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Three Essays on European Oil and Gas Markets

Abstract

In this thesis, I study the market integration of European Natural Gas markets through

two papers, whilst the third paper considers the impact of News Sentiment on the pricing

and trading of Clean Energy and Traditional Energy stocks. Specifically, the first paper

studies the level of harmonisation of European Natural Gas prices, characterised by 12

European gas hubs. The key finding is that, under normal market conditions, European

Natural Gas markets are becoming increasingly integrated, with few physical barriers to

increased market integration. Conversely, the detection of non-physical barriers to trade

suggests that the liberalisation and development of certain national gas markets is yet to

be fully achieved, inferring that improvements in technical arrangements are required.

The second paper provides a framework for forecasting the short term presence of phys-

ical barriers to market integration of European Natural Gas markets. The identification

of infrastructure congestion is an important prerequisite in enforcing price competition,

and the implementation of an internal European gas market. In order to address this

challenge, the underlying infrastructure network is learnt as a graph, and a deep learning

framework, Graph Convolutional Long Short-Term Memory Neural Network (GC-LSTM),

based on the topology of the infrastructure network, is applied to learn the interactions

between different pipelines, and forecast gas flows throughout the network. Empirical

results show that the GC-LSTM outperforms baseline methods in predicting gas pipeline

flows.

The third paper studies the impact of News sentiment on pricing and trading for

European Clean Energy companies and Traditional Energy companies. Using daily news

extracted from Bloomberg, we estimate Vector Autoregressive (VAR) models and evaluate

the dynamic spillover effects between News sentiment, stock returns and trading volumes.

We find that European Clean Energy firms and Traditional Energy firms share the same

patterns; that News sentiment positively affects both stock returns and trading volumes,

and in return, stock returns and trading volumes have a limited impact on News sentiment.

Nevertheless, the spillovers are relatively moderate and asymmetric.
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Chapter 1

Introduction

This thesis aims to explore two main topics in Energy Economics: market integration

and market efficiency. To study the determinants of market integration, I focus on two

perspectives, which are price transmission efficiency, determined through dynamic net-

work density terms, and isolation of physical network constraints. To contribute to the

understanding of market integration, I emphasise that day ahead gas markets in Europe

are developing, with high variability in the rates of development, and integration into

European Gas pricing. Moreover, the findings in Chapter 2 suggest a limited number of

physical barriers to market integration under normal market operating conditions. Chap-

ter 3 provides a mechanism for the monitoring, and prediction of short term physical

barriers to market integration. A comprehensive review of the existing literature and

empirical analysis of European Natural Gas market integration are presented in Chapters

2 & 3, respectively. A brief outline of the motivation for the thesis, research background,

notable research gaps, and key findings of three individual papers are presented as follows.

The issue of whether European gas markets are integrated has been explored by numer-

ous authors (Asche et al. 2000; Asche et al. 2002; Neumann et al. 2006; Renou-Maissant

2012), using a multitude of methodological approaches, such as cointegration, causality

and state space modelling, achieving contrasting results. Whilst some authors accept the

hypothesis of a harmonised European market (Asche et al. 2000; Asche et al. 2002), oth-

ers find evidence to reject this (Neumann et al. 2006; Renou-Maissant 2012). Although

the application of complex network theory is in its infancy, the literature has previously

exploited symmetric (correlation-based) measures to formulate undirected networks, with

8
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Minimum Spanning Trees (MST) introduced to identify hierarchical market power within

crude oil markets (Ji and Fan 2016) and gas markets (Geng et al. 2014).Whilst this

methodology permits dynamic assessment of interconnectivity within a network, it re-

duces the network to its most primitive of structures, containing only the most intuitive

information exhibited by the network. Through use of nonlinear extensions of Granger

causality (Geweke 1982), Granger causal networks can be developed, which can eluci-

date which hubs act as ‘price setters’ and ‘price takers’, permitting observation of the

interactive evolution of market dynamics.

The results presented in Chapter 2 confirm that day ahead gas markets in Europe

are developing, however each hub holds unique characteristics, providing different rates of

development and integration. The low number of physical barriers to price harmonisation

within the European day ahead gas market implies that the Third Energy Package’s fo-

cus on national gas market integration through cross-border mechanisms has been broadly

successful, reducing pipeline capacity constraints throughout the European network. Con-

versely, the detection of non-physical barriers to trade suggests that the liberalisation and

development of certain national gas markets is yet to be fully achieved, inferring that

improvements in technical arrangements are required. It is imperative that system oper-

ators throughout Europe engage in providing full integration of day ahead gas markets

through a number of mediums, primarily market concentration, market design, regulation

and security of supply, all of which are crucial to the development of a single European

market. The aim of elimination of physical barriers to integration, in conjunction with

improved legislative integration, implies the convergence of day ahead gas prices toward

a single European price (in the absence of transmission costs), however this also holds

the additional benefit of reducing pipeline congestion, increasing usage efficiency, and

reducing the market power of actors within national gas markets.

Chapter 3 builds on the findings presented in Chapter 2, developing an early warning

system for the detection of physical barriers to price harmonisation of European Gas

prices. Whilst Chapter 2 finds a limited number of persistent physical barriers to market

integration, identifying infrastructure congestion issues is an important prerequisite in
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enforcing competition, implementing an internal European gas market and increasing the

security of gas supply of EU members.

Many of the prior infrastructure forecasting studies employing statistical methods

(Dieckhöner et al. 2013; Lochner and Bothe 2007; Monforti and Szikszai 2010) were

developed when the size of datasets was limited. Due to the limited capability of statistical

models to handle high dimensional time-series, infrastructure constraints have historically

been aggregated to the country level. Utilising the benefits of increased computational

power and data availability, I forecast infrastructure constraints at a pipeline specific

level. Moreover, the spatiotemporal characteristics of prior studies (Dieckhöner et al.

2013; Monforti and Szikszai 2010) are often inappropriately specified, with the impact of

upstream congestion issues not passed to downstream assets. This is corrected through

the inclusion of a normal operations reachability matrix (NORM), based on the ability of

each ‘parcel’ of gas to reach different points within the network.

The model’s ability to adapt to unplanned outages and maintenance cycles verifies

the applicability of the modelling technique to pipeline utilization forecasting, and subse-

quently, gas flow state forecasting. The prediction of pipeline utilization rates throughout

the European Gas system relative to these events provides valuable information pertaining

to how the impact of exogenous shocks propagate around the European Gas Infrastruc-

ture Network. Additionally, this provides important information relating to how pipeline

utilization rates, and subsequent gas flows may react to exogenous shocks.

Chapter 4 departs from the topic of market integration, instead considering the impact

of News Sentiment on the price formation and trading volumes of “Traditional Energy”

and “Clean Energy” stocks. Using daily news extracted from Bloomberg, we estimate

VAR models and evaluate the dynamic spillover effects between News sentiment, stock

returns and trading volumes. We find that European Clean Energy firms and Traditional

Energy firms share the same patterns; that News sentiment positively affects both stock

returns and trading volumes, and in return, stock returns and trading volumes have a

limited impact on News sentiment. Nevertheless, the spillovers are relatively moderate

and asymmetric.
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The remainder of the thesis is organized as follows. Chapter 2 presents the full details

of the first paper, titled European Gas Markets, Trading Hubs, and Price Formation: A

Network Perspective. Chapter 3 demonstrates the full content of my second paper, titled

Congestion Learning and Forecasting within Gas Markets: A Deep Learning Approach.

Chapter 4 details my third paper, titled Clean Energy, Brown Energy & The Impact of

News Sentiment: A Comparative Analysis. Chapter 5 concludes and provides implications

for future research.



Chapter 2

European Gas Markets, Trading
Hubs, and Price Formation: A
Network Perspective

2.1. Introduction

The creation of a single European Energy Market has been a long-standing European

objective, initially proposed through the Treaties of Rome in 1957. Through the Treaties

of Rome, the European Union (EU) established a customs union, agreeing to the pro-

gressive reduction of customs duties, and the establishment of a single market for goods,

labour and services. Following this, the European Commission (EC) has issued a num-

ber of liberalisation directives for natural gas markets, notably the First Energy Package

(1998), Second Energy Package (2003) and Third Energy Package (2009), which aim to

increase market competition and consumer protection throughout Europe.

The Third Energy Package, enacted on 3rd September 2009 (Directive 2009/73/EC)1,

was intended to further develop the internal European natural gas market. The directive

aimed to address issues surrounding market access, transparency and consumer protection

through the development of a competitive, integrated market. However, obstacles to an

integrated2, single European market for natural gas remain. These are not only struc-

1Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning
common rules for the internal market in natural gas and repealing Directive 2003/55/EC

2Throughout this paper, the terms ‘Market Integration’ and ‘Market Harmonization’ are used in-
terchangeably, inferring the development of a unified, competitive natural gas market within Europe,
characterised by convergence of price returns toward a singular value, in the absence of transportation
costs.

12
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2.1. INTRODUCTION 13

tural, with the relative level of transmission liberalisation holding price impact, but also

contractual, with producers, who hold a high degree of market power, constraining market

liberalisation through long term ‘take-or-pay’ contracts. The European Commission has

taken the above measures to enforce competition and increase cross border trade, offering

all consumers a choice of supply, through development of short-term trade in gas markets.

As such, it is possible that, although the European gas network is imperfectly connected,

with substantial pipeline bottlenecks and regions of spare capacity, and considering the

geographic disparity of market pairs, price signalling may still propagate throughout the

short-term gas markets, tacitly inferring that markets may be competitive.

The issue of whether European gas markets are integrated has been explored by numer-

ous authors (Asche et al. 2000; Asche et al. 2002; Neumann et al. 2006; Renou-Maissant

2012), using a multitude of methodological approaches, such as cointegration, causality

and state space modelling, achieving contrasting results. Whilst some authors accept the

hypothesis of an integrated European market (Asche et al. 2000; Asche et al. 2002), oth-

ers find evidence to reject this (Neumann et al. 2006; Renou-Maissant 2012). Many such

studies in economics and financial time series employ Granger Causality (Granger 1969).

This method investigates pairs of price returns which exhibit an equilibrium relationship.

Discovering an equilibrium relationship between two variables, X and Y, implies that vari-

able X “causes” movements in Y when the predictive capacity of Y is improved through

the addition of lagged values of X. Previous studies have provided evidence of long-run

convergence (Renou-Maissant 2012; Growitsch et al. 2015; Neumann and Cullmann 2012)

through the measurement of long-run cointegration or equilibrium relationships. Through

the analysis of short-run, causal interactions amongst price returns, this paper improves

the resolution of analysis of European gas market dynamics.

The aim of the study is to assess the European gas network’s integration and evolution.

We investigate the time-varying interactions amongst European gas prices by measuring

the Granger-Geweke (Geweke 1982) causality between price return dynamics during the

period 2016-2018. This enables dynamic observation of which hubs3 act as ‘price setters’

3Hubs can be both physical or virtual points on the gas transmission system where ownership rights
of gas can be transferred, logistically supported through the provision of market services by an impartial
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and ‘price takers’, which can be extracted to draw inferences relating to the development

of the Single European market for gas. We also seek to examine whether abnormal price

behaviour within European gas markets can be explained by historical phenomena. Fur-

ther to this, the origin and propagation of events which disrupt normal market functioning

is elucidated. In addition, we analyse the efficacy of the Third European Gas Directive

through the generation of a European network density time-series. In the case of an infor-

mationally efficient market, short term price returns should not be related to the lagged

values of other variables, hence a Granger-Geweke test should not detect a high degree of

causality. However, given the stated European objective of a unified, competitive natural

gas market, price returns, in the absence of transportation limitations, should converge

toward a singular value across all European hubs, quantified through the network density

term.

As European gas injection is predominantly by pipeline, with gas transited between

hubs by an interconnected pipeline network, application of network theory, which can

measure the degree of interdependence and direction of causality between hubs, represents

an appropriate methodology for assessment of the European gas market.

We use a novel approach based on graph-theory to model the dynamic interactions

amongst European gas prices. The interactions between daily day-ahead gas prices are

modelled as a connectivity network, in such instances, nodes represent different European

trading hubs and edges between them denote the strength and direction of statistically

significant influences between relative price variations. The dynamic propagation patterns

between the different hubs return series provides valuable information on the degree of

market integration.

Although the application of complex network theory is in its infancy, literature has

previously exploited symmetric (correlation-based) measures to formulate undirected net-

works, with Minimum Spanning Trees (MST) introduced to identify hierarchical mar-

ket power within crude oil markets (Ji and Fan 2016) and gas markets (Geng et al.

2014).Whilst this methodology permits dynamic assessment of interconnectivity within a

entity.
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network, it reduces the network to its most primitive of structures, containing only the

most intuitive information exhibited by the network. Through use of nonlinear extensions

of Granger causality (Geweke 1982), Granger causal networks can be developed, which

can elucidate which hubs act as ‘price setters’ and ‘price takers’, permitting observation of

the interactive evolution of market dynamics. As such, this paper holds novelty through

the use of a network approach which specifies multivariate, directed weighted networks

in order to understand the multivariate interactions between European gas prices, rather

than static investigation into univariate profiles.

We show that the connectivity of the European natural gas markets remained at a

low mean throughout the sample period. A number of spikes were observed throughout

the sample period, however abnormally positive and negative changes in connectivity

were similar in number and magnitude. We infer that the path toward attainment of an

sustained, high degree of gas market integration, which characterises a Single European

Market for natural gas, appears to be long.

This paper is organised as follows: Section 2.2 discusses the background information

related to this study, whilst Section 2.3 outlines the methodologies employed throughout

the paper. Section 2.4 specifies the dataset, with Section 2.5 reporting the empirical

findings, which are subsequently discussed in Section 2.6. Section 2.7 concludes.

2.2. The European Natural Gas Market

The price of gas depends on a range of economic and non-economic supply and de-

mand parameters, including weather conditions, proximity to production, transmission

constraints, geopolitical factors and import diversification. This section provides a brief

overview of the European spot gas markets, then providing a critical analysis of previous

studies on European natural gas market integration.
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2.2.1. Background

European gas companies were largely considered to be conventionally regulated na-

tional monopolies until the EU embarked upon its natural gas reformation programme,

aiming to correct distortions and increase competitive pricing through legislating three

Energy Directives (1998, 2002 and 2009). The market framework underwent substantial

change due to new unbundling rules, capacity allocation rules and the removal of desti-

nation clauses. Critically, two barriers to a singular, internal European market for gas

remain; non-physical barriers, characterised by contract inflexibility and a lack of market

liberalisation, and physical barriers, namely trade constriction through a lack of available

transmission capacity. Although the three directives have increased competition within

European gas markets, a dual-tier pricing system has developed, with long term supply

contracts and hub-based mechanisms emerging. Whilst hub-based pricing is short-term in

nature, the inherent limitations in transmission capacity and contracted volume flexibility

provide gas markets with relatively unique characteristics, causing the spot market to act

as a one-day forward market.

European day ahead trading responds to the prevailing domestic supply and demand

fundamentals, with Brown and Yucel (2008) finding that crude oil prices, weather, season-

ality and storage play ancillary roles in price discovery. Meanwhile long-term contracts

are typically negotiated for a period of 10-30 years, with natural gas pricing indexed to the

pricing of oil products. Whilst long-term contracts still account for 70% (Heather 2015)

of gas procurement in Europe, a transition from oil product indexation to short-term

hub-based pricing is underway, with consumer dissatisfaction with inflexible, long-term

contracts driving an increased volume of day ahead market trade. The relatively low

“swing” volume and destination inflexibility inherent in long-term contracts, combined

with the growing volume of day ahead trade, motivate this study’s investigation into day

ahead pricing.

Gas markets hold a number of stylised facts which reduce the incumbent’s ability to

exercise time or space arbitrage. Two important examples of this are pipeline transmission

constraints and the national interests of each hub pertaining to wholesale natural gas
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markets. That said, due to the EU objective of a single, common pricing structure,

capacity decisions and pricing strategies are becoming increasingly more simultaneous

amongst European natural gas markets, based on increases in shared information and

cooperation amongst regulatory bodies.

The European gas network is broadly considered to be imperfectly connected, with

substantial pipeline bottlenecks and regions with spare capacity, with ENTSOG issuing

biennial Ten-Year Network Development Plans (TYNDP) in order to correct these dis-

tortions. However, even in an imperfectly connected network of geographically disparate

market pairs, price signalling may still propagate throughout European gas markets, tac-

itly inferring that markets may be competitive.

2.2.2. Previous Literature

The liberalisation of natural gas markets has driven a growing academic interest in the

process of market integration. A number of studies (De Vany and Walls 1993; Walls 1994;

King and Cuc 1996; Serletis 1997; Cuddington and Wang 2006) have focused on North

American gas market integration following the Federal Energy Regulatory Commission’s

(FERC) regulatory developments throughout the 1980s. European natural gas market

literature is both narrower in scope and more current, owing to more recent regulatory

developments. As such, there is a growing interest in ascertaining whether natural gas

markets in Europe are converging toward the EU goal of a single, competitive internal

market, often measuring the degree to which price coupling and integration is being

practically achieved. Since the early 2000’s, a broad array of methodologies have provided

a series of contradictory findings, with some studies displaying evidence of increasing

integration amongst natural gas pricing, and others finding the opposite. Notably, none

of these studies have assessed the dynamic relationships between every European hub in

order to assess the time-varying nature of European market integration.

For example, based on a cointegration analysis, (Asche et al. 2000; Asche et al. 2002)

accept the market integration hypothesis for French and German import pricing, finding

that the “Law of One Price” holds. This finding was updated by the findings of Bourbon-
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nais and Geoffron (2007), who found an increasing degree of integration between Belgian,

French, German, Italian, UK and Spanish natural gas prices from 1999-2005. Conversely,

state space model based studies such as Neumann et al. (2006), suggest that convergence

between Zeebrugge-UK increased following the addition of an interconnector, whilst mar-

ket integration amongst continental European hubs was not apparent. Taken in unison,

the contrasting findings of these studies highlight the importance of the geographic prox-

imity of hubs studied, which increases the probability of market integration. Furthermore,

the assessed time period will impact the empirical findings of the study, emphasising the

requirement of a dynamic model specification, which continually reassesses the degree

of market integration. Robinson (2007) augments Neumann et al. (2006) study through

the application of the Nahar and Inder (2002) methodology to annual retail pricing of

Finland, France, Ireland, Netherlands, Spain and the UK, finding only Dutch pricing to

converge throughout the observed period.

More recently, Renou-Maissant (2012) found strong integration amongst continen-

tal European gas markets, with the exception of the Belgian market. Furthermore,

Growitsch et al. (2015) employed state space modelling with the extension of an error

correction model to demonstrate the increasing integration of hubs within North-West

Europe. Whilst the measured hubs exhibited an increased degree of integration since

the introduction of the ‘entry-exit’ system, information efficiency between the hubs also

increased. Moreover, Neumann and Cullmann (2012), who extended Growitsch et al.

(2015)’s dataset, found geographical proximity and available transmission capacity to

play a role in price integration, with Danish consumers paying a premium due to network

externality, and Austrian pricing diverging from other measured hubs. These findings

are unsurprising, as Austria serves as a thoroughfare for Russian gas into Southern and

South-East Europe (Baumgarten), with hubs in these regions disregarded in the data

specification.

The objective of a unified, competitive European gas market should, in the absence of

transportation capacity limitations, determine the convergence of natural gas prices to-

ward a singular price at all European trading hubs. If this assertion holds, the integration
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of European gas markets, characterised by the network density term, can be expected to

increase throughout the sample period.

2.3. Methodology

This section explains the methodologies employed throughout the paper. Firstly, we

discuss construction of directed, multivariate weighted networks, developed through a

rolling-window computation of Granger causality (Geweke 1982) between price return

series of European natural gas hubs. The topology of the network is then quantified

through the measurement of node weights and network density.

In order to investigate the evolution of the European natural gas pricing network,

it is important to measure not only the degree of connectedness between European gas

hubs, but also the directionality of each of these relationships. Consequently, we propose

employing Granger-Geweke causality (Geweke 1982), a statistical notion of causality based

on the relative forecasting power of multiple time series. Through the use of a VAR

structure, we apply the Granger-Geweke network theory to the European gas network.

The mathematical framework supplied by directed networks characterises interdependent

systems well, enabling assessment of network evolution over time, which provides valuable

information on how prices interact with one another dynamically.

Furthermore, 70% of European gas is landed by pipelines, with gas transited between

hubs by a large, interconnected pipeline network. As such, the application of network

theory, which can measure the degree of interdependence and direction of causality be-

tween hubs, appears to be a logical step in the assessment of the European gas market. If

the European gas market is informationally efficient, short term price returns should not

be related to the lagged values of other variables, hence a Granger-Geweke test should

not detect a high degree of causality. However, given the stated European objective of

a unified, competitive gas market throughout Europe, price returns, in the absence of

transportation limitations, should converge toward a singular value across all European

hubs, quantified through the network density term.

This section outlines the construction methodology of the multivariate, directed weighted
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network used to assess the interdependencies of the European natural gas network, ini-

tially developed by Seth (2010). As we are employing a multivariate (MVAR) system,

Granger-Geweke causality (Geweke 1982), which is simply Granger-causality adjusted for

multivariate systems, is employed. The individual autoregressive representation of each

return series is displayed in 2.1 & 2.2:

x(t) =

p∑
K=1

a1Kx(t− k) + ϵ1(t), var(ϵ1(t)) = Σ1 (2.1)

y(t) =

p∑
K=1

d1Ky(t− k) + η1(t), var(η1(t)) = R1 (2.2)

where a1K and d1K are autoregressive coefficients, ϵ1(t) and η1(t) are noise terms and

K = 1, . . . , p. The joint description of the bivariate series [x(t), y(t)] is given by the pth

order AR 2.3 and 2.4, where noise terms are not correlated over time and the covariance

matrix is expressed as 2.5.

x(t) =

p∑
K=1

a2Kx(t− k) +

p∑
K=1

b2Ky(t− k) + ϵ2(t) (2.3)

y(t) =

p∑
K=1

c2Kx(t− k) +

p∑
K=1

d2Ky(t− k) + η2(t) (2.4)

Σ =

Σ2 r2

r2 R2

 (2.5)

where Σ2 = var(ϵ2(t)), R2 = var(η2(t)) and r2 = cov(ϵ2(t), η2(t)). Whereas Σ1 mea-

sures the ability of previous values of x(t) to predict the present value of x(t), Σ2 represents

the predictive capacity of x(t) and y(t)’s previous values. If x(t) and y(t) are indepen-

dent, then b2K and c2K are zero. Following Granger (1969), causality is defined as 2.6,

with an MVAR approach applied to create the network 2.7, where each matrix, Am, is

determined by elements aij describing the linear relationship between yj(t−m) and yi, p

is the number of lags, and E(t) is the vector of error terms.
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GCy→x = wyx = log

(
Σ1

Σ2

)
GCx→y = wxy = log

(
R1

R2

) (2.6)

Y (t) =

p∑
m=1

AmY (t−m) + E(t) (2.7)

As the MVAR model described in 2.7 provides a time-invariant representation of the

country Y ’s price as a function of the 11 other input values and their lags, a sliding window

estimation is employed, facilitating time variation. A time varying model, employing daily

data allows a time-series of network connectivity strength to be generated, facilitating the

study of gas market integration over time.

The MVAR model shall be estimated using the Burg algorithm (Burg 1967), which

recursively calculates the solution to an equation containing a Toeplitz matrix. Schlögl and

Supp (2006) show that when the Burg algorithm (Burg 1967) is extended for multivariate

Autoregressive models through the Nuttall-Strand method, the MVAR Burg algorithm

provides the most accurate estimates. Furthermore, the Burg algorithm is considered more

appropriate than non-parametric methods due to three distinct properties; windows are

not applied to data, with the assumption that autocorrelation series outside the window

̸= 0 relaxed, minimisation of backward and forward prediction errors in the least squares

sense and the consistent yield of a stable Autoregressive model.

The MVAR model is considered to be theoretically more appropriate than a Spatial

Vector Autoregression (sp-VAR) model (Beenstock et al. 2019), owing to the network

topology of the physical gas infrastructure network. Whilst the sp-VARmodel specifies the

physical distance between different market zones well, it fails to consider the underlying

network infrastructure through which gas is transported. As such, use of a sp-VAR model

may lead to spurious conclusions concerning the level of physical market connection.

The model order q can be selected according to the Akaike criterion:

AIC(p) = 2log[det(Σ)] + 2pM2/n (2.8)
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where Σ is the estimated noise covariance matrix of the bivariate Autoregressive model,

n denotes the length of the data window, and M is the number of time series employed

by the model. 2log[det(Σ)] holds an inverse relationship to p, whereas 2pM2/n punishes

models with a high order. The Akaike information criterion optimises q in order to min-

imise the cost function, which is defined by balancing the variance of the Autoregressive

model against the volume of coefficients estimated.

2.3.1. Node Strength

The mathematical representation of a network is the adjacency matrix, from which the

node strength can be determined. The node strength represents the sum of the weights

of the total edges extending to other nodes within the system, which in turn, is divided

between in-strength din, and out-strength dout, due to the directional nature of granger

causality, hence the relationships:

din(i) =
∑
j∈V

Ai,j dout(i) =
∑
j∈V

Aj,i (2.9)

din(i) represents the total strength of incoming edges for vertex i, where V is the

number of nodes, Ai,j is the causal direction from node j to i, with causality weight

between −1 and 1 determined through equation 2.7. Any interactions which do not

achieve statistical significance shall be set to 0. dout(i) =
∑

j∈V Aj,i represents the total

strength of outgoing edges for vertex i, where V is the number of nodes.

2.3.2. Network Connection Density

In order to assess overall market integration at a given time period, the global con-

nection density, D, shall be computed:

D =
1

N(N − 1)

∑
i,j∈V

Ai,j (2.10)
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where V is the set of available nodes and N is the total number of nodes. This facilitates

measurement of the total amount of causal activity throughout the sample period, with

the value determining the coordination of markets measured.

2.4. Data Specification

In order to analyse hub price convergence and by extension, European gas market

integration, a definition of a gas hub must first be derived. Neumann et al. (2006) provides

an appropriate hub definition, proffering that a hub can be both“physical (local) or virtual

(notional) - on the gas transmission system where the transfer of natural gas can take

place, logistically supported by a body offering the follow-up of the transfer of ownership,

standardised contracts for trade at freely negotiated prices and other services”.

Since Order 1775 was enacted in 2005, the European gas network has operated an

entry-exit system, in which ‘entry’ gas is transported to either a physical or virtual trad-

ing hub within the network, from which it can be transported to an ‘exit’ point. Although

operator published entry and exit pricing is location specific, volume-based price discrim-

ination cannot be enacted amongst network users. As such, zones, based on proximity to

entry-exit points, are defined within the transmission network, within which a singular

price for gas is quoted, giving rise to ‘virtual’ trading hubs (VTP).

In order to accurately capture the dynamics of the European natural gas network, a

hub, either physical or virtual, is specified within each ‘trading zone’. As such, daily time-

series data of a sample of 12 wholesale gas day ahead prices, covering the period 2016 to

2018 are considered. In order to fully represent the dynamics of the European gas market,

the sample period begins upon commencement of day ahead trading at VTP Gaz Sys-

tem (Poland), the most junior trading hub within the network. The markets considered

are: CEGH (Austria), VTP Gaz System (Poland), VHP-Gaspool (Germany), VHP-NCG

(Germany), PSV (Italy), PVB (Spain), PEG Nord (France), PEG TRS (France), Zee-

brugge (Belgium), TTF (Netherlands), ETF (Denmark) and NBP (UK). Midpoint day

ahead prices were obtained from Bloomberg with time sampling of one-day.

Whilst prior studies reference an array of financial instruments within the delivery



2.4. DATA SPECIFICATION 24

curve, day ahead pricing was considered the most theoretically appropriate metric for

this study, as day ahead pricing represented the most liquid instrument within the gas

delivery curve within our study. Owing to its comparably high liquidity, day ahead pricing

can be considered to be most representative of local supply-demand imbalances within

the European Gas network.4

In order to negate any lag-structure requirements arising from time-zone differences,

daily periodicity was chosen, with midpoint pricing best reflecting the trading prices of a

given day. As such, this is in line with the pan-European analysis we intend to develop. All

prices not quoted in e/MWh are converted by the daily spot midpoint price in the case of

currency, and standard unit conversions (1 UK Therm = 0.02931MWh) in the case of unit.

Each market’s time series is comprised of 498 observations, as only ‘gas days’ are employed,

due to this providing the most accurate portrayal of European gas markets functioning

under normal conditions, in which all market participants are actively engaged with the

market. Inclusion of non ‘gas day’ data may result in misleading conclusions on the state

of integration of the European gas network, as market participants in certain regions may

not actively participate in price discovery. As ‘gas day’ misalignment due to national

holiday schedules occurs throughout the sample, it is negated through synchronizing the

data through addition of the last available information pertaining to a missing observation.

This has limited impact on the autocorrelation structure of the return series, with Granger

and Ramanathan (1984) showing that the power of the augmented Dickey-Fuller test is

increased through substituting missing observations with the previous observation.

2.4.1. Hub Pricing

The 12 daily day ahead natural gas prices (in e/MWh) and hub characteristics are

described in Table 2.1. The highest gas price present in the sample is at the VTP Gaz

System, Poland (e88.63/MWh) on 01/03/2018. This coincides with the highest price

4The body of literature focusing on European natural gas market integration, such as Renou-Maissant
(2012), Neumann and Cullmann (2012) and Growitsch et al. (2015) evaluate day ahead price market
integration, owing to the comparatively high liquidity of the day ahead market. Additionally, day ahead
gas markets are considered to be representative of local supply-demand imbalances for the next market
day.
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observed at 10 of 12 hubs measured, which can be attributed to a demand shock following

an unseasonal pan-European ’cold snap’. The pan-European ’cold snap’ observed was

referred to as ’The Beast from the East’, with the meteorological name of ’Storm Emma’,

and precipitated a UK Formal Deficit warning due to a lack of gas availability and low

storage levels. The high price observed in Poland is likely due to a number of concomitant

factors, such as Polish gas infrastructure acting as the first European landfall for a large

proportion of Russian swing capacity, extremely low temperatures in Eastern Europe and

Poland’s physical network externality.

Table 2.1. Descriptive Statistics

This table reports the mean and standard deviation of wholesale day-ahead natural gas
prices between 2016-2018. The normality distribution (Jarque-Bera) test, including skew-
ness and kurtosis values, are also reported.

Hub Mean Std. Dev. Skewness Kurtosis JB Test

PVB (Spain) 22.54 5.06 1.22 2.31 ≤0.001
PSV (Italy) 21.86 4.93 4.28 35.08 ≤0.001
PEG-TRS (France) 21.45 5.41 3.65 31.83 ≤0.001
VTP Gaz System (Poland) 21.18 4.84 6.07 76.65 ≤0.001
CEGH (Austria) 20.19 3.89 3.03 21.83 ≤0.001
NBP (UK) 20.00 5.03 5.46 68.89 ≤0.001
NCG (Germany) 19.93 4.85 5.82 68.38 ≤0.001
PEG-Nord (France) 19.78 4.43 3.65 31.83 ≤0.001
Gaspool (Germany) 19.68 4.14 2.75 20.27 ≤0.001
TTF (Netherlands) 19.68 4.51 4.62 49.90 ≤0.001
Zeebrugge (Belgium) 19.51 3.90 1.40 4.82 ≤0.001
ETF (Denmark) 18.86 3.89 1.91 9.24 ≤0.001

Physical network externality can be a pertinent factor, as NBP (UK), which also ex-

hibits physical network externality, registered the second highest price in the sample. The

lowest price is measured at NBP (UK) on 15/06/2017, perhaps due to a supply surplus and

lack of interconnector activity between the NBP (UK) and both Zeebrugge (Belgium) and

TTF (Netherlands). All hubs observed exhibit a leptokurtic price distribution, with the

dataset also exhibiting a high degree of right-hand skewness. CEGH (Austria) displays a

mean gas price (e20.19/MWh) which is closest to the mean of the sample (e20.39/MWh),

with Danish gas pricing holding the lowest mean (e18.86/MWh), likely due to indige-

nous production and physical proximity to a number of large gas fields in Norway and
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The Netherlands. Finally, PVB (Spain) exhibits the highest mean (e22.54/MWh), likely

due to its network externality, relatively high LNG usage and physical distance from

sizable gas production. Due to the characteristics of Granger-causality (Granger and Ra-

manathan 1984), prices aren’t normalised, as raw data should provide more insight into

network topology at each point in time.

2.4.2. Traded Physical Volumes

Day ahead traded volume provides an important metric pertaining to market activity

and development, as it provides a concise estimation of market liquidity and information

critical to the development of market liquidity. Day ahead traded volumes are an im-

portant component in the determination of churn rate, with large absolute volumes in

the day ahead market typically associated with a high churn rate, indicative of a well-

developed market with a large number of market participants. Table 2.2 displays the

mean day ahead volumes at each hub measured and coefficient of variation of day ahead

volumes, which depicts variance of traded volume at each hub. Zeebrugge (Belgium),

Gaspool (Germany), NCG (Germany), PSV (Italy) and PEG-Nord (France) display have

the largest day ahead traded volumes, each holding a mean day ahead trading volume

above 100MCM/d. CEGH (Austria), TTF (Netherlands) and VTP Gaz System (Poland)

hold relative large mean day ahead trading volumes, with TTF (Netherlands) exhibiting

a large coefficient of variation which can be associated with production at the Gronin-

gen field. PEG-TRS (France) and NBP (UK) display low traded volumes in the day

ahead market, with NBP (UK) exhibiting the second largest coefficient of variation of the

sample, implying that physical trade between the UK and continental Europe is largely

dependent on domestic supply and demand balances in the UK. Finally, PVB (Spain)

and ETF (Denmark) have a fraction of day ahead traded volume of the most liquid hubs,

trading 7.2% and 2.3% of the mean volume traded at Zeebrugge (Belgium) respectively.
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Table 2.2. Traded Physical Volumes

The mean day ahead volume in MCM/d and coefficient of variation, depicting the relative
standard deviation in day ahead trading volumes and the number of physical pipeline
connections (Connect.) of each hub.

Hub Avg. Volume Coeff. of Variation Connect.

Zeebrugge (Belgium) 121.08 0.43 5
Gaspool (Germany) 116.27 0.19 5
NCG (Germany) 111.45 0.26 8
PSV (Italy) 109.47 0.24 3
PEG-Nord (France) 104.35 0.24 4
TTF (Netherlands) 90.73 0.61 4
CEGH (Austria) 90.48 0.27 2
VTP Gaz System (Poland) 75.60 0.17 1
PEG-TRS (France) 37.57 0.22 2
NBP (UK) 34.62 0.73 2
PVB (Spain) 8.66 0.52 1
ETF (Denmark) 2.76 0.87 2

2.4.3. Churn Ratio

Heather (2017) proffer that churn ratio is amongst the most important measures of

each gas hub’s commercial success, as it considers day ahead and total volume traded at

each hub, whilst tacitly considering the number of market participants engaged in trading

activities at each hub. The churn ratio, total traded volume divided by physical volume,

provides an accurate indicator, based on the number of times each physical ‘parcel’ of gas

is traded at the hub, of hub liquidity and commercial success. Gas markets are typically

considered to be commercially successful, mature, hubs when the churn ratio is larger

than ten, with many market participants reluctant to engage in activity at hubs with

churn ratios below this threshold.

Table 2.3 shows that of the European gas hubs measured, TTF (Netherlands) is by far

the most liquid and commercially successful hub, with a continued development of 7.35%

in 2017. NBP (UK) remains the second most liquid trading hub within the sample, al-

though it exhibited a decline in churn ratio in 2017, likely due to a combination of political

uncertainty within the UK, cost of currency hedging for European market participants

and the declining production of North Sea gas fields. It is clear that TTF (Netherlands)
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and NBP (UK) are the most commercially relevant hubs within the sample, as they are

the only hubs which exhibit churn ratios above ten, with total volume at NBP (UK) and

TTF (Netherlands) exceeding that of the ten other hubs combined.

Table 2.3. Churn Ratio

The churn ratios of each hub for both 2016 (Heather 2017) and 2017, with the percentage
change presented on the right.

Hub 2016 Churn Ratio 2017 Churn Ratio % Change

TTF (Netherlands) 57.10 61.30 7.35%
NBP (UK) 22.10 21.81 -1.31%
CEGH (Austria) 5.70 3.51 -38.44%
Zeebrugge (Belgium) 4.10 2.95 -28.17%
NCG (Germany) 4.00 4.50 12.44%
Gaspool (Gemany) 2.50 3.05 21.90%
PEG-Nord (France) 1.70 2.19 29.11%
PSV (Italy) 1.20 3.15 162.26%
ETF (Denmark) 1.20 2.03 69.37%
VTP Gaz System (Poland) 0.80 1.09 36.23%
PEG-TRS (France) 0.60 1.10 83.14%
PVB (Spain) 0.10 0.61 513.94%

Interestingly, CEGH (Austria) and Zeebrugge (Belgium) both experienced a substan-

tial decline in churn ratio in 2017, with the decline at Zeebrugge (Belgium) linked to a

reduced output of North Sea fields and decreasing usage of Norwegian gas in favour of

cheaper supply from Russia.

Notably, PSV (Italy) experienced a substantial growth in churn rate (162.26%), with

Snam SpA attempting to leverage the multiple sources of supply, established national

grid and well-developed infrastructure in order to increase the liquidity, and ultimately

the importance of the Italian gas market. ETF (Denmark) also exhibited a substantial

growth in churn ratio (69.37%), however this phenomenon is likely due to the loss of

over 90% of Denmark’s indigenous production at the Tyra field, which has been closed

due to required infrastructure updates. Other hubs, such as NCG (Germany), Gaspool

(Germany), PEG-Nord (France) and VTP Gaz System (Poland) have increased in churn

ratio, indicating an overall increase in the liquidity of the European gas market. However,

none of the aforementioned hubs exhibit a churn ratio above five, indicating a low degree
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of hub development. Finally, hubs such as PEG-TRS (France) and PVB (Spain) have

exhibited large percentage growth in churn ratios, although this is from a very low base,

and the hubs are still considered illiquid and have marginal commercial importance.

2.4.4. Market Participants

The number of market participants engaged at each trading hub is indicative of the

development and commercial success of a market, as it provides information pertaining

to the barriers to market entry of new participants, whilst also providing information on

ease of interaction for incumbent market participants. In an ideal scenario, the type of

each active market participant would also be recorded, however, due to data availability,

the total number of market participants are recorded at each hub. As a general rule, a

larger number of active market participants increases market competition, lowering the

bid-offer spread, increasing market depth and ultimately reducing susceptibility to market

manipulation.

Both TTF (Netherlands) and NBP (UK) were considered to be substantially further

developed in terms of market participation in 2014, which is confirmed by the large

churn ratios and mean traded volumes observed in Table 2.2 and Table 2.3. Whilst TTF

(Netherlands) and NBP (UK) have been usurped in the number of registered participants

by NCG (Germany) and Gaspool (Germany), Neumann and Cullmann (2012) notes that

the large number of market participants in Germany is a function of the vast number of

subordinated network operators.

PSV (Italy) and PEG-Nord (France) have seen substantial development in the number

of market participants, with other markets, such as VTP Gaz System (Poland), PEG-

TRS (France), ETF (Denmark), and PVB (Spain) displaying large growth rates in market

participation, albeit from a low base. These results suggest that although VTP Gaz

System (Poland), ETF (Denmark), PEG-TRS (France) and PVB (Spain) have exhibited

growth, they cannot yet be considered as deep, transparent and liquid natural gas hubs.
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Table 2.4. Market Participants

Number of registered market participants at each measured hub in both 2014 (Heather
2017) and 2017. This includes companies both registered to trade and registered as
shippers, rounded to the nearest five participants. The data was collated from a range of
sources, with no standardised calculation methodology.

Hub Participants (2014) Participants (2017)

NCG (Germany) 90 502
Gaspool (Germany) 105 230
PSV (Italy) 118 190
NBP (UK) 200 190
TTF (Netherlands) 130 140
PEG-Nord (France) 55 120
Zeebrugge (Belgium) 82 115
PVB (Spain) 70 105
VTP Gaz System (Poland) 58 80
PEG-TRS (France) 37 65
ETF (Denmark) 43 60
CEGH (Austria) 53 30

2.5. Results

The following section reports the main results. Firstly, the in-strength estimations

are presented, followed by out-strength estimations. The net-strength estimations are

presented, followed by the results relative to global connectivity. Finally, the network

representations are discussed.

2.5.1. In-Strength Estimations

As per the Methodology, in-strength estimations detail the degree to which a given

hub’s price returns are impacted by price signals from other hubs within the network.

Exhibition of a high mean in-strength indicates that hub pricing is highly impacted by

other European gas prices. Conversely, a low mean in-strength indicates that hub pricing

is marginally impacted by price formation in other markets, instead, it is determined by

local factors.

Upon estimation, the day-ahead market which was least impacted by other European

natural gas prices, as characterised by the lowest mean in-strength causality (0.179) was
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PEG-TRS (France). PEG-TRS (France) displays the characteristics typical of an emerg-

ing hub, with a Churn Ratio of 1.10 (Table 2.3) and a mean traded volume of 37.57MCM/d

(Table 2.2). The low levels of liquidity and physical interconnection of PEG-TRS are

probable explanations for susceptibility to local supply and demand imbalances.

Table 2.5. In-Strength Estimations

The mean in-strength causality, mean price (e/MWh) and number of physical connections
(Connect.) of each gas trading hub measured in the sample.

Hub Avg. In-Strength Avg. Price Connect.

Zeebrugge (Belgium) 0.284 19.51 5
PSV (Italy) 0.268 21.86 3
NBP (UK) 0.263 20.00 2
NCG (Germany) 0.262 19.93 8
TTF (Netherlands) 0.244 19.68 4
Gaspool (Germany) 0.239 19.68 5
PEG-Nord (France) 0.236 19.78 4
ETF (Denmark) 0.219 18.86 2
CEGH (Austria) 0.209 20.19 2
VTP Gaz System (Poland) 0.205 21.18 1
PVB (Spain) 0.190 22.54 1
PEG-TRS (France) 0.179 21.45 2

The second lowest mean in-strength (0.190) was recorded at PVB (Spain), which is

physically connected to PEG-TRS (France) at VIP-Pirineos. The low mean in-strength

causality exhibited at PVB (Spain) can be attributed to a number of concomitant factors,

including physical network externality, competitive pipeline import pricing from North

Africa and substantial regasification capacity. This is further discussed in Section 2.6.1.

The largest mean in-strength causality (0.284) was recorded at Zeebrugge (Belgium),

indicating that, on average, it is mostly Granger caused by other gas prices. Further

to this, the in-strength variance was lower than the sample average, indicating that day

ahead pricing at Zeebrugge (Belgium) is consistently influenced by other European gas

prices. This is intuitive, as Zeebrugge (Belgium) is physically connected to five other

large, liquid trading hubs.

It is possible to observe a number of periods in which individual node in-strength

values increase within the sample period (Figure 2.1a). However no clear patterns emerge
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with regard to average node in-strength throughout the period sampled. This implies that

European gas price fluctuations held a higher degree of dependence upon variations in

other European prices at certain periods within the sample, characterised by the intense

colours depicted in Figure 2.1a. Meanwhile, there is no trend indicating an increasing

degree of price harmonisation across the period. This phenomenon is further investigated

through the utilization of a network density term (Section 2.5.4).

(a) In-strengths (b) Out-strengths

Figure 2.1. European Price In-Strength and Out-Strength values

Behaviour of the 12 European price in-strength and out-strength values between 2016-
2018. Darker colours indicate larger values, as indicated on the colour bar. Each unit on
the y-axis represents one of the 12 markets.

2.5.2. Out-Strength Estimations

Out-strength estimations detail the degree to which a given market’s pricing impacts

price signals at other markets within the network. Exhibition of a high mean out-strength

indicates that the market holds a high degree of importance in price formation of gas prices

at other European hubs. Conversely, a low mean out-strength indicates that the market

holds a limited capacity to impact price formation at other hubs.

The hub price with both the highest mean out-strength (0.412) and standard deviation

(0.594) was VTP Gaz System (Poland). This indicates that Polish gas pricing showed a

large potential of influencing other European gas prices under certain market conditions,

specifically in periods of high day ahead gas demand within continental Europe (Figure

2.1). This is unsurprising, as Poland holds one of the main transit routes for European gas

imported from Russia (Yamal-EuRoPoL), carrying one-fifth of all Russian gas imports to
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Europe.

Table 2.6. Out-Strength Estimations

The mean out-strength causality, mean price (e/MWh) and number of physical connec-
tions (Connect.) of each gas trading hub measured in the sample.

Hub Avg. Out-Strength Avg. Price Connect.

VTP Gaz System (Poland) 0.412 21.18 1
PVB (Spain) 0.347 22.54 1
CEGH (Austria) 0.343 20.19 2
Zeebrugge (Belgium) 0.227 19.51 5
Gaspool (Germany) 0.221 19.68 5
PEG-TRS (France) 0.215 21.45 2
NBP (UK) 0.213 20.00 2
TTF (Netherlands) 0.212 19.68 4
ETF (Denmark) 0.207 18.86 2
PSV (Italy) 0.156 21.86 3
NCG (Germany) 0.138 19.93 8
PEG-Nord (France) 0.112 19.78 4

PVB (Spain) also exhibits a high mean out-strength causality, indicating that Spanish

gas pricing shows potential to influence other European gas prices under specific market

conditions, albeit these conditions are considerably different (Figure 2.1b, Figure 2.2 ) to

those exhibited by VTP Gaz System (Poland), with the relative out-strengths holding a

correlation of −0.24. When considering the fundamental drivers of European gas pricing,

flexible oil product-indexed pipeline gas from Russia or Norway and Liquified Natural Gas

(LNG), the global context in which these markets operate must also be considered. The

ability of pipeline gas or LNG to influence European pricing, characterised by out-strength

values, is largely dependent on Asian hub pricing, as a substantial premium at Asian hub

prices tends to draw spot LNG cargoes away from delivery to Europe, leaving Russian

or Norwegian swing capacity to dictate European day ahead pricing. Conversely, weak

demand in Asia allows for increased spot LNG delivery to Europe, displacing Russian or

Norwegian gas as European price setters (Figure 2.2).

Conversely, the hub which recorded the lowest mean out-strength (0.112), therefore

the lowest ability to impact European gas prices, was PEG-Nord (France). Further to

this, PEG-Nord also displayed the lowest out-strength variance of the sample, indicating
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that PEG-Nord consistently had a marginal capacity to influence other European day

ahead gas prices. This is in contrast to PEG-TRS (France), which held a considerably

larger ability to influence European gas pricing throughout the sample, recording a mean

out-strength of 0.215. The bifurcation of the French gas market is further discussed in

Section 2.6.

Figure 2.2. Japan-Europe Premium

A visual representation of the systematic premium between Japanese Import Price and
the average European gas price (e/MWh), PVB (Spain) out-strength causality and VTP
Gaz System (Poland) out-strength causality. When the Japan-Europe premium is large,
LNG cargoes are attracted to Asia, allowing VTP Gaz System (Poland) to act as a price
setter in European gas, characterised by high out-strength causality values (Correlation =
0.141). Conversely, when the Japan-Europe premium is low, LNG cargoes are attracted to
Spain’s large regasification capacity, increasing PVB’s out-strength causality. (Correlation
= -0.058)

2.5.3. Net-strength Estimations

Following estimations of both in-strengths and out-strengths, the net-strengths are

estimated. A large, positive net-strength indicates that the trading hub shows a high

potential for influencing prices at other hubs, acting as a ‘price setter’ within European
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day-ahead gas pricing. Conversely, hubs which exhibit negative net-strengths indicates

that pricing at the hub is mostly Granger caused by pricing at other hubs within the

sample, acting as a ‘price taker’.

Table 2.7. Net-strength Estimations

The mean net-strength causality, variance of net-strength causality and mean price
(e/MWh) of each gas trading hub measured in the sample.

Hub Avg. Net-Strength Variance Avg. Price

VTP Gaz System (Poland) 0.206 0.663 21.18
PVB (Spain) 0.158 0.449 22.54
CEGH (Austria) 0.134 0.699 20.19
PEG-TRS (France) 0.036 0.510 21.45
ETF (Denmark) -0.012 0.450 18.86
Gaspool (Germany) -0.018 0.429 19.68
TTF (Netherlands) -0.032 0.394 19.68
NBP (UK) -0.050 0.286 20.00
Zeebrugge (Belgium) -0.057 0.513 19.51
PSV (Italy) -0.113 0.394 21.86
NCG (Germany) -0.124 0.302 19.93
PEG-Nord (France) -0.124 0.253 19.78

The hub which recorded the largest mean net-strength (0.206) is VTP Gaz System

(Poland), followed by 0.158 recorded at PVB (Spain) and 0.134 recorded at CEGH (Aus-

tria). This indicates that the aforementioned hubs exhibit the highest degree of ‘price

setter’ behaviour within European gas markets. When considered in isolation, each hub

has a number of unique characteristics, however the aforementioned hubs hold a com-

monality of physical proximity to gas injection into the European network. Whether it is

LNG regasification capacity at PVB (Spain), or major pipeline (Yamal-EuRoPoL,Soyuz)

terminals from production fields in Russia (VTP Gaz System, CEGH), the hubs which

display the positive net-strengths acted as net exporters to other hubs, with the exception

of PVB (Spain).

VTP Gaz System (Poland), which acts as the first European landfall of one-fifth

of Russian exports transited by the Yamal-EuRoPoL pipeline, had a mean net export of

75.60MCM/d exclusively to Gaspool (Germany). As such, VTP Gaz System’s prominence

as a ‘price setter’ within the study is unsurprising. This hypothesis is further investigated
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through the analysis of adjacency matrices in Section 2.6.5.

(a) Net-strengths (b) Net export volumes

Figure 2.3. European Price Net-Strength Values

Left: The 12 European price net-strength values between 2016 and 2018.
Darker colours indicate larger influential values, whereas lighter colours indi-
cate more prominent values. The units of the y-axis represent the 12 markets.
Right: Net export volumes from each trading hub between 2016-2018, ex-
pressed in million cubic meters per day (MCM/d). Darker colours indicate
large net export volumes, whilst lighter colours indicate large net import vol-
umes, as per the colour bar.

Extended periods of disconnection from the European pricing system, further discussed

in Section 2.6.4, were observed at PVB (Spain), culminating in a mean net-strength value

of 0.158. Critically, PVB (Spain) also displayed the largest mean price of the sample,

indicating that an improved degree of integration into the European pricing system could

be beneficial for domestic consumers.

CEGH (Austria) recorded the third largest mean Net-Strength (0.134), indicating

CEGH’s importance as a ‘price setter’ within European gas markets. Given Baumgarten’s

importance in servicing the Southern Gas Corridor and the central European market,

namely Germany (NCG and Gaspool) and Italy (PSV), this is unsurprising. CEGH

(Austria) also held the largest mean net-export value (Figure 2.3) of 77.84MCM/d, with a

mean daily export of 81.36MCM/d to PSV (Italy). That said, pricing at CEGH (Austria)

only achieved statistical significance in influencing pricing at PSV (Italy) for 18 days of

the sample (5.19%).

From this, a number of conclusions can be drawn; Firstly, hubs which have access to

substantial physical injection into the European network hold influence over European

natural gas pricing. When interpreting Figure 2.3a, it becomes apparent that a determin-
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ing characteristic in the pricing of European gas is exogenous to the study, with Asian hub

pricing most likely playing a role in determining whether LNG or Russian and Norwegian

swing capacity acts as the price setter in the European day ahead market. This is intu-

itive, as high prices at Asian hubs act to draw LNG away from European regasification

plants, allowing Russian and Norwegian swing capacity to act as the European day ahead

price setter, evidenced by the large net-strengths exhibited at VTP Gaz System (Poland)

and CEGH (Austria).

2.5.4. Network Density of European Gas Prices

Network Density, as defined in Section 2.3.2, remained around the relatively low mean

value of 0.141 throughout the sample time frame, with a standard deviation of 0.074.

The maximal value of network density is displayed as the largest peak in (Figure 2.4),

which displays the behaviour of day ahead European gas pricing throughout the period

2016-2018. Through observing the causal interactions between EU natural gas prices, the

model provides a dynamic quantification of European gas market price integration, the

system’s network density, which exhibits stochastic behaviour (Figure 2.4).

Subsequently, the distribution of the Network Density term was analysed, with the z-

score calculated in order to understand at which observations of time the network density

was 3 standard deviations above the mean (Z>1.96, p<0.05). Values lying outside the

confidence bounds imply abnormal market behaviour at the observation, displaying an

unusually large network density term.

The abnormally large network density terms coincided with factors such as pipeline ca-

pacity reductions, seismic activity and uncharacteristically cold weather. Periods of lower

than normal connectivity occurred as frequently as those of greater than normal connec-

tivity, indicating that long run gas market integration is not substantially pronounced.

Results relative to global connection density display the occurrence of a large spike in

January 2018, reaching a magnitude of 0.45 on 29/01/2018. This can be attributed to

the pipeline disruption which occurred between Oude Statenzijl (Netherlands) and Bunde

(Germany) between 27/01/2018 and 28/01/2018. Further to this, an initial interconnec-
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Figure 2.4. Network Density

Network density of 12 European day ahead gas prices between 2016-2018. The dotted
horizontal lines represent the mean and upper confidence bounds (Z>1.96). Time is on
the x-axis, with the network density value displayed on the y axis. The two markov
regimes are depicted by the blue dotted line, with the respective coefficients of 0.129 and
0.285.

tivity peak of c.ca 0.30 can be observed within the first 69 model shifts (04/10/2017).

The following peaks reached 0.31 and 0.36 respectively, with the mean level of day

ahead gas market network density remaining c.ca 0.15 throughout the sample. The longest

peak in global density was recorded during the period 05/07/2018 to 02/08/2018, with

an over basal increase of 194%. When referring to Figure 2.4, there is a noticeable lack of

correlation between peaks in the average European day ahead gas price and the network

density term, indicating that abnormal price phenomena did not produce the network

density peaks observed.

The Markov regime switching model was subsequently applied to the connection den-

sity time series to detect the exact points in which connection density peaks occur. Ob-

served jumps in global connectivity were considered as changes to another regime, which

occurred seven times throughout the sample, displayed by (Figure 2.4).
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An ARIMA (1,0,0) model was subsequently applied to the network density term in

order to investigate whether the network density, and by extension, market integration

of European day ahead gas markets, represents a stochastic process. Results show that a

random walk process could have produced the network density time series, therefore an

AR(1) model is an appropriate representation of European network density. From this,

it can be surmised that the most accurate representation of the network density term at

time t is network density at time t− 1.

2.5.5. Network Representation of European Gas Prices

The system of European natural gas price interactions, summarised throughout the global

connection density series by computing the degree of Granger causality between gas price

returns, produces a dynamic network. Two examples of the network estimation are dis-

played in (Figure 2.5), with the adjacency matrix and network graph shown at the points

at which the largest and smallest network density terms were observed. From this visu-

alisation, it is clear that a substantial difference in the intensity and number of Granger

causal interactions were observed throughout the sample, evidenced by the number of

arrows displayed within the network graphs, and intensity displayed by the adjacency

matrices.

2.6. Discussion

The following section discusses the findings reported in Section 2.5. Firstly, the in-

strength estimations are discussed, followed by a discussion of the out-strength estima-

tions. This is followed by discussion of the net-strength estimations, culminating in a

discussion of the physical and non-physical reasons for market decouplings. Finally, Net-

work Density is discussed.
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Figure 2.5. Network Graphs and Adjacency Matrices

The network graphs (lower panel) and adjacency matrices (upper panel) relative to the
highest and lowest observations of network density are presented. The highest network
density term was observed on 29/01/2018 (left panel), with the lowest network density
term observed on 10/10/2018 (right panel). The direction of the arrow corresponds to the
direction of the Granger causality between the variations of European gas prices, whilst
the adjacency matrices (upper panel) depict the intensity of Granger causal interactions
between markets. Each matrix entry displays the intensity of Granger-causality between
the price variations observed in two sample countries, depicted by the adjacent colour
scale.

2.6.1. In-Strengths

The mean in-strength causality of 0.190 exhibited at PVB (Spain) (Figure 2.5) can

be attributed to a number of concomitant factors, including physical network externality,

competitive pipeline import pricing from North Africa and substantial re-gasification ca-

pacity. The low number and physical capacity of interconnections to the European market

(16.89MCM/d) makes Spain reliant on pipeline imports from North Africa to meet its

domestic demand, with Algeria supplying 56.8% of total import demand in 2017 (IEA,
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2018). Further to this, Spain currently holds 39% of total European regasification ca-

pacity, enabling LNG imports to constitute a substantial proportion of the domestic gas

mixture, with term contracts in place with Norway, Nigeria and Qatar. As such, PVB

(Spain) exhibits a low mean in-strength, as day ahead gas pricing is determined by a

combination of LNG imports and North African pipeline imports to the Iberian Penin-

sula. This indicates that the Spanish gas market is largely driven by domestic supply and

demand conditions, as opposed to pan-European supply and demand balances.

When considering the Iberian Peninsula’s physical network externality, the systematic

disparity of e1.08/MWh between the adjacent trading regions of PEG-TRS (France) and

PVB (Spain) is comprehensible, since PEG-TRS (France) has a low reliance on gas for

electricity generation, as a consequence of the high French nuclear baseload capacity. As

the aforementioned trading regions are connected by 16.89 MCM/d of pipeline capacity

at VIP Pirineos, which is rarely utilized at maximal capacity (Figure 2.6), the premia

paid at PVB (Spain) appears to be a consequence of a lack of pipeline contract flexibility.

According to Heather and Petrovich (2017), a lack of readily available transmission ca-

pacity between PEG-TRS (France) and PVB (Spain) for day ahead market participants

who aren’t engaged in term contracts between the markets has inhibited reduction of the

premium paid at PVB (Spain), and subsequently the Iberian peninsula’s integration into

the European natural gas network.

Both PEG-TRS (France) and PVB (Spain) display the characteristics typical of emerg-

ing hubs, detailed in Table 2.2 and Table 2.3. As such, low levels of liquidity may ad-

versely impact the degree of cross border trade, characterised by the pipeline utilization

rates displayed at VIP Pirineos (Figure 2.6). This has the resultant impact of decreasing

arbitrage flows, with arbitrage in the day-ahead market only occurring when the PVB

(Spain) - PEG-TRS (France) premium becomes uncharacteristically large (Figure 2.6),

reducing integration of the Iberian Peninsula into the European gas system. This is con-

firmed through analysis of the adjacency matrices, as PEG-TRS (France) Granger caused

pricing at PVB (Spain) (above a 95% confidence) in 136 of 347 (39.19%) of sampled days.

Broadly, when physical network positioning of different hubs is considered, hubs which
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Figure 2.6. Systematic Price Difference

A visual representation of the systematic price difference between PVB (Spain) and PEG
TRS (France), combined with the net flow in million cubic meters per day (MCM/d)
through the VIP Pirineos pipeline, connecting the trading regions.

exhibit physical network externality (Figure 2.5, such as PVB (Spain), PEG-TRS (France)

and VTP Gaz System (Poland), display a substantially larger mean day ahead price than

hubs which exhibit network centrality (Table 2.5). Furthermore, these hubs are typically

characterised by a low mean in-strength causality, indicating that the day-ahead pricing

is marginally impacted by pricing at other European hubs.

A notable exception is Gaspool (Germany), which holds a relatively central network

position, directly connected to five other trading hubs by pipeline, yet it exhibits a low de-

gree of prominence, combined with a high variance of in-strength. This can be accounted

for by the concentration of Russian and Norwegian gas imports at Gaspool (Germany),

with day ahead price returns at Gaspool (Germany) showing a lower dependence on other

European markets, as the relationship with Russian and Norwegian day ahead pricing su-

persedes this. The high degree of in-strength variance confirms this, as under specific

market conditions, pricing at Gaspool (Germany) can be highly dependent on other Eu-
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ropean day ahead prices, which coincides with a high network density term, however under

normal market functioning, variables beyond the scope of the study, Russian and Norwe-

gian day ahead pricing, have a large impact on day ahead pricing at Gaspool (Germany).

The day-ahead gas price which displayed the largest mean in-strength causality was

Zeebrugge (Belgium), indicating that, on average, it is mostly Granger caused by other

gas prices. Further to this, the in-strength variance was relatively low, indicating that day

ahead pricing at Zeebrugge (Belgium) is consistently influenced by other European natural

gas prices. This result is intuitive, as Zeebrugge (Belgium) holds a relatively central

network position, directly connected to five other trading hubs by pipeline. Furthermore,

Zeebrugge’s status as the oldest trading hub within continental Europe, physical proximity

to other large, liquid trading hubs (TTF, PEG-Nord, NBP) and status as a net-exporter of

gas throughout the sample compound the characteristic of network centrality, increasing

the degree to which Zeebrugge acts as a price taker within the day ahead market.

2.6.2. Out-Strengths

The largest mean out-strength of 0.412 was recorded at VTP Gaz System (Poland).

This is intuitive, as Poland holds one of the main transit routes for European bound

gas from Russia, with the Yamal-EuRoPoL pipeline carrying one-fifth of all Russian gas

imports to Europe. Therefore, Poland is one of the first points at which Russian day ahead

capacity is priced into the sample. As such, in periods of market stress, characterised by

an uncharacteristically large demand, VTP Gaz System (Poland) is the market which,

due to the physical location of the gas fields which serve European day ahead supply

(Russia), exerts a high degree of influence on European pricing, characterised by a high

mean and variance of out-strength causality.

Whilst Gaz System (Poland) holds 112.39 MCM/d of interconnection capacity to

Gaspool (Germany), day ahead gas pricing within Poland holds a systematic premium

to pricing at Gaspool (Germany), with 18.44% of adjacency matrices showing day ahead

pricing at Gaspool (Germany) is Granger caused by VTP Gaz System (Poland) at the 5%

significance level. Meanwhile, pricing at Gaspool (Germany) influenced pricing at VTP
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Gaz System (Poland) for 24.78% of sampled days.

Surprisingly, throughout the sample, despite the systematic e1.50/MWh premia at

VTP Gaz System (Poland), negligible arbitrage flows occurred from Gaspool (Germany)

to VTP Gaz System (Poland). Conversely, Gaz System (Poland) acted as a net exporter to

Gaspool (Germany), exporting an average of 75.60 MCM/d (67.27% pipeline utilization)

throughout the sample. This supports Heather and Petrovich (2017)’s assertion that

capacity constraints are not the primary factor in Poland’s systematic price premium in

the day ahead market, with pricing determined by local supply and demand imbalances,

inferring that the country’s gas system is not fully liberalised, or integrated into the

European gas network.

PVB (Spain) also exhibits a high mean out-strength causality (0.347, Table 2.6),

indicating that Spanish gas pricing shows potential to influence other European gas prices

under specific conditions. That said, these conditions are considerably different (Figure

2.1b) to those exhibited by VTP Gaz System (Poland), with the relative out-strengths

holding a correlation of −0.24. When considering the fundamental drivers of European

natural gas pricing, flexible oil product-indexed pipeline gas from Russia and Norway or

Liquified Natural Gas (LNG), the global context in which these markets operate must

also be considered. The ability of pipeline gas or LNG to influence European pricing,

characterised by out-strength values, is largely dependent on Asian hub pricing, as a

substantial premium at Asian hub prices tends to draw spot LNG cargoes away from

delivery to Europe, leaving Russian or Norwegian swing capacity to dictate European day

ahead pricing. Conversely, weak demand in Asia allows for increased spot LNG delivery

to Europe, displacing Russian or Norwegian gas as European price setters (Figure 2.2).

Considering the above, the out-strengths displayed in (Figure 2.1b) are intuitive, as

Russian day ahead capacity, which is initially priced into the sample at VTP Gaz System

(Poland) or CEGH (Austria) holds a negative correlation (−0.24 and −0.37 respectively)

with countries with large LNG regasification facilities, such as PVB (Spain). As the

Iberian Peninsula accounts for 44% of European LNG regasification capacity, combined

with landfall of pipelines from Algeria (Medgaz) and Morocco (Maghreb Europe Gas),
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PVB (Spain) has considerable influence on European day ahead pricing when Asian LNG

demand is weak.

Conversely, the hub which recorded the lowest mean out-strength (0.112, Table 2.6),

therefore the least ability to impact European gas prices, was PEG-Nord (France). Further

to this, PEG-Nord also displayed the lowest out-strength variance of the sample, indicating

that PEG-Nord consistently had a limited capacity to influence other European day ahead

gas prices.

This can be attributed to France’s 70% dependence on Nuclear capacity for energy

generation, lack of indigenous production following the closure of the Lacq field in 2013,

and net importer status throughout the sample. When considering the bifurcation of the

French gas market, a difference in the origin of gas mixture at the two hubs provides a

plausible explanation for the disparity in price dynamics. As LNG is essential to meet

demand within PEG-TRS (France), constituting 39% of volume (ENTSOG, 2017), PEG-

TRS (France) is subject to the same global LNG dynamics as PVB (Spain), however

PEG-Nord (France), which holds marginal LNG volume (3%, ENTSOG, 2017) within the

import portfolio, is subject to day ahead pricing from Russia, Norway and the Nether-

lands.

However, when considering the North-South (PEG-Nord, PEG-TRS) division of the

French gas market, an interesting disparity between the characteristics and pricing of the

two trading hubs can be observed, as PEG-TRS (France) displays the sixth largest mean

out-strength, whilst PEG-Nord (France) displays the lowest. Firstly, PEG-Nord’s physical

interconnection to Zeebrugge (Belgium), NCG (Germany) and PEG-TRS (France) pro-

vides it with a substantially larger degree of network centrality than PEG-TRS (France),

which holds comparatively small interconnection capacity to PVB (Spain) and PEG-Nord

(France). Furthermore, PEG Nord (France) also had a substantial average net import

volume throughout the sample, (46.7MCM/d), whereas PEG-TRS (France) had low net

import volumes (21.1MCM/d), most of which was delivered from PEG Nord (France).

The high mean utilisation of the Liason Nord-Sud pipeline (96%) begins to explain the

systematic price disparity between the two French markets, as the premium at PEG-TRS
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increases as the Liason Nord-Sud pipeline utilisation rate increases beyond 95%. Fur-

thermore, when adjacency matrices are considered, PEG-Nord Granger caused pricing at

PEG-TRS on 11.82% of days sampled, whilst PEG-TRS only Granger caused PEG-Nord

on 10.09% of days sampled.

On November 1st 2018, the French gas market merged its two virtual trading points

(VTPs), PEG-Nord and PEG-TRS, in order to form a single VTP called Point d’échange

de Gaz (PEG), within a single trading region, Trading Region France (TRF). As a con-

sequence, the systematic price difference (Figure 2.1) between PEG-Nord (France) and

PEG-TRS (France) is expected to be reduced, as a single national wholesale gas market is

established, with an increase in liquidity, competition, and ultimately market integration

anticipated. Prior to the merger, PEG-Nord (France) was well supplied through direct

pipeline linkages to Zeebrugge (Belgium) and NetConnect Germany (NCG), and LNG

regasification capacity at Dunkerque and Montoir de Bretagne. Conversely, PEG-TRS

held limited access to other injection sources, with LNG capacity at the Fos terminals

supplying a substantial proportion of demand in the PEG-TRS (France) region.

Following the merger, there was a palpable change in dynamics of the French gas

market, with a decrease in mean out-strength from 0.217 to 0.031 exhibited at PEG-

TRS (France) (Figure 2.1b). This indicates that following the merger, price formation

characteristics in France were similar to those exhibited at PEG-Nord (France) prior to

the merger, as opposed to PEG-TRS (France). It is anticipated that these dynamics shall

continue to evolve due to the expected completion of the Val de Saone and Gascogne-Midi

pipeline projects, which aim to equalise gas pricing within the French domestic market.

2.6.3. Net-Strengths

Following discussion of both in-strength and out-strengths, the net-strengths, which

constitutes the degree to which each hub acts as a ‘price setter’ or ‘price taker’ are dis-

cussed.

VTP Gaz System (Poland) exhibits the largest net-strength of 0.206 (Table 2.7) of the

sample, which is intuitive, given that Poland acts as the first European landfall of one-fifth
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of Russian export capacity. VTP Gaz System’s (Poland) ability to act as a ‘price setter’

within central European gas pricing is confirmed through analysis of adjacency matrices.

Pricing at Gaspool (Germany), NCG (Germany) and ETF (Denmark) was influenced by

VTP Gaz System (Poland) in 46, 64 and 40 instances respectively.

CEGH (Austria) recorded the third largest net-strength of 0.134 (Table 2.7), exhibiting

price dynamics which were largely similar to those observed at VTP Gaz System (Poland).

This is unsurprising given that Baumgarten, within the CEGH (Austria) trading region, is

one of the major European terminals of Russian export flows, acting as a thoroughfare for

day ahead capacity to South-Eastern Europe and the central European market, namely

Germany (NCG and Gaspool) and Italy (PSV). CEGH (Austria) also recorded the largest

mean net export value of 77.84MCM/d, with net exports of 81.36MCM/d to PSV (Italy).

However, pricing at CEGH (Austria) only achieved statistical significance in influencing

pricing at PSV (Italy) 5.19% of the time.

As discussed in Section 2.5.3, PVB (Spain) exhibited the second largest Net-Strength

of 0.158 (Table 2.7) due to extended periods of market disconnection. This is precipitated

by a multitude of reasons, addressed in Section 2.6.4 and Section 2.6. Critically, the sys-

tematic premium paid for day-ahead gas at PVB (Spain) is not derived from infrastructure

constraints, as average pipeline utilization at VIP Pirineos remained at 50.3% throughout

the sample (Figure 2.6), with LNG regasification infrastructure utilization c.ca 40.0%.

Of the concomitant factors restricting PVB (Spain) integrating into the European gas

network, the most pertinent appears to be the lack of availability of transmission capac-

ity for day ahead market participants who are not engaged in term contracts (Heather

and Petrovich 2017). As PVB (Spain) matures as a trading hub, increasing in liquidity

and churn rate, and PEG-TRS (France) is integrated into a singular French market, it is

anticipated that PVB (Spain) shall become more integrated into a singular European gas

market.
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2.6.4. Physical and Non-Physical Reasons for Market Decou-

plings

As indicated in Sections 2.6.1, 2.6.2, and 2.6.3, the dislocation of certain markets from

the European network, and resulting reduction in network density term, may be the result

of delinkages precipitated by one of two core reasons; physical and non-physical.

When considering the physical reasons for a lack of market integration, pipeline conges-

tion is amongst the most pertinent factors. The e1.67/MWh mean differential displayed

between PEG-Nord (France) and PEG-TRS (France) (Table 2.7) may be the result of a

lack of available capacity on the liason Nord-Sud pipeline which connects the two trading

zones (OIES,2017), as mean capacity utilization remained at 96% throughout the sample.

Whilst other factors, such as the disparity in LNG composition of the gas mixture (39% at

PEG-TRS (France), 3% at PEG-Nord (France)), relative consumption volumes and net-

work centrality may have impacted the differential, the pipeline capacity constraints on

the liason Nord-Sud pipeline appears to be the most critical determinant of the differential

magnitude between the two trading zones. As the two zones were merged on November

1st 2018, an equilibrium value between the two hub prices is anticipated, increasing the

degree of price integration within European gas pricing.

However, given the absence of capacity constraints surrounding PVB (Spain) and

VTP Gaz System (Poland), non-physical factors appear to be pertinent in the lack of

price integration, and by extension market integration within European day ahead gas

markets. These hubs share similarity in a number of characteristics, namely a lack of

indigenous gas production, the capacity to inject or transit large volumes of gas into the

European market, and physical network externality.

Extended periods of disconnection from the European pricing system were observed

at PVB (Spain), leading Platts to declare the Iberian Peninsula as a “gas island”. Whilst

pipeline utilization remained at 50.3% throughout the sample, a persistent premium (Fig-

ure 2.6) over PEG-TRS (France) was paid at PVB (Spain), indicating that arbitrage forces

are not fully operating between the two hubs, with pricing at PVB (Spain) determined by
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domestic supply and demand conditions. Heather and Petrovich (2017) provide a plau-

sible explanation, arguing that a lack of available transmission capacity for day ahead

market participants who are not engaged in term contracts has an adverse impact on

capacity utilization, and consequently arbitrage flows. Further to this, low levels of liq-

uidity, displayed in Tables 2.2 and 2.3, may discourage market participants from entering

into space arbitrage between the two hubs.

It is anticipated that following the merger of PEG-TRS (France) and PEG-Nord

(France) into a singular French gas market, PEG, liquidity shall increase, and increased

arbitrage flows shall decrease the premium paid at PVB (Spain), increasing its integra-

tion into the European gas market. Further to this, the expected completion of the Val

de Saone and Gascogne-Midi pipeline projects should alleviate capacity restrictions on

the Liaison Nord-Sud pipeline and effectively eliminate the premium paid within the day

ahead market in the region formerly identified as PEG-TRS (France).

Furthermore, VTP Gaz System’s (Poland) systematic price premium over Gaspool

(Germany) stipulates that arbitrage forces should be in effect, however VTP Gaz System

(Poland) had a mean net export of 75.60 MCM/d to Gaspool (Germany) throughout the

sample, indicative of a non-physical barrier to market integration and price integration.

Heather and Petrovich (2017) suggest that a low degree of Polish internal market liberali-

sation is the primary factor in the lack of integration into the European gas market, with

pricing largely determined by local supply and demand balance. Notably, of the 12 hubs

sampled, VTP Gaz System (Poland) is the only hub which is denominated in an emerging

market currency, Polish Zloty. It is plausible that market participants impound foreign

exchange risk into pricing at VTP Gaz System (Poland), which is less of a consideration

amongst Euro denominated hubs within continental Europe or Sterling denominated hubs

(NBP and TTF).

2.6.5. Network Density and The Third Energy Package

To what degree has the Third Energy Package impacted gas markets? The European

day ahead gas market network density term remained at a relatively low mean level
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of 0.141 throughout the sample, indicating a low degree of price integration within the

European market. Further to this, the results of applying an ARIMA (1,0,0) model to

the network density term indicate that network density exhibits a random walk process,

indicating that the expected value of change in network density is best characterised by

white noise. As such, the best estimate of network density at time t is represented by

the value produced at time t − 1. Additionally, the number and magnitudes of both

abnormally positive and negative network density behaviours implies a lack of increasing,

sustained market integration amongst day ahead prices displayed at European natural

gas trading hubs. Taken in unison, these findings provide a clear indication that price

integration within the European day ahead gas market did not exhibit a substantial,

sustained increase between 2016 and 2018.

The regime model applied to the network density term provides evidence of two distinct

regimes within the European day ahead gas market, with the peaks in network density

of the European market coinciding with pipeline disruptions, hub disruptions and seismic

activity. On 12/12/2017, an explosion at Baumgarten, Austria forced the operator to close

the facility and physical trading to cease at CEGH (Austria), leading Italy to declare a

national emergency regarding gas supplies. Therefore, it is likely that the day ahead

market responded to this outage through efficiently impounding the loss of capacity into

the market, characterised by a spike in network density until 19/12/2017. Additional

evidence for this hypothesis is obtained through the analysis of out-strengths (Figure

2.1b) and net-strengths (Figure 2.3), where CEGH (Austria) uncharacteristically held

no capacity to influence pricing at other European hubs (sample mean net-strength of

0.134), acting as a strong ‘price taker’ at this time. Furthermore, PSV (Italy), which has

a heavy import reliance on CEGH (Austria) and subsequently declared a national state

of emergency, temporarily transitioned to ‘price setter’ behaviour following the outage,

returning to ‘price taking’ behaviour on 20/12/2017.

A possible cause of the large peak in January 2018 could possibly be attributed to

the day-ahead demand impact of extreme temperatures throughout Europe, combined

with a pipeline disruption between Oude Statenzijl (Netherlands) and Bunde (Germany)
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between 27/01/2018 and 28/01/2018. An increase in both in-strength and out-strength

was observed across different markets in late January 2018, however, through analysis of

the relationship between the average European heating/cooling days, a correlation value of

0.102 was not able to explain the spike in connection density, eliminating the possibility of

the impact of the low temperatures characteristic of Storm Emma and the ensuing formal

gas deficit warning issued within the UK. Therefore, it is more probable that the pipeline

disruption observed between the Netherlands and Germany impacted trade (Figure 2.4),

integrating pricing and producing a spike in the network density term.

The average in-strength exhibited stochastic behaviour throughout the period sam-

pled, indicating that price returns at any given hub were not subject to a larger amount

of influence from other European natural gas markets at the end of the time period as

opposed to the beginning, suggesting no sustained increase in price integration amongst

European day ahead gas prices. This is confirmed by the network density term, which

exhibited stochastic behaviour throughout the sample period. Taking these findings in

unison, it becomes clear that, although periods of high network integration did occur,

there was no sustained increase in price integration amongst European day ahead gas

prices.

2.7. Conclusions

This study applies graph theory in order to model the interactions between 12 Eu-

ropean day ahead gas markets during the period 2016-2018. The interrelations between

the observed European gas markets is measured through the system’s network density

term (3.3), which characterises the quantity of causal interactions within the system at

a given point in time. The novelty of this work lies in the application of network theory

and Granger-Geweke causality to gas markets, disentangling the dynamic relationships

between markets and measuring market integration.

The methodology is verified through the identification of historical exogeneous events

and subsequently observing the dynamics of connectivity measures, such as in-strengths

or out-strengths relative to these occurrences. In the cases of the Baumgarten terminal
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explosion on 12/12/2017 and Oude Statenzijl-Bunde disruption on the 27/01/2018, the

market dynamics display the anticipated dynamics, with CEGH (Austria) uncharacteris-

tically becoming a strong price taker and a reduction in TTF’s (Netherlands) ability to

act as a price setter over this period.

Analysis of the network density term resulted in the detection of a two regime Markov

model, with an abnormally large spike of c.ca 0.45 observed on 29/01/2018, which possibly

reflects the impact of a number of factors, including storm Emma, the UK formal gas

deficit warning, the decision to reduce production at the Groningen field due to seismic

activity and pipeline capacity reduction between Oude Statenzijl (Netherlands) and Bunde

(Germany).

Aside from the two regimes detected by the Markov model, abnormal behaviour in

connectivity was evenly distributed, with abnormal positive and negative changes in con-

nectivity essentially similar in number and magnitude. Through application of an ARIMA

(1,0,0) model to the network density term, it becomes apparent that network density is

a random walk process, indicating that the expected change in network density is best

characterised by white noise. From this, the assertion that the best estimate of network

density at time t is represented by the value observed at time t− 1 can be drawn. Taken

in unison, these findings imply a lack of sustained increase in market integration amongst

European day ahead gas prices, indicating that attainment of a high degree of gas market

integration within Europe appears to be some distance away.

Our results confirm that day ahead gas markets in Europe are developing, however

each hub holds unique characteristics, providing different rates of development and inte-

gration. The low number of physical barriers to price integration within the European

day ahead gas market implies that the Third Energy Package’s focus on national gas mar-

ket integration through cross-border mechanisms has been broadly successful, reducing

pipeline capacity constraints throughout the European network. Conversely, the detec-

tion of non-physical barriers to trade suggests that the liberalisation and development

of certain national gas markets (VTP Gaz System, PVB) is yet to be fully achieved, in-

ferring that improvements in technical arrangements are required. It is imperative that
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system operators throughout Europe engage in providing full integration of day ahead gas

markets through a number of mediums, primarily market concentration, market design,

regulation and security of supply, all of which are crucial to the development of a single

European market. The aim of elimination of physical barriers to integration, in conjunc-

tion with improved legislative integration, implies the convergence of day ahead gas prices

toward a single European price (in the absence of transmission costs), however this also

holds the additional benefit of reducing pipeline congestion, increasing usage efficiency,

and reducing the market power of actors within national gas markets.

Further to this, the methodology elucidates the importance of employing a dynamic

model, which is capable of monitoring the time-varying interactions within a network

structure, as each market has a continually evolving ability to influence (out-strength)

and be influenced by (in-strength) other markets. The model, which is able to observe

the dynamic nature of interactions, is also able to detect underlying changes in market

integration, which can be driven by either exogenous (Baumgarten) or endogenous events

(Oude-Stanzijl-Bunde). As such, it can be considered a suitable tool for measurement of

the both market dynamics and the degree of market integration.



Chapter 3

Congestion Learning and Forecasting
within Gas Markets: A Deep
Learning Approach

3.1. Introduction

The creation of a single European energy market is a long-standing European objective,

initially proposed through the Treaties of Rome in 1957, and progressively implemented

through a number of liberalisation directives; the First Energy Package (1998), Second

Energy Package (2003) and Third Energy Package (2009).

The First Energy Package (Directive 98/30/E)1 aimed to reform the monopolistic

market structure, characterised by pre-defined concession areas and the proprietary use

of pipelines, through unbundling national monopolies and permitting third parties to

obtain non-discriminatory access to the gas transmission network. Although the First

Energy Package increased competition within European gas markets, the Directive failed

to achieve the impact anticipated by the European Commission.

Consequently, the Second Energy Package (Directive 2003/55/EC)2, was legislated,

introducing strengthened provisions stipulating the separation of transmission and dis-

tribution activities, aiming to improve cross-border competition, increase the security of

supply and generate a single, integrated European market for natural gas.

1Directive 98/30/EC of the European Parliament and of the Council of 22 June 1998 concerning
common rules for the internal market in natural gas

2Directive 2003/55/EC of the European Parliament and of the Council of 26 June 2003 concerning
common rules for the internal market in natural gas and repealing Directive 98/30/EC

54

https://www.legislation.gov.uk/eudr/1998/30/adopted
https://www.legislation.gov.uk/eudr/1998/30/adopted
https://www.legislation.gov.uk/eudr/2003/55/contents
https://www.legislation.gov.uk/eudr/2003/55/contents
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As a consequence of the shortcomings of the Second Energy Package, a third legislative

package, the Third Energy Package (Directive 2009/73/EC)3 was adopted in September

2009, stipulating the effective separation of supply and production activities from the

operation of transmission and distribution systems, and increased cross-border regula-

tion through the establishment of a community level regulatory body, the Agency for

Cooperation of Energy Regulators (ACER).

Notably, many of the liberalisation directives’ goals, such as consumer protection,

market access and increased transparency, are underpinned by the stimulation of cross-

border competition within natural gas markets. Given the homogeneous nature of natural

gas, if cross-border competition is being practically achieved, European natural gas mar-

kets should be highly integrated, with the price differentials between markets reflecting

transaction costs. This “Law Of One Price” (Mankiw 2020) can be ensured by spatial ar-

bitrages, as profit maximising market participants can exploit price differentials between

locations, enforcing price convergence between different markets.

The stimulation of transparent, cross-border competition plays a pivotal role in reduc-

ing market concentration, and by extension, the market power of incumbent participants.

If cross-border competition is being practically achieved, the subsequent reduction of

market concentration and increase in market integration acts to improve consumer pro-

tection, achieving the stated aims of the European Commission’s liberalisation directives

(Directive 2009/73/EC)4

However, several stylised facts must be considered when applying the “Law Of One

Price” to natural gas markets. Unlike most commodities, which can be transported be-

tween markets by a multitude of mechanisms (i.e., barge, road, rail, air), natural gas’

physical characteristics stipulate that it must be transported through pipelines, or lique-

fied (Liquified Natural Gas/LNG), and regasified following transportation. As liquefaction

of gas is only cost competitive over long distances (Ritz 2019), a market participant’s abil-

ity to exploit price differentials between locations is restricted by the available pipeline

3Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning
common rules for the internal market in natural gas and repealing Directive 2003/55/EC

4Directive 2009/73/EC of the European Parliament and of the Council of 13 July 2009 concerning
common rules for the internal market in natural gas and repealing Directive 2003/55/EC

https://www.legislation.gov.uk/eudr/2009/73/contents
https://www.legislation.gov.uk/eudr/2009/73/contents
https://www.legislation.gov.uk/eudr/2009/73/contents
https://www.legislation.gov.uk/eudr/2009/73/contents
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capacity between those locations. As such, identifying congestion issues within the gas

infrastructure network is crucial to maintaining a market participant’s ability to exercise

spatial arbitrage, and developing an internally competitive European gas market.

In this context, the European gas market is confronted by substantial challenges over

the coming decade; within the European Union (EU), natural gas production is projected

to decline due to limited reserves, maturing gas fields and production caps. This is

anticipated to be particularly apparent within the largest gas producing countries of the

EU, especially the Netherlands, where Groningen field production is anticipated to be

completely curtailed by 2022 (Reuters, 2019)5. Whilst gas consumption within the EU

is anticipated to gradually decline as renewable energy technologies become increasingly

competitive, production decline is expected to outpace demand decline, generating a

domestic supply deficit, and an increasing dependence on imported gas (Figure 3.1).

Due to the declining production of EU member states and subsequent reliance on

imported gas, increasingly large volumes of gas shall be arriving at the borders of the

EU. In order to support these increased import volumes – which are projected to be

300 billion cubic meters per year (bcm/y) by 20206 – an increase in import capacity is

required. More importantly, infrastructure utilisation patterns within the EU shall also

evolve, as pipeline gas or LNG (Liquefied Natural Gas) shall require transportation from

the EU border to end consumers.

Furthermore, as indigenous production declines and imports rise, transportation dis-

tances of natural gas shall increase, with the consequence of increased network usage, and

a higher probability of network congestion issues.

Another potential challenge for the European gas market is the danger of short-term

supply disruptions, as observed on 12 December 2017 (Bros 2018), when an explosion

at the Baumgarten gas terminal forced the operator to close the facility, severely re-

ducing cross-border gas transmission from Austria to Italy. The Baumgarten crisis, and

Italy’s subsequent declaration of a state of national emergency (Bros 2018) highlighted

the dependence of some EU member states on specific gas transit routes, indicating po-

5Netherlands to halt Groningen gas production by 2022
6Own elaboration based on BP Statistical Review of World Energy 2019.

https://www. reuters. com/article/us-netherlands-gas/netherlands-to-halt-groningengas-production-by-2022-idUSKCN1VV1KE
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Figure 3.1. EU Domestic Supply–Demand Balance

The historical domestic supply–demand balance of European Union member countries.
This illustrates an increasing dependence on gas imports.

tential weaknesses in supply security. As such, the Baumgarten crisis emphasised the

interrelationship between security of gas supply and the flexibility of the underlying gas

transportation infrastructure.

Taken together, identifying infrastructure congestion issues is an important prerequi-

site in enforcing competition, implementing an internal European gas market and increas-

ing the security of gas supply of EU members. The progressive liberalisation of European

natural gas markets has generated a substantial body of both academic (Neumann et al.

2006; Renou-Maissant 2012; Bastianin et al. 2019) and policy (ACER and CEER 2017;

ACER 2018) literature investigating the attainment of a single, internal market for natu-

ral gas. Existing literature on European natural gas markets can be roughly categorized

into two main strands; price integration studies, and infrastructure simulation studies.

This paper departs from earlier studies in a number of ways.

Firstly, most of the early literature (Asche et al. 2000; Asche et al. 2002; Neumann

et al. 2006) investigates the law of one price, providing an ex-post assessment of market

integration. Although more recent studies address this deficiency through the use of a

quantitative, time-varying approach (Renou-Maissant 2012; Bastianin et al. 2019; Woro-

niuk et al. 2019), to the best of our knowledge, this is the first study to forecast short-term

infrastructure congestion issues, providing an ex-ante assessment of physical barriers to

market integration.
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Secondly, many of the infrastructure forecasting studies using statistical methods

(Dieckhöner et al. 2013; Lochner and Bothe 2007; Monforti and Szikszai 2010) were devel-

oped when the size of datasets was limited. As statistical models’ capability of handling

high dimensional time-series is restricted, the forecasts generated typically aggregate in-

frastructure constraints to the country level. With recent developments in computational

power and increasing data availability, infrastructure forecasting can be undertaken at a

pipeline specific level, with machine learning methods applied to capture complex non-

linear relationships. Consequently, this study augments the extant literature through

increasing forecasting accuracy, output resolution and interpretability of output.

Thirdly, many infrastructure forecasting studies (Dieckhöner et al. 2013; Monforti and

Szikszai 2010) inappropriately specify the dispatch order or spatiotemporal characteristics

of the underlying infrastructure network. These models also fail to explicitly consider the

impact of upstream congestion issues on downstream gas flow states, which can lead to

spurious conclusions. Furthermore, the models inappropriately conjecture that gas flow

states of two geographically disparate locations can contemporaneously influence each

other. To mitigate this, a normal operations reachability matrix (NORM) based on the

ability of each ‘parcel’ of gas to reach different points within the network is applied to a

graph convolutional operator, enabling learning of the localised ‘neighbourhood’ of each

node within the transmission network.

In this study, we learn the gas infrastructure network as a graph and conduct a convo-

lution on the gas infrastructure network graph. In order to extract localised features and

incorporate the physical characteristics of the network, we employ a graph convolution

operator. Based on this operator, we propose a Graph Convolutional LSTM (GC-LSTM)

to model the short-term dynamics of pipeline flows and capture spatio-temporal interde-

pendencies between pipelines.

Evaluation results show that the proposed GC-LSTM model outperforms advanced

forecasting baseline models. More importantly, through extraction of the model’s weights,

the proposed model is capable of identifying the most important pipelines within the gas

infrastructure network. As such, it can be considered a suitable tool for short-term conges-
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tion forecasting within the gas infrastructure network, whilst also highlighting pipelines

which are important to the smooth functioning of a competitive, internal European gas

market.

The main contributions of this paper are as follows:

1. We propose a graph convolutional operator which is capable of accommodating

the physical specialities of gas infrastructure networks and extract comprehensive

features.

2. A Graph Convolutional LSTM recurrent neural network is proposed to learn the

complex spatial and dynamic temporal interdependencies presented by gas flows.

3. The graph convolution weights can be extracted and interpreted, identifying the

most important pipelines within the European gas system.

This paper is organised as follows: Section 3.2 reviews the extant literature, whilst Sec-

tion 3.3 outlines the methodologies employed throughout the paper. Section 3.4 specifies

the dataset, with Section 3.5 discussing the empirical findings. Section 3.6 concludes.

3.2. Literature Review

Due to the recent increase in data availability and computational power, increasingly

complex predictive models are applied to learn spatiotemporal relationships within Energy

market data. Whilst statistical approaches such as Autoregressive Integrated Moving

Average (ARIMA) have been applied to extract temporal patterns within energy market

data (Contreras et al. 2003), the ARIMA model is incapable of extracting the spatial

interdependencies which characterise network data. Conversely, latent space modelling

or k-Nearest Neighbour (k-NN) models can be applied to capture spatial correlations

within energy networks. Whilst these approaches show promise in extracting spatial

dependencies, application to spatiotemporal issues in energy markets revealed limited

efficacy (Grundmann et al. 2016).

Recently, neural networks have been applied to a range of spatiotemporal forecasting

problems, typically employing Convolutional Neural Networks (CNNs) to extract spatial
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features. Whilst CNNs have shown good forecasting results, the extension of the CNN

architecture to graph-structures through development of Graph Convolutional Networks

(GCNs) (Kipf and Welling 2016) has increased the applicability of CNNs to network

data. In order to compress the spatial data into 2 dimensions (2D), the neighbouring

local information is combined into one grid of image by a localized filter. Following

this, feature maps are extracted by convolutional layers, which consider the relationships

between adjacent nodes.

As the features extracted by GCNs are time invariant, Long Short Term Memory re-

current neural networks (LSTM) (Hochreiter and Schmidhuber 1997) are often applied

to capture autoregressive sequential dependencies and long-term dependencies within the

data. Given the highly interconnected nature of the European Gas Infrastructure Net-

work, the ability to capture sequential dependencies between nodes is particularly useful

when learning and predicting congestion issues, as we are able to assess how congestion

issues propagate throughout the system. Additionally, the use of long-term history cor-

responding to each node improves forecasting performance, as gas demand often exhibits

temporal recurrence, including hourly, daily, weekly and monthly patterns (Hulshof et al.

2016).

3.3. Methodology

3.3.1. Gas Flow Forecasting

The forecasting of Gas flow states refers to predicting future flow states given previ-

ously observed gas flow states within an infrastructure network consisting of N sensor

locations, where links connect the sensor locations. In the context of gas markets, the

sensor locations are border points, where gas flows are measured, and the links between

border points are represented by pipelines.

The topological relationship between the sensor locations, is characterised well by an

undirected graph, G, where G = (V , ε, A), with N nodes representing the sensor locations,

vi ∈ V and edges (vi, vj) ∈ ε representing the pipeline connections between them. The
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network can be expressed as an adjacency matrix, A ∈ RN×N , in which each element

Ai,j = 1 if a pipeline exists between the nodes i and j, and Ai,j = 0 otherwise. Based

on the adjacency matrix, A ∈ RN×N , a link counting function d(vi, vj) can be defined as

counting the minimum number of links traversed between node i and node j.

The European gas infrastructure network graph has a number of properties which

differentiate it from other graph-based systems such as molecule graphs, document citation

graphs and social network graphs. Principally, the European Gas Infrastructure graph

contains no isolated nodes or edges, as pipelines are inherently designed to carry a given

commodity between two locations. Subsequently, each point within the graph is accessible

from any other location within the graph by traversing a minimum of d links (pipelines).

Moreover, whilst other graph-based systems such as molecule graphs or document

citation graphs are typically static, the dynamic nature of gas flows stipulates that the

flow state recorded at each sensor location (node) varies with time.

Critically, the links (edges) within the European gas infrastructure network have mean-

ingful physical characteristics, namely the length, direction and maximal technical capac-

ity of the associated pipeline. In order to account for these characteristics, a distance

adjacency matrix D ∈ RN×N can be defined, where each element, Di,j represents the

pipeline distance between sensor locations (nodes) i and j.

Subsequently the graph signals recorded at each sensor location (node), at time t, can

be expressed as Xt ∈ RN×P , where P is the number of features associated with each node

(sensor). As this study exclusively considers gas flows, measured as a percentage of firm

technical capacity, at each node, P = 1.

In summary, the gas flow forecasting model aims to learn a function F (·) to map T ′

historical graph signals to the subsequent T time step of graph signals:

F ([X(t−(T ′+1)), . . . , Xt];G(V , ε, A,D)) = [Xt+1, . . . , Xt+T ] (3.1)

Furthermore, the forecasting process enables an improved understanding of the complex

interdependencies between sensor locations (nodes), and the impact of any congestion

between two nodes on the broader system.
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3.3.2. Infrastructure Graph Convolution

In order to develop a Graph Convolution on the Infrastructure Network, we must

firstly define the r-hop neighbourhood of each node i. The r-hop matrix can be defined

as NBi = vi ∈ Vjd(vi, vj) ≤ r, where r = 1 is exactly equal to the adjacency matrix for

graph G.

Consequently, the r-hop adjacency matrix can be computed through calculating the

rth product of A, with the rth order adjacency matrix defined as:

Ãr = Bi(
r∏

i=1

A+ I) = Bi(A
r + I) (3.2)

Where Bi constrains the values of all elements of (Ar + I) to a maximum of 1,with

Ar + I ∈ {0, 1}N×N . The Identity Matrix (I) makes each node within the network self

accessible, with an example Ãr with respect to the square red node is displayed by Figure

3.2.

Figure 3.2. The Graph Convolution Component of the Model

The graph convolution component of the model is displayed on the left side of the figure,
detailing the unfolding of the convolution at time t, in which Ãr and NORM are displayed
with respect to the square red node. The architecture of the Graph Convolutional LSTM
model is detailed on the right side of the figure.

The r-hop graph convolution can be defined as follows:

GCr = (Wgcr ⊙ Ãr)Xt (3.3)

Where ⊙ is a multiplication operator for each element held within the matrix, Wgcr is the
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r-hop weight matrix for the rth order adjacency matrix (Ãr), and Xt ∈ RN×1 is the gas

flow state at time t.

This study augments the convolutional operator by assessing the operational dynamics

of the underlying gas infrastructure network, and considering the mechanisms by which

congestion propagates throughout an interconnected system.

Firstly, congestion which occurs at a given node, i, has the potential to propagate

both upstream and downstream in the network. Intuitively, congestion in the prevailing

direction of travel is likely to impact flow states at nodes upstream, as gas flows have

to be directed away from transmission through this node, in order to comply with the

technical capacity7 and linepack8 flexibility rules of each individual pipeline.

Secondly, due to the nature of the European Gas Infrastructure network, there are

a finite number of paths by which the network can be traversed, with each node pair

having a most efficient path, defined by counting the minimum number of links traversed

between node i and node j. In a commercial environment, the most efficient path for the

transmission of gas between node i and node j is typically the most cost effective path for

gas shippers, as it requires less pipeline usage, incurring lower flow-based charges9. Thus,

for the European Gas Infrastructure network graph, the impact transmission between

non-adjacent nodes cannot bypass intermediate nodes. Consequently, the impact of any

congestion between adjacent and nearby node pairs requires specification within the graph

convolution.

To account for this, a Normal Operations Reachability Matrix (NORM), NORM ∈

RN×N , which considers the accessibility of adjacent nodes from a given node, i, is defined:

NORMi,j =


1, Si,jm △ t−Di,j ≥ 0

0, otherwise

,∀vi, vj ∈ V (3.4)

7Technical capacity is defined as the maximum firm capacity that the transmission system operator
can offer to the network users, taking account of system integrity and the operational requirements of
the transmission network (Regulation2015/703).

8Linepack refers to the storage of gas by compression in gas transmission and distribution systems,
but not including facilities reserved for transmission system operators carrying out their functions (Reg-
ulation2015/703)

9A flow-based charge covers costs associated with the quantity and distance of gas flows. This charge
is uniform for all entry and exit points associated with each balancing zone.
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where Si,j is the average flow rate between nodes i and j assuming no congestion, △ t

represents time duration, and m is a value counting how many time-intervals are required

to travel between nodes i and j. Subsequently, each element NORMi,j is exactly equal

to one if gas can traverse between nodes i and j within m time steps at the average flow

rate Si,j, and zero otherwise. All NORM diagonal values are set to one, indicating self

access for each node. The Graph Convolution is consequently updated to incorporate the

Normal Operations Reachability Matrix (NORM):

GCr = (Wgcr ⊙ Ãr ⊙NORM)Xt (3.5)

where the r-hop adjacency matrix and NORM are multiplied element-wise. For a specific

network graph, when r is increased, the Ãr⊙NORM term will eventually converge to the

point that Ãr ⊙ NORM = NORM . A comparison between the convolution presented

in equations (3.5) and (3.3) is presented in Figure 3.2. As such, a maximum of r hops

of features need to be extracted from the data, Xt. The features extracted by the graph

convolution at time, t, are subsequently concatenated together:

GCr
t = [GC1

t , GC2
t , . . . , GCr

t ] (3.6)

where GCr ∈ RN×r is the rth order graph convolution features, which can be fed into the

LSTM model described in the following subsection.

3.3.3. Graph Convolutional LSTM

In order to forecast short-term congestion within the Gas Infrastructure Network, we pro-

pose a Graph Convolutional Long Short Term Memory (LSTM) recurrent neural network,

with the architecture detailed on the right side of Figure 3.2. The Graph Convolutional

LSTM model combines the Graph Convolution’s ability to learn complex spatial depen-

dencies with the LSTM’s ability to learn the dynamic temporal dependencies presented

within gas flow data.

The LSTM model is a type of recurrent neural network designed to overcome the
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issues associated with basic recurrent neural networks, principally vanishing and exploding

gradients (Hochreiter and Schmidhuber 1997). The ability to cope with the vanishing and

exploding gradient issue makes LSTM recurrent neural networks capable of learning long-

term dependencies, which is particularly useful when working with seasonal data, such as

natural gas pipeline flows.

In this model, the gates structure of Hochreiter and Schmidhuber’s (1997) LSTM and

hidden state are unchanged, but the input unit is replaced by the features extracted

by the Graph Convolution, which are reshaped into a vector GC{r} ∈ RrN . Following

(Hochreiter and Schmidhuber 1997), the forget gate ft, input gate it, output gate ot and

input cell state C̃t at time, t are defined as:

ft = σg(Wf ·GC
{r}
t + Uf · ht−1 + bf ) (3.7)

it = σg(Wi ·GC
{r}
t + Ui · ht−1 + bi) (3.8)

ot = σg(Wo ·GC
{r}
t + Uo · ht−1 + bo) (3.9)

C̃t = tanh(Wc ·GC
{r}
t + Uc · ht−1 + bc) (3.10)

where · represents a matrix multiplication operator, Wf , Wi, Wo and Wc ∈ RrN×N repre-

sent the weight matrices, which map the input to the three respective gates and input cell

state. Uf , Ui, Uo and Uc ∈ RN×N represent the weight matrices of the preceding hidden

state and bf , bi, bo and bc ∈ RN represent four bias vectors. The σg is the gate activation

function, whilst tanh represents the hyperbolic tangent function.

As each node within the Gas Infrastructure Network is influenced by it’s own previous

states, and the previous states of adjacent nodes, the LSTM cell state of each node should

also be impacted by innovations in the cell states of adjacent nodes. Following Gers et al.

(2002), an additional cell state gate is incorporated into the LSTM, which is defined as

follows:

C∗t−1 = WN ⊙ (Ãr ⊙NORM) · Ct−1 (3.11)

whereWN is a weight matrix which measures the contributions of neighbouring cell states.
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WN is limited through multiplication of a NORM based r-hop adjacency matrix Ãr ⊙

NORM . Through the addition of a cell state gate, the influence of the adjacent cells

states is considered when the cell state is recurrently input to the following time step. As

such, the final cell state and hidden state are specified:

Ct = ft ⊙ C∗t−1 + it ⊙ C̃t (3.12)

ht = ot ⊙ tanh(Ct) (3.13)

3.3.4. Loss Function and Regularization

Regularization of Graph Convolution Weights

As the weights of the Graph Convolution are not constrained as non-negative and

the extracted features of each node are influenced by the features of adjacent nodes, the

weights of the Graph Convolution can vary substantially whilst undergoing training.

As the convolution weights hold information detailing the relationship between nodes

within the network, visualisation and interpretation of the convolution weights is infor-

mative for better understanding the complex relationships between different nodes within

the network. Critically, the interpretability of non-regularized convolution weights is low,

as large and small weights appear randomly, which, when combined, negate each other.

When combined, these weights can illuminate important relationships within the network

structure, but don’t provide an accurate representation of inter-nodal relationships. Fol-

lowing Kipf and Welling (2016), an L1-norm regularization term is added to the graph

convolution weight matrices to make these matrices as sparse as possible:

R{1} = ||Wgc||1 =
r∑

i=1

|Wgci| (3.14)

Through addition of the L1 regularization term, the graph convolution weight is stable

and sparse, hence interpretation of the relative importance of adjacent nodes is more

intuitive.



3.3. METHODOLOGY 67

Regularization of Graph Convolution Features

Given that the impact from an influencing node must be transmitted through all

intermediary nodes to a node of interest, the features extracted from different hops of the

graph convolution do not exhibit a high degree of variance. In order to restrict the variance

between features extracted by different hops of the graph convolution, an L2-norm feature

regularization term is included in the loss function:

R{2} = ||GCr
t ||2 =

√√√√ r−1∑
i=1

(GCi
t −GCi+1

t )2 (3.15)

Through the application of the L2-norm regularization term, the features extracted from

adjoining hops of the graph convolution have limited variance, more accurately reflecting

the realities of the underlying relationships present within the European Gas Infrastruc-

ture network.

Loss Function

As with most supervised regression models, the GC-LSTM output at time t is a

predicted value ht, which can also be denoted as Ŷt and corresponds to a known value

(label), Yt. Consequently, the loss can be defined as:

Lt = LossFunction(Ŷt − Yt) (3.16)

where LossFunction(·) is a function to calculate the difference between the predicted

value Ŷt and the true value (label) Yt. FollowingWallach and Goffinet (1989), LossFunction(·)

is a Mean Squared Error (MSE) function, which has been shown to evaluate the prediction

accuracy of continuous values well.

For a sequential model, the true value (label) of time step t is equal to the input of

the next step in the sequence (t+1). As such, Yt can also be expressed as Xt+1, with the
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loss function expressed as:

Lt = LossFunction(Ŷt − Yt) = LossFunction(ht −Xt+1) (3.17)

Through addition of the L1-norm of graph convolution weight matrices outlined in 3.4.1.

and the L2-norm feature regularization term outlined in 3.4.2., the total loss function at

time t is defined as:

Lt = LossFunction(ht −Xt+1) + λ1R
{1} + λ2R

{2}
t (3.18)

3.4. Data

In order to learn the spatial and temporal interdependencies within the European Gas

Infrastructure Network, this study constructs a graph G, where G = (V , ε, A), consisting

of N nodes and edges (vi, vj) ∈ ε. In the context of European gas markets, the nodes

(sensors) are the measurement points of gas flows, which correspond to border points

between balancing zones within the European gas network, whilst edges between the

nodes represent the maximum technical capacity of pipelines between the border points.

In the instance that multiple pipelines exist between two border points, the maximal

technical capacity is combined.

To capture the dynamics of the European Gas Infrastructure network, both ‘virtu-

alised’ and ‘physical’ border points are specified. As such, hourly time series data of 79

border points are considered (Figure 3.3), covering the period 2016 to 2019.

The time series is of sufficient length to highlight potential congestion issues within

the European Gas Infrastructure Network, whilst also identifying the pipelines most im-

portant to maintaining an integrated European Gas market. This data was obtained

from the ENTSOG Transparency platform with time sampling of one-hour. To negate

lag structure requirements arising from time-zone differences, all data was standardised

to European Central time, resulting in 2,584,248 observations.

As this study is primarily concerned with the detection of short-term congestion within
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Figure 3.3. European Gas Infrastructure Network

Each point on the map corresponds to a border point within the Dataset. The Data was
retrieved from ENTSOG Transparency Platform with a time sampling of one hour.

the European gas system, gas flows are measured as a percentage of the maximal tech-

nical capacity between nodes i and j (Equation 3.19) . This method has three primary

advantages when compared with measurement of total gas flows.

Firstly, measuring gas flows as a percentage of maximum technical capacity can be

considered as a method of feature scaling. Feature scaling is a common practice in data

pre-processing, with the explicit purpose of scaling features of different orders of magni-

tude to increase the speed of training and prevent the gradient descent algorithm from

incorrectly specifying a local optima as the global optima (Han et al. 2011).

Secondly, in order to measure or predict congestion, the maximum technical capacity

and gas flow through a given pipeline are required. Notably, the maximum technical

capacity of a given pipeline is dynamic, as it is subject to ancillary factors such as air

temperature changes, pressure reductions and planned or unplanned maintenance cycles.

In order to account for these stylised facts, this paper employs the below calculation

method:

Observations =
Gas F low Recorded

Maximum Technical Capacity
(3.19)

Thirdly, use of the metric outlined in Equation 3.19 provides a highly interpretable

model output, with a pipeline utilisation value predicted for each border point at time, t.

This enables the easy identification of potential congestion issues at different confidence
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intervals.

3.5. Empirical Findings

This section first discusses the Baseline models to which GC-LSTM is compared,

followed by the modelling assumptions applied, and performance metrics by which the

models are assessed. Subsequently, the experimental results, training efficiency and model

outputs are reported and discussed.

3.5.1. Baseline Models

In order to evaluate the performance of the GC-LSTM model, we compare its perfor-

mance to a number of baseline models. The baseline models considered are the Long Short

Term Memory recurrent neural network (Hochreiter and Schmidhuber 1997) and Deffer-

rard et al. (2016)’s localised spectral graph convolution LSTM model (LSGC-LSTM).

3.5.2. Modelling Assumptions

The neural network hidden state dimensions are set as the number of nodes within

the Gas Infrastructure Network, in this instance 79. Whilst the size of hops in the graph

convolution can vary, for the purpose of model evaluation, r is set to 3, indicating that

NORM is calculated based on 3 time steps.

The initial learning rate for all models is set as 5×10−6, with the batch size of all models

set to 30. As per Section 3.3.4, the model is trained by minimising the Mean Squared

Error (MSE) using RMSProp (Tieleman and Hinton 2012). Finally, the regularization

term learning rates are set as 0.01.

3.5.3. Performance Metrics

In this study, the performance of the proposed model and the baseline models outlined

in Section 3.5.1 are evaluated through the use of multiple performance metrics. This
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subsection presents each performance metric employed within the study, whilst providing

an overview of the strengths and weaknesses associated with each error metric.

Mean Absolute Error (MAE) is calculated as the arithmetic average of forecast error

values, where all of the forecast values are made absolute and hold equal weight. As such,

MAE measures the average magnitude of forecast errors without considering the direction

associated with each error. MAE is a scale-dependent accuracy measure, meaning that

the output units are synonymous with input units, and comparison across different scales

can lead to inappropriate conclusions. MAE is defined as:

MAE =
1

n

n∑
i=1

|(Yt − Ŷt)| (3.20)

where Ŷt is the predicted value, Yt is the true value (label) and n is the sample size.

Mean Absolute Percentage Error (MAPE) removes the scale dependence of MAE,

enabling easy comparison across different datasets. Although this characteristic is advan-

tageous, MAPE exhibits a number of weaknesses, most importantly, the handling of any 0

values corresponding to the label (Yt). Division by 0 is undefined, hence any 0 label pairs

(Yt = 0) are dropped within this study, reducing the efficacy of this evaluation metric.

MAPE is defined as:

MAPE =
1

n

n∑
i=1

∣∣∣Yt − Ŷt

Yt

∣∣∣× 100% (3.21)

Mean Squared Error (MSE) represents the mean of the squared difference between

true values (Yt) and predicted values (Ŷt) . Whilst MAE assigns equal weights to each

forecast error, MSE and RMSE penalise variance as they both assign errors with large

absolute values higher weight than errors with small absolute values. MSE is defined as:

MSE =
1

n

n∑
i=1

(Yt − Ŷt)
2 (3.22)

Notably, MSE is measured in squared units corresponding to Yt and Ŷt, reducing the

interpretabilty of the output. To rectify this, the Root Mean Squared Error (RMSE),

which represents the square root of the second sample moment of forecast errors, is spec-
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ified. RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
i=1

(Yt − Ŷt)2 (3.23)

All of the above metrics range between 0 and ∞ and are negatively orientated scores,

such that a lower value indicates a better forecasting accuracy. Whilst all of the above

performance metrics are indifferent to the direction of forecasting error, inclusion of an

additional metric which is sensitive to error direction provides additional information

pertaining to any systematic overestimation (underestimation) of pipeline utilization.

As such, the Mean Bias Error (MBE) performance metric is included. MBE shares a

number of characteristics with MAE, however, MBE specifies that forecast error values

should not be absolute. This uncovers potential systematic overestimation (underestima-

tion) issues within the model. MBE is defined as:

MBE =
1

n

n∑
i=1

(Yt − Ŷt) (3.24)

3.5.4. Experimental Results

Table 3.1 provides a number of performance metrics pertaining to the GC-LSTM

model and two baseline models. Through analysis of Table 3.1, the GC-LSTM model

can be identified as the best performing model, indicating its ability to identify complex

spatiotemporal dependencies within the data.

Notably, Defferrard et al. (2016)’s one-layer localised spectral graph convolution LSTM

(LSGC-LSTM) fails to outperform the LSTM model in this task, likely due to the pa-

rameters lacking sufficient breadth to appropriately represent the underlying features of

the network.

The GC-LSTM model, which both identifies features inherent to the graph struc-

ture, and also incorporates the physical characteristics of the gas infrastructure network,

outperforms the baseline models with respect to all performance metrics (Table 3.1).

From Table 3.1, we note that the GC-LSTM and baseline models consistently gener-
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ated a negative MBE value, indicative of an underestimation of pipeline utilization rates

throughout the European gas system. However, given the consistently low magnitude of

MBE values across each model and the continually evolving maximum technical capac-

ity outlined in Section 4.3, underestimation errors of this magnitude are not a cause for

substantial concern.

Table 3.1 displays that the GC-LSTM model produced the smallest MBE value, in-

dicating the lowest underestimation of gas flows. As this study focuses on the detection

of congestion within the European Gas Infrastructure Network, defined as Equation 3.19

≥ 95%, this suggests that the GC-LSTM model is the most appropriate tool to detect

congestion within the European Gas Market.

Table 3.1. Performance Metrics

A comparison of different approaches and performance metrics. As per Section 3.5.2, r is
set to 3.

Metric LSTM LSGC-LSTM GC-LSTM

Mean Bias Error (MBE) -0.72% -0.67% -0.39%
Mean Absolute Error (MAE) 3.80% 5.17% 2.33%
Mean Absolute Percentage Error (MAPE) 12.96% 13.82% 6.43%
Mean Squared Error (MSE) 0.29% 0.57% 0.29%
Root Mean Squared Error (RMSE) 5.43% 7.52% 5.41%

Whilst the MBE value considers the direction of forecasting errors (overestimation

or underestimation), MAE and MAPE consider the absolute forecasting errors. The

GC-LSTM model substantially outperforms the baseline models with respect to abso-

lute errors, indicating that it is the most appropriate model for learning and detecting

congestion issues within the European Gas network.

However, when analysing the model MSE and RMSE values, the GC-LSTM model

marginally outperforms the LSTM model. Given that MAPE and MAE assign equal

weighting to each forecast error, these metrics do not penalise large forecasting errors as

rigorously as MSE and RMSE. These results, combined with MAPE, tacitly infer that

the GC-LSTM model may be prone to the generation of larger forecasting errors.

Figure 3.4 displays the relative performance of different hops (r-values) of graph convo-

lution in the GC-LSTM model. The model performance, as defined by MAE and RMSE,
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Figure 3.4. MAE and RMSE

A histogram comparing the MAE and RMSE of different hops (r-values) of graph convo-
lution of the GC-LSTM model.

improves as r is increased from 1 to 2, with performance marginally decreasing as r is

increased to 3. Following this, a pronounced decrease in model performance is observed

(Figure 3.4) as the value of r is increased. This can be attributed to the highly intercon-

nected nature of the European Gas Infrastructure Network, with large r-values limiting

the localisation of the graph convolution.

3.5.5. Training Efficiency

This subsection compares the training efficiency of the GC-LSTM model with the

baseline models outlined in Section 3.5.1. Figure 3.6 displays the validation loss curves of

each model compared with the number of training epochs completed by the model. As we

specify an early stopping patience of 10, the number of training epochs differs between the

models presented in Figure 3.6. Figure 3.7 displays that the GC-LSTM model requires

fewer epochs than the LSTM and LSGC-LSTM model, whilst also exhibiting the fastest

decline in Validation Loss.
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However, on a per Epoch basis, the GC-LSTMmodel is the most expensive, followed by

the LSGC-LSTM model (Figure 3.7). Whilst the GC-LSTM model is the most expensive

per Epoch, it is the only model which achieves early stopping (Figure 3.6), indicating that

it is less expensive when considering total training time.

Figure 3.5. Training Efficiency

A comparison of training efficiency when applying different hops (r-values) of graph con-
volution of the GC-LSTM model.

Figure 3.5 displays the training losses of the GC-LSTM model when incorporating

different graph convolution components. The speed of convergence is fastest when using

r = 2 or r = 3, with the speed of convergence decreasing as the value of r is increased.

The training results indicated by the speed of convergence (Figure 3.5) are consistent

with the validation results indicated by the performance metrics (Figure 3.4). As such,

we consider r = 2 or r = 3 appropriate localisations when conducting graph convolutions

on the European Gas Infrastructure Network.
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Figure 3.6. Validation Loss

Validation loss versus the number of completed training epochs with a Batch Size of 30,
Early stopping patience of 10.

Figure 3.7. Training Time per Epoch

The training times per epoch for the GC-LSTM model and baseline models.
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3.5.6. Model Outputs

This subsection provides a detailed analysis of performance metrics corresponding to

each border point outlined by Figure 3.3. Whilst performance metrics are an important

tool when assessing the efficacy of different models, in order for the prediction error to hold

meaningful economic information, the scaling factor outlined in Equation 3.19 is reapplied

to the metrics, expressing the forecast error in the context of pipeline associated gas flow

values.

Figure 3.8. Pipeline Utilization Forecasting - Low MAE

Pipeline Utilization (%) forecasting visualisation for the Nordlohne, Bocholtz-Vetshau
and Etzel border points, which correspond to the lowest, second lowest and third lowest
MAE values recorded.

Figure 3.8 presents the border points at which the lowest MAE were recorded. Notably,

all three locations which recorded the lowest MAE are situated on the border of the

Gaspool balancing zone, and typically record very low percentage utilization values. As

such, the low MAE value recorded at these locations can be attributed to the associated

low pipeline utilization rates, as opposed to good forecasting accuracy. To apply an

economic context to the low MAE scores recorded at these locations, a representative

maximal technical capacity of the border points must also be considered (800 MWh/h,

1000 MWh/h and 4,612.5 MWh/h respectively). 10. Given the representative technical

capacity of the aforementioned border points, it is intuitive that these points do not transit

a large proportion of European natural gas, and have limited contributions to the model

weights.

Consequently, the three largest capacity border points, Uzhgorod, Baumgarten and

10The maximal technical capacity of each border point is subject to fluctuations, as outlined in Section
4.3



3.6. CONCLUSIONS 78

Griefswald are considered. Notably, representative maximum technical capacity values

corresponding to Uzhgorod, Baumgarten and Griefswald constitute 18.90% of a represen-

tative maximal technical capacity of the sample, indicating their potential importance in

the European Natural Gas mixture, and subsequent importance to security of supply.

Figure 3.9. Pipeline Utilization Forecasting - MTC

Pipeline Utilization (%) forecasting visualisation for the Uzhgorod, Baumgarten and
Griefswald border points, which correspond to the three largest technical capacity
pipelines in the sample.

Figure 3.9 visualises the forecast pipeline utilization rates and the recorded values at

Uzhgorod, Baumgarten and Griefswald. Though the patterns recorded at each border

point are substantially different, the visualisation demonstrates that the pipeline utiliza-

tion is forecast well under a range of scenarios, demonstrating the model’s ability to adjust

to maintenance cycles and unscheduled outages at each border point. In order to qualify

the MAE values in an economic context, the error values recorded at Uzhgorod, Baum-

garten and Griefswald correspond to 918 MWh/h, 769 MWh/h and 1479 MWh/h, which,

when considering representative maximum capacities of 86,667 MWh/h, 67,167 MWh/h

and 65,429 MWh/h, is an acceptable margin of error.

3.6. Conclusions

We learn the underlying geographic relationships between 78 nodes of the European

Gas Infrastructure Network during the period 2016-2019. In order to extract spatial

features from the European Gas Infrastructure Network, a graph convolution operator is

defined. Consequently, a Graph Convolutional Long Short Term Memory (GC-LSTM)

model is proposed, which is capable of incorporating the complex spatial dependencies

obtained from the Graph Convolution and the temporal relationships determined by the
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LSTM model. As such, the GC-LSTM is appropriate for forecasting interdependent

spatiotemporal data. Additionally, the regularization terms applied to the GC-LSTM’s

loss function (Equation 3.18) enable a more stable model, with the additional benefit of

increased interpretability.

The GC-LSTM model substantially outperforms the baseline models outlined in Sec-

tion 3.5.1, displaying consistently superior performance metrics (Table 3.1).

The model’s ability to adapt to unplanned outages and maintenance cycles verifies

the applicability of the modelling technique to pipeline utilization forecasting, and subse-

quently, gas flow state forecasting. The prediction of pipeline utilization rates throughout

the European Gas system relative to these events provides valuable information pertaining

to how the impact of exogenous shocks propagate around the European Gas Infrastruc-

ture Network. Additionally, this provides important information relating to how pipeline

utilization rates, and subsequent gas flows may react to exogenous shocks.

The forecasting results displayed in Figures 3.8 and 3.9 display the model’s ability to

accurately predict pipeline utilization patterns at a range of locations and under a range

of different conditions. The progressive increase in pipeline utilization rates throughout

the sample indicates the growing importance of identification of congestion within the

European Gas Infrastructure Network. However, the low number of congestion occur-

rences identified within the sample implies that the Third Energy Package’s (Directive

2009/73/EC) focus on enforcing competition by enabling cross-border mechanisms has

been broadly successful.

Whilst limited instances of congestion in the European Gas Infrastructure Network

were recorded, the novelty of this work lies in the provision of a model capable of learning

complex spatiotemporal interdependencies and accurately forecasting gas pipeline uti-

lization rates. As European gas production continues to decline and imports rise, it is

anticipated that transportation distances of gas shall increase, with the consequence of

increased pipeline utilization. Consequently, a model which is capable of identifying and

forecasting infrastructure utilization patterns is of considerable value in enforcing cross-

border competition, maintaining an internal European gas market and increasing the
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security of gas supply to EU member states.



Chapter 4

Clean Energy, Brown Energy & The
Impact of News Sentiment: A
Comparative Analysis.

4.1. Introduction

Owing to an increasing awareness of Sustainable Development initiatives, the Clean

Energy industry, and it’s growing importance in financial markets has attracted grow-

ing attention from policymakers and investors alike. Increased investor awareness of

climate change has given rise to three core innovations; promotion of companies which

exhibit awareness of Climate Change through inclusion into Environmental Social Gover-

nance (ESG) or Climate Change indices, punishment of extractive or pollutive companies

through exclusion from ESG and Climate Change indices, and increased borrowing costs

for extractive or pollutive companies.

In light of this, most investors are interested in considering Clean Energy stocks within

their asset allocations, both as a source of diversification (Kuang 2021), and due to in-

creasingly punitive investment mandates for highly extractive or pollutive (Hunt and

Weber 2019) industry sectors, such as Oil and Gas. Consequently, understanding the

factors which impact price formation of Clean Energy and Traditional Energy stocks is

imperative for informing portfolio allocation and risk management frameworks.

The relationship between the stock price of energy companies and energy prices is

multifaceted and enforced through multiple channels (Hamilton 1983). The inherent

linkage between energy prices and the associated cash flows of energy companies is well

81
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understood (Huang et al. 1996), with the downstream impact on stock valuation, and

subsequently stock price, well documented (Reboredo and Ugolini 2018). As the stock

prices of energy companies are understood to be influenced by prevailing energy prices

(Jones and Kaul 1996), a body of literature has documented the various channels through

which this relationship is enforced.

Firstly, due to the high degree of interconnection amongst financial markets (Geng

et al. 2021) and increasing financialisation of the energy sector (Creti and Nguyen 2015),

energy market risk can quickly propagate to equity markets (Arouri et al. 2011). Secondly,

due to energy’s status as an essential good (Fabra et al. 2020), energy markets are suscepti-

ble to geopolitical risk, with market participants often paying a premium to increase their

security of supply. This can lead to positive externalities for energy companies, whilst

creating negative externalities for energy intense industries, such as manufacturing.

Whilst the relationship between energy price and energy companies stock prices’ is

well understood, the relationship between investor sentiment and energy companies stock

prices’ is comparatively less explored. As stock markets are composed of a multitude of

agents, who are operating at different time horizons and with different objectives, price

formation of stock is likely to be driven by investor sentiment. When investors display a

positive (negative) sentiment, they impound their optimism (pessimism) toward an asset

into the price. Some investors may rely on the beliefs of others (Ghosh and Bouri 2022),

while others are influenced by positive or negative news (Baker and Wurgler 2007; Tetlock

2007), creating a divergence in investor sentiment.

A large volume of extant literature examines the impact of investor sentiment on

financial assets, with a myriad of data sources and sentiment measurement techniques

employed. Whilst much of the earlier work (Tetlock 2007; Chen et al. 2011) focused

on newspapers such as the Wall Street Journal, the increasing adoption of social media

precipitated academic interest in the impact of different social media channels, such as

Google Search (Da et al. 2011), Facebook (Karabulut 2013) and Twitter (Bollen et al.

2011; Mao et al. 2011) on stock returns. Da et al. 2011 find increased Google search volume

to reliably predict higher stock prices over the following 2 weeks, with the exception of
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Initial Public Offerings (IPOs), whereby high Google search volume predicts long-term

under-performance. Through adoption of the Facebook Gross National Happiness index

(FGNHI), Karabulut 2013 demonstrates the impact of retail investor sentiment on the

returns of the aggregate U.S. stock market. Similarly, Bollen et al. 2011 through the

extraction of investor sentiment from 10 million tweets, find investor sentiment to Granger

cause returns of the Dow Jones Industrial Average. Mao et al. 2011 provide additional

support for the findings of Bollen et al. 2011 and Da et al. 2011, showing news sentiment,

twitter sentiment and Google search to hold a significantly positive relationship with stock

returns.

This study aims to identify differences in the impact of Investor sentiment on the

Clean Energy and Traditional Energy sectors. From a behavioural finance perspective,

companies in non-cyclical sectors, which undergo corporate restructurings and dividend

modifications less frequently than cyclical sectors, have clearer earnings expectations and

theoretical valuations, ceteris paribus. Consequently, we conjecture that the News senti-

ment index will hold a stronger relationship with companies in the Clean Energy sector

than the Traditional Energy sector, as theoretical valuations within the Clean Energy sec-

tor are considerably more opaque than the Traditional Energy sector. This hypothesis is

underpinned by the earlier findings of Khan et al. 2020, who report their sentiment index

to have a stronger correlation with the financials, technology, health care and consumer

discretionary sectors, than other sectors in a sample of the S&P 500.

Moreover, Baker and Wurgler 2006; Baker and Wurgler 2007 and Lemmon and Port-

niaguina 2006 emphasise the merit of a cross sectional approach when considering the

impact of Investor sentiment on stocks, demonstrating that firm characteristics can de-

termine the magnitude of Investor sentiment impact on stock prices. Notably, Baker and

Wurgler 2006; Baker and Wurgler 2007 demonstrate that companies which have a more

subjective valuation, such as those that are small, young, volatile, do not pay a dividend or

exhibit extreme valuation ratios are more exposed to Investor sentiment than companies

which do not exhibit these characteristics.

Taken in unison, the findings of Baker and Wurgler 2006; Baker and Wurgler 2007 and
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Lemmon and Portniaguina 2006 indicate that firm characteristics play a role in determin-

ing the impact of investor sentiment on stock returns. Given the comparative maturity

of the Traditional Energy sector, as characterised by mean size, mean age and mean div-

idend payment, we anticipate Investor sentiment to have a larger impact on the returns

and volumes of Clean Energy stocks.

A large amount of literature provides evidence that investor sentiment plays an im-

portant role in the formation of stock prices. However, the body of literature discussing

the influence of investor sentiment on clean energy stocks is limited, with few studies

drawing comparative analyses between the impact of investor sentiment on clean energy

and traditional energy stocks.

The energy market literature is comprised of two distinct strands; investor sentiment

and oil prices, and investor sentiment and stock prices. Guo and Ji 2013 find a long-

term relationship between oil prices and investor attention, as measured by Google search

volumes (GSV). Notably, Guo and Ji 2013 document that increased investor attention

has a direct impact on oil price volatility. Ji et al. 2019 confirm this through an analysis

of spillovers between WTI returns and investor sentiment indices, finding an asymmetric

impact of investor sentiment on WTI returns, with sentiment playing a more prominent

role in negative returns. Similarly, Han et al. 2017 show GSV to be significant when

forecasting day-ahead and week-ahead oil prices. Moreover, Gupta and Banerjee 2019

who studied the relationship between OPEC news announcements and U.S. stock returns,

find a significantly negative relationship.

A limited body of literature isolates the relationship between investor sentiment and

energy companies’ stock returns. Reboredo and Ugolini 2018 examine the interactions

between investor sentiment, as characterised by tweets, returns, volatility and volume of

17 clean energy stocks, finding investor sentiment to have a limited impact on returns,

volatility, or trading volumes. Using GSV, Song et al. 2019 find investor sentiment to

have a weak impact on the returns of renewable energy securities, corroborating the

earlier findings of Reboredo and Ugolini 2018.

The literature exploring the interaction between investor sentiment and energy stocks
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is insufficient, with prior studies using limited sample sizes (Reboredo and Ugolini 2018),

or measures of investor attention (Song et al. 2019) to determine the strength of the

relationship between investor sentiment and energy stocks. Through construction of the

News Sentiment Index, this study closes three distinct gaps within the literature.

The first gap concerns the construction of investor sentiment measures. Prior studies

on the interaction between investor sentiment and energy stock returns proxy investor

sentiment through the use of publicly available data sources, such as Google Search Vol-

ume (GSV), or Tweets. Construction of the News Sentiment Index captures information

available to professional investors, which may otherwise be behind a paywall. This en-

sures that we appropriately characterise investor sentiment as the information available

to professional investors, who dominate stock ownership within our sample.

The second gap concerns the geographies studied by the extant literature. Reboredo

and Ugolini (2018) study U.S. securities contained by the Wilder Hill Clean Energy Index

and Song et al. (2019) study the Wilder Hill Clean Energy Index and S&P Clean Energy

Index. Whilst the Wilder Hill Clean Energy Index is exclusively comprised of U.S. domi-

ciled securities, the S&P Clean Eneextrgy Index is geographically disparate. Through

the use of the STOXX Europe Total Market Index, we close a literature gap through the

addition of empirical evidence from Europe.

The third literature gap relates to the lack of context of the empirical findings. Whilst

Reboredo and Ugolini (2018) find investor sentiment to have a limited impact on the re-

turns of clean energy companies, no context is provided on the impact of investor sentiment

on other industry sectors. We close this gap in the literature by presenting a bifurcated

sample of “Traditional Energy” companies, and “Clean Energy” companies, and draw

comparative analyses between the impact of investor sentiment on the segments.

To fill the gap in literature, this paper examines the role of investor sentiment in

pricing and trading Clean Energy and Traditional Energy stocks, using a sample of 35

Clean Energy and 50 Traditional Energy companies from the STOXXt Europe Total

Market Index (BKXP). Prior studies focus on information from social media, and find

that investor sentiment aggregated from social media affects stock returns (Bollen et al.
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2011; Mao et al. 2011; Siganos et al. 2014). However, Nofer and Hinz (2015) and Reboredo

and Ugolini (2018) pinpoint that investor sentiment from Twitter has no sizeable impact

on returns, volatility or trading volumes, and indicate that the wisdom of the Twitter

crowd is not substantial in shaping prices and trading for renewable energy companies.

Unlike social media, such as Twitter and Facebook, Bloomberg serves as a news platform

for both institutional investors and professional investors, who comprise the largest portion

of shareholders within our sample 1, and are the dominant shareholders within the energy

industry (Ritchie, Dowlatabadi, et al. 2015) and renewable energy industry (Kaminker

and Stewart 2012).

Since Bloomberg is commonly used by professional investors to inform investment

decisions, we use information from the Bloomberg News Platform to measure investor

sentiment, as characterised by the sentiment embedded within Bloomberg News articles.

Following the dynamic spillover model developed by Diebold and Yilmaz (2009),

Diebold and Yilmaz (2012), and Diebold and Yılmaz (2014), we test the spillover ef-

fects from (to) news sentiment to (from) stock returns and trading volumes for both

clean energy and traditional energy companies. We also examine the contemporaneous

effects using a regression approach (Azar and Lo 2016; Siganos et al. 2017). We find

that for Clean Energy companies, news sentiment has a relatively small impact on stock

returns and trading volumes, and conversely, stock returns and trading volumes also have

a limited impact on news sentiment. Notably, the size of spillover effects are asymmetric,

whereby the impact of News sentiment on stock returns and trading volumes is larger

in magnitude. These findings are consistent with the findings of Reboredo and Ugolini

(2018). More importantly, we find that Traditional Energy companies exhibit a similar

pattern in the relationship between News sentiment, stock returns and trading volumes.

In particular, spillovers from News sentiment to stock returns and trading volumes are

greater than the spillovers in the opposite directions, and spillovers from News sentiment

to stock returns are relatively greater than to trading volumes. This is confirmed through

correlation analysis, and our regression results also confirm the positive impact of News

1Institutional investors constituted 82.63% of the aggregate shareholding on the final day of our sample.
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sentiment on stock returns and trading volumes.

These findings suggest that investor sentiment plays a significant role in the price

formation of both Clean Energy and Traditional Energy sectors, with investor sentiment

playing a marginally more important role in the Clean Energy sector. Whilst Investor

sentiment is significant in the price formation of Clean Energy and Traditional Energy

companies, the magnitude of impact is relatively limited, with 2.81% and 2.71% of returns

attributed to the impact of investor sentiment for Clean Energy companies and Traditional

Energy companies, respectively.

Through the use of an expanded sample, our findings affirm the earlier work of Nofer

and Hinz (2015) and Reboredo and Ugolini (2018), providing additional empirical evidence

of the role that investor sentiment plays within asset pricing. Given the difference from

Nofer and Hinz (2015) and Reboredo and Ugolini (2018) in investor sentiment sources

(Twitter vs Bloomberg News articles), yet similarity in findings, our findings support

Mao et al. (2011)’s conclusion that, if appropriately broad, different information sources

should yield a comparable impact of sentiment on stock returns. Moreover, through

the study of European companies, our findings make an important contribution to the

literature, as we are able to confirm the role News sentiment plays in price formation and

trading of European Clean Energy stocks as comparable with U.S. Clean Energy stocks.

Additionally, our findings indicate that no discernible difference in the impact of News

sentiment exists between Clean Energy and Traditional Energy stocks in Europe. As

such, this paper provides valuable evidence to the ongoing debate concerning the impact

of News sentiment on stock price formation within different Industry sectors (Uygur and

Taş 2014; Khan et al. 2020; Niu et al. 2021).

The reminder of the paper is structured as follows. Section 4.2 outlines the econo-

metric approach used to characterize the spillover effects. Section 4.3 provides detailed

information on the sample and data collection. Section 4.4 presents our main results, and

Section 4.5 concludes.
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4.2. Econometric Approach

In this section, we introduce the empirical model used to examine the impact of news

sentiment on both Traditional and Clean Energy stock prices. Specifically, we adopt an

3-variable vector autoregression (VAR) framework with exogenous variables developed by

Diebold and Yilmaz (2009), Diebold and Yilmaz (2012), and Diebold and Yılmaz (2014)

to measure the spillover effects for each company in both Clean Energy and Traditional

Energy groups.

4.2.1. Generalized VAR model

Diebold and Yilmaz (2009) introduce a dynamic spillover measure based on the notion

of forecast error variance decompositions from vector autoregressions (VARs). Since the

spillover measure relies on variable ordering and only addresses the total spillovers rather

than directional spillovers, Diebold and Yilmaz (2012) and Diebold and Yılmaz (2014)

extend their spillover index and develop a generalized VAR framework that eliminates the

possible dependence of the results on ordering. This VAR-based network methodology

has been applied in a range of economics studies, such as stock market inter-dependencies,

business cycle synchronization, volatility spillover, and sentiment spillover (Baruńık et al.

2016; Corbet et al. 2018; Demirer et al. 2018; Wiesen et al. 2018; Antonakakis et al. 2018;

Reboredo and Ugolini 2018; Zhang and Broadstock 2020).

Following Diebold and Yılmaz (2014) and Reboredo and Ugolini (2018), we consider an

N-dimensional covariance-stationary VAR(p) with orthogonal shocks. Let yt as a column

vector of time series variables which contain daily information on asset k at time t, in-

cluding stock returns (rk,t), trading volumes (υk,t), and news sentiment (sentk,t). As such,

yt = (rk,t, υk,t, sentk,t)’. Given that these variables may be endogenously determined, the

VAR model allows feedback to occur between these variables and captures their interrela-

tions. Notably, the VAR model also accounts for the effect of contemporaneous exogenous

variables in determining the value of endogenous variables. The reduced-form VAR model

with p lags is specified as:
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yt = Φ0 +

p∑
i=1

Φiyt−i +Ψxt + εt (4.1)

where Φi are (3 × 3) coefficient matrices for i = 0, 1, . . . , p; εt ∼ (0,Σ) is a vector of

independently and identically distributed disturbances; Ψ is a N×N parameter matrix; xt

represents an (N×1) matrix of exogenous variables. Following previous studies (Reboredo

and Ugolini 2018; Geng et al. 2021), we include a range of market factors as our exogenous

variables. More specifically, market returns, as characterised by the SX5E Index, market

volatility, as characterised by the V2X Index, and the European natural gas price, as

characterised by the Dutch Title Transfer Facility (TTF) day ahead price. Since the

sample includes securities denominated in Polish Zloty, Swiss Franc and Euro, we deviate

from Reboredo and Ugolini 2018 by not specifying a currency index as a market factor.

The moving average representation of Eq.(4.1) is written as:

yt = γ +
∞∑
i=0

Aiεt−i +
∞∑
i=0

AiΨxt−i (4.2)

where the 3×3 coefficient matrices Ai follow the recursion Ai = Φ1Ai−1+Φ2Ai−2+. . .+

ΦpAi−p, with A0 being an 3×3 identity matrix and with Ai =0 for i < 0; γ =
∑∞

i=0AiΦ0.

4.2.2. Spillover Measure

The moving average coefficients (or variance decomposition) in Eq.(4.2) are the key

to understanding the dynamics of the system. Specifically, contemporaneous aspects of

connectedness are summarized in {A0}, and the dynamics in {A1, A2, . . . }. Variance de-

composition allows us to achieve a greater understanding of the spillover effect by parsing

the forecast error variances of each variable into components which are attributable to

the various systems. In particular, the variance decomposition can be used to assess

the fraction of the H-step-ahead error variance in forecasting variable i that is due to

shocks in variable j, ∀i ̸= j, for each i. Following the generalized variance decomposi-

tion (GVD) framework of Koop et al. (1996), Pesaran and Shin (1998), and Diebold and

Yılmaz (2014), we define the H-step-ahead generalized error variance decomposition for
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the i variable as:

θHi←j =
σ−1jj

∑H−1
h=0 (ei

′Ah

∑
ej)

2∑H−1
h=0 (ei

′Ah

∑
Ah
′ei)2

(4.3)

where i, j denote the endogenous variables (rk,t, υk,t, sentk,t); ej is a selection vec-

tor with one as jth element and zeros elsewhere; Ah is the coefficient matrix multiply-

ing the h-lagged shock vector in the infinite moving-average representation of the non-

orthogonalized VAR (Eq.(4.2));
∑

is the covariance matrix of the shock vector in the

non-orthogonalized VAR; σjj is the jth diagonal element of
∑

.

The parameter θHi←j provides information on the fraction of the H-step-ahead forecast

error for variable i that is attributable to shocks in variable j. Since the information is

invariant to the variable ordering and shocks are not necessarily orthogonal in the GVD

framework, the sum of forecast error variance for different variables is not necessarily

equal to one. Diebold and Yilmaz 2012; Diebold and Yılmaz 2014 further suggest that

in order to use the information provided in θHi←j to identify the spillover effects between

endogenous variables, Eq.(4.3) can be normalized as:

θ̃Hi←j =
θHi←j∑D
j=1 θ

H
i←j

(4.4)

where D denotes the number of endogenous variables. In this study, the endogenous

variables include stock returns (rk,t), trading volumes (υk,t), and news sentiment (sentk,t),

therefore, D equals 3. By construction,
∑D

j=1 θ̃
H
i←j = 1, which means the total directional

connectedness (spillover effects) from variable j to all others counts for 100% . This

generalized VAR approach enables us to measure the pairwise directional contribution of

the jth variable to ith variable at horizon h, and vice versa. For example, θ̃1i←j0 with a

value of 22, means the directional connectedness is from j to i is 22% out of 100% within

the predictive horizon of 10 days. Therefore, in our study, we employ this approach to

measure the contribution of news sentiment to firms’ stock returns and trading volumes,

and the contribution of stock returns or trading volumes to news sentiment for both

Traditional and Clean Energy firms.
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4.3. Data

4.3.1. Sample

To obtain a representative sample of the European equities market, we used daily

information from the STOXX Europe Total Market Index (BKXP). The BKXP Index is

chosen as it has a variable number of components and it covers approximately 95% of the

free float market capitalisation of stocks across 18 European countries 2. As constituents

of the BKXP Index are actively traded, with Average Daily Traded Value (ADTV) as-

sessed as a requirement for Index membership 3, and a mean analyst coverage of 6.24 is

maintained throughout the sample period, we have rich daily news information regarding

constituents.

In order to identify appropriate groups of Traditional Energy and Clean Energy com-

panies, the BKXP constituents are assessed by Global Industry Classification Standard

(GICS), including GICS sector, and GICS subsector. The GICS methodology is selected

as the GICS methodology remains consistent throughout the sample period, whereas the

Industry Classification Benchmark (ICB) methodology grew from 114 subsectors in 2015

to 173 subsectors in 2019 4, introducing bias into the classification. Furthermore, GICS

considers both ‘earnings and market perception’ within the classification methodology

5. This is particularly important when considering companies which are undergoing a

transition from the Traditional Energy classification to the Clean Energy classification, as

the GICS Sub Industry classification would re-classify this security earlier than the ICB

Classification.

Using GICS sector and GICS subsector, the Clean Energy classification is comprised

of securities within the “Utilities” (551010) GICS Sector, with subsector of “Electric Util-

ities” (55101010), “Independent Power Producers & Energy Traders” (55105010), “Gas

Utilities” (55102010) and “Renewable Electricity” (55105020) considered. Conversely, the

2Stoxx Europe Total Market Index Factsheet
3Stoxx Index Methodology
4FTSE Russell Industry Classification Benchmark History
5The Global Industry Classification Standard (GICS) Handbook

https://www.stoxx.com/document/Bookmarks/CurrentFactsheets/BKXGV.pdf
https://www.stoxx.com/document/Indices/Common/Indexguide/stoxx_index_guide.pdf
https://classification.codes/classifications/industry/icb/
https://www.msci.com/our-solutions/indexes/gics
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Traditional Energy classification considers securities from the “Energy” (101020) GICS

Sector, with securities from the subsectors of “Integrated Oil & Gas” (10102010), “Oil

& Gas Drilling” (10101010), “Oil & Gas Equipment & Services” (10101020), “Oil & Gas

Exploration & Production” (10102020), “Oil & Gas Refining & Marketing” (10102030),

“Oil & Gas Storage & Transportation” (10102040), and “Coal & Consumable Fuels”

(10102050) present in the subsample of Traditional Energy companies.

The sample period spans 1st January 2015 to 1st April 2022, with the starting date

determined by data availability. Of the 58 BKXP constituents classified as Traditional

Energy companies by GICS subsector, we excluded the 8 firms which have incomplete

daily news sentiment records. Similarly, of the 46 BXKP constituents classified as Clean

Energy companies, we excluded 11 firms which had incomplete news sentiment data,

leaving 50 Traditional Energy companies and 35 Clean Energy companies in our sample.6

The sample companies accounted for 86% and 76% of the Traditional Energy and Clean

Energy classifications as of the sample end date, respectively. Table 4.1 lists the number of

company from each subsector after excluding the firms with incomplete sentiment data.7

6Anderloni and Tanda (2017) study the Initial Public Offers (IPOs) of 144 energy firms listed on the
stock exchanges across 13 European countries during 2000-2014. Their sample is made of 86 (59.7%)
traditional and 58 (40.3%) green energy companies. The sample of this paper is the firms listed in the
STOXX Europe Total Market Index during 2015 –2022 with non-missing sentiment data and trading
data. Using the GICS, we classify 50 (58.8%) traditional and 35 (41.2%) clean energy companies. The
ratio between traditional and clean energy is comparable to the study of Anderloni and Tanda (2017).

7To further mitigate potential sample bias driven by classification, we re-structured the sample for
Clean Energy by classifying the GICS subsector - “Independent Power Producers & Energy Traders”
(55105010) as Traditional Energy, which leads to 32 Clean Energy and 52 Traditional Energy companies.
Then, we re-estimated the empirical analysis, and found that the results remain robust to the alternative
sample classification. Tables for robustness tests are provided in Appendix B.
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Table 4.1. “Traditional Energy” and “Clean Energy” Classification

Clean Energy Classification - GICS sector “Utilities 551010”

GICS Subsector name GICS Subsector code No.

Electric Utilities 55101010 20
Independent Power Producers & Energy Traders 55105010 3
Gas Utilities 55102010 5
Renewable Electricity 55105020 7
Total number of Clean Energy companies 35

Traditional Energy Classification - GICS sector “Energy 101020”

GICS Subsector name GICS Subsector code No.

Integrated Oil & Gas 10102010 9
Oil & Gas Drilling 10101010 3
Oil & Gas Equipment & Services 10101020 15
Oil & Gas Exploration & Production 10102020 11
Oil & Gas Refining & Marketing 10102030 5
Oil & Gas Storage & Transportation 10102040 7
Coal & Consumable Fuels 10102050 0
Total number of Traditional Energy companies 50

4.3.2. Sentiment Data

We then obtained information on news articles for each company from Bloomberg.

Bloomberg uses supervised machine learning techniques to emulate human cognition in

processing textual information. First, each news article is assigned a categorical polarity

score, e.g., 1, 0, -1, which indicates positive, neutral or negative sentiment, respectively.

The labelling is based on the question “If an investor having a long position in the security

mentioned were to read this news or tweet, is he/she bullish, bearish or neutral on his/her

holdings?” If an investor is bullish, then the categorical value assigned is 1. If an investor

is bearish, then the categorical value is -1, otherwise 0 is assigned for a neutral attitude.

Then, the annotated data is fed into machine-learning models, such as a support vector

machine (SVM). A confidence level, which is considered as the probability associated

with the article being negative, neutral or positive, is assigned to each news article. Once

the model is trained, when new information comes, the model automatically assigns a

probability of being positive, negative or neutral to each news story.
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We then use a company-level News Sentiment Index score (NSI ), which is the confidence-

weighted average of news sentiment recorded on that day. NSI delivers a numerical value

ranging from -1 to 1, with -1 representing extremely negative sentiment, 1 representing

extremely positive sentiment, and 0 being neutral sentiment. Specifically, NSI for each

company is computed by multiplying the categorical polarity score of each news article

with it’s associated probability score (Gupta and Banerjee 2019):

NSI =
Z∑
i=0

1× Prob.(Positive)i +
Z∑
i=0

(−1)× Prob.(Negative)i ∈ [−1; 1] (4.5)

where Z refers to the total number of daily news stories published by Bloomberg

corresponding to company k, Prob. refers to the corresponding confidence probability

assigned by the SVM, and
∑

Prob. equals 100%. NSI k,t represents daily News sentiment

for asset k at time t (sentk,t) in Eq.(4.1).

4.3.3. Security Data

Data on daily closing price and daily trading volumes is obtained from Bloomberg for

each security, whereby the daily closing price and daily trading volumes were adjusted

to reflect Spin-Offs, Stock Splits, Stock Consolidations, Stock Dividends and Rights Of-

ferings. The use of corporate action adjusted price and volume information is considered

theoretically appropriate, as this study aims to isolate the relationship between News

sentiment and stock price innovation. As such, inclusion of price innovation driven by

exogenous events, such as Corporate Actions, may distort the empirical results of the

study.

Daily return (LogReturn) for each security is computed as the first difference of the

natural logarithm of the corporate action adjusted closing prices, and daily trading vol-

umes (LogVolume) are defined as the natural logarithm of the number of shares traded on

the primary exchange for each security. In our empirical analysis, LogReturnk,t refers to

stock return for asset k at time t (rk,t) and LogVolumek,t represents daily trading volumes
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for asset k at time t (υk,t) in Eq.(4.1).

4.3.4. Market Factor Data

Finally, we collect data from Bloomberg on several factors included in the vector x t

in Eq.(4.1), which may be relevant in determining the values of the endogenous variables.

We consider a range of market factors; stock market returns, as proxied by the first log

difference of the EURO STOXX 50 Index (SX5E), stock market volatility, as proxied

by the EURO STOXX 50 Volatility Index (V2X Index) and a representative price of

European natural gas, Dutch Title Transfer Facility Day Ahead Price (TTFGDAHD

Index). Specifically, the EURO STOXX 50 Index (SX5E ) is selected, as the Index is

comprised of the Eurozone’s largest and most traded companies, representing a diversified

exposure to the largest companies of each ICB Supersector 8. Additionally, the EURO

STOXX 50 Volatility Index (V2X ) is considered as a representative measure of volatility

within Eurozone equities, as the V2X Index considers the implied volatility on EURO

STOXX 50 Index options within a rolling 30 day expiry 9. We also consider changes in

TTF Day Ahead prices (TTFGDAHD), as natural gas price is known to have a long-term

relationship with renewable energy demand (Berry 2005; Fell and Kaffine 2018), and by

extension, the stock price of renewable energy companies.

Table B.4 provides summary statistics for the exogenous market variables. All three

variables have a mean value close to zero, yet exhibit a large dispersion. The EURO

STOXX 50 Index (SX5E ) has a standard deviation of 1.28% and its distribution is mod-

erately left skewed (-0.95). The European natural gas prices Index (TTFGDAHD) ex-

hibits higher variability than the (SX5E ) with a standard deviation of 5.7% and the

EuroSTOXX 50 Volatility Index V2X has the highest standard deviation of 7.6%. The

distributions of both variables are characterised by fat-tails.

8EuroSTOXX 50 Index Factsheet
9EuroSTOXX 50 Volatility Index Factsheet

https://www.stoxx.com/document/Bookmarks/CurrentFactsheets/SX5GT.pdf
https://www.stoxx.com/document/Bookmarks/CurrentFactsheets/V2TX.pdf
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Table 4.2. Exogenous Market Factor Variables

This table presents the descriptive statistics for exogenous market factor data: the first
difference of the log EURO STOXX 50 Index (SX5E ), the EURO STOXX 50 Volatility
Index (V2X ), and the natural gas price (TTFGDAHD) for the sample period of 1st
January 2015 to 1st April 2022. S.D., Min and Max denote standard deviation, minimum
and maximum values, respectively.

Variables Obs. Mean S.D. Skewness Kurtosis Min Max

SX5E 146,964 0.0001 0.0128 -0.9531 15.3541 -0.1324 0.0883
V2X 146,964 0.0001 0.0763 0.7599 7.0803 -0.4347 0.4859
TTFGDAHD 146,964 0.0014 0.0567 -2.3415 69.8578 -1.0165 0.5219

4.4. Empirical Results

4.4.1. Descriptive Statistics

Table 4.3 presents the descriptive statistics of the key variables in our study (LogRe-

turn, LogVolume, and NSI ) for each company over the sample period 1st January 2015

- 1st April 2022. Panel A summarizes the statistics of Clean Energy companies, and

Panel B displays statistics of Traditional Energy companies. Whilst the average daily re-

turns over the sample period are negative for the Traditional Energy segment (-0.00005),

the Clean Energy segment exhibits a small, positive return on average (0.00025). Ad-

ditionally, 27 of the 35 Clean Energy companies exhibited a positive mean daily return,

compared with 24 of the 50 Traditional Energy companies. This divergence is likely due

to the concomitant factors of additional strategic investment in the Clean Energy sector,

and increased financing costs of Traditional Energy projects (Pickl 2019). Notably, on

average, the dispersion of daily returns within the Traditional Energy segment (3.17%) is

substantially larger than that of the Clean Energy segment (2.41%), with the Traditional

Energy segment containing both the highest (VBKGY) and lowest (CGGFP) average re-

turn securities within the sample. The standard deviations of daily returns indicate that

stock price volatility is more pronounced for Traditional Energy companies than Clean

Energy companies.

Regarding liquidity, characterised by the average LogVolume, Clean Energy and Tra-
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ditional Energy companies display similar dynamics. Traditional Energy companies are

marginally more liquid than Clean Energy companies, recording mean values of 2.61 and

2.54 respectively. Conversely, the standard deviation of LogVolume follows a markedly

different profile, as Clean Energy companies (23.42%) exhibited a much larger standard

deviation in LogVolume than Traditional Energy companies (14.73%). Taken in unison,

this implies that Clean Energy companies are, on average, less liquid and more susceptible

to large deviations in traded volume. This could be due to the comparative free float of

Traditional and Clean Energy companies, whereby Clean Energy companies held a lower

mean free float throughout the sample period, thus less shares were available to be traded.

The mean values of NSI for both the Clean Energy segment and Traditional Energy

segment are positive, indicating that throughout our sample period, an aggregate pos-

itive sentiment was extracted from news articles. Notably, the average NSI of Clean

Energy (0.0235) companies is moderately larger than that exhibited by Traditional En-

ergy (0.0197) companies. Given the increased social awareness of climate change and

European energy policy objectives, it is expected that news articles relating to Clean En-

ergy firms are likely to be more positive than news articles relating to Traditional Energy

companies. The highest positive News sentiment (0.15) is held by Equinor (EQNRNO),

which is classified as a Clean Energy company. This is likely due to Equinor’s relatively

large market capitalisation, and by extension, prominent media coverage, combined with

the high Environmental, Air Quality and Climate Change disclosure scores throughout

the sample period. Additionally, on average, the variance of NSI is larger for Traditional

Energy (16.83%) companies than Clean Energy (15.80%) companies, which is likely due

to the comparatively larger analyst coverage of Traditional Energy companies throughout

the sample, and relative maturity of the two industries (Newbery 2016).
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Table 4.3. Descriptive Statistics

This table reports means and standard deviations in parentheses for returns, trading vol-
umes and News sentiment index for 35 Clean Energy firms in Panel A and 50 Traditional
Energy firms in Panel B for the sample period of 1st January 2015 to 1st April 2022.

Ticker Company LogReturn LogVolume NSI

Panel A. Clean Energy Companies.
ABIOFP ABIO FP Equity 0.0005 (0.0183) 2.3403 (0.0764) 0.0073 (0.0686)
ANASQ ANA SQ Equity 0.0006 (0.0181) 2.4682 (0.0471) 0.0292 (0.1428)
BKWSE BKW SE Equity 0.0008 (0.0135) 2.3325 (0.0760) 0.0029 (0.0835)
DRXLN DRX LN Equity 0.0003 (0.0251) 2.6319 (0.0406) -0.0014 (0.1510)
EBKGY EBK GY Equity 0.0007 (0.0199) 1.6775 (0.2954) 0.0075 (0.1038)
ECVGY ECV GY Equity 0.0008 (0.0216) 2.4852 (0.0810) 0.0239 (0.1329)
EDFFP EDF FP Equity -0.0005 (0.0232) 2.6925 (0.0330) 0.0028 (0.1018)
EDPPL EDP PL Equity 0.0002 (0.0160) 2.7521 (0.0291) 0.0720 (0.2253)
EDPRPL EDPR PL Equity 0.0008 (0.0170) 2.5339 (0.0729) 0.1019 (0.2378)
ELESQ ELE SQ Equity 0.0001 (0.0141) 2.6601 (0.0444) 0.0286 (0.1695)
ELIBB ELI BB Equity 0.0007 (0.0145) 2.3530 (0.0570) 0.0047 (0.0677)
ENAPW ENA PW Equity -0.0003 (0.0242) 2.5692 (0.0508) 0.0062 (0.1723)
ENELIM ENEL IM Equity 0.0003 (0.0163) 2.8459 (0.0241) 0.0415 (0.1568)
ENGPW ENG PW Equity -0.0006 (0.0195) 2.5387 (0.1258) 0.0122 (0.2031)
ENGSQ ENG SQ Equity -0.0001 (0.0140) 2.6363 (0.0425) 0.0370 (0.2007)
ERGIM ERG IM Equity 0.0006 (0.0175) 2.5087 (0.0453) 0.0068 (0.0729)
EVNAV EVN AV Equity 0.0005 (0.0147) 2.3496 (0.0673) 0.0060 (0.0863)
FORTUMFH FORTUM FH Equity -0.0001 (0.0175) 2.6682 (0.0314) 0.0380 (0.1780)
IBESQ IBE SQ Equity 0.0003 (0.0136) 2.8138 (0.0328) 0.0418 (0.1877)
IGIM IG IM Equity 0.0003 (0.0154) 2.6759 (0.0329) 0.0202 (0.1657)
NEOENFP NEOEN FP Equity 0.0011 (0.0243) 2.4156 (0.0999) 0.0158 (0.1280)
NTGYSQ NTGY SQ Equity 0.0001 (0.0156) 2.6491 (0.0493) 0.0624 (0.2021)
ORSTEDDC ORSTED DC Equity -0.0015 (0.0972) 2.5619 (0.0419) 0.0290 (0.1421)
PEPPW PEP PW Equity 0.0005 (0.0275) 2.1091 (0.2034) 0.0019 (0.1009)
PGEPW PGE PW Equity -0.0004 (0.0268) 2.6789 (0.0394) 0.0184 (0.1720)
REESQ REE SQ Equity 0.0000 (0.0126) 2.6680 (0.0445) 0.0123 (0.1946)
RUIFP RUI FP Equity 0.0001 (0.0177) 2.4919 (0.0399) 0.0423 (0.1611)
SCATCNO SCATC NO Equity 0.0008 (0.0266) 2.5229 (0.0671) 0.0087 (0.0904)
SRGIM SRG IM Equity 0.0002 (0.0152) 2.7782 (0.0263) 0.0498 (0.1833)
SSELN SSE LN Equity 0.0000 (0.0160) 2.6954 (0.0293) 0.0083 (0.2003)
TPEPW TPE PW Equity -0.0003 (0.0258) 2.7157 (0.0408) -0.0003 (0.2000)
TRNIM TRN IM Equity 0.0004 (0.0141) 2.7461 (0.0258) 0.0358 (0.1512)
UN01GY UN01 GY Equity 0.0006 (0.0178) 2.5729 (0.0509) 0.0137 (0.1631)
VERAV VER AV Equity 0.0010 (0.0211) 2.4783 (0.0459) 0.0138 (0.1175)
VLTSAFP VLTSA FP Equity 0.0005 (0.0204) 2.2118 (0.1628) 0.0100 (0.0883)

Summary: Clean Energy 0.0002 (0.0241) 2.5423 (0.2342) 0.0235 (0.1580)

Panel B. Traditional Energy Companies.
AKASTNO AKAST NO Equity -0.0005 (0.0300) 2.4634 (0.1036) 0.0083 (0.0910)
AKRBPNO AKRBP NO Equity 0.0012 (0.0283) 2.5949 (0.0421) 0.0131 (0.1239)

Continued on next page
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Table 4.3 - continued from previous page

Ticker Company LogReturn LogVolume NSI

AKSONO AKSO NO Equity -0.0001 (0.0344) 2.6372 (0.0562) 0.0354 (0.1701)
BORRNO BORR NO Equity -0.0017 (0.0617) 2.4566 (0.2189) 0.0011 (0.1204)
BPLN BP/ LN Equity 0.0000 (0.0204) 2.8533 (0.0230) -0.0061 (0.2078)
BWLPGNO BWLPG NO Equity 0.0001 (0.0311) 2.5873 (0.0432) 0.0210 (0.1267)
BWONO BWO NO Equity -0.0005 (0.0417) 2.5670 (0.0770) 0.0215 (0.1322)
CGGFP CGG FP Equity -0.0019 (0.0447) 2.6831 (0.1050) 0.0216 (0.1894)
CNELN CNE LN Equity 0.0000 (0.0294) 2.6368 (0.0374) -0.0102 (0.1802)
DECLN DEC LN Equity 0.0005 (0.0230) 2.5929 (0.1180) 0.0075 (0.0847)
DNONO DNO NO Equity -0.0001 (0.0343) 2.7451 (0.0350) 0.0303 (0.1843)
DRLCODC DRLCO DC Equity -0.0005 (0.0327) 2.4453 (0.0576) 0.0102 (0.1157)
ENIIM ENI IM Equity 0.0000 (0.0186) 2.8049 (0.0241) 0.0067 (0.1912)
ENOGLN ENOG LN Equity 0.0010 (0.0330) 2.4474 (0.1011) 0.0059 (0.0824)
ENQSS ENQ SS Equity 0.0000 (0.0399) 2.7169 (0.0526) 0.0078 (0.1510)
EQNRNO EQNR NO Equity 0.0005 (0.0195) 2.7141 (0.0286) 0.1518 (0.3025)
EURNBB EURN BB Equity 0.0000 (0.0225) 2.5770 (0.0451) 0.0210 (0.1812)
FRONO FRO NO Equity -0.0001 (0.0350) 2.5851 (0.0556) 0.0175 (0.2126)
GALPPL GALP PL Equity 0.0002 (0.0199) 2.6580 (0.0317) 0.0264 (0.1847)
GTTFP GTT FP Equity 0.0004 (0.0220) 2.3891 (0.0498) 0.0066 (0.0636)
HAFNINO HAFNI NO Equity -0.0002 (0.0296) 2.4823 (0.0724) 0.0248 (0.1469)
HBRLN HBR LN Equity -0.0011 (0.0539) 2.5661 (0.0611) 0.0249 (0.1659)
IPCOSS IPCO SS Equity 0.0008 (0.0323) 2.5584 (0.0644) 0.0184 (0.1436)
LTSPW LTS PW Equity 0.0005 (0.0226) 2.5354 (0.0480) 0.0169 (0.1817)
LUNESS LUNE SS Equity 0.0007 (0.0242) 2.6180 (0.0359) 0.0606 (0.1753)
MGNNO MGN NO Equity 0.0000 (0.0391) 2.2463 (0.2890) 0.0064 (0.0616)
NESTEFH NESTE FH Equity 0.0010 (0.0214) 2.6528 (0.0369) 0.0235 (0.1520)
ODLNO ODL NO Equity 0.0004 (0.0334) 2.5076 (0.1003) 0.0049 (0.0803)
OMVAV OMV AV Equity 0.0004 (0.0223) 2.5604 (0.0349) 0.0171 (0.1647)
PENNO PEN NO Equity 0.0004 (0.0421) 2.5127 (0.0946) 0.0055 (0.0621)
PGNPW PGN PW Equity 0.0002 (0.0213) 2.7211 (0.0333) 0.0236 (0.1773)
PGSNO PGS NO Equity -0.0014 (0.0527) 2.6982 (0.0441) 0.0029 (0.1605)
PKNPW PKN PW Equity 0.0003 (0.0217) 2.6206 (0.0374) 0.0122 (0.1595)
REPSQ REP SQ Equity -0.0001 (0.0212) 2.7655 (0.0342) 0.0331 (0.2027)
SBMONA SBMO NA Equity 0.0002 (0.0223) 2.6190 (0.0418) 0.0005 (0.1591)
SBOAV SBO AV Equity -0.0001 (0.0267) 2.3425 (0.0555) 0.0086 (0.1247)
SHELLNA SHELL NA Equity -0.0001 (0.0200) 2.7767 (0.0287) 0.0020 (0.1402)
SPMIM SPM IM Equity -0.0012 (0.0308) 2.7701 (0.0362) 0.0116 (0.2232)
SRSIM SRS IM Equity -0.0001 (0.0269) 2.7376 (0.0449) 0.0111 (0.1102)
SUBCNO SUBC NO Equity 0.0000 (0.0271) 2.6450 (0.0397) 0.0747 (0.2471)
TEFP TE FP Equity -0.0004 (0.0282) 2.5845 (0.0489) 0.0008 (0.1205)
TENIM TEN IM Equity 0.0001 (0.0235) 2.7156 (0.0264) 0.0193 (0.2646)
TGSNO TGS NO Equity -0.0001 (0.0274) 2.5525 (0.0389) 0.0191 (0.1580)
TLWLN TLW LN Equity -0.0010 (0.0545) 2.7737 (0.0373) 0.0059 (0.2146)
TRMDADC TRMDA DC Equity -0.0003 (0.0223) 2.4215 (0.0890) 0.0063 (0.0952)
TTEFP TTE FP Equity 0.0001 (0.0180) 2.7484 (0.0261) 0.0183 (0.1656)
VBKGY VBK GY Equity 0.0023 (0.0339) 2.4243 (0.0788) 0.0087 (0.0919)

Continued on next page
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Table 4.3 - continued from previous page

Ticker Company LogReturn LogVolume NSI

VKFP VK FP Equity -0.0015 (0.0406) 2.5608 (0.0550) 0.0516 (0.1888)
VPKNA VPK NA Equity -0.0002 (0.0162) 2.5448 (0.0362) 0.0141 (0.1337)
WGLN WG/ LN Equity -0.0007 (0.0295) 2.6642 (0.0436) 0.0234 (0.1898)
Summary: Traditional Energy -0.0001 (0.0317) 2.6097 (0.1472) 0.0197 (0.1683)

4.4.2. Correlation

Table 4.4 displays the Pearson correlation values for NSI with returns and trading

volumes. Panel A shows the results for the 35 Clean Energy firms. Using the time series

data of each Clean Energy firm, we find that 85% (29 out of 35) of the firms’ stock returns

are positively related to NSI, and the rest exhibit insignificant correlation between stock

returns and NSI. We also find that 54% (19 out of 35) of the firms’ trading volumes are

positively associated with NSI, a negative correlation for SCATCNO only and insignificant

correlation for the rest of the firms. A reason for Scatec ASA’s (SCATCNO) negative

correlation between stock returns and NSI is the failure to meet earnings projections in

2021 and 2022. Although Scatec ASA (SCATCNO) missed earnings projections, with a

subsequent fall in stock price, the NSI value remained positive within the period, with

news articles focusing on Scatec ASA’s growth potential. Across the panel data of all 35

Clean Energy firms, on average, we find a significant positive correlation between stock

returns and NSI with a value of 0.053, and a significant positive correlation between

trading volumes and NSI with a value of 0.061.
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Table 4.4. Correlation: Clean Energy

This table reports the Pearson correlation coefficient for News sentiments index with
returns and trading volumes for 35 Clean Energy companies for the sample period of 1st
January 2015 to 1st April 2022. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%,
5%, and 10% levels, respectively.

NSI

Ticker LogReturn LogVolume

ABIOFP 0.049** 0.079***
ANASQ 0.116*** 0.186***
BKWSE 0.148*** 0.074***
DRXLN 0.034 0.049*
EBKGY 0.098*** 0.009
ECVGY 0.063*** 0.034
EDFFP 0.061*** -0.019
EDPPL 0.038* -0.01
EDPRPL 0.087*** 0.049**
ELESQ 0.122*** 0.006
ELIBB 0.131*** 0.072***
ENAPW 0.021 0.173***
ENELIM 0.097*** 0.048**
ENGPW 0.069*** 0.021
ENGSQ 0.096*** 0.01
ERGIM 0.048** 0.028
EVNAV 0.066*** 0.078***
FORTUMFH 0.122*** 0.065***
IBESQ -0.019 0.092***
IGIM -0.026 0.060**
NEOENFP 0.144*** 0.062***
NTGYSQ 0.099*** 0.017
ORSTEDDC 0.067*** 0.060**
PEPPW 0.088*** -0.003
PGEPW 0.050** 0.032
REESQ 0.084*** -0.019
RUIFP 0.060** 0.015
SCATCNO 0.01 -0.050**
SRGIM 0.070*** 0.040*
SSELN 0.063*** 0.151***
TPEPW 0.049* 0.075***
TRNIM 0.022 -0.029
UN01GY 0.105*** 0.012
VERAV 0.068*** 0.066***
VLTSAFP 0.0775*** 0.0985***
Summary: Clean Energy 0.053*** 0.061***
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Table 4.5 presents the correlation results for Traditional Energy firms. We find that

27 of the 50 companies display a significant positive correlation between stock returns

and NSI. Notable exceptions to this include GazTransport et Technigaz (GTTFP) and

Lundin Energy (LUNESS), which exhibit a negative correlation between NSI and stock

returns throughout the sample period. This is likely due to the nature of GazTransport

et Technigaz’s primary business, offering cargo containment systems for Liquified Natural

Gas (LNG) carriers, and the pending merger between Aker (AKRBPNO) and Lundin

Energy (LUNESS), to form Orron Energy AB (ORRONSS) 10. We also find that 21 firms’

stock trading volumes are positively correlated with NSI, and 7 firms show a negative cor-

relation. These 7 firms are Aker Solutions (AKSONO), British Petroleum (BPLN), CGG

SA (CGGFP), Hafnia Ltd (HAFNINO), Shell PLC (SHELLNA), TGS ASA (TGSNO)

and John Wood Group (WGLN). Based on a panel of all 50 Traditional Energy firms,

the result shows that stock returns or trading volumes are significantly positive correlated

to NSI with respective correlation values of 0.049 and 0.025. Taken in unison, it can be

concluded that NSI has a more consistent relationship with returns than daily trading

volume throughout the sample, which corroborates Li et al. 2014’s finding of a positive

relationship between News sentiment and asset returns.

When comparing the results of Table 4.4 (Clean Energy) and Table 4.5 (Traditional

Energy), it is apparent that, on average, NSI is positively correlated with stock price

returns within the sample period, which is consistent with investor sentiment theory (Qiu

and Welch 2004). Moreover, the relationship between NSI and daily trading volumes,

whilst less consistent at the firm level, is significantly positive, supporting the earlier

findings of Joseph et al. 2011; Ryu et al. 2017.

10Merger between Aker BP and Lundin Energy’s E&P business completed

https://akerbp.com/en/borsmelding/merger-between-aker-bp-and-lundin-energys-ep-business-completed-2/
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Table 4.5. Correlation: Traditional Energy

This table reports the Pearson correlation coefficient for News sentiments index with
returns and trading volumes for 50 Traditional Energy firms for the sample period of 1st
January 2015 to 1st April 2022. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%,
5%, and 10% levels, respectively.

NSI

Ticker LogReturn LogVolume

AKASTNO 0.050** 0.040*
AKRBPNO 0.021 0.015
AKSONO 0.056** -0.078***
BORRNO 0.03 -0.016
BPLN 0.002 -0.044*
BWLPGNO 0.074*** 0.113***
BWONO 0.095*** 0.129***
CGGFP 0.028 -0.103***
CNELN 0.004 -0.002
DECLN 0.080*** 0.022
DNONO -0.037 0.129***
DRLCODC 0.027 -0.036
ENIIM -0.006 0.02
ENOGLN 0.018 0.012
ENQSS 0.032 0.062***
EQNRNO 0.045* 0.111***
EURNBB 0.025 -0.025
FRONO 0.037 -0.004
GALPPL 0.068*** 0.154***
GTTFP -0.085** 0.122***
HAFNINO 0.014 -0.059**
HBRLN 0.025 0.133***
IPCOSS 0.092*** 0.041*
LTSPW 0.073*** 0.139***
LUNESS -0.104*** 0.039*
MGNNO -0.004 -0.023
NESTEFH 0.069*** 0.120***
ODLNO 0.034 0.021
OMVAV 0.023 0.101***
PENNO 0.098*** 0.023
PGNPW 0.125*** 0.026
PGSNO 0.055** 0.028
PKNPW 0.061*** 0.012
REPSQ 0.134*** 0.091***
SBMONA 0.102*** 0.032
SBOAV 0.090*** 0.031
SHELLNA 0.146*** -0.096***
SPMIM 0.057** 0.093***
SRSIM 0.029 -0.002
SUBCNO 0.167*** 0.039

Continued on next page
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Table 4.5 - continued from previous page

NSI

Ticker LogReturn LogVolume

TEFP 0.080*** -0.014
TENIM 0.026 0.005
TGSNO 0.016 -0.086***
TLWLN 0.153*** 0.044*
TRMDADC -0.003 0.051**
TTEFP 0.147*** 0.079***
VBKGY 0.055** 0.026
VKFP 0.078*** 0.099***
VPKNA 0.112*** 0.061***
WGLN 0.038* -0.052**
Summary: Traditional Energy 0.049*** 0.025***

4.4.3. Spillover Effects

To compute the value of the spillover parameter for each firm, we first estimate the

generalised VAR model (Eq.(4.1)) using the endogenous variables, LogReturn, LogVolume,

and NSI. The lag order in the VAR model is determined by the Bayesian information

criterion (BIC) (Reboredo and Ugolini 2018). Then, we use the information provided by

the estimation and calculate the directional connectedness for a horizon of 10 days (θ̃10i←j)

following Eq.(4.4).

Table 4.6 reports the spillover parameters for the 35 Clean Energy firms. Columns

(1)–(3) show the spillover effect between stock returns and NSI. Specifically, Column (1)

shows the spillover effect from NSI to stock returns (θ̃LogReturn←NSI) and Column (2)

is the spillover effect to NSI from stock returns (θ̃NSI←LogReturn). Column (3) is the

net effect of spillover, which is measured as the difference between θ̃LogReturn←NSI and

θ̃NSI←LogReturn. The firm with highest spillover from NSI to stock returns is DRXLN

(θ̃LogReturn←NSI = 7.55%), while its spillover from stock returns to NSI (θ̃NSI←LogReturn)

is only 1.53%. This evidence implies that DRXLN’s News sentiment has a large impact on

stock returns, while the information embedded within stock returns is not fully reflected

in News sentiment, precipitating an asymmetric influence of News sentiment on DRXLN’s

stock price. Notably, ELIBB (θ̃LogReturn←NSI = 5.77%) and EDFFP (θ̃LogReturn←NSI =

5.37%) have the second and third largest spillover from NSI to stock returns, and the
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reverse spillovers (θ̃NSI←LogReturn) are comparable with respective values of 5.2% and

5.33%. This finding indicates that News sentiment impacts stock returns and in return,

stock returns feed back to News sentiment. In addition, we notice that ENELIM has

the lowest spillovers from and to stock returns (θ̃LogReturn←NSI = 0.68%, θ̃NSI←LogReturn

= 0.85%). In general, for stock returns of Clean Energy firms, the empirical evidence

indicates that on average, the spillover from NSI to stock returns is 2.81%. In return,

the spillover from stock returns to NSI is 2.31%, leading to a net spillover value of 0.5%

from NSI to stock returns.

Columns (4)–(6) present the spillover effect between daily trading volumes and NSI.

Similarly, Column (4) reports the spillover effect fromNSI to trading volumes (θ̃LogV olume←NSI),

Column (5) shows the reverse spillover from trading volumes to NSI (θ̃NSI←LogV olume), and

Column (6) is the difference between θ̃LogV olume←NSI and θ̃NSI←LogV olume. The firms with

the top 3 highest spillovers from NSI to trading volumes are RUIFP (4.06%), UN01GY

(3.39%), and EDFFP (3.37%). Their pairwise reverse spillovers from trading volumes to

NSI are RUIFP (3.37%), UN01GY (1%), and EDFFP (3.53%). Firm ELESQ has the

lowest spillovers from and to trading volumes (θ̃LogV olume←NSI = 0.7%, θ̃NSI←LogV olume =

0.64%). On average, for daily trading volumes of Clean Energy firms, the results show

that spillovers from and to NSI are 1.86% and 1.73% respectively, leading to a net spillover

from NSI to trading volumes of 0.13%.

So far, our empirical evidence on European Clean Energy firms is consistent with

Reboredo and Ugolini 2018’s finding from a sample of 17 U.S. Clean Energy firms that:

1) News sentiment has a relatively small impact on stock returns and trading volumes, 2)

stock returns and trading volumes also have a limited impact on News sentiment, and 3)

spillovers are asymmetric. However, in our sample of 35 European Clean Energy firms,

we highlight that sentiment has stronger impact on stock returns rather than trading

volumes.
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Table 4.6. Spillover Effects: Clean Energy

This table reports spillover effects calculated from Eq. (4.4) between the News senti-
ment index (NSI ), returns (LogReturn) and trading volumes (LogVolume) for 35 Clean
Energy firms. The number of lags for the VAR model is selected using the Bayesian in-
formation criterion. θ̃LogReturn←NSI refers to the spillover effect from NSI to stock returns

and θ̃LogV olume←NSI is to the spillover effect from NSI to trading volumes. Conversely,

θ̃NSI←LogReturn refers to the spillover effect from stock returns to NSI, and θ̃NSI←LogV olume

is the spillover effect from trading volumes to NSI. The values of spillover effects, ranging
from 0% to 100% are presented in Columns (1)–(6).

Returns Trading volumes

θ̃LogReturn←NSI θ̃NSI←LogReturn Net θ̃LogV olume←NSI θ̃NSI←LogV olume Net
Ticker Lag (1) (2) (3) (4) (5) (6)

ABIOFP 4 4.06 3.18 0.88 2.77 2.45 0.32
ANASQ 5 4.44 4.10 0.34 3.19 1.63 1.56
BKWSE 6 4.49 4.17 0.32 2.84 3.20 -0.36
DRXLN 2 7.55 1.53 6.02 1.18 0.83 0.35
EBKGY 4 2.11 1.69 0.42 1.13 1.20 -0.07
ECVGY 6 2.36 1.87 0.49 2.02 1.84 0.18
EDFFP 3 5.37 5.33 0.04 3.37 3.53 -0.16
EDPPL 5 1.69 1.71 -0.02 0.93 0.77 0.16
EDPRPL 2 1.98 1.70 0.28 2.21 1.89 0.32
ELESQ 2 2.90 1.42 1.48 0.70 0.64 0.06
ELIBB 5 5.77 5.20 0.57 1.33 2.02 -0.69
ENAPW 3 3.04 2.57 0.47 2.20 2.82 -0.62
ENELIM 4 0.68 0.85 -0.17 2.10 2.49 -0.39
ENGPW 5 3.24 2.51 0.73 1.60 1.95 -0.35
ENGSQ 6 2.03 2.07 -0.04 1.75 0.88 0.87
ERGIM 5 2.80 2.53 0.27 2.94 2.97 -0.03
EVNAV 4 1.11 0.99 0.12 1.22 1.09 0.13
FORTUMFH 5 1.82 0.91 0.91 1.93 1.39 0.54
IBESQ 6 2.10 1.56 0.54 1.02 0.85 0.17
IGIM 3 2.04 2.94 -0.90 1.82 2.39 -0.57
NEOENFP 6 1.02 1.03 -0.01 0.80 0.99 -0.19
NTGYSQ 6 2.85 2.40 0.45 0.86 0.79 0.07
ORSTEDDC 3 2.23 1.78 0.45 1.74 1.39 0.35
PEPPW 2 3.98 2.17 1.81 1.57 1.39 0.18
PGEPW 3 2.85 2.94 -0.09 1.41 1.31 0.10
REESQ 6 1.40 1.80 -0.40 0.82 0.62 0.20
RUIFP 4 3.16 3.02 0.14 4.06 3.37 0.69
SCATCNO 6 3.00 3.01 -0.01 2.75 3.67 -0.92
SRGIM 4 1.76 1.14 0.62 1.46 0.97 0.49
SSELN 4 2.94 0.62 2.32 1.35 1.00 0.35
TPEPW 4 3.02 2.58 0.44 1.70 1.68 0.02
TRNIM 5 1.09 1.20 -0.11 1.24 0.98 0.26
UN01GY 4 2.16 1.66 0.50 3.39 1.00 2.39
VERAV 5 1.70 1.91 -0.21 1.23 1.23 0.00
VLTSAFP 4 3.50 4.63 -1.13 2.50 3.23 -0.73

Continued on next page
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Table 4.6 - continued from previous page

Returns Trading volumes

θ̃LogReturn←NSI θ̃NSI←LogReturn Net θ̃LogV olume←NSI θ̃NSI←LogV olume Net
Ticker Lag (1) (2) (3) (4) (5) (6)

Clean Energy 2.81 2.31 0.50 1.86 1.73 0.13

In light of Reboredo and Ugolini 2018’s findings, we extend their study to provide a

comparative analysis between Clean Energy companies, and Traditional Energy compa-

nies in Europe. Table 4.7 displays the results. When considering stock returns, the firms

with the top 3 largest spillovers from and to NSI are BPLN (5.75% and 0.75%), VBKGY

(5.06% and 2.97%), and VKFP (4.57% and 1.98%). On average, the result shows that

spillovers from and to NSI are 2.71% and 1.65% respectively, leading to a net spillover

from NSI to stock returns of 1.06% for Traditional Energy firms. In terms of trading vol-

umes, the firms with the top 3 largest spillovers from and to NSI are GTTFP (4.84% and

4.94%), LUNESS (3.9% and 1.82%), and VKFP (3.63% and 3.8%). Interestingly, owing

to Vallourec SA’s (VKFP) well documented sales contraction in 2018 Q3 11, correspond-

ing 24% fall in share price, and subsequent debt restructuring, VKFP’s stock returns

and trading volumes are strongly influenced by News sentiment within our sample pe-

riod. Moreover, ENOGLN has the lowest spillovers for both stock returns (θ̃LogReturn←NSI

= 0.5% and θ̃NSI←LogReturn = 0.62%) and trading volumes (θ̃LogV olume←NSI = 0.6% and

θ̃NSI←LogV olume = 0.4%). Overall, for trading volumes of Traditional Energy firms, the

evidence shows that spillovers from and to NSI are 1.95% and 1.62% respectively, leading

to a net spillover from NSI to trading volumes of 0.33%.

11Vallourec SA Financial Results

https://www.vallourec.com/en/investors/financial-results
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Table 4.7. Spillover Effects: Traditional Energy

This table reports spillover effects calculated from Eq. (4.4) between the News sentiment
index (NSI ), returns (LogReturn) and trading volumes (LogVolume) for 50 Traditional
Energy firms. The number of lags for the VAR model is selected using the Bayesian
information criterion. θ̃LogReturn←NSI refers to the spillover effect from NSI to stock returns

and θ̃LogV olume←NSI is to the spillover effect from NSI to trading volumes. Conversely,

θ̃NSI←LogReturn refers to the spillover effect from stock returns to NSI, and θ̃NSI←LogV olume

is the spillover effect from trading volumes to NSI. The values of spillover effects, ranging
from 0% to 100% are presented in Conlumns (1)–(6).

Returns Trading volumes

θ̃LogReturn←NSI θ̃NSI←LogReturn Net θ̃LogV olume←NSI θ̃NSI←LogV olume Net
Ticker Lag (1) (2) (3) (4) (5) (6)

AKASTNO 6 2.19 1.82 0.37 1.25 1.27 -0.02
AKRBPNO 5 2.23 1.64 0.59 1.30 1.12 0.18
AKSONO 2 1.25 0.99 0.26 1.13 1.96 -0.83
BORRNO 2 1.06 1.10 -0.04 2.09 1.28 0.81
BPLN 2 5.75 0.75 5.00 1.95 1.66 0.29
BWLPGNO 4 3.41 2.11 1.30 3.44 3.14 0.30
BWONO 6 3.25 2.64 0.61 3.24 2.52 0.72
CGGFP 4 2.63 1.22 1.41 2.20 1.82 0.38
CNELN 2 1.75 0.80 0.95 1.36 1.14 0.22
DECLN 4 1.15 0.70 0.45 1.48 0.45 1.03
DNONO 3 2.10 1.82 0.28 1.95 1.69 0.26
DRLCODC 6 2.11 1.15 0.96 1.96 2.11 -0.15
ENIIM 3 2.06 1.05 1.01 1.53 1.21 0.32
ENOGLN 4 0.50 0.62 -0.12 0.60 0.40 0.20
ENQSS 3 2.44 1.18 1.26 1.45 0.86 0.59
EQNRNO 6 1.04 0.71 0.33 2.39 1.37 1.02
EURNBB 4 1.54 1.46 0.08 1.46 1.32 0.14
FRONO 3 4.86 2.56 2.30 2.39 1.32 1.07
GALPPL 5 1.03 0.63 0.40 0.80 1.33 -0.53
GTTFP 2 4.59 4.04 0.55 4.84 4.94 -0.10
HAFNINO 6 0.81 1.32 -0.51 1.00 0.87 0.13
HBRLN 2 3.36 1.00 2.36 2.21 1.21 1.00
IPCOSS 5 2.55 0.60 1.95 1.12 0.76 0.36
LTSPW 6 3.65 1.65 2.00 1.87 1.03 0.84
LUNESS 2 2.92 1.54 1.38 3.90 1.82 2.08
MGNNO 5 4.53 4.52 0.01 2.39 2.02 0.37
NESTEFH 3 4.23 3.32 0.91 1.54 0.91 0.63
ODLNO 4 3.66 2.45 1.21 1.85 2.44 -0.59
OMVAV 6 1.03 0.83 0.20 0.90 0.89 0.01
PENNO 4 2.25 1.53 0.72 2.17 2.16 0.01
PGNPW 5 1.44 1.68 -0.24 0.99 0.77 0.22
PGSNO 6 3.56 2.94 0.62 1.58 1.28 0.30
PKNPW 2 1.91 0.73 1.18 1.56 1.41 0.15
REPSQ 5 1.57 1.15 0.42 1.12 0.94 0.18
SBMONA 3 3.06 2.43 0.63 2.36 1.57 0.79

Continued on next page
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Table 4.7 - continued from previous page

Returns Trading volumes

θ̃LogReturn←NSI θ̃NSI←LogReturn Net θ̃LogV olume←NSI θ̃NSI←LogV olume Net
Ticker Lag (1) (2) (3) (4) (5) (6)

SBOAV 3 2.90 2.40 0.50 1.07 1.24 -0.17
SHELLNA 6 3.77 0.58 3.19 2.49 1.35 1.14
SPMIM 2 3.46 2.21 1.25 1.55 1.26 0.29
SRSIM 5 3.17 2.47 0.70 1.79 2.26 -0.47
SUBCNO 5 2.55 1.47 1.08 3.58 1.98 1.60
TEFP 6 1.60 1.12 0.48 0.77 2.21 -1.44
TENIM 3 3.61 1.38 2.23 1.18 0.83 0.35
TGSNO 6 1.00 0.73 0.27 3.42 2.88 0.54
TLWLN 4 4.17 0.60 3.57 2.00 0.67 1.33
TRMDADC 3 3.05 3.84 -0.79 3.02 3.39 -0.37
TTEFP 6 1.30 0.41 0.89 1.85 1.12 0.73
VBKGY 3 5.06 2.97 2.09 2.22 2.28 -0.06
VKFP 6 4.57 1.98 2.59 3.63 3.80 -0.17
VPKNA 5 4.19 2.74 1.45 2.49 1.82 0.67
WGLN 4 3.45 0.97 2.48 1.12 0.75 0.37
Traditional Energy 2.71 1.65 1.06 1.95 1.62 0.33

Taken together, comparing the spillovers in Table 4.6 and Table 4.7, our findings indi-

cate that for both Clean Energy and Traditional Energy firms: 1) News sentiment affects

stock returns and trading volumes, 2) spillovers from News sentiment to stock returns

and trading volumes are greater than the spillovers in the opposite direction, 3) spillovers

from News sentiment to stock returns are relatively greater than to trading volumes,

and 4) spillovers are asymmetric and moderate. These findings are consistent with in-

vestor sentiment literature (Tetlock 2007; Baker and Wurgler 2007), indicating that News

sentiment, as characterised by Bloomberg News articles, asymmetrically impacts stock

returns. Notably, our findings are consistent with Reboredo and Ugolini 2018, indicating

that News sentiment plays a similar role in price formation of European Clean Energy and

U.S. Clean Energy stocks. More importantly, considering the body of literature detailing

the sector specific impact of News sentiment on stock price (Uygur and Taş 2014; Khan

et al. 2020; Niu et al. 2021), we find that News sentiment has a comparable impact on

the price formation and trading of Clean Energy and Traditional Energy stocks.
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Table 4.8. Comparative Analysis: Clean v.s. Traditional Energy

This table presents the t-statistics of a comparative analysis: whether the spillover effects
between Clean Energy companies and Traditional Energy companies are significantly
different. The sample for this test includes 35 Clean Energy companies and 50 Traditional
Energy companies. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

Clean Energy Traditional Energy T-test
Variables Mean of 35 Obs. Mean of 50 Obs. Diff. (p-value)

θ̃LogReturn←NSI 2.81 2.71 0.10 0.738

θ̃NSI←LogReturn 2.31 1.65 0.66 0.996

θ̃LogV olume←NSI 1.86 1.95 -0.09 0.648

θ̃NSI←LogV olume 1.73 1.62 0.11 0.580

Table B.4 presents the results of t-tests on the spillovers between NSI, LogReturn and

LogVolume. Our findings indicate that the t-tests are statistically insignificant when com-

paring the impact of NSI on LogReturn and LogVolume, suggesting that News Sentiment

has a similar impact on the price formation of Clean Energy companies and Traditional

Energy companies. Similarly, the impact of LogReturn and LogVolume on NSI is statisti-

cally insignificant. Taken in unison, the findings presented in Table B.4 shows that Clean

Energy companies and Traditional Energy companies exhibit similar dynamics in their

respective relationships with NSI. Notably, this finding augments the body of literature

outlining the sector specific impact of sentiment on price formation (Uygur and Taş 2014;

Khan et al. 2020; Niu et al. 2021), as we are the first to show that Traditional Energy

companies and Renewable Energy companies share similar dynamics with respect to News

Sentiment.

4.4.4. Contemporaneous Effects

The results presented in the prior section display that News sentiment holds a signif-

icant information component, which can impact stock returns and trading volumes. To

further examine whether the small magnitude of spillover effects can be explained the Ef-

ficient Market Hypothesis (Fama 1960), whereby an efficient market rapidly incorporates

all public information, including the impact News sentiment, into the stock prices, we
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follow Reboredo and Ugolini 2018 and assume that the News sentiment index (NSI ) is an

exogenous variable. For each firm k, we estimate the following specification:

yk,t = α + λyk,t−i + βNSIk,t +Ψxk,t + εk,t (4.6)

where yk,t is the dependent variable (LogReturn or LogVolume), NSIk,t is the daily

News Sentiment Index, and xk,t are the exogenous variables including SX5E, V2X, and

TTFGDAHD.

Table B.5 presents the results of the linear regression of stock returns on NSI and

control variables for 35 Clean Energy companies. The empirical evidence shows that

News sentiment has significant positive contemporaneous effects on stock returns for 21

of 35 Clean Energy firms. Using all 35 Clean Energy firms’ data, the coefficient of NSI is

statistically significant at the 1% level with a positive value of 0.007.

Table 4.10 also suggests that NSI has a significant positive contemporaneous effect

on stock returns for 25 of 50 traditional energy firms with exceptions of firms BPLN and

IPCOSS. The results of the panel regression show that the size of the impact of NSI on

Traditional Energy firms’ stock return are the same as that of Clean Energy firms. These

results affirm the positive correlations shown in Table 4.5 and are also consistent with

the finding in Table 4.7 that spillovers from NSI to stock returns of Clean Energy firms

(2.81%) is comparable to that of Traditional Energy firms (2.71%).
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Table 4.9. Linear Regression of Stock Returns on NSI: Clean Energy

This table reports the results of linear regression of stock returns on NSI for each of the
35 Clean Energy firms over the sample period of 1st January 2015 to 1st April 2022.
The dependent variable is LogReturnt, the variable of interest is NSI t, and the control
variables are LogReturnt−1, SX5E t, V2X t, and TTFGDAHD t. t-statistics are presented
in the parentheses. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

LogReturn t

Ticker NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

ABIOFP 0.013 -0.019 -0.045 0.002 0.002 0.000
[0.91] [-0.49] [-0.96] [0.22] [0.28] [0.74]

ANASQ 0.015*** -0.039 0.022 0.010 0.015** 0.000
[2.65] [-0.58] [0.40] [1.16] [2.22] [0.40]

BKWSE 0.028** -0.064* 0.054 0.005 0.003 0.000
[2.30] [-1.75] [1.40] [0.84] [0.51] [1.47]

DRXLN 0.003 0.017 0.023 0.005 0.005 0.000
[0.60] [0.36] [0.38] [0.53] [0.32] [0.38]

EBKGY 0.003 -0.070 -0.041 -0.010 -0.014 0.001
[0.54] [-1.47] [-0.80] [-1.07] [-1.54] [1.00]

ECVGY 0.018*** -0.078** 0.028 0.003 0.017* 0.000
[2.83] [-2.18] [0.44] [0.28] [1.85] [0.58]

EDFFP 0.014* 0.015 -0.080 -0.009 -0.007 0.000
[1.79] [0.44] [-1.15] [-0.71] [-0.71] [0.21]

EDPPL 0.002 0.017 -0.069 -0.007 -0.009 0.000
[1.08] [0.44] [-1.24] [-0.79] [-1.14] [0.51]

EDPRPL 0.003 0.030 0.005 -0.007 -0.003 0.001
[1.50] [0.89] [0.05] [-0.62] [-0.47] [1.39]

ELESQ 0.007*** 0.047 0.027 0.005 0.005 0.000
[2.97] [1.34] [0.65] [0.75] [0.99] [0.13]

ELIBB 0.021*** -0.012 0.025 0.004 0.006 0.001**
[3.26] [-0.24] [0.59] [0.62] [0.61] [2.14]

ENAPW 0.015*** 0.036 0.063 0.001 0.003 -0.001
[3.69] [1.17] [0.90] [0.09] [0.26] [-1.45]

ENELIM 0.001 -0.081* -0.012 0.006 -0.003 0.001
[0.55] [-1.70] [-0.22] [0.69] [-0.42] [1.42]

ENGPW 0.010*** 0.005 -0.040 -0.002 -0.008 -0.001
[2.73] [0.17] [-0.71] [-0.21] [-0.77] [-1.45]

ENGSQ 0.004** -0.011 0.014 0.007 -0.007 -0.000
[1.99] [-0.19] [0.34] [0.94] [-1.01] [-0.72]

ERGIM 0.012 -0.061 0.134*** 0.024*** -0.005 0.001**
[1.03] [-0.83] [2.70] [2.84] [-0.65] [2.16]

EVNAV 0.004 -0.047 0.292*** 0.018 -0.005 0.001*
[0.72] [-1.15] [2.87] [1.61] [-0.58] [1.75]

FORTUMFH 0.006** 0.042 -0.086 -0.006 0.004 -0.000
[2.44] [1.13] [-1.61] [-0.59] [0.51] [-0.57]

IBESQ 0.001 -0.061 0.005 -0.004 0.004 0.000

Continued on next page
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Table 4.9 - continued from previous page

LogReturn t

Ticker NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

[0.64] [-1.42] [0.14] [-0.66] [0.75] [0.92]
IGIM -0.005 -0.051 0.110** 0.013* -0.011 0.000

[-1.00] [-0.93] [2.32] [1.67] [-1.48] [1.10]
NEOENFP -0.003 0.044 0.030 0.022 0.009 0.001

[-0.35] [0.83] [0.38] [1.23] [0.76] [1.17]
NTGYSQ 0.005** -0.024 0.009 -0.008 0.027 -0.000

[2.15] [-0.46] [0.14] [-0.67] [0.81] [-0.58]
ORSTEDDC 0.017** -0.008** -0.285 -0.005 0.006 -0.003

[2.42] [-2.57] [-0.87] [-0.34] [0.31] [-0.79]
PEPPW 0.023** 0.013 -0.156* -0.018 0.005 0.000

[2.53] [0.22] [-1.86] [-1.34] [0.63] [0.41]
PGEPW 0.010* 0.046 -0.027 0.004 -0.008 -0.001

[1.74] [1.24] [-0.33] [0.35] [-1.03] [-1.53]
REESQ 0.003** -0.012 -0.028 -0.007 0.000 -0.000

[2.04] [-0.24] [-0.71] [-1.02] [0.02] [-0.32]
RUIFP 0.016*** -0.025 0.027 0.001 0.003 -0.001

[3.06] [-0.58] [0.48] [0.06] [0.50] [-1.16]
SCATCNO 0.029** -0.009 0.023 0.014 -0.004 0.000

[2.25] [-0.28] [0.29] [1.20] [-0.35] [0.60]
SRGIM 0.005** -0.139** -0.017 -0.000 0.015** 0.000

[2.11] [-2.44] [-0.44] [-0.03] [2.29] [0.46]
SSELN 0.003 -0.051 0.068 -0.001 0.000 0.000

[1.55] [-0.86] [1.33] [-0.08] [0.04] [0.39]
TPEPW 0.018*** 0.072* 0.130 0.007 -0.003 -0.001

[4.37] [1.96] [1.50] [0.54] [-0.23] [-0.89]
TRNIM -0.001 -0.129*** -0.047 -0.017** 0.003 0.001**

[-0.32] [-3.16] [-1.29] [-2.34] [0.64] [2.07]
UN01GY 0.016*** 0.153** -0.037 0.001 -0.015** 0.000

[3.81] [2.04] [-0.37] [0.09] [-2.46] [0.56]
VERAV 0.006 0.008 0.041 0.006 0.002 0.001**

[1.40] [0.19] [0.63] [0.57] [0.27] [1.96]
VLTSAFP 0.020** 0.042 0.053 0.019* -0.012 0.000

[2.11] [0.97] [0.92] [1.92] [-1.17] [0.03]
Clean Energy 0.007*** -0.004 0.005 0.002 0.001 0.000

[11.18] [-0.70] [0.41] [1.07] [0.53] [0.65]
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Table 4.10. Linear Regression of Stock Returns on NSI: Traditional Energy

This table reports the results of linear regression of stock returns on NSI for each of the
50 Traditional Energy firms over the sample period of 1st January 2015 to 1st April 2022.
The dependent variable is LogReturnt, the variable of interest is NSI t, and the control
variables are LogReturnt−1, SX5E t, V2X t, and TTFGDAHD t. t-statistics are presented
in the parentheses. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

LogReturn t

Ticker NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

AKASTNO 0.011 -0.022 0.692*** 0.004 0.032*** -0.000
[1.21] [-0.71] [5.06] [0.20] [2.65] [-0.16]

AKRBPNO 0.005 0.027 0.535*** -0.061*** 0.056** 0.001
[0.85] [0.84] [3.85] [-3.52] [2.46] [1.45]

AKSONO 0.008* 0.001 0.721*** -0.034 0.052*** 0.000
[1.88] [0.02] [4.83] [-1.62] [2.82] [0.15]

BORRNO 0.012 0.063 1.325*** 0.023 0.069** -0.002
[0.95] [1.02] [2.96] [0.45] [1.96] [-0.97]

BPLN -0.003* 0.057* 0.861*** -0.008 0.023** -0.000
[-1.91] [1.67] [6.45] [-0.51] [2.23] [-0.99]

BWLPGNO 0.016** 0.020 0.513*** -0.027 0.025 -0.000
[2.14] [0.65] [4.73] [-1.62] [1.64] [-0.23]

BWONO 0.018* 0.087** 0.742*** -0.056** 0.050** -0.001
[1.77] [2.02] [4.30] [-2.40] [2.32] [-0.59]

CGGFP 0.011* 0.045 0.910*** -0.050* 0.024 -0.003***
[1.78] [1.20] [5.39] [-1.86] [1.50] [-2.60]

CNELN 0.001 0.065 0.819*** -0.019 0.022* 0.000
[0.12] [1.28] [4.41] [-0.92] [1.68] [0.34]

DECLN 0.008 -0.018 0.488*** -0.001 0.000 -0.000
[1.19] [-0.47] [3.40] [-0.08] [0.05] [-0.60]

DNONO 0.009* 0.025 0.614*** -0.066*** 0.068*** -0.000
[1.91] [0.63] [3.69] [-2.95] [2.99] [-0.54]

DRLCODC -0.004 0.067* 0.606*** -0.049* 0.053** -0.001
[-0.32] [1.77] [2.82] [-1.69] [2.13] [-0.85]

ENIIM 0.003* -0.024 1.063*** 0.006 0.022** 0.000
[1.85] [-0.96] [11.56] [0.59] [2.05] [0.08]

ENOGLN -0.009 0.024 1.357*** 0.061* 0.061*** 0.002*
[-1.16] [0.34] [4.84] [1.81] [2.96] [1.68]

ENQSS 0.005 0.057* 0.937*** -0.034 0.079*** -0.001
[0.92] [1.91] [4.44] [-1.32] [2.63] [-0.76]

EQNRNO 0.001 -0.017 0.498*** -0.027** 0.059*** 0.000
[0.41] [-0.52] [5.61] [-2.25] [3.47] [0.54]

EURNBB 0.006* 0.008 0.237** -0.073*** 0.007 -0.001
[1.73] [0.30] [2.33] [-5.93] [0.48] [-1.18]

FRONO 0.018*** -0.045 0.287* -0.065*** 0.026 -0.001
[3.63] [-1.16] [1.86] [-2.97] [1.55] [-1.46]

GALPPL 0.003 0.072** 0.673*** -0.027** 0.020 -0.000

Continued on next page
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Table 4.10 - continued from previous page

LogReturn t

Ticker NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

[1.40] [2.56] [7.62] [-2.49] [1.30] [-0.19]
GTTFP 0.008 0.006 0.508*** -0.024** 0.011 -0.000

[0.36] [0.17] [6.41] [-2.12] [1.34] [-0.32]
HAFNINO -0.011 -0.033 0.356** -0.041 0.018 0.000

[-0.88] [-0.57] [2.11] [-1.42] [0.96] [0.31]
HBRLN -0.003 0.030 1.541*** -0.013 0.066** -0.001

[-0.57] [0.71] [3.58] [-0.29] [2.47] [-1.18]
IPCOSS -0.016** 0.019 1.148*** -0.011 0.061** 0.001

[-2.18] [0.61] [4.15] [-0.40] [2.16] [0.69]
LTSPW 0.011*** 0.023 0.384*** -0.044*** 0.008 -0.000

[3.35] [0.67] [4.07] [-3.04] [0.59] [-0.39]
LUNESS 0.010** -0.046* 0.717*** -0.024 0.064*** -0.000

[2.46] [-1.65] [5.30] [-1.61] [3.18] [-0.42]
MGNNO -0.070 -0.074 0.047 -0.064** 0.007 0.000

[-0.93] [-1.39] [0.31] [-2.54] [0.46] [0.35]
NESTEFH 0.019*** -0.016 0.636*** -0.024* 0.010 0.000

[4.16] [-0.36] [7.16] [-1.80] [0.88] [0.73]
ODLNO 0.011 -0.011 0.525*** -0.052*** 0.037*** 0.001

[0.96] [-0.33] [3.73] [-2.88] [2.64] [0.72]
OMVAV 0.002 0.042 0.982*** -0.006 0.014 0.000

[0.66] [0.80] [7.71] [-0.38] [1.61] [0.80]
PENNO 0.055* 0.013 0.742*** -0.055** 0.061*** 0.000

[1.90] [0.44] [4.34] [-2.13] [3.55] [0.26]
PGNPW 0.009** -0.021 0.228** -0.045*** 0.027* -0.000

[2.16] [-0.67] [2.27] [-3.33] [1.74] [-0.67]
PGSNO 0.041*** -0.018 0.801*** -0.057** 0.076*** -0.002

[4.13] [-0.41] [4.71] [-2.15] [2.86] [-1.43]
PKNPW 0.008** -0.003 0.378*** -0.044*** 0.007 -0.001

[2.15] [-0.09] [4.69] [-3.45] [0.53] [-1.55]
REPSQ 0.006** 0.041 0.974*** -0.009 0.032*** -0.000

[2.36] [1.15] [10.77] [-0.84] [2.86] [-0.91]
SBMONA 0.008* -0.014 0.693*** -0.022** 0.017*** -0.000

[1.84] [-0.56] [8.27] [-2.12] [2.68] [-0.23]
SBOAV 0.024*** 0.082** 0.545*** -0.055*** 0.028** -0.001

[3.02] [2.33] [3.59] [-3.01] [2.46] [-0.98]
SHELLNA -0.000 0.034 0.986*** -0.001 0.032*** -0.000

[-0.14] [1.01] [8.15] [-0.09] [2.82] [-1.04]
SPMIM 0.012*** -0.002 0.763*** -0.040*** 0.035*** -0.002***

[3.39] [-0.06] [7.79] [-3.08] [2.74] [-3.52]
SRSIM 0.014 0.072*** 0.586*** -0.026* 0.006 -0.001

[1.44] [2.60] [6.76] [-1.95] [0.55] [-1.51]
SUBCNO 0.005* -0.059** 0.691*** -0.037** 0.035*** -0.001

[1.71] [-1.99] [4.87] [-2.17] [2.62] [-0.81]
TEFP 0.029** 0.067 0.692* -0.008 -0.035 -0.001

[2.04] [0.66] [1.92] [-0.19] [-1.14] [-0.41]

Continued on next page
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Table 4.10 - continued from previous page

LogReturn t

Ticker NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

TENIM 0.005*** -0.016 0.736*** -0.047*** 0.038*** -0.001
[2.82] [-0.68] [7.07] [-3.64] [2.58] [-1.05]

TGSNO 0.010** -0.046 0.474*** -0.045*** 0.042*** -0.001
[2.17] [-1.53] [4.03] [-2.83] [3.15] [-1.45]

TLWLN 0.002 0.007 1.180*** -0.036 0.075*** -0.000
[0.38] [0.14] [3.86] [-1.00] [2.67] [-0.20]

TRMDADC 0.007 -0.003 0.159 -0.066*** 0.015 -0.001
[0.59] [-0.09] [1.35] [-4.08] [1.21] [-1.06]

TTEFP -0.001 0.041 1.045*** 0.009 0.019** 0.000
[-0.60] [1.39] [13.04] [0.92] [2.17] [0.23]

VBKGY 0.042** -0.022 0.636*** -0.066*** 0.011 0.001
[2.16] [-0.66] [4.92] [-3.63] [0.71] [1.06]

VKFP 0.007 0.070** 0.765*** -0.066*** 0.018 -0.002**
[0.84] [2.17] [5.08] [-2.84] [0.77] [-2.22]

VPKNA 0.010* 0.023 0.329*** -0.036*** -0.009 -0.000
[1.88] [0.64] [4.14] [-3.08] [-1.35] [-0.77]

WGLN 0.000 0.054 0.914*** -0.006 0.027** -0.001
[0.12] [1.46] [5.93] [-0.33] [2.17] [-1.63]

Traditional Energy 0.007*** 0.018** 0.698*** -0.033*** 0.032*** -0.000***
[9.03] [2.29] [28.02] [-10.66] [13.82] [-3.97]

Table 4.11 and Table 4.12 show the results of regression of trading volumes on NSI

for 35 Clean Energy companies and 50 Traditional Energy companies, respectively. The

result displays a positive effect of NSI on trading volumes for 11 Clean Energy firms,

and for 13 Traditional Energy firms. Notably, there exists a negative association between

NSI and trading volumes among firms BORRMO, ENIIM, EQNRNO, and SUBCNO.

Furthermore, the coefficients of the panel regression for both Clean Energy firms (0.01) and

Traditional Energy firms (0.003) suggest a significant positive contemporaneous impact of

NSI on trading volumes. In contrast, the evidence indicates the impact of NSI on trading

volumes is stronger for Clean Energy firms, whereas Section 4.4.3 shows that the size of

the spillover effect of NSI to trading volumes is similar for Clean Energy firms (1.86%)

and Traditional Energy firms (1.95%). Nevertheless, the positive contemporaneous effects

are consistent with the positive correlations.
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Table 4.11. Linear Regression of Trading Volumes on NSI: Clean Energy

This table reports the results of linear regression of trading volumes on NSI for each of
the 35 Clean Energy firms over the sample period of 1st January 2015 to 1st April 2022.
The dependent variable is LogVolumet, the variable of interest is NSI t, and the control
variables are LogVolumet−1, SX5E t, V2X t, and TTFGDAHD t. t-statistics are presented
in the parentheses. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

LogVolume t

Ticker NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

ABIOFP 0.003 0.634*** -0.035 0.036** 0.011 0.938***
[0.86] [27.46] [-0.40] [2.20] [0.86] [15.85]

ANASQ 0.005 0.520*** -0.057 -0.048** 0.007 1.234***
[0.56] [14.90] [-0.61] [-2.50] [0.41] [13.84]

BKWSE 0.096*** 0.688*** 0.018 0.052 -0.035 0.784***
[3.38] [29.75] [0.09] [1.40] [-1.55] [13.34]

DRXLN 0.032 0.385*** 0.029 0.002 0.099 1.296***
[0.78] [4.77] [0.06] [0.02] [1.52] [7.49]

EBKGY -0.001 0.514*** -0.083 -0.007 -0.012 1.306***
[-0.10] [20.81] [-0.85] [-0.42] [-0.94] [19.74]

ECVGY 0.003 0.511*** -0.030 0.012 0.008 1.334***
[0.61] [20.14] [-0.35] [0.78] [0.68] [19.33]

EDFFP 0.015*** 0.708*** 0.101 0.035** 0.011 0.791***
[2.92] [35.31] [1.11] [2.15] [0.81] [14.63]

EDPPL 0.005 0.493*** 0.060 0.036** 0.030** 1.331***
[0.83] [19.99] [0.65] [2.18] [1.97] [20.54]

EDPRPL 0.000 0.475*** 0.225** 0.022 0.045*** 1.404***
[0.10] [18.36] [2.16] [1.22] [2.94] [20.41]

ELESQ 0.001 0.535*** -0.062 0.029* -0.023 1.289***
[0.31] [22.61] [-0.61] [1.90] [-1.40] [19.72]

ELIBB 0.020*** 0.616*** 0.087 0.013 0.017 0.957***
[2.72] [24.57] [0.90] [0.75] [1.10] [15.32]

ENAPW 0.009* 0.756*** 0.116 0.056*** 0.009 0.641***
[1.71] [38.31] [1.39] [3.68] [0.80] [12.38]

ENELIM 0.015 0.609*** 0.124 0.086*** -0.010 0.918***
[1.41] [27.08] [0.84] [3.54] [-0.43] [17.39]

ENGPW 0.028* 0.756*** -0.018 0.024 -0.035 0.618***
[1.73] [32.94] [-0.13] [1.01] [-1.61] [10.62]

ENGSQ -0.006 0.702*** -0.042 0.048*** 0.017 0.830***
[-1.41] [33.69] [-0.52] [3.75] [1.45] [14.33]

ERGIM -0.005 0.682*** 0.169* 0.053*** -0.007 0.881***
[-1.39] [34.06] [1.95] [3.84] [-0.62] [15.85]

EVNAV 0.004 0.639*** 0.040 0.008 0.005 1.006***
[1.55] [28.07] [0.56] [0.64] [0.43] [15.94]

FORTUMFH 0.002 0.672*** 0.195** 0.056*** 0.011 0.898***
[0.18] [35.86] [2.18] [3.23] [0.81] [17.43]

IBESQ 0.001 0.573*** -0.017 0.004 -0.009 1.152***

Continued on next page
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Table 4.11 - continued from previous page

LogVolume t

Ticker NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

[0.19] [22.86] [-0.21] [0.29] [-0.78] [17.02]
IGIM 0.007** 0.687*** -0.162** 0.002 0.017 0.830***

[2.56] [32.23] [-2.05] [0.16] [1.21] [14.71]
NEOENFP 0.026** 0.662*** 0.473 0.143*** 0.051 0.875***

[2.09] [12.19] [1.40] [3.03] [1.28] [6.22]
NTGYSQ 0.001 0.573*** 0.058 0.042*** 0.001 1.162***

[0.56] [26.16] [0.82] [3.60] [0.09] [19.50]
ORSTEDDC -0.008 0.599*** 0.052 0.030* 0.002 1.027***

[-1.25] [23.45] [0.50] [1.75] [0.13] [15.78]
PEPPW -0.003 0.724*** 0.093 0.034** 0.013 0.767***

[-1.19] [33.75] [0.94] [2.21] [0.96] [12.88]
PGEPW 0.005 0.592*** 0.011 0.012 -0.002 1.110***

[1.05] [24.47] [0.10] [0.70] [-0.12] [16.88]
REESQ 0.029* 0.744*** -0.146 -0.012 0.006 0.620***

[1.74] [36.39] [-0.84] [-0.39] [0.25] [12.39]
RUIFP -0.001 0.619*** -0.010 0.003 0.012 1.049***

[-0.40] [29.05] [-0.16] [0.29] [1.49] [17.94]
SCATCNO 0.001 0.636*** 0.010 0.057*** 0.013 1.003***

[0.21] [24.80] [0.10] [4.28] [1.05] [14.21]
SRGIM 0.004 0.786*** 0.128 0.017 0.005 0.554***

[0.72] [32.24] [1.41] [1.00] [0.40] [8.84]
SSELN 0.013 0.691*** 0.267 0.085*** 0.006 0.749***

[0.57] [25.42] [1.59] [3.32] [0.28] [11.29]
TPEPW 0.006 0.588*** 0.019 0.012 -0.040 1.023***

[0.59] [24.40] [0.20] [0.73] [-1.44] [17.14]
TRNIM 0.013** 0.761*** 0.007 0.051*** -0.002 0.613***

[1.98] [41.13] [0.07] [2.68] [-0.11] [12.91]
UN01GY 0.127*** 0.731*** 0.164 0.030 0.032 0.593***

[4.75] [28.32] [0.41] [0.51] [0.53] [10.20]
VERAV 0.022*** 0.590*** 0.014 0.039** 0.015 1.047***

[2.80] [20.84] [0.16] [2.46] [1.21] [14.55]
VLTSAFP -0.003 0.744*** 0.080 0.045*** 0.007 0.683***

[-0.67] [29.82] [0.93] [3.01] [0.52] [10.28]
Clean Energy 0.010*** 0.948*** 0.051 0.009 0.001 0.134***

[5.94] [124.33] [1.04] [1.16] [0.09] [6.82]
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Table 4.12. Linear Regression of Trading Volumes on NSI: Traditional Energy

This table reports the results of linear regression of trading volumes on NSI for each of
the 50 Traditional Energy firms over the sample period of 1st January 2015 to 1st April
2022. The dependent variable is LogVolumet, the variable of interest is NSI t, and the
control variables are LogVolumet−1, SX5E t, V2X t, and TTFGDAHD t. t-statistics are
presented in the parentheses. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%,
5%, and 10% levels, respectively.

LogVolume t

Ticker NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

AKASTNO 0.043 0.617*** 0.042 -0.011 0.027 0.895***
[1.21] [26.63] [0.23] [-0.33] [1.03] [16.43]

AKRBPNO 0.029 0.368*** -0.133 -0.032 0.010 1.558***
[1.64] [2.77] [-0.41] [-0.50] [0.26] [4.74]

AKSONO 0.003 0.714*** 0.023 0.033** 0.009 0.742***
[0.61] [29.81] [0.22] [1.98] [0.64] [11.94]

BORRNO -0.015*** 0.766*** 0.006 0.005 0.013 0.621***
[-2.63] [46.73] [0.06] [0.24] [1.07] [14.35]

BPLN 0.036*** 0.643*** -0.143 -0.028 -0.009 0.881***
[4.97] [28.37] [-1.16] [-1.41] [-0.67] [15.77]

BWLPGNO 0.062*** 0.707*** -0.108 -0.012 0.044* 0.685***
[3.04] [29.17] [-0.67] [-0.42] [1.86] [12.01]

BWONO 0.007 0.783*** 0.924** 0.205*** 0.038 0.535***
[0.49] [16.26] [2.51] [2.76] [1.11] [4.39]

CGGFP -0.002 0.633*** -0.062 0.032*** 0.016 1.049***
[-0.76] [27.44] [-0.87] [2.82] [1.57] [15.94]

CNELN 0.022*** 0.677*** 0.040 0.029 0.015 0.836***
[2.62] [33.56] [0.36] [1.63] [1.17] [16.00]

DECLN 0.015* 0.834*** 0.220* 0.060*** 0.018 0.427***
[1.92] [50.79] [1.75] [2.68] [1.24] [10.07]

DNONO -0.004 0.943*** 0.032 0.033 0.036** 0.153***
[-0.73] [97.91] [0.24] [1.41] [2.57] [5.84]

DRLCODC -0.006 0.523*** 0.196* 0.039** 0.008 1.258***
[-1.07] [20.03] [1.72] [2.23] [0.44] [18.26]

ENIIM -0.031* 0.639*** -0.027 0.043 0.010 0.937***
[-1.92] [19.03] [-0.10] [0.74] [0.40] [10.62]

ENOGLN -0.002 0.683*** 0.008 0.029* 0.010 0.870***
[-0.56] [34.52] [0.09] [1.84] [0.93] [15.99]

ENQSS 0.013 0.716*** 0.300** 0.096*** 0.001 0.695***
[1.10] [24.54] [2.14] [3.14] [0.05] [9.70]

EQNRNO -0.011** 0.659*** -0.102 -0.008 0.004 0.899***
[-2.34] [27.98] [-1.05] [-0.51] [0.31] [14.48]

EURNBB 0.134** 0.177*** 1.334 0.241 -0.122 1.374***
[2.03] [5.58] [1.05] [1.28] [-0.98] [24.59]

FRONO 0.008 0.791*** 0.223* 0.044* 0.021 0.520***
[0.74] [44.31] [1.77] [1.85] [1.23] [11.63]

GALPPL 0.004 0.588*** -0.087 -0.007 0.003 1.113***

Continued on next page
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Table 4.12 - continued from previous page

LogVolume t

Ticker NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

[0.43] [24.50] [-1.15] [-0.47] [0.21] [17.24]
GTTFP -0.001 0.615*** 0.104 -0.001 -0.007 1.063***

[-0.61] [23.59] [1.51] [-0.07] [-0.79] [14.83]
HAFNINO -0.003 0.781*** -0.007 0.002 -0.004 0.558***

[-0.57] [42.02] [-0.06] [0.08] [-0.24] [11.79]
HBRLN 0.010* 0.527*** -0.191 -0.023 -0.002 1.260***

[1.77] [22.26] [-1.32] [-1.09] [-0.16] [20.08]
IPCOSS 0.004 0.667*** 0.175 0.001 -0.015 0.786***

[0.18] [26.40] [1.47] [0.07] [-0.76] [13.21]
LTSPW 0.019*** 0.527*** 0.029 0.022 -0.016 1.218***

[2.83] [21.08] [0.24] [1.13] [-0.81] [18.94]
LUNESS 0.008*** 0.672*** -0.001 0.009 0.008 0.936***

[2.58] [33.59] [-0.01] [1.01] [1.06] [16.45]
MGNNO 0.009 0.909*** -0.036 0.002 0.010 0.233***

[1.31] [49.27] [-0.20] [0.07] [0.40] [4.90]
NESTEFH 0.003 0.513*** 0.088 -0.002 0.012 1.286***

[0.66] [19.05] [0.77] [-0.09] [0.73] [18.18]
ODLNO 0.000 0.694*** 0.053 0.059*** 0.004 0.859***

[0.06] [38.54] [0.65] [4.97] [0.47] [17.00]
OMVAV 0.004 0.562*** 0.279 0.079 0.077* 1.071***

[0.13] [13.45] [0.86] [1.47] [1.94] [10.40]
PENNO -0.000 0.764*** 0.039 0.053*** 0.041** 0.639***

[-0.09] [41.43] [0.32] [2.71] [2.45] [12.69]
PGNPW 0.002 0.679*** 0.018 0.042*** -0.002 0.874***

[0.89] [31.61] [0.26] [2.79] [-0.27] [15.01]
PGSNO 0.045** 0.547*** -0.054 -0.020 0.014 1.138***

[2.34] [25.54] [-0.54] [-1.11] [0.99] [21.18]
PKNPW 0.002 0.712*** -0.008 0.035** 0.023 0.743***

[0.40] [38.10] [-0.07] [1.98] [1.44] [15.39]
REPSQ 0.005 0.584*** -0.170 0.014 -0.010 0.980***

[0.32] [26.58] [-1.09] [0.53] [-0.40] [18.91]
SBMONA 0.002 0.667*** -0.200*** -0.032*** 0.011 0.890***

[0.73] [32.24] [-2.80] [-2.67] [1.08] [16.11]
SBOAV -0.006 0.764*** 0.005 0.024 -0.006 0.611***

[-1.25] [42.13] [0.04] [1.12] [-0.43] [12.99]
SHELLNA -0.002 0.631*** 0.009 0.036*** 0.011 0.983***

[-0.69] [24.15] [0.12] [2.90] [0.90] [14.12]
SPMIM 0.111*** 0.535*** 0.014 0.031 0.020 1.112***

[4.81] [22.77] [0.09] [1.32] [0.79] [19.80]
SRSIM 0.029 0.518*** 0.065 0.100** -0.011 1.194***

[1.43] [10.35] [0.26] [2.02] [-0.27] [9.58]
SUBCNO -0.018*** 0.808*** 0.084 0.045** -0.012 0.495***

[-3.42] [46.86] [0.67] [2.12] [-0.60] [11.21]
TEFP 0.013*** 0.529*** 0.016 -0.005 -0.011 1.328***

[3.84] [21.89] [0.18] [-0.36] [-0.90] [19.58]

Continued on next page
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Table 4.12 - continued from previous page

LogVolume t

Ticker NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

TENIM 0.010 0.650*** -0.047 -0.002 0.000 0.938***
[1.65] [24.01] [-0.51] [-0.15] [0.04] [12.97]

TGSNO 0.007 0.725*** 0.129 0.080*** 0.022 0.704***
[0.93] [31.44] [0.84] [2.94] [1.34] [11.84]

TLWLN 0.004 0.578*** 0.149 0.043** 0.045*** 1.073***
[0.80] [25.93] [1.30] [2.16] [2.84] [18.97]

TRMDADC 0.008 0.686*** -0.031 0.035** 0.012 0.822***
[1.61] [28.00] [-0.35] [2.51] [0.91] [12.81]

TTEFP 0.150* 0.470*** 0.655 0.107 0.141 1.195***
[1.88] [12.12] [0.96] [0.77] [1.49] [13.35]

VBKGY 0.006 0.813*** -0.375 0.002 -0.033 0.450***
[0.38] [27.07] [-1.30] [0.05] [-1.30] [6.12]

VKFP 0.002 0.711*** 0.093 0.043*** 0.018* 0.768***
[0.44] [35.87] [1.07] [3.03] [1.69] [14.60]

VPKNA 0.011** 0.592*** 0.002 0.015 0.002 1.082***
[2.27] [22.20] [0.02] [0.78] [0.11] [15.37]

WGLN 0.030 0.819*** 0.120 0.044 0.010 0.456***
[1.54] [31.87] [0.60] [1.62] [0.41] [6.99]

Traditional Energy 0.003*** 0.910*** 0.075*** 0.047*** 0.015*** 0.236***
[3.63] [114.08] [3.06] [9.58] [4.57] [11.25]

4.5. Conclusion

This study aims to test and compare the impact of News sentiment on pricing and

trading for Clean Energy companies and Traditional Energy companies, based on a sample

of 35 European Clean Energy firms and 50 European Traditional Energy firms. Using

daily news extracted from Bloomberg, we examine the dynamic spillover effects between

News sentiment, stock returns and trading volumes. Specifically, we employ the dynamic

connectedness framework developed by Diebold and Yılmaz 2014, and estimate a VAR

model with exogenous market factors for each firm. We find that Clean Energy firms

and Traditional Energy firms possess similar patterns; that News sentiment positively

affects both stock returns and trading volumes, conversely, stock returns and trading

volumes have a limited impact on News sentiment. Nevertheless, the spillovers from News

sentiment to stock return (2.81%) and trading volumes (1.86%) are relatively moderate,

and the spillovers in the opposite directions are smaller. Moreover, our regression results
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further affirm the findings of our correlation analysis; that News sentiment is positively

related to stock returns and trading volumes, indicating that News sentiment conveys a

certain level of information in forecasting prices and trading behaviour.

Overall, our study provides additional empirical evidence that investor sentiment plays

a role in asset pricing (Baker and Wurgler 2007; Kaplanski et al. 2015; Siganos et al. 2017).

By disentangling the relationship between News sentiment and European Energy stocks,

this study addresses three gaps in the literature. Firstly, through extraction of senti-

ment embedded in Bloomberg News articles, this study provides an alternative sentiment

measure, which is more appropriate for professional or institutional investors. Secondly,

through use of a sample of European companies, our study is the first to address the

relationship between News Sentiment, trading volumes and returns in Europe. Finally,

whilst prior studies Nofer and Hinz 2015; Reboredo and Ugolini 2018 consider the impact

of News sentiment on the trading volumes and returns of Clean Energy companies, little

context is provided for these findings. Our study provides additional context for the find-

ings, through analysis of the impact of News sentiment on Clean Energy and Traditional

Energy companies in Europe.

Our evidence corroborates Nofer and Hinz 2015; Reboredo and Ugolini 2018’s finding

that the impact of News sentiment on pricing and trading is limited for the Clean Energy

sector. Given the different sources used by Nofer and Hinz 2015; Reboredo and Ugolini

2018 to isolate investor sentiment (Twitter vs Bloomberg News articles), our findings lend

weight to Mao et al. 2011’s conclusion that, if appropriately broad, different information

sources should yield a comparable impact of sentiment on stock returns.

Taken in unison with the earlier work of Reboredo and Ugolini 2018, our findings

provide evidence that News sentiment plays a comparable role in the price formation and

trading of European and U.S. Clean Energy stocks. The comparable impact of News

sentiment on returns between European and U.S. Clean Energy stocks holds important

implications for portfolio construction of Clean Energy portfolios. Owing to the similar

impact of News sentiment on returns, professional investors may incorporate European

securities into their portfolios, with limited additional sentiment risk.
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Most importantly, our findings indicate that there is no discernible difference in the

impact of News sentiment on Clean Energy and Traditional Energy stocks in Europe.

Although News sentiment has a marginally larger impact on the returns of Clean Energy

stocks (2.81%) than Traditional Energy stocks (2.71%), no significant difference exists

between the impact of News sentiment on Clean Energy and Traditional Energy stocks. As

such, this paper provides valuable evidence to the ongoing debate concerning the impact

of News sentiment on stock price formation within different Industry sectors (Uygur and

Taş 2014; Khan et al. 2020; Niu et al. 2021).



Chapter 5

Conclusions

This thesis seeks to contribute to the literature on European Natural Gas market in-

tegration and more broadly, Energy market efficiency. Owing to the current European

energy crisis, the reliability and timeliness of market monitoring mechanisms is critical in

maintaining normal market function, and enforcing competition. As such, this thesis con-

tributes to the literature by providing short-term market monitoring mechanisms; moni-

toring the degree to which price integration is being practically achieved, and prediction

of congestion within the physical network. The first framework for dynamic assessment

of the level of market integration is capable of isolating both physical and non-physical

barriers to market integration. However, the second framework enables prediction of the

underlying reasons of low market integration, such as capacity constraints. In addition

this thesis expands the empirical evidence on the impact of News Sentiment on energy

securities. Chapter 2– 4 in this thesis, present the three individual papers in which we

aim to answer the following important yet understudied research questions:

1. To what extent is the European Natural Gas market integrated? Which national

markets play the most (least) important roles in price formation?

2. Do physical barriers to European Natural Gas market integration exist? Can short

term physical barriers to European Natural Gas market integration be reliably pre-

dicted?

3. To what extent does News Sentiment influence the pricing of “Clean” and “Tradi-

tional” Energy securities?
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In Chapter 2, we examine the degree to which a single European market for Natural

Gas has been achieved. Through the construction of dynamic networks, where the nodes

correspond to the daily gas prices at 12 EU trading hubs, we find a number of spikes

in network density, suggesting short periods of improved connectivity of European gas

markets, which appear to be driven by exogenous factors. Through application of a

Markov regime-switching model to the network density term, we find that abnormally

positive or negative changes in network density are equally distributed in magnitude and

volume. The validity of the technique is established through identification of historical

events, such as unseasonal weather patterns, seismic activity and capacity reductions

through pronounced changes in ‘in-strengths’, ‘out-strengths’ and ‘network density’ terms.

The findings of this paper highlight the time varying nature of European gas market

dynamics, thus the importance of continual monitoring of market evolution. Moreover,

the conclusions drawn in relation to physical and non-physical barriers to market integra-

tion are pertinent when considering Gas Infrastructure Europe’s Ten-Year Development

Plans, as our findings of physical-barriers to market integration are consistent with the

locations of planned infrastructure projects. Additionally, our finding of non-physical

disconnections infers that additional alignment of network codes is required for some

markets. As our findings are consistent with Gas Infrastructure Europe, we propose that

the model’s ability to isolate physical and non-physical barriers to market integration

provides valuable policy advice for European regulatory bodies.

In Chapter 3, we provide a framework for the identification and prediction of physical

barriers to European Natural Gas market integration. Owing to the time-varying na-

ture of demand, physical constraints and complicated spatial interdependencies inherent

within the underlying physical infrastructure, forecasting Natural Gas pipeline flows is a

challenging application of spatiotemporal forecasting. To address this, the infrastructure

network is learnt as a graph, and a deep-learning framework, based on the topology of

the infrastructure network, is applied to learn the interactions between different pipelines.

The empirical results show that the model outperforms baseline methods in predicting

gas pipeline flows, and provides a granularity unseen in extant literature.
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Taken in unison with Chapter 2, the resulting outcomes provide deep insight into the

reason behind short periods of high (low) market integration. The framework presented

in Chapter 3 is able to predict periods of high infrastructure utilisation, thus, periods

of limited market inter-connectivity, owing to capacity constraints, or physical barriers.

If these physical disconnections are consistently predicted, the framework presented in

Chapter 2 can be used to evaluate their impact on market integration, which provides

valuable policy advice for European regulators. As such, areas of the network which

exhibit a limited degree of market integration, owing to capacity constraints, can be

isolated, with the direct impact on market integration measured. This information can

provide valuable policy advice when considering the location of future gas infrastructure

projects.

In Chapter 4, we study the relationship between News Sentiment, price formation and

trading volumes of Clean Energy and Traditional Energy companies. Within a sample

from the STOXX Europe Total Market Index, we find that European Clean Energy firms

and Traditional Energy firms share the same patterns; that News sentiment positively

affects both stock returns and trading volumes, conversely, stock returns and trading vol-

umes have a limited impact on News sentiment. Nevertheless, the spillovers are relatively

moderate and asymmetric. Our study closes the research gap by providing empirical

evidence to two strands of literature; Energy market literature and News sentiment liter-

ature, and is the first to draw a comparative analysis on the impact of News Sentiment

on Clean Energy and Traditional Energy stocks.

Our research provides valuable advice for investors when considering the role of news

sentiment on stock prices. Although some investors may assume that green energy compa-

nies hold a different relationship with news sentiment than traditional energy companies,

we find that the relationship with news sentiment is similar for green and traditional en-

ergy companies. This study contributes to the corporate finance literature, as the compar-

ative relationships between green and traditional energy companies, and news sentiment,

remains unstudied. We close this research gap, and provide additional information for

investors engaged in portfolio construction.
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For future work, there are many adaptations, methods and tests which can be con-

ducted. Firstly, due to data availability, Chapter 2 – 3 focus on the European Natural

Gas market. It could be interesting to apply the methods detailed in Chapter 2 – 3

to measure the relative levels of regional integration of European, North American and

Asian Natural Gas market integration. Secondly, given LNG’s increasing prominence as a

swing supplier, it could be interesting to integrate vessel data into the model presented in

Chapter 3. Finally, to determine if the impact of News Sentiment on pricing and trading

volumes is homogeneous globally, it could be interesting to extend the study conducted

in Chapter 4 to include European, North American and Asian domiciled Clean Energy

and Traditional Energy companies.
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Appendices to Chapter 3

Appendix A

Table A.1. Performance Metrics

A list of Mean Forecast Error (MFE), Mean Bias Error (MBE), Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) values relating to each pipeline within
the dataset.

Node Name MFE MBE RMSE MAE

Arnoldstein/Tarvisio -0.14% 0.14% 1.84% 1.28%

Murfeld/Cersak 0.25% -0.25% 1.49% 1.14%

Gorizia/Sempeter 0.39% -0.39% 3.52% 1.15%

Rogatec 11.58% -11.58% 13.40% 11.58%

Baumgarten -0.03% 0.03% 1.57% 1.15%

Bizzarone 1.58% -1.58% 1.91% 1.66%

Dravaszerdahely 0.29% -0.29% 1.71% 1.37%

Mosonmagyarovar 1.30% -1.30% 2.12% 1.75%

Balassagyarmat/Velke Zlievce 13.44% -13.44% 16.10% 13.47%

Lanzhot -11.40% 11.40% 14.73% 11.78%

Oberkappel -3.64% 3.64% 4.89% 4.04%

Passo Gries/Griespass -0.66% 0.66% 2.10% 1.25%

Beregdaroc 2.43% -2.43% 2.92% 2.50%

Cesky Tesin/Cieszyn -0.67% 0.67% 3.45% 2.40%

Waidhaus -6.27% 6.27% 8.15% 6.74%

Hora Svate Kateriny/Deutschneudorf 1.80% -1.80% 6.83% 1.81%

Hora Svate Kateriny/Olbernhau -2.55% 2.55% 4.37% 3.17%

Brandov Stegal/Stegal 2.49% -2.49% 4.74% 2.49%

Continued on next page
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Table A.1 - continued from previous page

Node Name MFE MBE RMSE MAE

Uberackern ABG/Uberackern 1 2.14% -2.14% 5.54% 3.75%

Uberackern Sudal/ Uberackern 2 0.65% -0.65% 2.01% 1.20%

Jura 4.81% -4.81% 5.66% 4.96%

Oltingue/Rodersdorf -0.53% 0.53% 3.48% 1.84%

Wallbach 2.96% -2.96% 3.83% 3.11%

RC Basel 1.04% -1.04% 2.52% 1.40%

Gela 1.70% -1.70% 2.19% 1.82%

Maraza del Vallo -1.58% 1.58% 2.19% 1.79%

Drozdowicze -2.92% 2.92% 4.13% 3.53%

Wysokoje -3.33% 3.33% 3.98% 3.40%

Lampertheim IV 4.06% -4.06% 4.87% 4.11%

Keinbaum -3.94% 3.94% 4.70% 4.05%

GCP Gaz System/Ontras -1.98% 1.98% 3.16% 2.51%

RC Lindau 1.81% -1.81% 2.30% 1.91%

Pirineos -0.46% 0.46% 1.49% 1.08%

Obergailbach/Medelsheim -5.32% 5.32% 5.71% 5.32%

Gernsheim -2.73% 2.73% 12.58% 6.09%

Uzhgorod -0.55% 0.55% 2.75% 1.06%

Mallnow 0.27% -0.27% 2.20% 1.61%

Steinitz -0.74% 0.74% 1.44% 0.98%

Griefswald 1.95% -1.95% 2.50% 2.26%

Iberico -1.65% 1.65% 2.97% 2.17%

Almeria 0.55% -0.55% 2.07% 1.51%

Tarifa -1.22% 1.22% 1.86% 1.45%

Alveringhem -0.56% 0.56% 2.06% 1.19%

Eynatten 1/Lichtenbusch -0.80% 0.80% 2.09% 1.20%

Eynatten 2/Raeren 0.65% -0.65% 2.64% 1.72%

Virtualys -0.18% 0.18% 2.02% 1.40%

Broichweiden Sud -0.27% 0.27% 1.98% 1.17%

Kondratki -0.01% 0.01% 1.47% 1.00%

Tieterowka 0.31% -0.31% 1.12% 0.86%

Steinbrink 1.85% -1.85% 4.13% 2.12%

Ahlten 0.13% -0.13% 1.97% 1.04%

Zeebrugge IZT -0.29% 0.29% 1.60% 1.10%

Zelzate Pijpleiding 2.65% -2.65% 3.38% 2.90%

Continued on next page
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Table A.1 - continued from previous page

Node Name MFE MBE RMSE MAE

Zelzate 0.92% -0.92% 1.69% 1.22%

Bocholtz -0.32% 0.32% 1.15% 0.80%

Bocholtz-Vetshau 0.20% -0.20% 0.92% 0.22%

Hilvarenbeek 2.42% -2.42% 2.91% 2.55%

Tegelen 0.44% -0.44% 1.19% 0.94%

Achim II -1.77% 1.77% 2.97% 2.24%

Drohne Nowal 6.01% -6.01% 8.20% 6.01%

Moffat 0.14% -0.14% 2.95% 2.12%

Zeebrugge ZTP -1.66% 1.66% 4.80% 2.98%

Zandvleit 1.13% -1.13% 2.25% 1.42%

Haanrade 0.03% -0.03% 0.94% 0.68%

Gravenvoeren Dilsen/Obbicht -0.27% 0.27% 1.15% 0.83%

Zevenaar 0.14% -0.14% 2.14% 1.66%

Ellund 0.31% -0.31% 1.25% 0.77%

Emsburen Berge 0.42% -0.42% 1.31% 0.76%

Nordlohne 0.11% -0.11% 0.19% 0.12%

Winterswijk 0.98% -0.98% 1.86% 1.44%

Dinxperlo 0.28% -0.28% 0.56% 0.41%

Bunder Tief 2.03% -2.03% 3.18% 2.04%

Etzel -0.06% 0.06% 0.60% 0.38%

Oude Standjil/Bunde 2.35% -2.35% 3.09% 2.55%

Vleighuis 0.70% -0.70% 2.43% 1.41%

Emden 0.85% -0.85% 2.27% 1.72%

Dornum 3.54% -3.54% 4.27% 3.78%

Julianadorp -1.49% 1.49% 3.25% 2.14%

Bacton 1.19% -1.19% 8.09% 2.87%
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Table A.2. Maximal Technical Capacity

A list of representative maximal technical capacities (MTC) associated with each border
point specified within this study, with the Mean Absolute Error (MAE) expressed in
MWh/h values, providing a standardised error magnitude.

Node Name MTC (MWh/h) MAE (MWh/h)

Arnoldstein/Tarvisio 47938.54 614.50

Murfeld/Cersak 4688.61 53.65

Gorizia/Sempeter 895.03 10.30

Rogatec 2208.33 255.62

Baumgarten 67166.67 769.62

Bizzarone 537.50 8.94

Dravaszerdahely 3166.67 43.46

Mosonmagyarovar 6379.17 111.38

Balassagyarmat/Velke Zlievce 5291.67 712.74

Lanzhot 16683.33 1965.07

Oberkappel 8308.33 335.61

Passo Gries/Griespass 26445.83 329.58

Beregdaroc 25216.67 629.82

Cesky Tesin/Cieszyn 1166.67 28.03

Waidhaus 37787.50 2545.40

Hora Svate Kateriny/Deutschneudorf 5637.50 101.77

Hora Svate Kateriny/Olbernhau 13320.83 422.87

Brandov Stegal/Stegal 4166.67 103.70

Uberackern ABG/Uberackern 1 3500.00 131.42

Uberackern Sudal/ Uberackern 2 7554.17 90.54

Jura 1558.33 77.26

Oltingue/Rodersdorf 9708.33 178.18

Wallbach 22295.83 693.91

RC Basel 366.67 5.14

Gela 21387.50 388.36

Maraza del Vallo 50137.50 896.82

Drozdowicze 5650.00 199.44

Wysokoje 7045.83 239.29

Lampertheim IV 3016.67 124.06

Keinbaum 5550.00 224.77

GCP Gaz System/Ontras 2029.17 50.89

RC Lindau 1008.33 19.31

Continued on next page
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Table A.2 - continued from previous page

Node Name MTC (MWh/h) MAE (MWh/h)

Pirineos 9375.00 101.44

Obergailbach/Medelsheim 23825.00 1267.40

Gernsheim 4441.67 270.50

Uzhgorod 86666.67 918.77

Mallnow 38812.50 624.01

Steinitz 11100.00 109.06

Griefswald 65429.17 1479.42

Iberico 6000.00 129.97

Almeria 11083.33 167.46

Tarifa 18500.00 268.02

Alveringhem 11250.00 134.05

Eynatten 1/Lichtenbusch 5908.33 70.90
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Appendices to Chapter 4

Appendix B

Table B.1. Robustness: “Traditional” and “Clean” Energy Classification

Clean Energy Classification - GICS sector “Utilities 551010”

GICS Subsector name GICS Subsector code No.

Electric Utilities 55101010 20
Gas Utilities 55102010 5
Renewable Electricity 55105020 7
Total number of Clean Energy companies 32

Traditional Energy Classification - GICS sector “Energy 101020”

GICS Subsector name GICS Subsector code No.

Independent Power Producers & Energy Traders 55105010 3
Integrated Oil & Gas 10102010 9
Oil & Gas Drilling 10101010 3
Oil & Gas Equipment & Services 10101020 15
Oil & Gas Exploration & Production 10102020 11
Oil & Gas Refining & Marketing 10102030 5
Oil & Gas Storage & Transportation 10102040 7
Coal & Consumable Fuels 10102050 0
Total number of Traditional Energy companies 53
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Table B.2. Robustness: Pearson Correlation

This table reports the Pearson correlation coefficient for News sentiments index with
returns and trading volumes for 32 Clean Energy and 53 Traditional Energy firms for the
sample period of 1st January 2015 to 1st April 2022. ∗ ∗ ∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

NSI

LogReturn LogVolume

Summary: Clean Energy 0.053*** 0.064***
Summary: Traditional Energy 0.045*** 0.033***
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Table B.3. Robustness: Spillover Effects

This table reports spillover effects calculated from Eq.(4.4) between the News sentiment
index (NSI ), returns (LogReturn) and trading volumes (LogVolume) for 32 Clean and 53
Traditional Energy firms. The number of lags for the VAR model is selected using the
Bayesian information criterion. θ̃LogReturn←NSI refers to the spillover effect from NSI to

stock returns and θ̃LogV olume←NSI is to the spillover effect from NSI to trading volumes.

Conversely, θ̃NSI←LogReturn refers to the spillover effect from stock returns to NSI, and

θ̃NSI←LogV olume is the spillover effect from trading volumes to NSI. The values of spillover
effects, ranging from 0% to 100% are presented in Columns (1)–(6).

Returns Trading volumes

θ̃LogReturn←NSI θ̃NSI←LogReturn Net θ̃LogV olume←NSI θ̃NSI←LogV olume Net
Ticker Lag (1) (2) (3) (4) (5) (6)

Clean Energy 2.68 2.34 0.34 1.80 1.74 0.06
Traditional Energy 2.79 1.67 1.12 1.98 1.62 0.37
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Table B.4. Robustness: Comparative Analysis

This table presents the t-statistics of a comparative analysis: whether the spillover effects
between Clean Energy companies and Traditional Energy companies are significantly
different. The sample for this test includes 32 Clean Energy companies and 53 Traditional
Energy companies. ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

Clean Energy Traditional Energy T-test
Variables Mean of 32 Obs. Mean of 53 Obs. Diff. (p-value)

θ̃LogReturn←NSI 2.68 2.79 -0.11 0.686

θ̃NSI←LogReturn 2.34 1.67 0.67 0.003

θ̃LogV olume←NSI 1.80 1.98 -0.18 0.412

θ̃NSI←LogV olume 1.74 1.62 0.12 0.251
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Table B.5. Linear Regression of Stock Returns and Trading Volumes on NSI

This table reports the results of linear regression of stock returns and trading volumes on
NSI for each of the 32 Clean Energy and 53 Traditional Energy firms over the sample
period of 1st January 2015 to 1st April 2022. The dependent variable is LogReturnt in
Panel A and LogVolumet in Panel B, the variable of interest is NSI t, and the control
variables are LogReturnt−1, SX5E t, V2X t, and TTFGDAHD t. t-statistics are presented
in the parentheses. ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10%
levels, respectively.

Panel A. Linear Regression of Stock Returns on NSI.

LogReturn t

NSI t LogReturn t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

Clean Energy 0.007*** -0.005 0.003 0.001 0.001 0.000
[10.80] [-1.05] [0.18] [0.58] [0.73] [0.26]

Traditional Energy 0.007*** 0.020** 0.673*** -0.026*** 0.033*** -0.000***
[8.43] [2.37] [24.83] [-7.91] [13.20] [-3.19]

Panel B. Linear Regression of Trading Volumes on NSI.

LogVolume t

NSI t LogVolume t−1 SX5E t V2X t TTFGDAHD t Constant
(1) (2) (3) (4) (5) (6)

Clean Energy 0.011*** 0.948*** 0.056 0.009 0.000 0.132***
[6.12] [123.40] [1.06] [1.13] [0.01] [6.68]

Traditional Energy 0.004*** 0.895*** 0.066** 0.043*** 0.014*** 0.277***
[3.80] [89.77] [2.42] [7.77] [3.88] [10.55]
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Schlögl, Alois and Gernot Supp (2006). “Analyzing event-related EEG data with multi-
variate autoregressive parameters”. Progress in brain research 159, pages 135–147.

Serletis, Apostolos (1997). “Is there an east-west split in North American natural gas
markets?”: The Energy Journal 18.1.

Seth, Anil K (2010). “A MATLAB toolbox for Granger causal connectivity analysis”.
Journal of neuroscience methods 186.2, pages 262–273.

Siganos, Antonios et al. (2014). “Facebook’s daily sentiment and international stock mar-
kets”. Journal of Economic Behavior & Organization 107, pages 730–743.

— (2017). “Divergence of sentiment and stock market trading”. Journal of Banking &
Finance 78, pages 130–141.

Song, Yingjie et al. (2019). “The dynamic dependence of fossil energy, investor sentiment
and renewable energy stock markets”. Energy Economics 84, page 104564.

Tetlock, Paul C (2007). “Giving content to investor sentiment: The role of media in the
stock market”. The Journal of finance 62.3, pages 1139–1168.

Tieleman, Tijmen and Geoffrey Hinton (2012). “Rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. coursera: Neural networks for machine learning”.
COURSERA Neural Networks Mach. Learn.
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