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Kernel P systems have been introduced as a unifying formalism allowing to specify, 
simulate and analyse various problems. Several applications of this model have been 
considered and a powerful tool built in order to support their development and analysis. 
Testing represents an important aspect of any system analysis and correctness. In this paper 
we introduce for the first time a bounded test generation approach for kernel P systems by 
considering bounded input sequences. A learning algorithm for kernel P systems is based 
on learning X-machine models that are equivalent to these systems for sequences of steps 
up to a certain limit, �. The L� learning algorithm is used. The testing approach is then 
devised from the inferred X-machines. The method is applied to a case study illustrating 
the key parts of the approach.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Membrane computing is a research paradigm initiated by Gh. Păun [1,2], belonging to natural computing and inspired 
by the structure and functionality of living cells. The early theoretical results have been published in a research monograph 
[3] and the key theoretical developments and applications reflecting the first decade of research in this area have been 
made available in a comprehensive handbook [4]. Many classes of membrane systems (also called P systems) have been 
introduced and investigated, a recent bibliometric analysis of the membrane computing field provides an overview of the 
most influential works [5]. Other theoretical results, real-life applications, and hardware implementations are included in 
recent surveys and monographs [6–8].

A special class of P systems, called kernel P systems (or kP systems), have been introduced in [9] and then studied for 
their computational power, but also expressiveness with respect to various problems, as well as simulation, testing and 
verification capabilities. The analysis of the systems developed based on kernel P systems is in this way well supported by 
these capabilities. Despite the usability of these methods in the analysis of system behaviour, they suffer from the state 
explosion problem. So, one important challenge is to develop new methods that will address the state explosion problem.

✩ This article belongs to Section C: Theory of natural computing, Edited by Lila Kari.
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In this paper we introduce for the first time a new kernel P system based testing method addressing the state explosion 
problem as well. The novelty of this method consists in developing a bounded test generation approach for kernel P systems 
by considering bounded input sequences derived from a generalization of the W-method [10] for Mealy machines. A learning 
algorithm for kernel P systems is devised based on learning an X-machine model and a testing method introduced, similar 
to [11]. A case study illustrating the key parts of the approach is presented.

The paper consists of the following parts: an overview of key developments for kernel P systems with respect to simula-
tion, testing and formal verification (section 2); main notations and definitions used (section 3); a bounded test generation 
from X-machine specification based on a generalization of the W-method for Mealy machines (section 4); learning an X-
machine model of a kernel P system (section 5); test generation for kernel P systems (section 6); case study illustrating 
the learning algorithm, the test set generation and formal verification of some properties that are not revealed by testing 
(section 7); conclusions (section 8).

2. A review of simulation, verification, and testing membrane systems

Validation of membrane systems is mainly done via three complementary methods: simulation, verification, and model-
based testing. Simulation is a lightweight and fast method that allows checking the evolution of a system, but it is less 
efficient in finding bugs because it only explores a subset of all system executions. Verification is a useful method to check 
the system correctness against some formal properties, but it is computationally more complex and prone to the state 
explosion problem because it requires exhaustively analysing all system states. Model-based testing is a more balanced 
approach. The method is based on generating test sets, where a model of the system under test is provided in the form of a 
finite state machine that is generated from a partial computation in a P system model. In the sequel, we review the recent 
studies on simulation, verification, and testing within the context of P systems.

2.1. Simulation of P systems

A very recent survey presents a comprehensive list and interactive timeline of membrane simulators, developed in the 
last two decades [12]. Here, we briefly discuss some well-known simulators.

MeCoSim (Membrane Computing Simulator) [13] is a software that gives users a general-purpose tool for modelling, 
designing, simulating, analysing, and verifying various P-system-based models. The simulator was developed in Java pro-
gramming language by using the simulation core based on P-Lingua and pLinguaCore. MeCoSim’s primary features include 
simulation of P system models under various initial conditions, parsing, edition, debugging, and various simulation types, vi-
sualisation capabilities, defining inputs, outputs, parameters, and graphs for each model, and an export feature for releasing 
end-user applications.

A specific variant of kernel P systems, called simple kP systems, is supported by MeCoSim. The more generic class 
of kernel P systems is supported by two simulators [14]: KPWorkbench simulator [15] and Flame simulator [16]. Both 
simulators take a kP—Lingua model as input and output a trace of the execution, which is mainly used to check how a 
system evolves and to draw out different simulation results. KPWorkbench [17] has a native simulator, which is a command 
line tool that enables users to configure the traces of execution for the given model. It allows the user to explicitly define 
the granularity of the output information by defining the values for a specific set of parameters.

The simulation of kP—Lingua requirements can also be done using the agent-based modelling framework Flame. The 
high degree of scalability and efficiency for simulating large-scale models is one of this approach’s key benefits. The Flame

simulator requires a model for identifying the agents representing the definitions of communicating X-machines, whose 
behaviour is to be simulated, and input data representing the initial contents of the memory for the created X-machines. The 
structure of the agents is defined in an xml file that makes up the model specification, and a collection of C programming 
language functions define their behaviour.

2.2. Formal verification of P systems

The application scope of P systems has recently broadened from simple examples to complex synthetic biology sys-
tems [18–20]. This has unsurprisingly increased the efforts for establishing formal verification, in particular model checking, 
methods and methodologies for various P systems. These successful attempts were mainly concerned with specific variants 
bound to an array of constraints, e.g., a limited feature set and a basic set of properties.

According to a preliminary study [21] on the feasibility of model checking membrane systems, P system models with 
bounded multiplicities on objects can be potentially verified with a focus on the decidability of the model checking problem 
for conventional P systems. However, the studies performed (using the two verification tools Spin [22] and Omega [23]) do 
not seem to be conclusive, suggesting the procedure is impractical for the majority of attributes.

A verification method using Linear Temporal Logic (LTL) model checking is presented in [24], which illustrates an exe-
cutable algebraic specification of transition P systems. The paper studies the algorithmic implementation of the membrane 
system-specific, maximally parallel multiset transitions in Maude-executable rewriting logic [25]. It was demonstrated that 
LTL model checking can be accomplished in this context, using an implementation of P system operational semantics in 
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conjunction with Maude’s linear time temporal logic, both expressed in a consistent rewriting logic notation. The tool au-
tomates the parallel execution of the two specifications and produces a result for the verification inquiry. No performance 
indicators or broader conclusions about the viability of this strategy in a wider context can be drawn from this study. How-
ever, it is noteworthy that this is the first approach to not take into account a translation of P systems to process models, a 
traditional prerequisite for model checking distributed systems.

A different line of research [26,27] investigated a generic solution to verifying membrane systems using Spin. The hybrid 
modelling strategy is the most outstanding feature of the suggested methodology. The global reachability graph is filled with 
irrelevant states (also known as “intermediate” states [26]), i.e., states that correspond to atomic instruction interleavings but 
are not among the set of possible configurations of the P system. In order to get rid of the unnecessary states produced by 
the model checker, a boolean variable is used, which returns true if the state is a genuine P system state and false otherwise. 
The LTL formulas are then adjusted accordingly using these variables to maintain the consistency of the model checking 
process. Several (limited) instances of a P system model have been used to verify a number of properties, showing the 
correctness of the method but with a significantly hampered scalability. The paper also includes a performance comparison 
between Spin model checker and NuSMV [28], a symbolic model checker based on binary decision diagrams, showing that 
Spin is noticeably more effective when performing LTL model checking.

The generalisation of this technique, applicable to P systems with numerous compartments, was described in [29], which 
has showed that despite improvements being made to try to eliminate auxiliary computational processes from the global 
state graph produced by Spin, such models can only be subjected to a rough formal analysis.

There have been also efforts for developing comprehensive, integrated and automated verification approaches for general 
and unified languages, e.g. kP systems. In [15,29,14], a model checking environment has been developed that supports both 
Spin and NuSMV model checkers. The tool features a property language, called kP-Queries, comprising a list of natural 
language statements representing formal property patterns, from which the formal syntax of the Spin and NuSMV formulas 
are automatically generated. The property language allows specifying the target logical formalism, i.e., Linear Temporal Logic 
(LTL) and Computation Tree Logic (CTL), for the different properties, without placing a requirement on a specific model 
checker, the same set of properties being able to be reused in various model checking experiments. Targeting flexibility, 
expressivity and model checking language independence, the new verification approach for kP-Lingua models provides a 
mechanism for defining kP-Queries files, which are especially designed for the purpose of being used to verify kP-Lingua 
models. The format of kP-Queries file is supported by an intuitive, coherent and integrated property specification language, 
allowing the construction of queries involving kP-Lingua model entities and targeting the LTL and CTL formalisms.

2.3. Testing P systems

Given the recent advances in membrane computing, the plethora of P systems families proposed and their corresponding 
simulators [12], it is important to develop appropriate methodologies to evaluate how trustworthy are their implementa-
tions.

First testing approaches on membrane systems were developed for a particular class, cell-like P systems [30], and could 
be classified as (1) grammar-like testing (including for example rule coverage and context-dependent rule coverage criteria) 
[30] and Finite State Machine (FSM)-based testing [31]. The FSM-based testing techniques rely on the construction of an 
automaton which generates the test set associated to a P system under investigation.

Other testing approaches were proposed and empirically investigated, for example using mutation-based testing [32]. 
Model checking techniques can be applied to automatically generate test data for different testing criteria and they were 
used in the context of cell-like P systems [33]. The model-checking based testing approach relies on the capability of model 
checkers to generate counterexamples. The test purpose is specified as a temporal logic property (e.g. there exists a path in 
the model that reaches a certain configuration c or applies a certain rule r) and then converted by negation to a ‘never-claim’ 
condition (the configuration c is never reached or the rule r is never applied). The model checker verifies the never-claim 
property and if false it produces a counterexample, that is in fact the actual test case satisfying the original test purpose.

The main testing methodologies applicable to cell-like P or tissue-like P systems are built on previous techniques from 
testing based on FSMs [31], extended forms of state machines, such as stream X-machines [34,35], mutation testing [32], 
model checking-based testing [33].

Testing methodologies for membrane systems evolved from these classes of P systems to other families and various 
techniques were developed for testing kernel P systems [14] and Spiking Neural P (SNP) systems [36]. The strategies used 
include search-based testing [37], using X-machine approaches to test identifiable kernel P systems [38].

3. Preliminaries

In this section, we introduce the main concepts used in this paper: kernel P systems, finite automata and X-machines.
In what follows, for a finite alphabet V = {a1, ..., ap}, V ∗ denotes the set of all strings over V ; the empty string is 

denoted by ε or λ. V + denotes V ∗ without the empty string. The length (number of characters) of a string u is denoted by 
length(u); length(ε) = 0 (length(λ) = 0). V n denotes the set of all strings of length n, n ≥ 0, with members in the alphabet 
V and V [n] = ⋃

0≤i≤n V i . A multiset over V is a function f : V −→N . Considering only the elements from the support of f
3
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(where f (ai j ) > 0, for some j, 1 ≤ j ≤ p), the multiset is represented as a
f (ai1 )

i1
. . .a

f (aip )

ip
, where the order is not important. 

In the sequel multisets will be represented by such strings.

3.1. Kernel P systems

Kernel P systems (kP systems, for short) were introduced in [9] and used in further research [14,38]. They were conceived 
as a means of unifying many features present in several previous variants of P systems that have been useful from a 
modelling point of view.

We first introduce a compartment type to be used in the definition of a kP system.

Definition 1. T is a set of compartment types, T = {t1, . . . , ts}, where ti = (Ri, δi), 1 ≤ i ≤ s, consists of a set of rules, Ri , and 
an execution strategy, δi , defined over Lab(Ri), the labels of the rules of Ri .

Definition 2. A kP system of degree n, n ≥ 1, is a tuple

k� = (A,μ, C1, . . . , Cn, i0),

where

• A is a finite set of elements called objects;
• μ defines the membrane structure, which is a graph, (V , L), where V is a set of vertices representing compartments 

(or components), and L is a set of edges, i.e., links between compartments;
• Ci = (ti, wi,0), 1 ≤ i ≤ n, is a compartment of the system consisting of a compartment type, ti , from a set T , and an 

initial multiset, wi,0, over A; the type ti = (Ri, δi) consists of a set of evolution rules, Ri , and an execution strategy, δi ;
• i0 is the output compartment where the result is obtained.

Given a kP system, the following types of rules have been considered:

• rewriting and communication rule: x → y{g}, where g represents a guard (will be formally explained in Definition 4), 
x ∈ A+ and y ∈ A∗ , where y is a multiset with potentially different compartment type targets (each symbol from the 
right side of the rule can be sent to a different compartment, specified by its type; if multiple compartments of the 
same type are linked to the current compartment, then one is randomly chosen to be the target). Unlike cell-like P 
systems, the targets in kP systems indicate only the types of compartments to which the objects will be sent, not 
particular instances of those types (for example, y = (a1, t1) . . . (ah, th), where h ≥ 0, and for each 1 ≤ j ≤ h, a j ∈ A and 
t j indicates a compartment type from T ).

• structure changing rules: membrane division, membrane dissolution, link creation and link destruction rules. Details 
about these rules are available in [9]. This type of rules will not be considered in this paper.

For a multiset w over A and an element a ∈ A, we denote by |w|a the number of objects a occurring in w .

Definition 3. Let Rel = {<, ≤, =, �=, ≥, >} denote the set of relational operators and let γ ∈ Rel be a relational operator. If 
g is the abstract relational expression denoting γ an and w a multiset, then the guard g applied to w denotes the relational 
expression |w|aγ n.

The abstract relational expression g is true for the multiset w , if |w|aγ n is true.
We consider now the following Boolean operators ¬ (negation), ∧ (conjunction) and ∨ (disjunction). An abstract Boolean 

expression is defined by one of the following conditions:

• any abstract relational expression is an abstract Boolean expression;
• if g and h are abstract Boolean expressions then ¬g , g ∧ h and g ∨ h are abstract Boolean expressions.

Definition 4. If g is an abstract Boolean expression containing gi , 1 ≤ i ≤ q, abstract relational expressions and w a multiset, 
then g applied to w means the Boolean expression obtained from g by applying gi to w for any i, 1 ≤ i ≤ q.

As in the case of an abstract relational expression, the guard g is true with respect to the multiset w , if the abstract 
Boolean expression g applied to w is true.

In each compartment type, apart from rules, there is an execution strategy, as mentioned by Definition 1.

Definition 5. For a compartment type t = (R, δ) from T and r ∈ Lab(R), r1, . . . , rs ∈ Lab(R), the execution strategy, δ, is 
defined by the following:
4
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• δ = λ, means no rule from the current compartment will be executed;
• δ = {r} – the rule r is executed;
• δ = {r1, . . . , rs} – one of the rules labelled r1, . . . , rs will be non-deterministically chosen and executed; if none is 

applicable then nothing is executed; this is called alternative or choice;
• δ = {r1, . . . , rs}∗ – the rules are applied an arbitrary number of times (arbitrary parallelism);
• δ = {r1, . . . , rs}
 – the rules are executed according to the maximal parallelism strategy;
• δ = δ1& . . . &δs , means executing sequentially δ1, . . . , δs , where δi , 1 ≤ i ≤ s, describes any of the above cases; if one of 

δi fails to be executed then the rest is no longer executed.

Definition 6. A configuration of a kP system, k�, with n compartments, is a tuple c = (c1, . . . , cn), where ci ∈ A∗ , 1 ≤ i ≤ n, 
is the multiset from compartment i. The initial configuration is (w1, . . . , wn), where wi ∈ A∗ is the initial multiset of the 
compartment i, 1 ≤ i ≤ n.

A transition (or computation step), introduced by the next definition, is the process of passing from one configuration to 
another.

Definition 7. Given two configurations c = (c1, . . . , cn) and c′ = (c′
1, . . . , c′

n) of a kP system, k�, with n compartments, 
where for any i, 1 ≤ i ≤ n, ci ∈ A∗ and c′

i ∈ A∗ , and a multiset of rules Mi = r
n1,i
1,i . . . r

nki ,i

ki ,i
, n j,i ≥ 0, 1 ≤ j ≤ ki, ki ≥ 0, a 

transition or a computation step is the process of obtaining c′ from c by using the multisets of rules Mi , 1 ≤ i ≤ n, denoted 
by c =⇒(M1,...,Mn) c′ , such that for each i, 1 ≤ i ≤ n, c′

i is the multiset obtained from ci by first extracting all the objects that 
are in the left-hand side of each rule of Mi from ci and then adding all the objects a that are in the right-hand side of each 
rule of Mi represented as (a, ti) and all the objects b that are in the right-hand side of each rule of M j , j �= i, such that b is 
represented as (b, ti).

Definition 8. A computation of a P system k� is a sequence x0 . . . xn of configurations, xi ∈ A∗ , 1 ≤ i ≤ n, that starts in the 
initial configuration x0 = (w1,0, . . . , wn,0) for which there is a transition between xi and xi+1, 1 ≤ i ≤ n − 1.

In membrane computing theory, final configurations (configurations from which no rule can be applied) are defined 
and only terminal computations (computations arriving in a final configuration) are considered. In this paper, however, we 
will consider all computations of a kP system; this is because, intermediary results are also needed and measured in the 
testing process. Furthermore, for the same reason, no output compartment will be identified and the configuration of all
compartments will be observed.

3.2. Finite automata

A deterministic finite automaton consists of a finite number of states and transitions between states labelled by input 
symbols.

Definition 9. A deterministic finite automaton (abbreviated DFA) is a tuple
A = (�, Q , q0, F , δ), where:

• � is the finite input alphabet;
• Q is the finite set of states;
• q0 ∈ Q is the initial state;
• F ⊆ Q is the set of final states;
• δ : Q × � −→ Q is the next-state function.

Given state q ∈ Q , an input sequence s ∈ �∗ is said to be accepted by A in q if s takes A from q to a final state; if s is 
not accepted by A in q, it is said to be rejected by A in q. When q is the initial state q0, s is simply said to be accepted by 
A or rejected by A, respectively. Given states q1 ∈ Q and q2 ∈ Q , an input sequence s ∈ �∗ is said to distinguish between 
q1 and q2 if s is accepted by A in q1 and rejected by A in q2 or vice-versa; q1 and q2 are said to be W -distinguishable
for some set of input sequences W ⊆ �∗ if W contains a sequence s that distinguishes between q1 and q2. The set of all 
sequences accepted by A is called the language accepted by A, denoted L(A). A DFA A is said to be minimal if any DFA that 
accepts L(A) does not have less states than A.

Let U ⊆ �∗ be a finite language and � the length of the longest sequence(s) in U . A deterministic cover automaton (abbre-
viated DFCA) of U is a DFA that accepts all sequences in U and rejects all sequences in �[�] \ U , but may accept or reject 
the remaining sequences [39,40]. A minimal DFCA of U is a deterministic finite cover automaton of U having the least 
possible number of states. A minimal DFCA of U may have much less states than the minimal DFA that accepts U [41] and 
so, in applications in which the longer sequences are not used, it is preferable to construct a minimal DFCA of U instead of 
5
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the minimal DFA that accepts precisely the set U . A minimal DFCA of a finite language U is not necessarily unique, many 
non-isomorphic minimal DFCAs of U may exist. For further details, the reader is referred to [39] and [42].

3.3. X-machines

An X-machine is a computing device that extends a deterministic finite automaton by labelling the transitions between 
states with partial functions operating on a data set X . A number of different types of X-machines have been defined. In 
this paper, we use the definition given in [11].

Definition 10. An X-Machine (abbreviated XM) is a tuple Z = (X, 	, X0, Q , q0, δ), where:

• X is the (possibly infinite) data set;
• 	 is a finite set of non-empty (partial) functions of type X −→ X ; the set 	 is called the type of Z , while each element 

of 	 called a processing function of Z ;
• X0 ⊆ X is the set of initial data values;
• Q is the finite set of states;
• q0 ∈ Q is the initial state;
• δ is the (partial) next-state function, δ : Q × 	 −→ Q .

Therefore, an X-machine Z can be regarded as a DFA with the arcs labelled by functions from the set 	. Note that, 
unlike in Definition 9, in the above definition all states in Q are implicitly assumed to be final states and δ may be a 
partial function (the automaton may not be completely specified). In order for this DFA to conform to Definition 9, the 
state space Q is extended with a non-final “sink” state, that collects all non-defined transitions. The automaton A Z =
(	, Q ∪ {sink}, q0, Q , δ) over the alphabet 	 is called the associated deterministic finite automaton (abbreviated associated 
DFA) of Z .

Definition 11. A computation of Z is a sequence x0 . . . xn , with x0 ∈ X0, xi ∈ X , 1 ≤ i ≤ n, for which there exist φ1, . . . , φn ∈ 	

such that φi(xi−1) = xi , 1 ≤ i ≤ n, and φ1 . . . φn ∈ L(A Z ). The set of all computations of Z is denoted by Comp(Z).

4. Bounded test generation from X-machine specifications

We consider now the problem of test generation from an X-machine specification. We use a black-box strategy, in which 
the tests are derived solely from the specification (model) and structure of the implementation is unknown. Sometimes the 
size of the state set (and hence of the resulting tests) may be too large, as it is the case for the application of the method 
to kernel P systems, investigated in this paper. In order to keep the size of the tests under control, an upper bound on the 
length of the X-machine computations will be established and the testing process will consider only the computations that 
will not exceed this upper bound.

The method presented here is a generalization of the W -method for Mealy machines: given a Mealy machine specifi-
cation and an unknown implementation for which it is however known that can be itself modelled by a Mealy machine 
whose number of states does not exceed the number of states of the specification by more than a known positive integer 
k, the method generates a set of tests that, if all pass, the implementation is guaranteed to be functionally equivalent to 
the specification [10]. As deterministic finite automata can be written as Mealy machines by encoding the terminal and 
non-terminal states into a binary output alphabet, this method can also be applied to DFAs. A variant of the W -method for 
bounded sequences has also been devised: given a Mealy machine (DFA) specification, a positive integer k, an unknown im-
plementation that is known to be modelled by a Mealy machine (DFA) whose number of states does not exceed the number 
of states of the specification by more than k and a positive integer � (the upper bound on the input sequences considered), 
the method generates a set of tests (of length less than equal to �) that, if all pass, the implementation is guaranteed to 
produce the same response as the specification in response to all sequences of length less than or equal to �.

We show now how the W method for bounded sequences can be generalized to generate a test suite from an X-machine. 
Let Z = (X, 	, X0, Q , q0, δ) be the X-machine specification of a system. Let k ≥ 0 and let Z ′ = (X, 	, X0, Q ′, q′

0, δ
′) be the X-

machine model of the unknown implementation under test with the property that card(Q ′) − card(Q ) ≤ k, where card(P )

denotes the number of elements of the finite set P . Let � ≥ 0 be the upper bound on the length of the computations 
considered. Let A Z = (	, Q ∪ {sink}, q0, Q , δ) and A Z ′ = (	, Q ′ ∪ {sink′}, q′

0, Q
′, δ′) be the associated DFAs of Z and Z ′ , 

respectively. We assume without loss of generality that A Z and A Z ′ are minimal DFAs. Then we can use the W -method for 
bounded sequences to generate a test set Yk for A Z with respect to A Z ′ [41]. Two set of sequences, a proper state cover S
and a strong characterisation set W of A Z , as defined next, are used in the construction of Yk .

Definition 12. S ⊆ 	∗ is called a proper state cover of A Z if, for every state q ∈ Q ∪ {sink}, there exists s ∈ S such that (1)

δ(q0, s) = q and (2) for any sequence t ∈ 	∗ such that δ(q0, t) = q, length(s) ≤ length(t).
6
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Definition 13. W ⊆ 	∗ is called a strong characterisation set of A Z , if for every two states q1, q2 ∈ Q ∪{sink} and every j ≥ 0, 
if q1 and q2 are 	[ j]-distinguishable then q1 and q2 are (W ∩ 	[ j])-distinguishable.

Note that, in the above definition, it is sufficient for the implication to hold when j is the length of the shortest sequence 
that distinguishes between q1 and q2.

Then the test set for A Z with respect to A Z ′ can be constructed using the following formula [41]:

Yk = S	[k + 1](W ∪ {ε}) ∩ 	[�] \ {ε}.
Consider now how the above result can be used to construct a set of tests from the X-machine specification Z . A test 

suite for Z will consist of a (finite) number of X-machine computation, so the natural idea would be to translate the 
sequences of processing functions in Yk into sequences of computations. This is possible if any sequence in the language 
accepted by the associated DFA A Z yields a valid computation of Z from any initial data value. This property is called 
controllability and is defined next.

Definition 14. A sequence φ1 . . . φn ∈ 	∗ , with φi ∈ 	, 1 ≤ i ≤ n, is said to be controllable if there exist x0 ∈ X0, x1, . . . , xn ∈ X
such that φi(xi−1) = xi , 1 ≤ i ≤ n. Z is said to be controllable if for every p ∈ L(A Z ), p is controllable.

As the underlying idea of the X-machine test generation method is to reduce checking the model Z ′ of the implemen-
tation under test against the specification Z to checking A Z ′ against A Z , it must be possible to identify the processing 
functions applied in the computations of Z and Z ′ , respectively, by examining these computations. Consequently, an addi-
tional property, called identifiability, is needed. This is defined below.

Definition 15. 	 is called identifiable if, for every φ1, φ2 ∈ 	 for which there exists x ∈ X such that φ1(x) = φ2(x), then 
φ1 = φ2.

We also need a way of translating controllable sequences of processing functions into the actual computations (sequences 
of data values) used in testing. (On the other hand, non-controllable paths are not useful in testing and will be ignored.) 
This is provided by the test transformation defined next.

Definition 16. Given an X-machine Z = (X, 	, x0, Q , q0, δ), a test transformation of Z is a function τ : 	∗ −→ X∗ ∪ {⊥}, 
⊥ /∈ X∗ , such that, for every φ1, . . . , φn ∈ 	, n ≥ 0, and p = φ1 . . . φn , τ (p) meets the following requirements:

• If p is controllable then
– If φ1 . . . φn ∈ L(A Z ) then τ (φ1 . . . φn) = x0 . . . xn for some x0 ∈ X0, x1, . . . , xn ∈ X such that φi(xi−1) = xi , 1 ≤ i ≤ n;
– Else τ (φ1 . . . φn) = x0 . . . xn0+1, for some x0 ∈ X0, x1, . . . , xn0 ∈ X such that φi(xi−1) = xi , 1 ≤ i ≤ n0, where n0 is such 

that φ1 . . . φn0 ∈ L(A Z ) and φ1 . . . φn0+1 /∈ L(A Z );
• Else τ (p) = ⊥.

Thus, if p = φ1 . . . φn ∈ 	 is a path of A Z then τ (p) is a sequence of data values that exercises p; otherwise, τ (p)

attempts to exercise the longest prefix p0 = φ1 . . . φn0 of p plus one extra arc, φn0+1. Using these properties, τ (p) will be 
used in testing to establish if the controllable path p is accepted by the associated automaton of the unknown model Z ′ of 
the implementation.

As 	 is identifiable, it is possible to establish if a controllable sequence of processing functions is correctly implemented 
by examining the computations of the specification Z and of the implementation Z ′ , as shown by the next theorem proven 
in [11].

Theorem 1. Let Z = (X, 	, x0, Q , q0, δ) and Z ′ = (X, 	, x0, Q ′, q′
0, δ

′) be two X-machines and τ a test transformation of Z . If 	 is 
identifiable then, for every φ1, . . . , φn ∈ 	 such that p = φ1 . . . φn is controllable, the following holds: if τ (p) ∈ Comp(Z) ⇔ τ (p) ∈
Comp(Z ′), then p ∈ L(A Z ) ⇔ p ∈ L(A Z ′ ).

On the basis of the above result, a test suite can be derived from the X-machine specification Z using the formula τ (Yk), 
where Yk is the test suite produced by the W -method for bounded sequences.

5. Learning an X-machine model of a kernel P system

Let us examine how the above presented test generation strategy can be applied when the specification is a kernel P 
systems model. In here we only refer to kP systems (a) having only rewriting and communication rules and (b) using in 
each compartment an alternative execution strategy.
7
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Let k� = (A, μ, C1, . . . , Cn, i0) be the kP system specification considered. Naturally, as the underlying idea of our ap-
proach is to use the X-machine testing method, the first step is to obtain an X-machine model of the system specified by 
k�. One can observe that an X-machine Z computationally-equivalent to k� can be naturally produced in the following 
manner.

As k� has only rewriting and communication rules, its compartment structure will remain unchanged throughout its 
computation, so the data set X of Z will consist of n-tuples, the configurations of k�, with the ith component of the tuple 
holding the multiset of the ith compartment, Ci , 1 ≤ i ≤ n. The computation of k� will start in the initial multiset of each 
of the n compartments, so there will be only one initial data set, the initial configuration (w1,0, . . . , wn,0). Since k� uses in 
each compartment an alternative execution strategy, there is at most one (applicable) rule per compartment. Thus the type 
	 will consist of all processing functions φ = (ψ1, . . . , ψn), where ψi is either of the form ψri , ri ∈ Ri , when ri is applicable 
in compartment Ci , or is ei , when there is no applicable rule, 1 ≤ i ≤ n. As long as there is at least a compartment in which a 
rule can be applied, k� will continue its computation and so the X-machine Z will have a corresponding transition, labelled 
by the processing function φ involved (a loop-back in state q0, i.e., δ(q0, φ) = q0); otherwise (when a halting configuration 
of k� is reached), the “erroneous” transitions will enter the additional sink state, i.e. (δ(q0, (e1, . . . , em)) = sink) and will 
not be able to resume the computation afterwards (δ(sink, φ) = sink, ∀φ ∈ 	). This construction ensures that k� and Z are 
computationally equivalent, as stated by the next theorem.

Theorem 2. Let k� = (A, μ, C1, . . . , Cn, i0) be the kP system having only rewriting and communication rules and using in each 
compartment an alternative execution strategy and let Z = (X, 	, x0, Q , q0, δ) be an X-machine, where

• X = (A∗)n;
• 	 = {φ | φ = (ψ1, . . . , ψn), where ψi = ψri for some ri ∈ Ri or ψi = ei , 1 ≤ i ≤ n};
• X0 = {(w1,0, . . . , wn,0)};
• Q = {q0};
• δ(q0, φ) = q0 , ∀φ ∈ 	 \ {(e1, . . . , en)}.

Then, for any data values x0, . . . , xm ∈ (A∗)n, with x0 = (w1,0, . . . , wn,0), x0 . . . xm is a computation of k� if and only if x0 . . . xm is a 
computation of Z .

Proof. Follows from the construction above.

An example is provided in section 7.
However, as the above defined X-machine has only one non-erroneous state, it will be controllable only if any transition 

(processing function) can be triggered from any memory value produced by the machine. This is not generally the case 
and, consequently, Z cannot be used as the basis for test generation using the method presented in section 4. One natural 
strategy to obtain a controllable X-machine equivalent of a kP system is to define a state for each n-tuple of configurations 
produced by the kP system computations; however, such an approach may yield an extremely large, potentially infinite, 
state space. On the other hand, as the above-mentioned testing method only checks the behaviour of an X-machine for 
computations of length less than or equal to the established upper bound, it is sufficient to construct an X-machine that 
captures correctly only these computations of the original kP system. In order to further reduce the state space of the 
resulting X-machine we will use an algebraic method inspired by Dana Agluin’s algorithm for learning regular languages 
from queries and counterexamples [43]. More precisely, we will use the L� algorithm [44], that constructs a minimal DFCA 
of an unknown finite language. Here we only present the application of the L� algorithm for the construction of the sought 
X-machine and the technical details of the algorithm that are relevant to this construction; for further details about the 
actual algorithm, the reader is referred to [44].

Consider again our kP system (having only rewriting and communication rules and using an alternative execu-
tion strategy in each compartment) k� = (A, μ, C1, . . . , Cn, i0) and let Z = (X, 	, x0, Q , q0, δ) be its computationally-
equivalent X-machine. Let � ≥ 0 be the chosen upper bound. We apply the L� algorithm to produce an X-machine 
Z ′ = (X, 	, x0, Q ′, q′

0, δ
′) such that its associated DFA A Z ′ is a minimal DFCA of U = L(A Z ) ∩ 	[�].

The L� algorithm constructs two sets of processing functions, S ⊆ 	∗ and W ⊆ 	∗; initially S = {ε} and W = {ε} and 
the algorithm continuously adds new elements to these sets. The algorithm also keeps an observation table T whose rows 
are labelled by the elements of (S ∪ S	) ∩ 	[�], and whose columns are labelled by the elements of W . Each element in 
the table, formed from the concatenation of the row label s ∈ (S ∪ S	) ∩ 	[�] and column label w ∈ W , is assigned a value 
T (sw), that may be 0, 1 or −1.

For a given sequence of processing functions, p = φ1 . . . φn , with φ1, . . . , φn ∈ 	 and n ≥ 0, the algorithm will establish 
if p will be a path in the newly-formed X-machine Z ′ and assigns the value T (p) accordingly. Naturally, only sequences 
of at most � processing functions will be of interest, the others will be assigned the value −1. Basically, for a sequence p, 
T (p) = 1 if it will form a path in Z ′ and the value T (p) = 0 otherwise. Consequently, if p is not in the language defined by 
A Z , p /∈ L(A Z ), then T (p) = 0. On the other hand, if p ∈ L(A Z ) then T (p) will be assigned the value T (p) = 1 if and only 
if p is controllable; otherwise, T (p) = 0 since the newly-formed X-machine Z ′ cannot have non-controllable paths. On the 
8
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other hand, as p is a sequence of transitions that cannot be directly observed, the algorithm will establish whether p is 
controllable and accepted by A Z by examining the computations of the kP system k� (which are also computations of its 
equivalent X-machine Z ) - we say that the algorithm poses a membership query. By assembling all the above observations 
we provide now a formal definition for T .

Definition 17. Let p = φ1 . . . φn , with φ1, . . . , φn ∈ 	 and n ≥ 0. If n ≤ � then T (p) = 1 if there exist x0 ∈ X0, x1, . . . , xn ∈ X
such that x0x1 . . . xn is a computation of Z and φi(xi−1) = xi , 1 ≤ i ≤ n, and T (p) = 0 otherwise. If n > � then T (p) = −1.

We prove now that the definition of T corresponds to our purpose.

Lemma 3. Let p = φ1 . . . φn, with φ1, . . . , φn ∈ 	 and n ≤ �. If 	 is identifiable then (T (p) = 1 if and only if p is controllable and 
p ∈ L(A Z )).

Proof. Suppose 	 is identifiable. “=⇒:” If T (p) = 1 then there exist x0 ∈ X0, x1, . . . , xn ∈ X such that x0x1 . . . xn is a com-
putation of Z and φi(xi−1) = xi , 1 ≤ i ≤ n. Thus p is controllable. Also, as 	 is identifiable, by induction on i, 1 ≤ i ≤ n, it 
follows that p ∈ L(A Z ). “⇐=:” If p is controllable and p ∈ L(A Z ) there exist x0 ∈ X0, x1, . . . , xn ∈ X such that x0x1 . . . xn is a 
computation of Z . Hence, by Definition 17, T (p) = 1

Using the membership queries, the L� algorithm will produce a candidate DFA; this will have the property that, for any 
sequence p of length at most n in the observation table, p will be a path in the candidate DFCA if and only if T (p) = 1. 
However, the first candidate may not be an actual DFCA of U and so further iterations may be necessary. When the candidate 
produced by the algorithm at the end of one iteration is not a DFCA of U , the algorithm requires a counterexample (a 
controllable sequence of at most � processing functions that is accepted by A Z but not by A Z ′ or accepted by A Z ′ but not 
by A Z ); for more details about how such a counterexample can be produced in practical applications the reader is referred 
to [45]. The counterexample becomes the label of a new row in the observation table and, using the expanded observation 
table, the algorithm will start a new iteration. The candidate DFCA produced by one iteration will have more states than the 
candidate DFCA produced by the previous iteration and so the algorithm is guaranteed to produce a correct (and minimal) 
DFCA of U in a number of iterations that does not exceed the number of states of a minimal DFCA of U .

The following theorem shows that, when 	 is identifiable, the application of the L� algorithm, as detailed above, will 
produce an X-machine Z ′ = (X, 	, x0, Q ′, q′

0, δ
′) suitable for our testing purposes.

Theorem 4. Let Z and Z ′ be as above. If 	 is identifiable then (1) all sequences in L(A Z ′) are controllable and (2) for any controllable 
sequence p ∈ 	[�], p ∈ L(A Z ) if and only if p ∈ L(A Z ′ ).

Proof. (1): By Lemma 3, T (p) = 1 if and only if p is controllable and p ∈ L(A Z ). Then the application of the L� algorithm 
will produce a DFA A Z ′ for which all sequences in L(A Z ′ ) are controllable. (2): By Lemma 3, for any controllable sequence 
p in the observation table, T (p) = 1 if and only if p ∈ L(A Z ). Hence the application of the L� algorithm will produce a DFA 
such that, for any controllable sequence p ∈ 	[�], p ∈ L(A Z ) if and only if p ∈ L(A Z ′ ).

6. Test generation for kernel P systems

As Z ′ is controllable and it reproduces the functionality of Z for all sequences of at most � transitions and Z is 
computationally-equivalent to the kP system k�, the bounded test generation method presented in section 4 can be applied 
to the newly produced X-machine Z ′ to produce a test suite for the kernel P system k�.

The construction of the test suite is quite straightforward since the final sets S and W produced by the L� algorithm 
are known to be a proper state cover and strong characterization, respectively, of the resulting DFA A Z ′ . On the other hand, 
it is quite possible that S and W are not minimal sets satisfying the required properties, in the sense that some elements 
may be removed from S and/or W and the resulting sets may still be a proper state cover and a strong characterization set, 
respectively, of A Z ′ . However, S and W can be minimised by scanning the observation table and removing the redundant 
rows and columns (the redundant rows correspond to sequences that reach states of the resulting DFA that have already 
been reached by shorter sequences; the redundant columns correspond to sequences that distinguish between pairs of states 
that have already been distinguished by shorter sequences). Such procedures are used before the tests given in section 7
are produced.

One last issue to consider is the effectiveness of the testing process. According to Theorem 1, the testing process will 
establish if a controllable sequence of processing functions is correctly implemented by examining the computations of the 
specification and the implementation under test provided the type 	 of the resulting X-machine is identifiable. This is 
usually the case when the original kP system is deterministic, as is the case of the model considered in section 7.

Definition 18. A kP system k� = (A, μ, C1, . . . , Cn, i0) having only rewriting and communication rules and using an al-
ternative execution strategy is said to be deterministic if, for every i, 1 ≤ i ≤ n, and every two distinct (rewriting and 
9
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communication) rules r1 : x1 → y1{g1} and r2 : x2 → y2{g2} of compartment Ci , there is no multiset w ∈ A+ such that w
contains both x1 and x2 and both g1(w) and g2(w) hold.

In a deterministic kP system, the rule applied in any compartment at any moment during the system computation 
is uniquely determined by the multiset that currently exists in that compartment and so the corresponding processing 
function of the resulting X-machine can be identified by examining the contents of all compartments. Hence, this provides 
identifiability of the set of processing functions. On the other hand, it is possible that no rule can be applied in one or more 
compartments; in order to distinguish such behaviour from the case when an actual rule is applied, no compartment of 
the kP system can contain rules of the form x → x{g}, for some x ∈ A+ . Please note that the kP system can include rules 
x → x′{g}, where x = a1 . . .an and x′ = (a1, t1) . . . (an, tn), with ai ∈ A and ti ∈ T , 1 ≤ i ≤ n.

7. Case study

In this section we present a simple case study illustrating the steps of the testing method.
First, we introduce a kP system model of adding two natural numbers written in unary notation. The two natural num-

bers, m and n, are represented by am+1 and an+1, respectively; a representing 0.
This model, as well as the next steps of the testing method, the learning model given by the finite state machine 

transition matrix, with the traces of execution of the kP system that fed into the learning model, and the testing results are 
available from the repository [46].

7.1. kP system model and its equivalent X-machine

First, we introduce the set of compartment types, T = {t1, t2, t3, t4}, where

• t1, t2 have the sets of rules, Ri = {ri,1 : a → (a, t3) {= a}, ri,2 : aa → (a, t3)(a, t3) {≥ a2}}, i = 1, 2;
• t3 has the set of rules R3 = {r3,1 : a → (a, t4) {= am+n+2}};
• t4 has R4 = ∅.

For each of the four types the execution strategy is alternative or choice, i.e., at most one rule is executed at each step.
Observation. As t1 and t2 are identical, one can use one type, but we prefer to use two as this will simplify the notations 

used later on.
The kP system is

k�Simple Add = (A,μ, C1, C2, C3, C4, i0)

where

• A = {a};
• C1 = (t1, am+1), C2 = (t2, an+1), C3 = (t3, λ), C4 = (t4, λ);
• μ = (V , L), where V = {C1, C2, C3, C4} and L = {(C1, C3), (C2, C3), (C3, C4)};
• i0 = C3.

The kP system k�Simple Add works as follows, in the first steps, rules from C1 and C2 are used. If m, n > 0 then rules 
ri,2, i = 1, 2, are used. Each time, two a′s from each of C1 and C2 are consumed and sent to C3. If one a is left in C1
or C2 then r1,1 or r2,1 is used, respectively. When no rules from C1 and C2 are used then one gets in C3, the output 
compartment, am+n+2, i.e., exactly the sum. In this case the rule r3,1 is executed finalising the computation by sending an a
to C4, signalling the end of the computation and getting am+n+1 in C3.

Now, we build the X-machine Z with type 	 equivalent to k�Simple Add , as in Theorem 2.
First we introduce the processing functions of 	 in accordance with their definition given in section 5. These are

φ1 = (e1, e2,ψr3,1), φ2 = (e1,ψr2,1 , e3), φ3 = (e1,ψr2,2 , e3),
φ4 = (ψr1,1 , e2, e3), φ5 = (ψr1,1 ,ψr2,1 , e3), φ6 = (ψr1,1 ,ψr2,2 , e3),
φ7 = (ψr1,2 , e2, e3), φ8 = (ψr1,2 ,ψr2,1 , e3), φ9 = (ψr1,2 ,ψr2,2 , e3).

7.2. Learning method and testing set

We consider l = 3 and apply the L� algorithm as described in section 5. First, we prepare the input for the L� algorithm, 
with membership queries. In this respect we simulate, by using KPWorkbench, the execution of the above introduced model 
for 0 ≤ m ≤ � and 0 ≤ n ≤ � and the traces of execution are fed into the learning algorithm. A Z ′ DFA is presented in Table 1. 
All the states, but q1, are final states and q1 is the sink state.
10
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Table 1
DFA Transition matrix.

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9

q0 q1 q1 q1 q1 q2 q3 q1 q4 q5

q1 q1 q1 q1 q1 q1 q1 q1 q1 q1

q2 q6 q1 q1 q1 q1 q1 q1 q1 q1

q3 q6 q2 q2 q1 q1 q1 q1 q1 q1

q4 q6 q1 q1 q2 q1 q1 q2 q1 q1

q5 q6 q2 q2 q2 q2 q2 q2 q2 q2

q6 q1 q1 q1 q1 q1 q1 q1 q1 q1

One can observe from Table 1 that A Z ′ is an approximation of the finite state machine, A Z , associated with the X-
machine, Z , built for the k�Simple Add model. Every sequence of length less than or equal to � is accepted by both A Z and 
Az′ . Longer sequences are not always accepted by both of them. One can notice that φn

9φ1, n ≥ 1, is accepted by A Z , but A Z ′
accepts only sequences for n = 1, 2.

Now, we discuss the test generation for this model. The test set includes all the sequences that cover A Z ′ , i.e., getting to 
any state of it. As the k�Simple Add is deterministic, then in accordance with section 6, one can get the multisets associated 
with the rules defining the processing functions. These sequences are listed below together with the multisets associated 
with the rules defining the processing functions. Each sequence, φs1 , . . . , φsp , defines a path through A Z ′ , providing also the 
corresponding sequence of multisets, ms0 , . . . , msp , where φsi (msi−1 ) = msi , 1 ≤ i ≤ p. The multisets are defined as tuples, 
written with square brackets.

φ5 : [a, a, λ] (ψr1,1 , ψr2,1 , e3) [λ, λ, a2];
φ6 : [a, a2, λ] (ψr1,1 , ψr2,2 , e3) [λ, λ, a3];
φ8 : [a2, a, λ] (ψr1,2 , ψr2,1 , e3) [λ, λ, a3];
φ9 : [a2, a2, λ] (ψr1,2 , ψr2,2 , e3) [λ, λ, a4];
φ5φ1 : [a, a, λ] (ψr1,1 , ψr2,1 , e3) [λ, λ, a2] (e1, e2, ψr3,1) [λ, λ, a];
φ6φ1 : [a, a2, λ] (ψr1,1 , ψr2,2 , e3) [λ, λ, a3] (e1, e2, ψr3,1) [λ, λ, a2];
φ6φ2 : [a, a3, λ] (ψr1,1 , ψr2,2 , e3) [λ, a, a3] (e1, ψr2,1 , e3) [λ, λ, a4];
φ6φ3 : [a, a4, λ] (ψr1,1 , ψr2,2 , e3) [λ, a2, a3] (e1, ψr2,2 , e3) [λ, λ, a5];
φ8φ1 : [a2, a, λ] (ψr1,2 , ψr2,1 , e3) [λ, λ, a3] (e1, e2, ψr3,1) [λ, λ, a2];
φ8φ4 : [a3, a, λ] (ψr1,2 , ψr2,1 , e3) [a, λ, a3] (ψr1,1 , e2, e3) [λ, λ, a4];
φ8φ7 : [a4, a, λ] (ψr1,2 , ψr2,1 , e3) [a2, λ, a3] (ψr1,2 , e2, e3) [λ, λ, a5];
φ9φ1 : [a2, a2, λ] (ψr1,2 , ψr2,2 , e3) [λ, λ, a4] (e1, e2, ψr3,1) [λ, λ, a3];
φ9φ2 : [a2, a3, λ] (ψr1,2 , ψr2,2 , e3) [λ, a, a4] (e1, ψr2,1 , e3) [λ, λ, a5];
φ9φ3 : [a2, a4, λ] (ψr1,2 , ψr2,2 , e3) [λ, a2, a4] (e1, ψr2,2 , e3) [λ, λ, a6];
φ9φ4 : [a3, a2, λ] (ψr1,2 , ψr2,2 , e3) [a, λ, a4] (ψr1,1 , e2, e3) [λ, λ, a5];
φ9φ5 : [a3, a3, λ] (ψr1,2 , ψr2,2 , e3) [a, a, a4] (ψr1,1 , ψr2,1 , e3) [λ, λ, a6];
φ9φ6 : [a3, a4, λ] (ψr1,2 , ψr2,2 , e3) [a, a2, a4] (ψr1,1 , ψr2,2 , e3) [λ, λ, a7];
φ9φ7 : [a4, a2, λ] (ψr1,2 , ψr2,2 , e3) [a2, λ, a4] (ψr1,2 , e2, e3) [λ, λ, a6];
φ9φ8 : [a4, a3, λ] (ψr1,2 , ψr2,2 , e3) [a2, a, a4] (ψr1,2 , ψr2,1 , e3) [λ, λ, a7];
φ9φ9 : [a4, a4, λ] (ψr1,2 , ψr2,2 , e3) [a2, a2, a4] (ψr1,2 , ψr2,2 , e3) [λ, λ, a8];
φ6φ2φ1 : [a, a3, λ] (ψr1,1 , ψr2,2 , e3) [λ, a, a3] (e1, ψr2,1 , e3) [λ, λ, a4] (e1, e2, ψr3,1) [λ, λ, a3];
φ6φ3φ1 : [a, a4, λ] (ψr1,1 , ψr2,2 , e3) [λ, a2, a3] (e1, ψr2,2 , e3) [λ, a5] (e1, e2, ψr3,1) [λ, λ, a4];
φ8φ4φ1 : [a3, a, λ] (ψr1,2 , ψr2,1 , e3) [a, λ, a3] (ψr1,1 , e2, e3) [λ, λ, a4] (e1, e2, ψr3,1) [λ, λ, a3];
φ8φ7φ1 : [a4, a, λ] (ψr1,2 , ψr2,1 , e3) [a2, λ, a3] (ψr1,2 , e2, e3) [λ, λ, a5] (e1, e2, ψr3,1) [λ, λ, a4];
φ9φ2φ1 : [a2, a3, λ] (ψr1,2 , ψr2,2 , e3) [λ, a, a4] (e1, ψr2,1 , e3) [λ, λ, a5] (e1, e2, ψr3,1) [λ, λ, a4];
φ9φ3φ1 : [a2, a4, λ] (ψr1,2 , ψr2,2 , e3) [λ, a2, a4] (e1, ψr2,2 , e3) [λ, λ, a6] (e1, e2, ψr3,1) [λ, λ, a5];
φ9φ4φ1 : [a3, a2, λ] (ψr1,2 , ψr2,2 , e3) [a, λ, a4] (ψr1,1 , e2, e3) [λ, λ, a5] (e1, e2, ψr3,1) [λ, λ, a4];
φ9φ5φ1 : [a3, a3, λ] (ψr1,2 , ψr2,2 , e3) [a, a, a4] (ψr1,1 , ψr1,2 , e3) [λ, λ, a6] (e1, e2, ψr3,1) [λ, λ, a5];
φ9φ6φ1 : [a3, a4, λ] (ψr1,2 , ψr2,2 , e3) [a, a2, a4] (ψr1,1 , ψr2,2 , e3) [λ, λ, a7](e1, e2, ψr3,1) [λ, λ, a6];
φ9φ7φ1 : [a4, a2, λ] (ψr1,2 , ψr2,2 , e3) [a2, λ, a4] (ψr1,2 , e2, e3) [λ, λ, a6] (e1, e2, ψr3,1) [λ, λ, a5];
φ9φ8φ1 : [a4, a3, λ] (ψr1,2 , ψr2,2 , e3) [a2, a, a4] (ψr1,2 , ψr2,1 , e3) [λ, λ, a7] (e1, e2, ψr3,1) [λ, λ, a6];
φ9φ9φ1 : [a4, a4, λ] (ψr1,2 , ψr2,2 , e3) [a2, a2, a4] (ψr1,2 , ψr2,2 , e3) [λ, λ, a8] (e1, e2, ψr3,1) [λ, λ, a7].

Let us consider the testing sequence φ9φ2φ1, where φ9 = (ψr1,2 , ψr2,2 , e3), φ2 = (e1, ψr2,1 , e3), φ1 = (e1, e2, ψr3,1); and 
φ9([a2, a3, λ]) = [λ, a, a4],
11
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Table 2
Properties of the model.

Type Property

Description (i) Eventually the multisets from the input compartments, C1, C2 , will be exhausted
(ii) Always when there are no more symbols in the input compartments, C1, C2 , and all are being accumulated in the 

compartment C3 , in the next step a symbol will be sent to C4

(iii) Always when there are non-empty multisets in the input compartments, C1, C2 , eventually they will be exhausted and 
a symbol will appear in C4

kP-Queries (i) ltl: eventually (in2.a > 0 implies (next in2.a = 0));
(ii) ltl: always (in1.a = 0 and (in2.a = 0 and add.a = (1+2)+2) implies (next 

in1.a = 0 and (in2.a = 0 and (add.a = (1+2)+1 and environment.a = 1))));
(iii) ltl: always ((in1.a > 0 and in2.a > 0) implies (eventually in1.a = 0 and 

(in2.a = 0 and environment.a = 1)));

NuSMV (i) LTLSPEC F ((in2.a > 0 -> X (!pInS U (in2.a = 0 & pInS))) & pInS)
(ii) LTLSPEC G (((in1.a = 0 & (in2.a = 0 & add.a = ((1 + 2) + 2))) -> X (!pInS U 

((in1.a = 0 & (in2.a = 0 & (add.a = ((1 + 2) + 1) & environment.a = 1))) & 
pInS))) | !pInS)

(iii) LTLSPEC G (((in1.a > 0 & in2.a > 0) -> F ((in1.a = 0 & (in2.a = 0 & environ-
ment.a = 1)) & pInS)) | !pInS)

Spin (i) ltl prop1 { <> ((c[3].x[a_] > 0 -> X (state != step_complete U (c[3].x[a_] == 
0 && state == step_complete))) && state == step_complete) }

(ii) ltl prop2 { [] (((c[0].x[a_] == 0 && (c[3].x[a_] == 0 && c[1].x[a_] == ((1 + 
2) + 2))) -> X (state != step_complete U ((c[0].x[a_] == 0 && (c[3].x[a_] == 
0 && state == step_complete))) || state != step_complete) }

(iii) ltl prop3 { [] (((c[0].x[a_] > 0 && c[3].x[a_] > 0) -> <> ((c[0].x[a_] == 0 
&& (c[3].x[a_] == 0 && c[2].x[a_] == 1)) && state == step_complete)) || state 
!= step_complete) }

φ2([λ, a, a4]) = [λ, λ, a5], φ1([λ, λ, a5]) = [λ, λ, a4]. From their definitions, φ9 corresponds to the rules r1,2 in C1 and r2,2 in 
C2; φ2 stands for r2,1 in C2; and φ1 is associated with r3,1 in C3.

According to the DFA transition matrix in Table 1, we have the following transitions: δ(q0, φ9) = q5, δ(q5, φ2) = q2 and 
δ(q2, φ1) = q6. This is a path from q0 to q6 through q5, q2.

From the kP system perspective these testing sequences represent a cover of all the rules and the contexts (multisets) 
these are applied upon. This corresponds to rule coverage principle introduced in [32] for P system testing.

7.3. Formal verification

We aim to complement the testing capabilities of the introduced method by revealing additional properties of the testing 
sequences. We refer to the Table 2 where three more general properties are proven. We interpret them in the context of 
the above discussed test sequence φ9φ2φ1.

The first line of the Table 2 describes these properties in natural language, the second one is the kP-Queries description 
of them and the latest two present their translations into NuSMV and Spin, respectively.

The first property states that eventually the multisets from the input compartments, i.e., C1, C2, will be exhausted and 
this is the case with the sequence φ9φ2φ1. In fact, every path ending in φ1, has this property. Those without φ1 at their end 
do not satisfy the property.

The second property shows that always whenever C1, C2, are empty and all the initial multisets are accumulated in the 
compartment C3, in the next step a symbol will be sent to C4. Again, this is also true for the test sequence φ9φ2φ1 (and all 
those ending in φ1), but the property states that always φ1 appears immediately after the sum is achieved in C3.

The third property appears as a refinement of the first one by revealing what happens after C1, C2 are both empty.

8. Conclusions

In this paper we have presented a new approach on testing a kernel P system that is based on learning the X-machine 
system where only the first � steps of each computation coincide in both systems. The conditions for building the L�

learning algorithms and then the test set are investigated. The test set is also associated with a verification process revealing 
complementary information regarding the behaviour of the investigated kP system.

As discussed in section 5 we have investigated kP systems (a) having only rewriting and communication rules and (b) 
using in each compartment an alternative execution strategy. It remains to be investigated to what extent the method 
introduced here can be extended to more general types of kP systems. Also, more complex examples will be considered in 
further research.
12
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