes. This would make sense from transcriptional colli-
sion alone but the RNA binding theory may add another
level of regulation tuning.

60%
4%

36%

Mouse lncRNA Types 

62%9%

12%

17%

Chicken PacBio 
lncRNA Types

b

a

52%

5%

43%

Human lncRNA Types 

Fig. 7 Characterization of lncRNA. a Proportions of each class of lncRNA for chicken PacBio, Ensembl human, and Ensembl mouse annotations.
b Proportion of exon numbers for lncRNA transcripts for chicken PacBio, Ensembl human, and Ensembl mouse annotations
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Alternative transcription events
Multiple transcript genes within the PacBio chicken tran-
scriptome display a high level of complexity with regard to
transcription initiation and termination which is similar to
that found in mammalian annotations [38]. When com-
paring the different alternative transcription events
(Fig. 5b), the most dominant events are alternative TSS
and TTS. This result matches the human and mouse an-
notations (Fig. 5b). It is possible that the TSS is a major
factor in determining the splicing of the transcript such
that each alternative transcript is somewhat defined by the
TSS. This would mean that the polymerase binding site
defines the alternative transcript which would be a mech-
anism for regulating alternative transcription.
Skipped exon events are the most dominant alternative

splicing event with 49.0% of the PacBio genes having at
least one occurrence and a rate of 51.0% for PacBio tran-
scripts. While skipped exon events are the most dominant
in both the human and mouse annotations, they occur at
higher rates, 84.1 and 72.8% of genes, respectively. This
may indicate that they play a lesser role comparatively in
the chicken genome. The lower relative rate of occurrence
for skipped exons in the chicken transcriptome may also
contribute to the density of the genome, since skipped
exons are related to greater overall intronic regions as they
are effectively introns for other transcripts.
For retained introns, alternate exon starts, and alter-

nate exons ends, there is a significant difference between
the rate of occurrence when calculating per gene versus
per transcript, with each event having a higher per gene
rate than per transcript rate. This means that they tend
to be spread out among genes but with fewer occurring
within each gene. This contrasts the rates for skipped
exons where there is actually a higher rate per transcript
than per genes in the PacBio transcriptome. This suggest
that these events may be related to a type of RNA prod-
uct which does not benefit from a variety of these
events, such as NMD products, where introducing an
early stop codon is all that is needed.

Long read versus short read RNA sequencing data
If we consider the TGEA as a representation of an upper
limit for transcribed loci discovery, then the difference in
ratios between TGEA and PacBio for STSE to multiple
transcript genes suggests that the majority of unannotated
transcribed regions are STSE genes. However, another ex-
planation is that many of these novel STSE genes in the
TGEA transcriptome are a result of RNAseq noise. Since
STSE genes have no splice junctions, there is no other
supporting evidence for the existence of these genes ex-
cept for read coverage. Since read coverage for a specific
locus may be influenced by sequence similarity to another
locus or errors in the genome assembly, it is possible that
the supporting reads belong to another locus. It is also

possible that a STSE gene is actually an exon from another
gene, but due to issues with low read coverage not linking
the exon to the rest of the gene, the model was predicted
incorrectly. Thus it is difficult to say how many of the
TGEA transcipts/genes are accurate.
On the other end, the 9368 PacBio transcripts with no

overlap from the TGEA indicates that there may be
many transcripts which go undetected with short read
sequencing. This under-prediction can be the result of
genes with low expression levels or genes with sequence
similarity to other loci (such as paralogs).
The relatively large number of gene merging events

(4254) in the TGEA transcriptome indicate a clear issue
with transcriptomes assembled from short read RNAseq
data. Each gene merge event represents an incorrect tran-
script model that would be misidentified using standard
annotation pipelines that rely on open reading frames
and transcript length. While investigating gene merge
events, we noticed that the transcript assembly errors
seemed to be a result of short read noise. This noise is
manifested as a low coverage of reads over intronic and
intergenic areas. These noisy reads can bridge between
transcripts thus resulting in merged gene models. This
noise also makes it difficult to detect retained introns.
Due to issues with noise, most assemblers use some
method of thresholding to decipher when intronic reads
are noise or real. However, filtering out noise reads from
real reads is non-trivial and relies on low variance of read
coverage over the transcript, which is rarely the case.
Therefore, while the TGEA dataset can provide a rough
estimate of transcribed loci, it is not recommended for
identifying full length transcript sequences.

Comparing the PacBio transcriptome to the Ensembl
annotation
The large difference in the number of anti-sense genes be-
tween Ensembl and PacBio is partly explained by the
greater number of genes in the PacBio chicken transcrip-
tome. However, it is also indicative of the limitations of
the short read RNAseq data that was used for the Ensembl
chicken annotation [5, 39]. Much of these data were gen-
erated using unstranded library preparation protocols
which made it impossible to resolve anti-sense transcripts.
Without stranded RNAseq data, anti-sense transcripts can
look like extensions of the sense transcripts or can be fil-
tered due to their non-conformance with the dominant
transcript model. As a result, these models may have been
omitted or represented incorrectly.
Due to the lack of lncRNA models in the Ensembl anno-

tation, the large number of novel ncRNA predicted by Pac-
Bio sequencing is somewhat expected. The number of
novel intergenic protein coding transcripts, however, was
higher than we expected so we investigated the possible
reasons for their absence in the Ensembl annotation. There
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were 634 transcripts which had no hits against the Uniref
90 database. This subset represents transcripts with no or
low sequence similarity to known proteins. Ensembl may
have discarded these in their pipelines since they would be
difficult to confirm as protein coding. These also represent
possible avian specific proteins. There were 891 transcripts
which were antisense (exonic or intronic) to a transcript ei-
ther in the PacBio annotation or the TGEA. Similar to the
transcripts that were antisense to Ensembl transcripts, these
transcripts represent complex transcribed loci where short
read data may not provide enough information to resolve
the overlapping transcripts. There were 719 transcripts
which did not have matching transcript models in the
TGEA. Thus these transcripts could not even be assembled
with short read data. This is mostly likely due to low and/
or variable coverage. There were 967 transcripts left after
removing the no hit, antisense, and no TGEA sense overlap
transcripts. Therefore the majority of these previously un-
annotated transcripts can be explained by the limitations of
short read RNA sequencing.

Comparative genomics provides functional support for
PacBio transcript predictions
The mapping of over 99.8% of PacBio chicken transcripts
to other genome assemblies provides support for the Pac-
Bio models and sequence conservation also predicts func-
tional constraints on these transcripts. While there is
some variability of genome assembly quality among the
avian species, there is a clear trend for species that are
evolutionarily closer to chicken to have more matching
transcript sequences. The galliformes show a high propor-
tion of similar transcripts (Fig. 6a), while there is a drop-
ping off of the number of mapped transcripts for species
at a further phylogenetic distance away from chicken. For
the non-avian species, relatively few transcript mappings
show similarity.
Comparing the coding and lncRNA transcripts, we see

that there is a very different trend for sequence conser-
vation with coding transcripts being relatively well con-
served across the avian species (Fig. 6b) while a more
noticeable drop off occurs with the lncRNA transcripts
(Fig. 6c). This complements previous observations that
lncRNA have low conservation as compared to protein
coding genes [40] and homology approaches have lim-
ited effectiveness beyond closely related species.

Conclusions
We identified a large number of events where transcrip-
tional complexity make it difficult or impossible to attain
the true transcript sequences from short read data. As
the current public annotation of the chicken genome by
Ensembl has relied upon incomplete cDNA sequences
(ESTs) and short read RNA-seq data, the complexity of
the chicken transcriptome is currently underrepresented.

The current underrepresentation of transcriptional com-
plexity with respect to the number of alternative tran-
scripts can have consequences for analyses that rely on
these models. Important transcriptional events can be
missed or misrepresented thus obscuring underlying bio-
logical processes. Using PacBio sequencing to create a
high quality transcriptome annotation can correct these
issues that are common in many of the public annota-
tions. More advanced analytical tools can be developed
to take advantage of the long read transcriptome by
using information which could identify problematic
areas in short read data during transcript quantification
experiments. These areas include multi-mapping loci, re-
peat regions and ambiguous splice junctions.
Long read transcript models also improve functional

annotation since many annotation pipelines must as-
sume that the supplied transcript sequences represent
real splicing and correct reading frames. The ability to
disambiguate overlapping transcripts or genes sheds
light on transcriptome complexity that was previously
unannotated in chicken. The PacBio chicken transcrip-
tome suggests a level of transcriptional complexity that
is more consistent with expectations based on the well-
characterised human genome.

Methods
Pacific Biosciences Iso-Seq long read sequencing
For the brain library, brain tissue was collected from an
adult J-Line chicken (brown leghorn) bred at the Edinburgh
Poultry Research Centreand the extracted RNA sample was
sent to GATC Biotech (Konstanz, Germany) for library
preparation and sequencing. The total RNA sample was ex-
amined using capillary electrophoresis with a Shimadzu
MultiNA microchip electrophoresis system (Shimadzu
Corporation, Kyoto, Japan). Poly(A) + RNA was selected
using an oligo(dT)-linker primer and cDNA was produced
using M-MLV H- reverse transcriptase. The cDNA was
amplified using PCR with 16 cycles. Normalization was
performed by denaturing and reassociating the cDNA.
Double stranded cDNA were removed using a hydroxylap-
atite column. The remaining cDNA were then amplified
using PCR with 8 cycles. The cDNA were then size selected
for 1 kb and 2 kb lengths using Ampure beads (Agencourt
BioSciences Corporation, Beverly, Massachusetts). For the
1 kb cDNA, 11 SMRT cells were used. For the 2 kb cDNA,
14 SMRTcells were used.
For the embryo library, an embryo was collected at

Hamburger-Hamilton stage 26 from an ISA Brown
chicken bred at the Edinburgh Poultry Research Centre
and RNA was extracted. The RNA sample was sent to
GATC Biotech for library preparation and sequencing.
The total RNA sample was examined using capillary elec-
trophoresis with a Shimadzu MultiNA microchip electro-
phoresis system. Poly(A) + RNA was selected and treated
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with Terminator exonuclease (+TEx). The 5′CAP struc-
tures were removed using tobacco acid pyrophosphatase
(TAP). Then an RNA adapter was ligated to the 5′-mono-
phosphate of the RNA. The cDNA was synthesized using
an oligo(dT)-adapter primer and M-MLV H- reverse tran-
scriptase. The cDNA was amplied using PCR with 13 cy-
cles. Normalization was performed by denaturing and
reassociating the cDNA. Double stranded cDNA were re-
moved using a hydroxylapatite column. The remaining
cDNA were then amplified using PCR with 8 cycles. The
resulting cDNA was purified with the Agencourt AMPure
XP kit. The cDNA were then size selected for 0.8 kb and
2 kb lengths using Ampure beads. For the 0.8 kb cDNA,
16 SMRT cells were used. For the 2 kb cDNA, 17 SMRT
cells were used.

Long read transcriptome processing
Raw data was processed into error corrected reads of in-
sert (ROI’s) using the PacBio SMRT Analysis Package with
default parameters. The ROI’s were then processed using
the Iso-Seq Tofu pipeline [15]. We used the Classify mod-
ule with default parameters to remove adapter sequences,
poly-A tails, artificial concatemers, and 3′ truncated tran-
script sequences which resulted in our set of FLNC tran-
scripts. For an additional level of error correction we ran
PacBio ICE software without the Quiver step on the FLNC
transcripts [15]. The ICE software clusters transcripts by
alignment using BLASR and then error corrects using the
alignments. This results in a higher quality set of tran-
script sequences and the removal of redundant data. Due
to the computation time restraints we ran ICE independ-
ently on each size selection from the brain.
The resulting sequences were then mapped to the

Galgal 4 reference genome assembly using GMAP [16]
using default parameters. The GMAP result bam files
are then processed using the Iso-Seq Tofu Collapse
module (in the Iso-Seq pipeline) which merges
transcripts based on genomic coordinates. There are two
methods of doing this which are explained in the Results
section.
For each transcript we collected the quality scores of

the ICE cluster sequences contributing to that transcript
model. We estimated quality score by aligning the pre-
mapped sequence to the post-mapped sequence using
MUSCLE [41] and counting the number of mismatches
and gaps. We then took the longest supporting cluster
for each transcript and removed the transcript from our
working list if the quality percentage of the longest sup-
porting cluster was less than 90%.
ROI quality scores were calculated with a similar

method. Adapter sequences were aligned to the ROI se-
quences using MUSCLE and the quality score was calcu-
lated by counting the number of mismatches.

The collapsed transcripts from the brain library and the
embryo library were then merged using in-house python
scripts to create a PacBio transcriptome annotation.

Illumina RNA sequencing
RNA samples from 20 tissue types were collected from 9
16/17 weeks old female J-Line chickens bred at the Ed-
inburgh Poultry Research Centre . The samples from the
9 individuals were pooled for each tissue type and se-
quenced by Edinburgh Genomics. The Illumina Total
RNA Stranded kit was used to generate stranded cDNA
fragments. In this stranded RNAseq method, random
primers are used for reverse transcription to create a
complementary strand to the original RNA template.
Deoxyuridine Triphosphate (dUTP) is then incorporated
into the original template [42]. Adapters are attached to
both ends of the double strand and then the original
template is degraded. The adapters provide strand infor-
mation based on their orientation in the read. The
cDNA fragments were then sequenced to produce paired
end reads with an average length of 101 base pairs. The
average size of cDNA fragments was 190 bases.

Short read transcriptome assembly
Edinburgh Genomics generated 8 fastq file pairs for each
tissue. Each tissue had an average of 120,563,969 reads
between all 8 fastq files. We checked the quality of data
using Fastqc. We then mapped the reads to the Galgal 4
genome assembly using Tophat2 version 2.0.14 with
Bowtie2 version 2.2.5. For this we used the parameters
to define the inner insert size for each library and the
strand orientation (–library-type fr-firststrand). We then
ran Cufflinks version 2.2.1 to assemble transcripts using
default parameters on each library (8 libraries per tissue).
No annotations were provided at this step for guiding.
We then merged the transcript models from each library
using Cuffmerge. This final merged annotation was des-
ignated as our J-line derived annotation.
We also ran Cufflinks using force guided on the Ensembl

(release 83) annotation, the PacBio annotation, and the J-
Line derived annotation. This was performed to acquire
FPKM estimates for each transcript model in each annota-
tion set so that we could generate our expression atlases.

Other bioinformatics analyses
Prediction of coding and noncoding transcripts
To classify the PacBio transcripts as either protein cod-
ing or noncoding we used the criteria that transcripts
without evidence for protein coding potential were la-
belled as noncoding RNA and transcripts with evidence
were labelled as putative protein coding. We used three
methods to find evidence for protein coding potential.
The first method consisted of using Blastx [22] to find
hits between the PacBio transcripts and the Uniprot
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Uniref 90 protein database [23]. The second method
consisted of using the Coding Potential Calculator
(CPC) software [24]. CPC uses six different metrics to
determine the coding potential of a transcript. These in-
clude using open reading frames (ORFs) and searching
for Uniprot protein hits. The third method consisted of
using the Coding Potential Assessment Tool (CPAT)
[25]. CPAT uses ORF’s and hexamer usage bias to pro-
duce protein coding probabilities. We used the recom-
mended cut off of 0.3 for CPAT, designating any scores
below this as noncoding.

Prediction of nonsense mediated decay products
Transcripts which were first identified as protein coding
using our previously defined methodology were used for
our NMD prediction. We investigated potential NMD
products by identifying coding sequence regions within
the PacBio transcript models. Coding sequence regions
were identified by first converting the RNA sequences to
peptide sequences in all three frames (single stranded
data). The longest three ORF’s were matched to the
Chicken protein sequences from Uniprot using Blastp
[22]. The ORF’s with the highest match to a chicken
protein were used as the representative or if no matches
were found, the longest ORF was used. If the representa-
tive ORF had a stop codon that was more than 50-bp
upstream of the final splice junction, it was labelled as
an NMD candidate [31].

Additional file

Additional file 1: PacBio sequencing read lengths (pdf format) (a)
Read lengths for chicken brain 1-kb size selection. (b) Read lengths
for chicken brain 2-kb size selection. (c) Read lengths for chicken em-
bryo 0.8-kb size selection. (d) Read lengths for chicken embryo 2-kb
size selection. (PDF 184 kb)
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2.3 Discussion 

 

The major results from this work are based on sequencing pipeline performance and 

discoveries within the chicken transcriptome. Normalization of cDNA libraries prior to 

sequencing seems to significantly improve the ability to pick up lower abundance RNA. 

However, given the lower throughput of the PacBio RSII system that was the long-read 

sequencing platform available at the time, many transcript models were represented by only a 

single read. This makes distinguishing real transcript sequences from noise more difficult. The 5’ 

cap selection of cDNA libraries seems to reduce the relative number of reads coming from 

degraded RNA. This in turn increases overall sequencing efficiency by reducing the number of 

reads spent on degraded RNA. 

 

The long read RNA sequencing performed in this study represents one of the earliest attempts 

at using the PacBio platform for transcriptome annotation. As such, the bioinformatic landscape 

was sparse with very little understanding at the start of the study as to what were the 

appropriate types of data processing to use. Given that very few people had even seen this type 

of data let alone worked with it, the start of the project was very much focused on getting a 

better understanding of what we were seeing in the data. The comparatively low read depth 

from this study meant that many tools and methods that are available today are not very 

applicable for processing this data.  

 

 I consider this piece of work to be an introduction of long read RNA sequencing to the field 

with respect to usage in whole transcriptome annotation. There have been many developments 

in this area since the publishing of this article. Oxford Nanopore Technologies cDNA sequencing 

has become available, offering a viable alternative to Iso-Seq sequencing[122]. Direct RNA 

sequencing has emerged as a method that allows for full length transcript sequencing with 

detection of RNA modifications[123]. Single cell long read RNA sequencing has gained in 

popularity[124]. Library construction methods that target specific genes have been 
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developed[125]. Long read RNA sequencing has also become an important tool for 

understanding cancer[126].  

 

After this paper was published, other studies used long read RNA sequencing for chicken 

transcriptome discovery. This includes a study using ONT cDNA sequencing for 19 chicken tissue 

types[127]. Despite the wider variety of tissue types and higher number of reads generated, the 

study identified a lower number of unique transcripts. This may be due to differences in 

sequencing technologies or bioinformatic processing, however it is likely that the library 

preparation played a large role. More specifically, they did not use normalization or 5’ cap 

selection methods which may have reduced their sequencing efficiency for the discovery of 

novel transcripts.  

 

Another study used PacBio Iso-seq sequencing on chicken embryo to discover novel long non-

coding RNA[128]. They reported a larger number of lncRNA, however their predicitions were 

based on both their long read data as well as their short read data. Therefore it is very likely 

that their high predictions were due to predictions from short reads which are less reliable than 

long read predictions for lncRNA.  

 

Even with all these improvements in the field and newer studies using newer technologies or 

greater read depth, the sample processing techniques from this paper remain advanced and 

under utilized.  The bioinformatic ideas have by and large remained relevant.  

However, as long read RNA sequencing improved in throughput, read length, and accuracy, 

many of the challenges encountered in this study have become lesser issues.  

 

Using these novel sequencing pipelines, I was able to identify thousands of potential novel 

genes. These include thousands of potential lncRNA. I confirmed that the lncRNA models 

seemed to show a significant reduction in sequence conservation across other avian species as 

compared to protein coding genes. There also seems to be a large number of mono-exonic and 
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sense-exonic lncRNA. However, these transcript models are the most difficult to differentiate 

from noise so further work needs to be done to validate these.  
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Chapter 3: Paper - Illuminating the dark side of the human 

transcriptome with long read transcript sequencing 

 

 

3.1 Introduction and aims 

 

In this chapter I explore the effects that different long read RNA sequencing analysis pipelines 

can have on annotation results. I explain the TAMA software package that I developed and 

demonstrate its performance on an Iso-Seq dataset that was produced by PacBio.  

 

In this study, all work was performed by myself except as further specified: Samples were 

prepared and sequenced by PacBio. 

 

3.2 Research Paper 

 

This research was published as “Illuminating the dark side of the human transcriptome with 

long read transcript sequencing” in BMC Genomics [129]. BMC Genomics does not require 

authors to obtain permission to include these papers in their thesis, provided the original work 

is properly cited. 
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Background
The transcriptome remains a vastly underexplored space
despite its significance as a foundation for biology. Major
challenges for transcriptome annotation of eukaryotic spe-
cies stem from biological complexity, RNA preparation,
limitations of sequencing technologies, and sequence ana-
lysis. The biological complexity of alternative transcription
start/stop sites and splice junctions [1] results in a com-
binatorial array of transcript sequences [2]. To complicate
matters, RNA samples collected from eukaryotic species
contain a mixture of mature functional RNA as well as
pre-processed RNA, degraded RNA, and possible genomic
contamination [3] (Fig. 1a-b). Meanwhile, low-throughput
cDNA sequencing fails to provide coverage for rare/un-
stable transcripts, while short read RNA sequencing
(RNA-seq) present computational challenges in accurate
transcript model reconstruction [4–6]. The ambiguities
created by these combined factors forced previous annota-
tion software to adopt conservative algorithms that filtered
out many real transcripts/genes such as single exon genes
and long non-coding RNA (lncRNA).
High-throughput long read transcript sequencing pro-

vides higher confidence in predicting alternative transcripts

and distinguishing real genes from sequencing noise [5].
While there have been many studies using long read tran-
script sequencing for transcriptome discovery [7–11], their
sensitivity may have been compromised by the use of or-
thogonal verification/filtering. Filtering transcript models
based on orthogonal information, such as requiring gene
models to have sequence homology to annotated genes
from closely related species, reduces gene discovery and is
only applicable for a small number of species where such
information exists [6].
The use of inter-read error correction in previous

studies by either hybrid approaches (aligning short reads
to long reads) or long read methods (aligning long reads
into clusters) could also cause issues with both reducing
gene detection sensitivity and producing erroneous gene
models. Long read inter-read error correction methods
such as PacBio’s Cluster/Polish method [7] filter out any
reads that do not cluster with at least one other read.
Due to the lower read depth of long read sequencing
methods (relative to short read sequencing), this results
in the removal of many low expressed genes and tran-
scripts. Inter-read error correction methods can also
produce erroneous hybrid sequences since long reads

Fig. 1 Long read RNA diversity and splice junction wobble. a RNA samples are typically comprised of a mixture of degraded and immature RNA
as well as DNA fragments that can be erroneously identified as novel genes and transcripts. Non-classical RNA here represents lncRNA that do
not have a 5′ cap or poly-A tail. b Representation of how RNA sample noise appears when mapped to the genome. c Due to sequencing errors,
mapping reads can introduce wobble in determination of splice junctions. Wobble is defined as the difference between exon starts/ends
between mapped reads. Wobble walking occurs when 3 or more transcript models have exon starts/ends with each closest pair occuring within
the wobble threshold but with the outer pair of exon starts/ends having an in between distance greater than the wobble threshold. TAMA
Collapse uses several methods of analyzing wobble to identify true splice junctions
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with higher error rates have an increased probability of
grouping with other high error rate reads from different
transcripts either from the same or paralogous genes.
This type of error occurs when the alignment of reads is
compromised by regions of high error density. While
this effect could be reduced by requiring high alignment
scores for clustering reads, this would also decrease the
intended effect of rescuing low quality reads.
To leverage the power of long read transcript sequen-

cing and address the issues with current processing pipe-
lines, we developed the Transcriptome Annotation by
Modular Algorithms (TAMA) tool kit. TAMA uses long
read transcript data and high-quality reference genome
assemblies to produce accurate and informative tran-
script models. TAMA is designed to improve transcript
model prediction accuracy and increase transcriptome
discovery with transparent and traceable steps. Evidence,
including raw reads, read counts, local sequencing char-
acteristics (e.g. mismatches, internal poly-A sequencing)
supporting or compromising each transcript model is re-
corded and presented. This makes TAMA useful for sit-
uations where additional types of data, such as public
annotations or short read RNA-seq, are not available [8].
In addition, by not relying on orthogonal information
and having transparent and traceable steps, TAMA also
provides a more agnostic approach to transcriptome an-
notation which can reveal problems with prior assump-
tions from previous annotation efforts.
We report the use of TAMA to analyze the Universal

Human Reference RNA (UHRR) Sequel II Iso-Seq data
released to the public by Pacific Biosciences (PacBio).
This dataset represents the combination of the highest
read depth for long read sequencing on a single human
RNA sample with the highest long read accuracy. As
such, the challenges of analyzing this dataset are applic-
able to all long read transcriptome datasets. We com-
pared different long read based transcriptome assembly
methods to identify corresponding benefits and issues.
Our analyses indicate that long read transcript sequence
data together with appropriate analysis tools has the po-
tential to reveal yet further complexity in eukaryote
transcriptomes.

Results
TAMA – Transcriptome annotation by modular algorithms
TAMA is comprised of modular tools with transparent
algorithms, precise parameter control, and traceable out-
puts to allow users to analyze, interpret, and diagnose
the resulting transcript models. The main analysis func-
tions consist of two modules: TAMA Collapse and
TAMA Merge.
TAMA Collapse uses mapped reads and a reference

genome assembly to create a transcriptome annotation.
TAMA Collapse uses four main methods for identifying

true splice junctions: alignment quality filtration, local
density error filtration (LDE), splice junction ranking,
and splice junction coverage. All of these methods can
be tuned by the user. First, alignment quality filtration is
applied by assessing the alignment length coverage and
alignment identity of each mapped read with respect to
the reference genome. Reads below the user defined
thresholds are discarded. The reads passing this first step
are then examined via the LDE algorithm for the num-
ber of mismatches flanking each predicted splice junc-
tion. Errors around splice junctions exacerbate mis-
mapping and cause the prediction of false splice junc-
tions. This assessment removes reads with high error
density within a specified base pair distance from each
splice junction. The remaining reads are then grouped
based on exon-intron structure allowing for user defined
differences (called wobble in the TAMA nomenclature)
in exon starts and ends measured in base pairs (Fig. 1c).
The predicted splice junctions for the grouped reads are
then ranked based on the flanking mismatch profiles
and coverage. The highest ranked splice junctions are
then used in the final transcript model. A large wobble
threshold can help remove false positive predictions for
splice junctions but may remove real splice junctions
within the wobble length. Thus the LDE algorithm and
splice junction ranking allows for smaller wobble lengths
while also reducing false splice junction predictions.
In addition to rigorously identifying splice junctions,

TAMA Collapse also allows the incorporation of the
confidence of transcript starting sites by running the
program in a capped or non-capped mode. For example,
for 5′ captured RNAs, the capped mode will allow the
transcripts with alternative transcript starting sites to be
retained; while for non 5′ captured RNAs, the non-
capped mode removes transcript models which appear
to be 5′ degraded. The capped mode, requires grouped
mapped reads to have the same number of exons and
the same exon-intron structure. The non-capped mode
is similar to the capped mode but allows for grouped
reads to have differences in the number of exons on the
5′ end reflecting reads derived from RNAs with degrad-
ation from the 5′ end. Thus, all predicted splice junc-
tions for the shorter mapped read model and the 3′ end
would have to match those of the longer model. These
two methods of grouping are described in a previous
study where they were referred to as Transcription Start
Site Collapse (equivalent to capped mode) and Exon
Cascade Collapse (equivalent to non-capped mode) [4].
In addition to the transcriptome assembly, TAMA

Collapse also outputs detailed information showing read
mapping quality, collapsed read groups, predicted se-
quence variation, and transcript models with 3′ genomic
poly-A (genomic contamination or truncated transcript).
These outputs are intended to provide users with a full
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understanding of the behavior of TAMA Collapse and
thus allow users to trace, diagnose, and improve their
transcriptome assemblies.
TAMA Merge combines transcript models by examin-

ing exon-intron structures of transcript models to create
a non-redundant set of genes and transcripts. TAMA
Merge can be used on a single input transcriptome an-
notation to remove redundancy or can be used on mul-
tiple transcriptome annotations to create a unified
annotation. TAMA Merge also produces output files
that can be used to understand the differences between
the input annotations. TAMA Merge uses the same col-
lapsing mode algorithms from TAMA Collapse. One
unique feature of TAMA Merge is the ability to merge
transcript assemblies by assigning different collapsing
modes and transcript model feature priorities between
different annotations. For example, when using TAMA
Merge to combine a long read sequencing derived anno-
tation to a reference annotation, the reference annota-
tion can be given priority for transcription start/end
sites and splice junctions. The user created annotation
can also be set to the non-capped mode to allow user
produced models to collapse with 5′ longer reference
models. The output files from TAMA Merge include de-
tailed reports on how merging was done. These report
files show which input annotations supported each of
the final transcript and gene models as well as the
amount of wobble that occurred at each exon start and
end between merged models.
Along with TAMA Collapse and TAMA Merge, the

TAMA toolkit contains many other tools that either
apply additional filters or add information. Other TAMA
tools used in this study are explained in further detail in
the Methods section. A more detailed description of
how TAMA works can be found here: github.com/Gen-
omeRIK/tama/wiki/.

Benchmarking TAMA and related software
We benchmarked the long read based transcriptome as-
sembly of TAMA, Stringtie2 [9], TALON [10], and Cup-
cake [7] using three different datasets: simulated PacBio
data, simulated Nanopore data, and PacBio Sequel II
Iso-Seq data from Lexogen’s Spike-in RNA Variant
(SIRV) control mix. The simulated PacBio and Nano-
pore reads were produced in a previous study [11] using
PBSIM [12] and were also used for benchmarking in the
Stringtie2 study [9]. The simulated datasets were based
on the annotations of chromosome 19 of the human ref-
erence annotation. Details of the simulated and human
datasets can be found in the supplementary files (Table
S1). Using these simulated datasets, the Stringtie2 study
showed that Stringtie2 outperformed both FLAIR [13]
and Traphlor [14]. We used the same method of assess-
ment as was used in the Stringtie2 study. While these

simulated datasets are useful due to having a ground
truth, they are not entirely accurate in their representa-
tion of long read sequencing data. In particular, the sim-
ulated reads were created by fragmenting transcript
models at random which is not realistic since the frag-
mentation of transcripts is non-random and influenced
by sequence characteristics and sample processing
methods. The simulated PacBio dataset represents reads
equivalent to PacBio Full Length Non-Chimeric (FLNC)
reads. This means that they assume Circular Consensus
Sequence (CCS) intra-read correction was performed
and that adapters and poly-A tails were removed. The
simulated Nanopore dataset is equivalent to Nanopore
reads after removing poly-A tail and adapter sequences.
Since PacBio’s Iso-Seq software (Cupcake) requires spe-
cific PacBio generated metadata that these simulated
datasets do not contain, we could not benchmark Pac-
Bio’s Cupcake software on these datasets. This means
that we could not use PacBio’s Cluster/Polish inter-read
error correction on these datasets. Thus, these simulated
datasets can only be used to assess the effect of random
errors in long reads on the performance of mapping
tools and transcriptome assemblies tools.
To address the issues with simulated datasets, we also

used reads from the Lexogen SIRV spike-in from the
PacBio UHRR Sequel II Iso-Seq dataset. The Lexogen
SIRV control mix contains synthesized RNA molecules
representing 7 expressed loci (18 genes when strand is
accounted for) with 69 unique transcripts. The ground
truth in this dataset is provided by Lexogen in the form
of expected gene models based on their synthetic gen-
ome. However, it is possible that not all RNA from the
SIRV dataset were sequenced and/or there are other
RNA in the SIRV sample which are not represented in
the annotation file provided on the Lexogen website.
This may explain the lower precision of all unguided
pipelines for the SIRV dataset (< 68% precision for all
unguided approaches).
We used GffCompare [15] to calculate the sensitivity

and precision for each pipeline. Sensitivity is defined as
the number of correct transcript models in the predicted
annotation divided by all the transcript models used for
simulation. Precision is defined as the number of correct
transcript models in the predicted annotation divided by
the number of all predicted transcript models. These
scores can be calculated at either the transcript or gene
loci level. These definitions are from the GffCompare
software. This method of calculation is identical to the
method used in the Stringtie2 study [9]. Since TAMA,
Stringtie2, and TALON can be run either with an un-
guided approach or a reference annotation guided ap-
proach, we tested both methods for each of these tools.
Since TAMA is designed for parameter tuning, we ap-
plied two parameter sets for the unguided TAMA
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pipelines which we refer to as TAMA Low and TAMA
High. TAMA Low uses parameters to maximize genic
loci sensitivity at the cost of transcript model precision
while TAMA High uses more stringent parameters to
remove erroneous transcript models. The parameter se-
lection for TAMA High and TAMA Low differs between
the synthetic datasets and the PacBio Sequel II Iso-Seq
data (SIRV and UHRR) since the synthetic datasets have
higher error rates. TAMA High and TAMA Low param-
eter selection is described in more detail in the Methods
section. Briefly, the TAMA High pipeline uses a more
stringent LDE setting (fewer mismatches surrounding
splice junctions), and requires read support from both
SMRT Cells (in the PacBio Sequel II Iso-Seq data) while
TAMA Low has lower stringency settings for LDE and
requires support from only a single read. The TAMA
High requirement of read support from both SMRT cells
can be viewed as a modified form of the method that the
Cluster/Polish step uses to filter out erroneous transcript
models (removing all reads that do not cluster). However,
the TAMA High approach can provide more sensitivity
since it allows for greater variance on the 5′ end of the
transcript models to account for low expressed genes
which may only be represented by a 5′ truncated model in
one of the SMRT cells (where the predicted 5′ complete
model was picked up in the other SMRT cell). This
method of filtration can also provide greater precision
since requiring read support across sequencing runs can
help reduce artifacts caused by technical batch effects.
This algorithm can be adjusted where only a single SMRT
cell or sequencing run was performed by only requiring
multiple read support for each transcript model. This
would still provide greater sensitivity than the Cluster/Pol-
ish method due to the greater allowance in 5′ variability.
The TAMA Guided pipeline matches the transcript
models from the long read data to the input reference an-
notation and adopts the splice junction predictions from
the reference annotation. It discards any models not
matching the reference annotation using the TAMA
Merge algorithm. See Methods section for description of
TAMA Merge and pipeline parameter selection.
For both the PacBio and Nanopore simulated datasets,

guided approaches achieved better sensitivity and preci-
sion as compared to unguided approaches (Fig. 2). The
TAMA Guided approach had the highest precision
across all datasets with slightly less sensitivity as com-
pared to the Stringtie2 Guided approach for the simu-
lated datasets. In the SIRV dataset, the TALON Guided
method achieved a slightly higher sensitivity score as
compared to TAMA Guided. The higher sensitivity
score for TALON Guided was due to the inclusion of
one more transcript model as compared to TAMA
Guided. When we inspected this transcript model found
only in the TALON Guided assembly, we found that it

did not match the supporting reads (Fig. 2f). The reads
used to support the TALON Guided prediction of that
particular transcript model have a long 3′ extension as
compared to the predicted transcript model. This exten-
sion is present in other transcript models in the SIRV
annotation and it appears that these reads likely origi-
nated from 5′ truncated/degraded RNA from those tran-
scripts. This raises the question of why these reads were
assigned to the transcript model and how this might
affect unguided TALON.
The overall better performance of guided approaches

is to be expected because guided approaches essentially
fit the transcript models to an annotation which has
high similarity to the assessment annotation. However,
guided approaches are not as useful for transcriptome
discovery since they only confirm already known gene/
transcript models. Among all the unguided methods,
TAMA Low achieves the best sensitivity for the gene
loci level while TAMA High achieves the highest preci-
sion and sensitivity at the transcript level compared to
the non-TAMA approaches. The SIRV gene loci com-
parison was not included since the SIRV transcriptome
is comprised of only 18 gene loci across 7 scaffolds. All
methods had perfect sensitivity and precision at the gene
loci level for the SIRV dataset.

Effect of inter-read error correction on gene model
discovery
We processed the UHRR Iso-Seq data using four differ-
ent pipelines to understand the effect of pre-mapping
inter-read error correction on gene discovery and model
prediction accuracy (Fig. 3a). The UHRR Iso-Seq dataset
was comprised of two separate Sequel II runs using the
8M SMRT Cells. There were 4,461,529 and 4,473,633
CCS reads generated by the two SMRT Cells which re-
sulted in 3,504,905 and 3,447,471 FLNC reads, respect-
ively. A plot of FLNC read lengths can be found in the
supplementary files (Figure S1). All four pipelines use
TAMA tools since the TAMA High pipeline has the
highest combination of sensitivity and precision com-
pared to all other non-guided methods in the bench-
marking tests and the TAMA Low pipeline has the
highest sensitivity. We compared two pipelines without
inter-read error correction (TAMA Low and TAMA
High pipelines), one pipeline using long read inter-read
error correction (Polish Pipeline), and one pipeline using
hybrid inter-read error correction (Lordec Pipeline). The
Polish pipeline, uses inter-read error correction (in the
form of clustering long reads and using the alignment to
polish the sequences prior to mapping) along with
TAMA Collapse using the same parameters as the
TAMA Low pipeline. The Lordec pipeline, uses LoRDEC
[16] inter-read error correction (aligning short read
RNA-seq data to long reads prior to mapping) with
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TAMA Collapse (same settings as TAMA Low). For the
Lordec pipeline we used short read RNA-seq data from
the UHRR but from another study [17].

The TAMA Low and Lordec pipelines produced the
most predicted gene and transcript models with more
than 160 K genes and 750 K transcripts (Table 1). These

Fig. 2 Long transcript assembly benchmarking. Sensitivity and precision of guided and unguided long read transcriptome assembly methods. a
Gene loci level for simulated PacBio reads. b Gene loci level for simulated Nanopore reads. c Transcript level for simulated PacBio reads. d
Transcript level for simulated Nanopore reads. e Transcript level for PacBio Sequel II Iso-Seq SIRV reads. f Example of erroneous transcript
prediction by guided Talon where supporting reads are from another transcript model. These supporting reads are from 5′ degraded RNA
resulting in the confusion
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Fig. 3 Comparing different pipelines on the UHRR Iso-Seq Dataset. a Diagram of workflow for the four pipelines used to analyze the UHRR Iso-
Seq dataset. b Example of the Polish pipeline missing the full length transcript model due to low read coverage for the 5′ complete read. Since
Cluster/Polish filters out any reads that do not cluster with at least one other read, the single read support for the longer model was filtered out
in the Polish pipeline but captured by TAMA. In this case, the truncated model in Polish happens to match a transcript model in the
Ensembl annotation

Table 1 Pipeline comparison

Match type Polish Lordec TAMA low TAMA high

Total Genes 25,731 166,766 168,328 38,743

Total Transcripts 126,288 753,756 752,996 135,218

Ensembl Loci Overlap 19,348 30,835 30,947 21,284

Ensembl Transcript Matches 17,948 24,660 24,691 15,854

Predicted Novel Gene Loci 8519 139,769 141,097 23,302

Predicted Novel Transcripts 106,243 724,316 723,759 118,148

Comparison of gene and transcript numbers across pipelines broken down into different categories. Ensembl loci overlap refers to the number of Ensembl v94
annotation gene models that are overlapped on the same strand by gene models from each Iso-Seq annotation. Transcript matches refer to Ensembl v94
transcript models with identical exon-intron structures as transcript models in each Iso-Seq annotation. The Ensembl v94 human annotation consists of 58,735
gene loci and 206,601 unique transcript models. In some cases, multiple Ensembl gene loci are overlapped by a single Iso-Seq gene locus leading to the
differences between matching loci and predicted novel loci
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extremely high numbers are likely due to issues with the
use of reads with high error rates and reads originating
from transcriptional noise. The Polish pipeline produced
the fewest number of genes and transcript models
(Table 1) while the TAMA High pipeline had over 1.5
times the number predicted genes but with a similar
number of predicted transcripts.

Estimating gene model detection accuracy
While there is no ground truth for the human transcrip-
tome, we used the Ensembl v94 (Release 94, October
2018) human genome reference annotation [18] as a ref-
erence to understand how our results compare to
current annotations. We identified the number of gene
loci and transcript models from the Ensembl annotation
with representation from each pipeline. The TAMA Low
and Lordec pipelines had the highest number of matches
for both gene loci and transcript models indicating high
sensitivity. However, given the high total numbers of
genes and transcripts, the annotations from these pipe-
lines likely contain many erroneous gene and transcript
models. The TAMA High pipeline had more gene loci
matches but slightly fewer transcript matches compared
to the Polish pipeline. This means that there were more
transcripts per gene in the Polish pipeline annotation
(4.9:1) versus the TAMA High annotation (3.5:1). The
higher ratio of transcripts to genes in the Polish pipeline,
as compared to the TAMA High pipeline, suggests that
either TAMA High is filtering out many real alternative
transcripts or that Cluster/Polish is somehow predicting
more erroneous alternative transcript models.
When we investigated the reason for the higher num-

ber of transcript model matches in the Polish annota-
tion, we discovered that in some cases the Polish
transcript models matched the models in the Ensembl
annotation due the removal of reads (by the Cluster/Pol-
ish step) which supported 5′ longer transcript models
(Fig. 3b). In these cases, the mapped reads showed 5′ ex-
tended transcript models with additional 5′ exons along
with 5′ shorter models that may have originated from 5′
degraded RNA molecules. However, since the longer
models had lower read coverage, the Polish pipeline re-
moved them from the transcriptome assembly leaving
only the shorter models that sometimes matched models
in the Ensembl annotation. This tendency toward produ-
cing truncated transcript models could explain the ex-
pansion of alternative transcript predictions in the Polish

pipeline. While it could be argued that these shorter
models are real since they are represented in the
Ensembl annotation, it is also possible that these RNA
are typically rapidly degraded and thus full length repre-
sentations have not been identified in the Ensembl anno-
tation due to a lack of coverage from the supporting
data used by the Ensembl pipelines.

Assessing RNA degradation from Iso-Seq data
To gain a better understanding of the effect that RNA
degradation may have on long read based annotations,
we analyzed the transcript models which had matching
3′ exon-intron structure between the TAMA High (135,
218 transcripts), Polish (126,288 transcripts), and
Ensembl v94 (206,601 transcripts) annotations to see
which annotation had longer 5′ representation (Table 2).
When comparing the TAMA High annotation to the
Polish annotation, there were 67,480 transcript models
with matching 3′ exon-intron structure. Out of those 3′
matching transcript models, 56,198 (83.2%) showed the
TAMA High models as having the longer 5′ representa-
tion with 3357 models (5%) having additional 5′ exons.
This indicates that the Polish pipeline may be producing
a large number of 5′ incomplete transcript models.
While the TAMA High and Polish annotations had simi-
lar numbers of transcript models, roughly half of those
models in each annotation did not have matches be-
tween the annotations. This may be due to differences in
splice junction calls between the two pipelines which is
referred to in this text as splice junction wobble.
When we compared the TAMA High annotation to

the Ensembl annotation using the same method, we
found 23,542 3′ exon-intron structure matching tran-
script models. Out of those matching models, 15,230
(64.7%) showed the TAMA High models as having the
longer 5′ representation with 3521 models (15%) having
additional 5′ exons. Comparing the Polish pipeline an-
notation to the Ensembl annotation using the same
method, we found 26,186 3′ exon-intron structure
matching transcript models. Out of those matching
models, 15,496 (59.2%) showed the Polish models as
having the longer 5′ representation. This could indicate
that over three thousand Ensembl transcript models
have incomplete 5′ ends with missing 5′ exons or that
at least these represent novel alternative transcripts for
these genes. Even though roughly half of the transcript
models (67,480) from the TAMA High and Polish

Table 2 Comparing 5′ completeness of transcript models between annotations

Match comparison TAMA high longer Polish longer Ensembl longer Total matches

TAMA High - Polish 56,198 11,282 – 67,480

TAMA High - Ensembl 15,230 – 8312 23,542

Polish - Ensembl – 15,496 10,690 26,186
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pipelines had matches between the two pipelines, less
than half (23,542 for TAMA High and 26,186 for Polish)
of those transcript models also matched the Ensembl an-
notation. This suggests that the models matching be-
tween the TAMA High and Polish pipelines but not
found in the Ensembl annotation may represent novel
alternative transcript models. Alternatively, they may in-
dicate a type of systemic error in the transcript model
prediction pipelines.
We then compared the intersection between all three

annotations and identified 19,413 transcripts with com-
mon 3′ regions. Of these transcripts, TAMA High had
the longest transcripts in 65.3% of the matches, Ensembl
in 22.4%, and Polish in 12.3% (Fig. 4a). Although the
Polish pipeline annotation had more 3′ matching

transcript models with the Ensembl annotation in the
two way comparison, the number of 5′ longer tran-
scripts were similar to the TAMA High annotation sug-
gesting that the increase in matches came from Polish
pipeline models which were shorter on the 5′ end as
compared to the matching Ensembl transcript models.
While the 5′ shorter transcript models from the Polish
pipeline may be accurate, these results demonstrate that
the use of transcript model matching for assessing pipe-
line performance (as is used in GffCompare) can be af-
fected by false positives from 5′ incomplete models
where these models happen to match the reference an-
notation. Thus we suggest in depth evaluation of tran-
script models for a more accurate understanding of
pipeline performance.

Fig. 4 Degradation signature analysis. a Pie chart of the 3′ transcript level intersection between the TAMA High, Ensembl, and Polish annotations
with the sections representing the number of 5′ extended transcript models from each annotation. b Diagram of degraded RNA representation
with respect to a genome assembly. The reduced 5′ coverage results in 5′ variability in mapped reads. c Degradation signature by chromosome
per SMRT Cell run
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A method for estimating RNA degradation from Iso-Seq data
To measure the relative amount of reads originating
from 5′ degraded RNA, we developed a metric called
the “Degradation Signature” (DegSig) which evaluates
the amount of 5′ exon variability in transcript models
(Fig. 4b). The DegSig metric is calculated using the out-
puts from TAMA Collapse runs and inputting them into
the TAMA Degradation Signature tool. The value of
DegSig is given as a percentage which represents the
proportion of reads derived from 5′ degraded RNA (see
Methods for formula). It is important to note that Deg-
Sig only provides an estimate of 5′ degradation with the
caveat that bona fide alternative transcription start sites
and incomplete first strand synthesis in the preparation
of the cDNA library can also produce 5′ exon variability
which can mimic 5′ degradation. To test our DegSig
metric we applied it to two Iso-Seq datasets from
Chicken brain RNA. One dataset was produced from
TeloPrime [19] 5′ cap selected RNA and the other was
produced without 5′ cap selection. The TeloPrime li-
brary should contain a lower percentage of degraded
transcript sequences since it selects for complete capped
RNAs. The non-cap selected data had a DegSig of 56.3%
while the DegSig for the TeloPrime library data was
23.6%, suggesting a large difference in the proportion of
degraded RNA sequences captured as cDNA by the two
different methods. However, there is no ground truth in
any species for the actual amount of 5′ shorter models
with the same 3′ exon-intron structure as longer
models, thus DegSig is only a rough gauge of the pro-
portion of models which may be from degraded RNA.
We ran DegSig on the UHRR Iso-Seq dataset individu-

ally by SMRT cell and chromosome. Almost all chromo-
somes had a DegSig between 32 and 41% (Fig. 4c).
However, the Y chromosome had a DegSig of 26.7 and
27.2% for SMRT Cell 1 and 2, respectively. One explan-
ation for the much lower DegSig on the Y chromosome
may be due to the lack of read depth for the Y chromo-
some (only 629 and 588 reads from SMRT cells 1 and 2,
respectively). Lower read depths can decrease the DegSig
values due to the lack of coverage for each gene. The
range of DegSig for the human data is higher than that
for the chicken 5′ cap selected RNA data, suggesting
that there may be a significant number of reads from de-
graded RNA and thus reduced representation of full-
length transcripts.

Comparing splice junction identification accuracy
To understand the accuracy of each pipeline for predict-
ing splice junctions, we looked at both mapping mis-
match rates as well as splice junction wobble. Wobble
refers to mis-mapping of splice junctions causing small
differences in the genomic loci of mapped features such
as exon boundaries and splice junction donor/acceptor

sites (Fig. 1c) (See Methods for more detailed explan-
ation of wobble). While the mismatch percentage of
mapped reads are often used to assess the improvement
of long read data from different error correction pipe-
lines [20], this metric is actually not as useful for under-
standing the overall improvement in the transcriptome
annotation. In genome-based transcriptome annota-
tions, typically the most important features to identify
are the transcription start sites (TSS), transcription
end sites (TES), splice junctions, and exon chaining.
These features allow for predictions of coding and
promoter regions that are often crucial for down-
stream analyses. Thus, for transcript structure identi-
fication, errors near the splice junctions have a
greater probability of altering the resulting transcript
model than errors occurring farther away from the
splice junctions. This means that the percentage of
errors within a read may not be as impactful as the
distribution of errors. Thus, another metric for the
performance of error correction methods is to assess
the amount of splice junction wobble between the
predicted transcripts and known transcripts.
To demonstrate this concept we looked at the mapping

mismatch profiles for each mapped read for the inter-read
error correction pipelines (Polish and Lordec) and the
pipelines using the mapped FLNC reads (TAMA High
and TAMA Low). Note that the mapped FLNC reads are
the same for the TAMA High and TAMA Low pipelines.
Using the output from TAMA Collapse we looked at

length of mapped read coverage, mapping identity, clip-
ping, insertions, deletions, and substitution errors. These
values represent the comparison of the mapped reads to
the genome assembly and thus only serve as an estimate
of the true rates of error since difference between the
reads and the reference genome assembly may be caused
by real polymorphism. We calculated the average mis-
match rates by counting the number of base pairs that
were not matching between the mapped read and the
genome sequence and dividing this number by the
length of the mapped read. Mismatches evaluated in-
clude soft clipping, insertion, deletion, and substitution
mismatches but do not include hard clipping.
The mapped FLNC reads (used in TAMA High/Low

pipelines) had the highest average predicted mismatch
rate (2.83%) and the highest amount of each type of mis-
match while the Cluster/Polish reads had the lowest
mismatch rates (0.52%) with the lowest amount of each
type of mismatch. The LoRDEC error corrected reads
(average 1.38% mismatch rate) had a similar amount of
clipping mismatches as compared to the mapped FLNC
reads (Fig. 5a). This indicates that LoRDEC correction
may have some issues correcting the ends of reads that
may be due to lower short read coverage at the ends of
transcripts.
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We then looked at transcript model accuracy by meas-
uring the wobble at splice junctions with respect to tran-
script models annotated in the Ensembl human
annotation for the four different pipelines (Fig. 5b-c).
Wobble typically occurs due a large number of read er-
rors immediately flanking the splice junctions leading to
small shifts in mapping the ends of each exon [21]. The
total wobble for a splice junction within grouped reads
can be larger than the specified wobble threshold due to
a phenomenon we call wobble walking. Wobble walking
occurs when the predicted exon starts/ends are repre-
sented in staggered formation so that the difference be-
tween each closest pair is still within the wobble
threshold but the difference between the most distant
pair is greater than the threshold (Fig. 1c). The amount
of wobble between the transcript models of each pipe-
line compared to the reference annotation provides a
metric for the accuracy of the transcript models

produced by each pipeline. For instance, the expectation
is that if a transcript model from a long read based an-
notation contains identical splice junctions (a splice
junction wobble of zero) as compared to a reference an-
notation, then the long read based transcript model has
the correct predicted splice junctions. We ignored wob-
ble at the transcript start and end sites due to the high
variance of these features in natural RNA [22, 23]. We
also only assessed Ensembl transcript models that had
coverage from all assessed pipelines to account for the
differences in sensitivity between the pipelines.
The TAMA High pipeline with stringent LDE filtra-

tion had the lowest average wobble values per splice
junction while the TAMA Low pipeline produced the
highest average wobble (Fig. 5b-c). Thus, despite the
lower overall error rates in the mapped reads from the
Polish pipeline, the TAMA High pipeline had more
splice junctions matching the Ensembl annotation. This

Fig. 5 Error rate estimation and wobble across pipelines. a The average percent of alignment mismatch by mismatch type across pipelines. b
Average splice junction wobble across all transcript models which matched the Ensembl annotation in all four pipelines. A splice junction wobble
threshold of 30 bp on each side of the splice junction was allowed for matching for these plots. Note that wobble greater than 30 bp is possible
due to wobble walking. c Scatter plots to illustrate the amount of wobble across all pipelines assessed on the transcript models used in Average
Splice Junction Wobble plot
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suggests that the LDE filtration in the TAMA High pipe-
line resulted in more accurate identification of splice
junctions.

Inter-read error correction mis-clustering may produce
erroneous gene models
One of the major concerns when using inter-read error
correction methods such as Cluster/Polish and LoRDEC
is the possibility of combining read sequences from dif-
ferent transcripts that would result in erroneous tran-
script models. The different transcripts could be from
different genes (gene-level jumble) or a combination of
alternative transcripts within the same gene (transcript-
level jumble). Gene-level jumble typically occurs due to
the sequence similarity of paralogues within gene fam-
ilies [23]. In both gene-level and transcript-level jumble,
it is more likely that the highest expressed gene or tran-
script within the read clusters will mask the lower
expressed genes. This is because the final cluster se-
quence is determined by sequence coverage. However,
in cases where the read coverage within a jumble cluster
is similar across unique transcripts, it is more likely that
the resulting cluster read will have a mixture of se-
quences from each unique transcript within the cluster.
To investigate how often these jumble events occur,

we compared the read mappings from the mapped
FLNC reads (TAMA Low) to the inter-read error cor-
rected reads (Polish and Lordec) to find reads that
mapped to different genes and transcripts in each com-
parison. While it is possible that the FLNC read map-
pings are erroneous, they represent the read sequences
without any over-correction. Also reads that map to dif-
ferent loci after inter-read error correction indicate that
there is enough sequence ambiguity to call into question
the effect of the inter-read error correction.
Comparing the mapped FLNC reads to the Cluster/

Polish mapped reads, we found 34,637 reads (0.6% of
mapped reads) that switched from one gene locus to an-
other after Cluster/Polish correction (Fig. 6a). This gene
loci switching involved 6774 genes, 3230 of which were
only found with the TAMA Low pipeline while 104
genes were only found with the Polish pipeline. The
asymmetry of the number of unique genes between the
pipelines suggests that Cluster/Polish may reduce gene
discovery by combining reads from low expression genes
with high expression genes.
To assess the effect of hybrid inter-read error correc-

tion on gene level read jumbling, we compared the
mapped FLNC reads to the mapped LoRDEC corrected
reads. There were 19,064 reads (0.3% of mapped reads)
which switched from one gene locus to another (Fig. 6b),
involving a total of 3476 genes, 775 of which were only
found with the TAMA Low pipeline while 675 genes
were only found with the Lordec pipeline.

To gain a more detailed understanding of what happens
during a read jumble event, we examined the PReferen-
tially expressed Antigen of MElanoma (PRAME) gene
family. The PRAME gene family is highly associated with
cancer development [24] and is used as a biomarker for
identifying various forms of cancer. Within the PRAME
gene family there are 24 annotated paralogues [25]. In this
example, the Polish pipeline fails to detect one of the
PRAME paralogues (PRAMEF8) while erroneously pre-
dicting the expression of another paralogue (PRAMEF15)
which has no FLNC mapped read support. The TAMA
Low pipeline (using FLNC mapped reads) finds 9 reads
mapping to PRAMEF8 (Fig. 6c) while the Polish pipeline
(using Cluster/Polish mapped reads) shows no reads map-
ping to PRAMEF8. Of the 9 PRAMEF8 reads from the
TAMA Low pipeline, 5 of these reads were clustered and
combined with other reads (3 from PRAMEF11, 4 from
PRAMEF4, 2 from PRAMEF7, and 3 from PRAMEF27 ac-
cording to FLNC mapping) into 1 cluster read by Cluster/
Polish resulting in a jumbled cluster read mapping to the
PRAMEF15 gene (Polish pipeline). We analyzed the se-
quence similarity between the two paralogues by aligning
the PRAMEF8 and PRAMEF15 transcript sequences with
Muscle [26] and found that they had 76% identity. While
the two genes have similar exonic sequences, the genome
mapping identity for the reads were higher than the se-
quence similarity between the two paralogues. The PRAM
EF8 FLNC read with the lowest genome mapping identity
score had a mapping identity of 89% and 6 PRAMEF8
FLNC reads had mapping identities over 98%. Thus, there
is strong evidence that the reads mapped correctly in the
TAMA Low pipeline and were altered to the point of mis-
mapping in the Polish pipeline. This particular type of
error could have major consequences for studies aimed at
identifying gene biomarker expression.
We also examined how erroneous inter-read error cor-

rection can lead to transcript level jumbling. In this case,
when reads from different transcripts from the same
gene are grouped for error correction, the resulting se-
quence will, at best, represent only the more highly
expressed transcript and, at worst, represent an errone-
ous jumbled sequence. Comparing the TAMA Low pipe-
line to the Polish pipeline, we found 477,351 reads that
mapped to different transcript models within the same
gene. There were 112,891 transcripts affected by
transcript-level jumbling, 44,852 of which were found
only in the TAMA Low annotation while 1372 transcript
were found only in the Polish annotation. Comparing
the TAMA Low pipeline to the Lordec pipeline, we
found 187,829 reads that mapped to different transcript
models. This involved 142,704 transcripts with 7117
transcripts found only in the TAMA Low annotation
and 11,732 transcript found only in the Lordec annota-
tion. It is important to note that this transcript level
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jumbling assessment is only a rough indication since
without a ground truth for real transcripts it is impos-
sible to know which transcript model is accurate.
To summarize, in both the long and short inter-read

error correction pipelines we saw a significant number
of gene-level and transcript-level read jumbling which
may result in the prediction of gene and transcript
models that are not biologically accurate. Hence, to
avoid read jumbling issues we suggest foregoing inter-
read error correction and instead focus on methods,
such as the TAMA Collapse LDE algorithm, for

removing reads with error profiles that could lead to er-
roneous transcript model predictions.

Analysis of predicted expressed loci not found in the
Ensembl human annotation
Given that the TAMA High pipeline had the highest
sensitivity and precision scores for non-guided annota-
tion in the benchmarking datasets, we used the gene loci
predicted by the TAMA High pipeline to investigate po-
tentially novel genes within the UHRR dataset. To gain
insight into the 23,302 TAMA High predicted gene

Fig. 6 Gene and transcript read swapping from error correction. a Circos plot showing reads mapping to different loci after using Cluster/Polish
for long inter-read error correction. Each line represents one read and the width of each chromosome bin represents the number of reads
(combined thickness of each line). The indented line ends shows FLNC read location and non-indented ends shows read allocation after inter-
read error correction. This plot shows 34,637 reads from 4799 genes moving to 2793 genes after Cluster/Polish. The reads are organized by
chromosome however swapping occurs within chromosome and between chromosomes. b Circos plot as above but after hybrid inter-read
correction with LoRDEC. Each line represents a single read moving from one gene to another with 19,064 reads from 2292 genes moving to
2319 genes after LoRDEC error correction. c The PRAMEF8 gene has coverage from 9 FLNC mapped reads (TAMA Low). Five of these reads were
clustered and combined with other reads into one cluster read by Cluster/Polish resulting in a jumbled cluster read mapping to the PRAMEF15
gene (Polish pipeline). This suggests a false negative for PRAMEF8 and false positive for PRAMEF15 in the Polish pipeline due to the use
of Cluster/Polish
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models not found in Ensembl (TAMA High specific
gene models), we looked at several features which pro-
vide support for or against real gene models: coding po-
tential, number of exons, intronic overlap with other
genes, overlap with regulatory features, and the presence
of immediately downstream genomic poly-A stretches.
The combination of coding potential and splice junc-
tions is often used as evidence of a functional gene. Con-
versely, overlap with introns (from other genes),
genomic poly-A stretches immediately downstream of a
gene model, and the absence of splice junctions (single
exon transcripts) provide evidence that the source of the
model could be from either non-functional transcribed
products or genomic contamination.
Coding potential was assessed using three complementary

methods. First, we used an open reading frame sequence
analysis tool, CPAT [27], to detect coding potential. This
method only works when the transcripts models do not con-
tain frame shifts caused by erroneous splice junction calling.
Second, we used TAMA merge to identify gene models that
overlapped the genomic loci (on the same strand) of protein
coding genes within the Ensembl annotation. Third, we used
the TAMA ORF/NMD pipeline which is a frame shift-
tolerant method of matching transcript sequences to peptide
sequences from the UniProt [28] database. We combined
these three methods to account for the various errors that
can cause false negatives in protein coding gene prediction.
Only a small number of the TAMA High predicted gene

models which were not found in the Ensembl v94 annotation
(18 out of 23,302) were supported by all features which are
considered evidence for functionality (multi-exonic, coding,
intergenic, and processed poly-A) (Fig. 7). This is expected
given that these features are used by short read RNA-seq an-
notation pipelines for validation. Therefore, many of the gene
models with these features are likely to have already been
identified within the Ensembl annotation.
There were 1059 TAMA High specific gene models

which were intergenic, single exonic, and had genomic
poly-A. These features are commonly ascribed to gen-
omic DNA contamination. However, the precise mech-
anism for how these sequences make it through to the
final sequencing library is not well characterized.
The two most common sets of features for the TAMA

High specific gene models are “single exonic, non-
coding, intronic gene overlap, and genomic poly-A” at
24% (5679) and “single exonic, coding, intronic gene
overlap, and genomic poly-A” at 19% (4440). These fea-
ture sets are typically used as indicators for non-real
models since they could be derived from internal prim-
ing of unprocessed RNA. However, this would require
further truncation of the template so that the resulting
model does not overlap with transcripts from the gene
of origin. In theory a subset of loci with the first feature
set could be comprised of lncRNA while a subset of loci

with the second feature set could be comprised of proc-
essed pseudogenes. Together, these account for over
43% of the TAMA High specific gene models.
There were 2566 (11% of TAMA High specific gene

models) gene models that were predicted to be non-
coding with processed poly-A tails. Of these, 461 were
multi-exonic while 2105 were single exon genes (Fig. 7).
Given that these models did not overlap any exonic re-
gions of gene models in the Ensembl annotation, this
would represent a large increase in the number of pre-
dicted lncRNA for the human genome.
There were 1557 (7%) TAMA High specific gene

models with features (multi-exonic, coding, intron over-
lapping, and processed poly-A) that are indicative of real
protein coding genes that exist within the introns of larger
genes. However, it is possible that these are alternative
transcripts from the surrounding genes but due to lack of
5′ completeness, the overlapping 5′ exons were not repre-
sented in the transcript models. If these gene models are
derived from alternative transcripts of their surrounding
genes, these models would represent novel transcripts.
These analyses were based on the Ensembl v94 human

annotation, the Ensembl v100 annotation has since been
released. This new Ensembl version has more than a
thousand new lncRNA gene models as compared to v94.
We compared the TAMA High annotation to v100 and
found 144 matching lncRNA genes that were not
present in v94. This raises questions regarding what
exactly is present in our sequencing data and what is the
best way to further dissect this information to produce
biologically meaningful results.
With the UHRR being one of the most carefully pre-

pared RNA samples, this would indicate that researchers
would require more advanced methods of either RNA
preparation and/or sequencing analysis to confidently
identify novel genes.

Discussion
The UHRR PacBio Sequel II Iso-Seq dataset is the result
of one of the most accurate high-throughput long read
transcript sequencing technologies [29] applied to an
RNA library used as a reference for gene profiling exper-
iments. Thus, this dataset represents the technological
limits and challenges that are pertinent to all RNA se-
quencing studies as well as the potential of long read
transcript sequencing for discovering novel genes and
isoforms. To date, there has been a heavy emphasis on
the use of multi-omics or orthogonal data to identify
what is real and functional within the transcriptome.
While this is certainly a powerful means of investigating
novel genes, the pipelines developed for this purpose
often overlook the need to properly process individual
sources of data before integrating across data types.
Using TAMA, we have demonstrated some key issues
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with current long read RNA sequencing data pipelines
that could have a major influence on current transcrip-
tomic studies. Firstly, mis-mapping of reads with se-
quence errors around splice junctions (error generated
wobble) can produce transcript models with false splice
junction predictions. Secondly, RNA degradation can re-
sult in 5′ incomplete transcript models that can have
large downstream effects for data processing and inter-
pretation. Thirdly, inter-read error correction can also
cause false positives and negatives for gene and tran-
script model predictions. Finally, the combination of
these problems also brings up challenges for using long
read data in expression quantification experiments. If a
significant number of reads can change transcript assign-
ment due to either lack of 5′ completeness or changes
in mapping loci after inter-read error correction, quanti-
fication estimates may not reflect the true biological
state. While sequence error correction is currently the
main focus of many long-read bioinformatic tools, it
should not be applied at the cost of biological accuracy
as could be the case for the gene and transcript read
jumbling events from long read and short read inter-
read error correction.

The resulting transcriptome annotation with TAMA
portrays a very different composition of gene models
compared to public transcriptome annotations. These
differences suggest the existence of possibly thousands
of potential novel genes (many of which are classified
within under-represented biotypes) and/or artifacts aris-
ing during the sequencing pipeline.
The underlying issue in all methodologies is the balance

between retaining useful information and discarding mis-
leading information. However, the treatment of long read
RNA data requires customization to accommodate both
the sequencing technology as well as the biological assump-
tions. The TAMA tool kit is designed to allow the user to
tune its behavior. This means that TAMA Collapse and
TAMA Merge can be used with less stringent settings for
maximum discovery potential and/or high stringent param-
eters for curating reference annotations. The resulting gene
models can be assessed with the TAMA ORF/NMD pipe-
line for identifying coding similarity to know protein coding
genes. However, more development is needed for discern-
ing between long non-coding RNA and RNA sample noise.
This may require wet lab methods such as improved 5′ cap
selection for biasing against RNA sample noise.

Fig. 7 Putative novel genes breakdown. Novel gene breakdown by features. Combinations of features provide support for each gene being
either real and belonging to a specific biotype or not real and the result of erroneous model predictions. The largest feature set faction are
indicative of non-real models. However, there are still thousands of loci with feature sets which are compatible with real genes
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From our analyses of the UHRR PacBio Sequel II Iso-
Seq data with TAMA, we have identified that there are
issues with RNA preparation methods and/or there are
still thousands of novel genes that have not been anno-
tated in the human genome.

Conclusions
Long-read transcript sequencing presents new challenges
for annotating transcriptomes. Analysis of the UHRR Pac-
Bio Sequel II Iso-Seq data suggests that there may be
thousands of unannotated non-coding genes within the
human genome. However, the methods for sequencing li-
brary preparation and data processing require more devel-
opment to distinguish expressed genes from sequencing
noise. Wobble analysis should complement read mapping
identity for assessing transcript assembly pipelines. De-
graded RNA within samples can lead to 5′ incomplete
transcript model predictions. Inter-read error correction
(prior to mapping) can cause read jumbling and gene
model ambiguity. Read jumbling represents one challenge
for using long read data for quantification. Long-read se-
quencing analysis benefits from tools (such as TAMA)
which allow for algorithmic tuning to accommodate se-
quencing error rates and biological assumptions.

Methods
TAMA Version Commit 39c1270c6e1ef2cf5d39f7f047-
fa15e0f1a6c790 was used for this study.
More detailed information on how TAMA works can

be found here:
https://github.com/GenomeRIK/tama/wiki

Wobble
Wobble is defined in this text as the distance measured
in bases between the mapped starts and ends for exons.
This term is used to describe small differences (< 50 bp)
in predicted starts/ends based on mapped reads. These
differences can occur due to real differences in starts/
ends or due to errors in the reads flanking the starts/
ends. For example, if a read has a number of missing
bases immediately flanking a splice junction (SJ are com-
prised of one exon start and one exon end), the pre-
dicted splice junction from mapping may be off by the
same number of missing bases. TAMA Collapse and
TAMA Merge both use wobble to allow for the grouping
of reads to be collapsed into a single transcript model.
This is assessed by comparing every pair of transcript
models within the same genomic loci (at least 1 bp same
strand overlap connecting all loci grouped reads). In
each pair assessment, each exon start and end from each
predicted transcript model is compared to see if they
occur within the user defined wobble threshold.
Due to this allowance of wobble between predicted

starts and ends of exons, a phenomenon termed in this

text as wobble walking can occur (Fig. 1c). Wobble walk-
ing is defined as a situation where 3 or more transcript
models have exon starts or ends where the most up-
stream exon start/end prediction and the most down-
stream exon start/end prediction occur at a distance
greater than the wobble threshold. However, the other
exon start/end positions occur in such a way that when
ordered based on genomic position there are no con-
secutive pairs of exon starts/ends which are farther apart
than the wobble threshold. Thus by using the pairwise
non-stochastic method of matching transcript models,
all transcript models in this situation would match due
to the linking effect across all represented exons starts/
ends. When this situation occurs, the distance between
the exon starts/ends between the grouped transcripts
used for collapsing can be greater than the user defined
wobble threshold.

TAMA collapse
TAMA Collapse performs multiple functions: transcrip-
tome assembly, variant calling, genomic downstream
poly-A detection, and transcript/gene level quantifica-
tion. The primary function is to create a non-redundant
error corrected genome reference based transcriptome
annotation. TAMA Collapse takes as input a sorted
SAM/BAM file representing long read RNA sequencing
data mapped onto a reference genome assembly as well
as a fasta file representing the reference genome assem-
bly used for mapping. TAMA Collapse is designed to be
highly tunable and relies on 4 main parameters to define
its behaviour: wobble thresholds, collapse mode, splice
junction ranking, and the amount of mapping mismatch
surrounding splice junctions (LDE).
The wobble thresholds and collapsing modes are used

to define how mapped reads are grouped for collapsing.
Wobble thresholds can be defined for the TSS, TES, and
SJ. Wobble thresholds are given in integer values repre-
senting base pair distances. These thresholds define the
limit between two features (such as TSS) to be consid-
ered a matching feature. There are two collapsing modes
which are termed capped and non-capped modes. The
capped mode requires that all grouped transcript models
(mapped reads) have the same number of exons and all
their exons have matching start and end sites as per the
user defined wobble thresholds. Matches are performed
pairwise in a non-stochastic algorithm. This pair-wise
matching is what leads to wobble walking.
The splice junction ranking and local density error al-

gorithm are designed to identify the most likely real
splice junctions given a group of matching transcript
models. Both the splice junction ranking and LDE rely
on user defined threshold of distance from SJ to assess.
The LDE feature can be turned on or off. When turned
on, the user can specify the distance from the splice
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junction to assess and the number of allowed mis-
matches within that distance. If the number of mis-
matches exceed the threshold, the read is discarded.
This is intended to prevent erroneous splice junction
predictions. The splice junction ranking can be turned
on or off by the user. When turned off, the splice junc-
tions are selected based on the the highest read cover-
age. When splice junction ranking is turned on, TAMA
Collapse ranks the splice junction read support based on
the amoun of mismatches flanking the splice junctions.
In this method, a splice junction with read support
where there are no mismatches flanking the splice junc-
tion is given the highest rank and chosen as the final
predicted splice junction.
While TAMA Collapse has multiple file outputs, the

main output is a bed12 formatted annotation file con-
taining all non-redundant transcript models.

TAMA merge
TAMA Merge is designed to remove transcript model
redundancy either between multiple input annotations
or within a single input annotation. TAMA Merge ac-
cepts as input 1 or more annotations in bed12 format.
TAMA Merge has multiple output files, however the
main output file is an annotation file in bed12 format.
TAMA Merge also keeps track of the transcript models
and their source annotation which were “merged”. This
means that for each transcript model, TAMA Merge
provides information on which input annotations had
transcripts matching it. TAMA Merge uses the same
wobble parameter/algorithm and collapsing modes as
TAMA Collapse. However, individual input files can be
assigned different collapsing modes. This is useful for
merging long read data which is likely to contain 5′
truncated transcript models with a reference annotation.
In addition to collapsing mode and wobble thresholds,
TAMA Merge allows user to assign priority to different
input annotation for features such as TSS, TES, and SJ.
For instance, a short read derived annotation can be
given priority for SJ, while a long read annotation can be
given priority for TSS and TES.

TAMA read support levels
The tama_read_support_levels.py tool is designed to
generate a file that relates each transcript and gene
model with the ID’s of reads which were used to gener-
ate those models. This can also be thought of as produ-
cing read count information for transcripts and genes.
The tama_read_support_levels.py tool works on all an-
notation output files from all TAMA modules as well as
on PacBio annotation files. This tool was used to identify
reads that were involved in read jumbling.

TAMA filter fragments
The tama_remove_fragment_models.py tool is used to
remove transcript models that appear to be fragments of
full length models. The criteria for fragment models is
that they contain the same internal exon-intron struc-
ture as a transcript that is longer on both the 5′ and 3′
ends. The splice junction wobble can be adjusted by the
user.

TAMA remove single read models
The tama_remove_single_read_models_levels.py tool is
used to filter a transcriptome annotation based on the
amount of read support for each transcript model. This
can be run on either the results of TAMA Collapse or
the results of TAMA Merge. When used with TAMA
Merge with multiple input annotations, tama_remove_
single_read_models_levels.py can filter out models based
on the number of supporting sources for each transcript
model. When TAMA Merge is used to merge a long
read data based annotation with a reference annotation.
tama_remove_single_read_models_levels.py can be used
to filter out models in the long read annotation that do
not match the reference annotation. This is how TAMA
performs guided annotation.

TAMA find model changes
The tama_find_model_changes.py tool is designed to
identify reads which have different transcript/gene
model assignments between different pipelines. This is
referred to as read jumble in this study. This tool takes
as input a TAMA Merge annotation which was gener-
ated by merging annotations from the 2 pipelines to be
compared. This tool also requires a read support file
generated by tama_read_support_levels.py. Read jumbles
are identified by using the read ID’s and comparing the
transcript models they are assigned to within the TAMA
Merge annotation file. Any read that supports more than
1 transcript model is considered to be involved in a read
jumbling event.

TAMA ORF/NMD pipeline
The TAMA ORF/NMD pipeline is a method for identi-
fying open reading frames (ORF) from transcript models
and relating them to known protein coding genes. Non-
sense mediated decay (NMD) product predictions are
also made by identifying stop codons which occur 50 bp
upstream of a splice junction. The first step of the pipe-
line is the conversion of the transcript nucleotide se-
quences into amino acid sequences. This is done by
looking for all ORF’s which have a stop codon and
selecting the longest ORF’s from each frame (3 forward
strand frames). Start codons are not required for an
ORF prediction, however, if a start codon is not found,
the corresponding ORF is labeled as evidence that the
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transcript is from a degraded RNA. BlastP is then used
to relate the resulting amino acid sequences to a protein
database. The ORF from each transcript with the best
hit to the database is then selected as the predicted true
ORF. Using the ORF information, the transcripts are
then labeled with attributes based on the protein hit.

TAMA degradation signature
The TAMA Degradation Signature (DegSig) score is
intended to provide a metric for the relative amount of
sequencing reads originating from degraded RNA. The
DegSig score is calculated by the following formula:
DegSig = (CT −NT)/CT
Where CT is the number of multi-exon transcript

models from genes with more than 1 read support after
using TAMA Collapse with the capped mode, and NT is
the number of multi-exon transcript models from genes
with more than one read support after using TAMA
Collapse with the no_cap mode.

Simulated long read datasets and processing for
benchmarking
The simulated PacBio and Nanopore datasets (https://
figshare.com/articles/RNA_benchmark_datasets/536
0998) were produced in another study [11] using PBSIM
[12]. These datasets were also used and described in the
Stringtie2 paper [9].
Both datasets were mapped to chromosome 19 of the

human reference genome as provided in the simulated
dataset. Minimap2 [30] (version 2.15-r915-dirty) with
the parameters “--secondary=no -ax splice -uf” was used
for mapping. Samtools [31] (version 1.9) was used for all
SAM/BAM file handling.
For the TAMA Low processing, TAMA Collapse was

used with the parameters “-d merge_dup -x ${capflag} -a
200 -z 200 -sj sj_priority -log log_off -b BAM”. For the
TAMA High processing, TAMA Collapse was used with
the parameters “-d merge_dup -x no_cap -a 300 -m 20
-z 300 -sj sj_priority -lde 3 -sjt 10 -log log_off -b BAM”.
After TAMA Collapse, both TAMA Low and TAMA
High shared the same processing with tama_remove_
fragment_models.py used with default parameters to re-
move transcript models that appear to be fragments of
longer models. This resulted in the final annotations for
both pipelines.
For the TAMA Guided pipeline, the output from the

TAMA Low TAMA Collapse run was merged with the
reference annotation containing both expressed and
non-expressed transcript models using TAMA Merge
with “-a 300 -z 300 -m 20 -d merge_dup” parameters.
The input filelist.txt file for TAMA Merge set both an-
notations to capped mode with full priority (1,1,1) given
to the reference annotation. The tama_remove_single_
read_models_levels.py tool was then used with “-l

transcript -k remove_multi -s 2” parameters resulting in
the final annotation. The tama_read_support_levels.py
tool was used at each step of processing to keep track of
read support for each transcript model.
For the Stringtie2 pipeline, Stringtie2 (v2.1.3b) was

used with the “-L” parameter after mapping.
For the Stringtie2 Guided pipeline, Stringtie2 (v2.1.3b)

with “-L -G <reference annotation>” parameters was
used. The reference annotation used was the same anno-
tation as used in in TAMA Merge for the TAMA
Guided pipeline.
For the TALON pipeline (unguided), a blank database

was created using “talon_initialize_database” with default
settings and an empty GFF file. Then “talon_label_reads”
was used with “--t 1 --ar 20 --deleteTmp” parameters.
Then default “talon” was used. This was followed by
“talon_filter_transcripts” using “--maxFracA 0.5 --min-
Count 5 --minDatasets 1” parameters. The default
“talon_create_GTF” was used to create a GTF file for the
annotation.
For the TALON guided pipeline, a database was cre-

ated using “talon_initialize_database” with default set-
tings and the same GFF reference annotation file used
for TAMA Guided and Striingtie2 Guided. Then default
“talon” was used. This was followed by “talon_filter_
transcripts” using” --maxFracA 0.5 --minCount 1
--minDatasets 2″ parameters. The default “talon_create_
GTF” was used to create a GTF file for the annotation.
All resulting annotations were compared to the anno-

tation file containing all expressed transcript models
using GffCompare (v0.11.2).

Universal human reference RNA and PacBio sequencing
RNA and cDNA library preparation and sequencing
were undertaken by Pacific Biosciences. Pacific Biosci-
ences made the data available for public use via a Github
repository (https://github.com/PacificBiosciences/Dev-
Net/wiki/Sequel-II-System-Data-Release:-Universal-Hu-
man-Reference-(UHR)-Iso-Seq). The RNA library was
first created by pooling the Universal Human Reference
RNA (Agilent) with SIRV Isoform Mix E0 (Lexogen).
cDNA was prepared from the RNA using the Clontech
SMARTer kit. The sequencing library was prepared
using the Iso-Seq Template Preparation for Sequel Sys-
tems (PN 101–070-200) and Sequencing Sequel System
II with “Early Access” binding kit (101–490-800) and
chemistry (101–490-900). The sequencing library was
sequenced on two Sequel II SMRT cells.

Iso-Seq processing
The UHRR Sequel II Iso-Seq data was processed into
CCS reads using the ccs tool with the parameters
“--noPolish --minPasses = 1”. CCS reads with cDNA
primers and polyA tails were identified as full-length,
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non-concatemer (FLNC) reads using lima (−-isoseq –
dump-clips) and isoseq3 refine (−-require-polya).

Lexogen SIRV Iso-Seq dataset benchmarking
The UHRR Sequel II Iso-Seq data also contained a spike-
in of Lexogen SIRV RNA. For the Cupcake pipeline we
used the FLNC reads from each SMRT cell and used
Cluster/Polish for long read inter-read error correction.
We then mapped the resulting reads using Minimap2
(−-secondary = no -ax splice -uf -C5) to the “SIRV_iso-
forms_multi-fasta_170612a.fasta” reference genome as-
sembly provided by Lexogen. After mapping we ran
Cupcake Collapse “collapse_isoforms_by_sam.py” with the
Cupcake manual recommended settings “--dun-merge-5-
shorter”. We then used Cupcake “chain_samples.py” to
merge the assemblies from each SMRT Cell. This resulted
in the final annotation for the Cupcake pipeline.
For all the other pipelines (TAMA Low, TAMA High,

TAMA Guided, Stringtie2, Stringtie2 Guided, TALON,
and TALON Guided), we mapped the FLNC reads to
the same reference genome as above using the same pa-
rameters for Minimap2.
For the TAMA Low processing, TAMA Collapse was

used with the parameters “-d merge_dup -x no_cap -sj
sj_priority -log log_off -b BAM -lde 5 -sjt 20 -a 100 -z
100”. For the TAMA High processing, TAMA Collapse
was used with the parameters “-d merge_dup -x no_cap
-sj sj_priority -log log_off -b BAM -lde 1 -sjt 20 -a 100
-z 100”. After TAMA Collapse, both the TAMA Low
and TAMA High pipelines used TAMA Merge (−a 100
-z 100 -d merge_dup) was used to merge the TAMA
Collapse outputs from each SMRT Cell. The tama_re-
move_single_read_models_levels.py tool was then used
with “-l transcript -k remove_multi -s 2” parameters
resulting in the final annotation. The tama_read_sup-
port_levels.py tool was used at each step of processing
to keep track of read support for each transcript model.
For the TAMA Guided pipeline, TAMA Collapse (−d

merge_dup -x capped -sj sj_priority -log log_off -b BAM
-a 0 -m 0 -z 0) was used on the Minimap2 output files for
each SMRT Cell. TAMA Merge (−d merge_dup -a 0 -m 0
-z 0) was then used to combined the TAMA Collapse out-
puts from each SMRT cell. TAMA Merge (−d merge_dup
-a 0 -m 0 -z 0) was then used again to match the output
with the SIRV annotation file (SIRV_isoforms_multi-fasta-
annotation_C_170612a.gtf).. The tama_remove_single_
read_models_levels.py tool was then used with “-l tran-
script -k remove_multi -s 2” parameters resulting in the
final annotation. The tama_read_support_levels.py tool
was used at each step of processing to keep track of read
support for each transcript model.
For the Stringtie2 pipeline, Stringtie2 (v2.1.3b) was

used with the “-L” parameter after mapping.

For the Stringtie2 Guided pipeline, Stringtie2 (v2.1.3b)
with “-L -G <reference annotation>” parameters was
used. The reference annotation used was the same anno-
tation as used in in TAMA Merge for the TAMA
Guided pipeline.
For the TALON pipeline (unguided), a blank database

was created using “talon_initialize_database” with default
settings and an empty GFF file. Then “talon_label_reads”
was used with “--t 1 --ar 20 --deleteTmp” parameters.
Then default “talon” was used. This was followed by
“talon_filter_transcripts” using “--maxFracA 0.5 --min-
Count 10 --minDatasets 2” parameters. The default
“talon_create_GTF” was used to create a GTF file for the
annotation.
For the TALON guided pipeline, a database was cre-

ated using “talon_initialize_database” with default set-
tings and the same GFF reference annotation file used
for TAMA Guided and Striingtie2 Guided. Then default
“talon” was used. This was followed by “talon_filter_
transcripts” using” --maxFracA 0.5 --minCount 5
--minDatasets 2″ parameters. The default “talon_create_
GTF” was used to create a GTF file for the annotation.
All resulting annotations were compared to the Lexo-

gen SIRV annotation file (https://www.lexogen.com/wp-
content/uploads/2018/08/SIRV_Set2_Sequences_170612
a-ZIP.zip) using GffCompare (v0.11.2).

Chicken brain RNA and PacBio sequencing
The non-cap selected chicken brain Iso-Seq data is from
the European Nucleotide Archive submission PRJEB13246
which was previously analyzed and published [4].
The cap selected chicken brain Iso-Seq data was

from an adult Advanced Intercross Line chicken
whole brain sample. The RNA was extracted from the
tissue sample using the Qiagen RNeasy Mini Kit. The
RNA was converted to cDNA using the Lexogen Tel-
oPrime kit. The resulting cDNA library was sent to
Edinburgh Genomics for sequencing on the Sequel
system using 2.0 chemistry.

TAMA low pipeline for UHRR
Full descriptions of the TAMA algorithms can be found
in the wiki pages of the Github repository (https://
github.com/GenomeRIK/tama/wiki). FLNC reads were
mapped to GRCh38 (Homo_sapiens.GRCh38.dna_
sm.primary_assembly.fa) using Minimap2 (−-secondary =
no -ax splice -uf -C5 -t 8). The resulting bam files were
then split into 12 smaller bam files using tama_
mapped_sam_splitter.py which splits bam files by
chromosome thus preventing splitting between reads
from the same gene. Split bam files were annotated
using TAMA collapse (−d merge_dup -x no_cap -a 100
-z 100 -sj sj_priority -lde 5 -sjt 20 -log log_off) then
merged into a single bed file using TAMA merge (−a
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100 -z 100). The tama_read_support_levels.py tool was
used at each step of processing to keep track of read
support for each transcript model.

TAMA high pipeline for UHRR
TAMA collapse was run on the split bam files using
more stringent parameters that filter out any mapped
read with more than 1 error within 20 bp of a splice
junction (−d merge_dup -x no_cap -a 100 -z 100 -sj sj_
priority -lde 1 -sjt 20 -log log_off). Merging was done in
the same manner as the TAMA Low pipeline. Transcript
models supported only by reads from a single SMRT
Cell were filtered out using tama_remove_single_read_
models_levels.py (−l transcript -k remove_multi -s 2).
The tama_read_support_levels.py tool was used at each
step of processing to keep track of read support for each
transcript model.

Polish pipeline for UHRR
FLNC reads from the isoseq3 refine step were clustered
using isoseq3 cluster and isoseq3 polish with default pa-
rameters. The output high-quality transcripts were
mapped to the genome using Minimap2 (−-secondary =
no -ax splice -uf -C5 -t 8) and processed using TAMA
collapse (−d merge_dup -x no_cap -a 100 -z 100 -sj sj_
priority -lde 5 -sjt 20 -log log_off). The tama_read_sup-
port_levels.py tool was used at each step of processing
to keep track of read support for each transcript model.

Lordec pipeline for UHRR
FLNC reads from the isoseq3 refine step were error corrected
using LoRDEC (−k 31 -s 3) with short read RNA-seq data
from the Universal Human Reference RNA (Agilent)
(https://www.ncbi.nlm.nih.gov/sra/SRX1426160) (https://rna-
journal.cshlp.org/content/22/4/597.full.pdf). The resulting
error-corrected reads were processed in the same way as the
TAMA Low starting from the mapping step. The tama_
read_support_levels.py tool was used at each step of process-
ing to keep track of read support for each transcript model.

Finding transcript matches and loci overlap between Iso-
Seq annotations and the Ensembl annotation
We used TAMA Merge to compare the annotations
from each Iso-Seq pipeline (TAMA Low, TAMA High,
Polish, and Lordec) to the Ensembl v94 annotation. All
input annotations were set to capped mode in the input
fielist.txt files. The “-a 300 -z 300 -m 0 -d merge_dup”
parameters were used to run TAMA Merge. Transcript
matches were identified from the trans_report.txt file
while gene loci overlap was identifed from the gene_
report.txt file.

Comparing 5′ completeness between the TAMA high,
polish, and Ensembl v94 annotations
We used TAMA Merge to compare the annotations for
pairs of annotations (TAMA High-Polish, TAMA High-
Ensembl, Polish-Ensembl). Both annotations in each
merging were given no_cap parameters in the filelist.txt
input file. We used the same TAMA Merge settings as
were used for identifying matching transcript models be-
tween annotations. We used the TAMA Merge trans_
report.txt output file to identify which source annotation
had the longer 5′ representation for each matching tran-
script model.

Degradation signature analysis
We split the SAM files from the mapping by chromo-
some. We then used these single chomosome SAM files
as inputs to 2 TAMA Collapse runs. One TAMA Col-
lapse run used the capped mode and the other run used
the no_cap mode. Both runs used “-a 100 -z 100 -sj sj_
priority -lde 5 -sjt 20 -log log_off -b BAM” parameter
settings. We then used the trans_read.bed files from
each pair of TAMA Collapse runs as inputs for the
tama_degradation_signature.py tool which calculated the
DegSig scores.

Mismatch and wobble analysis
The mismatch profiles for the mapped FLNC, Cluster/
Polish corrected, and LoRDEC corrected reads were ex-
tracted from the TAMA Collapse read.txt output files
generated in each pipeline.
To assess the wobble between each pipeline and the

Ensembl annotation, we used TAMA merge with param-
eter settings (−a 300 -z 300 -m 30 -d merge_dup) which
considers any transcripts which have up to 300 bp differ-
ence in their transcription start and end and up to 30 bp
difference in their splice junctions starts and ends to
have “nearly identical structures”. This is the definition
for matching at transcript level.

Read jumbling analysis
Read ID’s were tracked through each processing step
using the tama_read_support_levels.py tool. TAMA
Merge was used to combine the annotations from the
different pipelines (TAMA Low-Polish, TAMA Low-
Lordec) using the same parameters as the was used in
the wobble analysis. The TAMA Merge output and
tama_read_support_levels.py outputs were used as input
for the tama_find_model_changes.py tool that identified
reads which had different transcript model assignment
between each pair of pipelines.

Coding potential analysis
For the Ensembl match evidence of coding potential, we
labelled the Iso-Seq annotation genes as coding if they
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had any overlap on the same strand as an Ensembl-
annotated protein coding gene.
CPAT was used with default parameters and the

built-in Human Hex models. A cutoff score of
0.364 (suggested by the CPAT creators [27]) was
used to segregate between coding and non-coding
transcripts.
We used the TAMA ORF/NMD pipeline for the third

source of coding evidence. The transcript models were
converted into fasta sequences using Bedtools [32].
ORFs were predicted for each transcript from the fasta
file then translated into amino acid sequences. BlastP
[33] (−evalue 1e-10 -ungapped -comp_based_stats F) was
used to match the amino acid sequences to the UniRef90
database, where the top hits were selected as the best
ORF prediction. Transcripts with no hits were consid-
ered to be non-coding.

Matching TAMA high annotation to Ensembl v100
For identifying gene models found in the Ensembl v100
human annotation matching gene models predicted in
the TAMA High annotation which were not present in
the Ensembl v94 human annotation, we used TAMA
Merge with “-m 0 -a 300 -z 300” parameters in capped
mode for all three annotations (TAMA High, Ensembl
v94, and Ensembl v100). These parameters group tran-
script models between the annotations if they share the
exact same splice junctions and exon chaining but with
an allowance of up to 300 bp difference in TSS and TES.
We then identified all gene models which were the prod-
uct of merging a TAMA High annotation gene with an
Ensembl v100 gene and with no Ensembl v94 gene rep-
resented for that loci.
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1186/s12864-020-07123-7.
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3.3 Discussion 

 

In this study, I wanted to illustrate three main aspects of long read RNA sequencing. The first 

aspect was to look at what is the top limit in terms of producing long read RNA sequencing 

data. I felt that the use of a very standardized and well documented sample such as the UHRR 

in conjunction with the most accurate long read RNA sequencing method truly created the limit 

of expectation. Basically, all other studies should probably not expect to generate data that has 

better characteristics with respect to RNA degradation, sample processing, and sequencing. 

With this set as an assumption, I felt it was useful to dive into the data processing to see what 

issues and uncertainties still remained. Thus the second aspect I wanted to cover is the 

complexity that we still see even after we have established such a high bar of sample quality, 

processing, and sequencing technology. The third aspect that I cover in this article is the 

amount of variability in final results that can be produced by simple changes in the data 

processing methodology. I wanted to explain how small changes in the algorithms can lead to 

large differences in total numbers of transcripts in the final annotation as well as how these 

models present. Overall, these three aspects were meant to give a foundation for what types of 

assumptions we could make and how to assess the choices we make in data processing. 

 

One major issue that I see with current studies using long read RNA sequencing from 

transcriptome annotation is the lack of understanding of how the data processing pipelines bias 

the final outcome. This is especially problematic when special characteristics of either PacBio or 

Nanopore sequencing are not taken into account. For example, there were studies that utilized 

Nanopore direct RNA sequencing for the purpose of general transcript discovery and 

annotation despite this method having major disadvantages to cDNA based methods including 

higher error rate and issues with RNA structure interference with Nanopore sequencing[130].  

In many cases, Nanopore long read RNA sequencing data is often mapped to the genome 

without removing adapters or poly-A tails[131]. Leaving the adapters and poly-A tail sequences 
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as part of the read sequence to be mapped results in poorer mapping performance and the 

potential for mapping to a completely different loci.  

 

There are still efforts to use short read data to error correct long read data despite major flaws 

in this general approach[132]. The inherent issue with using short read data to correct long 

read data is that there is a compromise between rescuing low quality reads and erroneously 

“correcting” reads. Essentially, if the short read aligns well to a long read then the number of 

errors will be minimal. However, if a short read has significant differences in sequence to the 

aligned long read then it could be due to improper alignment. Despite providing proof of this 

inter-read alignment issue, many studies still use pipelines which include the use of clustering 

algorithms for error correction[133][86]. This is most likely due to the fact that this method is 

part of the official PacBio Iso-Seq software package.     

 

I also wanted to highlight that many of the criticisms that people have of long read RNA 

sequencing and the results that have been generated so far are based on a lack of 

understanding key underlying principles of sample processing that were essentially hidden by 

the lack of clarity that comes with short read RNA sequencing. There were many issues that 

plagued short read methods that were simply overlooked because the indicators for these 

issues were not visible given the limitation of short reads. However, the perception seems to be 

changing with more articles supporting the use of long read RNA sequencing. This includes 

advocating the use of long read RNA sequencing for medical genetics[134] and cancer 

research[135].  

 

By using a dataset that should represent high quality RNA and state of the art PacBio 

sequencing, I found different methods for processing the sequencing reads to produce optimal 

compromises between sensitivity and specificity of transcript model detection. I found that 

there are ways to filter signal from noise without as much reliance on read coverage. I also 

explore the concept of wobble in determining true splice junctions in the predicted transcript 
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models. The TAMA software is optimized for the pursuit of low abundance novel RNA 

sequences and thus can be used to improve lncRNA discovery.  
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Chapter 4: Identifying lncRNA in the chicken transcriptome 

 

4.1 Introduction and aims 

 

In the previous results chapters, I focused on the development of methods and pipelines to 

enhance the use of long read RNA sequencing for lncRNA discovery. While I performed some 

preliminary analysis to gain some insight into lncRNA, I did not perform in depth analysis of the 

lncRNA predictions. In this chapter, I have added further Iso-Seq data from different tissue 

types. These include spleen, macrophage, testes, and ovaries. These new datasets are 

predominantly comprised of 5’ cap selected and normalized cDNA libraries. The cDNA 

normalization improves the sampling of low abundance genes. Since lncRNA are typically lowly 

expressed, this technique should allow for the detection of more lncRNA. The 5’ cap selection 

was performed to increase the proportion of reads representing full-length RNA sequences. 

Increasing the likelihood of picking up full-length reads, especially from spliced transcripts, 

reduces the representation of genomic contamination and makes it easier to identify real 

transcript models. This is especially true for the elusive sense exonic class of lncRNA. The logic 

behind this is that if we have more assurance that the reads are full length, we can rule out the 

possibility that sense exonic models are not simply the fragments of an incompletely processed 

RNA from that region. 

 

The addition of the other tissue types adds to the diversity of the sequencing data and allows 

for more cross sample comparison. This makes it easier to see which lncRNA are shared across 

tissues and which seem to be more tissue specific. These tissues were selected based on their 

expected transcriptome complexity. 

 

I also incorporate short read RNA sequencing for gene level quantification to provide additional 

evidence of lncRNA functionality. The short read data comes from two lines of chicken (J line 

and broiler) with 21 different tissue types from each line. These data provide a comprehensive 

snapshot of RNA quantification across the whole chicken transcriptome with respect to tissue 
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types and breeds. In this analysis, the Iso-Seq transcriptome is used as a reference to improve 

the quantification accuracy for lncRNA from the short read data. This approach essentially 

combines the strengths of long read and short read technology.  

 

4.2 Methods 
 

4.2.1 Creating cDNA libraries for Iso-Seq 
 

We selected 6 tissue/sample types based on transcript diversity: Brain, embryo, spleen, 

macrophage, testes, and ovaries. The brain tissue was collected from an adult J-Line chicken 

(brown leghorn) bred at the Edinburgh Poultry Research Centre. The embryos were at 

Hamburger-Hamilton stage 26 and from an ISA Brown chicken bred at the Edinburgh Poultry 

Research Centre. The spleen and ovaries came from an adult broiler female chicken. The testes 

came from an adult male broiler chicken. The macrophages came from LPS+ and LPS- cell lines.  

 

The embryo, spleen, macrophage, testes, and ovaries RNA were 5’ cap selected and normalized 

via the hydroxyapetite column method to reduce over abundant transcripts. The brain tissue 

Iso-Seq data was generated from different cDNA library preparation strategies. The first 

method of preparation involved a column based cDNA normalization. The second method of 

preparation included 5’ cap selection using the Teloprime kit from Lexogen but had no 

normalization. The third method also included the 5’ cap selection method and involved duplex 

specific nuclease (DSNase) normalization that was performed using the Trimmer-2 kit from 

Evrogen.  

 

The embryo and column normalized brain samples were sequenced on PacBio RSII machines 

while the spleen, macrophage, testes, ovary, non-normalized brain, and DSNase normalized 

brain samples were sequenced on PacBio Sequel machines.  
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4.2.2 Processing Iso-Seq data 
 

The Iso-Seq data was processed using Iso-Seq2 software developed by PacBio and TAMA. Iso-

Seq2 CCS was used for Circular Consensus Sequence (CCS) calling. Iso-Seq2 Classify was used for 

adapter removal, poly-A removal, non-full length (NFL) read removal, and artificial concatemer 

removal. Iso-Seq2 Cluster was used to error correct reads by clustering reads via sequence 

alignment and performing inter-read alignment correction. GMAP was used to map cluster 

sequences to the Gallus_gallus-5.0 genome assembly (GCA_000002315.3). TAMA collapse was 

used to create unique transcript models based on the reference sequence. For the 5’ cap 

selected libraries TAMA Collapse with these parameters were used “-x capped -a 100 -z 100”. 

For the libraries that did not undergo 5’ cap selection these parameters were used “-x no_cap -

a 100 -z 100”.. TAMA merge was used to merge the TAMA collapse results from each sample 

using the parameters “-a 100 -z 100”.  

 

4.2.3 Short read RNA sequencing  
 

The short read RNA-seq was performed on two different sets of samples. The first set of 

samples were collected from 9 16/17 weeks old female J-line chickens and included 21 tissue 

types (Table 4.4). Sequencing was performed using Illumina Total RNA Stranded kit generating 

pair-end, stranded reads. Samples were pooled from the 9 chickens for each tissue type. The 

second set of samples were collected from adult broiler chickens and included 21 different 

tissue types (Table 4.4). Sequencing was performed using Illumina Total RNA Stranded kit 

generating pair-end, stranded reads. 

 

4.2.4 Short read RNA sequencing data processing 
 

The first step in processing the short read RNA-seq data was to run FastQC (Babraham Institute, 

Cambridge, UK). The reads were then trimmed using Cutadapt [111]. After trimming the reads 

were checked again using FastQC to confirm that trimming had been performed optimally. The 

reads were then pseudo-mapped to the Iso-Seq based transcriptome using Kallisto [136].  
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4.2.5 Coding predictions and lncRNA classification 
 

I used three different methods to estimate coding potential: CPAT [137], CPC2 [138], and 

BLASTX [139] of transcript sequences against the Uniref90 protein database [140]. CPAT and 

CPC2 were run using default parameters. The predicted lncRNA were then divided into 

positional classes using tama_ncrna_classification_positional.py. 

 

4.2.6 Comparing Iso-Seq annotation to Ensembl 
 

The merged Iso-Seq annotation from the 6 different samples were compared with the Ensembl 

v87 chicken annotation using TAMA Merge with these parameters “-a 100 -z 100”. This 

produced a set of files that show the transcript models that are shared between the 

annotations and those that are different.  

 

 

4.3 Results and Discussion 

 

4.3.1 Samples, sequencing, and raw data processing 

 

Six tissues were selected based on transcript diversity: brain, embryo, spleen, macrophage, 

testes, and ovaries. Three different library preparation methods on brain tissue to test the 

effects of cDNA normalization and 5’ cap selection on transcriptome coverage and sequenced 

the libraries on PacBio platform as follows. The first was prepared with column cDNA 

normalization and sequencing on the PacBio RSII machines. The second was prepared using 

Lexogen Teloprime 5’ cap selection and no normalization and sequenced on a PacBio Sequel 

machine. The third was prepared using Teloprime 5’ cap selection and Trimmer-2 DSNase cDNA 

normalization and sequenced on a PacBio Sequel machine.  
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The embryo, spleen, macrophage, testes, and ovaries RNA were 5’ cap selected by GATC 

Biotech (Konstanz, Germany) and normalized via the hydroxyapetite column method to reduce 

over abundant transcripts. These samples were sequenced on the RSII machines.  

 

There were large differences in the total number of reads attained for each tissue type due to 

differences in the number of sequencing runs per sample, loading efficiency of SMRT cells, and 

the version of sequencing platform used. 

 

It is also important to understand the relationship between the different stages of read 

processing. While the terminology has changed since the inception of PacBio sequencing I have 

defined these terms in line with current usage. The raw reads that are produced are typically 

called polymerase reads. These represent the full-length read that is generated from each Zero 

Mode Wave guide (ZMW). Within the PacBio sequencing software these are then separated 

into their individual passes of the initial template. This form of the read representation is called 

subreads. The subreads for each polymerase read are then multiple sequence aligned to 

generate an intra-molecule error corrected read that is known as the circular consensus read 

(CCS). The CCS read is the first step where the original transcript/template is represented as a 

single sequence. However, the CCS reads still contain all adapter sequences as well as the poly-

A tail of the original RNA. Thus the CCS reads are further processed to remove the 

adapters/poly-A tails and orient the reads from 5’ to 3’. This processing step also removes reads 

that do not contain both adapters or contain a combination of adapters that would suggest the 

reads are actually comprised of concatemerization of multiple templates. Typically reads which 

do not contain both 5’ and 3’ adapters are not full length. The resulting sequences from this 

step are referred to as full length non-chimeric (FLNC) reads. The FLNC reads represent the 

original sequence of the RNA without any adapters or poly-A tails and thus can be directly 

mapped to the genome. 

 

Through each processing step, the number of reads remaining diminishes as the unusable read 

are removed. Thus, the number of FLNC reads is typically the most useful metric to identify as 
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there can be significant numbers of discarded reads prior to this stage. Usually the most 

significant drop in reads occurs between the CCS and FLNC stage. The ratio of removed reads 

between CCS and FLNC depends on the sequencing library preparation and the relationship 

between the polymerase read lengths and the template reads lengths. For example, if a 

polymerase read were 2 kb in length for a 5 kb template, then the read would not represent the 

full length of the original RNA and thus be discarded.  

 

The dataset had a range of between 145,527 (Cap Norm Brain) CCS reads to 805,606 (original 

brain) CCS reads per sample and a range of 124,620 (Cap Norm Brain) FLNC reads to 515,175 

(original brain) FLNC reads per sample (Table 4.1). In general, a reduction of between 14% (Cap 

Norm Brain) and 52% (Ovary) was observed. Note that Table 4.1 lists the samples in 

chronological order of when they were sequenced which also correlates to improvements in 

read lengths for the PacBio platforms. Thus, the ratio of discarded reads in general decreases 

due to longer read lengths resulting in fewer non-full length reads.  

 

 

Table 4.1 : Summary of reads, genes, and transcripts from the Iso-Seq data 

Tissue CCS FLNC Mapped Genes Transcripts Platform cDNA Prep 

Brain 805,606 515,175 499,517 28,021 78,233 RSII Col. Norm. 

Embryo 247,626 138,266 130,117 5,598 12,410 RSII 5' Cap & Col. Norm. 

Ovary 310,868 148,832 135,107 21,567 78,562 RSII 5' Cap & Col. Norm. 

Testes 316,947 152,263 140,092 25,650 80,305 RSII 5' Cap & Col. Norm. 

Spleen 309,652 210,576 97,452 10,208 32,063 RSII 5' Cap & Col. Norm. 

Macrophage 230,498 153,611 140,953 9,095 37,736 RSII 5' Cap & Col. Norm. 

No Norm 

Brain 566,307 422,163 390,788 11,934 39,909 Sequel 5' Cap Telo. 
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Cap Norm 

Brain 145,527 124,620 117,347 19,849 49,465 Sequel 

5' Cap Telo. & 

DSNase Norm. 

 

 

 

4.3.2 Identifying Gene and Transcript Models in Gal5 

 

Most of the analyses were performed using the Gallus_gallus-5.0 genome assembly 

(GCA_000002315.3). While this is not the most up-to-date assembly, this assembly was chosen 

since later assemblies were released with annotations from Ensembl that used our Iso-Seq data 

set. Thus in order to compare the gene models from these Iso-Seq data to the public annotation 

it was necessary to use a version that did not include these data. However, we also performed 

analysis on the Gal6 genome assembly to compare the annotation methods as opposed to the 

data type used.  

The FLNC and Cluster reads were mapped to the Gallus_gallus-5.0 genome assembly using 

GMAP [141]. The resulting BAM files were processed using TAMA Collapse [129] to form non-

redundant transcriptome annotations for each sample. The sample annotations were then 

merged into a single annotation using TAMA Merge [129].  

The highest number of predicted genes was observed in the non-5’-cap selected normalized 

brain with 28,021 genes. However, this sample also benefitted from the highest read coverage. 

The embryo was the sample with the lowest number of predicted genes at 5,598. This is likely 

due to the relatively low number of reads generated and possibly a reduction in RNA 

complexity from the 5’ cap selection method (tobacco acid pyrophosphatase) used. 

Comparing the two 5’ cap selected brain libraries it can been seen that sampling efficiency for 

gene discovery is much higher for the normalized library. The 5’ cap selected normalized library 
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allowed the detection of 159 unique genes per 1000 FLNC reads while the non-normalized 

library revealed only 28 unique genes per 1000 FLNC reads.  

However, using the DSNase approach for normalization resulted in a strange phenomenon 

where the top ranking genes in terms of expression levels seemed to be missed. This seems 

counter intuitive given the proposed mechanism of normalization where highly expressed 

genes should not be reduced to levels lower than the lowly expressed genes. However, it may 

be that there is a mechanism by which this can occur in the DSNase method of normalization.  

After merging the transcript models from all samples, we identified 52,519 gene loci that 

corresponded to 300,494 transcripts.  

 

4.3.3 Coding RNA analyses 
 

Three different methods for identifying evidence for coding potential were used: CPAT [137], 

CPC2 [138], and BLASTX [139] of transcript sequences against the Uniref90 protein database 

[140]. CPAT infers coding potential purely from assessing potential open reading frames and 

looking for codon-like patterns that fit into protein coding model. CPC2 also uses open reading 

frame analysis but uses different methods of analyzing coding potential. The BLASTX approach 

allows for the direct comparison of each ORF to the largest database of known protein 

sequences. The idea behind these three methods is to use orthogonal methods for picking up 

any potential for encoding protein within the predicted transcript models. Given that the 

primary goal was to identify lncRNA a transcript was classified as protein coding if it showed 

evidence from any one of these methods. 

 

Using these metrics, 26,064 gene loci were identified that had protein-coding evidence from at 

least one of these prediction software tools. These gene loci contain 187,272 predicted 

isoforms with evidence of protein coding potential. Of the total predicated protein coding gene 

loci, 18,763 contained multi-exonic transcript models. The remaining 7,301 gene loci were 
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comprised solely of mono-exonic transcript models. Thus, these may be processed 

pseudogenes as opposed to functional protein coding genes. 

 

 

4.3.4 Non-coding RNA pipeline 

 

Long non-coding RNA were identified by looking for coding potential with three different 

methods as described above: CPC2, CPAT, and BLASTX of transcript sequences against the 

Uniref90 protein database. If a transcript had no evidence for coding potential from any of 

these methods, it was classified as a non-coding RNA. CPC2 and CPAT use sequence motif based 

methods, however BLASTX with Uniref90 provides information on direct hits to known protein 

coding genes. So if a transcript has a large enough overlap with a coding region, a Uniref90 hit 

will likely occur for that region thus providing coding evidence for that transcripts. However, 

the transcript would not need to contain a viable ORF in order for this to occur. Thus, the 

prediction pipeline is designed to be more specific and less sensitive for identifying lncRNA. 

 

Analyses of the datasets predicted 113,222 lncRNA transcripts corresponding to 38,828 gene 

loci. However, this classification of genes is based on a group of transcripts with sense exonic 

overlap of at least 1 base pair. Thus by this definition multiple lncRNA transcripts can be from 

the same gene even though they do not have any overlap because of overlapping coding 

transcripts. If the same gene definition is used but overlapping lncRNA are considered, then 

42,709 lncRNA genes are predicted. The additional lncRNA genes comes from sense exonic 

lncRNA that overlap the same protein-coding gene but do not overlap each other. 

 

 

4.3.5 Comparison of all genes to the Ensembl annotation 

 

The annotation generated from the combined Iso-Seq data as described above was compared 

to the Ensembl Release 87 (December 2016) of the Gallus_gallus-5.0  (GCA_000002315.3) 
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assembly using TAMA Merge. Version 87 was the last version before the incorporation of our 

Iso-Seq data into the public annotation and thus later Ensembl Releases could not be used in 

order to assess the benefits of incorporating the long-read Iso-Seq data into the annotation 

pipelines. 

 

TAMA Merge defines gene loci by grouping transcript models on the same strand where if two 

transcript models overlap by at least 1 base pair they are combined into the same gene locus. 

By this definition, 14,541 genes were found which overlapped between the Ensembl annotation 

and the Iso-Seq annotation. 8,562 genes were found only in the Ensembl annotation and 36,184 

genes were found only in the Iso-Seq annotation. Of the total Iso-Seq only genes, 7,129 were 

found in multiple samples. Thus, the overwhelming majority of Iso-Seq only genes (29,055) 

were only found in a single sample type.  

 

There were 11,431 multi-exonic genes found only in the Iso-Seq annotation. These contained 

33,203 multi-exonic transcript models.  

 

At the transcript level, there were 12,522 transcript models that matched between the Ensembl 

annotation and the Iso-Seq annotation. Matching transcripts are defined by having the same 

exon structure and no more than 100 bp difference for the transcription start site and end site. 

For the genes with overlap between the two annotations, 14,684 transcript models were found 

only in Ensembl while 216,113 were found only in the Iso-Seq annotation. This result represents 

a massive expansion of transcript models over the Ensembl annotation. Of these transcript 

models, 158,195 were multi-exonic. The mono-exonic models have lower evidence of being real 

transcripts. 
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Positional classification of long non-coding RNA 

 

The predicted lncRNA were then classified by their positional relationship to the nearest protein 

coding gene. This includes intergenic (lincRNA), intronic, antisense, and sense exonic (Figure 

4.1). I also looked at another positional class not previously investigated before which I call 

lncRNA to lncRNA antisense (Figure 4.2). This class refers to lncRNA that are antisense exonic to 

another lncRNA. 

 

 

 

Figure 4.1 : Diagram of standard long non-coding RNA classes. These include intergenic, sense 

exonic, sense intronic, antisense exonic, and antisense intronic lncRNA as shown in the 

diagram. The forward strand of the genome is depicted by the region between the grey 

arrows while the reverse strand is the region between the yellow arrows.   
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Figure 4.2 : Diagram of lncRNA classes that are based on relationship to nearest lncRNA.  

These include lncRNA antisense exonic lncRNA and lncRNA antisense intronic lncRNA. The 

forward strand of the genome is depicted by the region between the grey arrows while the 

reverse strand is the region between the yellow arrows.   

 

 

 

Table 4.2 : Number of predicted long non-coding RNA by positional class from the Iso-Seq 

annotation  

Positional Class Number of Transcripts 

LincRNA 33,625 

Sense Exonic 68,025 

Sense Intronic 23,290 

Antisense Exonic 22,542 

Antisense Intronic 13,085 

LncRNA Antisense Exonic 16,531 
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Sense exonic lncRNA represented the positional class with the most transcripts (68,025). While 

lincRNA was the second most abundant with 33,625 transcripts (Table 4.2). This is in stark 

contrast to public annotations for the human and mouse genome annotations (Ensembl v96) 

where lincRNA represent the most abundant class with 7,690 lincRNA for human and 5,854 

lincRNA for mouse. Ensembl v96 is the last annotation version to separate out the lincRNA 

positional class. These numbers were calculated by looking at the gene biotype information 

included in the Ensembl gtf format annotation files. However, there are many possible causes 

for this high number of sense exonic lncRNA. The first explanation is that these are simply 

errors in predictions caused by the confounding factor of the overlapping protein-coding gene. 

In essence, these sense exonic lncRNA could represent unprocessed RNA from the protein-

coding gene, fragmented RNA, or noisy transcription. It is nearly impossible to distinguish, in a 

high throughput manner, the true source of these models given the limitations of current 

technology. Thus, it would require targeted experimentation using biochemical methods to 

either prove or disprove the existence and function of these seemingly novel transcripts.  

 

It is also interesting to note that there are more antisense exonic lncRNA (22,542) than 

antisense intronic lncRNA (13,085). In theory, it should be the other way around with antisense 

intronic lncRNA being far more common than antisense exonic lncRNA. Since antisense exonic 

lncRNA have at least a portion of their sequence governed by the antisense gene, one would 

expect this to be very limiting and thus occur far less frequently. However, it could be that the 

function is directly tied to this sequential relationship. For example, it has been hypothesized 

that antisense exonic RNA could be involved in regulating their antisense counterpart by 

binding to it via the overlapping sequence region or by being incorporated in protein complexes 

to target binding in those genomic locations. If we assume that there is a larger need for this 

type of regulation, then it might actually be that the observed frequency of the sub-types of 

antisense lncRNA are actually more accurate across species. However, the counterpoint would 

be that antisense exonic lncRNA or rather the signals indicating this type of RNA are often 

mixed up with sequencing noise caused either by biological transcriptional noise or by simply 

the wrong interpretation of strand orientation from sequencing read information.  
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Long read RNA sequencing data are generally more robust to errors in identifying the strand 

orientation of the reads. This is due to the ability to see the 3’ end sequence that is expected to 

contain a poly-A tail and have a direction connection with the 5’ end of the RNA molecule. Thus, 

if the poly-A tail is observed on the 3’ end and the correct adapter configuration on both ends, 

then there is a stronger case for having identified the correct strand orientation. Thus, I believe 

that these results provide a fair amount of evidence in support of the relatively high abundance 

of antisense exonic lncRNA.  

 

4.3.6 Single exon long non-coding RNA 

 

Mono-exonic transcript models are often considered suspicious given that they could be the 

result of sequencing reads that represent RNA/cDNA truncation or genomic contamination. To 

investigate the validity of these models in general, I looked at the distribution for the number of 

exons for each lncRNA positional class. For all classes of lncRNA, single exon transcripts were 

the most abundant (Figure 4.3). This contrasts with the current public annotations for the 

human genome annotation (Ensembl 106) in which 2 exon transcripts are the most dominant. 

Also, sense exonic lncRNA have the highest numbers of mono-exonic models with lincRNA as 

the second highest. Sense exonic models have the greatest probability of being the result of 

sequencing noise from the overlapping protein coding gene. LincRNA have the highest 

probability of being the result of genomic contamination in the sequencing library. Thus, it 

would seem that the numbers are in favour of the interpretation that many of these models are 

the result of some type of sequencing noise.  

 

However, I looked at the number of possible internal truncation from 3’ stretches of genomic A 

nucleotides and found that only 5% of the total used reads had possible poly-A truncation.  

 

I also looked at the number of transcript models from each positional class that had support 

from at least one poly-A truncation possible read (Table 4.3). The percentage of poly-A possible 
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transcript models from each class ranged from 7% to 26%. Sense intronic had the highest 

percentage of 26%. However, sense exonic only had 8% and lincRNA had only 12%. These 

numbers are at odds with the expectation that the majority of these models come from some 

type of noise.  

 

  

 

 

 

 

 

 Figure 4.3 : Breakdown of the number of exons per transcript divided by lncRNA class. Each 

lncRNA class is represented by a unique colour and plotted beside each other for each 

number of exon bin. Mono-exonic transcripts are the largest group by exon number across all 

lncRNA classes. Protein coding transcripts are included for comparison.  
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Table 4.3 : Percentage of transcript models per class with poly-A motifs in the 3’ genomic 

region 

LncRNA Class Poly-A Models 

Total 

Transcripts 

Percentage  

Poly-A 

Antisense Exonic 731 11107 
7% 

Lncrna Antisense Exonic 1215 16531 
7% 

LincRNA 3913 33625 
12% 

Antisense Intronic 1322 13085 
10% 

Sense Intronic 2892 11337 
26% 

Sense Exonic 4654 57883 
8% 

 

 

4.3.7 Length of lncRNA 

 

I then looked at the length distribution based on number of exons (Figure 4.4) and positional 

class to see if there were any trends (Figure 4.5). LncRNA across all positional classes and 

number of exons had peaks within their length distribution around the 1 kb length. There were 

comparatively few lncRNA transcript models at 200 bp or shorter. Since it is expected that noise 

would present as shorter models, these length distributions provide evidence in favour of the 

interpretation that the majority of the lncRNA classes are not from sequencing noise.  
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Figure 4.4 : Length distribution of lncRNA when grouping lncRNA by number of exons. The 

most prominent peak for all exon numbers is around 1000 base pairs. Protein coding 

transcripts are included for reference. 
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Figure 4.5 : Length distribution of lncRNA when grouping by class. The most prominent peak 

for all lncRNA classes is around 1000 base pairs. Protein coding transcripts are included for 

reference.  
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For all positional classes of lncRNA, single source support and single read support is dominant. 

However, out of 113,167 total lncRNA 22,236 had more than 1 source support (Figure 4.6). The 

relative amount of source support was similar to the protein coding transcripts. Out of the total 

lncRNA, 39,622 had more than 1 read support (Figure 4.7). Having multiple reads from the 
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sequences from the cDNA library generation. Seeing the same transcript model in different 
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samples provides a much higher level of evidence for the authenticity of these lncRNA since it is 

much less likely to see the same models across samples.  

 

It is also interesting to see that there are 15,796 sense exonic lncRNA which are seen in multiple 

samples. This could indicate a large number of sense exonic lncRNA that are expressed across 

different tissue types. However, it is possible that these are the result of some kind of common 

fragmentation/degradation or slow step in the RNA processing for the overlapping gene.  

 

I then looked at separating the lncRNA by number of exons per transcript to see if there were 

trends for mono-exonic and multi-exonic lncRNA. When I compared the number of long reads 

supporting lncRNA with different numbers of exons it was interesting to note that the number 

of mono-exonic lncRNA with read counts of 20 or more dwarfed the other exonic classes. While 

the shear number of predicted mono-exonic lncRNA accounts for it dominating in each read 

count class it was unexpected to see so many with such high read counts. So while the mono-

exonic lncRNA with single read support seem very much like they could be the product of some 

noise, it is harder to explain away the mono-exonic lncRNA which seem to have so much read 

support.  

 

I also looked at the breakdown of lncRNA prediction focusing on the source sample. It is 

interesting to note that the ovary and testes samples seemed to dominate for lincRNA (Figure 

4.9), sense exonic lncRNA (Figure 4.10), sense intronic lncRNA (figure 4.11), antisense intronic 

lncRNA (Figure 4.13), and lncRNA antisense exonic lncRNA (Figure 4.14). Even for the antisense 

exonic class the ovary and testes samples were in the top three sources (Figure 4.12). For the 

more established lincRNA class the ovary sample had the highest number of predicted lncRNA 

with the testes coming in second. 

 

When I compared lncRNA class with the supporting source, I found that the brain, testes, and 

ovary Iso-Seq datasets had both the highest numbers of lncRNA and the highest intersection of 

lncRNA between them. These organs are known to be very transcriptionally diverse which may 
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explain why we see such high numbers of lncRNA among them, however, it is fascinating to see 

the overlap of lncRNA. However, the overlap between any two of the grouping of three (brain, 

ovary, and testes) shows much high intersecting than between all three. So it may be that this 

result only indicates the coincidence of overlapping lncRNA when tissues exhibit complex RNA 

expression.  

 

 

 

 

Figure 4.6 : Number of source sample types supporting each lncRNA class and coding 

transcripts. All classes have the majority of their transcripts supported by only 1 source. 

Sense exonic lncRNA still have a large number of multiple source supported transcripts.   
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Figure 4.7 : Distribution of the number of transcripts in each lncRNA and coding class. While 

all lncRNA classes have the majority of their transcripts supported by a single read, sense 

exonic lncRNA still have over ten thousand transcripts with multiple reads support and 

thousands of transcripts with over 20 reads support.  
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Figure 4.8 : Read counts for lncRNA when grouped by number of exons. Mono-exonic lncRNA 

have over ten thousand transcripts with multiple reads support. Protein coding transcripts 

are included for reference.  
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Figure 4.9 : Upset plot showing combination of intersections across the different samples 

supporting the intergenic lncRNA class. This type of plot allows for higher dimensional 

representation of intersections across multiple datasets. The relationships are ordered first 

with single source transcripts and then by intersection grouping with a sub-ordering of high 

to low numbers of transcripts. The ovary dataset contained the highest number of unique 

intergenic lncRNA but the largest intersection is between testes and the normalized brain 

sample.  
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Figure 4.10 : Upset plot showing combination of intersections across the different samples 

supporting the sense exonic lncRNA class. The ovary dataset contained the highest number of 

unique sense exonic lncRNA but the largest intersection is between testes and the normalized 

brain sample. 
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Figure 4.11 : Upset plot showing combination of intersections across the different samples 

supporting the sense intronic lncRNA class. The testes dataset contained the highest number 

of unique sense intronic lncRNA and the largest intersection is between testes and the 

normalized brain sample. 
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Figure 4.12 : Upset plot showing combination of intersections across the different samples 

supporting the antisense exonic lncRNA class. The testes dataset contained the highest 

number of unique antisense exonic lncRNA and the largest intersection is between testes and 

the normalized brain sample. 
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Figure 4.13 : Upset plot showing combination of intersections across the different samples 

supporting the antisense intronic lncRNA class. The ovary dataset contained the highest 

number of unique antisense intronic lncRNA but the largest intersection is between testes 

and the normalized brain sample. 
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Figure 4.14 : Upset plot showing combination of intersections across the different samples 

supporting the lncRNA antisense exonic lncRNA class. The testes dataset contained the 

highest number of unique lncRNA antisense exonic lncRNA and the largest intersection is 

between testes and the normalized brain sample. 

 

 

4.3.9 Gene expression patterns for lncRNA 

 

I used short read RNAseq datasets from J-line and broiler chickens to identify expression 

patterns for the transcript models in the Iso-Seq annotation (Table 4.4). These were comprised 

of 21 tissue types each, thus totaling 42 different samples.  
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Since lncRNA have been observed to have generally low expression as compared to protein-

coding genes, I looked at the expression of the predicted lncRNA across the short read RNAseq 

datasets. Due to issues with transcript level quantification when using transcriptome 

annotations with complex alternative transcripts, I only report the gene level expression. I 

looked at both the maximum expression level (Figure 4.15) and average expression level (Figure 

4.16) in transcripts per million (TPM) for the different classes of lncRNA across the broiler and 

layer tissue RNAseq datasets. I also looked at comparing the maximum and average levels of 

expression between coding (Figure 4.17) and non-coding genes (Figure 4.18). Maximum 

expression level was calculated as the highest expression level for each gene seen in at least 

one RNAseq dataset.  

 

LincRNA, sense exonic lncRNA, and sense intronic lncRNA had most of their genes showing an 

average TPM of less than 1. Antisense exonic, antisense intronic, and lncRNA antisense exonic 

lncRNA showed roughly the same number of genes with average expression levels less than 1 

TPM and greater than 10 TPM. In general, it appears that all classes of lncRNA are mostly 

comprised of genes with a low average expression level.  

 

However, all classes of lncRNA except for sense intronic had their highest number of genes with 

maximum TPM at above 10 TPM. This would suggest that while lncRNA in general are 

expressed at low levels, they show tissue specific expression where in the right tissue they 

exhibit high expression levels.  

 

Sense exonic lncRNA had the highest number of transcripts with a maximum of over 10 TPM in 

at least one RNAseq dataset. However, the quantificaton of sense exonic lncRNA is difficult to 

ascertain due to the exonic overlap with a protein-coding gene.  
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Table 4.4 Tissue types that were sequenced using short read RNAseq 

 

 Sample Number J Line Broiler 

1 Breast Muscle Breast Muscle 

2 Bursa Bursa 

3 Caecal Tonsil Caecal Tonsil 

4 Cerebellum Cerebellum 

5 Duodenum Duodenum 

6 Gizzard Fat Gizzard Fat 

7 Harderian Gland Gizzard Muscle 

8 Heart Muscle Heart Muscle 

9 Ileum Ileum 

10 Kidney Ovary 

11 Left Optic Lobe Left Optic Lobe 

12 Liver Liver 

13 Lung Lung 

14 Ovary Ovary 

15 Pancreas Pancreas 

16 Proventriculus Spleen 

17 Skin Thymus 

18 Spleen Thyroid 

19 Thymus Trachea 

20 Thyroid Testes 

21 Trachea Meckel's diverticulum 
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Figure 4.15 : Distribution of maximum TPM per gene based on lncRNA classes. The maximum 

TPM is chosen from the short read RNAseq sample with the highest TPM for each individual 

lncRNA gene.  All lncRNA classes except sense intronic have their highest peak at 10 or 

greater TPM. 
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Figure 4.16 : Distribution of average TPM per gene based on lncRNA classes. The average TPM 

is calculated across all 42 short read RNAseq datasets. All lncRNA classes except for antisense 

exonic have their highest peak at less than 1 TPM thus supporting the observation from 

previous studies that lncRNA are in general expressed at lower levels.  
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Figure 4.17 : Maximum TPM per gene comparison between coding and non-coding genes. 

Maximum TPM for both coding and lncRNA genes are chosen from the short read RNAseq 

datasets with the highest expression for each specific gene. There roughly the same number 

of coding genes as lncRNA genes with a maximum TPM of 10 or greater.   
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Figure 4.18 : Average TPM per gene comparison between coding and non-coding genes. 

Average TPM for both coding and lncRNA genes is calculated across all 42 short read RNAseq 

datasets. There are almost twice the number of lncRNA genes with lower than 1 TPM as 

compared to coding genes.  
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4.4 Conclusion 

 

Since the beginning of my PhD programme there have been many others searching for lncRNA 

within the chicken transcriptome[142][143][144][145][146]. These entities include the major 

public annotation organizations: NCBI and Ensembl. I submitted the data generated from this 

chapter and chapter 2 to the European Nucleotide Archive (ENA). NCBI and Ensembl access the 

data from ENA to improve their annotations. The Ensembl v88 and higher annotation versions 

have incorporated both the long read and short read data presented in this thesis. Since those 

versions of the Ensembl chicken annotation use the data from my thesis, the most recent 

version that I could use to compare the Iso-Seq annotation to is version 87. NCBI are not as 

transparent with the data usage for their RefSeq annotation so I am not sure exactly when they 

began using the data from my thesis, however, the RefSeq annotation versions that use the 

Gallus Gallus 6 assembly should have incorporated the long read and short read data from this 

thesis.  

 

The Ensembl v94 chicken annotation that uses the Iso-Seq data from this thesis contains 

predictions for 5,506 lncRNA genes. The NCBI RefSeq v104 chicken annotation contains 

predictions for 6,534 non-coding RNA genes with 8,233 lncRNA transcripts from those ncRNA 

genes. They do not specify the number of lncRNA genes. So while both public annotators have 

used the Iso-Seq data in their chicken annotations, they are still predicting far fewer lncRNA 

genes than I have predicted in my analyses. This disparity is likely due to the difference in 

filtering criteria between the different annotations.  

 

There have also been other groups involved in the identification of lncRNA. One of the most 

notable recent chicken lncRNA studies was published in 2020 from members of the Functional 

Annotation of Animal Genomes consortium (FAANG) [147]. In this 2020 study, information was 

integrated from different public databases as well as from short read RNAseq generated from 

25 tissues. From the integration of these different datasets, they predicted 30,084 lncRNA 

genes including the genes that had already been annotated in the source public annotations. 
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Using their large short read RNAseq dataset, they predicted 13,009 novel lncRNA genes. Of 

these novel lncRNA, 7,265 were mono-exonic and 5,744 were multi-exonic. Thus, their results 

seem to indicate that there are many more mono-exonic lncRNA than were previously 

represented in the public annotations. While there have been other studies focusing on chicken 

lncRNA, they were mostly concerned with specific experimental conditions as opposed to 

general transcriptome annotation [144]-[143].  

 

The discrepancy in the numbers and class breakdown of predicted lncRNA between the public 

annotations and community studies, highlights the inherent difficulty in lncRNA annotation.  

While more work needs to be done to verify these predicted lncRNA genes, I believe that a 

large number of these genes are real. By real, I mean that RNA is produced which matches 

those transcript models. However, it is much more difficult to answer the question of how 

many of these predicted lncRNA are functional. There seems to be some controversy over what 

a gene must do to be considered functional. The more traditional biologist tends to focus on 

protein coding genes and only acknowledge the well-established non-coding RNA such as 

ribosomal RNA and transfer RNA[148]. Perhaps the more modern take is that there exist a large 

set of non-coding RNA with important biological functions[149]. From my perspective, the more 

important question is how these lncRNA relate to different biological pathways. For example, it 

may be that a specific lncRNA does not in itself serve any function but the act of transcribing it 

serves some function. In this case the function could simply be to open up the genomic region 

for the transcription of neighboring genes. It could be that a subset of these lncRNA are simply 

by-products of some messy transcription of an upstream protein-coding gene. In this case the 

lncRNA exists because the RNA polymerase may continue on from the upstream gene to then 

transcribe the lncRNA gene. The lncRNA portion of the RNA may then be cleaved during 

processing. However, the fact that it had to be produced to allow for the production of the 

protein-coding RNA seems to me to be “functional”. Unfortunately, many of these types of 

cases are much harder to investigate. Therefore, I suspect it will be some time before we start 

seeing evidence of these phenomena showing up in the literature. However, I believe it is 
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important to keep an open mind about the complexity of lncRNA so as not to make baseless 

assumptions that may hinder the way we continue to explore the transcriptome.  

 

The use of expression information across tissue types can provide some early clues as to which 

lncRNA we should investigate further. As long read sequencing becomes more affordable, it will 

also be more feasible to look at transcript level expression quantification. This will also mean 

that we will be able to quantify the expression of tricky classes of lncRNA such as the sense 

exonic class. The sense exonic lncRNA class represents a truly challenging class to investigate. 

Because they overlap on the same strand with the exons of a protein-coding gene, it is difficult 

to use short read information to distinguish sense exonic lncRNA from the overlapping protein 

coding gene. While some may argue that the vast number of sense exonic lcnRNA identified in 

this study are likely to be artifacts, the way these lncRNA present with respect to their 

overlapping coding genes does not appear to me to be the result of noisy transcription or the 

by-products of RNA processing. Since many of these sense exonic lncRNA have read support 

from the 5’ capped datasets it seems likely that they are indeed 5’ capped. If this is true, then it 

would be very strange for the majority of them to be noise since it would not make much sense 

for the cell to add a 5’ cap to transcript fragments that are meant to be destroyed. However, it 

is possible that the 5’cap selection method is much less stringent than expected and/or that 5’ 

capping may be a biologically noisy event. It is possible that some number of genomic DNA 

fragments made it through library preparation resulting in the sense exonic models, however, it 

seems unlikely that their numbers would be this high with a 5’ cap selection method. Thus, I 

believe there is strong evidence in support of these sense exonic lncRNA. With their high 

numbers in these datasets and their low numbers in public annotation, this class of lncRNA is 

probably the most under-annotated classes of lncRNA today.  

 

I hope the result from this study can help build the foundation for the next generation of 

research that will one day uncover the truth behind lncRNA within the chicken transcriptome.  
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Chapter 5: Discussion 

 

In this thesis I have used relatively new long read RNA sequencing technology to identify 

thousands of potentially novel long non-coding RNA genes within the chicken transcriptome. I 

have developed new bioinformatic tools as well as creating new data analysis pipelines to 

integrate different types of data harnessing the strengths of different types of technologies to 

shed light on the existence and biological significance of different classes of lncRNA in chicken. I 

have also experimented with different sample preparation methods with the potential of 

improving long read RNA sequencing for lncRNA discovery.  

 

While the use of these new technologies has incredible potential to illuminate the world of 

lncRNA, there is still more progress that can be made to fully harness these new technologies. 

There have also been other important developments in RNA sequencing that could help to 

clarify the functionality of newly discovered lncRNA.  

 

In the following sections, I will elaborate on the unrealized improvements and identify areas for 

future work.  

 

 

5.1 Improving long read sequencing for lncRNA discovery 

 

Long read RNA sequencing provides much needed information on the full-length sequence of 

transcripts and thus can improve lncRNA discovery [150]. However, this information is not a 

given. The sequencing data are the result of multiple biochemical processing steps and 

biological realities that can lead to an incomplete view of the transcriptome. In order for long 

read RNA sequencing to see its full potential, better methods for RNA sample processing will 

need to be developed.  
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RNA is well known for its instability. The relatively fragile nature of RNA coupled with abundant 

environmental RNases means that much of the RNA within a sample is fragmented or degraded 

from the 5’ end [151]. Thus even though the sequencing technology has the potential to 

provide full-length sequences, it cannot do this when the full-length transcript molecules are no 

longer present in the sample. Indeed, within the data I analyzed, there is abundant evidence for 

a high percentage of degraded RNA. For example, it can be extremely difficult to differentiate 

degraded RNA from intact transcripts that have alternative transcript starts or ends. This issue 

could be ameliorated by new techniques that either remove degraded RNA or allow for the 

differentiation between complete and incomplete RNA sequences. 5’ cap selection is a 

promising method for this [152], however, current 5’ cap selections operate more as a 5’ cap 

bias than true selection. If a new method of 5’ cap selection could have a higher rate of 

distinguishing between 5’ capped and non-capped RNA, this would improve the overall data 

significantly.  

 

However, it is important to recognize that not all RNA will be naturally 5’ capped 

[153][154][155]. In light of this, other methods will need to be developed to help identify the 

full-length mature transcripts for these types of RNA. 

 

Just as not all RNA are 5’ capped, not all RNA have poly-A tails [156]-[157]. Most of the long-

read RNA sequencing pipelines rely on oligo-dT primers in order to select transcripts with a 

poly-A tail for reverse transcription. Thus, any RNA without a poly-A tail are essentially removed 

from the library before sequencing. While this can be avoided by ligating adapters to the 3’ 

ends of RNA before reverse transcription [158][159], this will also increase the amount of 3’ 

truncated RNA representation in the cDNA library. Therefore, this problem presents a tricky 

compromise on each side. Given that many researchers suspect that many lncRNA are not poly 

adenylated [160][161], we still do not have a robust method for identifying these types of 

lncRNA.  
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Another issue that affects all RNA sequencing is the presence of incompletely processed RNA 

[162][163]. These are RNA molecules that have been captured during their transcription and/or 

processing phases. In these cases the RNA are not mature and the sequences would only 

indicate an ephemeral form that in itself has no biological function. Sequencing reads from 

these RNA often look like retained intron events since not all the introns have been spliced out 

yet. The issue this poses for transcriptome annotation is that true retained introns do exist 

which makes differentiating real retained introns from incompletely processed RNA currently 

highly challenging [164], [165][166].  

 

As previously covered in depth in the first results chapter, the highly differential abundance of 

RNA within a sample often means that low abundance RNA never get sequenced. These 

represent a major blind spot for lncRNA discovery since many lncRNA are often present in 

relatively low amounts within any given sample.  

 

Another biochemical processing issue with current long read RNA sequencing is that both 

PacBio and ONT RNA sequencing require the use of reverse transcription. While ONT does allow 

for direct RNA sequencing, reverse transcription is still used to create a complementary strand 

which prevents structural formations and stabilizes the kinetics of the RNA molecule while 

traveling through the pore [167]. Reverse transcription has several issues and limitations 

[168][169]. One of the major limitations for reverse transcription is the length of sequence that 

can be reliably reverse transcribed [170]. At present, the maximum reliable reverse 

transcription length is roughly 10-15 kb. Thus, even though long RNA sequencing technologies 

are capable of producing reads far longer than this, we do not yet have a way of creating the 

templates for sequencing.  

 

It also now well known that RNA nucleotides can undergo modifications such as methylation 

and the conversion of adenosine to inosine [171][172]. These types of modifications still require 

further development of long read RNA sequencing to be able to robustly identify at a high 

throughput level [173][174].  
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Given the evidence that lncRNA are often highly tissue specific in their expression, it stands to 

reason that there is a significant subset that is also highly cell specific. However, the current 

cost and throughput of long read RNA sequencing makes it impractical for single cell 

sequencing methods. In the case of ONT sequencing, the error rates are still too high to reliably 

identify the cell barcodes. 

 

 

5.2 Improving analysis of long read RNA sequencing 

 

While there is still much work to do on the sample processing side of long read RNA 

sequencing, there is perhaps even more that needs to be done to develop the analysis of long 

read RNA sequencing data [175]. The development of more sample processing techniques will 

require complementary analysis methods to be developed.  

 

Long read RNA sequencing provides additional types of information that previous forms of RNA 

detection were incapable of producing. This includes the potential to identify the transcription 

start site, end site, and full exon chaining of a single transcript. However, these pieces of 

information are not guaranteed and there are many reasons why a long read can obscure the 

truth behind any of these features. As such, there have been some development of methods for 

distinguishing signal from noise. Some of these methods depend on orthogonal information 

[168][176][87][177], some methods use strategies originally developed for short read analysis 

[90], and some use information from purely long read datasets [129].  

 

Each of these philosophies comes with specific advantages and limitations. The use of 

orthogonal information such as comparing long read datasets to reference annotations can be 

incredibly powerful for validating the more well established genes, however this does not lend 

itself to discovery as these methods are essentially limiting their scope to what is known 
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instead of truly exploring the unknown. Thus these methods seem to diminish some of the 

potential of long read data.  

 

Given the amount of time that short read RNA sequencing seemed to dominate transcriptomics 

and the number of bioinformatic tools that were developed to harness the power of short read 

sequencing [178], it comes as no surprise that many bioinformaticians approached long read 

RNA sequencing with a very short read perspective. However, many of the principles of short 

read simply do not translate when working with long read data. For example, some major 

bioinformatic tools for processing long read RNA sequencing data have algorithms that attempt 

to merge reads to create longer transcripts [90]. However, this action is at odds with what the 

long reads represent and actually results in more erroneous transcript models.  

 

Many long read tools focus primarily on read coverage for discerning between signal and noise 

transcript models. While it is generally accepted that higher read coverage equates to more 

evidence, there is an underlying challenge of identifying which reads should be considered to 

be supporting a specific transcript. So while read coverage is important, calculating read 

coverage is non-trivial with long read data. The issue here is that there is almost always some 

slight differences between any 2 reads within long read data. Usually the differences are on the 

5’ and 3’ ends but sometimes there are slight differences in the splice junctions. There is a very 

real challenge here for selecting the appropriate thresholds for inclusion or exclusion of reads 

from a grouping. It is not very clear how this should be done and in most cases it really depends 

on what the data will be used for downstream. However, many bioinformaticians seem to just 

choose some arbitrary threshold and move on with their analyses. I believe that the best way of 

handling these situations is to move away from the linear representations of transcripts and to 

develop transcript models that have these feature variations built in. Imagining how these RNA 

are being produced in the cell, it seems likely to me that transcription is more complex and 

more messy than simple start and stop sites. We have certainly seen evidence of this from large 

studies on transcription start sites [179]. Thus, it does not make sense to me as to why many 

researchers still subscribe to a linear representation of transcripts that mask these real 
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complexities. However, the rise of graph based representation in genome representation will 

likely carry over to transcriptome representation and once the major public annotators adopt 

graph based genomes they may choose to jump to graph based transcriptome annotations in 

the same leap.  

 

In order to understand how to improve long read RNA sequencing analyses in more depth, we 

must have some workable definition of what transcriptional noise is. Actually I prefer to call this 

sequencing noise as the former term can be a cause for miscommunication and confusion due 

to how such noise is generated. I define transcriptional/sequencing noise as reads or read 

characteristics that result in the production of a transcript model which is significantly different 

from any real and meaningful transcript within the sample of origin. However, there is another 

definition of transcriptional noise which is defined as spurious transcription of the genome 

resulting in superfluous RNA production. Essentially this other definition is concerned with the 

concept of messy transcription where by not all RNA produced in a cell is functional or relevant.  

I believe that our current knowledge of the transcriptome is too limited for us to really 

understand what the relevance of an RNA that so far has no annotated function actually is. 

Non-coding RNA are a prime example of this uncertainty. If an RNA is not translated into 

protein, what function does it serve? While we know the function of a small set of ncRNA, there 

could be many more unimagined roles for ncRNA that we have yet to uncover.  

 

Given that it is so difficult to define what exactly constitutes transcriptional noise, I side more 

with the idea that we should not discount RNA when we have clear evidence that it is 

transcribed with some consistency. However, if we use the definition of “transcribed with some 

consistency” as the threshold, then we must explore how consistency could be created by 

artificial circumstances. 

 

A matter that has come to light or at least has had more light shed upon it with the advent of 

high throughput long read sequencing, is the effect that sample processing has on the resulting 

sequencing data. I believe that biases or changes to the original RNA composition during 
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sample processing can be classed under sources of transcriptional noise or rather sequencing 

noise. This is to say that sample processing can result in sequencing reads that do not 

accurately represent the original relevant RNA library. The issue with noise coming from sample 

processing is that it can often be repeatable even across samples. Thus using read count or 

cross sample comparison to filter out these artifacts can sometimes be ineffective and lead to a 

false sense of confidence in the final curated transcriptome annotation.  

 

Given the relative novelty of long read RNA sequencing, I believe that more effort should be 

spent on the development of long read centric methods. By this I mean methods where long 

read data is assessed without orthogonal information and without integrating with short read 

datasets. There have been a few developments in this area which are promising [180][181]. By 

focusing on this more simplistic pursuit we can establish more robust methods of handling this 

type of data whereas efforts to integrate other types of data seem to be missing some points.  

 

Many of these issues seem to stem from the relatively limited exposure that many researchers 

have had with long read RNAseq data. However, the popularity of long read RNAseq seems to 

be growing rapidly. With this growth, there also seems to be more people interested in 

understanding the nuances of long read data analysis. This can be evidenced by the increasing 

number of papers citing the TAMA software [182]-[183].  

 

One challenging aspect of predicting true splice junction locations is the complexity surrounding 

small shifts in either splice site starts or ends. For example, the NAGNAG phenomenon is well 

documented in protein coding genes which basically represent a tandem repeat of the intron 

acceptor site which allows for the use of two different splice junction end sites that are 

adjacent [184]. There is some evidence that NAGNAG occurs in lncRNA as well [185]. This 

particular challenge is one that TAMA does not handle particularly well due to the reliance on 

using wobble assessment and groupings. While this could be overcome by using specific 

parameters with TAMA Collapse, I am not satisfied with the current method of dealing with 

these scenarios. In essence, to be able to identify these small shifts in splice junctions, the user 
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of TAMA would need to use a no wobble setting which would mean a likely over inflation of the 

prediction of small shifts in splice junctions that were caused by sequence or mapping errors. 

With the type of data presented in this thesis the error rates were too high for this approach to 

work well. However, as long read sequencing becomes more accurate, new methods could be 

used to take advantage of the improved accuracy for identifying these short splice junction 

shifts with greater accuracy. It is my hope to continue the development of TAMA to create a 

new version which will have a more sophisticated way of handling these scenarios.  

 

While the field of long read RNAseq is still somewhat nascent, the bioinformatic ecosystem is 

growing with new tools being released by academic groups every year [168], [177], [180][186]-

[187]. It is also good to see that the long-read ecosystem has a good diversity of different tools 

to fill the specific niches of data analysis requirements. Hopefully this trend continues and is 

embraced by the community since a one size fits all mentality can be problematic when it 

comes to data analysis and a wider selection of commonly used tools should encourage 

researchers to explore the best tool for their experiments as opposed to just choosing the most 

popular ones.  

 

5.3 Future work for chicken lncRNA annotation 

 

Long non-coding RNA annotation in chickens requires three important stages: generation of 

high quality sequencing data, availability of appropriate analysis software, and functional 

validation. I focused on the first two parts within this thesis and attempted to identify the best 

methods for optimizing those aspects of lncRNA discovery in chicken.  

 

There have been other efforts to identify and functionally annotate chicken lncRNA. Much of 

this work has been carried out by members of animal genomics consortia like the Vertebrate 

Genome Project (VGP) and FAANG as well academic groups that are not associated with larger 

consortia. For instance, members of FAANG integrated a massive short read RNAseq dataset 

(including 25 tissues) with the major genomic, transcriptomic, and protein annotation resources 
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to identify large numbers of novel lncRNA within chicken [147]. Another subset of FAANG 

performed a more focused search for lncRNA in chicken liver and adipose tissues [69]. There 

was also a similar study focusing on chicken liver through different developmental stages [188]. 

A group of FAANG members in the United States of America took an even more general 

approach and looked for lncRNA in chicken, cattle, and pig [189]. FAANG members even 

developed their own software (FEELnc) for identifying lncRNA from predicted transcript models 

[190]. There have been a number of considerable studies on chicken lncRNA outside of FAANG 

as well [70][72], [191]-[192]. Among other studies, researchers have looked at the role of 

epigenetic regulation of lncRNA expression within the avian immune system [193], the roles of 

lncRNA in feed efficiency [191], lncRNA functionality in Marek’s disease tumorigenesis [194], 

roles of lncRNA in the differentiation of abdominal preadipocytes [145], lncRNA involved in the 

domestication of chicken [70], and roles of lncRNA in chicken liver development [188].  

 

All of these works have provided some clues as to the underlying complexity and breadth of 

lncRNA that are likely to exist within the chicken transcriptome. However, they all relied on 

short read RNA sequencing and did not perform in vitro or in vivo tests for lncRNA functionality.  

 

The results from my PhD study demonstrate the first use of Iso-Seq long read RNA sequencing 

for the identification of lncRNA in chicken. The use of this novel technology came with both 

drawbacks and advantages. One of the drawbacks include having to learn about the properties 

of this new sequencing technology without a significant foundation of knowledge from previous 

publications to rely on. Learning how best to use Iso-Seq required communication with PacBio’s 

research staff as well as others in the Iso-Seq community who were also just starting to learn. 

The software resources at the start were limited and most of them were hacks of other tools to 

serve a non-intended purpose of processing Iso-Seq data [195][196][197]. The PacBio software 

for running the CCS and Cluster software were designed to work on their own machines that 

meant that they did not port smoothly over to the university servers. The Roslin Institute and 

University of Edinburgh IT departments had to setup special computing environments to allow 

for the installation of the first generation PacBio software. It was only after years of requests 
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from the PacBio user community that they began making their software easier to install on 

other computing environments.  

 

When I finally had the chance to look at the transcript model results from the Iso-Seq data, I 

saw something that looked strange and new. The transcript models contained large expansions 

of alternative transcripts as well as long mono-exonic models. There were alternative splicing 

events that did not match anything that was in the public chicken annotations and many of 

them looked like they must be the result of some noise. After witnessing those results, I had 

two options: resort to conventional short read RNA sequencing ideas or develop methods 

specific to the characteristics of long read RNA sequencing. I believed that many of the 

assumptions used in short read methodologies did not apply to long read data and that many 

characteristics of long read data could be used to improve the data analysis. The only software 

for creating transcript models from Iso-Seq reads at the time was the software from PacBio. 

This set of tools was called Tofu and developed by Elizabeth Tseng at PacBio [198]. However, 

Tofu was not designed to handle Iso-Seq performed on 5’ cap selected or normalized cDNA 

libraries. Tofu also had limitations on what could be done with the analysis. In response to this, 

I developed the Transcriptome Annotation by Modular Algorithms (TAMA) suite of tools to 

meet the needs for using Iso-Seq with different cDNA library preparation methods for the 

identification of lowly expressed genes in organisms with low complexity public genome 

annotations.  

 

As part of the TAMA suite of tools, I also developed methods of lncRNA prediction that were 

specific to long read data. I developed these tools so that they could take into consideration 

issues with possible 5’ incompleteness of transcript models and errors in splice junctions that 

could cause frame shifts in open reading frames. I also developed a lncRNA classification tool 

that identified positional lncRNA classes based on their positional relationship to other lncRNA 

as opposed to in relation to the nearest protein coding gene.  
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By finding solutions to the challenges of working with the relatively new Iso-Seq technology, I 

was able to find some major advantages of Iso-Seq for the prediction of lncRNA. By reducing 

the complication of transcript assembly, the Iso-Seq reads allow for more assured  exon 

chaining and also for identifying mono-exonic transcripts. Situations that would be difficult if 

not impossible to resolve with short read data, such as transcripts with overlapping exons and 

different exon chains, are typically much clearer in a long read dataset. Since there is still much 

that is unknown with respect to lncRNA representation on the genome, these advantages of 

long read RNA sequencing unlock a new level of discovery. 

 

Despite the large step forward that long read RNA sequencing has produced for lncRNA 

discovery, there is still the matter of verifying the functionality. While in silico analysis has 

provided some indications of functionality, uncovering the biological roles of each lncRNA will 

require further work. This work should comprise biochemical approaches to elucidating the 

exact nature of each potential novel lncRNA gene.  

 

There are two types of functional investigation modes that can be applied for lncRNA: in vitro 

and in vivo experimentation. In vitro experiments are typically higher throughput as compared 

to in vivo experiments but they do not provide the same level of information.  

 There are newer in vitro methodologies have been created to test thousands of genomic 

modifications in a high throughput manner. These high throughput in vitro methods now often 

use CRISPR gene editing [199][200]. However, they mostly serve to provide a further narrowing 

down of the specific lncRNA that are involved in certain biological mechanisms. To really 

explore the mechanisms behind lncRNA function, lower throughput in vivo studies will be 

required. I propose that a ranking system needs to be developed to help rank lncRNA as best 

candidates for further investigation with in vivo methods. The lncRNA rank should take into 

account several characteristics of the potential functional lncRNA. Characteristics such as 

proximity to well annotated protein coding genes, neighboring protein coding genes involved in 

traits which are important in biological applications, ease of discerning between the lncRNA and 

neighboring genes, and expression patterns that correlate to known pathways. Generally, these 
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characteristics can be broken down into likelihood of being functional, likelihood of being 

valuable, and ease of testing functionality. This idea is similar to the way many researchers 

handle differential gene expression information from RNA sequencing. With so many pieces in 

the puzzle, we need a way of building the foundations first.  

 

With the rise of more advanced gene editing technologies such as CRISPR-Cas9 [201], we now 

have the ability to probe gene functionality with greater precision, ease, and throughput. These 

new technologies coupled with the ease of access to chickens at different developmental stages 

[202] provides a fantastic opportunity to design faster and better experiments for testing the 

functional roles of novel lncRNA genes. We can now effectively turn on and off genes within the 

chicken genome in a robust way that will allow us to see their effects through embryonic 

development and into adulthood. These methods have already been employed for lncRNA 

functionality investigation in other species [203]-[204]. A few of these studies used zebrafish 

due to the ease of applying CRISPR to this species to investigate development. The chicken egg 

presents a similar experimentally tractable system and with the development of more 

advanced gene editing technologies in birds [205][206][207], there is a prime opportunity to 

combine these technologies to directly investigate the functional roles of newly predicted 

lncRNA.  

 

Thus, an exciting next step would be to choose a set of the top ranking predicted lncRNA genes 

and perform gene editing experiments to either knockout their expression or enhance their 

expression. Some ideal characteristics would be lncRNA that are highly expressed in embryos. 

Knocking out these genes would allow for a direct test to see if they indeed serve some 

function in the embryonic developmental stages. Targeting lncRNA that are potentially crucial 

for embryonic development also allows for an overall less complicated experiment because 

there would be less overall time between gene editing and observable phenotypic differences.  

 



 138 

With enough funding and time, it would be ideal to run longer experiments that would allow for 

the exploration of lncRNA that are potentially involved in traits such as growth rate, feed 

efficiency, and health.  

 

5.4 General conclusions 

 

With the advent of these new sequencing technologies, the world of long noncoding RNA has 

suddenly become far more approachable. While there is still much unknown about this 

mysterious class of RNA, I believe we will soon make massive strides in understanding different 

sub-classes of lncRNA that serve pivotal biological roles. Given that we still have not found the 

mechanisms and actors that shape species diversity, I suspect that at least some part of that 

answer lies within lncRNA. I hope that soon even more exciting technologies will be developed 

to help us find these answers.  
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