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ABSTRACT 

Inverse problems involve extracting the internal structure of a physical system from noisy 

measurement data. In many fields, the Bayesian inference is used to address the ill-

conditioned nature of the inverse problem by incorporating prior information through an 

initial distribution. In the nonparametric Bayesian framework, surrogate models such as 

Gaussian Processes or Deep Neural Networks are used as flexible and effective 

probabilistic modeling tools to overcome the high-dimensional curse and reduce 

computational costs.  

In practical systems and computer models, uncertainties can be addressed through 

parameter calibration, sensitivity analysis, and uncertainty quantification, leading to 

improved reliability and robustness of decision and control strategies based on simulation 

or prediction results. However, in the surrogate model, preventing overfitting and 

incorporating reasonable prior knowledge of embedded physics and models is a challenge. 

Suspended Nonstructural Systems (SNS) pose a significant challenge in the inverse 

problem. Research on their seismic performance and mechanical models, particularly in 

the inverse problem and uncertainty quantification, is still lacking. To address this, the 

author conducts full-scale shaking table dynamic experiments and monotonic & cyclic 

tests, and simulations of different types of SNS to investigate mechanical behaviors. 

To quantify the uncertainty of the inverse problem, the author proposes a new framework 

that adopts machine learning-based data and model driven stochastic Gaussian process 

model calibration to quantify the uncertainty via a new black box variational inference 
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that accounts for geometric complexity measure, Minimum Description length (MDL), 

through Bayesian inference. It is validated in the SNS and yields optimal generalizability 

and computational scalability. 
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CHAPTER ONE 

INTRODUCTION 

1.1 ML-based Data driven inverse problems of uncertainty quantification   

Computational mathematical models and simulations are essential tools to predict the 

response of physical structural systems. However, such models can be tied to large 

economic and time costs. Specifically, in order to obtain high-precision real-world 

test results, it is necessary to comprehensively consider various uncertainties (such as 

model parameter uncertainty, measurement uncertainty, model discrepancy and model 

solution error, etc.), wherein there is often a certain deviation between the simulated 

and the observed response and performs massive calculations. Such a deviation may 

in turn, result in poor prediction, robustness/reliability. Therefore, to measure and 

improve the credibility of the Computational mathematical models, it is necessary to 

quantify various uncertainties and improve the prediction accuracy of the 

mathematical models based on Model Verification, Validation, and Uncertainty 

Quantification [1].  

To address these challenges, the Defense Advanced Research Projects Agency 

(DARPA) launched the Enabling Quantification of Uncertainty in Physical Systems 

(EQUiPS) project in 2015 [2], which aims to develop advanced mathematical theories 

and methods to effectively quantify, transmit, and manage multi-source uncertainty in 

the modeling and design of complex systems. This significantly reduces the economic 

and time costs burdens of conducting research, and finally obtains high-confidence 

accuracy indicators of equipment performance under specific conditions of interest. 

As the name of the project suggests, the research work is based on the framework of 
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Uncertainty Quantification (UQ). In fact, in the 2025 Mathematical Sciences 

published by the National Academy of Sciences in 2013 [3], UQ has been singled out 

and discussed as a new important research area and asserted that the emergence of this 

field brought a great promise for accurate modeling and accurate prediction of 

complex systems. 

UQ has been well applied to cover fluid mechanics, computational seismology, 

geological exploration, weather forecasting, financial forecasting, and other practical 

engineering problems [4,5,6,7,8,25]. There are usually two shortcomings in the study 

of such problems based on traditional mathematical methods: first, the corresponding 

mathematical theories are may not be longer applicable in complex systems and high-

dimensional data environments, and traditional methods need to establish definite 

models, which contradict the strong uncertainty of practical problems; Second, the 

application of traditional mathematical knowledge can still explain the current 

problems, but there is still a big gap from the corresponding theory to the real practice, 

or some theoretical achievements are difficult to form an effective implementation 

plan. 

In order to overcome the above two problems, the core of UQ is to study the 

magnitude and likelihood of the influence of uncertainty variables, such as unknown 

parameters in the model, experimental observation errors, geometric complexity of 

the design area, etc., on the behavior of the system in the real environment. In general, 

uncertainty variables are introduced as random variables (or random processes), so the 

related predictions and evaluations are also discussed from a statistical perspective. 

Therefore, in the UQ framework, researchers often focus on the law and statistical 
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characteristics of the variables of interest with the input random variables and at the 

same time, need to analyze the confidence and reliability of the model under study. It 

should be noted that UQ is not to determine whether the research object is "real" or 

not, it is actually only an approximation of the real object, as commented in [9]:  

UQ cannot tell you that your model is ‘right’ or ‘true’, but only that, if you accept he 

validity of the model (to some quantified degree), then you must logically accept he 

validity of certain conclusions (to some quantified degree).  

Therefore, the concept of UQ is based on a new dimension of philosophical thinking, 

which actually describes the credibility of scientific inference. Moreover, whether 

from the purpose of EQUiPS or from the "2025 Mathematical Sciences" report, UQ 

mainly includes two aspects: it is based on the establishment of a complete 

mathematical theory and methodological framework to standardize the design criteria 

of complex systems and establish high-confidence models; The foothold lies in the 

construction of corresponding efficient algorithms to support the rapid development 

of the project. The two present a mutually supportive and synergistic relationship. At 

the same time, UQ will play a more important role in the ongoing revolution in the 

physics-cyber space, including Industry 4.0 and digital twins. 

In general, there are two kinds of uncertainty: aleatoric uncertainty and epistemic 

uncertainty [10]. Aleatoric, also known as stochastic uncertainty, describes outputs 

that vary from experiment to experiment. By incorporating knowledge into the 

mathematical model or experiment, we cannot get rid of this uncertainty. Epistemic 

uncertainty, commonly referred to as system uncertainty, results from incomplete or 

incorrect information, such as limited experimental data sets or biased models, etc. By 
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incorporating knowledge into the mathematical model or experiment, this kind of 

uncertainty can be removed. 

The complexity of the mathematical models used for uncertainty quantification has 

tended to rise along with the availability of computational resources, and they are now 

frequently run on powerful supercomputers that can generate terabytes of data at once. 

Even while this increased complexity can lead to fresh perspectives and more 

accuracy, it can occasionally be advantageous to run quick approximations of these 

models, often known as surrogates [11,26,27]. Such data are approximated using 

surrogate models. The development of huge ensembles of model realizations 

[12,13,14], the efficient investigation of the sensitivity of model output to its inputs, 

and model calibration [15,16] have all been made possible by the employment of 

these surrogates over a long period of time [17,18,28]. 

For non-parametric interpolation, Gaussian Processes (G.P.s) have gained popularity 

and significance in the supervised machine learning community (ML). The use of 

G.P.s for calibrating computer models was first introduced by Kennedy and 'O'Hagan 

(2001) [19], and it serves as the foundation for contemporary methods. Since they 

offer reliable estimates and uncertainty for nonlinear reactions, even in situations with 

little training data, G.P.s are especially well suited for this purpose. Recent 

developments have enabled deeper [20], more expressive G.P.s that can be trained on 

ever greater volumes of training data [21], despite initial challenges with their 

scalability compared to, for example, Neural Networks. 

Derivative-free Bayesian calibration or inversion generally starts with the observation 

of the error model. Traditional methods for derivative-free Bayesian calibration to 
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estimate the posterior distribution, such as Markov chain Monte Carlo (MCMC) [22], 

typically require many iterations—often more than 104  steps to reach statistical 

convergence. Given that each forward run can be expensive, conducting a series of 

runs is computationally unaffordable, rendering MCMC impractical for real-world 

calibrations. 

In the eighties and nineties, Peterson [23] and Hinton [24] began to study variational 

inference methods, mainly to approximate posterior probabilities in Bayesian models. 

The main idea of variational inference is to seek a class of simple variational 

distributions as an approximate solution to the true posterior distribution through 

optimization processes rather than sampling processes. The variational distribution is 

a collection of hidden variable distributions, using KL-divergence (Kullback-Leibler) 

as a measure of inter-distribution similarity, and finding the variational distribution 

that is most similar to the true posterior distribution as an approximate distribution of 

the true posterior distribution. Therefore, variational inference has become another 

important method for learning Bayesian models. Compared with the Monte Carlo 

sampling method, the variational inference method is faster, simpler, and easier to 

parallelize and is more suitable for large data and complex models. Therefore, 

variational inference methods are widely used in various fields, including natural 

language processing [34,35], computer vision [36,37], computational biology [38,39], 

robotics science [40,41], and text analysis [42]. 

Variational inference (VI) is a popular technique in machine learning, but it is not as 

widely used in statistics compared to MCMC-based sampling techniques. In civil 

engineering, the slow uptake of VI can be attributed to its additional modeling 
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complexities and limited theoretical exploration. Although traditional mean field VI is 

commonly used [43,44], it requires complex mathematical derivations and conjugate 

assumptions, which limits its practical applications. On the other hand, Black box 

variational inference (BBVI) [369] is a promising and advanced VI technique that 

remains largely unexplored in civil engineering. BBVI does not require specific 

model derivations and can scale well to large datasets and high-dimensional 

parameter spaces, which are common in many fields. In contrast, MCMC related 

methods become quickly impractical with the increasing size of datasets and number 

of parameters and do not scale well. Therefore, we propose a combination of BBVI 

with O'Hagan's Bayesian calibration framework [19], which can be easily derived 

without the need for conjugate assumptions, enabling the use of BBVI and achieving 

superior results for SNS systems in civil engineering, which are critical for ensuring 

reliability and safety and making it accessible to a wider audience of engineers and 

scientists. 

Although Bayesian updating is very common, the model class selection is not. 

Addressing modeling complexity remains a more significant challenge for Bayesian 

inference applications since integrating metamodeling techniques is not trivial. The 

challenge here is to establish a fully automated integration that can address different 

degrees of competency for the end-user and a wide range of application problems 

with a certain degree of robustness.  

Physics-based computer models of engineering systems are instruments of prediction 

that define a functional relationship between parameters that control the operational 

conditions of a system (input) and the system response of interest (output). In this 
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context, these input parameters, known as control variables, define the domain of 

applicability in which the system operates. Here, we will assume that experimentalists 

have control over and complete knowledge of these control variables. While 

developing a model that links control variables to the output responses of interest (for 

instance, loads are acting on a structure to deformations), other input parameters that 

define the characteristics of the system (for instance, material properties or boundary 

conditions of the structure) are also introduced to the model. Frequently, a number of 

these input parameters that define the system characteristics are poorly known and, 

thus, must be inferred from experimental measurements, while the rest of the 

parameters are accepted to be well-known. We refer to this subset of poorly known 

input parameters that are selected for such inference as calibration parameters. Hence, 

given the values for well-defined control variables and poorly known calibration 

parameters, simulation models are conceived to predict unknown output responses 

within a predefined domain of applicability.  

Model calibration then entails estimating the best-fit values for a few calibration 

parameters (which are believed to be identifiable) from experiments conducted at 

various control parameter settings within this domain of applicability. Indeed, one 

should not expect to get the complete ''truth' from the model, for they are mere 

approximations and incomplete (i.e., systematically biased) representations of the 

underlying behavior of the system. Such incompleteness may originate from, for 

instance, omission of input parameters from the model, omission of interactions 

between the model input parameters and/or control variables or assigning incorrect 

values to model input parameters that are considered to be known. Thus, computer 

models invariably have systematic discrepancy biases in the way they predict the true 
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behavior of the systems. This inherent discrepancy bias may be identified during 

model calibration by inferring an independent error model from the experimental data 

[19, 45, 46] or by blending emulators with mechanistic models to explain the omitted 

relationships between model input parameters.          

In model calibration, the goodness-of-fit of a model to experiments reflects how well 

a model fits a particular set of observed data. A good fit is a necessary but not a 

sufficient condition [47], as it is possible to calibrate physics-based models to 

different sets of calibration parameter values that can fit a finite set of experiments 

reasonably well due to the inevitable compensations between various sources of errors 

and uncertainties [48]. In contrast to goodness of fit, generalizability is defined as the 

ability of a model to represent the reality of interest in all settings of the domain, 

including the settings where experiments are not available [49]. The generalizability 

of a calibrated model is important as computer models are most often calibrated with 

the ultimate objective of predicting settings for which experiments are unavailable.  

 
(a) Ockham's hill relationship                      (b) Detailed example 

Figure 1.1 Interplay among of the goodness-of-fit, complexity and generalizability  
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The complexity of a model calibration campaign leads to a hill-like relationship 

between good fitness to a finite amount of noisy measurements (in the tested settings) 

and generalizability of the model predictions (in the untested settings) [49, 50, 51] 

(See Fig. 1.1(a)). A model calibration campaign with too little flexibility would lose 

valuable information that could have otherwise been inferred from the data [49, 52] . 

On the other hand, a calibration campaign with too much flexibility would encourage 

the model to fit noise in the measurements, seemingly improving the goodness-of-fit 

while degrading the generalizability (see Figure 1.1(a)). Hypothetically, in the most 

extreme case, a calibration campaign that can produce a model capable of matching 

practically any possible outcome (infinite flexibility) yields an uninformative tool that 

is impossible to falsify, and that has no generalizability (tail end of Figure 1.1(a)). For 

physics-based models, the inherent functional structure of the model would impose a 

differential ability to fit patterned data and would prevent us from reaching this 

hypothetical infinite flexibility. Such differential ability of a model was referred to as 

"selectivity" by Cutting et al., 1992 [53].  In Figure 1(b), we present a detailed 

illustration of the interplay among the model goodness-of-fit, generalizability, and 

model complexity.   

Cutting et al. (1992) [53] recognized that the number of parameters alone is an 

insufficient indicator of model complexity and advocated for evaluating the fitting 

power (i.e., what they refer to as ‘scope’) of a model to random data. They suggested 

using binomial tests to compare the fitting ability of a model to the data from the 

actual system with the fitting ability of random data. Similarly, complexity has been 

defined as the range of data patterns that a model can fit [54, 55, 56, 57]. Myung et al., 
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2000 [58] and Pitt et al., 2002 [50] quantified a geometric complexity measure [31] 

known as the Minimum Description Length (MDL) [54, 59]. This metric considers 

the experimental data as a code or description to be compressed by the model and 

evaluates the models according to their ability to compress a data set by extracting the 

necessary information from the data without random noise. MDL is based on the 

understanding that the more data is compressed, the more information about the 

underlying regularities governing the process of interest would be learned [58]. 

Therefore, MDL would choose a model which has the shortest description code 

(length) of the data [30, 59].   

In Bayesian inference problems, most studies overlook generalization and model 

complexity or use simple criteria like AIC, BIC, or DIC. This can result in overfitting 

and poor generalization. We propose using MDL based on algorithmic information 

theory, Kolmogorov complexity, and geometric complexity measure of data space. 

Our comparison with other criteria demonstrates MDL’s superior generalization 

performance and it is also well-embedded in the black box variational inference 

framework, and our approach achieves good Bayesian inference and Uncertainty 

Quantification results and improves validation accuracy of suspended nonstructural 

systems (SNS) systems. 

It is worth noting that in addition to the uncertainty quantification forward problems; 

this dissertation also pays great attention to the inverse problem of uncertainty 

quantification [60], which refers to a type of problem that obtains the internal 

structure information of a physical system from the measurement data containing 

noise. Due to its wide application in physics, mechanics, earthquake engineering, 
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atmospheric science, life science, medicine, economics, industrial control and other 

experimental sciences, based on the above investigation, we propose an effective 

systematic method and framework for UQ of forward and inverse problems, 

combining model complexity selection, surrogate models and efficient variational 

inference, and skillfully apply it in the suspended non-structural systems (SNS).  

In recent years, moderate or strong earthquakes have caused significant property loss, 

interruption of building function, and even threatened life safety due to damage to 

suspended nonstructural systems (SNS). Despite minor damage to the main building 

structures, the impact on SNS underscores their crucial role in ensuring the resilience 

of buildings against seismic events. While some experiments have been conducted in 

recent years, the effects of ultra-large areas and long duration and long periods under 

the conditions of super-tall buildings are still unknown. This recently completed full-

scale suspended nonstructural systems (SNS) experiments, including suspended 

ceilings and cable trays, are the largest in the world, in which we carefully designed 

earthquake wave inputs in line with long duration and long periods in super-tall 

buildings, based on national standards and random vibration theory. In the field of 

civil engineering, Uncertainty Quantification and Inverse problem inference for the 

suspended nonstructural systems (SNS) is still unknown, and this study will fill that 

critical gap. Our use of a surrogate machine learning model reduces computational 

cost and running time, resulting in a great speed increase. From this view, this 

dissertation presents a novel framework for uncertainty quantification of inverse 

problems with the application on the suspended nonstructural systems. The validity of 

the proposed framework is using the full-scale shaking table tests of suspended 

nonstructural systems (SNS) and accompanying simulated data. 
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1.2 Suspended non-structural systems  

During moderate or strong earthquakes in recent years, the damage to non-structural 

components (NSCs) can lead to great property loss, interruption of building function, 

and even threat to life safety, although the main building structures suffer minor 

damage [61-68]. As one of the most popular NSCs in buildings, the suspended ceiling 

system (SCS) with mineral wool boards suffers serious damage during earthquakes. 

The common types of damage to SCS with mineral wool boards include dislodgement 

and falling of ceiling panels, unseating of ceiling grid members around the perimeter, 

buckling, and failure of ceiling grid connections, buckling of ceiling grid members, 

failure of supporting elements, and the collapse of ceilings [69]. Among all the above 

damage patterns, the ceiling perimeter is regarded as one of the most vulnerable parts 

of SCS. This is especially true for the SCS with mineral wool boards applied in China, 

which lacks reliable connection at the boundary, easily causing the falling of the gird 

members near the ceiling perimeter from the support and even further triggering a 

continuous collapse of the ceiling during earthquakes.  

Suspended ceiling systems are widely used in both commercial and residential 

buildings due to their easy construction and decorative aesthetics. However, in recent 

years the SCS suffered severe damage during moderate or major earthquakes, 

frequently resulting in great property loss, interruption of building function, and even 

threat to life safety. A crucial part of SCS is the ceiling component, greatly 

influencing the seismic performance of SCS, from which the propagation of damage 

often initiates and even the complete collapse of the ceiling occurs [70]. The typical 
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types of damage to the ceiling components in real earthquakes include the failure of 

grid connections, the failure of hangers, and the failure of peripheral attachments. 

To examine the seismic performance of SCS subjected to simulated earthquake 

loading, experimental studies largely using shaking table tests have been carried out 

for nearly 40 years [70]. One of the most significant observations is that the ceiling 

components are identified as one of the most vulnerable parts of SCS during 

earthquakes. Several component-level investigations on SCS were conducted to 

obtain the failure mechanism and capacities of strength and deformation of the ceiling 

components. Soroushian et al. [70, 71, 72] performed systematic studies on the 

capacities of the peripheral attachments and components under monotonic and cyclic 

loadings. Based on those experimental data, several fragility curves and analytical 

models for different components were developed. In the study by Paganotti et al. [73], 

a series of static tests on different types of components of SCS subjected to monotonic 

loading was carried out to evaluate the component capacity and produce fragility 

curves. It was found that the cross-tee connections are the most critical components of 

SCS. To assess the seismic performance of the ceiling component with seismic clips 

attached to wall angles using two screws, three types of ceiling perimeter 

configurations, i.e., pop-riveted connection and seismic clips with 1 screw or 2 screws, 

were conducted under monotonic and cyclic tests by Gilani et al. [74]. The 

experimental results indicated that the alternate peripheral installation with a seismic 

clip and 2 screws has better seismic performance in terms of the load-carrying ability 

and energy dissipation. 
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Although current seismic design standards such as the ASTM-E580/E580M [75] and 

AC368 [76] specify that the ceiling joints should carry a mean ultimate test load of 

not less than 800N for a restrained ceiling, it is unclear whether the strength capacity 

of the joint under the actual load can meet the requirements. Previous studies on 

ceiling components were conducted based on a certain product from a company and 

may produce different results from similar studies with different products. To 

understand and evaluate the seismic performance of suspended ceiling components 

and support for subsequent numerical modelling, a series of static tests on the ceiling 

components under monotonic and cyclic loadings were carried out in this study. The 

failure patterns, capacities of strength and deformation, and energy dissipation of the 

ceiling components are presented in detail in this study. In addition to the above 

quasi-static experiments, we also carried out full-scale dynamical shaking table 

experiments, and in order to consider the area effect, we carried out the world's largest 

area full-scale experiment on suspended non-structural components, and 

systematically conducted experimental research and analysis on the dynamic and 

nonlinear performance of suspended non-structural systems. And the experiments also 

consider about the long duration and high period effect on the non-structural systems.  

Another very popular non-structural system is Suspended Cable Tray Systems (SCTS), 

and it is a typical non-structural component used to support insulated electric cables 

used for power distribution and communication. Due to its properties of large span, 

low redundancy and complex geometric shape, the cable tray system may experience 

large response or even collapse when subjected to seismic excitation. During previous 

earthquakes, a large number of cable tray suffered severe damage, such as buckling 

and falling down [77,78]. The cable tray in the high-rise building was damaged while 



15 

 

the main structure still worked, which caused the interruption of building function 

[79]. The failure of the cable tray causes 68% of the damage to the cable [80]. The 

cable tray is one of the critical parts of the building. need to maintain building 

functions during and after the expected earthquake.  

Previous tests mainly focused on cable tray systems applied in nuclear power plants 

[81, 82, 83]. There were few tests on the suspended cable tray system applied in 

ordinary civil buildings. In this study full-scale shaking table tests on the suspended 

cable tray system applied in ordinary civil buildings were carried out to evaluate its 

seismic performance. Three types of seismic supports, which are manufactured 

products, were installed in the specimens. The dynamic properties and responses of 

the cable tray system are analysed.  

According to the experimental analysis results of the dynamical shaking table and the 

computational numerical simulation established by us, we validate and analyse the 

computational numerical simulation results, and finally combined with the proposed 

uncertainty quantification of inverse problem framework, we infer the uncertainty 

parameters and achieve good results. 

1.3 The main objectives (OBjectives) of this dissertation:  

OB1 Develop the world’s largest area of suspended non-structural dynamical shaking 

table experiments is firstly conducted and consider about the area effect. Apply sweep 

input to consider more details of mechanical characters of suspended non-structural 

systems.  And the large number of experiments also firstly includes the long period 

and long duration of earthquake waves input to fulfil the practical engineering 

application.  
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OB2 Develop the Machine learning-based Gaussian Process surrogate model to be 

embedded in the framework of Uncertainty Quantification for forward and inverse 

problems.   

OB3 Augment the traditional methods like MCMC or approximate Bayesian 

computation (ABC), mean field variational inference, and black box variational 

inference with O'Hagan's Bayesian calibration framework is proposed to greatly 

increase the Bayesian inference computational efficiency.  

OB4 Propose Geometric complexity based minimum description length model 

selection method in the inverse problems of Uncertainty quantification.  

OB5 Design of experiments and sensitivity analysis is utilized to increase the speed of 

Uncertainty propagation in the forward problems.   

OB6 Firstly Consider Bayesian inverse problems of uncertainty quantification 

application to the suspended non-structural systems for calibration, inference and 

validation of the computational numerical simulations.   

1.4 My contribution and role of the Tongji-Clemson-Tokyo international 

cooperation  

Here below five pages give the detailed contributions weights and the “Clemson” 

represent me in the tables list below. Also, an evolution letter of PI from Tongji 

University and Tokyo Institute of Technology is attached as well.  

(1) 100% contribution part (leading role): [Included in this dissertation] 

Table 1.1 Uncertainty Quantification of Inverse problems 
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Uncertainty Quantification of Inverse 

problems  

Pre-test preparation for 1.5 years N/A 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily) N/A 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons) N/A 

Re-test for platform;                       N/A 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Ceiling test Type C Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Ceiling test Type D Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Ceiling test Type E Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Cable Tray Test  

Suspended Cable Tray test Type A Tongji: 0% Clemson: 100% Tokyo: 0% 

Suspended Cable Tray test Type B Tongji: 0% Clemson: 100% Tokyo: 0% 

 

(2) 95% contribution part (leading role): [Not included in this dissertation] 

Table 1.2 Deep Learning based Computer visions recognition 

  Computer visions recognition 

Pre-test preparation for 1.5 years N/A 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily) N/A 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons) N/A 

Re-test for platform;                       N/A 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 5% Clemson: 95% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 5% Clemson: 95% Tokyo: 0% 

Suspended Ceiling test Type C Tongji: 5% Clemson: 95% Tokyo: 0% 

Suspended Ceiling test Type D Tongji: 5% Clemson: 95% Tokyo: 0% 

Suspended Ceiling test Type E Tongji: 5% Clemson: 95% Tokyo: 0% 
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Suspended Cable Tray Test  

Suspended Cable Tray test Type A Tongji: 5% Clemson: 95% Tokyo: 0% 

Suspended Cable Tray test Type B Tongji: 5% Clemson: 95% Tokyo: 0% 

 

(3) 0%- 80% contribution part: [Included in this dissertation] 

(Active participation and mainly contributed role):  

Table 1.3 Numerical Simulation related 

  Numerical Simulation related 

Pre-test preparation for 1.5 years Tongji: 20% Clemson: 80% Tokyo: 0% 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily) Tongji: 20% Clemson: 80% Tokyo: 0% 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons) Tongji: 20% Clemson: 80% Tokyo: 0% 

Re-test for platform;                     Tongji: 20% Clemson: 80% Tokyo: 0% 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 40% Clemson: 60% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 40% Clemson: 60% Tokyo: 0% 

Suspended Ceiling test Type C Tongji: 40% Clemson: 60% Tokyo: 0% 

Suspended Ceiling test Type D    Tongji: 0%   Clemson: 0% Tokyo: 100% 

Suspended Ceiling test Type E    Tongji: 0%   Clemson: 0% Tokyo: 100% 

Suspended Cable Tray Test  

Suspended Cable Tray test Type A Tongji: 40% Clemson: 60% Tokyo: 0% 

Suspended Cable Tray test Type B Tongji: 0% Clemson: 0% Tokyo: 100% 

 

(4) 50% contribution part (Active participation and mainly contributed role):   

[Included in this dissertation] 

Table 1.4 Cyclic test and simulation 

  Cyclic test and simulation 
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Cyclic test of ceiling components  Tongji: 50% Clemson: 50% Tokyo: 0% 

Numerical Simulation of hysteretic 

ceiling components  Tongji: 50% Clemson: 50% Tokyo: 0% 

 

(5) 20%-50% contribution part (Active participation and mainly contributed role):  

[Included in this dissertation] 

Table 1.5 Experiments related 

 

Experiments related: Design, instruments 

design, loading design, input design and 

filtering, system identification etc. 

Pre-test preparation for 1.5 years   Tongji: 40% Clemson: 40% Tokyo: 20% 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily)   Tongji: 40% Clemson: 50% Tokyo:10% 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons)   Tongji: 40% Clemson: 50% Tokyo: 10% 

Re-test for platform;   Tongji: 40% Clemson: 50% Tokyo: 10% 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 55% Clemson: 45% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 55% Clemson: 45% Tokyo: 0% 

Suspended Ceiling test Type C Tongji: 50% Clemson: 50% Tokyo: 0% 

Suspended Ceiling test Type D   Tongji: 20% Clemson: 20% Tokyo: 60% 

Suspended Ceiling test Type E   Tongji: 20% Clemson: 20% Tokyo: 60% 

Suspended Cable Tray Test  

Suspended Cable Tray test Type A   Tongji: 30% Clemson: 30% Tokyo: 40% 

Suspended Cable Tray test Type B   Tongji: 30% Clemson: 30% Tokyo: 40% 

 

(6) 0% contribution part (No participation role):   

[Not included in this dissertation] 

Table 1.6 Fragility analysis and risk reliability investigation 
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Fragility analysis and risk reliability 

investigation 

Pre-test preparation for 1.5 years N/A 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily) N/A 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons) N/A 

Re-test for platform; N/A 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type C Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type D Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type E Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Cable Tray Test  

Suspended Cable Tray test Type A Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Cable Tray test Type B Tongji: 100% Clemson: 0% Tokyo: 0% 

 

(7) 0% contribution part (No participation role):   

[Not included in this dissertation] 

Table 1.7 Practical industrial application guidelines and national seismic standards building 

  

Practical industrial application guidelines and 

national seismic standards building 

Pre-test preparation for 1.5 years N/A 

Steel Structure Platform Test  
First dynamic test for platform 

(Accident Failure:   platform bottom 

buckled heavily) N/A 

Re-deign, optimization and retrofitting; 

Move the platform to a larger scale 

dynamic shaking table (2*70 tons) N/A 

Re-test for platform; N/A 

Suspended Ceiling Test  

Suspended Ceiling test Type A Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type B Tongji: 100% Clemson: 0% Tokyo: 0% 
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Suspended Ceiling test Type C Tongji: 100% Clemson: 0% Tokyo: 0% 

Suspended Ceiling test Type D Tongji: 0% Clemson: 0% Tokyo: 100% 

Suspended Ceiling test Type E Tongji: 0% Clemson: 0% Tokyo: 100% 

Suspended Cable Tray Test  

Suspended Cable Tray test Type A Tongji: 50% Clemson: 0% Tokyo: 50% 

Suspended Cable Tray test Type B Tongji: 0% Clemson: 0% Tokyo: 100% 

 

(8) Evolution letter of PI from Tongji University and Tokyo Institute of Technology:  
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1.5 Chapter arrangement of this dissertation  

This dissertation is divided into seven chapters; the main contents of each chapter are 

as follows: 

(a) The first chapter is an introduction, which mainly introduces the research 

background and related research content, and summarizes the full content and 

innovations. Also, my contribution and role of the Tongji-Clemson-Tokyo 

international cooperation is listed.  

(b) The second chapter is background and literature review, which reviews the 

research progress and shortcomings about the forward and inverse problems 

(Bayesian inference & calibration) of Uncertainty Quantification, which includes 

uncertainty propagation, surrogate model etc., and also the suspended non-structural 

system earthquake related content, which includes experiments and computational 

numerical simulations.  

(c) The third chapter is detailed investigation of the proposed Data and model driven 

Uncertainty quantification of inverse problems methods and framework, which 

considers machine learning based Gaussian Process surrogate model, variational 

inference and minimum description length model selection to make inverse problems 

Bayesian inference and calibration. Also, the details of the design of experiments, 

sensitivity analysis are also investigated.  

(d) The forth chapter analyses the world’s largest full scale suspended non-structural 

system earthquake dynamical shaking table experiments and also the results are 

detailed talked about. 
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(e) The fifth chapter is the computational numerical simulation and the determination 

of some part of the nonlinear structural parameters are obtained by hysteresis loading 

test, and finally the nonlinear numerical simulation is verified with the full scale 

dynamical shaking table experimental results. It shows the most displacement 

response is validated very well except some time delay difference and some of the 

acceleration response has some inconsistencies. 

(f) The sixth chapter is about the application of proposed machine learning-based 

Data and model driven Uncertainty quantification of inverse problems on the 

suspended non-structural system. The inverse problem parameters are inference and 

calibrated with uncertainty quantified, and the results shows that the proposed 

methods have excellent effect on the validation improvements both on displacement 

and acceleration responses.  

(g) Finally, the last chapter is about the summary and some prospects for the future, 

which highly mentioned the deeper model like deep Gaussian process model and deep 

neural network could be utilized to fully consider the nonlinearities of the physical 

system, also talk about the future work of applying the physics-informed neural 

network to embed the prior knowledge into the data driven model. 
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CHAPTER TWO  

BACKGROUND AND LITERATURE REVIEW 

2.1 Background and literature review for data driven inverse problems of UQ  

2.1.1 Uncertainty Quantification (UQ)  

Uncertainty quantification has received extensive attention from researchers at home 

and abroad since the beginning of its proposal, and many universities around the 

world have established related laboratories, such as the UQ laboratory of Stanford 

University [84], the UQ group of the Massachusetts Institute of Technology (MIT) 

[85], ETH Zürich UQ laboratory [86] and so on. In addition, the National Academy of 

Sciences (NAS) and the U.S. Nuclear Security Administration (NNSA) held 

corresponding conferences and published two reports in 2009 [87,88], attracting the 

importance of the UQ approach in national security-related technology research. At 

the same time, the U.S. Department of Energy, the Department of Environment, 

NASA, and Sandia National Laboratory have established special funds to support the 

application of UQ in related fields.  

At present, there are two main journals dedicated to the field of UQ: the SIAM/ASA 

Journal on UQ[89], co-founded by the Society for Industrial and Applied 

Mathematics (SIAM) and the American Association for Mathematical Statistics (ASA) 

in 2013, and International Journal on UQ[90], founded by Begell Press in 2011. R. C. 

Smith [91] and T. J. Sullivan [9] published corresponding textbooks on the theory and 

methods of UQ, which is also a classic work in the field of UQ. As an emerging 

interdisciplinary field, uncertainty quantification does not have a strict and unified 
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definition of its theoretical classification and related research methods. In a 2012 

report prepared for the U.S. Department of Energy [92], G. Lin pointed out that the 

basic processing process of UQ consists of these steps, such as problem definition, 

model validation, and testing, confirmation of input uncertainty, confirmation of 

observational (experimental) data, uncertainty parameter screening, response function 

feedback analysis, sensitivity analysis, and risk assessment. P. B. Stark et al. 

abstracted the main problems of UQ into Propagation of Uncertainty (PoU) and its 

inverse problem [93,94] within the framework of statistical models, as shown in 

Figure 1.1. At present, the theoretical research on UQ spans many fields, such as 

probability and statistics, functional analysis, stochastic dynamical systems, Bayesian 

analysis, numerical computing, multivariate statistics, etc., while specific 

mathematical, statistical methods, Bayesian methods, optimization algorithms, and 

function approximation methods have been introduced into the UQ framework to 

solve practical problems [9], but the future research direction of UQ is still in 

continuous exploration and development.  

 
Figure 2.1 Classification of the main problems of uncertainty quantification 
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The following is a review of the specific UQ issues involved in this study and the 

development status of the corresponding methods. 

2.1.1.1 Problem definition and research framework 

In UQ, the target value of quantization is called QoI (Quantities of Interest), and the 

corresponding objective function is the QoI function. A simple UQ problem is shown 

in figure 2.2:  

 

Figure 2.2 : As shown in Figure 1.2, let x be a random vector with multiple 

possibilities for its probability distribution p(x), usually given its prior information, 

such as belonging to a certain family of probability distributions; The actual system 

(or response function) M(x, x′) is also in a different state when disturbed by other 

unknown factors x′ (such as noise). Noting that y = M(x) is a QoI function, obviously, 

y is also a random vector whose distribution p(y) changes with the distribution of x. 

Unlike traditional methods that focus on parameter estimation of models, the research 

goal of UQ is the distribution characteristics of the QoI function y. In more complex 

cases, on the one hand, due to the growing data and increasing complexity of the 
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system, the (statistical) theoretical features of the uncertainty factors x, x′ are 

becoming more and more difficult to describe, so it is almost impossible to establish 

complete models, and relevant assumptions need to be made about them; On the other 

hand, because the solution of the real system M(x, x′) usually takes a lot of time or 

money, resulting in x, y has high dimensionality and sparsity, it is necessary to model 

on the basis of sparse experimental data or local features—which is also the main 

difference between UQ problems and classical methods. The following is a review of 

the development status of the processes and the specific methods.  

2.1.1.2 Uncertainty source representation  

The sources of uncertainty in UQ vary.  Kennedy and O'Hagan [19] proposed a 

classification method for uncertainty sources from the specific target objects at 

different stages of UQ, mainly including input parameter uncertainty, parameter 

variability, model uncertainty (i.e., model incompleteness, bias, contradiction, etc.), 

algorithm uncertainty (numerical calculation error), experimental uncertainty 

(observation error), etc. Matthies [95], Der Kiureghiana [96] abstracted different 

sources of uncertainty in 2007 and 2009, respectively, dividing them into Aleatoric 

Uncertainties (A.U.) and Epistemic Uncertainties (E.U.). A.U. is also known as 

irreducible uncertainty or random uncertainty and is generally determined by the 

natural properties of the relevant parameters. E.U., known as reducible error, is 

usually caused by a lack of knowledge of the nature of the system or natural laws 

themselves and can be reduced as model parameters are more accurately estimated, 

new experimental data is introduced, or the degree of model refinement increases. The 

latter classification method is now generally accepted and used in the UQ field, but in 
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fact, the boundary between the two types of uncertainty is not clear, they can be 

transformed into each other with the change of the problem and the correct 

understanding of uncertainty is a prerequisite for establishing models and designing 

related algorithms.   

For UQ problems, one of the important questions is how to quantitatively characterize 

the various sources of uncertainty described above. The control variable method is a 

simple and intuitive method of excluding uncertainties from the model or 

predetermining a probability distribution for them. For example, weather, 

geomagnetism, and other relevant factors affecting field tests, in laboratory simulation 

tests, you can fix the mean, variance, etc. of related variables according to experience 

or expert decisions. This approach actually reduces the number of A.U.s and reduces 

the complexity of the model by controlling variables. In a more general case, the 

relevant distribution hypothesis is proposed for uncertainties, the relevant statistical 

methods are used to estimate the parameters related to the distribution, and if 

necessary, the distribution can be hypothesis-tested. For example, under the 

assumption of the Gauss-Markov condition, the least squares estimator is a linear 

unbiased estimator with the smallest variance [97]. In actual cases, the probability 

distribution assumptions proposed for uncertainty factors are often very different from 

their true distribution, so they need to be updated and reconstructed. Bayesian 

inference [98] is an important method in UQ, where the presupposed probabilistic 

distribution can be processed as a priori distribution, and the posterior distribution 

continues to approximate the true distribution as new experimental data are 

introduced. 
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2.1.1.3 Uncertainty Propagation 

Uncertainty propagation (PoU) is to determine the distribution characteristics of the 

QoI function through the propagation of the initial input in the model, that is, the 

transformation problem of the probability distribution. Probability distribution 

transformations first appeared in the field of Partial Differential Equations (PDEs), 

such as the Fokker–Plank equation, which describes the evolution of particle velocity 

probability distributions over time in Brownian motion. This problem then arises in 

Stochastic Differential Equations [99] (SDE), such as the Kolmogorov equation and 

the Feynman–Kac formula. In the field of SDE research, in order to solve the 

propagation properties of uncertainty, it is often necessary to introduce the Ito integral 

[100] (Itô Integral). These will not be covered in this study, so they will not be 

covered in subsequent sections. The following is a review of progress around 

surrogate models and experimental design. 

In classical statistics, uncertainty propagation is usually studied on the variance of the 

QoI function or, for data-driven problems, its error is analyzed [101,102]. Dating back 

to the sixties of the last century, Goodman [103] gave the specific form of variance of 

the product of random variables in 1960, while Ku [104] studied the general 

mathematical expression of error propagation in the model. The classic textbook of 

Taylor [101] gives a complete set of theories and methods for error measurement and 

analysis and elaborates on the linear error and the propagation of nonlinear models. 

The propagation of uncertainty in classical statistics is actually to solve the problem 

of solving the statistical properties of functions about random variables, which 

provides theoretical support for PoU. With the increase in data dimensions and the 
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increase of computational complexity, how to implement these theories has become 

another difficult problem for UQ, so the development of PoU also focuses on the 

numerical calculation and algorithm implementation of stochastic models. Under this 

premise, PoU mainly includes two main parts: surrogate model [105] (SUrrogate 

MOdel, SUMO) and design of experiments (DOE) [106], which are introduced below. 

2.1.1.4 Surrogate model 

In the actual problem faced by UQ, the computational cost of a single sample may be 

very large, so the size of the training set that can be provided is limited, so it is not 

feasible to directly face the original model for optimization, reliability analysis, etc. 

[107]. The surrogate model (SUMO) constructs an approximate model of the original 

system, which is essentially a mathematical expression or algorithmic description of 

the relationship between input variables and QoI functions and describes the complex 

system model and its relationships as a computable model to help achieve the 

corresponding goals of UQ [108-111]. In general, the mathematical definition of a 

surrogate model problem is as follows: 

    y = M(x) = 𝑓(𝑥) + 𝜖, 𝜖 ~ 𝑁(0, 𝜎2) (2.0) 

where M is the actual system, which can be a system experiment or a simulation 

program. The purpose of the surrogate model is to use f(x) of a known concrete 

mathematical expression to proxy the real system M(x) to obtain the corresponding 

input response. SUMO is also referred to in the literature as a metamodel, a reduced 

model, a surrogate model, or a response surface. Surrogate models are a class of data-

driven methods; commonly used proxy models include: Polynomial Regression, 

Artificial Neural Networks (ANN) [112], Multivariate Adaptive Regression Splines 



31 

 

(MARS) , Radial Basis Functions (RBF)[113], Support Vector Machine [114] (SVM), 

Polynomial Chaotic Expansion (PCE), Kriging / Gaussian Processes  [115], etc. This 

work is mainly based on the G.P. model, and the following is mainly an introduction 

to these two types of models. 

2.1.2 Gaussian Process surrogate model  

Gaussian process models are flexible nonparametric Bayesian models that have 

applications in robotics [116,117], geostatistics, numerical operations[118], stimulus 

perception[119], and parameter optimization problems [120]. Gaussian process (G.P.) 

models are also a hot spot in UQ [121,122]. It was first proposed by Krige [123] and 

popularized by Matheron [124] and received widespread attention. The Kriging model 

is proposed to solve the problem that the linear estimation error is not independent, 

and it uses the correlation function based on spatial distance to interpolate the random 

field. Rasmussen and Williams [115] regard the QoI function as a specific sample of a 

Gaussian process, i.e. the Gaussian (random) process as a probability distribution 

about the response function, and any finite sample of the function obeys a 

multidimensional Gaussian distribution. They applied G.P.'s theory to machine 

learning and explored the relationship between G.P. models and other models, such as 

regularization methods, Reproducing Kernel Hilbert Space (RKHS), and SVMs. 

Unlike polynomial models, G.P. models are typically nonparametric models whose 

performance is controlled by hyperparameters, which are parameters of kernel 

functions. In general, for the study of Gaussian process hyperparameters, the 

maximum likelihood estimation (MLE) or BIC (Bayesian Information Criterion) 

criterion is usually chosen as its estimation [115]; In some applications that are 
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sensitive to parameter uncertainty, the posterior distribution of hyperparameters is 

often sampled using the MCMC method [125]. 

A Gaussian process model is defined by the mean and the covariance function, which 

is equivalent to a neural network model with an infinite number of hidden layer 

elements. Gaussian process models are not prone to overfitting and provide 

uncertainty in predicted outcomes. The basic theory of Gaussian process models and 

their applications in the field of machine learning are detailed in the literature [126]. 

The expressiveness of a single-layer Gaussian process model is limited by the 

expressiveness of the kernel function. In order to improve the learning ability of 

single-layer Gaussian processes, combinatorial kernel functions, deep kernel functions 

Gaussian process [127] models [128,129], and deep Gaussian process models and 

their model variants have been proposed successively. In a deep Gaussian process 

model based on process combinations [129-134], the output of one multivariate 

Gaussian process model will be used as the input to another Gaussian process model, 

resulting in a longer multilayer Gaussian process model to obtain a data output. 

Due to the applicability of complete Bayesian inference to multilayer Gaussian 

process model inference, most of the literature on deep Gaussian processes uses 

approximate inference methods, such as variational inference and expectation 

propagation. Literature [135], for the first time, uses the method of sparse variational 

inference to infer the Gaussian process, dependent variable model. Then [136] applies 

the sparse variational inference method proposed by [135] to the hierarchical 

Gaussian process model of literature [134]. Since the above variational inference 

method requires variational parameters that increase linearly with the growth of the 
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number of model data, in order to simplify the model training process, the variational 

self-coding method is used to construct a cognitive model for the posterior 

distribution of hierarchical variables, thereby reducing the variational parameters of 

the model [134]. Combined with expectation propagation, the induced point method 

was used to do sparsity to infer the deep Gaussian process model. [137] The kernel 

function sparse spectrum method is used to do the sparsification treatment. Based on 

the mean field variational inference method of the mean field [138], in order to 

improve the independence assumption and variance estimation between the implicit 

function variables of the model, a new inference method based on the induction point 

using the accurate model as the variational posterior distribution is proposed [139], 

and the double random variational inference is applied to the deep Gaussian process 

model by combining random sampling and stochastic gradient descent. 

The G.P. model is widely used in engineering and machine learning, but it still has 

certain limitations. Firstly, the computational complexity of the G.P. model is too high, 

and the numerical solution mainly focuses on the inversion of the covariance matrix, 

and its computational complexity is O(N3). There are already some solutions to this 

problem [refer] in the literature, such as the K.L. divergence between the posterior 

distribution and the true distribution based on minimized estimation [140,141], the 

relevance Vector Machine (RVM) method based on matrix approximation theory [142] 

and the Relevance Vector Machine (RVM) method [143] and so on. Noting that G.P. 

models are often equivalent to linear regression models with infinite parameters, 

sparse linear regression or low-rank regression was introduced as a solution to 

Gaussian process models, referred to in the literature as the Reduced Rank Gaussian 

Process (RRGP) [144], or the Sparse Gaussian Process (SGP) [145,146]. This type of 



34 

 

method essentially utilizes a low-rank approximation of the original covariance matrix, 

which reduces the computational complexity to O(NM2) (M is the size of the 

induction variable set) by introducing an Inducing Variables Set as an intermediate 

variable and the posterior distribution of the set as a variational of the likelihood 

function of the entire training set. The set of induced variables is also known as a 

support set or pseudo-inputs. In the framework of SGP, the estimation methods of 

edge likelihood function based on induced variable sets usually include DTC 

(Deterministic Training Conditional) estimation, FITC (The Fully Independent 

Training Conditional) estimation, and PIT (Partially Independent Training 

Conditional) Estimates and so on [145,146]. The performance of the SGP method is 

closely related to the selection of the set of induced variables, and the general 

selection methods include random, symmetric, and based on specific optimization 

criteria. Figure 2.4 compares the G.P. model with the S.G.P. model, in which the input 

variable corresponding to the red sample points is selected as the initial set of induced 

variables, and to a certain extent, the prediction uncertainty of the SGP model is lower. 

  

(a) Gaussian Process Model (b) Sparse Gaussian Process Model 

Figure 2.3 Comparison between G.P. model and S.G.P. model 
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Another limitation of the G.P. model is that its performance is strongly correlated 

with the Covariance Function (also known as the Kernel Function) [147]. For 

example, Gaussian kernel functions, which are widely used in the literature, actually 

make very smooth assumptions about functions, so the predictions of G.P. models for 

non-smooth or non-continuous functions tend to fail. This limitation can be mitigated 

to some extent by choosing different kernel functions, for example, the Matérn kernel 

function is better for trigonometric functions than Gaussian kernel functions. In 

addition, kernel design has become a hot spot and difficult point in G.P. models [148]. 

Using Bochner's theorem [149], it is possible to prove the positive certainty of some 

stationary functions, so such functions can be used as valid kernel functions. For 

example, A. Wilson [150] constructed a class of kernel functions using the inverse 

Fourier transform of the Gaussian mixture distribution, also known as a spectral 

approximation. Using known kernel functions to construct new kernel functions is a 

more common means in kernel function design, generally based on operator theory. 

For example, the construction of additive Gaussian models [151] based on sums and 

functions has proven its superiority in the application of additive models, and the 

construction of high-dimensional kernel functions based on the product of low-

dimensional kernel functions has also been widely used [152,153]. In addition, the 

construction of new kernel functions based on nonlinear operators (such as 

convolution operators) has also attracted the attention of researchers [154,155], and it 

is known that the different characteristics of kernel functions after nonlinear action 

make it have broader application possibilities. However, the relevant proofs for 

constructing kernel functions are often very tricky, so kernel function design is a 

difficult and challenging point in Gaussian processes. 
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2.1.3 Design of Experiments (DOE) 

The design of experiments is an important research direction in the field of modeling 

and simulation, and Figure 1-6 shows the classification of experimental design 

methods. Experimental design methods can be divided into one-shot experiment 

design (OSED) and sequential experimental design (SED). Single-step experimental 

design requires determining the sample size in advance and then using a certain 

criterion to generate an experimental design that meets the criterion according to a 

certain search strategy. Due to the need to determine the sample size in advance and 

the inability to make full use of the experimental results, single-step experimental 

designs are prone to under sampling or oversampling. The single-step DOE approach 

can be divided into model-aided, model-aided experimental design, and model-free 

experimental design [156]. The experimental point value strategy of model-assisted 

experimental design depends on the assumption of the model, such as sequential 

branch design [157], maximum information entropy sampling [158], and mean square 

variance-based design [159]. 

Model-independent design of experiments means that in the process of experimental 

protocol design, there is no need to assume the functional relationship between the 

input and output of the model. According to the different nature of the distribution of 

experimental points in the design space, the model-independent experimental design 

is divided into classical experimental design and space-filling design [160]. The 

sample points of classical experimental design are mainly distributed at the boundary 

of the design space, the grid divided by the design space or the scattering that meets 

certain rules; if the number of samples is increased, the experimental points cannot fill 
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the entire design space; Typical design approaches include comprehensive/fractional 

factorial design [161], central composite design (CCD), sparse mesh design [162,163], 

and Box-Behnken design. 

Single-step experimental design based on space filling expects to spread experimental 

points throughout the design space, and representative methods include orthogonal 

design, uniform design [164], Monte Carlo (MC) [165], Quasi-Monte Carlo (QMC) 

[166], Latin hyper-cube design (LHD), etc. Among them, LHD has good space-filling 

and non-collapsing [167] and has been widely used in many fields [168,169]. By 

designing different spatial fill ability criteria, the researchers proposed a series of 

LHD methods [170,171]. Typical design guidelines include the maximum minimum 

criterion [172], the A.E. criterion (Audze-Eglais criterion) [173,174], the minimum 

energy criterion [175], the p criterion [176], etc. Grosso [177] proposes an iterative 

local search algorithm for generating maximum and minimum LHDs. 

Sequential experimental design is an iterative design method, which gradually 

increases one or several design points each time according to the existing sample 

points, current experimental results, and other information, so as to effectively reduce 

the number of sampling and avoid oversampling. Sequential experimental design is 

widely used in data modeling or metamodel modeling [178]. According to different 

strategies, sequential experimental design can be divided into a sequential 

experimental design based on exploration strategy and adaptive sequential 

experimental design (development-exploration strategy sequential experimental 

design). Sequential experimental design methods based on exploration strategies 

include Markov Monte Carlo sampling, extended Latin hypercube design [179,180], 
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etc. Yang [179] proposed a fast Latin hypercube experimental design method based 

on graph theory. Li[181] proposes an optimized Latin hypercube design method with 

arbitrary multiplicity. Xiong [180] proposed an approximate Latin hypercubic 

sequential design method, which can maintain the spatial filling and projection 

characteristics of the design scheme. Crombecq [182] discusses a sequential design 

method based on Delaunay triangle decomposition and Voronoi mosaic, which 

improves the efficiency of search by dividing the design space into several subspaces 

by using Delaunay triangle and Voronoi mosaic. However, the sequential design 

based on the exploration strategy only considers the current sample point scattering 

information and does not make full use of the simulation results and metamodel 

information in the iterative process.  

Adaptive sequential experiment design (ASED) is a more efficient sampling method 

[183], and Deschrijver [184] points out that effective adaptive sequential design 

methods generally have two conflicting parts: local development and global 

exploration. Local development tends to select design points that may have larger 

areas of prediction error, also known as interesting regions or informative regions; 

The global exploration strategy tends to add new experimental sites in areas where 

experimental sites are sparse. For metamodel modeling, regions with large gradient 

variations need to add more sampling points. Based on the radial basis function neural 

network (RBFNN) metamodel，Yao [185], a gradient-based sequential experimental 

design method is proposed. Wei [186] discusses curvature-based sequential design 

methods. Jones [187] proposes an expected improvement criterion-based ASED 

method (EI-ASED) based on the expectation improvement criterion; EI-ASED is 

developed locally by minimizing the prediction response, using the prediction 



39 

 

variance for global exploration, EI-ASED is also known as efficient global 

optimization method optimization (EGO). Mackman [188], Picheny [189] and 

Hernández-Lobato [190] improved EI-ASED from different perspectives. Liu [191] 

proposes an adaptive sequential design method based on maximizing the expectation 

of prediction error value. Ajdari [192] proposes an adaptive sequential design method 

based on development-exploration score. Garud [193] proposed a crowding distance 

metric and departure function-based ASED (CD-ASED). 

2.1.4 Inverse problems (Model inference/calibration)  

In contrast to the PoU method that determines the distribution characteristics of the 

QoI function by the propagation of the input variable in the proxy model, the inverse 

problem needs to solve the nature of the input variable under the premise that its 

observation is known [194]. In the UQ world, the inverse problem is also known as 

backward uncertainty propagation [195, 196] (Backward PoU). In particular, inverse 

problems in UQ focus on regression and parameter estimation from Bayesian 

perspectives. 

For parametric regression problems, the ill-posed inverse problem is usually 

considered; that is, the corresponding regression problem has no solution, or the 

solution is not unique, or the solution is unique but has a high sensitivity to the QoI 

function. Regularization is a general method of solving unsettled problems, such as 

the commonly used Tikhonov regularization [197] and some regularization methods 

for PCE models. Engl [198] published in 1996 elaborated on the theory of 

regularization methods and their application to inverse problems, while Tarantola 

[199] explained the theory of inverse problems and general methods for model 
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parameter estimation from a Bayesian's perspective. From Bayesian's point of view, 

regularization is actually a priori application of different Bayesian systems, and 

different regularization constraints can actually be interpreted as different priors of 

solutions. For infinite-dimensional parametric (nonparametric) regression problems, 

A. M. Stuart [200] and S. L. Cotter et al. [201, 202] give a general framework for 

Bayesian inverse problems on separable Banach spaces and Hilbert spaces based on 

the idea of a Gaussian prior, using the idea of discretized parameter spaces; M. 

Dashti[203] uses the wavelet function in L2 space to solve the local non-smoothness 

problem of random fields based on Besov priors. Aiming at the pathological problem 

of G.P. model covariance matrix, H. Mohammadi et al. [204] derive in detail the 

connection and difference between pseudoinverse and nugget regularization methods, 

and give a G.P. regularization method based on the interpolation of Gaussian 

distributions. Figure 1.9 compares the parameters of the least squares problem under 

L2 regularization and L1 regularization, and estimates the G.P. regularization method 

based on the interpolation of the Gaussian distribution. Figure 1.9 compares the 

parameter estimation of the least squares problem with L2 regularization and L1 

regularization. 

  

(a) L2 regularization (b) L1 regularization 

Figure 2.4 Comparison between L2 and L1 regularization 
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In practice, it is often necessary to numerically integrate the posterior distribution to 

obtain the corresponding QoI. Therefore, a key problem with the inverse problem lies 

in the measurement of posterior distributions. The most important is the Bayesian 

check or Bayesian inference method, which takes the posterior distribution of 

parameters as the solution to the problem. The strict definition of conditional 

probability given by Kolmogorov makes it possible to define posterior distributions 

over infinite-dimensional spaces. Lasanen [205] generalized Bayes' formula to locally 

convex Suslin topological linear spaces. Literature [206-211] and others generalize 

Bayes' formula as a Radon-Nikodym derivative of a posterior distribution relative to a 

prior distribution. How to extract information from the posterior distribution, the 

literature mainly considers maximum posterior estimation [212,213] because 

maximum posterior estimation links Bayesian method with the classical penalty 

function method [211]. Two types of methods are usually considered in the literature: 

first, the most important and widely used in the literature is the Markov Chain Monte 

Carlo [214,215] method, which directly samples the posterior distribution by 

constructing the probability of transition between the prior distribution. The problem 

with MCMC focuses on the construction of transition probabilities, and inappropriate 

construction methods can greatly reduce the approximation of the true posterior 

distribution, that is, the long burn–in time. There are many variations of the MCMC 

method:  The Reverse Jump MCMC [216] (RJMCMC) method can be applied 

between different dimensional parameter models, and can also be understood as a 

sparse optimization method based on Bayesian inference. Also, there are other 

methods like important sampling, SMC (Sequential Monte Carlo) sampling [217, 218], 

ABC (Approximate Bayesian Computation) sampling [219-224] and variants of these 
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methods, such as PMCMC (Particle Markov chain MonteCarlo) sampling[225] and 

variational inference methods [226, 227]. Literature [228-233] and others provide a 

comprehensive review of Bayesian calculation methods for parametric models. 

Literature [234-237] discuss Bayesian computation methods on infinite-dimensional 

spaces. Therefore, it is widely used both in the measurement of posterior distributions 

and in model selection/parameter optimization [238]. Another class of methods is 

model-related, such as the estimation methods for model parameters/hyperparameters 

discussed in the previous section about alternative models. 

2.1.5 Sensitivity Analysis and Model Selection  

2.1.5.1 Sensitivity Analysis  

The sensitivity analysis method can also be used as a factor screening method for a 

type of simulation experiment. Sensitivity analysis aims to study the degree to which 

input uncertainty contributes to the influence of output uncertainty, that is, to study 

the source of output uncertainty [239]. According to the size of the contribution of 

each factor, you can get its importance ranking. Therefore, modelers and analysts can 

guide simulation evaluation, analysis, and optimization through sensitivity analysis to 

improve their work efficiency. Sensitivity analysis methods can generally be divided 

into local and global categories [240]. Local sensitivity analysis methods focus on the 

local influence of model inputs, common methods such as the OAT method, only 

change the value of one factor at a time and take the other factors as their benchmark 

value, usually using Tornado plots to represent their analysis results; The global 

sensitivity analysis method studies the effect of factor changes on the output in the 

entire experimental domain, and the commonly used methods can be divided into 



43 

 

three categories: variance-based methods, moment-independent methods, and 

regression-based methods. 

2.1.5.2 Model Selection  

In the context of physics-based modeling and simulation where the underlying model 

structure is dictated by first-principle physics, the term complex was often used to mean 

detailed [241,242] and determining the appropriate level and type of detail was considered to 

be one of the most important steps in the formulation of a simulation model [243,244]. It was 

advised, for instance, to start from a simple model, progressively add details until sufficient 

accuracy is obtained and select the least detailed model that meets the modeling objectives 

(Brooks & Tobias, 1996; Pidd 1996; Hill 1998). [245,246,247] 

In the context of empirical curve fitting, Sober (1975) argued that models that are more 

informative are less complex. Kuhn (1977) stated that everything else being equal, it is 

rational to prefer a simpler model over a more complex one. Turney (1990) showed that 

simpler models tend towards a greater stability (or robustness) in face of experimental 

uncertainty. Many approaches have been developed for purposes of comparing alternative 

models built with varying levels of detail, which in turn has resulted in a new branch of 

mathematical statistics known as model selection. Although originally conceived to aid the 

model formulation process, the model selection criteria originated from this field also supply 

means for comparing alternative model calibration campaigns (see Table 1 for a list of 

common model selection criteria). These criteria typically consider both goodness-of-fit and 

complexity and differ in their representation of the latter.  

Table 2.1 Widely used model selection metrics 

Selection Metric Criterion Equation 

Akaike information criterion (AIC) 𝐴𝐼𝐶 = −2 ∗ ln(𝑓(𝑦|�̂�)) + 2𝑘 

Bayesian information criterion (BIC) 𝐵𝐼𝐶 = −2 ∗ ln(𝑓(𝑦|�̂�)) + 2𝑘 ∗ ln (𝑛) 

Deviance information criterion (DIC)  𝐷𝐼𝐶 = 𝐷(𝜽)̅̅ ̅̅ ̅̅ ̅ + 𝑝𝐷 
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Information-theoretic measure of 
complexity (ICOMP) 𝐼𝐶𝑂𝑀𝑃 = − ln(𝑓(𝑦|�̂�)) +

𝑘

2
ln (

𝑡𝑟𝑎𝑐𝑒[𝜴(�̂�)]

𝑘
)

−
1

2
ln(det[𝜴(�̂�)] ) 

Minimum description length (MDL) 𝑀𝐷𝐿 = − ln(𝑓(𝑦|�̂�)) +
𝑘

2
ln (

𝑛

2
) + ln(∫ det[𝑰(�̂�)]d�̂� ) 

Note: y = data function; n =sample of size; 𝜽 ̂= parameter value that maximizes the likelihood 

function   𝑓(𝑦|�̂�); k = number of parameters; D is the deviance of the likelihood, 𝐷(�̂�) =

−2∗ 𝑙𝑜𝑔(𝑓(𝑦|�̂�); 𝑝𝐷 = 𝐷(�̂�)̅̅ ̅̅ ̅̅ ̅ − 𝐷(�̅�), 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ is the expectation of 𝐷(�̂�) and �̅� is the expectation 

of  �̂�; 𝛺 = covariance matrix of the parameter estimates; ln= the natural logarithm of base e. 
 

For instance, the Akaike Information Criterion (AIC) [248] and the Bayesian Information 

Criterion (BIC) [249] represent a model’s complexity considering only the number of 

calibration parameters. Both methods use likelihood to assess the model goodness-of-fit and 

then penalize it with model complexity represented by the number of calibration parameters. 

Although user-friendly, the number of calibration parameters alone is not a sufficient 

definition of complexity. This can be demonstrated by considering two models y1 = 𝜃 ∗ 𝑥 

and y2 = 𝜃 + 𝑥  which have the same number of calibration parameters θ but different 

functional forms (multiplicative versus additive). Despite both having one calibration 

parameter, these models have vastly different data-fitting abilities. AIC and BIC also fail to 

discount parameters which are not constrained by the data. A Bayesian generalization of AIC, 

the Deviance information criterion (DIC) overcomes the problem [250,251,252]. The 

complexity term of DIC is calculated by assessing the number of parameters that can be 

constrained by experiments (a concept referred to as the effective number of parameters) 

[253].  DIC is calculated in a straight forward manner using Monte Carlo posterior samples. 

The calculation is easier performed with posterior samples generated by nested sampling, 

which have non-integer weights, than AIC and BIC. However, no efficient method has been 

developed for calculating reasonably accurate MC standard errors of DIC.  

The three criteria, AIC, BIC and DIC are all sensitive only to one aspect of complexity: the 

number of parameters (the effective number for DIC. Furthermore, all calibration parameters 
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in these criteria are considered to have equal contribution to the complexity of model as 

functional form and range of parameters are not considered. Information-Theoretic Measure 

of Complexity (ICOMP) criterion [254] overcomes these shortcomings by considering not 

only the number of calibration parameters but also the effects of their sensitivity and 

interdependence. From the table 1.1, the second and third terms together represent a 

complexity measure that takes into account the effects of parameter sensitivity through the 

trace and parameter interdependence through the determinant which are two principal 

components of the functional form that contribute to model complexity.  

However, Pitt et al. (2002) [50] emphasized the importance of model selection metrics being 

invariant under reparameterization and recognized ICOMP criterion’s inability to remain 

invariant. Being invariant under reparameterization means that when parameters of the model 

are transformed without loss of information, and the new model with transformed parameters 

(that behaves equivalently with the original model) should have the same complexity value as 

the original. For instance, if the 𝜋𝑎  in 𝑦 = 𝑠𝑖𝑛(𝜋𝑎𝑥 + 𝑏) is transformed into a new 

parameter, 𝑐, the new model 𝑦 = 𝑠𝑖𝑛(𝑐𝑥 + 𝑏) should be identified as equivalent by 

the model selection metric. AIC, BIC and ICOMP would however consider these two 

models to have different complexities.  

Cutting et al. (1992) [53] also recognized that the number of parameters alone is an 

insufficient indicator of model complexity and advocated for evaluating the fitting power (i.e. 

what they refer to as ‘scope’) of a model to random data. They suggested using binomial tests 

to compare the fitting ability of a model to the data from actual system with the fitting ability 

to random data. Similarly, complexity has been defined as the range of data patterns that a 

model can fit [50,58] quantified by a geometric complexity measure known as the Minimum 

Description Length (MDL) [54]. This metric considers the experimental data as a code or 

description to be compressed by the model and evaluates the models according to their ability 
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to compress a data set by extracting necessary information from the data without random 

noise. MDL is based on the understanding that the more data is compressed, the more 

information about the underlying regularities governing the process of interest would be 

learnt [50]. Therefore, MDL would chooses a model which has the shortest description code 

(length) of the data [255]. MDL has been criticized for not fully considering the parameter 

interdependencies in model fitting and selection process [254].  

2.2 Background and literature review of Suspended non-structural systems  

Non-structural systems are an important part of building functions, which play an 

extremely important role in maintaining the overall seismic performance and post-

earthquake use functions of buildings, especially for important facilities and disaster 

prevention key buildings, such as emergency centers, hospitals, schools, and 

gymnasiums. Non-structural members are attached to the structure as nonstressed 

members, but they may still suffer from large seismic actions, so they need to rely on 

their own structural characteristics to resist these seismic actions [256-258]. The 

earthquakes that occurred in recent years show a new seismic damage feature; that is, 

although the main structure has less seismic damage after the earthquake and can 

achieve the pre-set seismic performance goal, the non-structural systems attached to 

the main structure have very serious seismic damage, which often occurs before the 

main structure, and its seismic capacity is seriously insufficient [259]. The destruction 

of non-structural systems will not only reduce the performance level of buildings, but 

also seriously affect the post-earthquake recovery of buildings. With the continuous 

pursuit of a better life and the increasing construction investment, the proportion of 

investment in non-structural systems is increasing. According to the statistical results 

of FEMA E-74 [260], the investment proportion of non-structural components in 
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commercial buildings is 75-85%. Taghavi et al. [261] showed that the investment of 

non-structural components in office buildings, hotels, and hospitals accounted for 

82%, 87%, and 92%, respectively. It can be seen that the investment in non-structural 

systems far exceeds the investment in structural components, so the economic losses 

caused by the destruction of non-structural components often exceed the losses of 

structural components, often leading to huge economic losses, including direct 

economic losses and indirect economic losses (losses caused by repair costs, building 

function interruption or loss). In addition, it also brings great risks to personnel safety 

[261,262]. 

2.2.1 Earthquake Damage of Suspended Ceiling Systems  

Suspended ceiling systems are important non-structural systems in buildings. As the 

top decoration of buildings, it has the function of heat preservation and sound 

insulation and is also the hidden layer of electrical, ventilation, communication, and 

fire protection pipeline equipment. The suspended ceiling is one of the non-structural 

systems that are more prominent in recent years' earthquake damage [263-274]. Table 

2.2 summarizes the earthquake damage performance of suspended ceilings in recent 

10 years. Figure 1.2 shows the actual earthquake damage of suspended ceilings in 

previous earthquakes. It can be seen from the earthquake damage to the suspended 

ceiling that when the building encounters an earthquake, the suspended ceiling is very 

easy to be damaged, so its seismic capacity is seriously insufficient. 

Table 2.2 Earthquake damage performance of suspended ceilings in the past 10 years 

Earthquake Year Earthquake damage performance 

Christchurch 

earthquake 

[263,264] 

2010 

Ceiling panels in residences crack and fall off; The 

ceiling panels in commercial buildings fall off and 

break, and the grids components and nodes fail. The 
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ceiling collides with surrounding equipment and 

causes damage. 

Chile 

earthquake[265]  
2010 

The ceiling collapsed in San Diego Airport, and a 

large number of ceiling panels in the hospital were 

misaligned and falling. 

Christchurch 

earthquake[266] 
2011 

Less damage to suspended ceilings in residences; 

Ceiling damage in public buildings includes buckling 

and twisting of grids, failure of grids nodes, tearing 

and falling off of edge nodes, etc. The interaction of 

the suspended ceiling with its surrounding non-

structural components causes the ceiling to fail. 

Japan 

Earthquake[267,268]  
2011 

The suspended ceilings in a large number of 

important buildings such as gymnasiums, swimming 

pools, schools, and hospitals were seriously 

damaged. 

Lushan 

earthquake[269.270]  
2013 

The ceiling damage in government buildings, 

schools and hospitals is very serious, and there are 

damage such as panel falling, primary and secondary 

grids node failure, and grids failure. 

Italy earthquake 

[271] 
2016 

The ceiling panels in the building fall off a large 

number of times, the ceiling boundary is broken, the 

grid is buckled, etc. 

Tashkurgan 

earthquake[272]  
2017 

The ceiling panels in several reinforced concrete 

frame structures have fallen off profusely. 

Alaska earthquake 

[273] 
2018 

A large number of ceiling panels in important 

buildings such as live news rooms, libraries, and 

schools have fallen off. 

 

  

(a) 2010 Christchurch earthquake  (b) 2010 Chile earthquake 
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(c) 2011Christchurch earthquake  (d) 2011 Japan Earthquake 

  

(e) Lushan earthquake (f) Italy earthquake 

  

(g) Tashkurgan earthquake (h) Alaska earthquake 

Figure 2.5 Actual damage to suspended ceilings 

2.2.2 Progress in Seismic Research of Suspended Ceiling 

2.2.2.1 Experiments study 
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In view of the complexity of the suspended ceiling structures and the highly nonlinear 

mechanical behavior, scholars in various countries mainly use test methods to study 

its seismic performance. The test types generally include static tests and shaking table 

tests. 

2.2.2.2 Static experiments  

The static test includes monotonic loading test and low cycle reciprocating loading 

test. For the low cycle reciprocating loading test of non-structural systems, most 

researchers adopt the loading scheme specified in FEMA 461 [275]. The research 

progress of the static test of a suspended ceiling is introduced in the following three 

types: component test, joint test, and overall ceiling test. 

(a) Test of ceiling components 

The test objects of suspended ceiling components include grid components, mineral 

wool boards and threaded rods (or wires). At present, there is still a lack of 

experimental research on suspended ceiling components. Paganotti et al. [276,277] 

analyzed the failure mode of grid by monotonic loading test. The results show that the 

weak section of the grid is prone to tear failure under tension and local buckling under 

pressure. Soroushian et al. [278] conducted a monotonic tensile test on the threaded 

rod. The results show that the suspension wire will produce a necking phenomenon 

and brittle fracture failure under tensile action, and the tensile bearing capacity of the 

suspension wire can meet the requirements of the standard. Chhat et al. [279] carried 

out low cycle reciprocating bending tests on suspenders. The results show that the 

strength of the suspender decreases gradually with the increase of cyclic loading times 

until it breaks. 
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(b) Test of suspended ceiling node 

The test objects of suspended ceiling joints include main tee splices, main and cross 

joints, and edge joints. The above joints are regarded as the most critical components 

in the ceiling, and their seismic performance will directly affect the overall seismic 

capacity of the ceiling. Therefore, it is very necessary to carry out experimental 

research on their mechanical performance. 

Paganotti et al. [276,277] carried out monotonic loading tests on the main tee splice, 

main and cross tee joints, and edge joints with rivets, and analyzed the failure forms 

and ultimate bearing capacity of different joints. The results show that the failure of 

the main tee joint and the main and cross tee joint is concentrated at the grid joint 

under monotonic tensile loading, and the failure form of the edge joint is the 

expansion and tearing of the rivet connection hole; Under monotonic compression 

loading, the failure mode of main tee joint and main and cross tee joint is joint 

buckling; In the shear test, the failure mode of the main and cross tee joints is the joint 

shear failure.  

The compressive bearing capacity of the main tee splicing point is greater than the 

tensile bearing capacity, and the compressive bearing capacity of the main and cross 

joints is less than the tensile bearing capacity. The bearing capacity of the side joints 

is improved by two rivets compared with one rivet structure. Pourali [280] in the same 

research team, used monotonic loading test to analyze the impact of seismic clips on 

the seismic performance of main and cross tee joints. The results show that the 

seismic clip improves the bearing capacity, residual strength and ductility of the joint. 
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Takhirov et al. [281] analyzed the influence of the structure type of edge joints on 

their seismic performance by monotonic loading and low cycle reciprocating loading 

tests. The results show that the seismic sandwich joint with two screws recommended 

in this study has a greater bearing capacity and better energy dissipation performance 

than the edge joint recommended in the code. In addition, Soroushian et al. [278] 

conducted a shear test on the interaction between mineral wool board and fire 

sprinkler. Fiorin et al. [282] conducted monotonic loading and low cycle reciprocating 

loading tests on keel nodes in suspended ceilings in Europe, investigated the effects of 

node type, tee section shape and tee section size on the seismic performance of joints, 

and analyzed the failure mechanism, force-displacement response and equivalent 

viscous damping of nodes. 

Xiqing [283] studied the failure load of main and cross tee joints and main tee hanger 

joints through monotonic loading tests. The results show that the failure load of the 

main and cross joints is mainly controlled by the bending degree of the cross tee joints 

and the contact range of the splice clips in the joints. The failure load of the main tee 

hanger joints is mainly determined by the length and path of the cut line at the 

connecting end of the hanger and the main tee web. Wang et al. [284] studied the 

failure mode, bearing capacity, deformation performance, and energy dissipation 

performance of main tee joints, main and cross joints, and edge joints through 

monotonic loading and low cycle reciprocating loading tests, further enriching the test 

data of tee joints and splice points. 

2.2.2.3 Overall experiments of suspended ceiling 
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Gilani et al. [285] proposed a static loading scheme to study the compressive strength 

and stiffness of the main keel. The results show that the main tee is not the weakest 

component in the ceiling to resist horizontal action. Nakaso et al. [286] proposed a 

new type of reinforcing cable to solve the difficulty of ceiling reinforcement. The 

static test of the ceiling shows that installing the reinforcing cable in the ceiling can 

improve the lateral stiffness of the ceiling and reduce the displacement response of the 

ceiling. Brandolese et al. [287] carried out a static test on the suspended ceiling with 

supports to investigate the failure mechanism, stress performance, and deformation 

performance of the suspended ceiling. The results show that although the buckling of 

the support bar reduces the mechanical performance of the ceiling, the system shows 

good deformation capacity. 

It can be seen from the above studies that scholars from all over the world have 

obtained some valuable conclusions from the static tests on the suspended ceiling 

components, suspended ceiling joints, and the suspended ceiling as a whole, which 

can provide test support for the seismic vulnerability research and numerical 

modeling of the suspended ceiling, but there are still some problems and deficiencies. 

For example, there is a lack of uniform test standards in experimental research. The 

test pieces used by scholars from different countries are produced by different 

companies, and the applicability of the research results is poor due to the differences 

in the details of the test pieces. 

(a) Dynamical shaking table test 

The dynamical shaking table test is the most direct and intuitive means to study the 

seismic performance of suspended ceilings. The shaking table test of suspended 
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ceilings generally adopts full scale model. The research progress of the suspended 

ceiling shaking table test is introduced in the following three aspects: test carrier, 

loading system, and test results. 

(b) Test carrier 

The steel platform is often used as a carrier to suspend the suspended ceiling and 

provides the actual boundary conditions for the suspended ceiling. The following two 

points should be considered in the design of the steel platform: (1) The steel platform 

should have enough stiffness, and its natural frequency should be far away from the 

natural frequency of the ceiling to avoid the impact of resonance effect on the seismic 

performance of the ceiling. (2) The steel platform with reasonable height shall be 

designed to facilitate the installation of a suspended ceiling. Table 2.3 summarizes the 

steel platform information used in the existing study. It can be concluded from Table 

1.3 that the natural frequencies of most steel platforms are greater than 10Hz, which 

reduces the amplification effect of steel platforms on input to some extent. The plane 

area of the steel platform varies from 2.9 m2 to 558 m2. In the test, unidirectional 

loading is dominant. 

Table 2.3 Summary of steel platform information from existing studies 

Researcher Year 
Platform 

size/m 

Frequency/Hz Loading 

directions X  Y  Z  

ANCO [288] 1983 3.7×8.5 - - - - 

Rihal [289] 1984 3.7×4.9 - - - 1 

ANCO [290] 1993 4.3×7.3 - - - - 

Yao [291] 2000 1.2×4.1×2.2 - 24.8 - 1 

Badillo [292] 2006 4.9×4.9×1.8 12.3 12.3 9.6 2 

Ryu [293] 2012 
6.3×6.3×3.0 12.0 12.8 21.8 3 

6.3×16.5×3.0 11.3 13.3 22.0 3 

Magliulo 

[294] 
2012 2.4×2.7×2.7 50.0 55.6 - 1 

Watakabe 2012 5.5×5.5×4.0 - - - 1 
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[295] 

Soroushian 

[296,297] 

2012 10×12×16 1.5 - - 3 

2014 3.7×18.3×7.6 - 
4.3 

(2.8)* - 1 

Pourali[298] 2015 2.7×5.2×2.8 - 12.5 - 1 

Chen[299] 2015 6.6×11.0×22.9 - 
1.2 

(1.9)* 
- 1 

Wang[300] 2016 3.3×3.9×3.3* 11.1 10.0 25.0 3 

Ozcelik[301] 2016 2.4×3.0×1.4 - 12.0 - 1 

Sasaki[302] 2017 18.6×30.0×9.1 - - - 3 

Hong[303] 2017 3.5×3.5 
33.3 

(2.8)* 

33.3 

(2.8)* 
- 1 

Masuzawa 

[304] 
2017 3.6×5.6×1.8 - - - 1 

Yao[305] 2017 3.0×8.0×2.0 10.0 35.0 30.0 2 

Lu [306] 2018 4.0×4.0×4.2 25.1 25.1 
25.0 (7.4; 

8.4)* 
2 

Chhat[307] 2019 2.4×5.2×2.0 - - - 1 

Fiorino [308]  2019 2.9×3.2×3.3 3.0 - - 1 

Lee[309]  2019 3.5×3.5×3.0 16.8 16.8 - 1 

Li [274] 2019 1.7×1.7×1.2 47.3 63.4 136.8 1 

Jiang[310] 2020 11.6×12.8×5.4 8.4 8.9 - 2 

Patnana[312]  2020 2.4×3.0 20.5 22.6 15.3 1 

Qi[313,314] 2020 3.0×4.0×3.0 ＞20.0 - - 2 

Note (1)The size of the steel platform is expressed in width×length× height, if there are 

missing items, the height is unknown; (2) The X direction and Y direction refer to the 

horizontal short direction and horizontal long direction of the steel platform respectively, and 

the Z direction refers to the vertical direction of the steel platform; (3) 3.3×3.9×3.3* The 

platform adopted is a reinforced concrete frame structure filled with masonry; (4) 4.3 (2.8)* 

refers to the self-resonance frequency of linear steel platform and nonlinear steel platform, 

respectively; (5) 33.3 (2.8)* refers to the self-resonance frequency of rigid steel platform and 

flexible steel platform, respectively; (6) 1.2 (1.9)* refers to the self-resonance frequency of 

the foundation seismic isolation structure and the bottom fixed structure, respectively; (7) 

25.0 (7.4; 8.4)* refers to the vertical self-oscillating frequencies of the three support systems, 

respectively. 

 

(c) Loading system 

In the shaking table test of suspended ceiling, researchers will choose different 

loading systems according to different research purposes and needs. The loading 

systems mainly include natural ground motion input and artificial wave input. The 
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artificial wave mainly includes sine wave, floor wave, and artificial wave fitted 

according to the design spectrum and floor demand spectrum of the specification. 

Table2.4 summarizes the loading system in the suspended ceiling shaking table test. 

The natural ground motion is generally the input wave at the bottom of a full-scale 

structural model containing non-structural components such as suspended ceilings or 

the actual seismic wave selected according to the structural design response spectrum. 

A sine wave is generally used to study the influence of different parameters and the 

failure mechanism of suspended ceiling.  

Some scholars use the floor wave calculated from the numerical model as the input of 

the suspended ceiling shaking table test, some scholars use the fitting wave based on 

the code design spectrum, and most scholars generate appropriate artificial waves 

based on the floor demand spectrum recommended by the shaking table test standard 

AC156 [80] for non-structural members, which makes the results of different 

suspended ceiling shaking table tests comparable. Most scholars will use a variety of 

types of seismic waves to study the seismic performance of suspended ceilings.  

Table 2.4 Summary of loading regimes for ceiling shaker testing 

Input types Scholars who have used this input wave in existing studies 

Natural waves 
Wang[314]; Lu[306]; Soroushian[298]; Chen [299]; 

Qi[313] 

Artificial 

waves 

Sinusoid 

waves 

Li [274]; Jiang[310]; Pourali [257]; Rihal [289]; 

Chhat[307]; Mccormick [315] 

Floor waves Jiang [310]; Watakabe[296] 

Specification 

Design 

Spectrum 

Yao[291]; Echevarria [316] 

Floor 

Demand 

Spectrum* 

Badillo[293]; Ryu[298]; Magliulo[295]; Fiorino[308]; 

Gilani[317] 



57 

 

Note: The floor demand spectrum in the table is recommended by the non-structural 

component shaker test standard AC156. 

The following focuses on the relevant provisions of the loading system in the shaking 

table test standard AC156 for non-structural systems [314]. Based on the calculation 

formula of equivalent lateral force method for non-structural systems in ASCE 7-10 

[318], AC156 gives the floor demand response spectrum (RRS) and requires fitting 

the target response spectrum (TRS) matching RRS in a certain frequency range 

(1.3~33.3Hz). The duration of the acceleration time history is generally 30s, and the 

acceleration time history meeting the requirements includes at least three sections: 

enhancement - stabilization - attenuation, with the time respectively being 5s, 20s and 

5s. The strong earthquake time is required to be no less than 20s, and the long-

duration acceleration time history is acceptable. Figure 1.8 shows the horizontal and 

vertical RRS curves. 

The horizontal acceleration AFLX-H of flexible components (components with 

natural frequency less than 16.7Hz) is calculated as follows: 

  （2.1） 

In the equation(2.1),  SDS  is the short-period (0.2s) design response spectrum 

acceleration; h is the height of the installation position of non-structural components 

from the ground; H is the average height of the main structural roof. 

The horizontal acceleration ARIG-H of rigid members (members with natural 

frequency greater than 16.7Hz) is calculated as follows: 
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  （2.2） 

The vertical RRS of flexible members and rigid members is 2/3 of the horizontal RRS, 

and h=0 is assumed, so the vertical acceleration of flexible members AFLX-V and the 

vertical acceleration of rigid members ARIG-V are calculated according to Equations 

1.3 and 1.4, respectively: 

 （2.3） 

 （2.4） 

 

Figure 2.6  Demand response spectrum in AC156 (damping ratio: 5%) 

(d) Test results 

Scholars all over the world have done a lot of research on the seismic performance of 

suspended ceilings through shaking table tests and have obtained fruitful research 

results. The existing test results are summarized as follows. 
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Before 2000, the shaking table tests on suspended ceilings were very limited. ANCO 

Engineers [Refer] first used a shaking table test to analyze the impact of structural 

measures such as inclined suspension wire, compression bar, and side node with a 

rivet on the seismic performance of the suspended ceiling. The results show that the 

compression bar has a limited effect on reducing the seismic damage of the suspended 

ceiling, and the side node with rivets can reduce the seismic response of the 

suspended ceiling more than the inclined suspension wire. Ten years later, ANCO 

Engineers [290] carried out a series of shaking table tests on suspended ceilings with 

actual ground motion input. The results show that the tested ceiling can meet the 

requirements of the code for the seismic performance of the ceiling. Rihal et al. [289] 

studied the seismic performance of the suspended ceiling with input harmonic 

excitation. The results show that the compression bar can reduce the vertical vibration 

of the ceiling, and the inclined suspension wire can reduce the seismic response of the 

ceiling.  

Yao [291] conducted a shaking table test on the suspended ceiling. The research 

shows that the inclined suspension wire cannot improve the seismic performance of 

the ceiling, and the installation of side suspension wire in the ceiling and the use of 

rivets in the side node can improve the seismic performance of the ceiling. It can be 

seen from the above analysis that different scholars have different conclusions about 

the effects of inclined suspension wires and compression rods, which are mainly 

related to factors such as ceiling type and input excitation. Generally speaking, the 

compression bar can reduce the vertical vibration of the ceiling, but it may aggravate 

the damage to the ceiling under a large vertical earthquake. The influence of inclined 
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suspension wires on the seismic performance of suspended ceilings needs further 

study. 

Since 2000, scholars from different countries have carried out a lot of shaking table 

tests on suspended ceilings. Compared with the existing research, the main 

differences are as follows: (1) The performance-based seismic performance 

evaluation and design method research of the suspended ceiling is started, the 

performance level and performance objectives of the suspended ceiling are proposed, 

and the seismic vulnerability curve of the suspended ceiling is established. (2) The 

influence of different parameters on the seismic performance of suspended ceilings is 

further studied. (3) More effective seismic measures are proposed to reduce the 

damage to the ceiling. (4) The whole shaking table tests of a variety of non-structural 

components, including suspended ceilings, were carried out to study the influence of 

the interaction between the main structure and suspended ceilings and between 

different non-structural components on the seismic performance of suspended ceilings. 

The following summarizes and sorts out the seismic research results of suspended 

ceilings since 2000 from different aspects. 

Some scholars used shaking table tests to study the influence of different structural 

measures and parameters on the seismic performance of suspended ceilings, which 

provided a test basis for the seismic design of suspended ceilings. Li [271] studied the 

influence of loading parameters, tee support conditions, suspension length, and other 

factors on the seismic performance of a suspended ceiling. The results show that the 

parameters such as peak acceleration and peak velocity have no obvious correlation 

with the damage degree of the suspended ceiling. The reliable connection of boundary 
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members can significantly reduce the damage to the suspended ceiling, and the 

suspension length has little impact on the damage to the suspended ceiling. Jiang et al. 

[310] conducted a comparative study on the influence of whether there is an anti-

seismic clip installed at the ceiling boundary on the anti-seismic performance of the 

ceiling. The results show that the acceleration, displacement and strain responses of 

the suspended ceiling will be significantly reduced if the anti-seismic clamp is 

installed at the boundary of the suspended ceiling. Chhat et al. [307] investigated the 

influence of brace arrangement and eccentricity of the upper end of the brace on the 

seismic performance of a suspended ceiling, and analyzed the failure mechanism of a 

suspended ceiling. Badillo et al. [293] conducted shaking table tests on six different 

types of suspended ceilings. The research shows that the damage of the suspended 

ceiling under multi-directional loading is more serious than that under unidirectional 

loading. Mineral wool board fasteners and side joints with rivets can improve the 

seismic performance of suspended ceilings. 

Some scholars have conducted shaking table tests on suspended ceilings in large-span 

spatial structures. Sasaki et al. [302] analyzed the collapse mechanism of suspended 

ceilings in gymnasiums through shaking table tests. Lee et al. [309] designed a 

shaking table test based on AC156 [314] for suspended ceilings in large space 

structures and studied the dynamic characteristics and damage of suspended ceilings. 

Bo [319] studied the influence of different structural forms and upper supports on the 

seismic performance of suspended ceilings in long-span structures through shaking 

table tests. The research of Lu et al. [320] shows that the flexible support amplifies 

the vertical response of the ceiling, and the hinged suspended structure in the middle 

can reduce the vertical response of the ceiling to a certain extent. The failure of the tee 
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is mainly caused by the failure of the tee node. Ryu et al. [321] studied the failure 

mechanism of large-area suspended ceilings through a shaking table test. 

Some scholars have proposed effective seismic measures to reduce the seismic 

damage of suspended ceilings. Pourali et al. [257] proposed a suspended ceiling 

which is disconnected from the wall all around and conducted a shaking table test on 

it. The results show that when the suspended ceiling encounters resonance, the 

displacement of the suspended ceiling increases and it collides violently with the 

boundary, resulting in greater acceleration. In order to solve the problem of excessive 

displacement and acceleration when the ceiling resonates, Pourali et al. [322] 

suggested filling the gap at the ceiling boundary with isolation blocks. The analysis 

shows that the isolation block can reduce the impact and, thus, the displacement and 

acceleration response of the ceiling. The results show that the suspended ceiling with 

the new type of side joints has better seismic performance. Watakabe et al. [296] 

proposed a new anti-seismic clip SECC, and analyzed the failure mechanism and anti-

seismic performance of the suspended ceiling after installing SECC through a shaking 

table test. The results show that SECC significantly improves the seismic performance 

of the suspended ceiling. Masuzawa et al. [304] proposed a device that can effectively 

prevent the falling off of ceiling panels and verified the effectiveness of the device 

through shaking table tests. 

At present, the research on the seismic performance of gypsum board ceiling is still 

very limited. Magliulo et al. [295] carried out shaking table test research on single-

frame and double frame gypsum board ceilings. The results show that the suspended 

ceiling is undamaged under all input excitation and has good seismic performance, 
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which is related to the good continuity of the suspended ceiling, dense keel 

arrangement, and sufficient suspenders. Patnana et al. [311] compared the seismic 

response of gypsum board ceilings with vertical supports, which are boundary free 

and boundary fixed, through shaking table tests. The results show that the 

displacement response of the boundary fixed ceiling and the cumulative strain of the 

vertical support change less than that of the boundary free ceiling. Under the loading 

of Taft seismic wave sequence, both of them show good seismic performance. Under 

the loading of sine wave failure condition, the boundary fixed ceiling is undamaged, 

while the boundary free ceiling is severely damaged. Qi et al. [313] studied the 

seismic performance of the drop grade gypsum board ceiling through shaking table 

tests, and analyzed the effects of temporary supports and boundary constraints. The 

results show that the seismic performance of the suspended ceiling is good under 

earthquake excitation. Temporary supports can reduce the relative displacement of the 

high and low sides of the ceiling and improve the overall performance of the ceiling. 

The boundary constraint can reduce the torsional deformation of the ceiling, the 

horizontal vibration of the ceiling, and the stress of the suspender. 

At present, most researches mainly focus on the single type of non-structural 

components of the suspended ceiling, and a few scholars have carried out shaking 

table tests of the whole system of a variety of non-structural components including the 

suspended ceiling. Soroushian et al. [323] analyzed the seismic performance of the 

ceiling partition pipe composite system by shaking table test on a 5-story steel frame 

platform, compared the seismic response of the ceiling with or without lateral support, 

and studied the impact of different structural measures on the interaction between 

mineral wool board and fire sprinkler. The results show that when the suspended 
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ceiling is subjected to strong vertical earthquake, lateral bracing cannot improve the 

seismic performance of the suspended ceiling. Flexible suspension wire can 

effectively reduce the interaction between mineral wool board and fire sprinkler. 

Pantoli et al. [300] conducted a shaking table test on a full-size non-structural system 

using a 5-story reinforced concrete structure as a platform. The results show that the 

suspended ceiling with seismic design has good seismic performance. Fiorino et al. 

The results show that the strengthened seismic connection can improve the seismic 

performance of the composite system. McCormick et al. [315] compared and 

analyzed the seismic performance of gypsum board partition traditional ceiling 

composite system and gypsum board partition suspended composite ceiling system 

through seismic design. The results show that both types of suspended ceilings have 

good seismic performance, but the acceleration response of the suspended ceilings 

with seismic design is greater. Huang et al. [324] studied the seismic performance of 

the ceiling partition composite system by shaking table test. The results show that the 

loading dimension and ceiling dimension are important parameters affecting the 

seismic response of the system, and the brace can improve the seismic performance of 

the ceiling partition composite system. 

2.2.2.4 Numerical simulation 

At present, the numerical analysis of suspended ceilings is still difficult. The main 

reasons include: (1) the diversity of suspended ceilings and the complexity of the 

suspended ceiling node structure. (2) There are complex interactions among the 

components of the ceiling, between the ceiling and the surrounding non-structural 
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components, and between the ceiling and the main structure. (3) The complexity of 

nonlinear response of suspended ceiling. 

(a) Simulation of ceiling components 

At present, the numerical analysis of suspended ceiling components is rarely carried 

out. Most scholars do not consider the nonlinearity of suspended ceiling components 

when modeling suspended ceiling components but only consider the nonlinearity of 

suspended ceiling nodes. The main reason is that compared with suspended ceiling 

components, the seismic performance of suspended ceiling nodes is worse, and they 

show obvious nonlinear behavior in earthquakes. In actual earthquake disasters, the 

damage of the suspended ceiling is mostly concentrated in the nodes; while the 

components are generally less damaged, Therefore, scholars focus on node simulation. 

Soroushian et al. [325] used similar modeling methods to simulate the hysteretic 

behavior of primary and secondary keel joints under axial force, shear and bending 

and established load displacement restoring force models of joints under different 

loading modes. The results show that the modeling method can well simulate the 

mechanical and deformation performance of the joints, and the restoring force model 

of the joints can be used for the nonlinear analysis of the whole ceiling. Fiorin et al. 

[282] used a modeling method similar to Soroushian et al. [325] to simulate the 

nonlinear behavior of keel nodes. 

(b) Simulation of suspended ceiling 

Scholars have made some achievements in the numerical analysis of suspended 

ceilings. Ryu et al. [294, 321] proposed to analyze the seismic response of a 

suspended ceiling under unidirectional horizontal earthquake by using a two-
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dimensional simplified mass spring model with multiple degrees of freedom. The 

results show that the simulation results are consistent with the shaking table test 

results, which proves the rationality of the model, but the model has some difficulties 

in analyzing the seismic response of the ceiling with complex forms. Echevarria et al. 

[316] used finite element software SAP2000 to simulate the seismic response of the 

ceiling, using the beam element to simulate the grid member, the hook element to 

simulate the hanger, the frame unit to simulate the pressure rod, the tensile and 

compressive friction pendulum vibration isolation unit to simulate the interaction 

between the mineral wool plate and the grid, assuming that the main and cross tee 

nodes were hinged, and the mineral wool board was simplified to the "X" type semi-

rigid-mass point model. The model can simulate the elastic deformation of the 

suspended ceiling and the lifting of mineral wool board but cannot simulate the 

collapse behaviour of the suspended ceiling. In view of the shortcomings of the 

numerical analysis models of Ryu et al. [294,321] and Echevaria et al. [316], Zaghi et 

al. [326] took the specimen of Ryu et al. [294] in the ceiling shaker test as the 

benchmark model, and used the finite element software OpenSEES to establish a 

nonlinear numerical analysis model of the ceiling, considering the nonlinear effects of 

the collision between mineral wool board and keel and boundary constraints. The 

results show that the model can better predict the failure position of the ceiling, and 

the displacement time history curve of the ceiling obtained by the numerical model 

and the shaking table test is in good agreement, but the acceleration time history curve 

calculated by the model is different from the test results, which is mainly due to the 

impact of the high-frequency spike caused by the collision. Soroushian et al. [327,328] 

used the finite element software OpenSEES to establish a nonlinear numerical 
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analysis model of the ceiling pipe composite system. This model can predict the 

failure mode and location of the ceiling, but it will overestimate the number of 

mineral wool board failures. The above simulations are all aimed at mineral wool 

board suspended ceiling. For gypsum board suspended ceiling, Tagawa et al. [329] 

established a numerical model of a gypsum board suspended ceiling in the stadium 

using the adaptive displacement integral Gaussian method to simulate the collapse 

behaviour of a suspended ceiling. The results show that this method can simulate the 

collapse process of a suspended ceiling. Similarly, Gilani et al. [330] established a 

numerical analysis model for gypsum board ceiling to study the seismic response of 

key components in the ceiling. 

The numerical analysis of suspended ceilings by domestic scholars is still in its 

infancy. Yao [291] established a simplified numerical analysis model of the 

suspended ceiling by using the finite element software ANSYS, and compared the 

influence of inclined suspension wires on the natural frequency of the suspended 

ceiling. The results show that the natural frequency of the suspended ceiling with 

inclined suspension wire is higher than that of the suspended ceiling without inclined 

suspension wire, but their vibration modes are basically the same. However, this 

model does not consider the influence of nonlinearity. Li [274] established a finite 

element model of mineral wool board suspended ceiling according to the method of 

numerical modeling of suspended ceiling introduced by Zaghi et al. [326]. This model 

takes into account the nonlinear behaviors such as friction and collision between 

mineral wool boards and grids. The main and cross tee nodes are assumed to be 

hinged, and the end of the main girds is assumed to be rigid support. The results show 

that the model can well simulate the interaction between mineral wool board and keel 
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and has certain accuracy in simulating the relative displacement of mineral wool 

board, the relative displacement of mineral wool board and main grids, and the 

absolute acceleration of main grids. In recent years, Qinghua's research group has 

obtained certain research results in the numerical simulation of suspended ceilings 

[319,320]. Kou Miaomiao [331] used the finite element software ANSYS to study the 

impact of inclined suspension wires on the seismic performance of the ceiling. The 

grid node in the model is assumed to be rigid without considering the contribution of 

mineral wool board stiffness. The results show that the inclined higher wire improves 

the seismic performance of the ceiling, which may be related to the obvious increase 

in the seismic response of the ceiling without an inclined suspension wire due to the 

failure to consider the boundary constraints of the ceiling in the model. Bo [319] used 

the finite element software ANSYS to establish a numerical model of a mineral wool 

ceiling, assumed that the grid node is hinged, ignored the contribution of mineral 

wool board stiffness, and studied the dynamic characteristics and seismic response of 

the ceiling. The results show that the horizontal natural vibration period of the ceiling 

is close to the frequency of the simple pendulum, and the internal force of the 

suspender increases significantly under the earthquake, while the axial force of the 

keel does not increase. Qinghua et al. [320] used the finite element software ANSYS 

to study the influence of the upper support structure and suspender structure on the 

dynamic characteristics of the ceiling. The results show that the natural frequency of 

the upper support structure has a significant influence on the vertical mode of the 

suspended ceiling, and a small influence on the horizontal mode of the suspended 

ceiling. The structural form of the suspender has no influence on the first order 

horizontal and vertical vibration modes of the ceiling. 
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In conclusion, domestic and foreign scholars' research on the numerical simulation of 

suspended ceiling is relatively limited, and there are many simplifications in the 

model. For example, the simplified treatment of mineral wool boards cannot truly 

reflect the impact of mineral wool board stiffness on the seismic performance of 

suspended ceilings. How quantifying the impact of friction and collision between 

suspended ceiling components on the seismic response of suspended ceiling is also an 

urgent problem. Therefore, it is necessary to continue to carry out more refined 

numerical analysis and fully consider the nonlinearity of ceiling joints. At the same 

time, more research should be conducted on the level of suspended ceiling 

components to provide more abundant and reliable data support for the numerical 

modelling of suspended ceiling. 

2.3 Core components literature review development table list   

To facilitate the reader's better understanding of the development of the core components, it is 

listed below as a summary of Core components literature review (Gaussian Process and 

Inference) table for reference.  

Table 2.5 Summary of Core components literature review (Gaussian Process and Inference) 

development list 

 Literature Model types Inference method 

Early-

stage 

Gaussian 

Process 

2001[19] Gaussian process MCMC 

2010[135] 
Hierarchical Gaussian 

Process 

Maximum Postorior 

Probability 

2011[134] 
Hierarchical Gaussian 

Process 

Sparse Variational 

Inference 

2012[127] Warped Gaussian Process 
Sparse Variational 

Inference (Induction point) 

2013[129] 
Combinatorial Kernel 

Functions 
Variational Inference 

Recent- 2013[134] Deep Gaussian Process Mean Field Variational 
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stage 

Gaussian 

Process 

Inference 

2014[130] Deep Gaussian Process 
Nested Variational 

Compression 

2016[131] Deep Gaussian Process Sampling Method 

2016[132] Deep Gaussian Process Sequential Inference 

2016[138] 
Recursive Deep Gaussian 

Process 

Mean Field Variational 

Inference 

2016[137] Deep Gaussian Process 

Sparse Variational 

Inference (Sparse 

Spectrum) 

2017[139] Deep Gaussian Process 
Doubly Stochastic 

Variational Inference 

 

2.4 Problems in current research 

The main problems in current research are as follows: 

(1) Most uncertainty quantification always not consider the surrogate model to 

enhance computational speed, and more machine learning based and high-efficiency 

surrogate model related research need to make.  

(2) Model such as G.P. faces computational difficulties: if there are fewer samples, 

the model accuracy is not high enough; If the sample size is large, the difficulty of 

model calculation increases. Therefore, new model construction and calculation 

methods have attracted the attention of researchers, such as sparse G.P. model, 

variational G.P. model, and deep learning of G.P. model, etc.  

(3) In fact, there is no one model that applies to all problems, so it is necessary to 

make full use of the information in the data, build a robust weighted model, or 

perform a purposeful screening of the model that is, model selection. 
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(4) How to effectively reduce the number of tests, ensure the accuracy of the model, 

and construct the optimal experimental design and sensitivity analysis under the high 

cost of complex system testing has been a hot spot in UQ research in recent years. 

(5) To overcome the slow speed of convergence for MCMC, variational inference 

method which based on optimization approximation needs to be investigated more 

and deeper.  

(6) At present, the seismic research on the grid connections of mineral wool ceilings 

is relatively insufficient, and there is a lack of a recognized joint resilience model, 

which cannot provide sufficient test support for the seismic vulnerability research and 

calculation model of the mineral wool ceiling. The specimens used by different 

scholars are different in detail structure and material properties, so the universality of 

research results is poor. Different scholars mostly use monotonic loading tests to 

study the seismic performance of keel joints, which is inconsistent with the 

characteristics of grid connections subjected to repeated loads in actual earthquakes. 

(7) Scholars all over the world have carried out a lot of research on the seismic 

performance of mineral wool board ceilings mainly by means of shaking table tests, 

but the existing research is mainly focused on American mineral wool board ceilings 

and Japanese gypsum board ceiling. The research on mineral wool board ceilings is 

still very limited, and the understanding of the seismic damage mechanism of mineral 

wool board ceilings is still not deep enough.. 

(8) At present, there is a lack of nonlinear numerical calculation models for mineral 

wool ceiling, and the overall analysis model of the ceiling is more complex and time-

consuming. Therefore, simplifying the numerical calculation model based on the 
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seismic response characteristics of mineral wool ceiling has become an urgent 

problem.  

(7) Scholars have not considered about the area effect of suspended non-structural 

system and also the long period and long duration earthquake waves input.   

(8) No research related to uncertainty quantification based inverse problems for 

suspended non-structural systems has ever been done before, which is a critical gap. 
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CHAPTER THREE 

MACHINE LEARNING-BASED DATA AND MODEL DRIVEN UNCERTAINTY 

QUANTIFICATION OF INVERSE PROBLEMS METHODS AND FRAMEWORK 

3.1 Gaussian Process surrogate model  

A Gaussian process is a set of random variables, and any finite-dimensional random 

variable obeys a consistent joint Gaussian distribution. Williams and Rasmussen[332] 

introduced Gaussian processes into the field of machine learning [25,26,27,28,29] and 

applied them to regression. Since then, Gaussian processes have been actively 

developed in the field of machine learning and applied to active learning [333], 

dimensionality reduction [334], optimization [335], reinforcement learning [336,337] 

and so on. This article focuses on Gaussian process regression. 

Definition 3.1 Random process   

Let (Ω, F, P) be a probability space, Ω is the sample space, F is the time domain, P is 

the probability measure, and T be a parameter set. If any t∈T has a random variable 

X(ω, t) ω∈Ω defined on (Ω, F, P), then the family of random variables dependent on 

parameter t {X(ω, t)|t∈T} is said to be a random process, abbreviated {X(t), t∈T} or 

X(t). 

Definition 3.2 Gaussian process   

Let {X(t), t∈T} be a random process defined on the probability space (Ω, F, P) if for 

any finite set of points {t1, t2,· · ·, tn} ⊂ T have {X(ω, t1), X(ω, t2),· · ·, X(ω, tn)} 

obey an n-dimensional Gaussian distribution, then {X(t), t∈T} is Gaussian process. 

By definition, the probabilistic properties of a Gaussian process are determined only 

by its mean and covariance functions. This is also an important property of Gaussian 
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processes. 

3.1.1 Gaussian process surrogate model 

This section presents Gaussian process surrogate models from the perspective of 

functional spaces. We define the expectation and covariance of a real-valued Gaussian 

process f(x), respectively: m(x) and k(x, x′). The specific form can be written as 

equation (3.1) and equation (3.2).  

M(x) = 𝔼[𝑓(𝑥)]   (3.1) 

k(𝑥, 𝑥′) = 𝔼[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))]   (3.2) 

The Gaussian process can be expressed as: 

𝑓(𝑥)~ 𝐺𝑃(𝑚(𝑥)𝑚𝑘(𝑥, 𝑥′)) (3.3) 

Because expectations do not affect the model construction and derivation of Gaussian 

processes for the convenience of derivation and the brevity of symbols, let us assume 

that the prior expectation is m(x) = 0 for the sake of derivation convenience and 

symbolic brevity. A special reminder will be given when the expectation is not 0 later. 

The size of the covariance between any two random variables in a Gaussian procedure 

is calculated using the covariance function k(r), where r = dist(x, x′) is the measure of 

distance between the two inputs. The covariance function, also called the kernel 

function, is used to quantify the magnitude of the correlation between two random 

variables. Kernel functions can have several different options, such as radial quadratic 

covariance functions: 

(3.4) 

γ Exponential family covariance function: 
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(3.5) 

Matern class covariance function: 

(3.6) 

Sum squared exponential covariance function: 

𝐾(𝑟) = 𝛼exp (−
𝛾2

2𝑙2
)  (3.7) 

where α, γ, v, and l are hyperparameters of kernel functions, especially l is a scale 

parameter that describes how complex the kernel function is in the parameter space. 

Among them, the square exponential covariance function equation (3.4) is the most 

commonly used covariance function because its correlation is close to the real 

problem. The subsequent study of non-structural systems in this dissertation mainly 

uses this covariance function, where r is defined as a measure of distance in Euclidean 

space. The detailed form of the kernel function in this dissertation is:  

The covariance relationship between two random variables f(xq), f(xp) is a function of 

xq and xp. Theoretically, each set of positive-definite covariance functions is 

equivalent to an expansion of a set of basis functions. The square exponential kernel is 

equivalent to a linear combination of a set of infinite-dimensional Gaussian functions 

[338]. 

Suppose that the input points X∗ ∈ ℝn∗d of n dimensions are known, and the 

corresponding random variable f∗ ∈ ℝn  can be represented as an n-dimensional 

Gaussian distribution with an expectation of 0 and a covariance matrix of K:  

𝑓∗ ~ 𝑁(0, 𝐾(𝑋∗, 𝑋∗)) (3.8) 

where, each element in K can be calculated using the equation (3.8).  
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In reality, the general situation is that we cannot directly observe the output value of 

the function or system but can only get observations with a certain amount of noise, 

assuming that each observation is mapped using an unknown function f(x) and then 

disturbed by Gaussian noise independently of the same distribution, that is 

yi = 𝑓(𝑥𝑖) + 𝜖𝑖  (3.9) 

The correlation between the observations of the two inputs xp, xq is rewritten as: 

𝑐𝑜𝑣(𝑦𝑝, 𝑦𝑞) = 𝑘(𝑥𝑝, 𝑥𝑞) + 𝜎2𝛿𝑝𝑞    𝑐𝑜𝑣(𝑦) = 𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 (3.10) 

where δpq is the Dirac function when p = q, δpq = 1, otherwise δpq is 0. The joint 

distribution of y and f∗ after adding the observation error is:  

[
𝑦
𝑓∗
] ~𝑁(0, [

𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
]) (3.11) 

The conditional distribution is:  

𝑓∗|𝑋, 𝑦, 𝑋∗~ 𝑛(𝑓∗̅, 𝑐𝑜𝑣(𝑓∗̅))          

 where,                     𝑓∗̅ ≜ 𝔼[𝑓∗|𝑋, 𝑦, 𝑋∗] = 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦        

𝑐𝑜𝑣(𝑓∗) = 𝕍[𝑓∗] = 𝑘(𝑥, 𝑥∗) − 𝑘∗
𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑘∗   (3.12) 

Note that the covariance of the measured values is independent of the observations in 

the training set, only the inputs to the training and test sets. This is an important 

property of Gaussian process models. 

When there is only one point x∗ in the test set, k(x∗) = k∗ is the covariance vector 

between the test point and n training points. There are also abbreviations K = K(X, X), 

and K∗= K(X, X∗). Bring the simplified formula into the equation(3.12) to get the 

expectation and variance of the posterior distribution of f(x∗). 

(3.13) 

From the equation (3.13), it can be seen that the expectation of f∗ can be understood 
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as a linear combination of all observations y. The weight of each observation is 

determined by K∗
T(𝐾 + 𝜎𝑛

2𝐼)−1. It can also be understood from another angle, and the 

equation (3.13) is transformed to get the equation (3.14): 

(3.14) 

where α = (KT + 𝜎𝑛
2𝐼)y This result can be intuitively understood as the expectation 

of f∗, and it can also be represented by a linear combination of kernel functions acting 

on n central actions on the training point. 

In addition, marginal likelihood p(y|X) is an important indicator to describe the quality 

of Gaussian regression models. We can get it directly from the prior y~N(0, K + σn
2I):  

𝑙𝑜𝑔𝑝(𝑦|𝑋) =  −
1

2
𝑦𝑇(𝐾 + 𝜎𝑛

2𝐼)−1𝑦 −
1

2
log|𝐾 + 𝜎𝑛

2𝐼| −
𝑛

2
𝑙𝑜𝑔2𝜋  (3.15) 

Before the given training samples, Figure (3.1a) shows the prior distribution of the 

function. The differently-colored lines represent functions drawn randomly from the 

distribution. After the given training sample (black plus sign), Figure (3.2b) shows the 

posterior distribution of the function. The function fits the training samples and shows 

uncertainty where the training samples are missing. 

 

(a) Prior distribution  
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(b) Postorior distribution  

 Figure 3.1 Gaussian Process model illustration  

In view of the defect of excessive time complexity, many scholars have proposed 

different approximation methods, among which the mainstream method is pseudo-

point method. 

The pseudo-point method assumes the existence of M virtual sample points (not 

disturbed by observational noise), called "induction points" or "auxiliary points". The 

input characteristics are Z = {zi}i=1 
𝑀 , The corresponding function value u = {ui}𝑖=1

𝑁 =

{𝑓(𝑧𝑖}}𝑖=1 
𝑁

. Suppose that given these induction points, the prediction points are 

independent of the training sample conditions:  

(3.16) 

It can be said that the induction point introduces the dependency between the 

prediction point and the training sample, so Quiñonero-Candela et al. [339] named it 

"Inducing Points". However, further approximations are required when calculating 
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p(u|y). After fifteen years of research and development, many scholars have put 

forward different opinions from different perspectives. In 2005, Quiñonero-Candela et 

al. [339] proposed the first unified framework to elaborate various methods at that 

time, such as SOR [340], DTC [341], FITC [342], PITC [339] and so on from the 

perspective of "approximate model, accurate inference". Different methods 

approximate the prior Gaussian process with the help of induction points according to 

different assumptions, thereby reducing the computational time complexity of the 

approximation model when making inferences. Under a unified framework, the 

assumptions of different approaches can be reasonably compared. 

With the emergence of new methods, especially the VFE [343] method of Titsias et al., 

in 2017, Bui et al. [344] proposed a new framework to derive from the starting point 

of "accurate model, approximate inference". Under the new framework, the original 

model remains unchanged, and different methods use different approximation 

methods, such as variational inference [345] or expectation propagation [346], to 

reduce the time complexity of inference. Bui et al. [344] argue that the framework of 

"approximating the model, accurately inference" changes the assumptions made by 

the original model on the data, introducing induction points into the model in the form 

of parameters. When the number of induction points increases, it is difficult to 

guarantee that the approximate model will tend to the original model, and optimizing 

a large number of parameters may cause overfitting problems [343]. Although the 

assumptions are different, the training time complexity of the pseudo-point method is 

usually O(NM2), and the test time complexity is usually O(M2).  

3.1.2 Optimization of hyperparameters in Gaussian regression models 

Although there are many options for covariance functions, inevitable parameters need 
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to be determined within the function, which we often refer to as hyperparameters. The 

hyperparameter's value determines the kernel function's specific form, making it 

especially important to choose the appropriate hyperparameter. For example, in the 

squared exponential covariance function with input as one dimension: 

 𝑘𝑦(𝑥𝑝, 𝑥𝑞) = 𝜎𝑓
2 exp (−

1

2𝑙2
(𝑥𝑝 − 𝑥𝑞)

2
) + 𝜎𝑛

2𝛿𝑝𝑞     (3.17) 

l, σf, σn are hyperparameters in kernel functions. Different hyperparameters affect the 

generalization ability of the model. As shown in Figure ( ), when the hyperparameter 

selection does not match the data, the predictive ability of the Gaussian process 

regression model will have severe errors. In order to avoid overfitting or underfitting 

the model, the selection of hyperparameters is particularly important and is also a key 

factor affecting the quality of the model. Hyperparameters are not easy to determine 

in real-world applications, or the model's hyperparameters may need to be adjusted 

accordingly as the input space changes. This section describes two common 

hyperparameter optimization methods in Gaussian regression models. In this chapter, 

hyperparameters will be represented by the vector θ. 

   

(a) (l, σf, σn) = 

(1,1,0.1) 

(b)(l, σf, σn) = 

(0.3,1.08,0.00005) 

(c)(l, σf, σn) =

(0.3,1.08,0.005) 

Figure 3.2 Different hyperparameters comparison [338] 

The following discussion is based on the maximal marginal likelihood method to 

illustrate its optimization method; according to Bayesian inference, the posterior 
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density function of the hyperparameter θ can be expressed as: 

(3.18) 

When the evidence is constant, finding the maximum posterior estimate of the 

hyperparameters is equivalent to maximizing p(y|X, θ)p(θ). When p(θ) is uniformly 

distributed, the maximum posterior estimation of the hyperparameters is actually 

looking for θ, making the maximum p(y|X, θ), which is the maximum likelihood 

estimate. 

Although Bayes' criterion provides a credible and consistent framework for inference, 

for most machine learning models, the computations required, such as marginal 

likelihood (integration over the entire parameter space), cannot be written in analytic 

form. It is also difficult to find a good approximation, making the amount of 

computation unbearable. The Gaussian regression model with Gaussian noise is 

indeed a rare exception, and from the equation(3.15), we can get the logarithmic form 

of p(y|X, θ) can be explicitly expressed as: 

log(p(y|x, θ)) =  −
1

2
𝑦𝑇𝐾𝑦

−1𝑦 −
1

2
log|𝐾𝑦| −

𝑛

2
log (2𝜋) (3.19) 

Where Ky = 𝐾𝑓 + 𝜎2𝐼  is the covariance matrix containing the covariance function 

and the observed error, −
1

2
𝑦𝑇𝐾𝑦

−1𝑦  is the only data fitting term that contains 

observations; 
1

2
log|𝐾𝑦|  is a calculated penalty that only considers covariance 

information; 
𝑛

2
log (2𝜋) is a normalized constant. Generally, as the kernel function's 

scale parameters increase, the model's flexibility will become weaker and weaker, and 

the data fitting term will gradually become smaller. Conversely, the penalty becomes 

larger as the model becomes less flexible. The amount of data also has a significant 
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influence on the choice of scale parameters. In general, the less data, the smoother the 

curves for marginal likelihood and scale parameters. Because the observation error 

term dominates in the marginal likelihood, the scale parameters of the fitted data term 

are not very sensitive compared to the small scale. Conversely, when the data become 

more numerous, the fitted term dominates in the marginal likelihood. At the same 

time, it has become more sensitive to scale parameters.  

To maximize the marginal likelihood, we write the partial derivative form of the 

marginal likelihood for each hyperparameter: 

𝜕

𝜕𝜃𝑗
𝑙𝑜𝑔𝑝(𝑦|𝑋, 𝜃) =

1

2
𝑦𝑇𝐾−1

𝜕𝐾

𝜕𝜃𝑗
𝐾−1𝑦 −

1

2
𝑡𝑟 (𝐾−1

𝜕𝐾

𝜕𝜃𝑗
) 

   =
1

2
𝑡𝑟((𝛼𝛼𝑇 − 𝐾−1)

𝜕𝐾

𝜕𝜃𝑗
) (3.20)  

Where tr(·) is the trace of the matrix. The partial derivative of each hyperparameter in 

the solution equation(3.20) is 0, which is equivalent to the maximization marginal 

likelihood. K-1 mainly determines the computational complexity of the equation(3.20), 

and the time complexity of O(n3) is required to find the inverse of a matrix with 

positive symmetry using conventional methods. Once K−1 is obtained, the equation 

(3.20) has a gradient complexity of O(n2) for any hyperparameter θj. Thus, the 

optimal hyperparameters can be calculated using any gradient-based optimization 

method. The above part is the analysis of the Gaussian process, and then we will 

explore the Bayesian calibration and inference process of the inverse problem. 

3.2 Bayesian Inference  

Bayesian inference methods provide an approach to the estimation or calibration of a 

set of parameters 𝚯 in a model (or hypothesis) H for the data D. It is based on a 

likelihood function derived from a specific probability model of the observed data 
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L(𝐃|𝚯 ) , where 𝚯  is assumed to be stochastic, it has a prior distribution 

π(θ) pai(theta). The inference about theta is based on the posterior distribution 

pai(theta|D) obtained by the Bayes' theorem [347]: 

Pr(𝚯|𝑫, 𝐻) =
Pr(𝑫|𝚯,H)Pr(𝚯|𝐻)

Pr(𝑫|H)
  (3.21) 

And,               Pr(𝑫|𝐻) = ∫Pr(𝑫|𝚯, H) Pr(𝚯|𝐻) 𝑑𝚯 (3.22) 

where  𝚯 represents the tensor of uncertain parameters that is to be 

estimated,  D represents the tensor of the observations or measurement data to 

calibrate or estimate our knowledge of 𝚯, and H represents the model or hypothesis 

which is believed to best represent the available D. The terms details expressed in 

Equation(3.21) are as such: 

• Pr(Θ|H) ≡ π(Θ) is the prior distribution which describes our prior knowledge 

of θ before any available D, 

• Pr(D|Θ, H) ≡ L(Θ) is the likelihood function which represents the degree of 

similarities  between D and H,  

• Pr(Θ|D, H) ≡ P(Θ) is the posterior probability distribution of the parameters, which 

describes our updated information of θ after the information gained by D, 

• Pr(D|H) ≡ Z is the Bayesian evidence which serves as the normalizing constant of 

the posterior. 

In the estimation process, the Bayesian evidence factor is usually ignored since it is 

independent of the parameters Θ, and inferences are obtained by computing or 

sampling the unnormalized posterior:  

P(θ|D,H)∝Pr(D|θ,H)⋅Pr(θ|H) (3.23) 

Details of the above terms can be found in [348].  
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3.3 Bayesian calibration  

A model calibration procedure can be described statistically as [348]. By explicitly 

taking into account parameter uncertainties, model discrepancy, and observation error, 

the proposed method above employs Bayesian inference to model the relationship 

between the output of the computer simulations and observation data y.  

𝑦(𝑥) = 𝜂(𝑥, 𝑡∗) + 𝛿(𝑥) + 𝜖 (3.24) 

Where y(x) and η(x, t∗)are the observation data and simulation output, respectively. 

δ(x) is the discrepancy/bias term which accounts for model inadequacy between 

simulation and physical system at input condition x. Inadequate or missing physics, as 

well as numerical errors in the code, could be the cause of this inadequacy. ϵ describes 

observational data variation, and it is often assumed to have a Gaussian distribution. 

And t* represents the true but unknown values of the calibration parameters t.  

3.4 Advanced sampling methods  

Because the analytical solution of Pr(Θ|D, H) may not be easily reached given the 

high dimensionality of this problem , advanced sampling techniques have been 

developed to draw samples from unnormalized distributions, such as MCMC[349], 

SMC[350], X-TMCMC[351].   

The Bayesian evidence Z cancels out of the computation for producing a single 

sample for various MCMC schemes, including Gibbs sampling and Metropolis-

Hastings in general. Data generation, information extraction, and machine vision are a 

few of the many successful applications where MCMC has been employed. A 

complete description of MCMC method is beyond the scope of this thesis. Instead, 

interested readers should refer to classic references such as [352]. Some main 

concepts are summarized below.  
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MCMC algorithm constructs an ergodic Markov chain whose posterior distribution is 

stationary and simulates stochastic samples from the Markov chain. This mechanism 

ensures that the number of samples will change with the density function value of the 

target distribution. Markov chain in discrete finite state space can be defined as: a 

random process x (i) has only finite s values  𝑥(𝑖)  ∈ 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑠} . If the 

random process satisfies 

(3.25) 

The process is called the Markov chain. If any i satisfies, The Markov chain is said to 

be homogeneous. In other words, the growth of a chain in space depends only on the 

current state of the chain and a fixed transfer matrix.   

When the Markov chain exhibits two different types of convergence, it is said to be 

ergodic under the circumstances. A law of large numbers convergence is the first 

interest:  

(3.26) 

where the St are empirical samples from the chain. 

As long as the random transition matrix T satisfies irreducibility and aperiodicity, the 

Markov chain will converge to the invariant distribution p(x), which is the second 

type of convergence. The detailed balance condition is a sufficient and unnecessary 

condition for p(x) to be an ideal invariant distribution. 

(3.27) 

Sum x (i − 1) on both sides simultaneously, we have  
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(3.28) 

MCMC sampler is an irreducible, aperiodic Markov chain representing the target 

distribution as invariant. One of the ways to design such a sampler is to ensure that 

the detailed balance conditions are met.  

According to the standard theory of Markov chains, the KL divergence monotonically 

decreases during the Markov transition[353], that is,  

𝐷𝐾𝐿[𝑞𝑡||𝑝] ≤ 𝐷𝐾𝐿[𝑞𝑡−1||𝑝]  (3.29) 

Where n intractable posterior distribution p with a sampler q, a distribution from 

which we can draw exact samples. Therefore, qt converges to the stationary 

distribution p as t → ∞ under proper conditions.  

Metropolis-Hastings algorithms [354] are a class of MCMC methods and given some 

proposal distribution q(γ ∗ |γ), the Metropolis-Hastings algorithm accepts the 

proposed γ ∗ with probability  

(3.30) 

and otherwise remains in the old state γ. This will generate a Markov chain which will 

have π as stationary distribution. Generally, t is not very difficult to design a sampler 

that meets the condition of detailed balance, but the convergence speed of different 

samplers varies greatly. It is not easy to design a sampler with a fast convergence 

speed.   Here, we provide a more detailed algorithm of MCMC (Metropolis-Hastings):  
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Algorithm 3.1  MCMC(Metropolis-Hastings) 

1   Initialize: x(0) 

2    for i = 0 to N-1: 

3    1     u~ U(0,1) 

X∗~ 𝑞(𝑥∗|𝑥𝑖) 

if u < min( 1, 
π(x∗)𝑞(𝑥|𝑥∗)

π(x)q(x∗|𝑥)
) 

  x(i+1) = x*  

else:  

x(i+1) = x(i)  

4    end  

5   end  

 

3.5 Variational Inference  

Markov chain Monte Carlo sampling is usually unbiased, so convergence to true 

posterior can be achieved in infinite samples, but convergence could be very slow. 

Variational inference is a widely used method of indirect approximation.[355] To do 

this, it minimizes the Kullback-Leible divergence of approximate and posterior 

distributions. This method avoids the calculation of the difficult normalization 

constant and only needs to know the joint distribution of the observable variable x and 

the latent variable z. Compared to stochastic sampling methods, variational inference, 

proposed by Euler, Lagrange, and other scholars when studying variational 

calculation, is a kind of computational variable posterior optimization method for 

distributions[345], which is a very efficient approximation method for large data or 

very complex models. The basic idea is to transform the inference problem into an 

optimization problem by choosing a distribution q(x) from some easy-to-handle 

distribution families so that it approximates the true posterior distribution as close as 

possible. This section will focus on variational inference.  

3.5.1 Inference and Optimization  

Suppose a Bayesian model is known, and the prior information of all parameters in 
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the model is known, that is, the prior probability distribution. However, there are 

hidden variables in the model in addition to parameters. In the following introduction, 

Z is used to represent the collection of hidden variables and model parameters. 

Correspondingly, X is used to represent the observed variables of the model, and λ is 

used to represent the variational parameters, such as X = {x1, x2, . . . , xn} , Z = {z1, 

z2, . . . , zn}, λ= {λ1, λ2, ..., λN}. The goal of variational inference is to find the easily 

manageable distribution q(Z) and approximate the posterior distribution p (Z| X), also 

calculate the marginal probability or model evidence p (X) of the observed variable. 

Thus the inference problem turns into an optimization problem that minimizes the 

distance measure between the variational distribution and the posterior distribution, 

and finally, the optimized variational distribution q(z, λ∗) can be used on behalf of a 

posterior distribution. 

Regarding the distance measure between two probability distributions, we generally 

call it divergence, and in practice, there are many divergence measures, such as 

Jensen divergence [356]; the most frequently used is the Kullback-Leibler(KL) 

divergence [357]. It is applied to approximate inference and plays an important role in 

machine learning, statistics, and information theory, also known as relative entropy 

and information gain. 

Definition 3.3 For the probability distributions p(z) and q(z), the KL divergence 

distance between them is defined as: 

  DKL(𝑞(𝑧)||𝑝(𝑧)) =  −∫ 𝑞(𝑧) log
𝑝(𝑧)

𝑞(𝑧)
𝑑𝑧         (3.31)  

It is worth noting that it can be seen from the equation (3.31), KL divergence is an 

asymmetric definition of divergence distance: DKL(𝑞(𝑧)||𝑝(𝑧)) ≠  DKL(𝑝(𝑧)||𝑞(𝑧)). 

In addition, the KL divergence value formula is a non-negative value; that is, 
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DKL(𝑞(𝑧)||𝑝(𝑧)) ≥ 0  and DKL(𝑞(𝑧)||𝑝(𝑧)) = 0 if and only if 𝑞 = 𝑝. In practice, the 

variational inference is usually to minimize DKL(𝑞(𝑧)||𝑝(𝑧|𝑥)), and there are also 

some methods to minimize the Reversed KL Divergence [358], which is 

DKL(𝑝(𝑧|𝑥)||𝑞(𝑧)) [359].  

Moreover, as shown in the equation (3.21) evidence term on the denominator in 

posterior distribution expressions tends to be intractable, so the divergence of 

variational and posterior distributions is difficult to minimize in variational inference. 

To deal with this problem, we can often transform the problem of minimizing the 

divergence of variational and posterior distributions into the problem of maximizing 

the lower bound of logarithmic likelihood p(x), which we will discuss in the next 

section. 

3.5.2 Variational lower bound 

In the previous section, we discussed that variational inference requires the variational 

distribution q(z) to be as close as possible to the posterior distribution p(z|x), usually 

by minimizing the KL divergence DKL(𝑞(𝑧|𝑥)||𝑝(𝑧))of these two distributions. So 

ideally, the variational distribution can be exactly the same as the posterior 

distribution p(z|x) = q(z). However, because parameters often limit the expressiveness 

of variational distributions, it is difficult to capture some complex high-dimensional 

or nonlinear properties of posterior distributions. In order to minimize KL divergence 

as much as possible, one of the biggest problems we have mentioned in the previous 

section is the evidence term and "model conditional" 𝑝(𝑧|𝑥) are very hard to obtain. It 

can be approximated by Monte Carlo such as MCMC, but it is not efficient. Thus, we 

can convert the minimized KL divergence into maximized log-likelihood variational 

lower bound problem, namely ELBO (Evidence Lower Bound Objective). ELBO is 
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the variational lower bound of the logarithmic likelihood log p(x). Since ELBO is a 

conservative estimate of the marginal distribution, it can also be used to represent 

whether the data distribution 𝑝(𝑥) is well-fitted to the model.  

Definition 3.2. With Jensen inequality，we can derive the variational lower bound 

ELBO from the log-likelihood log p(x):  

log 𝑝(𝑥) = log∫𝑝(𝑥, 𝑧)𝑑𝑧   
 

 
=  log∫

𝑝(𝑥, 𝑧)𝑞(𝑧; 𝜆|𝑥)

𝑞(𝑧; 𝜆|𝑥)
 𝑑𝑧   

 

 
= log𝔼𝑞(𝑧;𝜆)  [

𝑝(𝑥, 𝜆)

𝑞(𝑧; 𝜆|𝑥)
] 

(3.32) 

 ≥ 𝔼𝑞(𝑧;𝜆) log [
𝑝(𝑥,𝑧)

𝑞(𝑧;𝜆|𝑥)
]  by Jensen's inequality  

 = 𝔼𝑞(𝑧;𝜆)[log (𝑝(𝑥, 𝑧)] − 𝔼𝑞(𝑧;𝜆)[log (𝑝(𝑧; 𝜆|𝑥)]  

 = ELBO(q)  

It can be seen that for observational data, the distance measured between its 

logarithmic marginal distribution and variational lower bound ELBO is the KL 

divergence distance between variational distributions:  

log 𝑝(𝑥) 
= log(

𝑝(𝑥, 𝑧)

𝑝(𝑧|𝑥)
) 

 

 =  log(𝑝(𝑥, 𝑧) − log (𝑝(𝑧|𝑥)  

 = log(𝑝(𝑥, 𝑧) − 𝑞(𝑧; 𝜆)) − log (𝑝(𝑧|𝑥) − 𝑞(𝑧; 𝜆) (3.33) 

 =  log(
𝑝(𝑧,𝑥)

𝑞(𝑧;𝜆)
)   − log(

𝑝(𝑧|𝑥)

𝑞(𝑧;𝜆)
)     

Now, let's taking the expectation on both sides, given qφ(z): 

log 𝑝(𝑥) 
= ∫𝑞(𝑧; 𝜆) log (

𝑝(𝑧, 𝑥)

𝑞(𝑧; 𝜆)
)𝑑𝑧 − ∫𝑞(𝑧; 𝜆) log (

𝑝(𝑧|𝑥)

𝑞(𝑧; 𝜆)
)𝑑𝑧 

 

 
= ∫𝑞(𝑧; 𝜆) log (

𝑝(𝑧, 𝑥)

𝑞(𝑧; 𝜆)
)𝑑𝑧 + ∫𝑞(𝑧; 𝜆) log(

𝑞(𝑧; 𝜆)

𝑝(𝑧|𝑥)
)𝑑𝑧 

（3.34） 
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 = ELBO(q) + 𝐷𝑘𝑙(𝑞(𝑧; 𝜆)||𝑝(𝑥, 𝑧))  

Thus, this proves that maximizing the variational lower bound ELBO is equivalent to 

minimizing the DKL(𝑞(𝑧|𝑥)||𝑝(𝑧)) . In traditional variational inference methods, 

explicitly calculating the ELBO to solve for the expected value in equation (3.34) 

requires the variable to be directly conjugated [360], while in some newer methods, it 

is not required [361]. 

For ease of understanding, it can be intuitively seen in the figure 3.3 below that the 

logarithmic marginal or evidence probability lnp(X) is constant and does not change 

with the change of the approximate distribution q(Z). Therefore, the variation of the 

variational lower bound L(q) and KL divergence KL(q||p) must be inversely 

proportional; that is, maximizing the variational lower bound L(q) is equivalent to 

minimizing KL divergence KL (q|| p). In summary, KL divergence KL(q||p) is directly 

minimized p) is difficult to implement because it contains the true posterior 

distribution p (z|x), which cannot be calculated, and the joint probability p (x ,z) 

contained in the variational lower bound ELBO L(q) is relatively easier to express. 

Therefore, combined with the nature of the logarithmic marginal probability 

decomposition of the observed variable, the divergence KL(q||p) is indirectly 

completed by maximizing the ELBO L(q) to find the ideal approximate distribution 

q(Z).  
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Figure 3.3 Logarithmic marginal probability decomposition 

In variational inference, it is particularly important to obtain a simple and explicitly 

expressible variational distribution q(z) and be expressive enough to approximate the 

posterior distribution. A typical approach is to choose a decomposable distribution, 

known as the Mean-Field Distribution.[362] The mean field distribution assumes that 

all hidden variables are independent, which makes calculations easier but also 

introduces the problem of inaccurate estimation, especially when there are strong 

dependencies between hidden variables. Regarding mean field variational inference, 

we continue in this section. 

3.5.3 Mean Field Variational Inference 

Mean field variational inference originally derived from the concept of mean field in 

physics [363] and is defined as follows:  

Definition 3.3. Mean field variational inference assumes that all variables in the 

variational distribution are independent and, therefore, for variational distributions q(z; 

λ), that is: 

(3.35) 

where zi is one of the hidden variables in the model, and λi is its variational parameter. 

Now let's move on to the expression of ELBO under the mean field assumption, 

where ELBO can gradually maximize a completely decomposable variational 

distribution by iterative updates between hidden variables. For simplicity, the 

variational coefficient λ is omitted below. Here we illustrate the jth hidden variable 

and its parameters: 

Definition 2.4. For the jth implicit variable, put the mean field expression in equation 
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(3.36) into equation () to obtain the ELBO expression under the mean field:     

(3.36) 

Simplification of (Part 1): 

(3.37) 

Rearrange the expression by taking a particular qj (zj ) out of the integral. Note that 

unlike (Part2), we are not treating any terms to const: 

(3.38) 

Or even more meaningfully, it can be put into an expectation function, and since 

∏ 𝑞𝑖(𝑧𝑖) 
𝑀
𝑖≠𝑗 is a joint probability density  

(3.39) 

Note that one may consider:  

. (3.40) 
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Obviously,  

(3.41) 

And we have:  

(3.42) 

Simplification of (Part 2)  

(3.43) 

Note that the above needs to integrate out all z = {z1, ..., zM}, which is quite daunting. 

However, notice that each term in the sum ∑ log (𝑞𝑖(𝑧𝑖))
M
i=1  involves only a single i; 

therefore, we are able to simplify the above into the following:  

(3.44) 

For a particular pj (zj ), the rest of the sum can be treated like a constant, therefore for 

Pj(𝑧𝑗) can be written as:  

(3.45) 

where const. is the term that does not involve zj .  

Putting Part (1) and Part (2) together  

(3.46) 
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Here the key is to realize is that we do not need to take derivative as one would 

normally do. All we need is to re-arrange the terms and realize it's the KL term, so we 

can just math the two distributions.  

Note that    𝔼i≠j[log (𝑝(𝒙, 𝒛))]would be some log probability of z, we name it  

log(�̃�(𝒙, 𝒛)):  

(3.47) 

Or equivalently as: 

(3.48) 

Now this is the key: We can maximize ELBO(q), by minimizing the KL divergence, 

where we can find approximate and optimal q∗(𝑧𝑖), such that:  

(3.49) 

It can be seen that we can iteratively update each hidden variable until it converges, 

similar to that of the Variational Message Passing Algorithm[364]. However, equation 

(3.49) does not give an explicit solution because the expression on the right side of 

optimizing q𝑗
∗(𝑧𝑗) depends on expectations for other factor𝑞𝑖(𝑧𝑗) calculation. So in 

practice, after initializing the factor 𝑞𝑖(𝑧𝑖) , the current factor is replaced with a 

modified estimate each time when iterating. In addition, because the lower bound is a 

convex function for each factor 𝑞𝑖(𝑧𝑖) , the convergence of the algorithm when 

maximizing the variational lower bound is guaranteed [345]. Here below is given the 
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mean field variational inference algorithm and a imple illustration of varational 

inference process in Figure 3.4.  

Algorithm 3.2  Mean Field variational inference (MFVI) 

Input:  
 A joint probability distrtibution model 𝑝(𝐱, 𝐳), a data set 𝐱  
Output:  

    A variational density  𝑞(𝐳) = ∏ 𝑞𝑗(𝑧𝑗)
𝑚
{𝑗=1}  

1   Initialize: Variational factors 𝑞𝑗(𝑧𝑗) 

2   while the ELBO has not converged do 

3    for 𝑗 ∈ {1,… ,𝑚} do 

4    2     Set  𝑞𝑗(𝑧𝑗) ∝ exp {𝔼−𝑗[log 𝑝(𝑧𝑗|𝐳−𝑗 , 𝐱]} 

5    end  

6    Compute ELBO(𝑞) = 𝔼[log𝑝(𝒛, 𝒙)] − 𝔼[log𝑞(𝑧)]   

7   end  

8   Return 𝑞(𝐳) 

 

Figure 3.4 A simple example of variational inference [345]. 

The mean μ of a monary Gaussian distribution and precision τ is given in the Figure 

3.4. True posterior probability distribution p(μ, τ | D) Indicated by a green curve. (a) 

The initial decomposition approximates qu(𝜇)𝑞τ(τ), represented by a blue curve. (b) 

Results after re-evaluation of factor qu(𝜇). (c) The result after the factor 𝑞τ(τ), has 

been reassessed. (d) Contour lines of the optimal decomposition approximation, 

where iterative methods converge, are indicated in red[345].     

3.5.4 Extension of variational inference 
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In the previous chapter, we introduced the definition of variational inference, the 

lower bounds of variational, and the traditional mean field variational inference. In 

this section, we will discuss extended methods of variational inference in depth. 

3.5.4.1 Stochastic variational inference 

With the popularity of large data sets, Bayesian algorithms need to face more 

computational problems caused by large data sets, so Scalable Variational Inference 

came into being, and in this section, we will introduce this variational inference 

method. Among them, the most representative is Stochastic Variational Inference, 

assuming that the hidden variable z = {ε, θ} in the model is divided into the global 

hidden variable θ and the local hidden variable ε. Similarly, the corresponding 

variational argument is λ = {γ, φ}, where γ corresponds to the global hidden variable 

θ, and φ corresponds to the local hidden variable ε. In addition, these hidden variables 

in the model are controlled by a Hyperparameter α, which has a generation 

relationship for the observed variable X, where N is the number of observed samples. 

For most models, variational inference requires the overall consideration of all N 

samples in order to fully learn from the information in the dataset. For large data sets, 

such problems can be effectively solved with stochastic optimization methods [refer]. 

Stochastic variational inference begins by putting variational inference into the 

conditions of stochastic optimization, and in the paper of M. D. Hoffman et al. [365], 

they show how to perform random variational inference in the exponential family 

distribution of conditional conjugation:  

 

(3.50) 
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Now let's assume that there is a variational distribution; for the conjugated 

exponential family distribution, the expectation in equation (3.50) can be explicitly 

calculated; unlike the traditional variational method that requires N inferences per 

iteration, random variational inference randomly selects a mini-batch sample of size S 

for calculation, so that the lower bound of variational ELBO under random conditions 

is: 

(3.51) 

Here s is the subscript of variables in mini batches, and such variational lower bounds 

can be optimized using stochastic gradient descent [366]. For stochastic variational 

optimization, it is widely used and inspired a lot of related work, such as the 

variational auto-encoder VAE (VAE) [367]. In recent years, many applications of 

variational inference have been inseparable from the idea of stochastic variational 

inference.  

3.5.4.2 Non-Conjugate (Black Box) Variational Inference 

In the previous discussion, we mostly discussed cases where the distribution between 

variables in hidden variable models is conjugated, and in this section, we discussed 

how variational inference applies to these scenarios in a broader context. In order to 

adapt variational inference to a wider range of scenarios, on the one hand, it is 

necessary to make variational inference applicable to non-conjugate cases; On the 

other hand, variational inference needs to be made more automated to avoid 

constraints on model calculations.  

In traditional variational inference, the variational lower bound ELBO is usually 

explicit, which can be directly calculated and optimized, but at the same time, it also 
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constrains the design of the model; that is, the variables in the model must be 

conditionally conjugated to the exponential family distribution. For most models, 

including some complex Bayesian models, variational lower bound ELBO typically 

includes unsolvable or difficult-to-solve expectation calculations. In this context, 

Black Box Variational Inference has been proposed as a more general inference 

method, for which we only need to determine the generation process of the observed 

variable without limiting that the probability distribution of the intermediate variable 

must be conjugated. 

Variational inference is usually the need to maximize the variational lower bound 

ELBO, which is equivalent to minimizing the KL divergence between the variational 

and posterior distributions. To maximize ELBO, updates need to be made based on 

the gradient or stochastic gradient of the variational parameters. The core of the black-

box variational inference is that it is possible to obtain an unbiased estimate of the 

variational parameter gradient by sampling from the variational distribution without 

explicitly calculating the ELBO [368,369]. 

For general models, the gradient of ELBO can be expressed as the expectation of 

variational distribution: 

∇𝜆𝐿 = 𝔼𝑞[∇𝜆𝑙𝑜𝑔𝑞(𝑧|𝜆)(log 𝑝(𝑥, 𝑧) − 𝑙𝑜𝑔𝑞(𝑧|𝜆))]  (3.52) 

For gradients ∇λL, we can also sample from the variational distribution by stochastic 

gradient calculation and then perform gradient estimation:  

∇𝜆�̂�𝑠𝑡𝑜𝑐ℎ =
1

𝐾
 ∑ ∇𝜆𝑙𝑜𝑔𝑞(𝑧𝑘|𝜆)(log 𝑝(𝑥, 𝑧𝑘) − 𝑙𝑜𝑔𝑞(𝑧𝑘|𝜆))

𝐾
𝑘=1  (3.53) 

Here zk∼ q(z|λ). In this way, the black-box variational inference method provides a 

black-box gradient estimation method. At the same time, this method does not need to 

explicitly calculate the gradient of ELBO, but can sample K samples from the 
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observed and hidden variables for calculation. The specific calculation method can be 

implemented by many deep learning methods, the specific details of which are 

described in the reference paper on reinforcement learning algorithms [370]. This idea 

was applied in this study of non-structural suspension system with Bayesian 

variational inference.  

The above is the introduction and analysis of variational inference, and then we will 

discuss the part of the model selection. 

3.6 Design of Experiments  

In general, experimental design can be divided into two categories: model unknown 

and model known [371]. This section describes each of these two categories from the 

perspective of experimental design involved in numerical calculations. 

3.6.1 Model-unknown experimental design 

Monte Carlo [372] (MC) method and improved method are widely accepted in 

various research fields [refer] when the model is unknown. The MC method mainly 

has two characteristics: first, the mean convergence speed of the method is O(1/N(1/2)) 

(N is the number of samples/experimental design), which does not depend on the 

model and does not change with the increase of the dimension of the input parameter 

variables; Second, the MC method provides a stable solution for unconventional 

distributions (non-uniform distribution, normal distribution, etc.) and extremely 

nonlinear and discontinuous models. These two characteristics determine the wide 

applicability of MC, especially in reliability analysis (small-probability event 

evaluation), and MC method combined with the surrogate model is a very reliable 

method [373-377]. However, the MC method also has great limitations: simple 

random sampling in the experimental space is inefficient, and for complex systems, 
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because a large sample size is often required to obtain results that meet the accuracy 

requirements, the method does not meet the requirements of practical application for 

some engineering problems with a large amount of calculation. 

Many experimental design methods have been proposed to reduce the number of 

samples required by the MC method, and the basic idea is to improve sampling 

efficiency by dividing the test space in a targeted manner and selecting representative 

sample points within each division area. Commonly used methods include: the 

stratified sampling method [378] (Stratified Sampling), which divides the input 

variable into several layers according to a certain feature or value range and then 

randomly samples from within each layer; Latin Hypercube Sampling (LHS)[371], 

which is in fact the application of the hierarchical sampling method in multiparameter 

situations, in which the area range of each layer is determined by equal probability 

division according to the probability distribution of the input variable; Importance 

sampling method [379] (Importance Sampling), that is, within a limited number of 

samples, the sampling points cover the points that have a great impact on uncertainty 

through scale transformation, so it is beneficial to adjust the sample weight to improve 

the calculation speed. 

The quasi-Monte Carlo method [380,381] (quasi–Monte Carlo) differs from the above 

method in that it uses a quasi-random sequence (a low-variance column, a 

determinetically generated super-uniform distribution column) instead of random 

numbers for Monte Carlo simulation, so it is actually a deterministic sampling method. 

Uniform Design [382] (Uniform Design) is a typical application of quasi-Monte Carlo, 

which fully considers the "uniform dispersion" of the test points within the test range 

so that the selected sample points can fully fill the test space. Commonly used quasi-
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random sequences to generate quasi-Monte Carlo samples include Sobol sequences 

[383] and Holton sequences [384]. The mean convergence velocity of quasi-Monte 

Carlo is O((logN)d/N) (where d is the dimension of the random variable), and its 

asymptotic convergence speed is better than that of MC and LHS, but it deteriorates 

with the increase of dimension d, so it also has certain limitations. Order (x1, x2) ∼ 

U([0, 1]2) , 

 

Figure 3.5  Schematic diagram of Monte Carlo and its improved method 

Figure 3.5 selects the above methods for comparison, and apparently, samples 

generated by Monte Carlo (based on the Sobol sequence) are more evenly distributed. 

3.6.2 Model-known experimental design 

The random configuration method originated from numerical calculation methods, 

and it is known that some special nodes have high algebraic precision (for example, 

polynomial interpolation based on Chebyshev nodes can approximate the Runge 

function well), so the corresponding experimental design can be constructed based on 
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the tensor product of such high-precision interpolation points [385]. Thus, in the PCE 

model, the experimental design produced by the random configuration method is a 

tensor product of one-dimensional Gaussian integral [386,387] (Gaussian Quadrature) 

nodes. However, the use of tensor products inevitably leads to the problem of "curse 

of dimensionality". In order to cope with this situation, sparse nodes in high-

dimensional numerical integrals have been introduced into the experimental design of 

UQ, and commonly used sparse mesh construction criteria include Smolyak's criterion 

[388], sparse Gauss-Hermite criterion [389], Kronrod–Patterson criterion [390] and so 

on. These sparse nodes have been widely used because of their high algebraic 

accuracy and significantly reduced number of nodes in high-dimensional cases. In fact, 

these guidelines all aim to represent high-dimensional nodes using low-dimensional 

integral nodes while updating the weights of related nodes, which are still essentially 

tensor methods. Figure 3.6 depicts the Gaussian and Smolyak points in two 

dimensions. 

 

Figure 3.6 Comparison based on tensor product and Smolyak's criterion 

In the study of non-structural systems, I will use LHS for sampling, and the samples 

produced by Latin Hypercube Sampling (LHS) produces a more uniform distribution 

in the parameter space than the MC method, so it has a faster convergence speed. 

Taking the sampling of the random vector x ∼ U([0, 1]d as an example, the LHS 
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method is divided into the following three steps:  

Step 1: Divide [0, 1] on each dimension into N equal parts, N is the number of 

samples required, and construct N^d small hypercubes, written as {ci}||i|=1|
𝑁𝑑

, where i =

(i1, … , id) is a D-dimensional indicator and ||i|| = ∑ 𝑖𝑗
𝑑
𝑗=1 ; 

Step 2: Select N ci so that the indicators i1, 𝑖2 of any two small hypercubes satisfies:  

   ij
1 ≠ 𝑖𝑗

2, 𝑗 = 1,… , 𝑑; 

Step 3: In each selected small hypercube, a random sample is taken according to a 

uniform distribution, and its setting is the desired sample set. 

It should be noted that although the number of constructed small hypercubes Nd 

increases exponentially with dimension d, the computational complexity of Step 2 can 

be reduced to O(dN) through algorithmic optimization. The convergence speed of LHS 

varies from problem to problem, and in the one-dimensional case, it can be shown that 

its convergence speed is O(1/N). Similar to the MC method, by constructing some 

transformation methods, the LHS samples in a uniform distribution can be mapped to 

the desired samples, where Step 1 is equivalent to averaging each dimension into N 

parts with equal probability.  

3.7 Sensitivity analysis and model selection  

3.7.1 Sensitivity analysis  

Sensitivity analysis [391,392] (SA) is also an important piece of UQ, the purpose of 

which is to distinguish the QoI function y(x, θ), such as the mean, variance, 

distribution, and information entropy of the output, etc., the sensitivity of the input 

variable x or parameter θ, that is, to quantify the effect of perturbations of an 

individual or several variables/parameters on the QoI function. Sensitivity analysis is 
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important because it helps researchers control variables in a targeted manner and 

minimizes QoI uncertainty. 

Sensitivity analysis methods are mainly divided into two types: local and global. A 

common practice for local sensitivity analysis is to solve for an approximate Taylor 

expansion of the model. The local sensitivity metric is defined as partial derivative 

(gradient) information of the QoI function on the input variable or parameter at a 

specific sample point. The main feature of this method is that it is convenient and 

accurate to calculate, but its drawback is that it needs to determine the position of 

derivation, and it does not directly reflect the contribution of multivariate interactions 

to the QoI function. Global sensitivity analysis is generally done by screening or 

variance decomposition. The screening method is actually a design-of-experiment 

based approach, such as in partial factorial design or importance sampling, where 

variables that have little impact on the output are usually ignored.  

Therefore, in general, the sieve method cannot directly give the size of the sensitivity 

index, and its main purpose is to determine the variables that have a large impact on 

the uncertainty of the QoI function. The ANOVA-based method uses ANOVA or High 

Dimensional Model Representation (HDMR) to quantify the proportion of each 

variable (and its combination) in QoI uncertainty for QoI uncertainty (ANOVA). 

Unlike local sensitivity analysis methods, global sensitivity analysis considers the 

entire sample (parameter) space. SA is also closely related to the model selection 

method [393]; that is, model selection can be regarded as selecting models that meet 

the sensitivity threshold conditions to a certain extent. 

The variance-based sensitivity analysis method under global sensitivity theory is more 

applicable, and many scholars also use such methods for analysis in the study of 
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practical engineering problems. Sobol's variance-based sensitivity analysis has been 

studied in a large number of literature in recent years [394,395], and a semi-global 

sensitivity analysis method based on variance proposed by literature [396] has the 

following advantages compared with the global sensitivity analysis method based on 

Sobol's variance: First, in terms of calculation, Sobol's sensitivity analysis method 

needs to calculate the expectation of the inner layer conditions, while the semi-global 

sensitivity analysis method uses the mean to replace the inner condition expectation to 

simplify the calculation method; Secondly, it is applicable to the system input 

variables independently and relatedly, and can express the relationship between input 

variables and output responses more clearly and accurately. Finally, due to its inner 

conditions, it is expected that the mean will be substituted for the effect of the input 

variable on the high-order moment of the output response. 

In the study of non-structural components, the variance-based sensitivity analysis 

method is used, assuming that the relationship between the input variable and the 

output variable is as follows: 

y = f(x)    (3.54) 

where x=x1,x2,…,xn are n input variables, variance-based global sensitivity analysis 

represents the system response function as a high-dimensional Fourier Haar series 

decomposition:  

𝑓(𝑋) = 𝐹0 + ∑ 𝑓𝑖(𝑋𝑖) + ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) + ⋯+ 𝑓1…𝑛(𝑋1, …𝑋𝑛)1≤𝑖<𝑗≤𝑛
𝑛
𝑖=1   (3.55) 

where all terms can be expressed by multiple integrals as: 

(3.56) 

Express equation ( 3.56) as the desired form: 
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(3.57) 

where  X−i - the remaining variables except Xi   

X−ij — the remaining variables except (Xi, 𝑋𝑗) 

According to equation (3.57), the variance of each order can be obtained by finding 

the variance on both sides of the equation at the same time: 

𝑉𝑎𝑟(𝑌) = 𝐸(𝑌2) − (𝐸𝑌)2,    𝑉𝑎𝑟(𝑋𝑖) = 𝐸 ((𝐸(𝑌|𝑋𝑖))
2
) − (𝐸(𝐸(𝑌|𝑋𝑖)))

2   

𝑉𝑎𝑟(𝑋𝑖, 𝑋𝑗) = 𝐸 ((𝐸(𝑌|𝑋𝑖, 𝑋𝑗))
2
) − (𝐸 (𝐸(𝑌|𝑋𝑖, 𝑋𝑗)))

2

− 𝑉𝑎𝑟(𝑋𝑖) − 𝑉𝑎𝑟(𝑋𝑗)   

(3.58) 

where 𝑉𝑎𝑟(𝑌)  is the variance of the response function, 𝑉𝑎𝑟(𝑋𝑖) is the first-order 

variance, and 𝑉𝑎𝑟(𝑋𝑖, 𝑋𝑗) is the second-order variance 

For an input variable Xi, the total variance can be expressed as: 

𝑉𝑎𝑟𝑇(𝑋𝑖) = 𝑉𝑎𝑟(𝑌) − 𝑉𝑎𝑟(𝐸(𝑌|𝑋~𝑖)) (3.59) 

The equations (4-5) and (4-6) can indicate that the iX first-order sensitivity index is: 

𝑆𝑖 =
𝑉𝑎𝑟(𝑋𝑖)

𝑉𝑎𝑟(𝑌)
 (3.60) 

Xi second-order sensitivity indicators are: 

𝑆𝑖𝑗 =
𝑉𝑎𝑟(𝑋𝑖,𝑋𝑗)

𝑉𝑎𝑟(𝑌)
 (3.61) 

Xi global sensitivity metrics are: 

𝑆𝑖
𝑇 =

𝑉𝑎𝑟𝑇(𝑋𝑖)

𝑉𝑎𝑟(𝑌)
 (3.62) 

First-order sensitivity reflects the degree of influence of input variables on the output 

response variance when they act alone; the second-order sensitivity metric reflects the 
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degree to which the interaction between the input variables Xi and Xj  affects the 

variance of the output response. The global sensitivity metric represents the degree to 

which Xi affects the total output response variance.  

Equations (3.61) and (3.62) show that the calculation of the difference between the 

second order and above includes the calculation of the inner conditional expectation 

and the calculation of the outer variance, and the calculation of the inner conditional 

expectation represents the global influence of the input variable Xi on the output 

response and the result changes with the change of Xi; The calculation of the outer 

variance is to describe this global effect in terms of the variance statistic. However, in 

actual engineering analysis, a reasonable system response variance decomposition 

should be able to more clearly determine and distinguish which input variables have a 

variance to cause changes in output response variance. Therefore, Sobol' sensitivity 

analysis method is vague in this regard.   

3.7.2 Minimum description length model selection  

In short, the MDL law treats an abstract data model as a piece of code that generates 

that data and the model's code length is called the data's description length [397]. The 

basic idea of feature modeling using MDL law is to use MDL as a frugal measure of 

the model, and the goal of feature modeling is regarded as the most effective 

description method from the observation data, which can accurately restore the 

observation data. According to the principle of frugality, when choosing among 

several possible models using the MDL rule, the data is modeled by choosing the 

model with the shortest description length. Its simple mathematical model is: 

𝑀𝐷𝐿(𝑥𝑛) =  − log 𝑓𝜃(𝑥
𝑛) + 𝐿(𝜃) (3.62) 

Where − log 𝑓𝜃(𝑥
𝑛) is the average shortest encoding length that can be achieved by 
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losslessly encoding n-dimensional data xn using model M, that is, the lower bound of 

entropy. 𝐿(θ) represents the complexity of the model itself. Since the absolute value 

of L(θ) cannot be calculated directly, MDL uses the K–L divergence between the 

model fθ(𝑥
𝑛) and the real generative data q(𝑥𝑛) as a measure of model complexity, 

which is called the redundancy of the observation model, that is, the additional coding 

length required to encode the model when the estimated distribution fθ(𝑥
𝑛)  is used 

instead of the true distribution q(𝑥𝑛). Using the concept of Normalized Maximum 

Likelihood (NML), Rissanen further demonstrated that the redundancy of the 

observation model has the following asymptotic optimal lower bound of Minimax 

[398]: 

inf
fθ
sup
θ∈𝚯 

K– L (q, fθ) =
𝑘

2
log

𝑛

2𝜋𝑒
 + log ∫ √det 𝐼(𝜃) 𝑑𝜃

𝐾
+ 𝑂(1)    (3.63) 

where θ is a compact subset of the parameter space Θ, k represents the number of 

parameters entering the model, I(θ) is the Fisher information matrix of the parameter 

distribution, and an expectation defines me (θ) Iij = −< (
𝜕2 log𝑓(𝐷|𝜃)

𝜕𝜃𝑖𝜕𝜃𝑗
) >θ over the 

parametric model fθ(𝑥
𝑛). Our conclusion rigorously shows that model complexity 

estimates must approach the lower bound progressively. It has good generalizability 

[49] because it doesn't assume knowledge of the true data distribution or make 

specific assumptions about the observed data distribution [397]. It is worth 

mentioning that similar work to the MDL modeling method also includes the 

Minimum Message Length (MML) method proposed by Wallace et al. [399]. The 

computational information theory foundation of this method is consistent with the 

MDL law; the main difference between the two is that the MML method is based on 

Bayesian inference, the starting point of inference is the prior probability of the data 
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model, and this method is mainly used for parameter estimation. The MDL rule, on 

the other hand, rejects any prior assumptions about the generative model of data, so it 

is more widely applicable and occupies a more important position in the field of 

statistical modeling research [400].  

3.8 Comparison between benchmark and proposed method components  

Table 3.1 Comparison between benchmark and proposed method components 

  

Benchmark & 

proposed 

method 

components  

Advantage  Disadvantage  

Forward problem 

Original 

numerical 

simulation 

Accurate; High physical 

explanation  

Too slow and 

computational 

inefficient 

Machine 

learning based 

G.P. Surrogate 

model 

Very Fast and highly 

computational efficient; 

Low physical 

explanation 

Not too accurate 

but approximate 

Forward problem 

sampling space  

Monte Carlo 

Sampling 
Accurate 

Slow and 

computational 

inefficient 

Latin 

Hypercube 

Sampling 

Computational efficient 
Not too accurate 

but approximate 

Forward problem 

prior consideration 

All prior 

parameters  
Accurate 

Slow and 

computational 

inefficient 

Sensitivity 

analysis 
Computational efficient 

Miss some 

parameters 

contributions 

Inverse problem 

inference/calibration 

MCMC or 

ABC  
Accurate  

Too slow and 

very long burn-

in period to 

convergence; 

Hard to scale to 

big data  

Variational 

Inference  

Very fast and highly 

computational efficient.  

Easy to scale to big data 

Not too accurate 

but 

approximate; 

Requirement for 

the conjugate;  

Black-box Very fast and highly Not too accurate 
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Variational 

Inference  

computational efficient; 

Easy to scale to big data; 

Without the requirement 

of the conjugate. 

but approximate 

Model selection 

AIC/BIC/DIC Very simple to compute  

Not to consider 

geometric 

complexity of 

parameter space 

MDL 

Consider geometric 

complexity of parameter 

space 

Relative 

complex to 

compute 

 

3.9 Framework of ML-based Data & model driven UQ of inverse problems   

Following the above methodology, Figure 3.7 sums up the proposed framework of 

machine learning-based data and model driven UQ of inverse problems, which will be 

used in chapter 6 as below. The model-driven approach [32] uses finite element 

numerical modeling to simulate data via design of experiments, providing a large 

dataset to train the data-driven, machine learning based surrogate model. This 

approach is used to solve forward problems.  

Figure 3.7 Framework of machine learning-based Data & model driven UQ of inverse 

problems 

 

In contrast, the data-driven (machine learning-driven) approach [32, 33] involves 
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sensitivity analysis and training the surrogate model with both full-scale observations 

(experimental) data and simulated data to solve the inverse problem of Uncertainty 

Quantification (UQ) for SNS systems, which often have uncertain parameters 

including initial and boundary conditions, material properties, and geometry, that can 

vary in space or time. Our approach addresses these inverse problems, and the 

forward and inverse problems are complementary. In the new approach, we propose a 

new black box variational inference method combined with O'Hagan's Bayesian 

calibration framework, and embed MDL model selection to enhance the accuracy, 

efficiency, and robustness of both forward and inverse problems with generalization. 
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CHAPTER FOUR  

SUSPENDED NON-STRUCTURAL SYSTEMS FULL SCALE 

DYNAMCIS SHAKING TABLE EXPERIMENTS  

4.1 Introduction 

The full-scale dynamic shaking table testing of seismic simulation can reconstruct the 

seismic process of structural or non-structural systems under various input waves. It is 

the most direct method to investigate the seismic response and failure mechanism of 

structural or non-structural systems. It is also an essential method for studying and 

evaluating the seismic performance of structural or non-structural systems [401.]. It is 

worth noting that, unlike the structural shaking table test in which the seismic wave is 

directly input on the table, the non-structural components are generally installed at a 

certain height of the main structure and undertake the floor seismic action than the 

ground motion. The strength and spectral characteristics of the floor input wave have 

changed compared with the ground motion strength and spectral characteristics.  

Therefore, when using the shaking table test to evaluate the seismic performance of 

the non-structural components, it is necessary to fit the floor wave with broad 

representative significance as the input wave, including acceleration time history, 

velocity time history, and displacement time history, to reflect the actual floor seismic 

action characteristics of non-structural components and improve the reliability of the 

shaking table test of non-structural components [402]. It is worth noting that most 

shaking table tests for seismic simulation of non-structural members use full-scale 

models. 
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Currently, the experimental research on the typical non-structural system types, such 

as Suspended Ceilings Systems (SCS) and Suspended Cable Trays Systems (SCTS), 

with super-large area, multiple types, and long period & long duration earthquake 

input is still lacking, and the understanding of their seismic damage mechanism is 

warranted. Based on the deficiencies of existing research, this dissertation designed 

three groups of suspended ceilings, four groups of suspended cable trays, and steel 

platforms for installing suspended ceilings and cable trays and conducted seismic 

simulation dynamics shaking table experiments on suspended ceilings and cable trays 

in the multi-function dynamics shaking table laboratory in Asia. The seismic damage 

mechanism and ceiling and cable tray performance are studied, and the effects of 

different structural types and boundary constraints on their seismic performance are 

compared. This chapter first introduces the test design, test device and specimen 

fabrication and installation, experiments equipment, experiments scheme, and 

experiments loading scheme, then analyzes the seismic damage phenomenon, then 

introduces the experiments data processing method, and investigates the acceleration 

response.  

The full dynamics shaking table tests on the SCS and SCTS were conducted to 

investigate the working mechanism, damage mechanism, and seismic responses 

subjected to earthquake-induced excitation. The steel platform is used as a test carrier 

to hang the SCS and SCTS. Figure 4.1 shows the overall view of the platform, which 

has the largest area in the world until now. It has two stories with a height of 5.40 m. 

The plan dimensions are 12.84 m×11.64 m. The platform's longitudinal (12.84 m) and 

transverse sides (11.64 m) are defined as the X and Y directions, respectively. Three 

levels along the height of the platform, table level, ceiling level, and floor level, are 
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considered. Due to the fact that one shaking table is not big enough to install the 

specimen, two shaking tables connected together as an integral one are used in this 

test. 

  

Fig. 4.1. Overall view of steel platform and suspended ceiling and cable tray systems. 

4.2 Experimental design 

The dynamic shaking table test design of non-structural seismic simulation includes 

the design of a steel platform and non-structural test pieces. The design of the steel 

platform and the design of non-structural test pieces are described in detail below. 

4.2.1 Steel platform design 

The steel platform is an input platform for installing non-structural test pieces and 

serving as the test pieces. The following factors should be considered in the design 

[403-409]: (1) The stiffness of the steel platform should be as large as possible so that 

the amplification effect of the steel platform roof on the input wave of the platform is 

as small as possible, and at the same time, ensure that the natural vibration frequency 
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of the steel platform should be far away from the natural vibration frequency of the 

test piece, to avoid adverse effects of resonance effects on the test piece. (2) The 

height of the steel platform shall be designed reasonably to facilitate the installation of 

test pieces and test observation. (3) The total weight of the steel platform and the test 

piece shall not exceed the maximum bearing capacity of the table. (4) The size of the 

steel platform shall be designed according to the size of the test piece and shall meet 

the site test conditions. 

Based on the above basic requirements, the steel structure is selected to design the 

steel platform, and the finite element numerical analysis software is used to model and 

analyze it. The model diagram is shown in Figure 4.1. The structural form of the steel 

platform is a two-layer steel supporting frame structure made of Q235 steel, with a 

size of 12.84m (X) × 11.64m(Y) × 5.40m (Z), X direction is east-west direction, Y 

direction is north-south direction, the height of the first floor is 2.3m, the height of the 

second floor is 3.1m, and the total weight is 31.7t. The first three vibration modes and 

corresponding periods of the steel platform are shown in Figure 4.2. The design effect 

of the steel platform is shown in Figure 4.3, and the detailed design drawing of the 

steel platform is shown in Appendix B. See Table 4.1 for details of steel platform 

components.  
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(a) First mode (translation in the Y direction), T1=0.0954s 
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(b) Second mode (translation in the X direction), T2=0.0803s 

 

(c) Third mode (horizontal torsion), T3=0.0694s 

Figure 4.2 First three vibration modes and corresponding periods of the steel platform 
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(a)3D graphics model 

 

(b) Top view 
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(c) South elevation 

 

(d) West Elevation 

Figure 4.3 Design Drawing of Steel Platform 

The edge beam and intermediate beam are designed to simulate the boundary of the 

suspended ceiling. Figure 4.4 shows the schematic diagram of the edge beam. Taking 

the edge beam between X1~X2 axes as an example, the design details of the edge 

beam are described. Channel steel C-160 × 63 × 6.5, steel bar FB-50 × 3, steel plate 

PL-320 ×200× 3, and angle steel L65 × 65 × 6 are connected with bolts to configure 
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the edge beam. The fixed wooden beam in the channel steel of the edge beam is used 

to connect with the boundary of the suspended ceiling. Figure 4.5 shows the 

schematic diagram of the intermediate beam, which is located in the middle of the 

Y2~Y3 axis. The channel steel C-160 × 63 × 6.5, square steel pipe □ - 50 × 50 × 3, 

angle steel L50 × 50 × 5 are welded connected to configure intermediate beam. The 

intermediate beam's two ends and upper end are connected with the steel platform by 

welding. The internal fixed wooden beam of the channel steel of the intermediate 

beam is used to connect with the boundary of suspended ceilings. It should be noted 

that the intermediate beam is only used for experiment types A and B. Its role is to 

divide test pieces A or B into two parts with the same area but different boundary 

conditions. The intermediate beam is removed when experiment types C is conducted 

on the shaking table.  

  

(a) Partial 3D sketch of edge beam 
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(b) Elevation of side beam between axes X1~X2 

 

(c) Top view of edge beam between axes X1~X2 
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(d) Partial Detail drawing of edge beam 

Figure 4.4 Design Drawing of Edge Beam (Unit: mm) 
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(a) Partial 3D sketch of intermediate beam 

 

(b) Layout plan of intermediate beam 

Figure 4.5 Design drawings of Intermediate Beam (Unit: mm) 

Table 4.1 Member Information of Steel Platform 

Member 

Information 
Type and size/mm Numbers 

C1 H-194×150×6×9 12 

C2 H-175×175×7.5×11 4 

C3 BH-340×300×12×12 4 

G1 H-125×125×6.5×9 8 

G2 H-446×199×8×12 8 

B1 □-200×100×3.2 14 

B2 □-100×100×3.2 5 

KB1 □-200×200×8 8 

KB2 □-150×150×6 8 

KB3 2[-100×50×5×7.5 4 

KB4 2[-100×50×5×7.5 4 

KB5 2[-125×65×6×8 4 

V1 □-120×120×4.5 14 

V2 □-100×100×4.5 18 
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V3 〇-M18 36 

V4 □-100×100×3.2 18 

 

4.2.2 Suspended Ceiling Systems (SCS) experiments configurations design 

4.2.2.1 Ceiling Types Introduction  

For Suspended Ceiling Systems (SCS) with mineral wool boards around the world, 

there are four typical boundary conditions for the ceiling perimeter: free, fixed, fixed-

free, and fixed-semi-free. The SCS with the free boundary condition (Figure 4.6a) 

refers to the SCS placed on the peripheral support without any attachments connected 

with the surroundings so that at the boundary, the SCS moves freely in the horizontal 

direction except the constraint due to the friction (Figure 4.7a). The SCS with the free 

boundary condition is generally applied in areas with light to moderate earthquake 

potential (Seismic Design Category C) according to current American standards [75]. 

This type of SCS is required to have a minimum 10 mm gap between the grid end and 

wall angle on all boundaries to accommodate the movement of SCS relative to the 

main structure during earthquakes. In some countries, including China, the SCS with 

free boundary conditions is used extensively in practice due to the ease of its 

construction. In this type of SCS, the boundary constraints on the different sides are 

identical. That is, the boundary constraint effect is uncoupled for this type of SCS. 

Since this type of SCS has weak boundary constraints, it is prone to collide with the 

surroundings under the earthquake, which often leads to serious damage to the ceiling 

perimeter. 



126 

 

The SCS with the fixed boundary condition (Figure 4.6 b) refers to the SCS which is 

fixed to the surroundings on all sides of the perimeter. Two common types of 

peripheral fixings currently are applied in practice, namely pop rivets and seismic 

clips. Two types of tests, system-level shaking table tests [291, 323] and component-

level static tests[257], were performed to investigate the seismic performance of the 

fixed connections with pop rivets (Figure 4.7b). Although the pop rivet could 

somewhat improve the seismic capacity of the ceiling perimeter, the early failure of 

the pop rivet often occurs when the forces acting on it exceed the shear strength of the 

pop rivet. Moreover, the installation of pop rivets at the perimeter of the ceiling may 

lead to aesthetic problems. As an alternative solution to these issues, seismic clips are 

adapted to be attached at the grid ends beside wall angles. To evaluate the seismic 

capacity of the fixed connections with seismic clips (Figure 4.7c), extensive 

experimental tests, including component-level [281] and system-level [72] tests, were 

conducted. Compared with the connection with pop rivets, the connection with 

seismic clips installed with perimeter screws at the fixed side with larger strength and 

deformability considerably improves the seismic behavior of the ceiling perimeter. 

Although compared with the free boundary condition, the fixed boundary condition 

can significantly enhance the strength and stiffness of the ceiling perimeter, the 

stronger boundary constraint allows inertia forces induced in SCS to transfer and 

accumulate at the peripheral fixings, making these peripheral connections the most 

vulnerable components of SCS. 

The SCS with the fixed-free boundary condition (Figure 4.6 c) refers to the SCS 

which is fixed to the surroundings at two adjacent sides of the perimeter and placed 

on the peripheral support with a minimum 19 mm gap between the grid end and wall 
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angle to allow the free movement of the grid on the opposite two sides. The different 

boundary constraint effect is coupled in the SCS. This type of SCS, called as 

"American-style SCS", is applied in buildings in high seismic zones (Seismic Design 

Category D-F) [6.]. With the improvement of seismic clips invented by the major 

manufacturers in the US, the fixed-free condition is developed into fixed-semi-free 

boundary condition (Figure 1d), more commonly used. The semi-free side is achieved 

by means of seismic clips with one sliding screw attached at the middle slot to allow 

the grid to slide freely only along the axis of the grid (Figure 4.7d). On the semi-free 

side, a minimum 19 mm gap is set between the grid end and wall angle. 

Unfortunately, the current construction measures for fixed and semi-free connections 

at the boundary are inadequate; for example, the flange of the seismic clip is not 

firmly connected to the surroundings due to the lack of sufficient perimeter screws. 
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(c) (d) 

Figure 4.6 Typical boundary condition for SCS: (a) free boundary condition, (b) fixed 

boundary condition, (c) fixed-free boundary condition, (d) fixed-semi-free boundary 

condition. 

Notes:  main tee;  cross tee;  sub cross tee;  wall angle;  

surrounding wall; 

free connection; fixed connection;  semi-free connection. 

 

  

(a) (b) 

 
 

(c) (d) 

Figure 4.7 Typical perimeter connections of SCS: (a) free connection, (b) fixed 

connection with pop rivet, (c) fixed connection with seismic clip, (d) semi-free 

connection with seismic clip. 
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In this dissertation a new boundary condition, i.e., semi-free boundary condition, is 

proposed to improve the seismic performance of double-layer SCS with mineral wool 

boards. The four peripheral sides of SCS are set to be semi-free by adopting seismic 

clips, so there is no coupling effect of boundary constraints on the four sides for this 

type of SCS. Moreover, the SCS with the same semi-free boundary condition at four 

sides has the advantages of a clearer working mechanism and simpler numerical 

modeling. The seismic clip is attached tightly to the surroundings by using all 

available perimeter screws to improve the seismic capacity of the connection with 

seismic clips. The semi-free boundary condition is not only to prevent the falling of 

the gird members near the ceiling perimeter from the support but also to release the 

boundary constraints to reduce the damage to the peripheral connections. Moreover, 

the proposed boundary condition has the advantages of convenient construction and 

low cost. To verify the working mechanism and investigate the seismic performance 

of the SCS with semi-free boundary condition, the full-scale shaking table tests are 

carried out in this study. Then, a simplified numerical model for SCS with semi-free 

boundary conditions is proposed and verified. Finally, seismic design 

recommendations for the type of SCS are provided. 

Three types of boundary conditions of SCS are used in the experiments: (1) The first 

boundary condition is the free boundary, as shown in Figure 4.8. Because it is 

difficult to control the construction accuracy, a gap of 0~8mm will be formed between 

the grid end and the wall angle. According to the statistics of 60 free boundary 

construction samples, the average gap is 3.05mm, and the standard deviation of 

clearance is 2.08mm. (2) The second boundary condition is fixed-semi-free boundary, 

as shown in Figure 4.9. A nominal gap of 19mm is set between the grid end and wall 
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angles. According to the statistics of the gap between 30 construction samples, the 

average gap is 17.33mm, and the standard deviation of the gap is 1.86mm, as shown 

in Figure 4.9b. (3) The third kind of boundary condition is semi-free boundary, as 

shown in Figure 4.10. Specifically, the ceiling boundary is constrained by semi-free 

boundary. Table 4.2 shows the comparison of three ceiling boundary types. 

  

(a) Free boundary node (b) statistics of  gap values 

 

(c) Free boundary configurations   

Figure 4.8 Free boundary 

  

(a) Fixed connections (b) Semi-free connections 
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(c) Fixed-semi-free boundary configurations  

Figure 4.9 Fixed-semi-free boundary 

 

Figure 4.10 Semi-free boundary 

Table 4.2 Boundary comparison 

Boundary Seismic clip Gap 

Free  × √ 

Fixed-semi-free  √ Fixed side (×) Semi-free side(√) 

Semi-free √ √ 

 

4.2.2.2 Semi-free boundary condition 

(a) Configuration 

The proposed semi-free boundary condition is achieved by installing a semi-free 

boundary all around the ceiling perimeter. The SFC consists of a perimeter grid, 

seismic clip, wall angle, and side wall, as shown in Figure 4.11. The wall angle is 

fixed to the side wall using screws. The seismic clip is attached tightly to the wall 

angle and side wall using four perimeter screws to obtain enough bearing capacity for 
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SFC. The perimeter grid is connected to the seismic clip only by one sliding screw in 

the middle slot of the seismic clip to ensure that the perimeter grid slides freely only 

along its axial direction while the movement perpendicular to the axial direction of 

the perimeter grid is prevented. In addition, a 19 mm gap is provided between the 

perimeter grid end and the wall angle. Considering the mechanical configuration of 

SFC, the seismic performance of the proposed SCS is expected to be enhanced largely 

because of energy dissipation by the friction mechanism between the middle slot and 

sliding screw along the axial direction of the perimeter grid and also by the increased 

flexural, shear and torsional resistance perpendicular to the axial direction of the 

perimeter grid after the installation of seismic clips. 

Figure 4.12 shows a schematic view of the displacement mechanism along the 

longitudinal direction for SCSs with and without seismic clip connections. The 

movement of SCS with seismic clips is effectively constrained by seismic clips, and 

the flexural, shear, and torsional resistance of peripheral connections is improved 

significantly. 

 

Fig. 4.11 Schematic of semi-free connection. 
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(a) (b) 

Fig. 4.12 Schematic view of displacement mechanism on grids with different 

peripheral connections: (a) SCS without seismic clip connections; (b) SCS with 

seismic clip connections. 

 

(b) Working mechanism 

Figure 4.13 shows the whole process of movement of the ceiling grid with semi-free 

boundary conditions, which can be divided into three stages: pre-slipping, slipping, 

and pounding stages. The expressions of “Gap-1” and “Gap-4” refer to the gap width 

of 19 mm between the grid end and the wall angle. The expressions of “Gap-2”, 

“Gap-3”, “Gap-5”, and “Gap-6” refer to the gap width of 22 mm between the sliding 

screw and the edge of the middle slot of the seismic clip. The sliding screw is set in 

the middle of the slot. 

(a) Pre-slipping stage: During the pre-slipping phase, the grid ends are restrained by 

the friction force larger than the inertial force acting on the grid. The displacement of 

the grid relative to the side wall is very small and close to zero, which indicates that 

the ceiling moves with the main structure together. The acceleration of the ceiling is 

close to that of the main structure. 
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(b) Slipping stage: During the slipping stage, the grid end begins to slide because the 

inertial force acting on the grid is larger than the friction force. The displacement of 

the grid becomes greater but is smaller than the gap between the grid end and the wall 

angle. The movement process of the grid is described as follows. When the grid 

overcomes the friction force and moves to the left side, the left grid slides on the 

surface of the wall angle while the right grid slides to the left along the inclined 

middle slot of the seismic clip and simultaneously lifts off from the surface of the wall 

angle. No pounding occurs since the displacement of the grid end relative to the side 

wall is less than Gap-1. Similarly, when the grid moves to the right side, no pounding 

occurs. It should be noted that when the grid moves to the right side, the right grid end 

will return to the surface of the wall angle and slide on the wall angle. 

(c) Pounding stage: During the pounding stage, the grid end collides with the wall 

angle because the displacement of the grid end relative to the side wall is greater than 

Gap-1. The grid acceleration response increases significantly, and the inertial force 

acting on the grid is larger than the friction force at the grid end. The movement 

process of the grid is described as follows. Firstly, the grid experiences the slipping 

stage. Then, when the grid moves to the left side after the slipping stage, the location 

of pounding is determined by the smallest gap among Gap-1, Gap-2, and Gap-6. In 

the case that Gap-1 is the smallest, the pounding occurs between the left grid end and 

wall angle. The pounding force acting on the grid end is significant. Similarly, when 

the grid moves to the right side, the pounding occurs between the right grid end and 

the wall angle. 
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(a) 

 

(b) 

 

(c) 

Fig. 4.13Working mechanism of ceiling grid with semi-free condition: (a) pre-slipping 

stage, (b) slipping stage, (c) pounding stage. 

 

4.2.2.3 Three groups of experimental configuration details. 

Next, three groups of experimental configuration details. are described, as shown in 

Table 4.3. (1) The first group of experiments is double layer suspended ceiling A, 

which is a unique ceiling type in China. It consists of A1 and A2. The two parts only 

have different boundary constraint conditions. The boundary constraint conditions of 

A1 are a free boundary, A2 is a fixed semi-free boundary, and the other parts are 

identical, as shown in Figure 4.9. (2) The second group of test pieces is a USA-type 

single-layer suspended ceiling B, which is composed of B1 and B2, like the first 
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group of test pieces. Except for different boundary constraint conditions, the other 

parts are identical, as shown in Figure 4.10. (3) The third group is a double-layer 

suspended ceiling C, which is composed of one whole super-large area suspended 

ceiling. The boundary constraint condition is the full semi-free boundary (hereinafter 

referred to as the semi-free boundary for simplification). The area of the suspended 

ceiling is 150 𝑚2 , which is the largest one in the world. The composition of the 

suspended ceiling is the same as that of experiment type A, as shown in Figure 4.14. 

Three groups of test pieces are designed to study the influence of ceiling type and 

boundary constraint conditions on the seismic performance of the ceiling. The specific 

purposes are as follows: (1) Experiment type A is designed to study the influence of 

boundary constraint conditions on the seismic performance of double-layer ceiling. 

(2) Experiment type B is designed to study the influence of boundary constraint 

conditions on the seismic performance of single layer suspended ceiling. (3) The 

comparative design of type A and type B is to study the influence of ceiling type on 

seismic performance. (4) Experiment type C is designed to study the seismic 

performance and area effect of semi-free boundary suspended ceiling. 

Table 4.3 Comprehensive information of SCS experiments 

Type 
Boundary 

Type Area/m2 
Left side Right side 

A A1 (Free) A2 (Semi-free) Double layer 67×2=134 

B B1 (Free) B2 (Fixed-semi-free) Single layer 67×2=134 

C Semi-free Double layer 150 
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(a) Type A general information  

 

(b) Type A details  
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(c) Type A configuration 

Figure 4.14 SCS experiment type A  

Type A is composed of threaded rods, carrying channels, main tee, cross tee, wall 

angels, sub cross tee, lay-in panels, and accessories, including hangers, hook, and 

seismic clips. The length of the threaded hanger is 1.0m, the diameter is 8mm, and the 

spacing is 1.2m. The upper end is fixed with the steel beam of the steel platform, and 

the lower end is connected with the carrying channels through the hanger; The 

carrying channels are horizontally arranged along the X direction with a spacing of 

1.2m, which is directly above the cross tee; The main tee is horizontally arranged 

along the Y direction with a spacing of 1.2m; The cross tee is horizontally arranged 
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along the X direction, with a spacing of 0.6m; The sub cross tee is horizontally 

arranged along the Y direction with a spacing of 1.2m; The wall angles are fixed on 

the wooden beams around with pop rivets; The lay-in panel is directly placed in the 

grid system.  

The difference between experiment B and experiment A is as follows: there is no 

carrying channels and hanger in experiment B, the threaded rods are directly 

connected with the main tee through the hanger, and the type and arrangement of 

other components are identical to that of experiment type A. The components and 

arrangement of experiment types C and A are identical. However, type C, it is with a 

whole plane area of 150 m2. The ceiling is also comprised of threaded rods, carrying 

channels, a grid system, lay-in panels, and accessories. Threaded rods hung from the 

bottom of the floor level are the load-carrying members to hang carrying channels, the 

grid system, and lay-in panels. The carrying channel is mainly used to facilitate 

leveling the ceiling. The grid system consists of main tees, cross tees, and sub-cross 

tees, forming a module for placing lay-in panels. Wall angles fixed to the side wall 

supply vertical support for the grid system. The typical accessories include hangers 

hung by threaded rods to support carrying channels, hooks connecting carrying 

channels and main tees, and seismic clips constraining the peripheral grids to the wall 

angles. It is noted that the configuration of cross-sub cross tee connection is basically 

identical to that of main-cross tee connection. Detailed information on the ceiling 

components is presented in Table 1. The design height of all ceiling test pieces is 1.0m. 

The comprehensive information on ceiling components is shown in Table 4.4. 
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(a) Type B general information  

 

(b) Type B details  
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(c) Type B configuration 

Figure 4.15 SCS experiment type B  
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(a) Type C general information  
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(b) Type C configuration 

Figure 4.16 SCS experiment type C 

 

Figure 4.17 Composition of the double-layer SCS. 

Table 4.4. Detailed information of the ceiling components. 

Component type Section (mm) 
 Length 

(mm) 

Spacing 

(mm) 

Unit mass 

(kg/m) 

Section 

area (mm2) 

Threaded rod M8  1000 1200 0.37 40 

Carrying 

channel 
U50×15×1 

 
4000 1200 2.24 70 

Main tee T43×24×0.54×0.27  3600 1200 1.07 38 

Cross tee T35×24×0.54×0.27  1200 600 0.31 33 

Sub cross tee T30×24×0.54×0.27  600 1200 0.13 28 

Wall angle L22×22×0.5  3000 N/A 0.53 22 

Hanger -  - 1200 - - 

Hook -  - 1200 - - 

Seismic clip -  - 600 - - 

Lay-in panel 600×600×16  - / 1.20* 9472 

Notes: 

1. The section area of ceiling component is obtained by measured data. 

2. 1.20* for lay-in panel refers to the mass of one panel. 
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The boundary condition of the SCS with semi-free boundary on all sides, sides 1 to 4, 

is also shown in Figure 4.17. Two types of peripheral grids with the same boundary 

condition, i.e., main tees and sub cross tees, are attached to the wall angles by semi-

free boundary on side 1. Only one type of peripheral grid, i.e., cross tees, is connected 

to the wall angles by semi-free boundary on side 2. The boundary condition of sides 3 

and 4 is identical to that of sides 1 and 2, respectively. Table 2 shows the constraints 

of 6 degrees of freedom (DOF) at the boundary of the SCS. 

Table 4.5 Boundary condition of the ceiling. 

Side No. 
Constraint of DOF 

UX UY UZ RX RY RZ 

Side 1 1 0 1 1 1 1 

Side 2 0 1 1 1 1 1 

Side 3 1 0 1 1 1 1 

Side 4 0 1 1 1 1 1 

Notes: UX, UY, and UZ represent the horizontal degrees of freedom along X, Y, and Z axes; RX, 

RY, and RZ represent the rotational degrees of freedom along X, Y, and Z axes; and 1 and 0 

represent constrained and unconstrained, respectively. 

4.2.3 Experiments equipment 

The non-structural dynamical shaking table was conducted in the multi-function 

shaking table laboratory of Asia. The multi-function shaking table experimental 

system consists of four shaking tables A (side table 30t), B (main table 70t), C (main 

table 70t) and D (side table 30t) and two channels (70m and 30m in length 

respectively), as shown in Figure 4.17. The working mode of the multi-function 

shaking table test system is shown in Figure 4.18, including: 
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(1) Working mode 1: four tables can move in a 70m channel and merge into a large 

linear vibration table group. Multiple tables can work synchronously and uniformly, 

and several tables can perform associated movements . 

(2) Working mode 2: 2 tables can be moved to a channel of 30m, 4 tables can be 

combined into a large rectangular vibration table group, multiple tables can work 

synchronously and uniformly, and several tables can make associated movements. 

(3) Working mode 3: 2 tables can be combined into a large vibration table for single 

use. 

The multi-function shaking table test system has a total test capacity of 200t, which is 

one of the largest and strongest shaking table test systems in the world. It provides a 

world leading vibration and earthquake simulation test platform for bridge 

engineering, housing, space structure engineering, underground structure engineering, 

and lifeline engineering. In order to meet the requirements of tonnage and size of this 

test, A and D are combined to form 10m × Two 6m large worktops that can move 

synchronously, ensuring synchronous excitation at the bottom of the steel platform. 

See Table 4.6  for the performance parameters of the vibration table. 

 

Figure 4.17 The multi-function shaking table experiments system 
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(a) Working moded 1 (b) Working mode 2 (c) Working mode 3  

Figure 4.18 Three working mode 

Table 4.6 Performance parameters  

Performance 
Parameters  

A、D B、C 

Maximum 

bearing capacity 
30t 70t 

Overturning 

moment 
200t·m 400t·m 

Table size 6m×4m 

Motivational 

direction 
X and Y directions 

Control degrees 

of freedom 

3 degrees of freedom (horizontal, two-way + 

horizontal) 

Maximum 

acceleration 
X, Y direction± 1.5g 

Maximum 

speed 
X, Y direction± 1000mm/s 

Maximum 

displacement 
X, Y direction± 500mm 

Operating 

frequency range 
0.1~50Hz 

Input waveform Periodic waves, random waves, etc 

Data acquisition 

system 
288-channel NI dynamic data acquisition system 

 

4.3 Experimental instruments scheme  

4.3.1 Experimental instruments 
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Three types of sensors, including acceleration sensors, displacement sensors, and 

strain gauges, are used to measure the dynamic response of the test object. The 

acceleration sensor selects Setra high output linear accelerometer to measure the 

absolute acceleration of the test object. See Fig. 4.19a for the photos of the 

accelerometer. The displacement sensor adopts wire type displacement meter to 

measure the displacement of the suspended ceiling test piece relative to the steel 

platform. See Figure 4.19b for the photo of the displacement meter. The strain gauge 

is a resistance strain gauge used to measure the local strain of the ceiling component. 

See Fig. 4.19c for the picture of the strain gauge. In addition, several motion cameras 

with different viewing angles are installed on the steel platform to observe and record 

the overall and local vibration of the suspended ceiling at a close distance, as shown 

in Figure 4.19d; See Figure 4.19 e for the Machine Learning-based computational 

vision algorithm I proposed and applied for monitoring the ceiling panel movements.  

   

(a) accelerometer (b) displacement transducers (c) strain gauges 

  

 

(d) motion cameras 
(e) Machine Learning-based 

Computational vision 

 

Figure 4.19 Experimental instruments 

4.3.2 Instrumentations Layout details  

4.3.2.1 Layout of instruments for steel platform 

Along the vertical height of the steel platform, it is divided into three height layers: 
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the floor layer, the non-structural systems layer, and the table layer. The bottom layer 

is the horizontal height of the shaking table, the non-structural systems layer is the 

horizontal height of the side beam, and the top layer is the horizontal height of the 

steel platform roof, as shown in Figure 4.20. See Figure 4.21 for the layout plan of 

accelerometers installed at each level of the steel platforms.   

 

Figure 4.20 Steel platform layers 

 

Figure 4.21 Instruments installed on the steel platform 
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As mentioned above, there are 3, 4, and 11 accelerometers installed on the table level, 

non-structural level, and floor level of the platform, respectively. The measured 

acceleration at table level can be regarded as the input acceleration of the steel 

platform. The measured acceleration at floor level can be regarded as the input 

acceleration of the ceiling. For example, a total of 236 instruments, including 30 

accelerometers (A1-A30), 40 displacement transducers (D1-D40), and 166 strain 

gauges (S1-S166), are installed on the SCS type 3 to measure the dynamic responses 

of the ceiling. The location and number of instruments on the ceiling are shown in 

Figure 4.22. The hollow one-way red arrow and blue arrow refer to the positive 

directions of displacement and acceleration, respectively. The data measured by the 

accelerometer is the absolute acceleration. The data measured by the displacement 

transducer is the displacement of the ceiling relative to the platform. Except for lay-in 

panels with a strain rosette installed, two strain gauges are attached to both sides of 

the same position of each ceiling component, and the average of the results obtained 

from the two gauges is used in subsequent data analysis. Only the measurement points 

for subsequent analysis are marked. 
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(a) SCS type A  

 

(b) SCS type B  
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(c) SCS type C  

Fig. 4.22 Instrumentations on the ceiling.  

Notes: displacement transducer; accelerometer; strain gauge on threaded rod; strain 

gauge on lay-in panel; strain gauge on cross tee and sub cross tee; strain gauge on carrying 

channel. 

Figure 4.23  shows the setup details of the displacement transducer on cross tee. It 

should be noted that the deformation of the main-cross tee connection between the 

target and the side wall is included in the measured displacement of the cross tee 

while the measured displacement of the main tee does not include such kind of 

deformation. The measured displacement of the cross tee contains both the relative 

movement between the ceiling and side wall (equal to the sliding distance within the 

gap at the ceiling perimeter) and the deformation of main-cross connections. The 

sliding distance within the gap can be easily determined by the negative displacement 
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measured by the displacement transducer. Figure 4.24 shows the instruments installed 

on the SCS.  

 

Figure 4.23 Setup of displacement transducer on cross tee. 

 

  

(a)  (b)  

  

(c)  (d)  

  

(e (f)  

 Cross tee

Seismic clip

Wall angle

Main teeSide wall

Displacement transducer Target

Strain gauge

Displacement transducerTarget

Side wall
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(g)  (h)  

 

 

(i)  

Figure 4.24 Pictures of instruments installed on the SCS 

4.3.3 Loading protocol 

Table 4.7 lists all the motions input in the test. After each run, white noise with a PGA 

of 0.05 g is input to the specimen to assess the dynamic characteristics of the 

specimen. Several sets of motions are selected and input to the shaking table, 

including sweep waves (named Sweep), acceleration responses at different floors of 

building structures obtained by time history analysis, and artificial waves (named 

BCJ-L2). Figure 10 presents the sweeping wave, that is, the sine wave with the 

frequency varying from 6.0 Hz to 0.8 Hz. The peak floor acceleration (PFA) at the 

floor level of the platform is listed in Table 3. The input motions, SHW6 (5/128), 

SHW6 (128/128), and SHW6 (30/30) represent the acceleration responses at the 5th 

floor and the top of a 128-story supertall structure model and the acceleration 

responses at the top of a 30-story stick model subjected to the ground motion SHW6 

with PGA of 0.1 g, respectively. The floor acceleration responses are closely related to 
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the dynamic properties of the main structure. The natural vibration periods of the first 

three modes of the 128-story model are 8.94 s, 8.93 s, and 4.48 s, respectively. The 

corresponding results of the 30-story model are 3.01s, 1.18 s, and 0.72 s, respectively. 

The characteristic period of the ground motion SHW6 is 0.9 s. The PFA of SHW6 

(128/128) is 1.7 times that of SHW6 (5/128). The fundamental period of the 30-story 

model is closer to the characteristic period of the ground motion SHW6 than that of 

the 128-story model, so the PFA of SHW6 (30/30) is larger than that of SHW6 

(128/128). 

Table 4.7 Details of motions input to specimen. 

Run No.1) 
Name of input 

motion 

Target acc. of table (g) 
Duration (s) 

PFA of platform (g) 

X dir. Y dir. X dir. Y dir. 

2 Sweep 0.050 0 100 0.071 - 

4 Sweep 0 0.050 100 - 0.087 

6 Sweep 0.050 0.050 100 0.069 0.087 

8 BCJ-L2 0.037 0 120 0.050 - 

10 BCJ-L2 0 0.037 120 - 0.057 

122) SHW6 (5/128) 0.089 0.070 70 0.127 0.098 

142) SHW6 (128/128) 0.149 0.132 70 0.146 0.153 

162) SHW6 (30/30) 0.405 0.377 150 0.571 0.573 

18 Sweep 0.150 0 100 0.225 - 

20 Sweep 0 0.150 100 - 0.242 

22 Sweep 0.150 0.150 100 0.232 0.277 

24 Sweep 0.250 0 100 0.393 - 

26 Sweep 0 0.250 100 - 0.512 

28 Sweep 0.350 0 100 0.572 - 

30 Sweep 0 0.350 100 - 1.942 
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32 Sweep 0.500 0 100 1.319 - 

Notes: 

1) Runs of odd number used for white-noise excitation with small magnitude are not listed in the 

table. 

2) During Runs 12 and 14 the floor acceleration responses at the 5th and 128th floors of the 128-

story building subjected to the ground motion SHW6 are input, and during Run 16 the floor 

acceleration response at the 30th floor of the 30-story building is input. 

(1) Sweep wave. Sweep wave belongs to the variable frequency sine wave, the 

frequency range of 5~0.5Hz or 6~0.8Hz, mainly used to investigate the seismic failure 

mechanism of suspended ceilings. Figure 4.25 shows the acceleration time history 

curve of the Sweep wave with a PGA of 0.15g and a frequency range of 5~0.5Hz and 

the corresponding time-frequency plot and acceleration response spectrum. It should 

be noted that the amplitude of the front section of the acceleration time history curve 

of the Sweep wave is weakened to a certain extent because when the steel platform 

analysis model input Sweep wave of the same amplitude is pre-analyzed, it is found 

that the acceleration time history reaction of the steel platform roof has amplitude 

amplification in its front section, so in order to reduce the amplification effect, the 

amplitude of the Sweep wave is weakened. Due to the limitation of the capacity of the 

shaker, the Sweep wave with a frequency range of 6~0.8Hz is used for type A and B 

in PGA ≥0.35g Sweep wave and all working conditions of type C. 
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(a) Acceleration time history curve of the Sweep wave 
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 (b) Time-frequency diagram of the Sweep wave 

 

(c) Acceleration response spectrum of the Sweep wave (damping ratio: 5%) 

Fig.4.25. Sweep wave (Frequency range: 5~0.5Hz) 

(2）BCJ-L2 wave. The BCJ-L2 wave is an artificial wave proposed by the Building 

Center of Japan (BCJ) and the Building Research Institute (BRI). Figure 4.26 shows 

the acceleration time history curve of 0.037g BCJ-L2 wave with PGA and the 

corresponding acceleration response spectrum. 

(a) Acceleration time history curve of BCJ-L2 wave 
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(b) Acceleration response spectrum of BCJ-L2 wave (damping ratio: 5%) 

Figure 4.26 BCJ-L2  

(3）Floor waves. The natural seismic wave SHW6 given in Shanghai's “Building 

Seismic Design Regulations” was selected, and the peak acceleration in the X 

direction and Y direction was adjusted to 0.1g and 0.085g, respectively, and input into 

the Benchmark model of the 128-story supertall building structure and the 30-story 

Stick model, and the floor acceleration response of the two models was calculated. 

The acceleration time history of the 5th and 128th floors of the 128-layer Benchmark 

model and the acceleration time history of the 30th floor of the 30-layer Stick model 

were selected as the input waves of the specimen. The three floor waves were named 

SHW6 (5/128) wave, SHW6 (128/128) wave, and SHW6 (30/30) wave. Figure 4.27a 

shows a schematic diagram of the benchmark model of the 128-story supertall 

building structure, which adopts a giant frame-core-boom truss steel-concrete hybrid 

structural system, with a total of 128 floors, a total structural height of 606.1m, a 

seismic fortification intensity of 7 degrees, a site category of class IV, a seismic 

design grouping of the first group, and the first three self-vibration periods of the 

benchmark model are 8.94s, 8.93s and 4.48s, respectively. Figure 4.27b shows a 

schematic diagram of the 30-layer Stick model, and the first three self-oscillation 

periods of the Stick model are 3.01s, 1.18s, and 0.72s, respectively.  
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(a) 128-layer Benchmark model  (b) 30-layer Stick model 

Figure 4.27 Calculation model of floor wave

(a) Acceleration time history curve for SHW6 (5/128) wave in the X direction 

(b) SHW6 (5/128) acceleration time history curve in the Y direction of the wave

(c) Acceleration time history curve of SHW6 (128/128) wave in the X direction 
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(d) Acceleration time history curve in the Y direction of SHW6 (128/128) waves

(e) Acceleration time history curve of SHW6 (30/30) wave in the X direction 

(f) SHW6 (30/30) acceleration time history curve in the direction of the wave 

Figure 4.28 Floor waves 

Figure 4.28 shows three floor wave acceleration time history curves. Figure 4.29 

shows the acceleration response spectra of three floor waves at 0.1g amplitude. 

 

Fig. 4.29 Acceleration response spectrum of floor waves (damping ratio: 5%) 
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4. 4 Experimental results and discussions 

4.4.1 Failure pattern and damage evolution 

The typical damage to the ceiling components observed in the SCS type 3 is shown in 

Figure 4.30. The failure of the hanger and hook is a special damage mode in the 

double-layer SCS due to its different construction details from other types of SCSs. It 

can be found that most damage is associated with grid connections, which indicates 

that the most vulnerable part of the ceiling is the grid connection. No damage to the 

semi-free boundary is observed during the loading process. Compared to the free 

boundary condition without any attachments, such as seismic clips, the semi-free 

boundary condition plays a role in preventing the unseating of the peripheral grids 

from the wall angles. The semi-free boundary condition achieved by seismic clips 

with four perimeter screws can avoid experiencing excessive twisting and 

deformation of seismic clip connection due to insufficient perimeter screws. Thus, it 

is suggested that all available perimeter screws at the flange of seismic clips should be 

fixed to the perimeter to improve the strength of the peripheral connections of the 

SCS. 

    

(a) (b) € (d) 

    

(e) (f) (g) (h) 
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(i)    

Figure 4.30 Typical damage to ceiling components: (a) buckling of main-cross tee 

connection, (b) buckling of cross-sub cross tee connection, (c) separation of main-

cross tee connection, (d) dislodged panel, (e) falling of panel, (f) separation of the 

main tee connection, (g) buckling of grid, (h) failure of hanger and hook, (i) falling of 

grid. 

The damage process of the ceiling TYPE C is demonstrated in Figure 4.31. No 

damage to the ceiling is observed before Run 16. The pulling out of a main-cross tee 

connection and buckling of the grid connections near the perimeter are found under 

Run 16. The main-cross tee connection fails mainly because the axial force acting on 

it is greater than its strength. The grid connections near the perimeter are vulnerable to 

buckling since the cumulative axial force acting on the grid connections near the 

perimeter reaches the maximum during the collision. With an increase in the PFA, the 

damage to the ceiling gradually becomes obvious but is still slight after Run 26. When 

the PFA reaches 1.942 g in the Y direction during Run 30, the buckling and pulling 

out of a large number of grid connections and the dislodgement and falling off some 

panels around the ceiling perimeter occur. It should be noted that the failure of the 

main tee connections during Run 30 greatly accelerates the collapse of the ceiling. 

After the input of the sweep wave with the highest PGA of 0.5 g in the X direction, 

the ceiling completely collapses, with the ratio of falling panels to total panels 

reaching 40.68%. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.31 Damage process of the ceiling: (a) Before Run 16, (b) 0.405g (X) & 

0.377g (Y) Random (Run 16), (c) 0.15g (X) & 0.15g (Y) Sweep (Run 22), (d) 0.25g 

(Y) Sweep (Run 26), (e) 0.35g (Y) Sweep (Run 30), (f) 0.5g (X) Sweep (Run 32). 

Notes: buckling of main-cross tee connection; buckling of cross-sub cross tee connection; 

separation of main-cross tee connection and cross-sub cross tee connection; dislodgement of 

panel; falling of panel; separation of main tee connection. 

4.4.2 Experiments performance   

Based on the experimental contents described previously, this chapter systematically 

studies the seismic performance of non-structure systems from the aspects of dynamic 

characteristics, movement mechanism, acceleration response, relative displacement 

response, and strain response, etc.  

4.4.2.1 Dynamic system characteristics 

(a) System identification method 
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Modal parameter identification is to obtain data from the acquisition system, establish 

and solve the mathematical model of the system, and obtain the modal parameters of 

the system, including natural frequency, damping ratio, and mode shape. Modal 

parameter identification includes the frequency and time domain methods according 

to different signal identification domains. The frequency domain method mainly uses 

the frequency response function (transfer function) obtained from the input signal and 

output signal to identify the modal parameters of the system, such as the Peak Picking 

Method, Frequency Domain Decomposition Method, Enhanced Frequency Domain 

Decomposition Method and Least-squares Complex Frequency Domain Method 

(LSCF). It is intuitive and noise resistant, but it is easy to cause leakage and other 

problems. The time-domain method is different from the frequency-domain method. It 

can only use the measured response signal without the Fourier transform. It can 

directly identify the modal parameters of the system in the time domain, so it can 

avoid the leakage problem caused by the Fourier transform. It is intuitive and noise 

resistant, but it is easy to cause leakage and other problems. The time-domain method 

is different from the frequency-domain method. It can only use the measured response 

signal without the Fourier transform. It can directly identify the modal parameters of 

the system in the time domain, so it can avoid the leakage problem caused by Fourier 

transform, such as Ibrahim Time Domain Method, Least-squares Complex 

Exponential Method, Hilbert-Huang Transform, Stochastic Subspace Identification, 

ARMA Time Series Method, etc. See Figure 4.32 for the analysis route of the 

frequency domain method and time domain method.  
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(a) Analysis route of frequency domain method 

 

(b) Analysis route of the time domain method 

Figure 4.32 Analysis route of frequency domain method and time domain method 

In the field of structural engineering, the peak value picking method is often used to 

identify the modal parameters of the structure. This method has the advantages of fast 

identification and easy operation, but it is not stable enough, and the identification 

accuracy is not high, so it is difficult to be used for the identification of dense modes, 

especially for the mineral wool ceiling whose natural vibration frequency is difficult 

to identify. In this disseartation, the single reference point complex index method is 

used to try to identify the natural frequency of the suspended ceiling. The analysis 

route of the single reference point complex index method is to FFT the measured 

signal to obtain the transfer function. The transfer function gets the pulse response of 

the system through IFFT. According to the relationship between the pulse response 

and the poles and residues, an autoregressive model is established to calculate the 

autoregressive coefficient, and then a Prony polynomial about the poles is constructed 

to estimate the poles and residues. Thus, the modal parameters of the system can be 

obtained. The analysis route of this method is shown in Figure 4.33. The basic 

principle of this method is described below:  

 

                Figure 4.33 Analysis route of single reference point complex index method 
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Let the expression of the frequency response function of p point displacement caused 

by q point force in a multi-degree of freedom viscous damping linear system be: 

  （4.1） 

where: Arpq is the residue corresponding to the r-th mode， which is related to the 

mode shape; the number of degrees of freedom of the system; j is an imaginary 

number, ； The symbol * indicates complex conjugate；sr is the pole of the r-

th mode of the frequency response function, which is related to the modal frequency 

and damping ratio. 

sr can be expressed as:  

  （4.2） 

where：ωr is the natural frequency；ξr is the damping ratio.  

Set ， ， with Equation (4.1):  

  （4.3） 

The impulse response function can be obtained by IFFT transformation of Equation 

(4.3): 

  （4.4） 

Where Re is the real part of the complex number. 

Set Δt as the time interval of discrete data; when tk=kΔt, the impulse response function 

can be expressed as: 
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  （4.5） 

where: ；L+1 is the data length of the impulse response function of the 

measured signal, and L+1≥2N。 

Equation (4.5) can be listed in the form of equations: 

  （4.6） 

Where hk is known in Equation (5.6), and the problem is how to solve Vr和 Ar. The 

solution is to regard  Vr  as a real coefficient βk（autoregressive coefficient）of 2N 

order polynomial equation, namely:  

  （4.7） 

From Equation (4.7) β2N=1。 For equation βk， multiply βk  on both sides in Equation 

(4.6):  

  （4.8） 

As ，β2N=1， Equation (5.8) can be written as： 
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  （4.9） 

To calculate βk，it is necessary to construct an equation set, which will be shifted 

backward by Δt， and take 2N+1 data from observation hk and substitute them into 

Equation （4.9）to form a set of equations as follows:  

  （4.10） 

where, M=L-2N。 

Equation (4.10) is expressed as a matrix: 

  （4.11） 

Or abbreviated as: 

  （4.12） 

In general, if M ＞ 2N, the pseudo inverse method can be used to solve the least 

square solution of the equations, namely: 

  （4.13） 

Add one element β2N=1 to {β}，substitute it into equation（4.7）:  
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  （4.14） 

Then the root Vr  , which is composed of βk, of a polynomial can be found, and then the 

modal ratio ωr and damping ratio ξr   can be found, namely,  

  （4.15） 

Then, the residue Ar   可 of every observation can be calculated by Vr, and Equation 

(4.6) is rewritten as follows: 

  （4.16） 

Or abbreviated as: 

  （4.17） 

The vibration mode vector can be obtained by the residue obtained from a series of 

response measuring points. For a structure with n response test points, first, find the 

test point with the largest absolute value from n residues corresponding to the same 

mode. Assuming that this point is the test point m, the normalized complex mode 

vector corresponding to the kth mode can be obtained by the following formula 

  （4.18） 

Identifying false modes is a very important step in modal identification. At present, 

there are four ways to identify false modes: (1)Analyze the pole position after solution;
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（2）Analyze the energy occupied by the frequency corresponding to the pole; (3) 

Measured by Modal Assurance Criterion (MAC); (4) Determine with the Stability 

Diagram (SD). Generally, steady-state diagrams are used to identify false modes. In 

the steady state diagram, the abscissa is the frequency, the left is the mode order, and 

the right is the amplitude. The principle of this method is to use different modal orders 

to conduct modal identification of the system and to judge the reliability of the poles 

by identifying the stability of the system's poles to frequency, normalized mode shape, 

and damping ratio. Generally, the modal order is 30~50. 

(b) Dynamic characteristics of steel platform 

Before and after the even number of working conditions, the white noise is used to 

sweep the frequency of the steel platform. The least square complex index method is 

used to identify the natural frequency of the steel platform. The excitation signal 

selects the acceleration time history of the platform, and the response signal selects 

the acceleration time history of the steel platform roof. Taking the shaking table 

experiment of type A as an example, before specimen A is loaded, the identification 

results of the natural frequencies of the steel platform in X and Y directions are shown 

in Figures 4.34 and 4.35, respectively. It can be seen from the figure that the first 

order natural frequencies of the steel platform in X and Y directions are 8.9Hz and 

8.4Hz, respectively; After the loading of specimen A, the identification results of the 

natural frequencies of the steel platform in X and Y directions are shown in Figures 

4.36 and 4.37 respectively. It can be seen from the figure that the first order natural 

frequencies of the steel platform in the X and Y directions are 8.4Hz and 8.2Hz, 

respectively. 
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(a) Stability diagram  

 

(b) Comparison of amplitude frequency diagram between measured frequency 

response function and fitted frequency response function 

 

(c)Comparison of phase frequency diagram between measured frequency response 

function and fitted frequency response function 
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(d) Comparison of real frequency diagram between measured frequency response 

function and fitted frequency response function 

 

(e) Comparison of virtual frequency diagram between measured frequency response 

function and fitted frequency response function 

Figure 4.34 System identification results of X-direction natural vibration frequency of 

steel platform (before specimen A is loaded) 
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(a) Stability diagram  

 

(b) Comparison of amplitude frequency diagram between measured frequency response function 

and fitted frequency response function

 

(c)Comparison of phase frequency diagram between measured frequency response function and 

fitted frequency response function

 

(d) Comparison of real frequency diagram between measured frequency response function and 

fitted frequency response function

 

(e) Comparison of virtual frequency diagram between measured frequency response function and 

fitted frequency response function 
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Figure 4.35 System identification results of Y-direction natural vibration frequency of steel 

platform (before specimen A is loaded) 

 

(a) Stability diagram 

 

(b) Comparison of amplitude frequency diagram between measured frequency response function 

and fitted frequency response function

 

(c)Comparison of phase frequency diagram between measured frequency response function and 

fitted frequency response function
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(d) Comparison of real frequency diagram between measured frequency response function and 

fitted frequency response function

 

(e) Comparison of virtual frequency diagram between measured frequency response function and 

fitted frequency response function 

Figure 4.36 System identification results of X-direction natural vibration frequency of steel 

platform (after specimen A is loaded) 

 

0 10 20 30 40 50 60 70 80 90 100 110 120 130
-6

-3

0

3

6

 实测的实频曲线
 拟合的实频曲线

 

 

实
部

频率 (Hz)

0 10 20 30 40 50 60 70 80 90 100 110 120 130
-10

-5

0

5

10

 实测的虚频曲线
 拟合的虚频曲线

 

 

虚
部

频率 (Hz)



175 

 

(a) Stability diagram 

 

(b) Comparison of amplitude frequency diagram between measured frequency response function 

and fitted frequency response function

 

(c)Comparison of phase frequency diagram between measured frequency response function and 

fitted frequency response function

 

(d) Comparison of real frequency diagram between measured frequency response function and 

fitted frequency response function

 

(e) Comparison of virtual frequency diagram between measured frequency response function and 

fitted frequency response function 
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Figure 4.37 System identification results of Y-direction natural vibration frequency of steel 

platform (after specimen A is loaded) 

Compared with that before the loading of type A, the natural frequencies of the steel 

platform in the X direction and Y direction are reduced by 5.6% and 2.4% 

respectively. It can be considered that the stiffness of the steel platform is basically 

unchanged before and after the test, meeting the test conditions. It should be noted 

that when white noise frequency scanning is performed on the steel platform, the 

suspended ceiling test piece has been installed on the steel platform. Still, the weight 

of the suspended ceiling test piece is about 0.6t. The weight ratio of the suspended 

ceiling test piece to the steel platform is less than 2%, so it can be considered that the 

suspended ceiling test piece has little influence on the natural vibration frequency of 

the steel platform. 

Before type B is loaded, the first order natural vibration frequencies of the steel 

platform in X and Y directions are 8.5Hz and 7.6Hz, respectively (before the test of 

type  B, the vibration table test of the cable bridge was carried out on the steel 

platform. the tightening of the bolts was overlooked, which led to all bolts of the steel 

platform were not tightened again after the test, resulting in a reduction of the natural 

vibration frequency of the steel platform in the Y direction); After the loading of test 

piece B, the first natural frequencies of the steel platform in X and Y directions are 

8.3Hz and 6.0Hz respectively. Compared with that before the loading of test piece B, 

the natural frequencies of the steel platform in the X direction and Y direction are 

reduced by 2.4% and 21.0%, respectively. It can be seen that the stiffness of the steel 

platform in the X direction is basically the same before and after the test, and the 

stiffness in the Y direction decreases more due to loosening bolts. 
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Before the loading of type C, the first natural frequencies of the steel platform in the 

X and Y directions are 9.0Hz and 8.2Hz, respectively (all bolts of the steel platform 

shall be retightened before the test type C); After the loading of type C, the first 

natural frequencies of the steel platform in X and Y directions are 8.6Hz and 7.4Hz 

respectively. Compared with that before the loading of type C, the natural frequencies 

of the steel platform in the X direction and Y direction are reduced by 4.4% and 9.8%, 

respectively. It can be considered that the stiffness of the steel platform changes a 

little before and after the experiment. 

4.4.2.2 Experiments results analysis of SCS  

As mentioned before, we investigated the seismic performance of double-layered 

SCSs with three types of boundary conditions by shaking table tests, i.e., free 

boundary condition (BC1), fixed-semi-free boundary condition (BC2), and semi-free 

boundary condition (BC3). The detailed comparison of the experimental results of 

SCSs with free boundary condition (BC1) and fixed-semi-free boundary condition 

(BC2) can refer to the Reference [19]. Figure 3.38 shows the comparison of variation 

in the proportion of damaged grid connections (PDGCs) of SCSs with a different type 

of boundary condition with increased PFA. When the PFA is smaller than 0.5 g, the 

PDGC of SCSs with different types of boundary conditions is almost the same. As the 

PFA increases beyond 0.5 g, the PDGC of SCS with free boundary condition (BC1) is 

the highest due to the failure of a large number of peripheral connections caused by 

weak boundary constraint, and the PDGC of SCS with fixed-semi-free boundary 

condition (BC2) is the lowest. In general, the SCS with fixed-semi-free boundary 
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condition (BC2) exhibits superior seismic performance compared to that with semi-

free boundary condition (BC3). 

In this study, the BC3 is proposed mainly for the following two reasons: (1) the fixed 

edges of SCSs with fixed or fixed-semi-free boundary condition may be damaged 

under earthquakes because the strong boundary constraint on the fixed edges allows 

inertia forces induced in SCS to transfer and accumulate at the peripheral fixings. 

Therefore, all fixed edges are adjusted to semi-free edges to explore the seismic 

performance of SCS with BC3. (2) in the current practice, the construction measures 

for semi-free seismic clip connections at the boundary are inadequate, i.e., the flange 

of the seismic clip is not firmly connected to the surroundings due to the lack of 

sufficient perimeter screws, which often leads to damage to these connections. 

Therefore, in this study, all seismic clips of SCS with semi-free boundary conditions 

are attached tightly to the surroundings by using all available perimeter screws to 

improve the seismic capacity of semi-free seismic clip connections. 

In the case of large-area SCS, when the accumulated axial force demand on the fixed 

connection of the SCS with BC2 is greater than its capacity, the fixed connection may 

be damaged. For the SCS with BC3, the release of boundary constraints caused by the 

semi-free boundary condition can reduce the axial force demand on the connection at 

the perimeter to prevent damage. In addition, if the gap between the grid end and wall 

angle is set reasonably, the adverse effect of the collision on the seismic performance 

of the SCS with BC2 can be reduced or avoided. 
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Figure 4.38 Comparison of variation of proportion of damaged grid connections of suspended 

ceilings with different type of boundary condition with increased PFA. 

(a)Acceleration time history of suspended ceiling grid 

An example of the acceleration time history of channel A13 located in the middle of 

axis Y5 in the X direction in the case of 0.15 g sweep in the X direction, is shown in 

Figure 4.39 (see the location of A13 in Figure 4.22). The acceleration of the grid 

gradually increases during the slipping stage. There is a significant amplification of 

acceleration being ten times the PGA of input during the pounding stage because the 

relative displacement of the ceiling exceeds the gap, resulting in a violent impact 

between the grid end and the boundary. A lot of high spikes appear in the acceleration 

time history. The pounding starts at around 50 s with an input frequency of 2.3 Hz. 

Then the acceleration increases significantly. Unlike the violent impact from the 

beginning of loading in Ceiling A with smaller width of the gap, the gap with larger 

width in the ceiling here delays the impact. The SFCs prevent the peripheral grids 

from falling down which leads to continuous impact regardless of the intensity of the 

input. 
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(a) 

 

(b) 

Figure 4.39 Acceleration time history of channel A13 under 0.15 g sweep in the X 

direction (Run 18): (a) total acceleration time history, (b) acceleration time history 

during pounding. 

(b) Displacement time history of ceiling grid 

Figure 4.40 shows the results of channels D33 and D17 located at the left and right 

ends of axis Y7 in the X direction in the case of 0.15 g sweep in the X direction (see 

the location of D33 and D17 in Figure 8). The deformation is defined as the 

deformation of the grid system between two displacement transducers, as shown in 

Figure 40c. From Figure 40a it can be found that the pounding occurs at around 50 s 

when the input frequency is 2.3 Hz. Due to the semi-free boundary condition, the 

ceiling in this test exhibits stable slipping and pounding behavior. The displacement 

gradually increases during the slipping stage, and it reaches the width of the gap at the 

boundary during the pounding stage with a residual displacement of 5 mm. The 

friction force causes notable residual displacement between the middle slot and the 

sliding screw of the seismic clip and the damage to the ceiling. Due to the effect of 
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SFCs at the ends of the row of the grid, the displacement amplitudes of the two 

transducers are roughly equal, and the displacement directions are opposite, which is 

consistent with the movement characteristic of the grid (Figure 40b). It can be 

concluded that the semi-free boundary condition could change the movement 

behavior of the SCS. 

 

(a) 

 

(b) 

 

(c) 

Figure 4.40 Results of a pair of displacement transducers under 0.15 g sweep in the X 

direction (Run 18): (a) displacement time history of a pair of transducers, (b) 

displacement time history from 60 s to 62 s, (c) deformation of the ceiling. 

The SFC could adapt to the large movement of the ceiling so that the displacement 

response of the ceiling is stable. Figure 4.41 shows the movement process of the grid 

in cross tee direction (X direction) in the case of 0.15 g sweep. The cross tee line 

consists of 12 pieces of cross tees and 11 connections. The original distance between 
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the displacement transducers is L0. The displacement measured by transducers equals 

the sum of the displacement of slipping on the wall angle and deformation of the end 

connection. The maximum positive and negative displacements of D33 are 14 mm 

and -15 mm, respectively. Those of D17 is 16 mm and -13 mm, respectively. When 

the grid moves to the right side, the deformation and average displacement of the grid 

system are 1 mm and 13.5 mm, respectively. When the grid moves to the left side, the 

deformation and average displacement of the grid system are 1 mm and 15.5 mm, 

respectively. The connection at the left end buckles is due to the pounding during the 

movement of the grid. However, the connection buckles, the deformation of the 

components between the two transducers is not affected by the buckling behavior 

since the buckling does not occur in the components between the two transducers. 

Compared with the deformation of the grid system, the average displacement is much 

bigger. The most important difference between the main tee direction and the cross tee 

direction in the grid is the number of connections. The main tee line consists of 4 

pieces of main tees and 3 connections. The displacement measured by the transducer 

in the main tee direction does not include the deformation of connections since there 

are no main tee connections existing between the transducer and the perimeter. 
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Figure 4.41 Movement process of grid in cross tee direction under 0.15 g sweep in X 

direction (Run 18). 

(c) Acceleration versus displacement relationship 

Figure 4.42 shows the acceleration versus displacement relationship of the typical 

position in the ceiling. Run 18 and Run 20 are selected as the representatives of the 

pounding stage in the X direction and the Y direction, respectively. During Run 18, 

the measuring points A27 and D18 located on the axis Y8, are selected. During Run 

20, the measuring points A6 and D5, located on the axis X6, are selected. It can be 

found from Figure 4.39a that during the pounding stage, the acceleration changes 

drastically during pounding, and the acceleration reduces quickly to around zero after 

pounding. Due to the existence of SFCs, the curve reflects both friction-slip and 

pounding behavior. The slipping stage increases the energy dissipation by the friction 

mechanism between the middle slot and the sliding screw along the axial direction of 

the perimeter grid. 
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Compared with the responses in the X direction, in the Y direction, the acceleration 

reaches the peak more quickly, and the peak acceleration is larger, which is related to 

the arrangement of different components in two directions and different details 

between main tee connections and main-cross tee connections. There are fewer 

connections for main tees in a line in the Y direction, and the capacity of resisting 

buckling of the main tee connections is larger due to the construction details, causing 

smaller deformation of the main tee connections and greater acceleration of the main 

tees. 

  

(a) (b) 

Figure 4.42 Acceleration versus displacement relationship: (a) pounding stage in the 

X direction, (b) pounding stage in the Y direction. 

(d) Acceleration amplification factor 

In the current seismic design codes in most countries, the equivalent static method is 

recommended for calculating the seismic action of non-structural components, in 

which the component acceleration amplification factor (AAF) is a key parameter. The 

AAF is calculated as the ratio of the peak ceiling grid acceleration (PCGA) to the 

peak floor acceleration (PFA). The peak AAF prescribed in the Chinese seismic 

design code takes the value of 2.0 for the suspended ceiling system.  
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The AAF of the ceiling under sweep waves is shown in Figure 4.43. Under Runs 2, 4, 

and 6, the AAF of the ceiling is around 1.5. In these cases, the ceiling is in the pre-

slipping stage, and no pounding occurs in the ceiling. The AAF increases with the 

increase of input intensity due to significant pounding before Run 28. The AAF 

reduces significantly during Run 30 with larger PFA due to more severe damage to 

the main tee connections. The AAF at most measuring points is roughly uniform 

except for the endpoints. The AAF at both ends in the X direction is the smallest due 

to the greater constraint from SFCs in the Y direction. Similarly, the AAF at both 

ends in the Y direction is much less than that between the two ends in the Y direction. 

The largest AAFs in the X and the Y directions are 9.7 and 9.4, respectively, which is 

caused by the huge pounding at the boundary. It is necessary to develop seismic 

measures to reduce pounding. Adding the isolation foam in the peripheral gap may be 

possible. The median AAF under sweep waves is 3.3, which is larger than the median 

AAFs of 3.2 and 2.9 reported in UB and UNR, respectively. It is mainly due to the 

violent impact caused by the semi-free boundary condition in the ceiling. 

  

(a) (b) 

Figure 4.43 Acceleration amplification factor under sweep waves: (a) response in the 

X direction, (b) response in the Y direction. 
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The AAF of the ceiling under excitations of artificial waves and floor earthquake 

waves is plotted in Figure4.41. Whether in the X direction or the Y direction, the AAF 

increases as the input intensity increases. From Run 8 to 12, the AAFs of the ceiling is 

around 1.0, indicating that the ceiling is in the pre-slipping stage. During Run 14 

without pounding behavior, most of AAFs in the X direction is greater than those in 

the Y direction due to the smaller lateral stiffness in the X direction. Among the 

acceleration responses of all Runs, the AAF in Run 16 is the highest due to the 

pounding. During Run 16, the AAFs in the X direction are smaller than those in the Y 

direction due to the fact that more serious damage to main-cross tee connections in the 

X direction reduces the acceleration response of the ceiling in the X direction. The 

median AAF under the excitations of floor earthquake waves is 1.2, which is lower 

than 2.0 which is suggested by the design code [410]. 

  

(a) (b) 

Figure 4.44 Acceleration amplification factor under artificial wave and floor 

earthquake waves: (a) response in the X direction, (b) response in the Y direction. 

For the three types of floor earthquake waves, the AAF is the largest in Run 16 

(SHW6 (30/30)), the second largest in Run 14 (SHW6 (128/128)), and the smallest in 

Run 12 (SHW6 (5/128)), indicating that the type of input seismic wave has a 

significant effect on AAF. It is found that both type and intensity of input seismic 
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wave have a significant effect on AAF. In this study, only a small number of seismic 

waves were input. Therefore, the authors think that a large number of seismic waves 

should be input in further study to obtain reliable AAF for the seismic design of 

suspended ceilings. 

(e)  Peak displacement 

The peak displacement (PD) under unidirectional sweep excitations is shown in 

Figure 4.45. From Run 2 to 6, the PD is close to zero, which implies that the ceiling 

moves with the platform together. The PD of the ceiling is more uniform in the 

middle and smaller on both sides as a result of the constraint effect of SFCs in the 

perpendicular direction. In X direction, the PD of the middle points reaches the width 

of the gap between the grid end and wall angle during Run 18. The PD during Run 22 

is almost the same as that during Run 18. Due to the buckling of the grid connections 

and more serious damage to the grid ends after Run 22, the width of the gap becomes 

larger, which causes the increase of PD. In Y direction, the PD of the middle points 

reaches the width of the gap during Run 20, which is close to the PD during Run 22. 

Most of PDs during Run 26 is greater than the width of the initial gap, which indicates 

that the gap increases due to the local buckling of the grid ends and deformation of the 

grid. Whether in X or Y direction, the PD increases with the increase of intensity of 

the sweeping wave. 
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(a) (b) 

Figure 4.45 Peak displacement under sweep waves: (a) response in the X direction, (b) 

response in the Y direction. 

Figure 4.46 presents the PD of measuring points under the artificial wave and floor 

earthquake waves. From Run 8 to 12, the PD of the ceiling is small. During Run 14, 

the PD is smaller than the width of the gap, indicating that no pounding occurs at the 

boundary. During Run 16, the PD first exceeds the width of the gap, indicating that 

the pounding begins at the boundary. The PDs of the ceiling is roughly uniform in the 

middle and smaller on both sides. The floor earthquake wave with higher intensity 

produces larger PD. For the three types of floor earthquake waves, the AAF is the 

largest in Run 16, the second largest in Run 14, and the smallest in Run 12. Compared 

with the measured PDs in the ceiling without seismic clips, the PDs in the test are 

larger under the seismic excitation with the same intensity, which is mainly caused by 

the larger width of the peripheral gap. 
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(a) (b) 

Figure 4.46 Peak displacement under artificial wave and floor earthquake waves: (a) 

response in the X direction, (b) response in the Y direction. 

(f) Strain of ceiling component 

The recorded maximum strains of the ceiling components before the ceiling collapses 

(Run 32) are listed in Table 4. The yield strain of ceiling components is 1175 με. All 

components remain elastic. However, local buckling is observed in some grids due to 

strong pounding between the ceiling and the boundary. The strain of the threaded rod 

is much larger than that of other components. The maximum strain is 598 με and 526 

με under sweep waves and floor earthquake waves before the ceiling collapses, 

respectively, which is much larger than the maximum strain recorded in the test with a 

smaller peripheral gap. It is because the larger peripheral gap at the ceiling perimeter 

in the test increases the relative deformation of the threaded rod, further resulting in 

greater strain in the threaded rod. 

Table 4.8 The maximum strain of ceiling components. 

Excitation type 
Maximum strain of ceiling component (με) 

Threaded rod Main tee Cross tee Sub cross tee Carrying channel 

Sweep wave 598 67 128 210 130 

Floor earthquake wave 526 64 172 78 85 
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Figures 4.44a and 4.44b present the peak strain versus PCGA relationship of the 

representative positions in ceiling grids under sweep waves and floor earthquake 

waves, respectively. The measuring point (S108/S109) on the main tee is located at 

the end of axis X8 (see the location of the strain gauges in Figure 8). The measuring 

point (S55/S56) on the cross tee is located in the middle of axis Y4. The measuring 

point (S88/S89) on the sub cross tee is near the end between axis X10 and axis X11. 

Under sweep waves, four levels of PCGA corresponding to inputs with PGA of 0.05 

g, 0.15 g, 0.25 g, and 0.35 g are considered. Underfloor earthquake waves, four levels 

of PCGA corresponding to inputs with PGA of 0.037 g, 0.089 g, 0.149 g, and 0.405 g 

are considered. For the main tee, the peak strain continues to increase as the input 

intensity increases. No buckling occurs in the main tee connections. The strain of the 

main tee is significantly affected by pounding, which induces the axial force. For the 

cross tee and the sub cross tee, the peak strain response increases linearly with the 

increase in input intensity. The maximum peak strain is smaller than that of the main 

tee, due to the buckling of connections. 

It can be found from Figure 4.44b that the strain increases as the input intensity 

increases. Under the input of the first two levels, the strain is very small due to the 

fact that the ceiling is in the pre-slipping stage. Under the input of the third level, the 

ceiling is in the slipping stage, and the strain increases slowly. Under the input of the 

fourth level, the ceiling pounds on the surroundings, and the PCGA and peak strain 

increase sharply. 
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(a) (b) 

Figure 4.47 Peak strain versus PCGA relationship: (a) under sweep waves, (b) under 

floor earthquake waves. 
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CHAPTER FIVE  

COMPUTATIONAL NUMERICAL SIMULATION OF SUSPENDED NON-

STRUCTURAL SYSTEMS  

5. Numerical simulation 

5.1 Numerical modeling  

5.1.1 OpenSEES simplified numerical simulation  

Considering the roughly uniform seismic responses of SCS with semi-free boundary 

conditions in the same direction but at a different location under the earthquake, a 

simplified planar numerical model is built using the software OpenSEES. Figure 5.1 

presents the analytical model of the tested SCS in the X direction as an example. The 

horizontal acceleration time history at the top of the steel platform is used as the input 

motions to the analytical model. 

In this model, the threaded rod is simulated by dispBeamColumn element, and the top 

of threaded rod is set as fixed. The grid member is simulated by elasticBeamColumn 

element. The panel is simplified as a lumped mass placed at the grid connection. The 

ZeroLength element with Pinching4 material is adopted to model the axial nonlinear 

behavior of grid connection, and the parameters of Pinching4 material are calibrated 

by the data from the ceiling components hysteretic tests conducted by the author. The 

double-layer connection is assumed to be pin-connected. 

The friction and pounding behaviors at the ceiling perimeter are simulated using the 

friction model and impact model, respectively. The friction model is modeled using 
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Steel01 material, mainly expressed by three parameters, i.e., initial elastic tangent K, 

yield strength Fy, and strain-hardening ratio b. Herein, the initial elastic tangent is 

defined as the ratio between yielding strength and initial displacement of 0.1 mm, and 

strain-hardening ratio is set very small according to the reference [411]. The yield 

strength representing the friction force is calibrated by the corresponding shaking 

table test results and taken as 2 N. According to the friction force and initial 

displacement, the initial elastic tangent is taken as 20 N/mm. A value of 0.05 for the 

strain-hardening ratio is found to be the best when calibrating the analytical model by 

comparing the simulation results with the experimental data. 

The impact model is modeled using ImpactMaterial material, mainly expressed by 

four parameters, i.e., initial stiffness K1, secondary stiffness K2, yield displacement δy, 

and initial gap width. The initial stiffness and secondary stiffness are taken as 300 

N/mm and 100 N/mm, respectively, to fit the experimental data best. The yield 

displacement is taken as 0.1 mm. The initial gap width is determined as 13.3 mm by 

the measured displacement history of grid ends during the shaking table tests.         

 

Figure 5.1 Simplified numerical simulation model of SCS with semi-free boundary  

5.1.2 Higher fidelity numerical simulation  
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In lieu of the simple model, another higher fidelity numerical simulation model is 

built, as illustrated in Figure 5.2. The threaded rods and all grid members are 

simulated by the Frame element, which is a line element with finite cross-sectional 

dimensions. The top of the threaded rod is safely anchored to the steel platform, and 

thus the boundary condition of the top is set as fixed. For the bottom of the threaded 

rod, the connection between the threaded rod and the main tee is treated as rigid. 

Panels are simplified as a lumped mass placed in grid intersection points [291]. The 

typical bi-linear stress-strain relationship with Kinematic hysteretic model is used as 

the constitutive model for the steel material, as shown in Figure 5.3. In this model, E 

and Es represent the initial elastic stiffness and post-yield stiffness, respectively. 

Rayleigh damping is adopted. As given in Eqs. (1)-(3), the damping matrix is the 

combination of the mass matrix and stiffness matrix. 

   C M K = +   (5.1) 

1 2

1 2

2
 

 
=

+
 (5.2) 

1 2

2


 
=

+
 (5.3) 

where   and   are the proportional coefficients of mass matrix and stiffness matrix, 

respectively;   is the SC damping ratio which is specified as 5% [412]; and 1 , 2  

are the fundamental natural frequencies of the ceiling in the X and Y direction, 

respectively. 
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Figure 5.2 Higher fidelity computational numerical modeling of SCS  

 

Figure 5.3 The constitutive model of steel  

5.1.2.1Perimeter impact behavior 

Figure 5.4 shows a typical free boundary condition of SC in practice. The peripheral 

grid ends just sit on wall angles, and there is a clearance (called gap) between grid 

ends and wall angles. Due to the existence of a gap, pounding between the peripheral 

grid and wall angle and the resultant sudden change of acceleration was observed 

during the test [413]. In the simulation, the Gap element is selected to model this 
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pounding behavior. The nonlinear force-deformation relationship for the Gap element 

is given by: 

( )   if 0

0              otherwise

k d d
f

 + + 
=




 (5.4) 

where k is the impact stiffness, d is the relative deformation of the spring and   is 

the width of the gap ( 0  ). 

 

Figure 5.4 Free boundary condition in practice. 

As expressed in Eq. (5.4), the characteristics of the Gap element are controlled by two 

critical parameters: the impact stiffness K and the width of the gap  . When the grid 

end touches the wall angle, the gap closes. In the simulation, the width of the gap is 

taken as the measured grid end displacement in the shaking table test, whose detailed 

information is presented in Section 2.2. Note that the initial width of the gap is 

theoretically different at each end of the grid components. However, the experimental 

results indicate that the ceiling basically responds as a whole in both horizontal 

directions For simplicity, at each side of SC, the width of the gap at each grid end is 

treated as the same in modeling, and the specific gap width is set as the mean 
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displacement measured at each side. After each loading, the width of the gap will be 

changed with the movement of SC, and thus the width of the gap in each loading case 

is specified individually according to the measured displacement history of the grid 

end. 

As another parameter to define the Gap element is the impact stiffness, which can be 

defined as the axial stiffness of the contact body. However, this approach assumes 

that the impact surfaces are ideally smooth and that the pressure distribution due to 

the impact is uniform. This condition is quite challenging to achieve in practice. It 

was found that the actual impact stiffness was significantly smaller than the 

theoretical value of body’s axial stiffness [28,29.]. In this study, the impact stiffness K 

is defined to be proportional to the axial stiffness of the impact body, as expressed as 

follows:  

K = α
EA

L
 (5.5) 

where E is the elastic modulus of the body material, A is the section area of the 

contact body, L is the length of the contact body in the impact direction, and α is the 

stiffness ratio relative to the axial stiffness of the impact body. 

Herein, the impact stiffness represents the contact stiffness between the SC grid end 

and wall angle. As shown in Fig. 8, the wall angle is fixed to peripheral beams and 

thus regarded as a rigid body. In the absence of relevant experimental data, the impact 

stiffness is defined as 0.4 times the axial stiffness of SC grids [29]. That is, the impact 

stiffness is taken as 588 N/mm, 217 N/mm, and 433 N/mm for main tees, cross tees, 

and sub-cross tees, respectively. 
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5.1.2.2 Perimeter friction behavior  

In the shaking table tests mentioned in the previous chapter, the very small 

displacements measured under small input motions indicated that the SC system 

basically kept motionless. This phenomenon is attributed to the existence of friction 

force at the SC perimeter [11,30]. To model this friction behavior, the Plastic (Wen) 

link element is adopted, and the hysteretic curve is shown in Figure 5.5. This model is 

mainly expressed by four parameters: (1) initial stiffness, (2) yield force (Fy), (3) post-

yielding stiffness, and (4) yielding exponent to define the degree of sharping at 

yielding. 

 

Figure 5.5 Hysteretic curve of friction model 

Herein, the initial stiffness is defined as the ratio between the yielding force and initial 

displacement (Δy) of 0.1 mm, and post-yielding stiffness is set very small, referencing 

the previous study [31]. The yield force representing the friction force is calibrated by 

the corresponding shaking table test results. At each grid end, the friction behavior in 

both the X direction and Y direction is considered, and the friction force is taken as 

2N. A value of 20 for the yielding exponent parameter corresponding to a very sharp 
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yielding is adopted to simulate the elastoplastic hysteresis rules of friction [32]. In the 

simulation, this element is placed at the SC perimeters parallel to the Gap element. 

5.2 Constitutive hysteretic behavior investigation  

A crucial part of SCS is the ceiling component, greatly influencing the seismic 

performance of SCS, from which the propagation of damage often initiates, and even 

the complete collapse of the ceiling occurs. The typical types of damage to the ceiling 

components in real earthquakes include the failure of grid connections, the failure of 

hangers, and the failure of peripheral attachments. 

To examine the seismic performance of SCS subjected to simulated earthquake 

loading, experimental studies largely using shaking table tests have been carried out 

for nearly 40 years. One of the most significant observations is that the ceiling 

components are identified as one of the most vulnerable parts of SCS during 

earthquakes. Several component-level investigations on SCS were conducted to 

obtain the failure mechanism and capacities of strength and deformation of the ceiling 

components. Soroushian et al. systematically performed studies on the capacities of 

the peripheral attachments and components under monotonic and cyclic loadings. 

Based on those experimental data, several fragility curves and analytical models for 

different components were developed. In the study by Paganotti et al., a series of 

static tests on different types of components of SCS subjected to monotonic loading 

were carried out to evaluate the component capacity and produce fragility curves. It 

was found that the cross-tee connections are the most critical components of SCS. To 

assess the seismic performance of the ceiling component with seismic clips attached 

to wall angles using two screws, three types of ceiling perimeter configurations, i.e., 
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pop-riveted connection and seismic clips with 1 screw or 2 screws, were conducted 

under monotonic and cyclic tests by Gilani et al. The experimental results indicated 

that the alternate peripheral installation with a seismic clip and 2 screws has better 

seismic performance in terms of load-carrying ability and energy dissipation. 

Although current seismic design standards such as the ASTM-E580/E580M and 

AC368 specify that the ceiling joints should carry a mean ultimate test load of not less 

than 800N for a restrained ceiling, it is unclear whether the strength capacity of the 

joint under the actual load can meet the requirements. Previous studies on ceiling 

components were conducted based on a particular product from a company and may 

produce different results from similar studies with different products. To understand 

and evaluate the seismic performance of suspended ceiling components and support 

for subsequent numerical modelling, a series of static tests on the ceiling components 

under monotonic and cyclic loadings were carried out in this thesis. The failure 

patterns, capacities of strength and deformation, and energy dissipation of the ceiling 

components are presented in detail in this study. 

5.2.1 Test program 

5.2.1.1 Test setup 

The electromechanical universal testing machine CMT4204, with a maximum vertical 

loading capacity of 20kN, is used to apply the required load to the ceiling 

components, as shown in Figure 5.6. A steel platform was designed and assembled 

with the machine for the static tests on the ceiling components. The load cell and 

extensometer in the machine are utilized to measure the force and displacement of the 

ceiling components, respectively. 
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Figure 5.6  Test setup 

5.2.1.2 Test specimens 

As listed in Table 1, a total of 80 suspended ceiling components, including main tee 

splices, cross tee latches, and seismic clips at free and fixed sides, were conducted in 

monotonic and cyclic tests, including axial, shear and bending tests to obtain the 

failure pattern, capacities of strength and deformation and energy dissipation capacity 

of the ceiling components. For each configuration, at least one monotonic and three 

cyclic tests with the same parameters were conducted. Table 2 lists the detailed 

information of the ceiling grid. Figure 3 presents cross-section dimensions of the 

ceiling grid. 

In the following parts, specimens IDs consist of three parts, test type, loading type, 

and test specimen. In the first part, JA, WJ, CJS, and CJB refer to the axial test of 

ceiling joints, the axial test of peripheral attachments, the shear test of cross tee 

latches, and the bending test of cross tee latches, respectively. Numbers 1, 2, and 3 in 
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the second part refer to tension loading, compression loading, and cyclic loading, 

respectively. E, D, A, and B before the number in the second part refer to the fixed 

side of the peripheral attachment, free side of the peripheral attachment, the major 

axis of the cross tee section, and the minor axis of the cross tee section, respectively. 

M and C in the third part referring to the main tee and cross tee, respectively. 

5.2.1.3 Loading protocol 

For the ceiling components, the applied load is controlled by displacement at a low 

speed of 60mm/min. The monotonic test is performed by a unidirectional ramp. As 

shown in Figure 5.7, the cyclic test is controlled by step-by-step increasing reverse 

displacement. The cyclic test is carried out according to the loading protocol 

developed specifically for determining the seismic performance of non-structural 

components [8]. 

 

       (a) Loading protocol of the cyclic test 
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       (b) Main tee           (c) Cross tee          (d) Wall angle 

Figure 5.7  Loading protocol of the cyclic test and cross section dimensions of ceiling 

grid (unit: mm) 

Table 5.1 Comprehensive information of test specimens 

Loading 
protocol 

Loading 
type 

Loading direction 

Number of ceiling components 
Main 
tee 

splice 

Cross 
tee 

latch 

Seismic 
clip at 

free side 

Seismic 
clip at 

fixed side 

Monotonic 
test 

Axial 
test 

Tension 3 3 4 6 
Compression 3 3 4 6 

Shear 
test 

Major axis - 6 - - 
Minor axis - 6 - - 

Bending 
test 

Major axis - 4 - - 
Minor axis - 4 - - 

Cyclic test 

Axial 
test 

Tension/Compression 3 3 4 6 

Shear 
test 

Major axis - 3 - - 
Minor axis - 3 - - 

Bending 
test 

Major axis - 3 - - 
Minor axis - 3 - - 

 

Table 5.2 Detailed information of ceiling grid 

Components Section (mm) 
Unit mass 
(kg) 

Section area 
(mm2) 

Main tee T43×24×0.54×0.27 1.07 38 
Cross tee T35×24×0.54×0.27 0.31 33 
Wall angle L22×22×0.5 0.53 22 

5.2.2 Tests results 
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5.2.2.1 1Axial tests 

(a) Axial tests of main tee splices 

A total of 9 specimens were tested to obtain the axial capacity of main tee splices under 

monotonic and cyclic loadings. Two main tee pieces were used to form the test 

specimens, as shown in Figure 5.8. 

 
 

 

(a)Test specimen (b) Mechanical diagram         (c) Parts of splice 

Figure 5.8 Axial tests of main tee splices 

An example of hysteresis curves is shown in Figure 5.9a. Figures 5.9b shows the skeleton 

curves obtained from all the axial tests. Figures 5.9c and 5.9d show the damage to the 

main tee splices. The skeleton curves from the hysteretic curves agree well with the 

curves from the monotonic test, where the strength capacities of all specimens exceed the 

threshold of 800N. The damage pattern of the tensile test is similar to that of the cyclic 

test, both of which are damaged due to the pulling out of the plug and crushing of the 

locking lance (Figure 5.9c). The results from compressive tests show the main tee splice 

is prone to the out-of-plane buckling of the plug. 
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(a) Hysteresis curve (b) Skeleton curves 

  

(c) Damage pattern in tensile and cyclic 

tests 

(d) Damage pattern in compressive test 

Figure 5.9 Results of axial tests of main tee splices 

(b) Axial tests of cross tee latches 

To evaluate the axial capacity of cross tee latches, a total of 9 specimens were performed 

as shown in Figure 5.10. The main tee piece is used to simulate the boundary condition. 
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From Figure 5.11, the tensile strength of cross tee latches is greater than the compressive 

strength. The damage pattern performs consistently, whether under monotonic or cyclic 

loading. The damage to the cross tee latches includes the crushing of double lock slot 

plates, the pushback of the locking lance, buckling of the plug, failure of riveting holes, 

and even the separation of latches from the cross tee, which is accompanied by the 

bulging of the socket of the main tee. 

        

       (a) Test specimen                  (b) Mechanical diagram                (c) Parts of latches 

 

Figure 5.10  Axial tests of cross tee latches 
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(a) Hysteresis curve (b) Skeleton curves 

  

(c) Damage pattern of cross tee splices (d) Damage pattern of main tee piece 

Figure 5.11 Results of axial tests of cross tee latches 

(c) Axial tests of the peripheral attachments 

As shown in Figure 5.12, the axial tests of two types of ceiling peripheral attachments 

were conducted to obtain and compare the axial capacities of the seismic clip at the fixed 

and free sides. Two screws at the end of the slot are used for attaching the grid to the 

seismic clip at the fixed side, while only one screw is put in the middle of the slot at the 

free side, allowing the grid to slide along its axial direction. 
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(a) Attachment of seismic clip at the fixed side 

 

(b) Attachment of seismic clip at the free side 

 

 

(c) Mechanical diagram (d) Parts of seismic clip 

Figure 5.12 Axial tests of the peripheral attachments 

Figure 5.13 demonstrates the experimental results of main tee configurations subjected to 

the axial loading. The skeleton curves show that the compressive strength of the 

peripheral attachment is much larger than the tensile strength, regardless of the boundary 

conditions. The damage to the peripheral attachment under the tensile loading is 

accompanied by the pulling out of the clamp of the seismic clip. The damage pattern of 
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the peripheral attachment under the compressive test is the buckling of the grid and wall 

angle. The test configurations under cyclic loading experience all damage patterns 

occurring in monotonic tests. It should be noted that the seismic clip remains intact in all 

tests. Similar to the main tee configurations, the cross tee configurations perform 

consistently in terms of mechanical responses and damage patterns. It is found that the 

clamp of the seismic clip without screws used to attach the clip to the wall angle is 

extremely easy to pull out. The peripheral attachment probably has a better seismic 

performance by using screws attaching the seismic clip to the wall angle. 

  

(a) Skeleton curves of specimens at 

fixed side 

(b) Skeleton curves of specimens at 

free side 

 



210 

 

(c) Damage pattern of peripheral attachments 

Figure 5.13 Results of axial tests of the peripheral attachments 

(d) Comparison of energy dissipation 

The PA, MT, and CT refer to the peripheral attachment, main tee, and cross tee. The 

accumulated dissipated energy (ADE) of main tee splices under axial loading is 

significantly larger than that of cross tee latches. Compared with the cross tee 

configuration, the main tee configuration performs consistently in terms of ADE either at 

the fixed or free sides, as shown in Figure 5.14. 

  

(a) Axial tests of grid connections (b) Axial tests of peripheral attachments 

Figure 5.14 Comparison of accumulated dissipated energy for different configurations 

5.2.2.2 Shear tests 

(a) Shear tests of cross tee latches in the major axis 

Eighteen specimens were conducted to assess the shear capacity of the cross tee latches. 

A short vertical main tee piece and two cross tee pieces were assembled into the 
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specimens (Figure 5.15a). Figure 5.15c shows the axis definition of the component. 

Figure 5.16b shows the skeleton curves from the hysteretic curves are in good agreement 

with the curves collected from the monotonic tests. The cross tee latches are vulnerable to 

the shear failure of the plug, which is accompanied by the tearing of the main tee socket. 

 

(a) Test specimen 

 
 

(b) Mechanical diagram (c) Axis definition 

Figure 5.15 Shear tests of latches in the major axis 
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(a) Hysteresis curve (b) Skeleton curves 

Figure 5.16  Results of shear tests of latches in the major axis 

(b) Shear tests of cross tee latches in the minor axis 

Similar to the shear tests of cross tee latches in the major axis, nine specimens in total 

were carried out to obtain the shear capacity of cross tee latches in the minor axis under 

static tests. A vertical main tee piece and two cross tee pieces were used to form the test 

configurations, as shown in Figure 5.17. 

 

Figure 5.17 Shear tests of latches in the minor axis 

Figure 5.18b presents the skeleton curves from the hysteretic curves that are consistent 

with the curves from the monotonic tests in initial stiffness of approximately 25N/mm 
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while are different from the monotonic tests in peak response. The cross tee latches are 

vulnerable to the buckling of the plug, which is frequently accompanied by the expansion 

and bulging of the socket of the main tee. 

  

(a) Hysteresis curve (b) Skeleton curves 

Figure 5.18 Results of shear tests of latches in the minor axis 

(c) Comparison of energy dissipation 

Figure 5.19 compares the accumulated dissipated energy (ADE) of cross tee latches in the 

major and minor axes under shear loading. It is noticed that the ADE of test 

configurations in the major axis is significantly larger than that in the minor axis. 
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Figure 5.19 Comparison of accumulated dissipated energy for specimens in different axis 

5.2.2.3 Bending tests 

(a) Bending tests of cross tee latches in the major axis 

A series of test configurations were performed to estimate the bending capacity and 

energy dissipation capacity of cross tee latches under monotonic and cyclic loadings. A 

short vertical main tee piece and two cross tee pieces were assembled into the test 

specimens (Figure 5.20). 

  

(a) Test specimen (b) Mechanical diagram 
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Figure 5.20 Bending tests of latches in the major axis 

Figure 5.21 shows the mechanical model of cross tee latches in the bending test. The 

moment and rotation of cross tee latches under bending loading can be expressed as 

follows: 

M =
FyL

2
 (5.6) 

θ =
D

L
 

(5.7) 

 

Figure 5.21 Mechanical model of cross tee latches in the bending test 

Figure 5.22b presents the skeleton curves from the hysteretic curves are in good 

agreement with the curves from the monotonic tests. The cross tee latches are vulnerable 

to the crushing of the locking lance, which is frequently accompanied by the tearing of 

the socket of the main tee piece. 
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(a) Hysteresis curve (b) Skeleton curves 

  

(c) Damage pattern of main tee piece (d) Damage pattern of cross tee piece 

Figure 5.22 Results of bending tests of latches in the major axis 

(b) Bending tests of cross tee latches in the minor axis 

Similar to the bending tests of cross tee latches in the major axis, a total of 7 specimens 

were carried out to obtain the bending capacity of cross tee latches under static tests, as 

shown in Figure 5.23. 
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Figure 5.23. Bending tests of latches in the major axis 

Figure 5.24a shows almost no energy dissipation is observed in the moment-rotation 

response of cross tee latches except a peak due to the engagement of the locking lances. 

The skeleton curves from the hysteretic curves are basically consistent with that under 

monotonic tests (Figure 5.24b). It is found that the expansion and bulging of the socket of 

the main tee piece and the buckling of the plug of the cross tee latch are the most typical 

damage modes (Figures 5.24c and 5.24d). 

  

(a) Hysteresis curve (b) Skeleton curves 
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(c) Damage pattern of main tee piece (d) Damage pattern of cross tee piece 

Figure 5.24. Results of bending tests of latches in the minor axis 

(d) Comparison of energy dissipation 

Figure 5.25 compares the accumulated dissipated energy (ADE) of cross tee latches in the 

major and minor axes under bending loading. It is found that the test configurations in the 

major axis have better energy dissipation and plastic rotation capacity than that of 

specimens in the minor axis. 

 

Figure 5.25 Comparison of accumulated dissipated energy for specimens in different axis 
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5.2.2.4 Mechanical property of ceiling components 

The mechanical properties of ceiling components are listed in Table 5.3. The load-

carrying ability of cross tee latches under compressive or bending loading and the 

peripheral attachment applied by tension is less than the threshold value of 800N. The 

capacities of strength and displacement of cross tee latches in the minor axis under cyclic 

loading in shear tests are half of that under unidirectional loading. The strength capacity 

of the peripheral attachment at the fixed side is close to that at the free side, but the 

corresponding peak displacement at the fixed side is smaller than that at the free side due 

to the sliding distance of around 19mm. 

Table 5.3 Mechanical properties of ceiling components 

Loading type 

Mechanical 

property 

Axial test Shear test Bending test 

MTS CTL PA_FREE PA_FIX CTL_MA CTL_MI CTL_MA CTL_MI 

Tensile test 

TS (N) 1091 976 75 95 1062 928 111 523 

TD (mm) 3.0 1.5 30.4 11.7 12.0 32.3 34.0 50.7 

Compressive test 

CS (N) 1245 578 2200 1856 1064 809 64 332 

CD (mm) 4.6 0.6 27.7 13.9 11.0 27.4 31.8 36.0 

Cyclic test 

TS (N) 1220 1151 71 86 1012 359 113 271 

TD (mm) 3.8 3.0 30.1 11.5 11.2 15.0 40.3 26.7 

CS (N) 957 475 2220 1990 1222 367 71 298 

CD (mm) 3.1 0.5 28.1 12.4 11.9 16.1 43.1 35.9 

Note: TS and TD refer to tensile strength and displacement, respectively; CS and CD 

refer to compressive strength and displacement, respectively; MTS, CTL, PA, MA and 

MI refer to main tee splice, cross tee latch, peripheral attachment, major and minor, 

respectively. 

 

5.2.2.5 Conclusions 
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The quasi-static tests on the suspended ceiling components were carried out to achieve 

the failure pattern, strength capacity, and energy dissipation capacity of the ceiling 

components. Based on the test results, the following conclusions can be drawn: 

(1) In the axial tests of main tee splices, the crushing of the locking lance and the 

buckling of the plug of the splice are the most common type of damage. The strength of 

all components meets the threshold of 800N. The skeleton curves agree well with the 

curves obtained from the monotonic tests. The tensile strength of cross-tee latches is 

greater than the compressive strength. Excluding the damage observed in the main tee 

splice, the failure patterns of cross tee latches under the axial test include the failure of 

riveting holes and the bulging of the socket of the main tee. Compared with cross tee 

latches, the main tee splices have a larger energy dissipation capacity. 

(2)  The compressive strength of the peripheral attachment is much larger than its tensile 

strength, regardless of the grid type and boundary condition. The damage to the 

peripheral attachment includes the pulling out of the clamp, and buckling of the grid and 

wall angle while the seismic clip remains intact. Compared with cross tee configurations, 

the main tee configurations perform consistently in terms of ADE either at fixed or free 

sides. 

(3)  The cross tee latches in shear tests are vulnerable to the plug of the cross tee latch, 

which is frequently accompanied by the failure of the socket and flange of the main tee. 

The response of the monotonic tests is consistent with the cyclic tests in the major axis, 

while the peak response of the monotonic tests is greater than those of the cyclic tests in 
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the minor axis. The ADE of specimens in the major axis is significantly larger than that 

in the minor axis. 

(4)  The damage pattern of cross tee latches in the major axis under bending loading is 

similar to that in the minor axis. The specimens in the major axis have better energy 

dissipation capacity than that in the minor axis. 

5.3  Load-displacement hysterical model of suspended ceiling grids  

5.3.1 Introduction 

The load-displacement recovery force model is a practical mathematical model of the 

force-displacement relationship curve of the structure or member under reciprocating 

load loading, which is the basis and key to the seismic analysis of the structure or 

component. The load-displacement recovery force model includes two parts: the skeleton 

curve and the hysteresis rule. The skeleton curve defines the control points for the 

structure or member in different stress stages, and the hysteresis rule expresses the 

mechanical properties of the structure or member such as strength degradation, stiffness 

degradation, slip characteristics and energy dissipation properties. The load-displacement 

restoriing model can be divided into two categories according to the shape of the model 

curve: one is to describe the curve-type restoring model with more parameters with 

complex mathematical formulas, such as the Ramberg-Osgood model and the Bouc-Wen 

model, the curve-type restoring model has the characteristics of high accuracy and 

continuous change of stiffness, but the model parameter determination and calculation are 

more complicated. The other type is the simplified polyline restoring model, which is 
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more widely used in practical engineering because of its simple and practical advantages. 

Polylinear restoring models are commonly used in bilinear models, degenerate bilinear 

models, Clough models, Otani models, Takeda models, Munder models and Park 

models[414]. The methods for establishing load-displacement restoring models of 

structures or components include theoretical calculation methods, experimental fitting 

methods and system identification methods, but experimental research is still an 

important means to determine load-displacement restoring models of structures or 

components.  

Due to the diverse structural forms and complex stress mechanisms of ceiling grid nodes 

and splicing points, the load-displacement recovery model of ceiling grid nodes and 

splicing points is still very lacking in domestic and foreign scholars. Soroushian et al. 

[72] carried out monotonic loading and low cycle reciprocating loading tests on the 

primary and secondary grid nodes and edge nodes in the American mineral wool board 

ceiling, and based on the data obtained from the experiment, the load-displacement 

recovery force model of the nodes was established by using the Pinching4 model. Fiorin 

et al. [282] carried out monotonic loading and low cycle reciprocating loading tests on 

grid nodes in suspended ceilings in Europe, and established a load-displacement recovery 

force model of the joints using the same method as Soroushian et al. [72]. In general, the 

current research on grid node and splicing point restoring model is relatively insufficient, 

and China is still in the gap in the research of grid node and splicing point restoring 

model. Therefore, it is very necessary to study the load-displacement recovery force 

model of common grid nodes and splicing points in China.  
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5.3.2 Pinching 4 model  

The grid nodes and splicing points of the ceiling exhibit a high degree of nonlinear 

behavior in seismic action, and it is difficult to analyze them using the commonly used 

load-displacement recovery force model. The Pinching4 model [415,416] in the finite 

element software OpenSEES can consider the strength degradation, stiffness degradation, 

slip characteristics and pinching effect of joints under repeated loading, and can 

accurately simulate the hysteresis characteristics of various complex nodes, which has 

good universality, so the Pinching4 model is selected to establish the load-displacement 

recovery force model of suspended ceiling grid nodes and splicing points. 

Figure 5.26 shows a schematic diagram of the Pinching4 model. The Pinching4 model 

includes a multilinear skeleton curve under monotonic loading, which requires 16 

parameter definitions ((ePd1, ePf1), (ePd2, ePf2), (ePd3, ePf3), (ePd4, ePf4), (eNd1, 

eNf1), (eNd2, eNf2), (eNd3, eNf3), (eNd4, eNf4)); The three-line unload-reload path 

under reciprocating loading requires 6 parameter definitions (rDispP, rForceP, uForceP, 

rDispN, rForceN, uForceN); 3 failure criteria, requiring 15 parameter definitions, take 

into account unloading stiffness degradation (gK1, gK2, gK3, gK4, gKLim), reload 

stiffness degradation (gD1, gD2, gD3, gD4, gDLim) and strength degradation (gF1, gF2, 

gF3, gF4, gFLim), energy degradation (gE) and damage type (dmgType).  
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Figure 5.26  Pinching4 model 

The calculation of the three failure criteria in the Pinching4 model, namely unloading 

stiffness degradation, heavy load stiffness degradation and strength degradation, is based 

on the generalized damage index theory proposed by Park and Ang [417], and the 

degradation can be calculated by using damage factors [415,416], as follows: 

  （5.6） 

where: 

  （5.7） 

  （5.8） 

  （5.9） 

where  δi is the damage factor; i is the current deformation increment; α1、α2、α3 and α4 

are the damage factor correction factors; V is hysteresis energy consumption; Emonotonic is 

monotonic energy consumption when loaded into destruction; defmaxis the deformation of 

positive loading failure; defminis the deformation of negative loading failure; (dmax)i is the 
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historical maximum deformation; (dmin)i is the historical minimum deformation 

The degradation of unloading stiffness (see Figure 5,27) is calculated as follows: 

  （5.10） 

where ki is the current unloading stiffness; k0 is the initial unloading stiffness without 

damage; δki is the current unloading stiffness damage factor 

 

The reload stiffness degradation (see Figure 5.28) is calculated as follows: 

  （5.11） 

where (dmax)i is the deformation at the end of the current reload; (dmax)0 is the historical 

maximum deformation; δdi is the current reload stiffness damage factor 

The strength degradation (see Figure 5.29) is calculated as follows: 

  （5.12） 

where (fmax)i is the maximum strength of the current skeleton curve; (fmax)0 is the 

maximum strength of the initial skeleton curve without damage; δfi is the current intensity 

damage factor. 

 
Figure5.27 Degradation of unloading stiffness 
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Figure 5.28 Reload stiffness degradation 

 

Figure 5.29 Strength degradation 

5.3.3 Determination of Pinching4 model parameters 

Because of the complexity of the structure of grid nodes and splicing points, it is difficult 

to determine the parameters of the Pinching4 model of grid nodes and splicing points 

through the theoretical calculation formula, so this dissertation determined calibrates the 

model parameters according to the test results of low cycle loading of grid nodes and 

splicing points, and the principle of calibration is to ensure that the hysteresis curve and 

cumulative energy dissipation capacity of grid nodes and splicing points obtained 

according to the Pinching4 model are basically consistent with the test results. The 

Pinching4 model parameters in this chapter are determined by reference to those used in 

similar published papers [282]. In addition, based on the literature survey results on the 

Pinching4 model, it is found that when the load-displacement restoring force model of 
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complex analytical objects is established using the Pinching4 model, the parameters of 

the Pinching4 model are generally calibrated and determined according to the 

corresponding test results [418-419]. 

Based on the my experience and the above literature research conclusions, the Pinching4 

model parameters of grid nodes and splicing points can be determined from the following 

three aspects: (1) The skeleton curve parameters of the Pinching4 model are determined 

according to the characteristic points of the specimen skeleton curve. (2) The unloading-

reloading path parameters of the Pinching4 model are determined according to the shape 

characteristics of the hysteresis curve of the specimen. (3) The failure criterion 

parameters of the Pinching4 model are determined according to the unloading stiffness 

degradation, heavy loading stiffness degradation and strength degradation of the 

hysteresis curve of the specimen.  

5.3.4 Validation of load-displacement hysteretic model 

According to the results of the low cyclic loading test of grid nodes and splicing points, 

the parameters of the Pinching4 model of each specimen were calibrated, and the load-

displacement hysteretic model of typical specimens was established by using the 

calibrated Pinching4 model, and the applicability of the Pinching4 model to the grid 

nodes and splicing points was discussed. 

5.3.4.1 Hysteresis curve comparison 

Figure 5.30 shows the comparison of the load-displacement hysteresis curve and the test 

curve obtained by the typical specimen based on the Pinching4 model, and the hysteresis 

law reflected by the recovery force model of the specimen has some error difference but 

is basically acceptable consistent with the hysteresis law of the test curve, and the 

hysteresis curve shape of the two is in good agreement.  
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(a) Main tee axial force (b) Main-cross tee axial force 

 

 
(c) Main tee shear force (d) Main cross tee shear force 

 

 
(e) Main cross tee bending-X (f) Main cross tee bending-Y 
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(g) Fixed end point axial force (h) Semi end point axial force 

Figure5.30Comparison of hysteresis curve obtained by typical specimens based on Pinching4 model 

with test results 

5.3.4.1 Comparison of cumulative energy consumption 

Figure 5.31 shows the comparison between the cumulative energy consumption obtained 

by the typical specimen based on the resirestoring lience model and the cumulative 

energy consumption of the test with the number of loading turns, and the cumulative 

energy consumption of the two increases with the increase of the number of loading turns, 

and the results are similar under the same number of loading turns, indicating that the 

Pinching4 model can better simulate the cumulative energy consumption of grids nodes 

and splicing points, and has acceptable reliability and accuracy. 

 

 
(a) Main tee axial force (b) Main-cross tee axial force 
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(c) Main tee shear force (d) Main cross tee shear force 

 

 
(e) Main cross tee bending-X (f) Main cross tee bending-Y 

 

 
(g) Fixed end point axial force (h) Semi end point axial force 

Figure 5.31  The cumulative energy consumption of a typical specimen based on the Pinching4 model 

is compared with the test results 

5.3.5 Establishment of general load-displacement recovery force model 
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The feasibility of establishing a grid node and splicing point load-displacement recovery 

force model according to the Pinching model is verified earlier, but for the same type of 

grid node or splicing point specimen, the specimen will inevitably produce initial defects 

in the process of making connections and loading and installation, which will cause 

certain test errors, and due to the small size of the specimen in this paper, the bearing 

capacity is weak, and the sensitivity to the production and installation accuracy is strong, 

resulting in a certain discreteness in the test results of the same type of specimen. 

Therefore, it is necessary to establish a general load-displacement recovery force model 

of grid nodes and splicing points. 

5.3.5.1 The process of establishing a general recovery force model 

Taking the shear specimen of the main and cross tee nodes as an example, the 

determination process of the skeleton curve and hysteresis rule parameters of the general 

load-displacement recovery force model of grid nodes and splicing points is illustrated. 

According to the test results of the main shaft shear test pieces of three main and 

secondary grid nodes, the load-displacement recovery force model of each specimen is 

first established by using the Pinching4 model, and when the test results are consistent 

with the hysteresis curve and cumulative energy consumption curve of the model, the 

Pinching4 model parameters of each specimen can be determined. Secondly, the model 

parameters of all specimens in the same group were analyzed, and it was found that the 

model parameters of all specimens in the same group were better consistent with the test 

results by taking the median value than the average value. This is because the relative 

average value of the median value is not affected by the extreme value and the 
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performance is relatively stable, so the median value corresponding to the restoring 

model parameters of the same group of specimens is selected as the representative value 

of the general restoring model parameters. Table 3.3 shows the results of establishing the 

general load-displacement recovery force model parameters of the main and secondary 

grid joint spindle shear test pieces. 

Table 5.4 Pinching4 model parameters of the main and secondary grid node spindle shear specimens 

Pinching4 model Parameter CJS-A3-C1 CJS-A3-C2 CJS-A3-C3 Value 

Positive skeleton 

ePf1/N 150 250 150 150 

ePf2/N 550 740 651 651 

ePf3/N 1001 998 1038 1001 

ePf4/N 707 458 92 458 

ePd1/mm 0.5 0.7 0.5 0.5 

ePd2/mm 4.2 5.5 6.5 5.5 

ePd3/mm 10.5 10.4 12.7 10.5 

ePd4/mm 13.8 12.1 17.7 13.8 

Negative skeleton 

eNf1/N -200 -200 -200 -200 

eNf2/N -600 -650 -620 -620 

eNf3/N -1158 -1259 -1248 -1248 

eNf4/N -1143 -252 -556 -556 

eNd1/mm -0.5 -0.5 -0.5 -0.5 

eNd2/mm -4.2 -5.0 -5.2 -5.0 

eNd3/mm -10.4 -12.7 -12.7 -12.7 

eNd4/mm -12.5 -16.0 -16.2 -16.0 

Unload-reload 

path 

rDispP 0.6 0.6 0.6 0.6 

rForceP 0.2 0.2 0.2 0.2 

uForceP -0.01 -0.01 -0.01 -0.01 

rDispN 0.6 0.3 0.6 0.6 

rForceN 0.2 0.2 0.2 0.2 

uForceN -0.01 -0.01 -0.01 -0.01 

Unloading 

stiffness 

degradation 

gKi (i=1-4) 0 0 0 0 

gKLim 0 0 0 0 

Reload stiffness 

degradation 

gDi (i=1-4) 0 0 0 0 

gDLim 0 0 0 0 

Strength 

degradation 

gFi (i=1-4) 0 0 0 0 

gFLim 0 0 0 0 

Energy 

degradation 
gE 1 1 1 1 

Type of injury dmgType cycle cycle cycle cycle 

 

According to the above calibration method for the parameters of the general recovery 

force model of the specimen, Figure 5.32 shows the skeleton curve results of the general 
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load-displacement recovery force model of all specimens.  

 

 
(a) Main tee axial force (b) Main-cross tee axial force 

 

 
(c) Main tee shear force (d) Main cross tee shear force 

  
(e) Main cross tee bending-X (f) Main cross tee bending-Y 
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(g) Fixed end point axial force (h) Semi free end point axial force 

Figure 5.32 Skeleton curve of general load-displacement restoring force model of grid nodes and 

splicing points of suspended ceilings 

Table 5.5 shows the recommended values for the general load-displacement restoring 

model parameters of grid nodes and splicing points in the ceiling. It should be noted that 

the secondary axis shear specimen of the primary and secondary grid nodes is symmetric 

with respect to the secondary axis, and theoretically its load-displacement recovery force 

model is symmetric with respect to the origin, so the recommended values of the general 

restoring force model parameters of the secondary axis shear specimens of the primary 

and secondary grid nodes given in Table 3.4 are the results of further optimization, and 

the positive and negative parameters are symmetric with respect to the origin. Similarly, 

the secondary axis bending specimen of the primary and secondary grid nodes is 

symmetrical with respect to the secondary axis, but there are two hysteresis modes due to 

the randomness of its failure, but the theoretical restoring model parameters of these two 

hysteresis modes correspond positively and negatively, so the recommended values of the 

general restoring model parameters of the secondary axis bending specimens of the 

primary and secondary grid nodes given in Table 3.4 are also the results of further 

-40 -30 -20 -10 0 10 20 30 40 
-3 

-2 

-1 

0 

1 

2 

3 

  

  

F(kN) 

D (mm) 

  WJ-D3-M1 
  WJ-D3-M2 

  skeleton 



235 

 

optimization. In addition, due to the influence of test conditions and the number of 

specimens, the recommended values of the general load-displacement recovery force 

model parameters of various grid nodes and splicing points may have certain deviations, 

and a certain number of relevant tests can be supplemented to further optimize them in 

the later stage. 

Table 5.5 Recommended values for general load-displacement restoring model parameters  

Pinching4 

Model 
Paramter JAM JAC CJSA CJSB CJBA CJBB1 CJBB2 WJE WJD 

Positive 

skeleton 

ePf1 450 472 150 75 0.15* 0.15* 0.15* 0.1 0.1 

ePf2 756 889 651 230 4.44* 0.20* 3.20* 30 1 

ePf3 1206 1216 1001 350 7.97* 0.30* 19.62* 109 25 

ePf4 507 378 458 100 7.90* 0.60* 4.50* 111 50 

ePd1 0.3 0.6 0.5 0.5 0.0004* 0.0002* 0.0002* 0.01 0.01 

ePd2 1.7 1.7 5.5 8.5 0.139* 0.033* 0.13* 1.9 18.0 

ePd3 3.6 3.1 10.5 17.0 0.24* 0.1* 0.2* 8.2 20.7 

ePd4 4.7 3.6 13.8 21.5 0.268* 0.21* 0.23* 12.6 23.8 

Negative 

skeleton 

eNf1 -450 -472 -200 -75 -0.15* -0.15* -0.15* -4 -4 

eNf2 -650 -361 -620 -230 -2.43* -3.20* -0.20* -173 -9 

eNf3 -979 -290 -1248 -350 -2.93* -19.62* -0.30* -566 -587 

eNf4 -196 -261 -556 -100 -5.432* -4.50* -0.60* 
-

2385 

-

2336 

eNd1 -0.3 -0.6 -0.5 -0.5 
-

0.0007* 
-0.0002* -0.0002* -0.01 -0.01 

eNd2 -1.4 -0.8 -5.0 -8.5 -0.105* -0.133* -0.033* -1.7 -15.0 

eNd3 -3.3 -3.3 -12.7 -17.0 -0.204* -0.2* -0.1* -4.4 -19.3 

eNd4 -4.7 -5.4 -16.0 -21.5 -0.287* -0.23* -0.21* -12.7 -27.9 

Unload-

reload path 

rDispP -0.55 0.45 0.6 0.5 0.6 0.8 0.8 0.5 0.5 

rForceP 0.01 0.1 0.2 0.2 0.0001 0.13 0.13 0.5 0.01 

uForceP -0.01 -0.3 -0.01 -0.1 -0.01 -0.01 -0.01 -0.01 -0.13 

rDispN -0.55 -0.8 0.6 0.5 0.6 0.8 0.8 0.45 0.95 

rForceN 0.01 0.2 0.2 0.2 0.0001 0.13 0.13 0.03 0.01 

uForceN -0.01 -0.01 -0.01 -0.1 -0.01 -0.01 -0.01 -0.1 -0.1 

Unloading 

stiffness 

degradation 

gKi 0 0 0 0 0 0 0 0 0 

gKLim 0 0 0 0 0 0 0 0 0 

Reload 

stiffness 

degradation 

gDi 0 0 0 0 0 0 0 0 0 

gDLim 0 0 0 0 0 0 0 0 0 

Strength 

degradation 

gFi 0 0 0 0 0 0 0 0 0 

gFLim 0 0 0 0 0 0 0 0 0 

Energy 

degradation 
gE 1 1 1 1 1 1 1 1 1 

Type of 

injury 
dmgType cycle cycle cycle cycle cycle cycle cycle cycle cycle 
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Note: i=1-4 in the table. JAM is the axial stress test piece of the main tee splicing point, JAC is the axial 

stress test piece of the main and cross tee  nodes, CJSA is the main and cross tee node main axis shear test 

piece, CJSB is the main and cross tee  node secondary axis shear test piece, CJBA is the main and 

secondary grid node main axis bending test piece, CJBB is the main and cross tee node secondary axis 

bending test piece, WJE is the fixed side node axial force test piece, WJD is the semi-free side node axial 

force test piece. The units of load and displacement corresponding to the skeleton curve parameters in the 

Pinching4 model are N and mm, respectively, and the units of bending moment and angle corresponding to 

the skeleton parameters with the mark "*" in the bending specimen of the main and cross tee nodes are 

kN·mm and rad, respectively. There are two types of restoring force models for secondary axial bending 

specimens of main and cross tee nodes, CJBB1 and CJBB2 in the table correspond to the two hysteresis 

types. 

5.3.5.2 Validation of a general load-displacement restoring model 

Figure 5.33 shows the comparison of the hysteresis curve obtained by using the 

general load-displacement recovery force model for the grid nodes and splicing points of 

the ceiling compared with the test hysteresis curve. It can be seen from the figure that the 

degree of agreement between the two is acceptable, which proves the rationality of the 

general load-displacement recovery force model of grid nodes and splicing points. It 

should be noted that the general restoring model proposed in this article is only suitable 

for the analysis and application of the same product specimens as this paper. 

 

 
(a) Main tee axial force (b) Main-cross tee axial forec 
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(c )Main cross tee shear force  (d) Main-cross tee shear force 

 

 
(e) Main tee bending  (f) Main cross tee bending 

  
(g) Fixed end axial force (h) Semi-free axial force 

Figure 5.33 Comparison of hysteresis curve and test hysteresis curve obtained based on the general 

load-displacement recovery force model 

5.4  Numerical simulation (continued)  

5.4.1 Main tee connections  
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According to the hysteretic characteristic of main tee connections investigated above, for 

the higher-fidelity model, the Takeda model along with the Multi-Linear Plastic Link 

element is used to simulate the axial force-displacement response of MT connections. 

The Takeda model was first proposed by Takeda [420.], capable of considering pinching, 

stiffness degradation, and strength degradation. The typical loop shapes generated by this 

model are plotted in Figure 5.34 Note that the Takeda model available is a simplified 

version and does not consider the stiffness degradation on its unloading branch. In other 

words, the unloading stiffness (Ky) always follows the initial loading stiffness (K0). 

Herein, the force-displacement relationship of main tee connections is adopted to define 

the skeleton curve of the Takeda model.  

 

Figure 5.34 Takeda hysteretic model  

Figure 35(a) compares the hysteretic curves between the numerical simulation and test 

results. A fairly good agreement is obtained. As can be seen, there is no stiffness 

degradation in the unloading branches in the simulation because of the simplified Takeda 
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model. Furthermore, the force versus loading step is compared with the test data, as 

depicted in Figure 5.35(b). Good agreement is observed. In addition, the energy 

dissipation of main tee connections as per each cycle and accumulative energy is 

analyzed, as shown in Figure 5.36. It can be seen that the simulated result of energy 

dissipation is in good agreement with the test result. Overall, the adopted Takeda model 

is suitable to characterize the axial hysteretic behavior of main tee connections. 

  

             (a) hysteretic curve and           (b) force-loading step relationship. 

Figure 5.35 Comparison between numerical simulation and experimental results: 
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                      (a) one cycle                       (b) cumulative 

Figure 5.36 Comparison of energy dissipation 

5.4.2 Main cross tee connections 

Similarly, the Pivot model is employed in this study to simulate the axial nonlinear 

behavior of main cross tee connections according to the hysteretic characteristic of this 

type of connection. This model was first proposed by Dowell et al. [420.] to predict the 

hysteretic behavior of RC members under cyclic loading. The Pivot model has a great 

flexibility in modeling unsymmetrical tension-compression behavior by specifying the 

hysteretic parameters separately. The hysteretic model is illustrated in Figure 5.37 (Fy1 

and Fy2 represent the yielding force in tension and compression, respectively). Basic 

hysteretic rules of this model are controlled by four parameters including 1 , 2 , 1  

and 2 , which define the pivot points for unloading from positive peak force to zero, 

unloading from negative peak force to zero, loading from zero to a positive direction, and 

loading from zero to the negative direction, respectively. In this study, the four 

parameters are set as α1 = 25, α2 = 0.05, β1 = 0.01 and β
2
 = 0.9, respectively, to best fit 

the experimental hysteresis curves of MCT connections through parameter identification 

analysis. In addition, the parameter   needs to be defined considering the degradation 

degree of the elastic slope after inelastic deformation, and its value is usually set to zero 

[421].  
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Figure 5.37 Pivot hysteretic model  

Similar to the Takeda model, the skeleton curve of the Pivot model is defined based on 

the defined generic force-displacement relationship of main cross tee connections 

mentioned above. The comparison of hysteretic curves and force-loading step 

relationship between numerical simulation and experimental results is shown in Figure 

5.38. The noticeable pinching effect in both positive and negative directions is well 

captured. A comparison of dissipated energy is shown in Figure 5.39. The numerical 

simulation results as per each cycle and accumulative energy agree well with the test 

result. In sum, the adopted Pivot hysteretic model is appropriate to characterize the 

hysteretic behavior of main cross tee connections.  
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(a)  hysteretic curve  (b) force-loading step relationship 

Figure 5.38 Comparison between the numerical simulation results and experimental 

results  

  

                  (a) one cycle                       (b) cumulative 

Figure 5.39 Comparison of energy dissipation 

Note that the Multi-Linear Plastic Link element is successfully applied to simulate the 

nonlinear behavior of grid connections. However, it is still a simplified method incapable 

of simulating the failure mode of grid connections. To comprehensively assess the 
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seismic behavior of grid connections, developing a more refined model for grid 

connections is still needed. In the end, the 1st- 4th modes mode shapes is given below 

(Type A1 suspended ceiling system) 

  

  
(a) The1st- 4th modes of type A1 suspended ceiling system  
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(b) The1st- 4th modes of type B suspended cable tray system  

Figure 5.40 The1st- 4th modes of suspended nonstructural systems 

Also, for systematic consideration, since this dissertation will not talk more about the 

suspended cable tray system numerical simulation, because the next chapter will applying 

the proposed Bayesian inverse problem uncertainty quantification to make inferences for 

suspended ceiling system. Only the 1st- 4th modes of type B of suspended cable tray 

system are given above in Figure 5.40b.  

5.5 Comparison of simulation and experimental results  

5.5.1 OpenSEES simplified numerical simulation  

Figure 5.41 compare the simulated acceleration time history and experimental results of 

the tested SCS with semi-free boundary condition. The comparison of the simulated 

displacement time history and experimental results are shown in Figure 5.42. The mean 

absolute errors of peak acceleration (the absolute difference between the simulated and 

test result divided by the test result) within the overall time history for 4 Runs in Figure 
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5.32 are 43.16%, 6.01%, 9.95%, and 21.99%, respectively. This may be due to the errors 

caused by model simplification and inaccurate parameters models. The mean absolute 

errors of peak displacement within the overall time history for 4 Runs in Figure 5.33 are 

12.73%, 10.07%, 10.84%, and 17.67%, respectively, and there are some delay effect of 

the response for displacement. Generally, the proposed simplified analytical model's 

calculated acceleration and displacement responses agree well with the test results. A 

more precise three-dimensional numerical model employing accurate parameters needs to 

be studied in future work. Notably, there are some differences between simulation and 

experimental results in the high-frequency components of acceleration. 

 

(a) 0.405g (X) & 0.377g (Y) (Run 16)  
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(c) 0.15g (X) & 0.15g (Y) Sweep (Run 22) 

 

(d) 0.25g (X) Sweep (Run 24) 

 

Figure 5.41 Comparison of acceleration time history between simulation and 

experimental results 
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(b) 0.15g (X) Sweep (Run 18) 

 

(c) 0.15g (X) & 0.15g (Y) Sweep (Run 22) 

 

(d) 0.25g (X) Sweep (Run 24) 

Figure 5.42 Comparison of displacement time history between simulation and 

experimental results    

5.5.2 Higher fidelity numerical simulation 

The acceleration responses of A12 in the X direction and A3 in the Y direction measured 

in the shaking table tests are used to compare with the simulation results. For 
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demonstration, comparisons under Run 14(seismic wave with the largest intensity) and 

Run 16,18,22 (sine waves in single direction and bi-direction) are shown in Figure 5.43. 

As can be seen, the simulation results agree good with the test results in most cases. 

Some of the differences also exist.  

  

(a)  0.149g(X) & 0.132g(Y) (Run 14)(X) (b)0.149g(X) & 0.132g(Y) (Run 14)(Y) 

  

(c) 0.405g (X) & 0.377g (Run 16)  
 

(d) 0.15g (X) Sweep (Run 18) 
 

  

(e) 0.15g (X)&0.15g (Y) Sweep (Run 22)(X) (f) 0.15g (X)&0.15g (Y) Sweep (Run 22) 

(Y) 

Figure 5.43 Acceleration time history under selected input motions 
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Similarly, for demonstration, the displacement responses of D40 in the X direction and 

D8 in the Y direction are employed to compare experimental displacement responses 

with the simulation results. The comparison of experimental and numerical simulation 

results of displacement responses under Loading No. 7 (seismic wave with the largest 

intensity) and Loading No. 8-10 (sine waves in a single direction and bi-direction) are 

shown in Figure 5.44. The simulation results agree well with the test results. However, it 

also has some delay effect.  

  

(a)  0.149g(X) & 0.132g(Y) (Run 14)(X) (b)0.149g(X) & 0.132g(Y) (Run 14)(Y) 

  

(c) 0.405g (X) & 0.377g (Run 16)  
 

(d) 0.15g (X) Sweep (Run 18) 
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(e) 0.15g (X)&0.15g (Y) Sweep (Run 22)(X) (f) 0.15g (X)&0.15g (Y) Sweep (Run 22) 

(Y) 

Figure 5.44 Displacement time history under selected input motions 

5.6 Conclusions 

A refined computational numerical model for the SCS is built and its effectiveness is 

validated by dynamic shaking table tests. The main conclusions are obtained as follows: 

(1) The proposed model of SCS is capable of modeling the nonlinear behavior of grid 

connections, impact, and friction behavior at the perimeter. The Takeda model and 

Pivot model are successfully used to model the hysteretic behavior of main tee 

connections and main-cross tee connections, respectively.  

(2) Both experimental results and numerical simulation results indicate that the 

suspended ceiling responds as a whole body in both directions. The proposed model 

of a suspended ceiling with free boundary conditions can almost reproduce both 

acceleration and displacement responses.  

(3) Even though the most part agreement between simulation and experiments, there are 

still spaces to calibrate or making inference of it with inverse problems uncertainty 

quantified by Bayesian inference, which will be investigated in the next chapter 6.  
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CHAPTER SIX 

MACHINE LEARNING-BASED DATA AND MODEL DRIVEN BAYESIAN 

INVERSE PROBLEMS OF UNCERTAINTY QUANTIFICATION APPLICATION FOR 

NON-STRUCTURAL SYSTEMS 

6.1 Data  

Type C suspended ceiling system is taken as the research target to make uncertainty 

quantification and inverse problem Bayesian inference. As mentioned in the above 

chapter, the acceleration response simulation performance is relatively worse than the 

displacement response, which has some lag effect because our goal is to generate a large 

amount of data based on the established numerical simulation (data and model-driven) 

combined with the actual seismic table vibration test data (data-driven) to solve the 

inverse problem of uncertainty parameters. 

6.2 Training points  

As previously mentioned, the LHS method is used for sampling combinations of training 

points, which can consider the global picture while minimizing computing resource 

consumption. For each pair of the two sets of training data, we generated fifteen pairs of 

1000 Latin Hypercube samples and selected five pairs of the training point data to be 

illustrated (also see Figure 6.1). And this will be used for forward running (model-driven) 

the computational numerical model of SNS systems. It uses the maximin method 

projected in 2D (input: 0-1 uniform space, output: 0-1 uniform space). This particular 

design relies on the distance criterion, and the final design is a result of maximizing the 

minimum distance between points. A detailed account of the method process can be 
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found in chapter three. 

 

(a) A_cross and E LHS sampling  

 

(b) E and G LHS sampling  
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(c) K_rod and K_friction sampling 

 

(d) K_cc1 and K_cc2 smapling 
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(e) A_main and K_mc smapling 

Figure 6.1 Latin Hypercube samples results   

6.3 Priors 

Regarding the inverse problem parameters and the prior, the first thing to note is that this 

Bayesian inference problem does not involve nonlinearities such as collision nonlinearity 

and connection nonlinearity problems because the training input is an inverse (calibration) 

parameter, and the output is the first six modes of frequency response data. Concerning 

the nonlinearities we will discuss in detail in future studies, and also because the selected 

surrogate model is still the shallow model, and it is still necessary to have a deep 

Gaussian Process model for high-dimensional nonlinear problems or the help of Deep 

neural network, so the parameters modified in this section are linear model parameters, 

according to the discussion and experience of numerical simulation in the previous 
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chapter, the fifteen selected inverse problem parameter names, symbols, prior, and 

observation prior data  are as follows: 

Table 6.1 Inverse problem parameters prior and Observations data prior 

Inverse problem parameters prior 

Parameter label Parameter meaning Prior distribution 

1. A_cross Cross tee cross-section area U~(30, 36) 

2. E Elastic modulus U~ (19, 2.3) 10^5 

3. G Shear modulus U~ (7.4,8.2) 10^4 

4. J_cross Cross tee moment of Torsion U~ (4800,5100) 

5. Iy_cross Y-dir moment of inertia U~ (4000,4700) 

6. Iz_cross Z-dir moment of inertia U~ (650,750) 

7. K_rod Threaded rods connection stiffness U~ (0.5,3) 

8. K_friction Friction elastic stiffness U~ (15,25) 

9. K_cc1 X-dir Cross tee connnections stiffness U~ (750,850) 

10. K_cc2 Y-dir Cross tee connnections stiffness U~ (75,125) 

11. K_cc3 Z-dir Cross tee connnections stiffness U~ (10,35) 

12. A_main Main tee cross-section area U~ (35,42) 

13. J_main Cross tee moment of Torsion U~ (7900,8500) 

14. Iy_cross Y-dir moment of inertia U~ (7250,7800) 

15. K_mc X-dir Main tee connnections stiffness U~ (1400,1600) 

 Observations data prior  

mode1  Suspended ceiling system frequency mode 1  (7.5 +- 0.02) 

mode2  Suspended ceiling system frequency mode 2  (8.1+- 0.006) 

mode3  Suspended ceiling system frequency mode 3  (8.9+-0.04) 

mode4  Suspended ceiling system frequency mode 4  (9.3+-0.05) 

mode5  Suspended ceiling system frequency mode 5  (9.5+-0.01) 

moded6  Suspended ceiling system frequency mode 6  (9.8+-0.02) 

 

6.4 Sensitivity analysis  

According to the introduction in the previous section, in order to save computing 

resources, find the uncertainty parameters that account for the main contribution, and the 

results are as follows:  
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Figure 6.2 Sensitivity analysis result 

To conserve computing resources, a sensitivity analysis was conducted to identify the key 

uncertainty parameters (refer to Figure 10). The findings indicate that the 4th  and 13th 

parameters have a negligible effect (less than 1%) on the results. Consequently, we 

retained the remaining thirteen inverse problem parameters and specified their prior 

ranges, which are listed in Table 4. A detailed account of the analysis process can be 

found in chapter 3.  

 

Our sensitivity analysis revealed that certain parameters, such as those associated with 
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main tee connections, cross tee connections, and boundary connections, significantly 

impact the accuracy of the model's predictions. During the validation process, for 

instance, we observed that the acceleration prediction results were not precise between 

60-61 seconds. This inaccuracy can be attributed to bias and uncertainty in the parameters, 

which may have been affected by energy dissipation and friction effects in the connection 

and friction parts, leading to a notable difference in the amplitude. We will provide 

further insights into these findings in section 6.8 of this chapter. 

Table 6.2 Pre-defined prior box for the 13 inverse problem parameters 

Inverse problem parameters prior after sensitivity analysis 

Parameter label Parameter meaning Prior distribution 

A_cross Cross tee cross-section area U~(30, 36) 

E Elastic modulus U~ (19, 2.3)*100000 

G Shear modulus U~ (7.4,8.2) *10000 

Iy_cross Y-dir moment of inertia U~ (4000,4700) 

Iz_cross Z-dir moment of inertia U~ (650,750) 

K_rod Threaded rods connection stiffness U~ (0.5,3) 

K_friction Friction elastic stiffness U~ (15,25) 

K_cc1 X-dir Cross tee connnections stiffness U~ (750,850) 

K_cc2 Y-dir Cross tee connnections stiffness U~ (75,125) 

K_cc3 Z-dir Cross tee connnections stiffness U~ (10,35) 

A_main Main tee cross-section area U~ (35,42) 

Iy_cross Y-dir moment of inertia U~ (7250,7800) 

K_mc X-dir Main tee connnections stiffness U~ (1400,1600) 

 

6.5 Surrogate Gaussian Process model training  

For a non-structural system with n degree of freedom (DOFs) can be written as 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝑥(𝑡) =F(t) (6.1) 

where, M, C, K are the mass, damping, and stiffness matrix, respectively; �̈�(𝑡), �̇�(𝑡) and 
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𝑥(𝑡) are the acceleration, velocity, and displacement of the non-structural system. F(t) is 

the applied excitation force on the system.  

When the accelerometers are installed on the system, the measured acceleration response 

can be expressed in a discrete form as  

𝑦𝑜𝑏𝑠(𝑥, 𝑡) = 𝑑�̈�(𝑡)  + 𝜖𝑖 (6.2) 

where, 𝑦𝑜𝑏𝑠 is the observed or measured response at time instant 𝑡. �̈�(𝑡) and 𝜖𝑖  are the 

values of acceleration response of the system and observation noise. The matrix d is a 

sensor placement matrix which associated with the locations of accelerometers.  

In general, we now consider the Kennedy and O'Hagan's formulation [19], where data 

observation (frequency response) are computational numerical simulation are available, 

namely 𝑦𝑜𝑏𝑠(𝑥) and 𝑦𝑠𝑖𝑚(𝑥, 𝑡). The design variable x is assumed to be taking values 

within a feasible design space 𝑋 ⊂ ℝD, and 𝜃 is a set of parameters to be calibrated or 

inferenced.   

As mentioned in the chapter on methods and framework, The relationship between data 

observation and simulation is assumed to be  

𝑦𝑜𝑏𝑠(𝑥, 𝑡) = 𝛼𝑦𝑠𝑖𝑚(𝑥, 𝜃, 𝑡) + 𝛿(𝑥, 𝑡) + 𝜖(𝑥) (6.3) 

Where 𝛿(𝑥)  is a discrepancy term that is statistically independent of 𝜂(𝑥, 𝜃, 𝑡)  and 

𝜖(𝑥) which accounts for observation noise. The coefficient 𝛼 satisfies  

    𝛼 =
𝑐𝑜𝑣[𝑦𝑜𝑏𝑠(𝑥,   𝑡),   𝜂𝑠𝑖𝑚(𝑥,𝜃,𝑡)]

𝑣𝑎𝑟[𝑦𝑠𝑖𝑚(𝑥,𝜃,𝑡)]
  (6.4) 

which account the further we take 𝑦𝑠𝑖𝑚(𝑥, 𝜃, 𝑡), 𝛿(𝑥) to be Gaussian Process with zero 

mean and variances 𝜎𝑠𝑖𝑚  
2 𝛾𝑠𝑖𝑚 (𝑥, 𝑥

′) 𝑎𝑛𝑑 𝜎𝛿 
2𝛾𝛿(𝑥, 𝑥

′),  where 𝛾𝜂  and 𝛾𝛿  are correlation 

kernels, as mentioned in chapter 3.  
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To optimize kernel selection for Gaussian process regression, we explore different 

kernels as candidates and perform cross-validation to select the best one. The process 

involves dividing the data into training and validation sets, fitting the model with each 

candidate kernel on the training set, and evaluating the performance of the mean squared 

error score on the validation set. After selecting the appropriate kernel, hyperparameter 

tuning is performed to train the final model. Refer to section 3.1 for further details. By 

following this process, we can select the most appropriate kernel as  squared exponential 

kernel: 

𝛾𝛿(𝑥, 𝑥
′) = exp [−∑

(𝑥𝑖−𝑥𝑖
′)
2

𝑙𝑖,𝛿

𝐷
𝑖=1 ] (6.5 ) 

𝛾𝑠𝑖𝑚 (𝑥, 𝑥
′) = exp [−∑

(𝑥𝑖−𝑥𝑖
′)
2

𝑙𝑖,𝑠𝑖𝑚 

𝐷
𝑖=1 ] (6.6) 

where  𝑙𝑖,𝑠𝑖𝑚 , 𝑙𝑖,𝛿 are the correlation length or length scale for the two kernels.  

To optimize the performance of the selected kernel, we can perform hyperparameter 

tuning using maximum likelihood estimation to find the optimal values for the kernel's 

hyperparameters. This will help achieve the best performance for the final model. 

Chapter 3 provides more details on the process of hyperparameter tuning, and its 

algorithm is shown as follows.  

It is essential to note that the chosen splitting of the LHS sample data into training, 

validation, and testing sets is a widely accepted and well-established approach in the field 

of machine learning. This approach ensures that the model can generalize well to unseen 

data, which is crucial for the practical application of the model.  
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Algorithm 6.1  Suspended non-structural system G.P. Surrogate Model training  

Input:  
       Training data (𝐗, 𝐲); hyperparameters 𝜽, co ariance function k; σn

2 ;  test point (𝐱, 𝐲); 
Output:  
     Log marginal likelihood log p(y); prediction f∗, 𝕍[f∗] 

9   Initialization   

10   while the training accurancy has not converged do 

11    For i={1,…n} do 

12    3     𝐿 ∶= 𝐜𝐡𝐨𝐥𝐞𝐬𝐤𝐲(𝐾 + 𝜎𝑛
2𝐼) 

𝛂 ∶= 𝐿𝑇\(𝐿\𝑦) 
𝑓∗ = 𝒌∗

𝑇𝛼 
𝒗 ≔ 𝐿\𝒌∗ 
𝕍[f∗] ≔ 𝐾(𝒙∗, 𝒙∗) − 𝒗𝑇𝒗 

logp(𝐲|𝐗) ∶=  −
1

2
𝒚𝑇𝛼 −∑log𝐿𝑖,𝑖 −

𝑛

2
log2 ∗ 𝜋

𝑖

 

13    end  

14    
 

15   end  

16   Return 𝑙𝑜𝑔𝑝(𝒚|𝑿), 𝑓∗, 𝕍[𝑓∗] 

 

It is worth noting that in this study, we utilized a standard approach for splitting the LHS 

sample data into training, validation, and testing sets. Specifically, 70% of the LHS 

samples were used for training the Gaussian process, 20% for validation, and the 

remaining 10% for testing. To evaluate the performance of our model, we measured the 

loss and accuracy of the training process. The final training data had a loss of 0.343, 

while the test data had a loss of 0.328, indicating good performance and generalization 

ability of the model. Furthermore, the training accuracy was 90.189%, and the testing 

accuracy was 90.527%, as shown in Figure 11. These results demonstrate the 

effectiveness of our methodology in predicting the behavior of the system under study. 

Compared to traditional physical models, our surrogate model approach is significantly 

faster while achieving good extrapolation results, where our approach achieved a several 
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hundred-fold improvements in time. The surrogate models also enable us to consider a 

larger range of input parameters in the future, which is important for SNS applications. 

 

Figure 6.3 G.P. surrogate model training iteration result 

6.6 Black Box Variational Inference  

According to the discussion in the previous chapter, in order to avoid inefficiency, we 

substitute Markov Chain Monte Carlo (MCMC) or Approximate Bayeisan 
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Computation(ABC) to use variational inference for posterior distribution estimation, and 

since mean field variational inference has conjugate requirements for the variational 

distribution q(x), as mentioned before, we propose to use black box variational inference 

for analysis. First, we determine the analytic solution form of the joint posterior 

distribution. Finally, it should be noted that in the posterior distribution inference, we 

construct 5 sets of model types for inference to provide a judgment basis for the 

subsequent MDL model selection.  

Since we will consider the frequency response as the output, then the t in the equation 

will be omitted in the below content. Assume a set of computational numerical 

simulations and data observations are available, namely, 𝐷𝑠𝑖𝑚 = {𝑥𝑖 , 𝜃𝑖 , 𝜂𝑖}(𝑖=1) 
𝑁𝑠𝑖𝑚 , 𝐷𝑜𝑏𝑠 =

{𝑥𝑖
∗, 𝜃𝑖 , 𝑦𝑖}(𝑖=1) 

𝑁𝑜𝑏𝑠 , respectively.  

Now name 𝑘 = 𝑠𝑖𝑚, 𝛿,  and 𝑅𝑘(𝐷𝑘) is the correlation matrix with 𝛾𝑘(𝑥, 𝑥
′) ∈ 𝐷𝑘 , 

𝐷𝑜𝑏𝑠(𝜃) ≔ {(𝑥𝑖, 𝜃)}𝑖=1 
𝑁𝑜𝑏𝑠 for 𝑥𝑖 ∈ 𝐷𝑜𝑏𝑠 . Considering the prior distribution and the 

independence between 𝜂(𝑥, 𝜃) 𝑎𝑛𝑑 𝛿(𝑥), the posterior density of the gaussian process 

with mean and variance can be written as: [348] 

                    𝜇𝑦𝑜𝑏𝑠 (𝑥
∗, 𝜃) = 𝑡𝑜𝑏𝑠(𝑥

∗, 𝜃)𝑉𝑜𝑏𝑠 (𝜃)
−1𝑦 (6.7) 

𝜎𝑦𝑜𝑏𝑠 
2 (𝑥∗, 𝜃) = 𝜎𝑜𝑏𝑠

2 (𝑥∗) − 𝑡𝑜𝑏𝑠(𝑥
∗, 𝜃)𝑉𝑜𝑏𝑠

−1 𝑡(𝑥∗, 𝜃) (6.8) 

where,   

𝑡𝑜𝑏𝑠(𝑥
∗, 𝜃) = [

𝛼𝜎𝑠𝑖𝑚
2 𝑅𝑠𝑖𝑚((𝑥

∗, 𝜃), 𝐷𝑠𝑖𝑚)

𝛼2𝜎𝑠𝑖𝑚
2 𝑅𝑠𝑖𝑚((𝑥

∗, 𝜃), 𝐷𝑠𝑖𝑚) + 𝜎𝛿
2𝑅𝑠𝑖𝑚(𝑥

∗, 𝐷𝑜𝑏𝑠 )
]  

    𝑉(𝜃) = [
𝑉(𝑠𝑖𝑚,𝑠𝑖𝑚) 𝑉(𝑠𝑖𝑚,𝑜𝑏𝑠)(𝜃)

 𝑉(𝑜𝑏𝑠,𝑠𝑖𝑚)(𝜃) 𝑉(𝑜𝑏𝑠,𝑜𝑏𝑠)(𝜃)
]    (6.9) 
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and the above diagonal block matrices are given by  

𝑉𝑠𝑖𝑚,𝑠𝑖𝑚) = 𝜎𝑠𝑖𝑚
2 (𝑅𝑠𝑖𝑚(𝐷𝑠𝑖𝑚) + 𝜎𝜖𝑠𝑖𝑚

2 𝐼)  

𝑉(𝑜𝑏𝑠,𝑜𝑏𝑠) = 𝜎𝑜𝑏𝑠
2 (𝑅𝑜𝑏𝑠(𝐷𝑜𝑏𝑠) + 𝜎𝜖𝑜𝑏𝑠

2 𝐼)+𝜎𝑠𝑖𝑚
2 𝛼2(𝑅𝑠𝑖𝑚(𝐷𝑜𝑏𝑠(𝜃)) + 𝜎𝜖𝑠𝑖𝑚

2 𝐼)  (6.10) 

The off-diagonal blocks are given by  

    𝑉(𝑠𝑖𝑚,   𝑜𝑏𝑠)(𝜃) = 𝛼 𝑉(𝑠𝑖𝑚,𝑠𝑖𝑚)(𝐷_𝑠𝑖𝑚 , 𝐷_𝑜𝑏𝑠(𝜃))  (6.11) 

According to the investigation in chapter 3, the black box variational inference is taken 

for making UQ Bayesian inference of the inverse problem, the algorithm is given below:  

Algorithm 6.2 Black box variational inference with O'Hagan Bayesian calibration & geometric 

complexity MDL for inverse problem Uncertainty Quantification of suspended nonstructural system  

Input:  

      Training data 𝒅, mean and covariance functions for GPs in O'Hagan Bayesian calibration framework, 

variational family 𝑞(𝒛|𝝀), numbers of model type m  

Output:  

     𝑞∗(𝒛|𝝀) and MDL ranking  
1   For m = 1 to M do   // Given that M is a small constant, the time complexity 𝑂(·)is acceptable in this 

scenario 

2        Initialize: 𝛌𝟏 𝐧 randomly, 𝑡 = 1 

3        while the training accuracy has not converged do 

4        For s = 1 to S do 

5    1         // Draw sample from q  

    𝐳[𝐬] ~ 𝐪(𝐳|𝛌)  
6        end  

     ρ ∶= tth 𝑣𝑎𝑙 𝑒 𝑜𝑓 𝑎 𝑅𝑜𝑏𝑏𝑖𝑛𝑠 𝑀𝑜𝑛𝑡𝑒 𝑠𝑒𝑞 𝑒𝑛𝑐𝑒  // equation (3.52) in chapter 3 

7    

     λ ∶= λ +
1

S
∑𝛻𝜆 𝑙𝑜𝑔 𝑞(𝑧[𝑠]|𝜆)(𝑙𝑜𝑔 𝑝(𝑥, 𝑧[𝑠])  −  𝑙𝑜𝑔 𝑞(𝑧[𝑠]|𝜆))

S

s=1

   

     t = t+1  

8       end  

9       Return 𝑞∗(𝒛|𝝀) 
10      𝑀𝐷𝐿 ∶= Minimum description length 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑐𝑜𝑚𝑝 𝑡𝑎𝑡𝑖𝑜𝑛  // Equation in table 1 in chapter 3 

11   end  

 

And the ELBO iteration convergence result is shown in the following figure: 
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Figure 6.4 Black box variational inference training iterations 

6.7 Minimum description length (MDL) model selection  

As described in the previous chapter, we utilize MDL for model selection, and based on 

the variational inference results of the posterior and the solution formula of MDL, we 

calculate the MDL complexity values of the seven groups of models as follows:  

Table 6.3 Minimum Description Length complexity (MDL) values 

Model type MDL 
A_cross, E, G, Iy_cross, Iz_cross, K_rod, K_friction, K_cc1, K_cc2, , K_cc3, 

A_main, Iy_cross, K_mc 
-593.7 

A_cross, E, G, Iy_cross, K_rod, K_friction, K_cc1, K_cc2, K_cc3, A_main, 
Iy_cross, K_mc 

-587.3 

A_cross, E, G, K_rod, K_friction, K_cc1, K_cc2, K_cc3A_main, Iy_cross, K_mc -597.9 

A_cross, E, G, K_rod, K_friction, K_cc1, K_cc2, A_main, Iy_cross, K_mc -584.5 
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A_cross, E, G, K_rod, K_friction, K_cc1, K_cc2, A_main, K_mc -552.1 

A_cross, E, G, K_friction, K_cc1, K_cc2, A_main, K_mc -522.4 

 

This model, with eleven parameters, is the optimal result for the inverse problem, as 

indicated by the posterior distribution results. Furthermore, we compare the MDL results 

with those of other model selection below. 

Table 6.4 Comparison of model selection criteria with selected model type 

Model selection criteria 

Selected Model type 

Relative Generalization 

Value 

(MDL as benchmark) 

Akaike information 

criterion (AIC) 

A_cross, E, G, Iy_cross, Iz_cross, K_rod, K_friction, 

K_cc1, K_cc2, K_cc3, A_main, Iy_cross, K_mc 
75.7% 

Bayesian information 

criterion (BIC) 

A_cross, E, G, Iy_cross, K_rod, K_friction, K_cc1, 

K_cc2, K_cc3, A_main, Iy_cross, K_mc 
87.9% 

Deviance information 

criterion (DIC) 

A_cross, E, G, Iy_cross, Iz_cross, K_rod, K_friction, 

K_cc1, K_cc2, K_cc3, A_main, Iy_cross, K_mc 
75.7% 

Information-theoretic 

measure of complexity 

(ICOMP) 

A_cross, E, G, K_rod, K_friction, K_cc1, K_cc2, 

A_main, Iy_cross, K_mc 
98.3% 

Minimum description 

length (MDL) 

A_cross, E, G, K_rod, K_friction, K_cc1, K_cc2, 

K_cc3, A_main, Iy_cross, K_mc 
100% (Benchmark) 

 

And the minimum MDL value is selected and the model is 9 parameters. Finally, the 

model with 9 parameters of the inverse problem is selected as the optimal result, and the 

posterior distribution result is:  

Generalizability value is used to express the ability of the model calibration to predict the 

true model. Generalizability value is defined by the following equation:  

( ) ( )

( )
1

1

, ,
(%) 1 100

,

i truth i ni

truth i ni

m

m

y x y x
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y x

 



=

=

 − 
= −  
  



        (6.12) 

where m is the number of discretized points that are used to evaluate Generalizability, 

and 𝑦𝑡𝑟𝑢𝑡ℎ(𝑥𝑖 , 𝜃𝑛) is the response of the true model. In this study, we use MDL as the 
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benchmark to compare other model selection criteria. 

 

Figure 6.5 Model selection criteria relative generalization comparison 

Based on the comparison between the geometric complexity measure minimum 

description length (MDL) and other model selection criteria (See Table 6.4 and Figure 

6.5), it shows the intuitive advantage of it in terms of generalization performance applied 

in our SNS systems. AIC only considers the calibration parameters and will choose more 

complex model and leads to over-fitting, and DIC has a similar penalty for complexity to 

AIC. BIC has a stronger penalty for complexity than AIC because it includes the factor of 

the natural logarithm of the sample size. ICOMP almost has the same generalization, but 

become less-fitting, compared with MDL because it also not only considers calibration 

parameters, and sample size but also their sensitivity and interdependence. In summary, 

our study demonstrates that MDL strikes a better balance between model complexity and 

generalization performance, resulting in superior predictive performance in SNS systems. 

The MDL approach takes into account both calibration parameters and sample size, and 

geometric complexity information resulting in a more comprehensive and well-rounded 
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evaluation of model complexity, leading to optimal generalization performance. 

6.8 Results of new approach and discussions 

While it is true that variational inference is an approximation of MCMC, it is still a 

powerful tool for improving accuracy levels. Variational inference has been shown in the 

literature to significantly improve inference time compared to Markov Chain Monte 

Carlo (MCMC) by several orders of magnitude. In details, MCMC can take several hours 

to generate posterior estimates, variational inference can accomplish the same task in just 

a few minutes. The posterior distribution resembles a normal distribution due to the use 

of an approximate normal distribution as the variational family in black box variational 

inference, combined with O'Hagan's calibration framework. This approach allows us to 

find a simple variational family to approximate the high-dimensional posterior 

distribution, while maintaining good accuracy, making less derivations and saving 

computational time. It has advantages over mean-field variational inference, which 

involves lengthy derivations and the use of conjugate distributions, such as Gaussian 

mixture models. Additionally, it avoids the complex burn-in process of MCMC iteration 

and ensures accuracy.  
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Figure 6.6 Posterior distribution of 9 inverse problems parameters 

Our new approach embedded with geometric complexity measure produces posterior 

estimates with low bias and variance, indicating that it is able to accurately estimate the 

parameters of the system with good generalization. Figure 6.6 shows the convergence of 

the posterior distribution for the simulated dataset, indicating that our approach is able to 

find good posteriors for the parameters. Additionally, Figure 6.7 shows the posterior 
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distribution of the first six frequency modes of the system, which are of particular interest 

in the context of suspended nonstructural systems. We can see that the posterior mean is 

very close to the observation data prior we mentioned above, indicating that our approach 

is able to produce accurate and robust estimates for SNS systems with uncertainty 

quantification. 

Figure 6.7 Posterior distribution of the first six frequency modes of the suspended 
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nonstructural system 

Based on the results of the posterior distribution of the inverse problems under our new 

approach above, we will verify and evaluate the seismic acceleration and displacement 

response, and the results are as follows.  

 

Figure 6.8 The acceleration response validations comparison among experiments, original 

simulation and simulation under variational inference with uncertainties. 

From Figure 6.8-6.13, we can find that the numerical simulation with variational 

inference has a much better validation result than the original simulation in terms of 

amplitude and trend. The validation improvement rate is achieved by around 50% ~70%. 

As discussed in the [26], part of the original acceleration response were validated well, 
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and some were not; for a clearer view, we uniformly selected five short time ranges to 

double check: 20 sec ~ 21 sec, 40 sec~ 41 sec, 60 sec~ 61 sec, 80 sec~ 81 sec and 100 sec 

~101 sec. 

 

Figure 6.9 The acceleration response validation comparison (a): 20 sec ~ 21 sec 
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Figure 6.10 The acceleration response validation comparison (b): 40 sec ~ 41 sec  
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Figure 6.11 The acceleration response validation comparison (c): 60 sec ~ 61 sec 

 

 

 



274 

 

 

Figure 6.12 The acceleration response validation comparison (d): 80 sec ~ 81 sec  
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Figure 6.13 The acceleration response validation comparison (e): 100 sec ~101 sec 

We observed that, except for simulation Figure 6.13, all the original simulations had a 

similar trend to the experimental data. Additionally, except for simulations Figure 6.11, 

Figure 6.12, and Figure 6.13, which is likely due to inaccurate parameters for the 

component connections and boundary friction properties resulting in larger discrepancies, 

all the original simulations had amplitude that fit well with the experimental data. 

However, after applying our new approach, we observed that the trend of simulation 

Figure 6.13 was now fitted with the experimental data, and the amplitude of simulations 

Figure 6.11, Figure 6.12, and Figure 6.13 were almost fitted well with the experimental 

data under the confidential uncertainty interval. 
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Also, As discussed in the chapter 5, most part of the original acceleration response 

validated well and some are not, especially the time delay difference. Figure 6.14 ~ 6.19 

below shows that numerical simulation with variational inference has a much better 

displacement response validation result than the original simulation both in terms of 

magnitude and trend with uncertainty confidential interval. For more clearer view, I also 

uniformly select five time-range to double check: 20sec ~ 21 sec, 40sec~ 41 sec, 60 sec~ 

61 sec, 80sec~ 81 sec and 100sec ~101 sec:  

Figure 6.14 The displacement response validations comparison among experiments, 

original simulation and simulation under variational inference with uncertainties 
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Figure 6.15 The displacement response validation comparison (a): 20 sec ~21 sec 
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Figure 6.16 The displacement response validation comparison (b): 40sec ~41 sec 
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Figure 6.17 The displacement response validation comparison (c): 60 sec ~61 sec 
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Figure 6.18 The displacement response validation comparison from 80sec ~81sec 
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Figure 6.19 The displacement response validation comparison (e): 100 sec ~101 sec 

We observed that almost all the original simulations fit well in amplitude with the 

experimental data, but they all exhibited some delay effect. After applying our new 

approach, we observed that the amplitude of simulations Figure 6.16 and Figure 6.17 

were enhanced under confidential uncertainty interval, and all the delay effects were 

reduced. The best performance improvement was observed in simulation Figure 6.18, 

which exhibited an accumulation effect with time duration that was enhanced by our new 

approach. Overall, our results demonstrate the effectiveness of our proposed approach for 

enhancing the accuracy of uncertainty quantification in suspended nonstructural systems, 

and we were able to produce accurate and precise posterior estimates that provide 
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valuable insights into the behavior of these systems.  

6.9 Summary 

Our proposed black-box variational inference, combined with O'Hagan's Bayesian 

calibration framework, provides a promising approach for inverse problems in Suspended 

Nonstructural Systems (SNS). Compared to traditional variational inference, which relies 

on conjugating assumptions and complex mathematical derivations, our method offers a 

simpler and more accessible solution that is easy for engineers and scientists to use. 

Furthermore, our approach incorporates a geometric complexity measure minimum 

description length (MDL) into the framework, which results in accurate and robust 

Bayesian inference and Uncertainty Quantification outcomes. By improving the 

robustness and validation accuracy of SNS systems with excellent generalization 

capabilities, our method offers a valuable tool for predicting and understanding the 

behavior of these systems.  

However, since the surrogate model is a shallow model, in the future, we will replace 

with the deeper model, such as the deep Gaussian process or deep neural network model, 

to learn the nonlinear behavior, such as collision, friction of suspended non-structural 

systems. 
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CHAPTER SEVEN  

 

CONCLUSIONS AND RESEARCH OUTLOOK 

 

This dissertation presents a novel uncertainty quantification methodology of inverse 

problem based on variational inference with an efficient machine learning (ML)-based 

surrogate model for predicting the response of suspended nonstructural systems (SNS) in 

super-tall buildings during long duration and long period seismic events. Our approach 

embeds geometric complexity measure Minimum Description Length (MDL) as a model 

selection criterion to strike a better balance between model complexity and generalization 

performance, resulting in superior predictive performance in SNS systems. The proposed 

optimization-based variational inference method is seen to significantly improve the low 

efficiency of traditional Markov Chain Monte Carlo (MCMC) and ensures a high level of 

precision. When combined with ML-based Gaussian process surrogate models, the same 

method dramatically reduces the inference time of forward and inverse problems, 

enabling us to perform the largest full-scale SNS experiments in the world. 

It can be simply divided into three parts, one is the research content of the Uncertainty 

Quantification of inverse problems, a novel Bayesian inverse problem uncertainty 

inference framework based on Black Box Variational Inference (BBVI) with O'Hagan's 

Bayesian calibration framework and efficient machine learning (ML) -based Gaussian 

alternative model is proposed, and Minimum Description Length (MDL) is embedded as 

a model selection method to improve the generalization performance. The other is by 

designing full-scale earthquake dynamical shaking table experiments and making 

nonlinear computational numerical simulations for Suspended Non-structural Systems 
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(SNS) in super-tall buildings during long duration and long period seismic events. The 

third part is to improve the simulation-experiment validation performance by applying 

the proposed UQ inverse problems framework and methods.  

For the first part, the novel research framework of UQ Inverse problems is proposed, and 

the prediction efficiency performance is promised by embedding Black-box Variational 

Inference, O'Hagan's Bayesian calibration, and Minimum Description Length, which 

make a more generalized and robust posterior inference. The optimization-based Black-

box Variational Inference can significantly reduce the low efficiency of traditional 

MCMC or Approximate Bayesian Computation and can ensure a certain precision 

without the requirements of specific model derivations and conjugate distribution. And 

can scale well to large datasets and high-dimensional parameter spaces, which are 

common in many fields. Also, combined with machine learning-based Gaussian Process 

surrogate models, it dramatically reduces the inference time of forward and inverse 

problems compared with original numerical simulation. Through careful Design of 

Experiments and Sensitivity Analysis, the computational time can be reduced as well.  

For the second part, it is of practical significance to design and produce multiple SNS 

experiments that take into account the area effect (the world's largest area), and then carry 

out the earthquake dynamical shaking table experiments, as well as the considering the 

effect of long-duration and long-period earthquake input in the super-tall buildings. The 

experiments overviews are introduced in detail, the seismic damage mode and failure 

process of SNS are studied, and the acceleration response of the shaking table and steel 

platform is analyzed. Also, monotonic loading and low-cycle hysteretic tests for 



285 

 

components are conducted. The failure form, bearing capacity and deformation 

performance, load-displacement hysteresis performance, skeleton curves and energy 

dissipation capacity of various connections were analyzed. The load-displacement 

restoring force model of typical connections was established. Also, the numerical 

calculation model is constructed, and the numerical simulation results are compared with 

the experimental results in terms of acceleration time history curve and relative 

displacement time history curve, and the displacement performance is good except for the 

delay effect, and some parts of the acceleration are lacking. 

Finally, with the proposed novel UQ inverse problems framework Moreover, our 

approach achieved good and robust Bayesian inference and Uncertainty Quantification 

results and improved the validation accuracy of SNS systems. Our comparison with other 

criteria demonstrates MDL's intuitive advantage in terms of optimal generalization 

performance.  

In summary, our study provides significant contributions to the SNS community by 

offering a comprehensive and well-rounded evaluation of model complexity and 

generalization performance and contribute to ensuring building resilience and safety 

against seismic risk events. Our findings suggest that our proposed methodology can 

offer significant advantages over traditional methods in terms of computational efficiency 

and accuracy and can be extended to many other fields dealing with large-scale, high-

dimensional datasets. 

However, since the surrogate model I used in this dissertation is shallow, I am now 

investigating the deep learning model to learn the nonlinear characters in the physical 
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systems. However, deep learning models always need a large amount of training data to 

have better generalization ability; in engineering research, the data amount is very small. 

How to better embed prior physical knowledge [31,32,421,422] so that there can be better 

deep learning effects under limited or a small amount of data, the new framework such as 

Physics Informed Neural Network and Deep-ONet are being studied. And I also hope to 

design more efficient data and model-driven research paradigms through these methods 

to promote research in the field of engineering. 
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