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ABSTRACT 

Background 

Hypertension is the leading modifiable risk factor for cardiovascular disease and consequent 

mortality worldwide. In the U.S., more than half of hypertension cases remain uncontrolled, 

despite availability of effective pharmaceutical treatment options. Evidence suggests that 

therapeutic inertia, defined as clinician failure to initiate or increase therapy when treatment 

goals are unmet, is the most influential barrier to improving hypertension control. Substantial 

rates of therapeutic inertia have been reported in ambulatory primary care settings where 

hypertension is typically treated and managed. Understanding and overcoming the forces 

driving therapeutic inertia in hypertension management is a critical strategy to reach 

population health goals for blood pressure control and cardiovascular disease prevention. 

Objectives 

Three embedded studies within this dissertation that include: (1) descriptive and predictive 

modeling of antihypertensive therapeutic inertia, (2) a model of antihypertensive treatment 

selection, and (3) a propensity-score matched model of observed reductions in blood pressure 

after increasing dose or adding new classes of antihypertensive medication using electronic 

health record (EHR) data generated from real-world clinical practice. 

Materials and Methods 

Data for defining and modeling antihypertensive therapeutic inertia comes from five health 

care organizations; four located in the Southeast and one in the Midwest U.S. EHR data 
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extracted from each system used in these analyses include patient demographic information, 

diagnoses, procedures, medications, vital signs, and laboratory measurements. Mixed-effects 

regression, classification trees, and ensemble learning, and propensity-score matching are 

applied to produce descriptive and predictive models of antihypertensive therapeutic inertia 

and intensification, treatment selection, and treatment effectiveness.  

Results  

For 120,755 patients with hypertension, therapeutic inertia was indicated at 84.1% of 168,222 

visits where BP was uncontrolled (>140/>90mmHg). Therapeutic intensification occurred via 

dose increase of existing medication at 6.6% of visits, and addition of a new medication class at 

9.2% of visits with uncontrolled BP. Mixed-effects modeling of patient and clinical variables 

extracted from the electronic health record accounted for 13.2% of the variance in therapeutic 

inertia vs. intensification among visits with uncontrolled BP. Gradient boosted classification 

trees produced the strongest predictive model of therapeutic inertia (test AUC: 0.748). Mixed-

effects modeling explained 38.5% of the variance between treatment selection options. 

Propensity-score matched cases of treatment selection groups found a 1.31 mmHg greater 

reduction in SBP when a new class of medication was added. 

Discussion 

Patient, clinical, and encounter related variables extracted from the EHR did not account for a 

significant proportion of the observed variance in antihypertensive therapeutic inertia vs. 

intensification and increasing dose vs. adding a new medication. Consequently, predictive 

modeling using these variables was limited in performance. However, modeling of the 
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relationship between EHR derived variables and therapeutic inertia/intensification and 

treatment selection was sufficiently robust to determine the contribution of patient and visit 

related clinical factors to likelihood of antihypertensive treatment action, and to evaluate the 

best methods for prediction of hypertension treatment events. 
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I. INTRODUCTION 

Hypertension is a modifiable risk factor with the highest attributable risk to cardiovascular disease.[1-4] 

Specifically, heart disease and stroke are the first and fifth most common causes of death in the United 

States.[5] Controlling elevated blood pressure (BP) in patients with hypertension is paramount to 

reducing the substantial morbidity and mortality caused by heart disease, stroke, and other 

cardiovascular diseases.[1-18]  

Clinical trials have demonstrated the safety and efficacy of more than a dozen classes of blood pressure-

reducing drugs.[14-22] Despite the well-documented risks attributed to uncontrolled hypertension, 

defined at BP ≥140/≥90 or BP ≥130/≥80 mmHg depending on the guidelines referenced,[23, 24] and the 

availability of effective options for antihypertensive therapy,  hypertension control rates remain well 

below goals set by national population health initiatives.[1, 3, 12, 13, 25-28] The AHA and American 

Medical Association’s (AMA) Target: BP Program encourages health systems and physician practices to 

raise hypertension control among their patients to 70%, while the Centers for Disease Control’s (CDC) 

Million Hearts 2027 program aims to improve hypertension by 20% or to 80%, of all adults receiving 

health care.[29, 30] According to 2015-2016 data from the National Health and Nutrition Examination 

Survey, 75 million U.S. adults have hypertension (29%), and only 48% are controlled. Furthermore, only 

72% among those already taking antihypertensive medications have their hypertension under 

control.[28] 

Data from the National Health and Nutrition Examination Survey (NHANES) show that prevalence of 

hypertension among adults in the U.S., defined as systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg, 

was 31.5% during 2009-2012, 32.0% during 2013-2016, and 32.9% during 2017-2020.[28] Of those with 

hypertension, 48.2% had controlled BP in 2017-2020, a 4.6% decrease in control from 2009-2012.[28] 

Furthermore, only 67.7% of hypertensive adults taking antihypertensive medication were controlled in 
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2017 to 2020.[28] Disparities among subgroups are also important to consider. Hypertension control 

was lower among adults 75+ years of age (-9.2%), women (-8.4%), and non-Hispanic black adults (-

11.5%) compared to the overall hypertension control rate of 48.2% in 2017-2020.[28] Current trends of 

increasing hypertension prevalence, declining BP control, especially among those already taking 

antihypertensive medication, calls attention to the importance of addressing factors contributing to 

these trends and the need for informed strategies to reverse them.[26-28] 

 

Problem Statement 

“Achieving standard-of-care goals in only limited numbers of treated patients must be attributed either 

to therapeutic ineffectiveness or to clinical inertia.” – Phillips et al. [31] 

Evidence suggests that therapeutic inertia, defined as clinician failure to initiate or increase therapy 

when treatment goals are unmet, is the single most influential barrier to improving hypertension 

control.[32, 33] Therapeutic inertia rates exceeding 80% have been reported in ambulatory primary care 

settings where hypertension is typically treated and managed. Understanding and overcoming the 

forces driving therapeutic inertia in hypertension management is critical to reach population health 

goals for blood pressure control and cardiovascular disease prevention. 

This will require an informed strategy that utilizes informatics to best understand and break down the 

problem of therapeutic inertia in hypertension care. Starting with the providing insight into the nature 

of the problem, further analysis of previously studied factors associated with therapeutic inertia and 

intensification and hypothesized factors not previously studied for their relationship with therapeutic 

inertia and intensification is needed to better quantify and explain the variance in observed rates of 

therapeutic inertia and intensification. Furthermore, there is a lack of evidence for prediction of 

therapeutic inertia instances in ambulatory primary care. Validation of an accurate predictive model for 
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anticipating therapeutic inertia in clinical care will be vital for proactive intervention on clinician action 

in treating hypertension. To build on the insight into therapeutic inertia and form a comprehensive 

strategy for informing antihypertensive clinician action, the same approach is needed to better 

understand the factors driving decision making in therapeutic intensification. Modeling the relationship 

between patient and clinical variables and likelihood of adding a new medication or increasing dose of 

an existing medication and comparing the effectiveness of these two therapeutic intensification 

strategies on subsequent reduction in blood pressure will be valuable to guide clinician decision making 

toward the most effective action when therapeutic inertia is overcome and clinical action is taken. 

 

II. COMPREHENSIVE LITERATURE REVIEW 

Hypertension and Cardiovascular Disease 

Since the development of the sphygmomanometer in the late 19th century, extensive evidence has 

been published demonstrating the association between high blood pressure (BP) and cardiovascular 

disease (CVD). A decade after the device was introduced in the U.S., the relationship between high BP 

and CVD was first documented, with a systolic blood pressure of 160 mm Hg or higher identified as 

pathological.[34, 35] It wasn’t until decades later that the consideration of selection bias due to a 

majority of humans having higher than normal blood pressure, and the examination of blood pressure in 

isolated, unacculturated populations, led researchers to redefine what biologically normal blood 

pressure should be and at what point elevated blood pressure starts to increase risk of CVD.[36] In the 

century since, large-scale observational studies,[37-39] and randomized controlled trials (RCTs)[14-22] 

have provided a solid and progressive understanding of CVD risk mitigation from treating elevated BP 

and hypertension, including the 1967 Veterans Administration (VA) Cooperative Study Group on 
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Antihypertensive Agents, the 1991 Systolic  Hypertension in the Elderly Program (SHEP), and the 2015 

Systolic Blood Pressure Intervention Trial (SPRINT).[14-16].  

Some of the most formative observational evidence for hypertension’s contribution to CVD comes from 

the Oxford Population Health Prospective Studies Collaboration. Their 2002 collaborative meta-analysis 

of data from 61 prospective cohort studies with nearly 13 million person-years of follow-up shows that 

higher levels of SBP and DBP are strongly and directly related to higher risk of CVD and mortality. For all 

BP values above 115/75 mm Hg, the risk of CVD doubled for every 20 mm Hg increase in SBP and 10 mm 

Hg increase in DBP (Figure 1, below).[2] 

 

 

 

Figure 1. Log-transformed absolute risk (left) and untransformed absolute risk (right) of coronary heart 

disease or stroke in adults, by SBP and DBP, stratified by age.[2] 
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The Prospective Studies Collaboration estimated the attributable risk for BP above 115/75 mm Hg to be 

49% for CHD and 62% for stroke.[2] The most recent reports from the Global Burden of Diseases, 

Injuries, and Risk Factors Study (GBD), another set of highly comprehensive observational 

epidemiological analyses, estimate high blood pressure to be the leading risk factor globally for 

attributable deaths, accounting for 10.8 million deaths or 19.2% of all deaths in 2019.[1] In terms of 

hazard ratio, a study linking the Third National Health and Nutrition Examination Survey (1988-1994) 

and the 2011 National Death Index files showed a higher risk of all-cause (HR = 1.62, 95%CI = 1.35–1.95), 

CVD-specific (HR = 2.23, 95%CI = 1.66–2.99), heart disease-specific (HR = 2.19, 95%CI = 1.57–3.05) and 

cerebrovascular disease-specific (HR = 3.01, 95%CI = 1.91–4.73) mortality for treated but uncontrolled 

hypertensive patients compared to normotensive patients, and a higher risk of all-cause (HR = 1.40, 

95%CI = 1.21–1.62), CVD-specific (HR = 1.77, 95%CI = 1.34–2.35), heart disease-specific (HR = 1.69, 

95%CI = 1.23–2.32) and cerebrovascular disease-specific death (HR = 2.53, 95%CI = 1.52–4.23) for 

untreated hypertensive patients compared to normotensive patients.[3] Hazard ratios estimated from 

more than 3 million adult patients in the UK Biobank (UKB) and Korean National Health Insurance 

Service (KNHIS) cohorts show an elevated risk of major adverse cardiac and cerebrovascular events 

(MACCEs) and all-cause mortality among patients with controlled hypertension compared to 

normotensive patients; UKB: 1.73 (95% CI 1.55 to 1.92); KNHIS: 1.46 (95% CI 1.43 to 1.49) for MACCEs 

and UKB: 1.28 (95% CI 1.18 to 1.39) KNHIS: 1.29 (95% CI 1.26 to 1.32) for all-cause mortality.[40] While 

residual risk of adverse outcomes for controlled hypertension is still elevated compared to 

normotension, there is extensive evidence showing significant reduction in risk going from uncontrolled, 

to treated but uncontrolled, to treated and controlled hypertension.[1, 4, 11, 40] The opportunity for 

substantial decreases in risk of major cardiovascular and cerebrovascular adverse events and mortality 

should put secondary prevention in hypertension through BP lowering treatments at a very high priority 

in chronic disease management. 
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Several RCTs have been pivotal to the development of clinical guidelines for diagnosis, treatment, and 

management of hypertension to reduce the risk of CVD.[14-22, 41] Among these key trials are the 1967 

Veterans Administration (VA) Cooperative Study Group on Antihypertensive Agents, the 1991 Systolic  

Hypertension in the Elderly Program (SHEP), and the 2015 Systolic Blood Pressure Intervention Trial 

(SPRINT).[14-16] The VA trial looked at patients with an average DBP between 115 and 129 mm Hg and 

found that 24 months of active treatment with a triple combination regimen of hydrochlorothiazide, 

reserpine, and hydralazine resulted in an average reduction of 43 mm Hg systolic and 29.7 mm Hg 

diastolic BP and a significant decrease in subsequent morbid cardiovascular events compared to 

placebo. Treating hypertension according to the VA trial would prevent one major CVD event per year 

for every six patients with an average DBP between 115 and 129 mm Hg.[15] Since the VA study focused 

on DBP as an indicator of uncontrolled hypertension, many physicians still considered isolated systolic 

hypertension a natural and benign consequence of aging until the publication of the SHEP trial 

results.[42] This trial evaluated persons aged 60 years and over with SBP ranging from 160-219 mm Hg 

and DBP less than 90 mm Hg. SHEP showed that antihypertensive treatment with chlorthalidone and 

add on treatment as required to decrease SBP by 20 mm Hg or below 160 mm Hg reduced the incidence 

of stroke by 36%.[16] SPRINT found that after a median follow-up of 3.26 years, participants randomized 

to an SBP goal of less than 120 mm Hg (intensive treatment) had a 25% lower incidence of CVD 

(specifically: myocardial infarction, other acute coronary syndromes, stroke, heart failure, or death from 

cardiovascular causes) compared with those randomized to an SBP goal of less than 140 mm Hg 

(standard treatment), where the mean SBP after one year was 121.4 mm Hg in the intensive treatment 

group and 136.2 mm Hg in the standard treatment group.[14] 

Additionally, robust meta-analyses of RCTs and observational studies have provided strong evidence to 

verify the relationship between blood pressure and CVD risk.[17, 18, 21, 22] Two such studies by Law et 

al., one looking at 364 RCTs and another including 147 RCTs, determined the average reduction in BP 
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from active treatment with a single antihypertensive medication to be 9.1 mm Hg systolic and 5.5 mm 

Hg diastolic at standard dose and calculated a 62% reduction in stroke risk and 46% reduction in CHD 

risk.[17, 18] This reduction in risk of CVD from active antihypertensive treatment assessed by the Law et 

al. meta-analyses is nearly equivalent to the expected reduction of CVD risk for a 10 mm Hg difference in 

SBP observed by the Prospective Studies Collaboration meta-analysis.[2] The parallelism between the 

risk reduction determined from RCTs and risk calculations from observational is mutually supportive and 

further indicates the direct effect of elevated blood pressure on CVD risk. 

 

While the safety and effectiveness of BP-lowering drugs in primary and secondary prevention of 

cardiovascular disease have been repeatedly established by comprehensive meta-analyses and 

randomized controlled trials,[14-22] large quasi-experimental observational studies have proven useful 

in filling evidence gaps in medicine due to limitations in speed and scale of formal randomized 

controlled trials.[37-39, 43, 44] Particularly where large, integrated sets of observational data are 

available for analysis, the limited scope of controlled trials can be supplemented with extensive 

subgroup analysis and head to head comparisons for which there is not enough data within the RCTs to 

address. Observational effectiveness studies are necessary to determine the extent to which RCT 

evidence applies to patient populations seen in practice.[45] Furthermore, certain clinical conditions like 

therapeutic inertia (absence of guideline-recommended treatment initiation or intensification) would 

not be ethical to assign patients with uncontrolled hypertension. Observational studies with quasi-

experimental design elements provide the best available methods for generating evidence for clinical 

conditions that would be inappropriate or impractical to assign in a randomized trial.[45-48] 

There is an emphasis on employing "real-world data” (RWD) and “real-world evidence” (RWE) to 

support regulatory and clinical decision-making in health care stemming from the 21st Century Cures Act 
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passed in 2016, where the U.S. Congress called for the development a formal Real-World Evidence 

Program by the U.S. Food & Drug Administration (FDA).[49] A primary objective of the FDA’s RWE 

program is to evaluate the role of evidence generated from observational studies in contributing to 

regulatory decisions moving forward.[50] Rigorously designed observational studies are needed to 

support the FDA RWE program and the larger movement toward utilization of real-world data that is 

becoming increasingly abundant from integrated EHRs, claims, and clinical registries.  

More rigorous observational studies like the Large-Scale Evidence Generation and Evaluation (LEGEND) 

are needed to help address gaps in the RCT evidence-base for treatment guidelines and to support the 

FDA’s focus on incorporating real-world evidence in pharmacological regulation and decision-making. 

The LEGEND framework was first applied to hypertension treatment evidence, and provided results that 

are equable with existing RCT and meta-analysis results.[38]  

 

Antihypertensive Treatment Guidelines 

Based on the 2017 American College of Cardiology (ACC) and American Heart Association (AHA) 

guideline for prevention, detection, evaluation, and management of high blood pressure, initiation of 

antihypertensive medication is recommended for all patients with an SBP and DBP greater than 140 

mmHg or 90 mmHg, respectively. Patients with SBP 130-139 mmHg or DBP of 80-89 mmHg are 

considered to have “stage 1 hypertension.” Patients with stage 1 hypertension who are also considered 

at high risk for CVD events based on 10-year atherosclerotic CVD risk of 10% or higher are 

recommended to receive pharmacological treatment. Furthermore, the guidelines emphasize that most 

patients with BP above the threshold for recommendation of pharmacological therapy will require at 

least two medications to achieve BP control, advising initial treatment to begin with two drugs for 

patients with average BP more than 20/10 mmHg above their treatment goal.[23] 
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The 2018 European Society of Cardiology and European Society of Hypertension guidelines for managing 

arterial hypertension make recommendations that are generally more conservative in their indications 

to initiate or intensify treatment than the ACC/AHA guidelines. The ESC/ESH defines Stage 1 

hypertension as SBP between 140-159 and/or DBP between 90-99 mm Hg and only recommends 

medication for patients with BP 130-139/85-89 mmHg that are very high-risk and have CVD. The 

European guidelines also point out that monotherapy is usually insufficient to achieve BP control for 

most patients with hypertension, especially with lower BP treatment targets compared to previous 

guidelines. The ESC/ESH 2018 guidelines have a stronger recommendation for initiating treatment with a 

single-pill combination of two drugs compared to the ACC/AHA 2017 guidelines.[23, 24] The ESC/ESH 

guidelines recommend all instances of uncontrolled hypertension prompting pharmacological therapy 

be initiated with a single-pill combination of two antihypertensive drugs, with exceptions being frail 

older patients and those with SBP <150 mmHg, where monotherapy may be sufficient to reach control 

or necessary to avoid side effects. [23, 24] 

 

Therapeutic Inertia in Hypertension Management 

Phillips et al. were the first to use the term “clinical inertia” in their 2001 perspective article by that title. 

They defined the phenomenon as the “failure of health care providers to initiate or intensify therapy 

when indicated.”[31] Based on the premise that good management of patients with hypertension, 

dyslipidemia, or diabetes is dependent on both accurate diagnosis and initiating and intensifying 

treatment until treatment goals are achieved, they argued that causes of clinical inertia include an 

overestimation of care provided, use of “soft reasoning” to avoid intensification of therapy and lack of 

focus on achieving treatment goals.[31] The identification of clinical inertia as a problem in hypertension 

management was brought to light by a seminal study published three years earlier by investigators 
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looking at hypertension control in the Department of Veteran Affairs clinics. This examination by 

Berlowitz et al. found that even with an average of more than six hypertension-related visits per year 

over two years, 40% of hypertensive patients had a BP above 160/90 mm Hg, and antihypertensive 

therapy was initiated or intensified at only 6.7% of visits.[32] The VA study results from Berlowitz et al. 

provided a strong rationale to further investigate the newly identified problem of inadequate treatment 

intensification in hypertension management.[32] 

Using the homologous term “therapeutic inertia,” Okonofua and colleagues provided the first findings 

estimating the quantitative impact of therapeutic inertia in hypertension. The authors of this paper 

defined “therapeutic inertia” as more specifically referring to pharmacotherapy whereas the preceding 

term includes non-pharmacological or lifestyle recommendations to treat hypertension. Therapeutic 

inertia was observed for 86.9% of ambulatory office visits where BP was greater than or equal to 140/90 

mm Hg, and multivariate analysis determined that therapeutic inertia accounted for 19% of the variance 

in BP control. Furthermore, they estimated that improving antihypertensive medication intensification 

to 30% of visits would increase the observed BP control rate by more than 20 percentage points in one 

year.[33] 

A study using the Blood Pressure Control Model[51] to simulate usual care for hypertensive patients 

determined that BP control would improve from 46% to 80% over three years if treatment 

intensification rates were improved from 13% to 62%, even when other important drivers of 

hypertension control (medication adherence and follow-up visit frequency) remained the same. 

Improving intensification to perfect care (100%) would increase BP control to 87.2%, much more than 

perfect adherence or perfect follow-up time which would increase BP control to 57.0% and 67.8%, 

respectively.[52] This highlights therapeutic inertia as the single, most impactful barrier to improving 

hypertension control. 
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Several studies have focused on identifying the driving forces behind therapeutic inertia. Nearly all of 

these studies have determined higher SBP/DBP to be the most significant predictor of antihypertensive 

treatment intensification or SBP/DBP close to treatment goal thresholds to be the most significant 

predictor of therapeutic inertia.[32, 33, 53-62]  Many of these studies have also identified older age, sex, 

existing medications, visit frequency, BMI, and comorbidities as significant factors associated with 

antihypertensive therapeutic intensification or inertia. Older age is the only patient-level variable 

consistently associated with antihypertensive therapeutic inertia.[33, 55, 57, 58, 60-64]  Variables 

associated with inertia in some studies and with intensification in others, include visit frequency, sex, 

BMI, comorbidities, and existing medications. [32, 33, 53-58, 60-62, 64] The inconsistency of findings in 

the literature for these variables related to antihypertensive therapeutic inertia or intensification needs 

further study to establish clinical and patient related factors predictive of opportunities for improving 

pharmacological treatment of uncontrolled hypertension. 

 

Antihypertensive Therapeutic Intensification 

Although hypertension guidelines recommend initiating pharmacological therapy with two drugs in 

single-pill combination form, there is less guidance around intensifying treatment after initiation.[23, 24] 

Specifically, physicians can enact two options for antihypertensive treatment intensification: increasing 

the prescribed dose of existing medication and adding a new drug to the treatment regimen. Two meta-

analyses evaluating pharmacological options for lowering blood pressure and preventing cardiovascular 

disease determined that, on average, adding an antihypertensive medication at ½ standard, standard, 

and twice standard dose results in a BP decrease of 7, 9, and 11 mmHg, respectively, compared to a 2-3 

mmHg BP reduction for doubling dose of an existing antihypertensive medication.[18, 41] In a recent 

observational study evaluating hypertensive patients at the Veterans Health Administration, a direct 
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comparison of adding a new medication versus maximizing the dose of an existing drug to control 

hypertension found that adding a new drug resulted in a slightly larger reduction in mean SBP (-0.8 mm 

Hg at three months, and -1.1 mm Hg at 12 months). Furthermore, maximizing dose was more likely 

amongst older patients and three times more common than adding a new medication among all 

patients. [65] 

 

 

III. GAPS IN LITERATURE, RESEARCH QUESTIONS AND OBJECTIVES 

 

Gaps in Literature 

Many opportunities exist to build on the current literature and address gaps in our understanding of 

antihypertensive therapeutic inertia. Few studies have identified factors associated with therapeutic 

inertia using longitudinal EHR data (mostly cross-sectional surveys, manual chart review, or RCT data). 

Evidence for predictive modeling of therapeutic inertia with cross-validation is severely lacking (only 

Berlowitz 1998, Redon 2010) [32, 58] Ensemble methods have not been used to improve the 

performance of modeling therapeutic inertia. In response, the first study of this dissertation employs  

ensemble methods to model antihypertensive therapeutic inertia in using clinical and patient variables 

extracted from longitudinal EHR data to address these gaps build upon previous studies investigating 

therapeutic inertia and to provide deeper insight into factors contributing to the observed rates of 

therapeutic inertia and the expected impact of improving rates of therapeutic intensification on blood 

pressure reduction and hypertension control. 
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There is one published study evaluating the likelihood of antihypertensive medication 

intensification by adding a new medication or increasing dose (Aubert et al. 2021). This study examines 

patients at the Veterans Health Administration – almost all male (>98%), older population (65 years or 

older; mean age 76 years) [65] The only patient-related variables examined for association with the type 

of therapeutic intensification included age, baseline comorbid chronic conditions, baseline number of 

medications, baseline medication classes, and baseline SBP baseline visits. Other patient variables (e.g., 

sex, BMI, visit frequency, and proportion of visits with uncontrolled BP) have not been investigated for 

association with the type of therapeutic intensification. The second study within this dissertation builds 

upon the models of antihypertensive therapeutic inertia developed in the first study, to model 

treatment selection in antihypertensive therapeutic intensification strategies using clinical variables 

extracted from observational EHR data. 

The effect of increasing dose compared to adding a new medication for BP lowering treatment 

has been measured in numerous RCTs[14, 17, 18, 41, 66-68], but only one observational study using EHR 

data to compare these two methods of antihypertensive treatment intensification has been published in 

the literature.[65] Furthermore, this study examines patients at the Veterans Health Administration – 

almost all male (>98%), older population (65 years or older; mean age 76 years). [65] There is little 

evidence using observational data to derive expected effect in SBP/DBP from incremental additions of 

medication classes, medication combinations with known additive effects vs. combinations with known 

less than additive effects and increasing dose by less than half max vs. half max or greater. The final 

study in this dissertation will model effectiveness of antihypertensive therapeutic intensification from 

observational EHR data. Specifically, this study will compare the effect on BP from increasing dose vs. 

adding new medication vs. no change in medication, increasing dose by less than half max vs. half max 

or greater, incremental additions of medication classes, and between medication combinations with 

known additive effects vs. combinations with known less than additive effects. 
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Research Questions: 

 

1. How much do previously studied factors associated with therapeutic inertia impact the 

likelihood of therapeutic inertia and explain the observed variance in therapeutic inertia? How 

much do hypothesized factors not previously studied for their relationship with therapeutic 

inertia impact the likelihood of and explain observed variance in therapeutic inertia? Previously 

unexamined factors with hypothesized effects on therapeutic inertia include percent of visits 

where BP controlled, average BP across visits, BP variability, visit frequency, and ASCVD risk. 

2. How much do previously studied and not previously studied factors impact the likelihood and 

explain the variance in time to therapeutic initiation or intensification?  

3. Can a reliable predictive model for therapeutic inertia in hypertension care that improves upon 

the accuracy and validity of previously developed models for therapeutic inertia published in the 

literature? 

4. How much do previously studied and not previously studied factors impact the likelihood and 

explain the variance of increasing dose vs. adding a new medication when antihypertensive 

therapy is intensified? 

5. Are greater reductions in BP observed subsequent to instances of therapeutic intensification 

where dose of an existing medication is increased or where a new class of medication is added? 

6. Do the observed reductions in BP after incremental increases in dose differ between key patient 

characteristics (race/ethnicity, sex, and age)  among specific classes of antihypertensive drugs? 
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7. Do the observed reductions in BP after prescribing a new medication differ between key patient 

characteristics (race/ethnicity, sex, and age)  among specific combinations of antihypertensive 

drugs? 

 

Research Objectives: 

STUDY 1: Modeling therapeutic inertia in hypertension management using clinical patient characteristics 

extracted from longitudinal EHR data 

• Build a descriptive model of therapeutic inertia using EHR data to better understand drivers of 

therapeutic inertia and barriers to therapeutic intensification 

• Train and validate a predictive model to estimate the probability of therapeutic inertia during a 

given visit. 

 

STUDY 2: Modeling selection of antihypertensive therapeutic intensification using patient clinical 

variables extracted from longitudinal EHR data 

• Identify patient variables significantly associated (and quantify strength of association) with the 

two types of antihypertensive therapeutic intensification: adding a new medication and 

increasing dose of an existing medication 

• Calculate propensity scores for treatment selection based on these patient variables 

 

STUDY 3: Comparing effectiveness of antihypertensive therapeutic intensification from observational 

data – increasing dose vs. adding new medication 
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• Compare systolic blood pressure changes following different approaches/levels of therapeutic 

intensification for uncontrolled hypertensive patients: Adding a new medication class vs. 

increasing dose of existing medication vs. no change in medication 

o Compare SBP changes after increasing dose by less than half max vs. half max or greater 

o Compare SBP changes after incremental additions of medication classes, and between 

medication combinations with known additive effects vs. combinations with known less 

than additive effects 

• Determine variation and standard deviation in systolic blood pressure changes following 

different approaches/levels of therapeutic intensification; quantify range of observed response 

to therapeutic intensification 
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IV. MATERIALS & METHODS 

The proposed set of three studies will explore the value and reliability of descriptive and predictive 

modeling techniques applied to antihypertensive therapeutic inertia and intensification.  

Study 1:  The first study will use mixed effects logistic regression to build a descriptive model of 

therapeutic inertia from previously studied and hypothesized factors related to therapeutic inertia. 

The same set of variables will then be used to train a predictive classification model using logistic 

regression, decision trees, and ensemble methods including bagging and boosting.  

Study 2:  The second study will use mixed effects logistic regression to model therapeutic 

intensification and calculate propensity scores for selection of two treatment strategies: adding a 

new medication or increasing dose of an existing medication.  

Study 3:  The third study will use linear regression modeling and propensity score matching to 

estimate and compare the effectiveness of adding a new medication or increasing dose of an 

existing medication to lower blood pressure. All model construction and statistical analysis will be 

performed using the R statistical programming language (version 4.0.2).[69] 

 

Human Subjects Research Determination 

The study protocol for all three analyses in this dissertation were reviewed by the American Medical 

Association’s IRB of record (University of Illinois Chicago) and Clemson University’s IRB office. Both 

IRB offices determined that the proposed studies do not involve human subjects as defined in the 

federal regulations governing the protection of human subjects in research, 45 CFR 46.102(e), 

therefore full IRB review and approval were not required. 
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Data Sources 

The data used in this project is an aggregated, limited dataset of extracted EHR data from multiple 

health care organizations (HCOs) participating in the American Medical Association’s (AMA) 

Measure Accurately, Act Rapidly, and Partner with Patients (MAP) blood pressure (BP) control 

quality improvement (QI) program. Some of the participating health systems work with AMA 

software engineers to extract comprehensive electronic health record data for the AMA MAP team 

to provide relevant information to support clinicians and care managers in their blood pressure 

control efforts. The full datasets from each health system are stored separately for use in AMA MAP 

QI reports that utilize protected health information (PHI). A limited dataset containing data from five 

participating health care organizations, with all PHI removed except for elements of date, will be 

used for all analyses in this project.  

 

Study Setting 

Data from five health care organizations are included in the limited data set. Four are located in 

South Carolina and one is located in the Chicago, Illinois area. Three are federally qualified health 

centers (FQHCs); one with more than 600k patients and two with less than 75k patients in their 

respective EHR systems over the last three years. The other two HCOs are larger, each with more 

than 400k patients in their EHR over the last three years; a comprehensive academic medical center 

and a single-hospital medical complex. Attributes for each participating HCO are summarized in 

Table 1 below. The full aggregated limited dataset includes data for a total of 1.6 million patients 

and 12 million encounters. The variety present among the five study sites included in the aggregated 

dataset provides a context that is more representative of the diversity of health care settings across 

the national system. 
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Table 1. Health Care Organizations included in the limited data set. 

HCO 
Participants 

Description Location 
Patients 

(2020-2022) 
Encounters  
(2020-2022) 

HCO A 
Academic 
medical center 

Southeast 
530,094 3,342,443 

HCO B FQHC Southeast 22,276 253,046 

HCO C FQHC Southeast 75,627 1,175,740 

HCO D FQHC Midwest 665,868 2,962,630 

HCO E 
Single-hospital 
medical 
complex 

Southeast 
416,827 4,300,036 

Total (Aggregated Dataset) 1,710,692 12,033,895 

 

 

 

 

 

Table 2. MAP Patients, Encounters, Clinicians and Sites by HCO 

HCO Participants 
MAP Patients 
(2020-2022) 

MAP Encounters  
(2020-2022) 

MAP Sites    
(2020-2022) 

MAP Clinicians 
(2020-2022) 

HCO A 116,851 549,455 26 633 

HCO B 13,477 86,283 3 52 

HCO C 66,510 898,596 8 158 

HCO D 109,087 559,804 25 679 

HCO E 230,403 1,473,326 28 454 

Total  536,328 3,567,464 90 1,976 
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Inclusion/Exclusion Criteria 

The study sample for each analysis included in this dissertation was drawn from a base set of adult 

patients diagnosed with hypertension that had at least two primary care visits and two blood 

pressure measurements recorded in the EHR during the two-year study period (11/1/2019 – 

10/31/2021). All five health care organizations participating in the AMA MAP quality improvement 

program detailed above were included in the aggregated dataset.  Of the 386,630 patients that met 

the age criteria (18+ years old) and had at least two visits and BP measurements at a participating 

MAP primary care site, 201,089 patients had a diagnosis of hypertension. Figure 1 shows the 

inclusion/exclusion criteria applied to extract the base dataset used for all three analyses in this 

dissertation. 
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Figure 1. AMA LDS Patient Inclusion-Exclusion Flow Diagram 
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Summary of Analyses 

The overarching purpose of all analyses in this project is to better understand factors contributing to the 

prevalence of antihypertensive therapeutic inertia and to inform antihypertensive treatment 

intensification and selection in ambulatory clinical settings. Each proposed model included in this project 

will help provide evidence for implementing a strategy that utilizes EHR derived information and 

informatics tools to target the problem of therapeutic inertia and maximize therapeutic intensification in 

hypertension treatment. By modeling therapeutic inertia incidence, treatment selection, and SBP 

change after therapeutic intensification, all three studies in this project will help provide insight into 

factors contributing to the observed rates of therapeutic inertia and the expected impact of improving 

rates of therapeutic intensification on blood pressure reduction and hypertension control. 

Table 3. EHR-derived clinical variables used for model consideration. 

Variable 
Type 

Variable Name 

Processed  

Sex 

Gender 

Race 
 

Height 

Weight 

Body Mass Index (BMI) 

Systolic Blood Pressure (SBP) 

Diastolic Blood Pressure (DBP) 

Blood Glucose 

Hemoglobin A1C (HbA1C) 

Total Cholesterol 

High-density Lipoprotein Cholesterol (HDL) 

Low-density Lipoprotein Cholesterol, Estimated (LDL_C) 

Low-density Lipoprotein Cholesterol, Direct (LDL_D) 

Triglycerides 

Very-low-density Lipoprotein (VLDL) 
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Medications 

Serum Creatinine 

Serum Potassium 

Encounters 

Medications 

Comorbidities 

Calculated 

Age at encounter 

Visit Frequency 

Baseline antihypertensive medication classes 

Baseline number of medications 

Clinician Continuity (2) 

Number of days since previous visit 

Number of days since previous change in 
antihypertensive med 

Proportion of visits with BP 140/90 

Baseline BP 

Previous visit BP 
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STUDY 1: MODELING THERAPEUTIC INERTIA IN HYPERTENSION MANAGEMENT USING CLINICAL PATIENT 

CHARACTERISTICS EXTRACTED FROM EHR DATA 

 

Abstract 

Background: This study aims to explore the factors that contribute to therapeutic inertia and 

intensification in the management of uncontrolled hypertension. Despite the availability of effective 

antihypertensive therapies, hypertension control rates have remained stagnant for over a decade, with 

rates ranging from 66% to 87% for therapeutic inertia in ambulatory hypertension management. Higher 

blood pressure at the current visit has been consistently found to be the most significant predictor of 

antihypertensive treatment intensification, while many other patient and clinical factors have 

inconsistent results in the literature. This study seeks to identify both previously studied and 

unexamined factors associated with therapeutic inertia and intensification to develop a predictive 

model for anticipating therapeutic inertia instances. The research findings can inform antihypertensive 

clinician action and improve the accuracy and validity of previously developed models for therapeutic 

inertia published in the literature. 

Methods: The data used in this study is an aggregated set of data from five healthcare organizations: 

three federally qualified health centers and two large integrated health systems. Mixed-effects logistic 

regression is used to build descriptive models of therapeutic inertia for inference. Classification trees 

using different ensemble methods and resampling techniques are used to train and test predictive 

models of antihypertensive therapeutic inertia versus intensification.  
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Results: : For 120,755 patients with hypertension, therapeutic inertia was indicated at 84.1% of 168,222 

visits where BP was uncontrolled (>140/>90mmHg). Therapeutic intensification occurred via dose 

increase of existing medication at 6.6% of visits, and addition of a new medication class at 9.2% of visits 

with uncontrolled BP. Mixed-effects modeling of patient and clinical variables extracted from the 

electronic health record accounted for 13.2% of the variance in therapeutic inertia vs. intensification 

among visits with uncontrolled BP. Gradient boosted classification trees produced the strongest 

predictive model of therapeutic inertia (test AUC: 0.683).  

Discussion: The predictive models had moderate performance and suggested potential use in helping 

guide clinician decision-making regarding therapeutic inertia vs. intensification. However, further 

research is needed to validate the models on larger and more diverse datasets, as well as to determine 

the factors influencing therapeutic inertia and intensification, especially regarding provider and patient-

level factors. This study provides valuable insights into the factors influencing therapeutic intensification 

for patients with uncontrolled hypertension but suggests that still further research is needed to identify 

the factors influencing therapeutic inertia and intensification, particularly regarding provider and 

patient-level factors. Healthcare providers should be aware of the potential impact of these factors and 

take steps to minimize barriers to optimal hypertension management. 

Conclusion: The study provides insights on factors affecting treatment intensification for patients with 

uncontrolled hypertension. The study emphasizes the significance of SBP and DBP as predictors of 

therapeutic intensification and suggests further research to identify the reasons behind therapeutic 

inertia and intensification. Healthcare providers should consider these factors and reduce barriers to 

achieve optimal hypertension management. 
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Background 

Therapeutic inertia, the term used to describe the absence of action from healthcare providers to 

initiate or intensify therapy when indicated, was first defined by Phillips et al. in 2001,[31] but first 

identified as a significant problem in hypertension management by Berlowitz et al. in 1998.[32] 

Qualitative studies have found common themes in reported reasons for therapeutic inertia: 

overestimation of care provided, soft reasoning to avoid intensification of therapy, and a lack of focus 

on achieving treatment goals.[31, 70] The reporting of inadequate treatment intensification in 

hypertension management among VA health care clinics by Berlowitz et al. found that 40% of 

hypertensive patients had a BP above 160/90 mm Hg, and antihypertensive therapy was initiated or 

intensified at only 6.7% of visits, despite more than six hypertension-related visits per year over two 

years.[32] Okonofua and colleagues further specified the term therapeutic inertia to strictly refer to 

pharmacotherapy, reporting findings where 86.9% of ambulatory office visits had therapeutic inertia 

when BP was greater than or equal to 140/90 mm Hg.[33] More recent analyses of therapeutic inertia in 

ambulatory hypertension management report rates ranging from 66% to 87%, with most findings 

around 80%.[56, 58-61, 64, 71] 

For more than a decade now, hypertension control rates have been stagnant and even falling for some 

demographic groups,[26-28] and continue to remain below national goals[29, 30] – all despite the well-

documented risks attributed to uncontrolled hypertension,[1-18] treatment actions recommended 

outlined by international recognized guidelines,[23, 24] and the availability more than a dozen distinct 

classes of safe, effective pharmacological options for antihypertensive therapy.[14-22] Okonofua et al. 

estimated that improving antihypertensive medication intensification to 30% of visits would increase the 

observed BP control rate by more than 20 percentage points in one year.[33] By developing a Markov-

chain simulation model of usual care for hypertensive patients, Bellows et al. determined that BP control 
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would improve from 46% to 80% over three years if treatment intensification rates were improved from 

13% to 62%.[52]   

 

The 1998 study from Berlowitz et al. found variables predictive of decisions to increase therapy for 

hypertension to be increased levels of both systolic and diastolic blood pressure at the visit, a change in 

therapy at the preceding visit, the presence of coronary artery disease (among patients with a blood 

pressure of <165/90 mm Hg), and a scheduled visit. Blood pressure recorded during previous visits and 

cardiovascular risk factors other than hypertension were not identified as predictors by the model. 

Increases in therapy were most common during visits with a diastolic blood pressure of ≥90 mm Hg and 

a change in therapy at the preceding visit.[32]  

More than a dozen studies looking at variables associated with antihypertensive therapeutic inertia and 

intensification have since been published; analyzing patient and clinical variables collected from: 

• Manual chart review [32, 53, 56, 58, 63, 72-74]   

• EHR data extraction [33, 54, 55, 57, 61, 64] 

• RCT primary and secondary analyses [62, 75] 

• Quantitative and qualitative surveys [60, 76, 77] 

•  Administrative claims [59] 

Higher SBP and DBP at the current visit was consistently found to be the most significant predictor of 

antihypertensive treatment intensification in all previous studies, with elevated SBP/DBP close to 

treatment goal thresholds being associated with therapeutic inertia.[32, 33, 53-62, 72] Blood pressure at 

previous visits and average BP were only examined by a few studies, finding a similar relationship with 

therapeutic inertia as current visit BP.[53, 56, 57] Reports of age and sex are inconsistently significant 

but consistent in their relationship with TI; older age and female sex being associated with therapeutic 
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inertia.[33, 53, 57, 58, 60-62, 64] No statistically significant relationship between race/ethnicity and TI 

has been reported.[60, 62, 64, 72] Previous therapeutic intensification events have been found to be 

associated with higher likelihood of therapeutic intensification at the current visit,[32, 53] while number 

of AH medications currently prescribed is associated with both therapeutic inertia and 

intensification.[33, 55, 57, 58, 60] Cardiovascular related comorbidities including congestive heart failure 

(CHF) and coronary artery disease (CAD) are most often linked to greater therapeutic inertia,[32, 33, 61] 

while diabetes, hyperlipidemia, and depression are associated with therapeutic inertia.[33, 54, 60, 61, 

63, 74] However, some studies have reported the reverse relationship for cardiovascular disease (CVD), 

CHF, and diabetes.[33, 55, 57] Harle et al. looked at total number of comorbidities rather than specific 

conditions and found higher rates of therapeutic intensification with greater number of 

comorbidities.[64] Visit frequency was found to be a predictor of therapeutic inertia,[58] though visits 

with a patient’s primary physician is correlated with therapeutic intensification compared visits with a 

different or covering physician.[56] Patient BMI has reported relationships with both greater therapeutic 

inertia and intensification.[62, 64] Other factors found to contribute to reluctance to intensify AH 

treatment, include concerns about medication side effects,[78-80]  workflow constraints (e.g., time),[81]  

dosing uncertainty (especially when cardiovascular comorbidities are present),[81]  discrepancies and 

uncertainty in BP readings (due to measurement error and/or “white coat” hypertension),[82, 83] and 

medication costs.[25] 

 

Previous studies have only examined a subset of all of the potentially relevant factors related to 

therapeutic inertia and intensification. Furthermore, many findings are conflicting regarding some key 

variables like comorbid CVD, CHF, diabetes, BMI, and number of AH medications. Additionally, relevant 

variables that can be ascertained from data available in the EHR, including proportion of visits where BP 

controlled, BP variability, confirmatory blood pressure measurement, and clinician continuity, have not 
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been examined for their relationship with AH treatment action. Further study is needed to establish 

clinical and patient-related factors and predictive of opportunities for improving pharmacological 

treatment of uncontrolled hypertension through the conversion of therapeutic inertia to intensification. 

Overcoming therapeutic inertia is critical to reach population health goals, and an informed strategy 

utilizing informatics is necessary to understand and address this issue. Comprehensive analysis of 

previously studied and unexamined factors and hypothesized factors associated with therapeutic inertia 

and intensification is needed. Developing an accurate predictive model for anticipating therapeutic 

inertia instances would be a powerful tool for proactive intervention. Understanding the factors driving 

decision-making in therapeutic intensification is critical, and modeling the relationship between patient 

and clinical variables can guide clinician decision-making toward the most effective action for improving 

hypertension control. The purpose of this study is to inform antihypertensive clinician action through 

descriptive and predictive modeling of a comprehensive set of patient and clinical variables extracted 

from EHRs for secondary analysis.  

 

Study Objectives & Research Questions 

Research Questions: 

1. How much do previously studied factors associated with therapeutic inertia impact the 

likelihood of therapeutic inertia and explain the observed variance in therapeutic inertia? How 

much do hypothesized factors not previously studied for their relationship with therapeutic 

inertia impact the likelihood of and explain observed variance in therapeutic inertia? Previously 

unexamined factors with hypothesized effects on therapeutic inertia include proportion of visits 

where BP controlled, BP variability, confirmatory blood pressure measurement, and clinician 

continuity. 
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2. How much do previously studied and not previously studied factors impact the likelihood and 

explain the variance in time to therapeutic initiation or intensification?  

3. Can a reliable predictive model for therapeutic inertia in hypertension care that improves upon 

the accuracy and validity of previously developed models for therapeutic inertia published in the 

literature? 

Objectives:  

The purpose of the first analysis is to model therapeutic inertia using clinical data that are associated 

with therapeutic inertia and therapeutic intensification in hypertension management. 

• Build a descriptive model of therapeutic inertia using EHR data to better understand drivers of 

therapeutic inertia and barriers to therapeutic intensification. 

• Train and validate a predictive model to estimate the probability of therapeutic inertia during a 

given visit, and  

• Evaluate different ensemble methods and resampling techniques to determine the most robust 

method for modeling antihypertensive therapeutic inertia vs. intensification. 
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Methodology 

Extensive descriptive modeling of therapeutic inertia will be constructed using the mixed effects logistic 

regression function from the generalized linear mixed-effects models package (lme4) in R.[84, 85]   Time 

to therapeutic initiation or intensification will be modelled with linear regression using the Linear Mixed-

Effects Models package (lme4).[84, 85] Descriptive modeling of both therapeutic intensification and 

time to intensification will consist of univariate regression models for each variable listed in TableX  and 

adjusted multivariate regression models for variables determined to be statistically significant from the 

univariate analysis. Random intercepts for multiple observations for each patient and clinician will be 

included in all descriptive models. The logistic regression models of therapeutic inertia will be evaluated 

by computing a pseudo-R2 formulated for evaluating generalized linear mixed models (GLMMs).[86, 87] 

The linear regression models for time to therapeutic initiation or intensification will be evaluated with R2 

and mean square error calculations to assess the variability in outcome explained by the models.[88]  

 Using the same set of variables, predictive models for classification of therapeutic inertia vs. 

intensification will be trained and validated using decision trees and two types of ensemble learning: 

bagging and boosting.[89-92] Resampling methods of oversampling, SMOTE, ROSE, and undersampling 

will are applied to adjust for the imbalance in outcome frequency between inertia and 

intensification.[93-97] The models will be estimated using the Random Forests package and the XGBoost 

gradient boosting algorithm in R.[98, 99] All trained classification models for predicting antihypertensive 

therapeutic inertia will be evaluated using holdout set cross-validation, calculation of area under the 

receiver operating characteristic curve (AUC) and balanced accuracy, and generation of confusion 

matrices to assess prediction error and predictive utility.[100]  
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Study Data and Setting 

The project uses a limited dataset from multiple health care organizations (HCOs) participating in the 

American Medical Association's blood pressure control quality improvement program. The dataset 

contains data from five healthcare organizations, four in the southeast and one in the Midwest U.S., 

including three federally qualified health centers and two large health systems. The dataset contains 

EHR data for 1.6 million patients and 12 million encounters before applying study inclusion/exclusion 

criteria. The dataset's diversity provides a context that is more representative of the diversity of 

healthcare settings across the national system (see Table 1 for patient demographic and clinical 

characteristics by HCO). 

 

Inclusion and Exclusion Criteria 

The study included 590,463 patients who were seen at a MAP-participating primary care site. 

Encounters missing clinician were excluded, leaving 589,019 encounters. Patients with at least two visits 

during the full study period (2020-2022) totaled 433,414, while 410,617 had at least one visit during the 

study period (2021-2022). Patients were required to be 18 years or older (386,630). Additionally, 

patients with a hypertension diagnosis (201,089) and those with at least two blood pressure 

measurements (191,227) were included. Patients with all antihypertensive medications verified 

(120,755) were also included. Uncontrolled blood pressure visits (73,974) were included in the study, 

while patients with at least one visit during the baseline period in 2020 (56,963) were included as well. 

Figure 2 provides an overview of all inclusion/exclusion criteria for this study as they were applied to the 

full dataset. 
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Figure 2. Patient Inclusion-Exclusion Flowchart for Therapeutic Intensification Event Analysis 
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Figure 3. Patient Inclusion-Exclusion Flowchart for Time to Therapeutic Intensification Analysis 
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Table 4. Summary of Patients and Encounters for Therapeutic Intensification Event Analysis 

HCO Patients Encounters 
Encounters 
per Patient 

A 11,174 22,251 1.99 

B 2,637 6,913 2.62 

C 7,035 19,568 2.78 

D 11,123 25,535 2.30 

E 24,994 56,544 2.26 

Total 56,963 130,811 2.30 

 

Table 5. Summary of Patients and Encounters for Time to Therapeutic Intensification Analysis 

HCO Patients Encounters Encounters 
per Patient 

A 4,971 9,275 1.87 

B 1,156 2,914 2.52 

C 3,236 8,429 2.60 

D 5,494 11,723 2.13 

E 11,652 23,811 2.04 

Total 26,509 56,152 2.12 

 

 

Data Processing 

All data processing to prepare the raw data for analysis was completed using the the R statistical 

programming language (version 4.0.2) and the Tidyverse suite of packages for data science.[69, 101] As 

is often required when using EHR data for secondary analyses, many processing steps were performed 

before running the models produced in this study. After limiting the data set to ambulatory primary care 

visits at MAP sites, unique encounters were defined by date, under the assumption that only one visit 
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per day would be made by a patient at a particular site. Encounters by a patient on the same day at two 

different sites would have been kept with separate encounter IDs for distinction, but no cases like this 

were observed in the data after filtering the encounters to only those that occurred at a MAP-

participating primary care clinic. However, two key encounter level variables had numerous cases where 

different values were attached to the same encounter: clinician and blood pressure. To condense these 

cases with multiple instances of a single encounter in the data, a clinician was chosen based on 

frequency and the BP with the lowest SBP and corresponding or “paired” DBP reading. Attribution of 

clinician was done by assigning the most frequently seen clinician by each patient as their designated 

“primary clinician.” Secondary and tertiary clinicians were also determined for each patient as their 

second and third most visited, respectively. For cases where multiple clinicians were listed for a single 

encounter: 

▪ If one of the clinicians listed with the encounter corresponded with the patient’s assigned 

“primary clinician,” that clinician was kept and others removed. 

▪ If one of the clinicians listed with the encounter corresponded with the patient’s assigned 

“secondary clinician,” that clinician was kept and others removed. 

▪ If one of the clinicians listed with the encounter corresponded with the patient’s assigned 

“tertiary clinician,” that clinician was kept and others removed. 

▪ If none of the clinicians listed were the patient’s primary, secondary, or tertiary clinician, the 

first clinician listed was kept and others removed. 

Medications are manually validated by the team of data acquisition specialists, analysts, and software 

engineers at the AMA’s Improving Health Outcomes (IHO) division on a separate server where the 

identifiable data is loaded and processed for calculation of MAP program dashboard metrics. The 

validation process utilizes a combination of an internally developed string parsing function with manual 
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review of each generic drug name and dose derived from the drug description and prescription 

instructions extracted from medication orders in the EHR.  

 

Therapeutic Inertia and Intensification 

Classification of therapeutic inertia is dependent on the accurate determination of therapeutic 

intensification events.  Classification of increases in dose of an existing medication and additions of a 

new class of medication were handled separately. First all medication orders were consolidated to one 

line for each combination of patient/drug/dose, and the first and last order date were kept in different 

columns to retain when the specific drug/dose was first and last seen in the data. For dose increases, all 

unique combinations of patient/drug/dose were ordered chronologically by the first date listed the data 

for each. Then an if, else statement was used to determine two consecutive patient/drug/dose 

combinations were for the same patient and the same drug, and if the dose was higher for the more 

recent instance. If so, that date of first instance for the new dose was marked as a dose increase for that 

patient. For additions of new medication classes, unique combinations of patient/class were ordered by 

first date listed in the data. The baseline period was used to provide a 12-month window to pick all 

currently prescribed AH medications for each patient (AH medication prescriptions need to be renewed 

every 12 months at the most). Two conditions had to be met for a class addition to be indicated: 

• The AH class must not be present in the baseline period for a patient 

• There must be a visit on record for a patient at least 12 months prior to the first date listed for 

the AH class (to eliminate new patients or patients not seen for over a year from being falsely 

identified as having a new medication added when they are just receiving an overdue renewal 

or a renewal with a new provider) 
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Mixed-Effects Modeling 

Mixed effects modeling is a statistical technique used to analyze data that have both fixed and random 

effects. Fixed effects are factors that are known or measured, while random effects are factors that are 

not known or unmeasured but can still have an impact on the outcome. Mixed effects modeling 

provides a solution to the challenge of modeling clustered data in longitudinal analysis. In datasets 

where there may be multiple observations for a single individual or distinct group, introducing random 

effects allows the model to adjust for implicit differences in variation of explanatory and outcome 

variables that exist between individual subjects or distinct groups.[102, 103] The dataset analyzed in this 

study has multiple observations per patient and per clinician. Random intercepts were added to all 

descriptive models, for each patient and clinician included in the dataset, to adjust for implicit 

differences between individual treating and being treated, as well as the clustering of biological 

variables (i.e. vitals and laboratory tests) measured at different time points for the same patients over 

the course of the longitudinal cohort study. The specific implementation used for all descriptive models 

in this study is the Linear Mixed-Effects Models package (lme4) in R.[84, 85]  

 

Regression Model Evaluation  

A Pseudo R-squared measure developed and validated by Nakagawa and Schielzeth[86, 87] specifically 

for mixed-effects logistic regression is used to evaluate the fit and explanation of variance in each logit 

model of therapeutic inertia. Pseudo R-squared is a measure of the goodness of fit of a statistical model 

that can be used to evaluate the performance of mixed-effects logistic regression models. It is a 

modification of the traditional R-squared used in linear regression models that considers the complexity 

of the model and the variability in the data. The interpretation of pseudo R-squared in mixed-effects 

logistic regression models is similar to that in linear regression models. A higher value of pseudo R-
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squared indicates a better fit of the model to the data, with values ranging from 0 to 1.[104] For linear 

mixed-effects models, a regular adjusted-R2 is used to evaluate model fit for descriptive models of time 

to therapeutic intensification,[88] but using the Nakagawa and Schielzeth method for estimating 

variance explained by fixed effects alone vs. fixed and random effects together.[86, 87] 

 

 

Bootstrap Aggregation 

Bootstrap aggregation, or “bagging,” is an ensemble method of machine learning that aims to improve 

the stability and accuracy of predictions by combining multiple models trained on different subsets of 

the dataset. In bagging, a large number of random subsets of the training data are sampled with 

replacement, and a separate model is trained on each subset. These models are then combined to make 

predictions by taking the average or majority vote of their outputs. By reducing the variance of the 

individual models, bagging can often lead to better performance and generalization.[92, 105, 106] To 

predict therapeutic inertia vs. intensification, this study employs the Random Forest algorithm,[107] 

which uses bagging to build a large number of decision trees and aggregate their predictions to make a 

final prediction. Random Forest has been successfully applied to a wide range of tasks, including image 

classification, speech recognition, and drug discovery.[92, 105, 106, 108] 

 

Boosting 

Boosting is another ensemble learning technique where models are trained sequentially, with each new 

model trying to correct the errors made by the previous models. This study also tests the XGBoost 

algorithm[99] for prediction of therapeutic inertia vs. intensification. XGBoost works by training decision 
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trees using gradient boosting, where, at each iteration, a new decision tree is trained to fit the residual 

errors of the previous iteration. The XGBoost algorithm for gradient boosting includes several 

parameters that must be tuned through experimentation and cross-validation to find the optimal 

settings for maximizing accuracy while avoiding overfitting to the training data. The nrounds parameter 

of XGBoost specifies the number of boosting rounds, which is the number of decision trees that will be 

trained in the ensemble. The nrounds parameter controls the number of iterations of the boosting 

algorithm. Increasing the number of rounds allows the model to learn more complex relationships 

between the input features and the output variable. However, setting nrounds too high can lead to 

overfitting, where the model fits the training data too closely and performs poorly on new, unseen data. 

The scale_pos_weight parameter allows for adjustment of training on imbalanced data, as in the case of 

this study where therapeutic inertia is much more frequently observed than therapeutic inertia.[92, 98, 

99, 109] 

 

Resampling 

Since the Random Forests algorithm does not have a built-in parameter to handle class imbalance like 

XGBoost, several resampling methods are tested to see which techniques best adjusts for the low ratio 

of therapeutic inertia to intensification in the data. Oversampling, Synthetic Minority Over-sampling 

Technique (SMOTE), Random Over-sampling Examples (ROSE), and undersampling were all tested in 

combination with random forest classification using the Caret package in R.[97]  

Oversampling involves duplicating instances from the minority class to balance the classes. This method 

can lead to overfitting and reduced model performance, especially if the minority class is heavily 

oversampled. However, oversampling can be effective if the dataset is small and the minority class has 

important instances that should not be missed.[94, 96] 
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SMOTE (Synthetic Minority Over-sampling Technique) is a more advanced form of oversampling that 

involves creating synthetic instances in the minority class by interpolating between existing instances. 

This method can be more effective than simple oversampling because it generates new instances that 

are different from the existing instances and can improve the model's ability to generalize.[93] 

ROSE (Random Over-Sampling Examples) is another oversampling method that generates synthetic 

instances by interpolating between existing instances, but it uses a different approach to select the 

instances to be oversampled. ROSE uses a heuristic approach to identify the most informative instances 

to be oversampled, which can improve the model's performance.[95] 

Undersampling involves removing instances from the majority class to balance the classes. This method 

can lead to loss of information and reduced model performance, especially if the majority class is heavily 

undersampled. However, undersampling can be effective if the dataset is very large and the majority 

class contains many instances that are not relevant to the problem.[94, 96] 

 

Cross-validation 

Cross-validation was used to evaluate the performance of each predictive model in this study. 

Specifically, we used hold-out set cross-validation, randomly dividing the data into two sets: a training 

set and a validation set, with 70% of observations allocated to the training set and 30% of observations 

allocated to the test set for performance estimation. This approach provides a more realistic estimate of 

the model's performance on data not seen by the model during training. The measures used to evaluate 

the performance of each predictive model in this study were accuracy, sensitivity, specificity, balanced 

accuracy, precision, recall, F1 score, and area under the receiver operating characteristic curve (AUC-

ROC).[110, 111] 
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Comorbidity Indices 

This study utilized two validated methods of measuring the burden of comorbid conditions in patients 

the Charlson Comorbidity Index (CCI) and Elixhauser Comorbidity Index (ECI). The Charlson Comorbidity 

Index is a scoring system that assigns a numerical value to 19 different medical conditions, each with a 

corresponding weight, based on the potential impact on patient mortality.[112] The Elixhauser 

Comorbidity Index is a more recently developed scoring system that includes 31 different medical 

conditions, each with a corresponding weight, that have been associated with increased mortality and 

resource utilization. The ECI also includes a set of comorbidity categories, such as obesity, drug abuse, 

and alcohol abuse, that do not correspond to specific medical conditions.[113] This study used the 

“comorbidity” package,[114] an R-language rewrite of the coding algorithms developed by Quan et 

al.[115] to map ICD-10 diagnosis codes to the medical condition categories defined in the CCI and ECI 

indices. The scoring systems for each index were not utilized in this analysis. The indices were simply 

used to categorize clinically relevant comorbid conditions, specifically: diabetes (with and without 

complications), congestive heart failure (CHF), cardiac arrhythmia, peripheral vascular disease (PVD), 

renal failure, liver disease, solid tumor cancers, metastatic cancers from the Elixhauser index and 

myocardial infarction, cerebrovascular disease, and dementia from the Charlson index.[112, 113] 
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RESULTS 

Table 1 provides a summary of patient demographics and clinical characteristics for the 120,755 patients 

meeting the study inclusion criteria through criteria A, outlined in Figure 1. The number of patients 

meeting study inclusion criteria at each HCO included in this analysis ranges substantially, with HCO E 

having the most patients (51,069) and HCO B having the fewest patients (4,613). The mean age of all 

patients is 61.3 years, with HCO C having the lowest mean age (57.2 years) and HCO D having the 

highest mean age (62.0 years). The total patient set is majority female, making up 56% of the 53,104 

total patients, and ranging from 53.3% female at HCO E to 59.5% female at HCO C. In terms of race, 

56.6% are white compared to 38.0% black. The proportion of white patients compared to black patients 

for each HCO ranged from 72.6% and 23.3% black to 30.7% white and 67.1% black. 

The table also shows clinical characteristics such as baseline and final antihypertensive medications per 

patient, mean systolic blood pressure (SBP), mean diastolic blood pressure (DBP), mean body mass index 

(BMI), mean hemoglobin A1C (HbA1C), mean glucose level, mean low-density lipoprotein (LDL) 

cholesterol, mean high-density lipoprotein (HDL) cholesterol, and mean total cholesterol. Additionally, 

the table shows the number and percentage of patients with certain health conditions, such as diabetes, 

congestive heart failure (CHF), arrhythmia, renal failure, and liver disease, with HCO E having the highest 

percentage of patients with diabetes (50.6%) and HCO C having the highest percentage of patients with 

renal failure (19.6%). The most prevalent comorbidity overall was diabetes at 31.8%, followed by chronic 

pulmonary disease at 18.5%. 
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Table 1. Summary of Patient Demographics and Clinical Characteristics 

  Total HCO A HCO B HCO C HCO D HCO E 

Patients N 120,755 28,847 4,613 13,915 22,311 51,069 

Age mean, SD 61.3 14.1 62.3 14.8 57.2 13.9 58.0 14.3 61.6 11.7 62.0 14.4 

Male N, % 53,104 44.0% 12,051 41.8% 1,884 40.8% 5,632 40.5% 9,680 43.4% 23,857 46.7% 

Female N, % 67,650 56.0% 16,796 58.2% 2,729 59.2% 8,283 59.5% 12,630 56.6% 27,212 53.3% 

White N, % 68,407 56.6% 18,185 63.0% 1,417 30.7% 4,490 32.3% 7,240 32.5% 37,075 72.6% 

Black N, % 45,939 38.0% 9,640 33.4% 3,095 67.1% 8,920 64.1% 12,396 55.6% 11,888 23.3% 

Other N, % 4,203 3.5% 628 2.2% 53 1.1% 420 3.0% 1,614 7.2% 1,488 2.9% 

Baseline AH 
meds per pt 

mean 1.5 1.5 1.9 1.8 2.1 1.2 

Final AH 
meds per pt 

mean 1.9 1.8 2.2 2.1 2.3 1.7 

SBP mean, SD 130.9 15.5 129.8 15.0 132.5 17.9 131.5 16.5 135.1 17.4 129.7 14.5 

DBP mean, SD 76.7 10.5 77.1 10.3 80.8 12.9 79.7 9.9 71.9 10.8 77.6 9.7 

BMI mean, SD 31.7 8.0 31.2 7.9 32.8 8.9 32.6 9.0 31.6 7.9 31.6 7.6 

HbA1C mean, SD 6.6 1.6 6.3 1.5 6.7 1.7 6.8 1.8 6.8 1.8 6.6 1.5 

Glucose mean, SD 117.3 52.5 113.8 47.8 116.0 59.7 116.8 60.7 128.4 64.8 114.5 44.8 

LDL mean, SD 100.9 36.5 102.1 36.6 104.9 36.2 104.9 36.8 103.5 37.7 98.1 35.7 

HDL mean, SD 54.9 17.1 55.9 18.0 52.5 16.0 51.7 14.9 49.7 13.3 57.4 18.1 

Cholesterol mean, SD 165.5 50.6 124.9 52.5 180.6 44.1 181.6 43.6 172.0 45.0 178.2 42.5 

Diabetes N, % 38,386 31.8% 7,790 27.0% 1,457 31.6% 3,953 28.4% 11,298 50.6% 13,888 27.2% 

CHF N, % 7,635 6.3% 2,320 8.0% 376 8.2% 657 4.7% 2,235 10.0% 2,047 4.0% 

Arrhythmia N, % 18,196 15.1% 5,872 20.4% 488 10.6% 1,057 7.6% 3,124 14.0% 7,655 15.0% 

Renal Failure N, % 13,043 10.8% 3,150 10.9% 902 19.6% 1,369 9.8% 3,491 15.6% 4,131 8.1% 

Liver Disease N, % 7,548 6.3% 2,148 7.4% 191 4.1% 505 3.6% 2,540 11.4% 2,164 4.2% 

Valvular 
Disease 

N, % 4,794 4.0% 1,500 5.2% 48 1.0% 151 1.1% 700 3.1% 2,395 4.7% 

CEVD N, % 9,436 7.8% 2,794 9.7% 277 6.0% 701 5.0% 1,962 8.8% 3,702 7.2% 

MI N, % 3,047 2.5% 1,255 4.4% 54 1.2% 150 1.1% 849 3.8% 739 1.4% 

PVD N, % 8,955 7.4% 2,870 9.9% 257 5.6% 596 4.3% 2,055 9.2% 3,177 6.2% 

CPD N, % 22,326 18.5% 6,351 22.0% 881 19.1% 2,862 20.6% 4,839 21.7% 7,393 14.5% 

Metastatic 
Cancer 

N, % 2,240 1.9% 609 2.1% 7 0.2% 61 0.4% 900 4.0% 663 1.3% 

Solid Tumor N, % 10,053 8.3% 2,830 9.8% 160 3.5% 472 3.4% 2,946 13.2% 3,645 7.1% 
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Table 2 and table 3 summarize the distribution of SBP and DBP overall and across the different HCOs for 

the 569,966 blood pressure encounters that met all study criteria through criteria A in Figure 1. On 

average 26.5% of all visits had an SBP of 140 or higher. All of the HCOs had the highest proportion of 

visits in the 130-140 mmHg, except for HCO E which had a slightly higher proportion of patients in the 

120-130 mmHg group. HCO C had the highest proportion of visits with SBP above 140 mmHg at 38%, 

while all other HCOs had between 22-30% of visits above 140. HCO B had the highest proportion of visits 

above 160 mmHg at 10.7%, with all other HCOs reporting between 4-9% of visits above 160. The 

majority of visits for all sites saw DBP between 70-90 mmHg, except for HCO D where 42.0% had a 

reported DBP 70 mmHg or lower. HCO B had the highest proportion of visits above 90 mmHg at 22.4%, 

and all other HCOs had between 10-11% of visits above 90, except for HCO which had the lowest 

percent of uncontrolled DBP visits at 7.3%. 

 

Table 2. Systolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 

SBP Visits % Visits % Visits % Visits % Visits % Visits % 

<120 114,144 20.0% 24,476 20.7% 4,899 20.5% 20,481 23.6% 12,819 14.5% 51,469 20.4% 

120-130 145,634 25.6% 31,101 26.3% 5,212 21.8% 20,299 23.4% 16,257 18.4% 72,765 28.8% 

130-140 159,158 27.9% 36,421 30.8% 6,634 27.8% 23,790 27.4% 25,771 29.1% 66,542 26.3% 

140-150 80,722 14.2% 14,215 12.0% 3,301 13.8% 10,352 11.9% 16,290 18.4% 36,564 14.5% 

150-160 36,889 6.5% 6,831 5.8% 1,815 7.6% 6,289 7.3% 7,827 8.8% 14,127 5.6% 

160-170 18,529 3.3% 3,124 2.6% 953 4.0% 3,027 3.5% 4,388 5.0% 7,037 2.8% 

170+ 14,890 2.6% 1,948 1.6% 1,046 4.4% 2,486 2.9% 5,150 5.8% 4,260 1.7% 

 

 

Table 3. Diastolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 
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DBP Visits % Visits % Visits % Visits % Visits % Visits % 

<70 123,789 21.7% 25,267 21.4% 4,027 16.9% 13,416 15.5% 37,628 42.5% 43,451 17.2% 

70-80 192,388 33.8% 39,737 33.6% 6,313 26.5% 31,478 36.3% 28,191 31.9% 86,669 34.3% 

80-90 191,928 33.7% 40,802 34.5% 8,184 34.3% 31,911 36.8% 16,192 18.3% 94,839 37.5% 

90-100 47,018 8.2% 9,237 7.8% 3,459 14.5% 7,383 8.5% 5,128 5.8% 21,811 8.6% 

100-110 11,316 2.0% 2,389 2.0% 1,263 5.3% 1,758 2.0% 1,017 1.1% 4,889 1.9% 

110+ 3,527 0.6% 684 0.6% 614 2.6% 778 0.9% 346 0.4% 1,105 0.4% 

 

 

Encounter summaries and descriptive statistics for the aggregated dataset and by HCO are included in 

Table 4. For 813,465 total encounters in the dataset, BP was measured at 569,966 encounters. On 

average, each patient had 4.7 BP encounters, which ranged from 4.0-6.2 by HCO. There were 168,222 

encounters where the patient's BP was uncontrolled (29.5% of all BP encounters). Before the applying 

study criteria B (minimum of 1 uncontrolled visit), each patient had 1.4 encounters with uncontrolled BP 

readings. Only 9.7% of encounters with uncontrolled BP readings had confirmatory BP measurements 

taken, with HCO B having the highest percentage of confirmatory BP measurements taken (26.3%). Most 

of the encounters included in this analysis were with the patient's primary clinician 79.8%. This was 

consistent across all HCOs with 72-86% of visits being with the patient’s primary clinician. Clinician 

continuity was also high; 71.7% of all encounters were with the same clinician as the patient's previous 

encounter. 

 

Table 4. Summary of Blood Pressure Encounters 

  Total HCO A HCO B HCO C HCO D HCO E 

Total Patients 120,755 28,847 4,613 13,915 22,311 51,069 

Total Encounters 813,465 146,431 28,814 233,542 129,560 275,118 

BP Encounters 569,966 118,116 23,860 86,724 88,502 252,764 

BP Encounters per patient 4.7 4.1 5.2 6.2 4.0 4.9 

Uncontrolled BP Encounters 168,222 30,002 9,028 24,263 34,863 70,066 
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Uncontrolled BP Encounters (%) 29.5% 25.4% 37.8% 28.0% 39.4% 27.7% 

Uncontrolled BP per Patient 1.4 1.0 2.0 1.7 1.6 1.4 

Confirmatory BP Measurements (%) 9.7% 19.0% 26.3% 7.9% 9.4% 4.7% 

Encounters with Primary Clinician (%) 79.8% 73.8% 76.8% 80.9% 72.0% 85.9% 

Encounters with Same Clinician as Previous (%) 71.7% 61.2% 70.9% 76.0% 62.2% 78.2% 

 

 

Table 5 presents rates of therapeutic intensification and therapeutic inertia, and intensification type 

(dose increase or class addition) overall and by HCO. Cases where patients receive a new medication 

class are labeled “first class additions” and are subtracted from class additions to provide a distinct rate 

of “class intensifications” for direct comparison to dose increases that can only occur for patients that 

are already on at least one medication.  Average therapeutic intensification rate was 15.9%, with the 

highest rate occurring in HCO D (19.5%) and lowest at HCO E (13.3%). This corresponds to an overall 

therapeutic intensification rate of 84.1%. Therapeutic inertia was fairly consistent between all five HCOs. 

Observed therapeutic inertia rate ranged from 86.7% (HCO E) to 80.5% (HCO D). Dose increase rate was 

6.6%, with the highest rate occurring in HCO E (12.6%). Class addition rate was 12.0%, with the highest 

rate occurring in HCO A (14.6%). However, 24% of class additions were for a patients first recorded AH 

medication. Removing first class additions left an overall class intensification rate of 9.2% for 

comparison with the 6.6% dose increase rate. 

 

Table 5. Summary of Therapeutic Intensification and Therapeutic Inertia 

  Total HCO A HCO B HCO C HCO D HCO E 

Uncontrolled Encounters 168,222 30,002 9,028 24,263 34,863 70,066 

Therapeutic Intensification Events 26,669 5,496 1,631 3,417 6,798 9,327 

Therapeutic Intensification Rate 15.9% 18.3% 18.1% 14.1% 19.5% 13.3% 

Therapeutic Inertia Events 141,553 24,506 7,397 20,846 28,065 60,739 

Therapeutic Inertia Rate 84.1% 81.7% 81.9% 85.9% 80.5% 86.7% 
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Dose Increases 11,059 2,010 743 1,592 4,396 2,318 

Dose Increase Rate 6.6% 6.7% 8.2% 6.6% 12.6% 3.3% 

Class Additions 20,158 4,371 1,138 2,347 3,814 8,488 

Class Addition Rate 12.0% 14.6% 12.6% 9.7% 10.9% 12.1% 

First Class Additions 4,757 1,050 168 453 543 2,543 

First Class Addition Rate 2.8% 3.5% 1.9% 1.9% 1.6% 3.6% 

Class Intensifications 15,401 3,321 970 1,894 3,271 5,945 

Class Intensification Rate 9.2% 11.1% 10.7% 7.8% 9.4% 8.5% 

 

 

 

 

 

 

 

 

 

Therapeutic Intensification Modeling 

Univariate and multiple variables logistic regression results for modeling therapeutic intensification 

events are included in Tables 6-8. The odds ratios and p-values for each variable are presented, along 

with the marginal R2 (variance explained by fixed effects only) and conditional R2 values (variance 

explained by fixed and random effects together). Since separate blood pressure thresholds for SBP and 

DBP were used to define “uncontrolled visits” as part of the inclusion criteria for visits that could be 

considered either therapeutic inertia or intensification (SBP>140 or DBP>90), Table 6 provides the 
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results of univariate analysis of SBP and DBP at the current visit before limiting the dataset to only 

include uncontrolled visits. This provides an unbiased interpretation of the effect of SBP/DBP 

measurements on likelihood of therapeutic intensification because all visits with SBP<140 must have a 

DBP>90 and all visits with DBP<90 must have an SBP>140 to meet the inclusion criteria for the modeling 

uncontrolled visits. The bias is most present for the BP groups below and right above the threshold 

(SBP<120, SBP 120-130, SBP 130-140, and SBP 140-150 / DBP <70, DBP 70-80, and DBP 80-90) in Table 

7A and Table 8. The adjusted multiple linear regression model results for time to therapeutic 

intensification are presented in Table 9. The full regression outputs for each univariate and multiple 

variable models produced for therapeutic intensification events and time to therapeutic intensification 

analyses are included in Appendix II and Appendix III, respectively. 

Table 6 shows the results of univariate mixed-effects modeling of therapeutic intensification with 

systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the current visit, for all visits whether 

controlled or uncontrolled. The table shows the odds ratio and p-values for each SBP and DBP category, 

as well as the marginal and conditional R2 values. The results indicate that as SBP increases from <120 to 

170+, the odds of therapeutic intensification increase from 0.79 to 2.93 in reference to the 130-140 

group, with a significant p-value of <2E-16 for each SBP group. Similarly, as DBP increases from <70 to 

110+, the odds of therapeutic intensification increase from 0.86 to 1.85 in reference to the 80-90 mmHg 

group. All DBP groups were statistically significant to <1E-12. These findings indicate that SBP and DBP at 

the current visit are important predictors of therapeutic intensification in this population. Table 7A 

presents the results of univariate and multiple regression mixed-effects modeling of therapeutic 

intensification with SBP and DBP at current and previous visits. For current visit SBP, odds ratios were 

statistically significant and increased as SBP increased, ranging from 0.60133 for SBP <120 to 2.34966 for 

SBP 170+, in reference to SBP 130-140. For current visit DBP, odds ratios were statistically significant and 

increased as DBP increased, ranging from 0.84835 for DBP <70 to 1.81223 for DBP 110+. For previous 
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visit SBP and DBP, odds ratios were statistically significant and increased as SBP/DBP increased, in 

reference to DBP 80-90. Multiple regression analysis showed that the inclusion of both current and 

previous SBP/DBP improved the model's R2 values, indicating that both current and previous BP values 

are considered by clinicians when deciding whether or not to increase therapy.  Table 7B presents the 

results of univariate and multiple regression mixed-effects modeling of therapeutic intensification with 

cumulative average and standard deviation of SBP and DBP. cumulative SBP average and cumulative 

DBP average were both significantly associated with therapeutic intensification with odds ratios of 1.02 

for both SBP and DBP when adjusting for standard deviation of each. Additionally, cumulative SBP and 

DBP had a similar R2 (0.086) to that of the current SBP and DBP (0.089). 

Table 7C presents the results of univariate mixed-effects modeling of therapeutic intensification with 

patient demographics. The reference categories for sex and age were male sex and age 30-40. The 

results show that being female is associated with a slightly higher odds ratio for therapeutic 

intensification, while being of a non-white race is associated with a lower odds ratio. Age is also a 

significant factor, with increasing age being associated with a lower odds ratio for therapeutic 

intensification. While the odds ratios were statistically significant for sex, race, and age, the marginal R2 

values were very small, ranging from 0.00062 to 0.00742, with age explaining the most variance in 

intensification of the three demographic variables. 

Table 7D shows the results of univariate mixed-effects modeling of therapeutic intensification with 

encounter attributes and AH medications. Visit related variables explained the most amount of variance 

and therapeutic intensification with BP visit frequency, days since last BP visit, and total BP visits having 

the highest marginal R-squared values (0.044, 0.0209, and 0.0204, respectively). Greater BP visits 

frequency and counts were associated with lower odds of intensification (0.535 and 0.945), while longer 

intervals since the most previous visit with BP was linked to greater odds of intensification. Confirmatory 

blood pressure measurement explained the third most variance in intensification (0.011) followed by 
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proportion of uncontrolled visits (0.0103). The odds of therapeutic intensification decreased 

incrementally as patients were on increasing counts of AH medications. Patients currently on 1 AH 

medication were associated with 0.12 less odds of intensification compared to patients on no AH 

medications. Patients with four or more current AH medications had 0.35 lower odds of intensification 

compared to patients on no AH medications. The marginal R2 for current AH medication count was 

0.0053. 

Table 7E presents the results of univariate mixed-effects modeling of therapeutic intensification with 

patient comorbidities and lab measurements. The comorbidities with a statistically significant 

association with therapeutic intensification from the univariate analysis included diabetes with 

complications, congestive heart failure, cardiac arrhythmia, peripheral vascular disease, renal failure, 

solid tumor cancer, myocardial infarction, cerebral vascular disease, and dementia. All of the 

comorbidities had an odds ratio of less than one indicating that the presence of each of these 

comorbidities decreased the odds of therapeutic intensification. The total sum count of comorbidities 

included in this analysis explained more variance in therapeutic intensification than any single 

comorbidity on its own and was associated with 3.2% lower odds of intensification (marginal R2 = 

0.0017, OR = 0.968) 

Table 8 presents the results of the multiple variable mixed-effects modeling of therapeutic 

intensification. The variables analyzed included those that were found statistically significant and had a 

marginal R2 greater than 0.0001: SBP , DBP , Previous Visit SBP , Previous Visit DBP , Cumulative SBP 

Average , Cumulative DBP Average , Cumulative SBP Std. Deviation , Cumulative DBP Std. Deviation , 

Current AH Meds , Proportion of Uncontrolled Visits , Previous TI Event , Visit with Primary Physician , 

Encounter BP Count , BP Visits Frequency , Congestive Heart Failure , Peripheral Vascular Disease , 

Cardiac Arrhythmia , Cerebral Vascular Disease , Renal Failure , Age , Sex , White vs. Non-white , LDL , 

BMI , and Total Comorbidities. After the model adjust for the effect of each of these variables through 
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multiple regression, the following variables remained significant: SBP , DBP , Previous Visit SBP , Previous 

Visit DBP , Cumulative SBP Average , Cumulative SBP Std. Deviation , Cumulative DBP Std. Deviation , 

Current AH Meds , Proportion of Uncontrolled Visits , Previous TI Event , Visit with Primary Physician , 

Encounter BP Count , BP Visits Frequency , Congestive Heart Failure , Cerebral Vascular Disease , Renal 

Failure , Age 80+ , White vs. Non-white race, BMI , and Total Comorbidities. The final multiple variable 

model was able to explain 12.7% of the variance in therapeutic intensification from the fixed effects and 

13.2% by including random intercepts for both patient and clinician clustered observations. 

 

Table 9 presents the results of a multiple variable mixed-effects modeling analysis of time to therapeutic 

intensification for a range of variables. The results are comparable to the TI event analysis in statistical 

significance and variance explained, but this model used multiple linear regression as opposed to logistic 

regression since the outcome of days until TI was a continuous variable, so the magnitude of the 

coefficients is on a different scale. Like in the previously described logit model, SBP, previous SBP, 

cumulative DBP, current AH medications of two or more, proportion of uncontrolled visits, previous TI 

event encounter BP confirmatory measurement, BP visit frequency, age 80-90 and 90+, and total 

comorbidities were all found to be statistically significant in relation to time to intensification. In 

contrast to the TI event multiple variable model, current or previous DBP were not statistically. The 

presence of specific comorbidities, age, sex, race, and laboratory measurements were also not 

significant in this model. Expectedly, greater current and previous SBP was associated with less time 

until intensification. As the number of currently prescribed AH medications went up so did the time to 

intensification. Interestingly, the proportion of uncontrolled visits and BP visit frequency were 

associated with more time to intensification. Finally, while total comorbidities was associated with a 

slightly lower odds of intensification in the previous multiple variable model, total comorbidities in this 

model was associated with less time to intensification. 
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Table 6. Univariate Mixed-Effects Modeling of Therapeutic Intensification with SBP and DBP at Current 

Visit (All visits; controlled or uncontrolled) 

Variable Odds Ratio p-value 
R2 

Marginal 
R2 

Conditional 

SBP <120 0.78666 <2E-16 0.019047 0.107559 

SBP 120-130 0.87283 <2E-16    

SBP 140-150 1.58911 <2E-16    

SBP 150-160 2.15168 <2E-16    

SBP 160-170 2.51207 <2E-16    

SBP 170+ 2.92578 <2E-16    

DBP <70 0.85835 <2E-16    

DBP 70-80 0.91648 9.13E-13    

DBP 90-100 1.33763 <2E-16    

DBP 100-110 1.65802 <2E-16    

DBP 110+ 1.85226 <2E-16     

 

 

 

Table 7A. Univariate and Multiple Regression Mixed-Effects Modeling of Therapeutic Intensification with 

SBP and DBP at Current and Previous Visits 

Variable Odds Ratio p-value 
R2 

Marginal 
R2 

Conditional 

SBP <120 0.60133 0.00098 0.02815 0.08902 

SBP 120-130 0.79331 0.00028    

SBP 130-140 (Reference) 1.00000 --    

SBP 140-150 1.25880 3.45E-11    

SBP 150-160 1.71536 <2E-16    

SBP 160-170 2.01162 <2E-16    

SBP 170+ 2.34966 <2E-16    

DBP <70 0.84835 1.13E-08    

DBP 70-80 0.93849 0.00247    

DBP 80-90 (Reference) 1.00000 --    
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DBP 90-100 1.25241 <2E-16    

DBP 100-110 1.60413 <2E-16    

DBP 110+ 1.81223 <2E-16     

Previous Visit SBP <120 0.81141 2.22E-10 0.01584 0.07769 

Previous Visit SBP 120-130 0.85965 5.50E-10    

Previous Visit SBP 130-140 (Reference) 1.00000 --    

Previous Visit SBP 140-150 1.15987 6.60E-12    

Previous Visit SBP 150-160 1.28501 <2E-16    

Previous Visit SBP 160-170 1.28191 1.49E-15    

Previous Visit SBP 170+ 1.37308 <2E-16    

Previous Visit DBP <70 0.88000 1.16E-07    

Previous Visit DBP 70-80 0.93246 0.00028    

Previous Visit DBP 80-90 (Reference) 1.00000 --    

Previous Visit DBP 90-100 1.21989 <2E-16    

Previous Visit DBP 100-110 1.37656 <2E-16    

Previous Visit DBP 110+ 1.35313 1.48E-06     

Multiple Variable Regression:  
Current & Previous SBP / DBP 

 See 
Appendix 1 

See 
Appendix 1  

0.03573 0.09877 

 

 

 

Table 7B. Univariate and Multiple Regression Mixed-Effects Modeling of Therapeutic Intensification with 

Cumulative Average and Standard Deviation of SBP and DBP 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Cumulative SBP Average 1.01824 <2E-16 0.02323 0.08628 

Cumulative DBP Average 1.01679 <2E-16     

Cumulative SBP Std. Deviation 1.01322 1.47E-10 0.00488 0.06324 

Cumulative DBP Std. Deviation 1.02131 9.54E-10     

Cumulative SBP Average 1.01625 <2E-16 0.02508 0.07718 

Cumulative DBP Average 1.02019 <2E-16    

Cumulative SBP Std. Deviation 1.00674 0.00190    

Cumulative DBP Std. Deviation 1.00925 0.00935     
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Table 7C. Univariate Mixed-Effects Modeling of Therapeutic Intensification with Patient Demographics 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Sex (Reference: Male) 1.09965 1.05E-09 0.00062 0.06918 

Race (Reference: White) 0.84599 <2E-16 0.00198 0.06949 

Age <30 0.88715 0.12053 0.00742 0.07310 

Age 30-40 (Reference) 1.00000 --    

Age 40-50 0.98216 0.63947    

Age 50-60 0.91667 0.01581    

Age 60-70 0.84293 1.36E-06    

Age 70-80 0.73960 <2E-16    

Age 80-90 0.59114 <2E-16    

Age 90+ 0.46008 <2E-16     

 

 

Table 7D. Univariate Mixed-Effects Modeling of Therapeutic Intensification with Encounter Attributes 

and AH Medications 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Proportion of Uncontrolled Visits 1.99896 <2E-16 0.01033 0.07671 

Current AH Meds 0 (Reference) 1.00000 -- 0.00529 0.08213 

Current AH Meds 1 0.88752 1.51E-07    

Current AH Meds 2 0.78887 <2E-16    

Current AH Meds 3 0.73035 <2E-16    

Current AH Meds 4+ 0.64778 <2E-16     

BP Visits 0.94545 <2E-16 0.02038 0.06813 

BP Visits Per 100 Days 0.53526 <2E-16 0.04394 0.08994 

Days Since Previous BP 1.00205 <2E-16 0.02087 0.07528 

Days Since Previous Uncontrolled BP 1.00051 <2E-16 0.00246 0.07286 

Encounter BP Count 1.55642 <2E-16 0.01109 0.07443 

Same Previous Clinician 1.20766 <2E-16 0.00212 0.06993 

Proportion of Visits with Primary Physician 1.24171 7.05E-10 0.00065 0.06907 

Visit with Primary Physician 1.55850 <2E-16 0.00981 0.07798 

Previous TI Event 1.04282 0.01402 0.00009 0.06405 



56 
 

Days Since Previous TI 0.99907 1.42E-15 0.00417 0.06991 

 

 

Table 7E. Univariate Mixed-Effects Modeling of Therapeutic Intensification with Patient Comorbidities 

and Lab Measurements 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Diabetes 0.97795 0.16738 0.00003 0.06910 

Diabetes with Complications 0.96483 0.06139 0.00006 0.06905 

Congestive Heart Failure 0.82764 3.17E-08 0.00057 0.06929 

Cardiac Arrhythmia 0.80454 <2E-16 0.00159 0.06943 

Peripheral Vascular Disease 0.81000 1.82E-11 0.00085 0.06933 

Renal Failure 0.89150 2.16E-06 0.00040 0.06944 

Liver Disease 0.95078 0.13533 0.00004 0.06903 

Solid Tumor 0.93489 0.02554 0.00009 0.06916 

Metastatic Cancer 0.95652 0.50783 0.00001 0.06908 

Myocardial Infarction 0.84113 0.00182 0.00018 0.06913 

Cerebral Vascular Disease 0.81219 1.05E-11 0.00086 0.06925 

Dementia 0.64365 7.91E-11 0.00093 0.06957 

Total Comorbidities 0.96771 <2E-16 0.00173 0.06893 

BMI (kg/m2) 1.00826 <2E-16 0.00134 0.07068 

HbA1c (mmols/mol) 0.99708 0.60137 0.00001 0.06825 

Glucose (mg/dL) 1.00001 0.95582 0.00000 0.07057 

LDL (mg/dL) 1.00213 <2E-16 0.00175 0.06820 

HDL  (mg/dL) 0.99816 0.00103 0.00024 0.06685 

Total Cholesterol (mg/dL) 0.99981 0.25535 0.00003 0.06913 
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Table 8. Multiple Variable Mixed-Effects Modeling of Therapeutic Intensification 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

SBP <120 0.60806 0.08622 0.12749 0.13237 

SBP 120-130 0.96791 0.76022    

SBP 140-150 1.29555 2.80E-05    

SBP 150-160 1.71655 2.59E-16    

SBP 160-170 1.82953 7.62E-16    

SBP 170+ 1.98925 1.38E-14    

DBP <70 0.98317 0.79676    

DBP 70-80 0.98363 0.69076    

DBP 90-100 1.20794 2.70E-06    

DBP 100-110 1.41276 1.02E-07    

DBP 110+ 1.82126 2.25E-07    

Previous Visit SBP <120 0.85813 0.01466    

Previous Visit SBP 120-130 0.87572 0.00183    

Previous Visit SBP 140-150 1.22860 1.07E-06    

Previous Visit SBP 150-160 1.33259 2.42E-08    

Previous Visit SBP 160-170 1.17547 0.01233    

Previous Visit SBP 170+ 1.16835 0.05076    

Previous Visit DBP <70 0.89641 0.05929    

Previous Visit DBP 70-80 0.97345 0.46812    

Previous Visit DBP 90-100 1.10562 0.02534    

Previous Visit DBP 100-110 1.27599 0.00114    

Previous Visit DBP 110+ 1.07298 0.60839    

Cumulative SBP Average 1.01041 0.00035    

Cumulative DBP Average 0.99648 0.34945    

Cumulative SBP Std. Deviation 1.00571 0.04346    

Cumulative DBP Std. Deviation 1.00958 0.03428    

Current AH Meds 1 0.81739 1.56E-07    

Current AH Meds 2 0.67291 <2E-16    

Current AH Meds 3 0.59452 <2E-16    

Current AH Meds 4+ 0.47822 <2E-16    

Proportion of Uncontrolled Visits 0.58862 7.38E-08    

Previous TI Event 1.26122 2.06E-12    

Visit with Primary Physician 1.80886 <2E-16    

Encounter BP Count 1.58365 <2E-16    
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BP Visits Per 100 Days 0.47035 <2E-16    

Congestive Heart Failure 0.76606 0.00133    

Peripheral Vascular Disease 0.95704 0.48997    

Cardiac Arrhythmia 0.92927 0.09930    

Cerebral Vascular Disease 0.85277 0.00893    

Renal Failure 1.03516 0.49888    

Age <30 1.20820 0.22358    

Age 40-50 1.14613 0.07023    

Age 50-60 1.11004 0.14784    

Age 60-70 0.99980 0.99778    

Age 70-80 0.89374 0.14523    

Age 80-90 0.70493 0.00011    

Age 90+ 0.50453 8.78E-05    

Male Sex 1.01724 0.54334    

Percent White Race 0.85818 1.09E-07    

LDL 1.00048 0.20483    

BMI 1.00864 2.33E-06    

Total Comorbidities 1.02666 0.00534     

 

 

 

 

Table 9. Multiple Variable Mixed-Effects Modeling of Time to Therapeutic Intensification 

Variable Estimate p-value 
R2 

Marginal 
R2 

Conditional 

SBP <120 50.6885 0.00840 0.10292 0.14881 

SBP 120-130 4.4538 0.56659    

SBP 140-150 -8.4889 0.06400    

SBP 150-160 -23.5082 1.94E-06    

SBP 160-170 -26.3562 2.61E-06    

SBP 170+ -36.8449 4.71E-08    

DBP <70 -16.9715 0.00067    

DBP 70-80 -6.1234 0.04921    

DBP 90-100 -7.3266 0.01493    

DBP 100-110 -8.9631 0.06586    

DBP 110+ -18.4382 0.03442    
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Previous Visit SBP <120 8.4149 0.06655    

Previous Visit SBP 120-130 7.3958 0.01857    

Previous Visit SBP 140-150 -21.1349 1.74E-11    

Previous Visit SBP 150-160 -25.8601 1.66E-11    

Previous Visit SBP 160-170 -25.8222 8.34E-08    

Previous Visit SBP 170+ -24.9594 2.95E-05    

Previous Visit DBP <70 0.2116 0.96094    

Previous Visit DBP 70-80 -2.1074 0.44794    

Previous Visit DBP 90-100 -2.2192 0.50469    

Previous Visit DBP 100-110 3.0662 0.58475    

Previous Visit DBP 110+ -10.4542 0.32496    

Cumulative SBP Average -0.2977 0.18072    

Cumulative DBP Average -0.6442 0.02558    

Cumulative SBP Std. Deviation 0.0518 0.81890    

Cumulative DBP Std. Deviation 0.0335 0.92594    

Current AH Meds 1 4.2310 0.13394    

Current AH Meds 2 7.0770 0.02294    

Current AH Meds 3 13.6612 0.00031    

Current AH Meds 4+ 9.2316 0.04830    

Proportion of Uncontrolled Visits 96.6283 <2E-16    

Previous TI Event -72.8344 <2E-16    

Encounter BP Count -23.4712 <2E-16    

BP Visits Per 100 Days 45.4068 <2E-16    

Congestive Heart Failure 2.3751 0.73201    

Cardiac Arrhythmia -2.3685 0.50096    

Peripheral Vascular Disease 3.0759 0.54447    

Cerebral Vascular Disease 0.6839 0.88521    

Renal Failure -0.1378 0.97334    

Age <30 -10.6837 0.37989    

Age 40-50 -6.5316 0.24992    

Age 50-60 -0.5225 0.92331    

Age 60-70 8.8865 0.10637    

Age 70-80 10.7750 0.06418    

Age 80-90 17.2286 0.01244    

Age 90+ 40.4256 0.00184    

Sex: Male -0.4815 0.82586    

Race: White 3.8462 0.08451    

LDL -0.0333 0.26147    

BMI 0.1218 0.39628    

Total Comorbidities -6.0983 8.26E-16     
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Cox Regression for Time to Therapeutic Intensification 

Cox regression was used to model the likelihood of therapeutic intensification over time since each 

patient’s first uncontrolled BP measurement. Time was calculated as the number days between each 

patient’s first uncontrolled BP measurement and the first subsequent therapeutic intensification (event) 

or the patient’s last recorded visit in the study period if no TI was observed (censored). The covariates 

that explained the most variance in time to therapeutic intensification through univariate analysis were 

cumulative number of visits with BP measurement, previous therapeutic intensification event, SBP and 

DBP at the current visit, BP visit frequency, current number of AH medications, average SBP and DBP, 

visits with the patient’s primary physician, total comorbidities, and patient age. All other covariates 

explained less than 1% of the variance in odds of therapeutic intensification over time. Only SBP greater 

than 140 and DBP greater than 90 were associated with higher likelihood of intensification over time. 

Only previous visit SBP of 170+ and DBP of 90+ were associated with higher odds of TI over time, with 

much less magnitude and variance explained compared to current visit BP. Greater visit frequency, 

cumulative number of visits, previous therapeutic intensification, number of existing AH medications, 

total comorbidities, and patient age were all associated with a lower likelihood of intensification over 

time. Hazard ratios and R2 estimates for the univariate analysis of significant covariates of therapeutic 

intensification over time are included in Table 1. Adjustment for statistically significant covariates in a 

multivariable cox regression model explained 38.1% of the variance in TI over time.  Adjusted hazard 

ratios from multivariable model estimation are included in Table 2. The density plot of therapeutic 

intensification events over the number of days since the first uncontrolled BP measurement in the study 

period is illustrated in Figure 1. 

Table 1. Univariate Estimation of Covariate Relationship with Likelihood of TI Over Time. 

Covariate Hazard Ratio p-value R2 

Cumulative Visit Count -0.17 <2E-16 0.2595 
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Previous TI Event -1.58 <2E-16 0.2564 

SBP <120 -0.55 2.55E-04 

0.0814 

SBP 120-130 -0.26 1.83E-05 

SBP 140-150 0.17 2.73E-08 

SBP 150-160 0.44 1.55E-42 

SBP 160-170 0.58 6.58E-66 

SBP 170+ 0.74 4.95E-99 

DBP <70 -0.19 1.79E-12 

DBP 70-80 -0.07 3.72E-04 

DBP 90-100 0.19 8.70E-23 

DBP 100-110 0.36 1.01E-42 

DBP 110+ 0.37 5.50E-19 

Visit Frequency -0.58 7.53E-267 0.0621 

1 Existing AH Med -0.35 7.88E-74 

0.0499 
2 Existing AH Meds -0.48 1.12E-129 

3 Existing AH Meds -0.58 4.38E-141 

4+ Existing AH Meds -0.73 8.97E-186 

SBP Average 0.01 3.83E-106 
0.0376 

DBP Average 0.01 1.15E-37 

Visit with Primary Physician 0.45 1.52E-136 0.0308 

Previous Visit SBP <120 -0.15 6.55E-07 

0.0173 

Previous Visit SBP 120-130 -0.10 4.27E-06 

Previous Visit SBP 140-150 -0.10 2.27E-07 

Previous Visit SBP 150-160 0.03 2.43E-01 

Previous Visit SBP 160-170 0.01 6.41E-01 

Previous Visit SBP 170+ 0.11 4.44E-04 

Previous Visit DBP <70 -0.17 1.56E-14 

Previous Visit DBP 70-80 -0.10 5.44E-08 

Previous Visit DBP 90-100 0.07 4.26E-04 

Previous Visit DBP 100-110 0.17 9.47E-07 

Previous Visit DBP 110+ 0.18 1.02E-03 

Age <30 -0.06 3.08E-01 

0.0159 

Age 40-50 0.00 9.10E-01 

Age 50-60 -0.04 2.25E-01 

Age 60-70 -0.10 9.09E-04 

Age 70-80 -0.23 1.36E-13 

Age 80-90 -0.42 1.34E-28 

Age 90+ -0.63 1.38E-16 

Total Comorbidities -0.05 2.19E-66 0.0144 

 

Table 2. Multivariable Model of Covariates and Likelihood of TI Over Time. 
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Covariate 
Hazard 
Ratio p-value R2 

SBP <120 -0.57 4.50E-02 

0.3813 

SBP 120-130 -0.07 5.02E-01 

SBP 140-150 0.18 9.95E-04 

SBP 150-160 0.39 4.70E-11 

SBP 160-170 0.43 8.59E-11 

SBP 170+ 0.44 1.67E-08 

DBP <70 -0.11 6.61E-02 

DBP 100-110 0.35 1.29E-09 

DBP 110+ 0.39 5.55E-05 

DBP 70-80 -0.02 6.87E-01 

DBP 90-100 0.21 4.33E-09 

Previous Visit SBP <120 -0.05 3.94E-01 

Previous Visit SBP 120-130 -0.09 2.56E-02 

Previous Visit SBP 140-150 -0.04 3.49E-01 

Previous Visit SBP 150-160 0.04 3.63E-01 

Previous Visit SBP 160-170 -0.01 9.29E-01 

Previous Visit SBP 170+ -0.06 4.28E-01 

Previous Visit DBP <70 -0.17 1.38E-03 

Previous Visit DBP 70-80 -0.07 4.22E-02 

Previous Visit DBP 90-100 0.06 1.58E-01 

Previous Visit DBP 100-110 0.09 1.63E-01 

Previous Visit DBP 110+ 0.22 5.49E-02 

Cumulative SBP Average 0.02 9.67E-15 

Cumulative DBP Average -0.01 2.58E-04 

Cumulative SBP Std. Deviation 0.00 2.52E-01 

Cumulative DBP Std. Deviation 0.01 1.82E-01 

Current AH Meds 1 -0.15 2.30E-06 

Current AH Meds 2 -0.28 1.37E-15 

Current AH Meds 3 -0.33 4.46E-14 

Current AH Meds 4+ -0.46 9.63E-16 

Proportion of Uncontrolled 
Visits -1.30 1.76E-44 

Previous TI Event -1.51 1.12E-241 

Encounter BP Count 0.15 1.51E-07 

Visit Frequency -0.39 1.10E-27 

Congestive Heart Failure -0.13 1.09E-01 

Cardiac Arrhythmia -0.13 2.17E-03 

Peripheral Vascular Disease -0.03 6.00E-01 

Cerebral Vascular Disease -0.08 1.88E-01 

Renal Failure 0.08 1.11E-01 
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Age <30 0.05 6.95E-01 

Age 40-50 0.13 4.67E-02 

Age 50-60 0.10 1.04E-01 

Age 60-70 0.04 4.92E-01 

Age 70-80 -0.05 4.65E-01 

Age 80-90 -0.31 1.00E-04 

Age 90+ -0.59 5.04E-04 

Male Sex 0.03 2.00E-01 

Percent White Race -0.10 9.53E-05 

LDL 0.00 1.65E-02 

BMI 0.01 1.22E-09 

Total Comorbidities -0.02 7.78E-03 

 

 

 

 

Figure 1. Frequency of TI over time since first uncontrolled BP for each patient (days) 
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Time to Therapeutic Intensification and BP Reduction 

The time between uncontrolled BP measurements and clinical action through therapeutic intensification 

showed slight variation in subsequent BP reduction after intensification. Figure 1 shows the frequency of 

TI events over the number of days since the most recent uncontrolled BP measurement preceding each 

TI event. Most TI events occur within a month of uncontrolled BP visits, with spikes around 180 days and 

365 days. The median and mean number of days between uncontrolled BP and TI were 189 days and 

218.6 days, respectively . Table 3 shows the average SBP reduction following TI that occurs within 1-

month, 1-3 months, 3-6 months, 6-12 months, and a year or more since the most recent uncontrolled 

BP. TI that occurred within one month of uncontrolled BP measurements resulted in the greatest 

reduction in SBP and DBP compared to later TI events. Multivariable regression adjusting for patient age, 

sex, race, and current visit SBP found a statistically significant relationship between time to TI and 

greater subsequent BP reduction, however the magnitude was very small (0.003 mmHg). 

 

Figure 1. Density of TI events over days since the most recent uncontrolled BP measurement. 
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Figure 2. Density of TI events over days since the most recent uncontrolled BP measurement for 

within the first 250 days. 
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Table 3. Average BP Reduction after TI within 1-month, 1-3 months, 3-6 months, 6-12 months, and a 

year or more since the most recent uncontrolled BP. 

Time to TI Count ∆SBP after TI ∆DBP after TI 

<30 days            1,205  -14.5 -6.5 

30-90 days            2,101  -12.7 -5.8 

90-180 days            2,790  -12.7 -5.3 

180-365 days            3,659  -12.3 -5.8 

>365 days            3,579  -13.8 -6.5 

Total          13,334  -13.1 -5.9 
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Table 4. Multivariable Regression Estimation of Relationship between Time to TI and BP Reduction. 

term estimate std.error statistic p.value 

(Intercept) 77.8 1.76 44.3 <2E-16 

Days since previous 

uncontrolled BP 
-0.00324 0.000817 -3.97 0.0000738 

TI Visit SBP -0.613 0.011 -55.8 <2E-16 

Sex: Male 0.808 0.318 2.54 0.0112 

Race: White -1.86 0.319 -5.84 5.43E-09 

Age 0.071 0.0117 6.06 1.45E-09 

 

 

 

 

 

 

 

Predictive Modeling Results 

Random Forest Models 
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In this study, we developed and tested four random forest models for predicting therapeutic inertia vs. 

intensification. Each models used a different resampling technique for handling class imbalance: 

oversampling, SMOTE, ROSE, and undersampling. The optimal value for the “mtry” parameter was 

determined to be a value of 1 using gridsearch to test models using mtry values of 1-10. Cross-validated 

test accuracy for each gridsearch model is plotted in Figure 3. Table 10A presents the evaluation metrics 

for the oversampling model, which had a sensitivity of 0.7, specificity of 0.531, balanced accuracy of 

0.616, and an AUC of 0.616. Table 10B shows the evaluation metrics for the SMOTE model, which had a 

sensitivity of 0.965, specificity of 0.113, balanced accuracy of 0.539, and an AUC of 0.54. Table 10C 

presents the evaluation metrics for the ROSE model, which had the same sensitivity and specificity as 

the oversampling model, as well as similar values for the other evaluation metrics. Finally, Table 10D 

shows the evaluation metrics for the undersampling model, which had a sensitivity of 0.602, specificity 

of 0.639, balanced accuracy of 0.621, and an AUC of 0.621.  

The undersampling model performed the best in terms of AUC-ROC, with an estimated test AUC slightly 

higher than the oversampling and ROSE models. The SMOTE model was substantially less powerful in 

predicting inertia vs. intensification on the test dataset. AUC-ROC curves for training prediction 

compared to test prediction for each resampling method random forest (RF) model are plotted in Figure 

4. Test AUC-ROC curves are plotted together for the four RF models in Figure 5 for comparison. 

 

 

Figure 3. Gridsearch Results for Random Forest Model “mtry” Parameter Tuning 
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Table 10A. Oversampling Random Forest Model Evaluation 

Random Forest Test Set Evaluation 
Oversampling 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 2706 415 

1 1115 443 

Evaluation Metrics 

Sensitivity 0.708 

Specificity 0.516 
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Positive Predictive Value 0.867 

Negative Predictive Value 0.284 

Precision 0.867 

Recall 0.708 

F1 0.780 

Prevalence 0.817 

Detection Rate 0.578 

Detection Prevalence 0.667 

Balanced Accuracy 0.612 

AUC 0.660 

 

 

Table 10B. SMOTE Random Forest Model Evaluation 

Random Forest Test Set Evaluation 
SMOTE Resampling 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 3565 721 

1 256 137 

Evaluation Metrics 

Sensitivity 0.933 

Specificity 0.160 

Positive Predictive Value 0.832 

Negative Predictive Value 0.349 

Precision 0.832 

Recall 0.933 

F1 0.879 

Prevalence 0.817 

Detection Rate 0.762 

Detection Prevalence 0.916 

Balanced Accuracy 0.546 

AUC 0.649 
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Table 10C. ROSE Random Forest Model Evaluation 

Random Forest Test Set Evaluation 
ROSE Resampling 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 1600 194 

1 2221 664 

Evaluation Metrics 

Sensitivity 0.419 

Specificity 0.774 

Positive Predictive Value 0.892 

Negative Predictive Value 0.230 

Precision 0.892 

Recall 0.419 

F1 0.570 

Prevalence 0.817 

Detection Rate 0.342 

Detection Prevalence 0.383 

Balanced Accuracy 0.596 

AUC 0.650 

 

 

Table 10D. Undersampling Random Forest Model Evaluation 

Random Forest Test Set Evaluation 
Undersampling 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 2186 298 

1 1635 560 

Evaluation Metrics 

Sensitivity 0.572 
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Specificity 0.653 

Positive Predictive Value 0.880 

Negative Predictive Value 0.255 

Precision 0.880 

Recall 0.572 

F1 0.693 

Prevalence 0.817 

Detection Rate 0.467 

Detection Prevalence 0.531 

Balanced Accuracy 0.612 

AUC 0.657 

 

 

Figure 4. Training and Testing ROC Curves for Random Forest Models 
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Figure 5. Test Prediction ROC Curves for Random Forest Models 
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XGBoost Models 

Tables 11A-11D present the test evaluation of four XGBoost models for predicting therapeutic 

intensification. Each model was tested using different numbers of trees: 50, 300, 1000, and 5000. In the 

model using 50 trees for training, a sensitivity of 0.634 and specificity of 0.709 was attained, with a 

positive predictive value of 0.921 and negative predictive value of 0.265. The precision and recall were 

both 0.921 and 0.634. Using 300 trees, the XGBoost model achieved a sensitivity of 0.663 and specificity 

of 0.703, with a positive predictive value of 0.923 and negative predictive value of 0.280. Increasing 

nrounds to 1000 trees, the XGBoost model achieved a sensitivity of 0.696 and specificity of 0.648, with a 

positive predictive value of 0.914 and negative predictive value of 0.284. For 5000 trees, the XGBoost 

model achieved a sensitivity of 0.779 and specificity of 0.496, with a positive predictive value of 0.892 

and negative predictive value of 0.295. The results show that while the overall accuracy of the model 

improves as the number of trees increases, balanced accuracy and AUC begin to decrease after reaching 

an optimum nrounds value of 300 trees. The best performance is achieved with 300 trees, with a 

sensitivity of 0.663, specificity of 0.703, and AUC of 0.683. As more trees are added to the training, the 

sensitivity increases and specificity decreases, driving the AUC-ROC down. Overall, the models have 

moderate to good performance, with an AUC ranging from 0.637 to 0.683, performing consistently 

better at classification of therapeutic inertia vs. intensification than the random forest models. Test 

prediction AUC-ROC curves for each XGBoost model evaluated are plotted together in Figure 6.  

 

Table 11A. Evaluation of XGBoost Model with 50 Trees 

XGBoost Test Set Evaluation 
50 Trees 

Confusion Matrix 
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Reference 

0 1 

Predict 
0 26907 2306 

1 15548 5612 

Evaluation Metrics 

Sensitivity 0.634 

Specificity 0.709 

Positive Predictive Value 0.921 

Negative Predictive Value 0.265 

Precision 0.921 

Recall 0.634 

F1 0.751 

Prevalence 0.843 

Detection Rate 0.534 

Detection Prevalence 0.580 

Balanced Accuracy 0.671 

AUC 0.737 

 

 

Table 11B. Evaluation of XGBoost Model with 300 Trees 

XGBoost Test Set Evaluation 
300 Trees 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 28165 2350 

1 14290 5568 

Evaluation Metrics 

Sensitivity 0.663 

Specificity 0.703 

Positive Predictive Value 0.923 

Negative Predictive Value 0.280 

Precision 0.923 

Recall 0.663 

F1 0.772 

Prevalence 0.843 

Detection Rate 0.559 

Detection Prevalence 0.606 

Balanced Accuracy 0.683 
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AUC 0.748 

 

 

Table 11C. Evaluation of XGBoost Model with 1000 Trees 

XGBoost Test Set Evaluation 
1000 Trees 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 29543 2789 

1 12912 5129 

Evaluation Metrics 

Sensitivity 0.696 

Specificity 0.648 

Positive Predictive Value 0.914 

Negative Predictive Value 0.284 

Precision 0.914 

Recall 0.696 

F1 0.790 

Prevalence 0.843 

Detection Rate 0.586 

Detection Prevalence 0.642 

Balanced Accuracy 0.672 

AUC 0.740 

 

 

Table 11D. Evaluation of XGBoost Model with 5000 Trees 

XGBoost Test Set Evaluation 
5000 Trees 

Confusion Matrix 

  

Reference 

0 1 

Predict 
0 33057 3989 

1 9398 3929 

Evaluation Metrics 

Sensitivity 0.779 

Specificity 0.496 
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Positive Predictive Value 0.892 

Negative Predictive Value 0.295 

Precision 0.892 

Recall 0.779 

F1 0.832 

Prevalence 0.843 

Detection Rate 0.656 

Detection Prevalence 0.735 

Balanced Accuracy 0.637 

AUC 0.707 

 

 

Figure 6. Test Prediction ROC Curves for XGBoost Models 
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Discussion 

The study analyzed data from 120,755 patients from five different healthcare organizations to assess 

therapeutic inertia among uncontrolled hypertensive patients. The majority of visits showed DBP 

between 70-90 mmHg, while 26.5% of all visits had an SBP of 140 or higher. The study also found an 

average therapeutic intensification rate of 15.9%, with the highest rate occurring in HCO D (19.5%) and 

lowest at HCO E (13.3%), and a fairly consistent therapeutic inertia rate between all five HCOs. The study 

presents the results of univariate and multiple variable logistic regression analyses for modeling 

therapeutic intensification events using data from electronic health records of patients with 

hypertension. The odds ratios, p-values, marginal R2 and conditional R2 values of various factors such as 

systolic blood pressure (SBP), diastolic blood pressure (DBP), patient demographics, encounter 

attributes, and antihypertensive medications are presented. The results indicate that SBP and DBP at the 

current visit are important predictors of therapeutic intensification. Also, both current and previous BP 

values are considered by clinicians when deciding whether or not to increase therapy. Patient 

demographics and encounter attributes such as visit frequency and days since the last BP visit are also 

important predictors of therapeutic intensification. 

The study confirms previous consensus that SBP and DBP at the current visit are important predictors of 

therapeutic intensification.[32, 33, 53-62, 72] This research indicates that both current and previous BP 

values, as well as proportion of uncontrolled visits and cumulative average BP are likely considered by 

clinicians when deciding whether or not to increase therapy. Published literature and the evidence 

presented in this study also both suggest that patient demographics and encounter attributes, such as 

visit frequency and age are important predictors of therapeutic intensification. This study agrees with 

the numerous other analyses finding that increasing age is associated with decreasing odds of 
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therapeutic intensification.[33, 57, 58, 60-62, 64] While other studies have found male sex to be 

associated with both higher and lower odds of intensification, this study provides additional support to 

those suggesting that sex is not a significant factor influencing likelihood of therapeutic 

intensification[55, 56, 72] after adjusting for other significant variables in a multiple regression model. 

Race was found to be a significant variable in predicting intensification, even after adjustment for all 

other significant variables. Non-white patients had 14% less odds of intensification compared to white 

patients. This is an important result because there are no other studies providing evidence for race 

being a statistically significant factor in likelihood of therapeutic intensification.[60, 62, 64, 72] Other 

studies have conflicting findings regarding comorbidities. The comorbidities found to be statistically 

significant in relationship to therapeutic intensification after multivariable adjustment all had an odds 

ratio below 1, indicating lower odds of intensification when other conditions needed to be addressed by 

the clinician.  

Overall, this study provides valuable insight around which information clinicians consider various patient 

and encounter factors when deciding whether or not to intensify antihypertensive therapy. These 

results agree with several previously published findings, disagree with some findings, and provide insight 

around some previously unstudied factors as well. The predictive models developed in this study had 

moderate to good performance, with an AUC ranging from 0.637 to 0.683. The boosting approach with 

XGBoost performed consistently better at classification of therapeutic inertia vs. intensification than the 

bagging approach with random forests. These results suggest that the developed models have the 

potential to help clinicians in the decision-making process regarding therapeutic inertia vs. 

intensification. However, further research is needed to validate the models on larger and more diverse 

datasets. 

The 12.7% of variance explained by fixed effects variables indicates that the majority of explanatory 

variables and reasons for not intensifying antihypertensive therapy when indicated are not captured by 
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the secondary observational data extracted from the EHR in this study. Reciprocally, the validity of the 

outcome variable as a computable phenotype derived from structured EHR data as it is defined in this 

project is limited by the lack of unstructured data and use of manual chart review to validate the 

accuracy of therapeutic inertia. Studies distinguishing “true inertia” from traditionally defined 

therapeutic inertia using manual chart review and unstructured data that include documented reasons 

for not intensifying antihypertensive therapy have found reported “true inertia” rates as much as 16-

25% lower than traditionally derived therapeutic intensification rates.[71, 116]  

The noise present in the data used in this study is a major limitation. This is a natural barrier when 

attempting to use structured EHR data, which is designed for billing accuracy more than clinical 

accuracy. Firstly, EHR data is not standardized and can vary greatly between healthcare systems and 

providers. This can result in inconsistencies in the data and decrease its accuracy and usefulness for 

research purposes. Additionally, EHR data is often entered by healthcare providers for clinical 

documentation purposes, rather than research purposes. As a result, the data may not always be 

complete, accurate, or consistent.[117] 

Missing information and data entry errors are also an issue with EHR data that limits this study in 

accuracy and reliability. Informative missingness happens when the absence or presence of information 

holds valuable clinical information. Data entry errors are common in EHR data because there is no 

routinely implemented quality check, and different healthcare professionals enter data with some 

flexibility. Additionally, data collection and entry are not standardized, which may lead to measurement 

bias or detection bias.[118] Despite collecting data from 5 distinct HCOs, there are also limitations to the 

generalizability of EHR data. EHR data is collected from a specific population and may not be 

representative of the broader population. This can limit the applicability of research findings based on 

EHR data.[119] Lastly, the investigators were removed from the point of data abstraction during patients 

care by several degrees. With the dataset being limited to de-identified data, there was no way for the 
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investigators to acquire additional information for the patients included in the analysis. Furthermore, 

the data is limited in the types of information that it can provide. For example, we did not have access to 

the patients’ social determinants of health or to narrative clinical notes that contain more clinical 

information than the structure EHR data alone. For future analysis, performing manual chart review to 

validate computable phenotypes like therapeutic inertia and intensification and using free-text clinical 

notes to unlock more extensive clinical information for modeling could improve the strength of these 

results. 

 

 

Conclusion 

In conclusion, this study provides valuable insights into the factors influencing therapeutic 

intensification for patients with uncontrolled hypertension. The study highlights the importance of SBP 

and DBP as predictors of therapeutic intensification and suggests that further research is needed to 

identify the factors influencing therapeutic inertia and intensification, particularly regarding provider 

and patient-level factors. Healthcare providers should be aware of the potential impact of these factors 

and take steps to minimize barriers to optimal hypertension management. 
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VI. STUDY 2: MODELING TREATMENT SELECTION IN ANTIHYPERTENSIVE THERAPEUTIC INTENSIFICATION 

USING PATIENT CLINICAL VARIABLES EXTRACTED FROM EHR DATA 

 

Background 

Hypertension is a prevalent and significant public health concern globally, with approximately one billion 

people affected worldwide.[1, 23] Uncontrolled hypertension can increase the risk of developing 

cardiovascular diseases such as heart attack, stroke, and kidney failure.[1-7] The management of 

hypertension includes lifestyle modifications and medication therapy, with the goal of achieving and 

maintaining optimal blood pressure (BP) control.[23, 24] The selection and management of 

antihypertensive medications are crucial in achieving BP control and reducing the risk of cardiovascular 

complications.[14, 41, 65, 120, 121] 

Hypertension treatment guidelines make clear recommendations for initiating pharmacological therapy: 

start with two drugs in single-pill combination form.[23, 24] However, there is limited guidance on 

intensifying treatment after initiation. Physicians have two options for antihypertensive treatment 

intensification: increasing the prescribed dose of the existing medication or adding a new drug to the 

treatment regimen. Two meta-analyses showed that adding an antihypertensive medication at ½ 

standard, standard, and twice standard dose results in a BP decrease of 7, 9, and 11 mmHg, respectively, 

compared to a 2-3 mmHg BP reduction for doubling the dose of an existing antihypertensive 

medication.[17, 18] RCT evidence shows that AH treatment selection is important in affecting reduction 

in uncontrolled blood pressure, but observational studies of AH treatment selection from real-world 

evidence is limited. 
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Numerous observational studies have found important predictors of therapeutic intensification,[32, 33, 

53-64, 72, 74] but very few have compared the factors associated with adding a new medication versus 

increasing the dose of an existing medication using observational (non-RCT) data.[65] Aubert et al. 

published findings from the one study found in the literature that used EHR data to compare clinical 

variables that may influence the decision to add a new AH medication or increase the dose of an existing 

one. The study included 487,003 patients with hypertension and SBP ≥130 mmHg, of which 178,562 

were used for analysis. Among instances of therapeutic intensification, 25.5% received a new 

medication while 74.5% maximized the dose of existing medications. Patients who received a new 

medication were younger and had higher baseline SBP. There was no pattern of intensification approach 

according to facility characteristics. Covariates were well balanced in the propensity score. However, the 

study from Aubert et al. is limited in scope and recency: the study population was predominantly male, 

with less than 2% women, and the data used in the study were from 2011-2013.[65] 

Therefore, the aim of study 2 in this dissertation is to compare the factors associated with adding a new 

antihypertensive medication versus increasing the dose of an existing medication in the management of 

uncontrolled hypertension. 

 

Research Question: 

1. How much do previously studied and not previously studied factors impact the likelihood and 

explain the variance of increasing dose vs. adding a new medication when antihypertensive 

therapy is intensified? 

Objective: 
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• Identify patient variables significantly associated (and quantify strength of association) with the 

two types of antihypertensive therapeutic intensification: adding a new medication and 

increasing dose of an existing medication. 

 

Methodology 

This analysis will focus on clinician antihypertensive prescribing behavior by modeling the selection of 

two therapeutic intensification strategies: adding a new medication and increasing dose of an existing 

medication. This analysis aims to identify the clinical variables evaluated in Study 1 (see Table 2) 

associated with the two specified types of antihypertensive therapeutic intensification using logistic 

regression modeling. Viewing antihypertensive treatment selection as a probability of two outcomes 

(existing antihypertensive medication dose increase, and new antihypertensive medication addition), 

another primary objective of this analysis is to calculate propensity scores for treatment selection based 

on the clinical variables from Table 2 identified as statistically significant from the logistic regression 

analysis. 

The treatment selection model of therapeutic inertia will be constructed using the logistic regression 

function from the generalized linear mixed-effects models package (lme4) in R.[84, 85] In this analysis, 

we are primarily concerned with the factors associated with physician prescribing behavior that may 

influence the decision to increase dose or add a new medication and the quantification of their effect on 

likelihood of therapeutic intensification. Therefore, only a descriptive model will be produced to ensure 

adequate interpretability of the model.  The likelihood of choosing to increase dose of an existing 

medication or add a new medication will be assessed using the odds ratio calculated from the logistic 

regression analysis, and variance in treatment selection explained by the models will be determined by 
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calculating the Nakagawa and Schielzeth pseudo-R2 for variance explained by mixed-effects logistic 

regression models.[86, 87]  

 

 

Inclusion/Exclusion Criteria 

The study population came from the 590,463 patients and 4,561,165 encounters involved in the AMA 

MAP Program. Encounters that were missing clinician information were excluded, resulting in 589,019 

patients and 4,458,233 encounters. To ensure data consistency, the study included only patients with at 

least two visits during the full period (2020-2022), resulting in 433,414 patients and 3,389,020 

encounters. The study also required patients to have at least one visit during the study period (2021-

2022), resulting in 410,617 patients and 3,319,664 encounters. Further criteria included patients who 

were at least 18 years old (386,630 patients), had a diagnosis of hypertension (201,089 patients), and 

had at least two blood pressure measurements (191,227 patients). To ensure accurate medication 

information, only patients with all antihypertensive medications verified were included (120,755 

patients). The study focused on patients with uncontrolled blood pressure and included only encounters 

where blood pressure was not within recommended levels (73,974 encounters). In addition, the study 

required patients to have at least one visit during the baseline period (2020) (56,963 patients) and be 

already treated with at least one antihypertensive medication (47,960 patients). Finally, the study 

included only visits with therapeutic intensification, resulting in 12,742 patients and 14,726 encounters 

used in the analysis. Figure 1 summarizes the inclusion-exclusion criteria for this study. 
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Classification of Class Additions vs. Dose Increases 

.  Classification of increases in dose of an existing medication and additions of a new class of medication 

were handled separately. First all medication orders were consolidated to one line for each combination 

of patient/drug/dose, and the first and last order date were kept in different columns to retain when the 

specific drug/dose was first and last seen in the data. For dose increases, all unique combinations of 

patient/drug/dose were ordered chronologically by the first date listed the data for each. Then an if, 

else statement was used to determine two consecutive patient/drug/dose combinations were for the 

same patient and the same drug, and if the dose was higher for the more recent instance. If so, that 

date of first instance for the new dose was marked as a dose increase for that patient. For additions of 

new medication classes, unique combinations of patient/class were ordered by first date listed in the 

data. The baseline period was used to provide a 12-month window to pick all currently prescribed AH 

medications for each patient (AH medication prescriptions need to be renewed every 12 months at the 

most). Two conditions had to be met for a class addition to be indicated: 

• The AH class must not be present in the baseline period for a patient 

• There must be a visit on record for a patient at least 12 months prior to the first date listed for 

the AH class (to eliminate new patients or patients not seen for over a year from being falsely 

identified as having a new medication added when they are just receiving an overdue renewal 

or a renewal with a new provider) 
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Figure 1. Patient Inclusion-Exclusion Flowchart for AH Treatment Selection Analysis 
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Table 1.  

HCO Patients Encounters 
Encounters 
per Patient 

A 2,581 2,985 1.16 

B 823 1,038 1.26 

C 1,740 2,091 1.20 

D 3,189 3,763 1.18 

E 4,409 4,849 1.10 

Total 12,742 14,726 1.16 

 

 

 

 

Results 

Table 1 presents various demographic and clinical characteristics of 12,742 patients that met all study 

criteria outlined in Figure 1, only including patients that were already prescribed at least one AH 

medication and had a therapeutic intensification event during the study period. Table 1 characterizes 

the patients by age, gender, race, baseline and final antihypertensive medication use, blood pressure 

measurements, body mass index, glucose, HbA1C and lipid levels, and comorbidities. The table indicates 

the number and percentage of patients by categorical variables and provides the mean and standard 

deviation for continuous variables. Of the study 2 patients, the average age was 61.6 years, 42% were 
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male and 58% were female. Black patients accounted for 50% of the total, while 44.9% were white and 

3.2% were classified as other. The mean baseline number of AH medications prescribed was 1.9, 

increasing to a final AH medication count of 3.1. The mean systolic blood pressure (SBP) was 152.9 and 

the mean diastolic blood pressure (DBP) was 85.1. 

 

 

 

Table 1. Summary of Patient Demographics and Clinical Characteristics 

  Total HCO A HCO B HCO C HCO D HCO E 

Patients N 12,742 2,581 823 1,740 3,189 4,409 

Age mean, SD 61.6 13.4 62.9 14.4 58.2 13.4 57.9 13.5 63.6 11.4 61.4 13.7 

Male N, % 5,349 42.0% 980 38.0% 338 41.1% 724 41.6% 1,291 40.5% 2,016 45.7% 

Female N, % 7,393 58.0% 1,601 62.0% 485 58.9% 1,016 58.4% 1,898 59.5% 2,393 54.3% 

White N, % 5,720 44.9% 1,245 48.2% 217 26.4% 387 22.2% 986 30.9% 2,885 65.4% 

Black N, % 6,365 50.0% 1,261 48.9% 595 72.3% 1,293 74.3% 1,825 57.2% 1,391 31.5% 

Other N, % 414 3.2% 49 1.9% 5 0.6% 50 2.9% 207 6.5% 103 2.3% 

Baseline AH 
meds 

mean, SD 1.9 1.8 2.1 2.1 2.4 1.5 

Final AH 
meds 

mean, SD 3.1 3.2 3.3 3.4 3.2 2.9 

SBP mean, SD 152.9 14.5 150.8 13.0 154.2 17.3 154.6 13.6 157.4 16.1 150.0 12.9 

DBP mean, SD 85.1 12.1 86.0 12.3 92.3 13.9 88.1 12.0 79.6 11.2 86.0 10.8 

BMI mean, SD 33.0 8.5 32.6 9.2 34.0 9.4 33.2 9.4 32.3 7.7 33.4 8.1 

HbA1C mean, SD 6.9 1.8 6.6 1.6 7.1 2.0 7.2 2.0 7.0 1.8 6.7 1.6 

Glucose mean, SD 121.7 59.0 118.6 56.5 122.6 65.5 123.2 67.3 132.1 66.5 115.0 48.0 

LDL avg mean, SD 104.3 37.4 103.8 38.2 103.4 35.3 107.7 37.7 102.9 37.2 104.4 37.3 

HDL avg mean, SD 52.9 15.7 54.9 17.2 51.5 15.6 51.5 14.7 49.7 13.1 54.9 16.7 

Cholesterol mean, SD 169.9 51.7 123.5 55.7 179.3 42.7 184.9 43.9 172.2 44.0 185.9 43.6 

Diabetes N, % 4,698 36.9% 833 32.3% 304 36.9% 575 33.0% 1,723 54.0% 1,263 28.6% 

CHF N, % 754 5.9% 196 7.6% 82 10.0% 87 5.0% 281 8.8% 108 2.4% 

Arrhythmia N, % 1,654 13.0% 496 19.2% 94 11.4% 113 6.5% 402 12.6% 549 12.5% 

Renal Failure N, % 1,546 12.1% 344 13.3% 196 23.8% 196 11.3% 514 16.1% 296 6.7% 

Liver Disease N, % 717 5.6% 175 6.8% 30 3.6% 53 3.0% 315 9.9% 144 3.3% 
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Valvular 
Disease 

N, % 380 3.0% 98 3.8% 11 1.3% 24 1.4% 80 2.5% 167 3.8% 

CEVD N, % 925 7.3% 244 9.5% 55 6.7% 82 4.7% 265 8.3% 279 6.3% 

MI N, % 252 2.0% 104 4.0% 7 0.9% 23 1.3% 85 2.7% 33 0.7% 

PVD N, % 879 6.9% 236 9.1% 52 6.3% 92 5.3% 270 8.5% 229 5.2% 

CPD N, % 2,337 18.3% 591 22.9% 171 20.8% 340 19.5% 642 20.1% 593 13.4% 

Metastatic 
Cancer 

N, % 181 1.4% 50 1.9% 0 0.0% 1 0.1% 90 2.8% 40 0.9% 

Solid Tumor N, % 938 7.4% 232 9.0% 29 3.5% 36 2.1% 377 11.8% 264 6.0% 

 

 

 

 

 

Tables 2 and table 3 summarize the distribution of SBP and DBP overall and across the different HCOs 

for the 14,726 blood pressure encounters that met all of the criteria for study 2 (Figure 1). All of the 

HCOs had the highest proportion of visits in the 140-150 mmHg, which accounted for 40% of the 

patients overall. SBP was 160 or higher for 28.3% of all visits. HCO D had the highest proportion of visits 

with SBP above 160 mmHg at 38%, while all other HCOs had between 22-32% of visits above 160. The 

majority of visits for all HCOs had a recorded DBP between 80-90 mmHg, except for HCO B which had 

35.7% of DBPs between 90-100 mmHg.  

 

Table 2. Systolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 

SBP Visits % Visits % Visits % Visits % Visits % Visits % 

<120 31 0.2% 6 0.2% 8 0.8% 1 0.0% 3 0.1% 13 0.3% 

120-130 204 1.4% 62 2.1% 40 3.9% 9 0.4% 6 0.2% 87 1.8% 

130-140 779 5.3% 213 7.1% 92 8.9% 109 5.2% 58 1.5% 307 6.3% 
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140-150 5,891 40.0% 1,232 41.3% 300 28.9% 740 35.4% 1,365 36.3% 2,254 46.5% 

150-160 3,658 24.8% 769 25.8% 265 25.5% 584 27.9% 912 24.2% 1,128 23.3% 

160-170 2,119 14.4% 433 14.5% 146 14.1% 322 15.4% 598 15.9% 620 12.8% 

170+ 2,044 13.9% 270 9.0% 187 18.0% 326 15.6% 821 21.8% 440 9.1% 

 

Table 3. Diastolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 

DBP Visits % Visits % Visits % Visits % Visits % Visits % 

<70 1,335 9.1% 269 9.0% 46 4.4% 101 4.8% 669 17.8% 250 5.2% 

70-80 3,221 21.9% 525 17.6% 113 10.9% 385 18.4% 1,373 36.5% 825 17.0% 

80-90 4,469 30.3% 887 29.7% 234 22.5% 671 32.1% 976 25.9% 1,701 35.1% 

90-100 3,926 26.7% 880 29.5% 371 35.7% 613 29.3% 554 14.7% 1,508 31.1% 

100-110 1,273 8.6% 319 10.7% 164 15.8% 223 10.7% 132 3.5% 435 9.0% 

110+ 502 3.4% 105 3.5% 110 10.6% 98 4.7% 59 1.6% 130 2.7% 

 

 

 

Table 4 summarizes the 14,726 uncontrolled blood pressure encounters of patients with therapeutic 

intensification. Therapeutic intensification rate was 100% for all visits due to the criteria applied to this 

analysis. Out of 14,726 encounters, 4,214 (28.6%) involved dose increases, with HCO D having the 

highest dose increase rate (53.9%) and HCO E having the lowest (8.4%). Class additions were made in 

10,512 encounters (71.4%), with HCO E having the highest class addition rate (91.5%) and HCO E having 

the lowest (8.4%). These findings suggest that the treatment selection approach to therapeutic 

intensification varies across the different HCOs. 

 

Table 4. Summary of Therapeutic Intensification and Therapeutic Inertia 

  Total HCO A HCO B HCO C HCO D HCO E 
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Patients with TI 10,096 1,972 693 1,464 2,461 3,506 

Uncontrolled Encounters 11,555 2,263 867 1,750 2,866 3,809 

Therapeutic Intensification Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 

Therapeutic Inertia Rate 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Dose Increases 3,377 551 289 647 1,569 321 

Dose Increase Rate 29.2% 24.3% 33.3% 37.0% 54.7% 8.4% 

Class Additions 8,178 1,712 578 1,103 1,297 3,488 

Class Addition Rate 70.8% 75.7% 66.7% 63.0% 45.3% 91.6% 

 

 

 

Treatment Selection Modeling 

For patients already on at least one antihypertensive medication, the patient and clinical variables 

associated with a statistically significant difference in likelihood of treatment selection between 

increasing dose of an existing medication and adding a new class of antihypertensive medication from 

the univariate analyses included: SBP, DBP, Previous Visit SBP, Previous Visit DBP, Previous Visit BP 

Uncontrolled, Proportion of Uncontrolled Visits, Current Number of AH Medications, Visits Per 100 Days, 

BP Visits Per 100 Days, BP Visits, Days Since Previous BP, Days Since Previous Uncontrolled BP, 

Encounter BP Count, Same Previous Clinician, Proportion of Visits with Primary Physician, Diabetes, 

Congestive Heart Failure, Cardiac Arrhythmia, Renal Failure, Liver Disease, Solid Tumor, Myocardial 

Infarction, White vs. Non-white Race, BMI, HbA1c, Glucose, LDL, HDL, Total Cholesterol, Visit with 

Primary Physician, and Previous TI Event. After multivariable logistic regression modeling, the variables 

that remained statistically significant included: SBP, DBP, Previous Visit SBP, Previous Visit DBP, 

Proportion of Uncontrolled Visits, Current Number of AH Medications, Previous TI Event, Visit with 

Primary Physician, Encounter BP Count, BP Visits Per 100 Days, Cardiac Arrhythmia, Age, White vs. Non-

white Race, and BMI. 
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Tables 5A-5E, and Table 6 show the results of statistical analyses that explore the relationship between 

various patient characteristics and the likelihood of therapeutic intensification type. The odds ratios and 

p-values for each variable are presented, along with the marginal R2 (variance explained by fixed effects 

only) and conditional R2 values (variance explained by fixed and random effects together). 

 

Table 5A presents results for SBP and DBP at current and previous visits, with the reference group being 

130-140 mmHg for SBP and 80-90 mmHg for DBP. The was not a single SBP group that had a statistically 

significant relationship with ACH treatment selection. however current DBP was significant for every 

group while only lower values of previous were significant. Interestingly, previous visit BP explained 

more variance in treatment selection than the current BP values (0.022 vs. 0.019), with current and 

previous blood pressure multivariable model having slightly higher marginal R2 then previous BP 

separately. Table 5B contains the results for cumulative average and standard deviation of SBP and DBP. 

Cumulative SBP average, cumulative DBP average, and DBP standard deviation were significantly 

associated with therapeutic intensification when including all four variables in the model. Additionally, 

the multiple variable model estimating the effect of average SBP, DBP and std. deviation of both had a 

marginal R2 of 0.0356, higher than then current and previous bp together. However, SBP and DBP 

average had conflicting effects. Higher SBP average was associated with 3% greater odds of dose 

increase, while Higher DBP average was associated with a 2.5% higher odds of class addition. 

 

 



96 
 

Table 5C presents the modeling of patient demographics. The only demographic variables with a 

statistically significant relationship to treatment selection where white versus non white and age 

between 50-60 and 60-70 years. Both age groups were associated with a 26 to 27% greater odds of 

those increase compared to the 30-40 age group. Non-white patients where 71% more likely to receive 

a class addition compared to white patients.  

 

 

Table 5D shows encounter attributes and AH medications and their relationship with treatment 

selection options. Number of AH medications already being taken by the patient explained the most 

variance in treatment selection of any variable examined in this modeling (r2 = 0.0734). Odds of dose 

increase went up by 50.5%, 69%, and 76% for patients on 2, 3, and 4+ medications compared to those 

only taking 1 AH medication at the time of the visit. BP visit count and visit frequency, proportion of 

visits with primary clinician, current visit with primary clinician, and previous TI event were all 

statistically significant and were all associated with an increased odds of class addition. 

 

Table 5E presents the modeling results for patient comorbidities and lab measurements. The 

comorbidities and lab results with a statistically significant association with treatment selection included 

diabetes, diabetes with complications, congestive heart failure, cardiac arrhythmia, renal failure, liver 

disease, solid tumor cancer, myocardial infarction, total count of comorbidities, BMI, HbA1C, glucose, 

LDL, HDL, and total cholesterol. The relationship with treatment selection was almost unidirectional for 

all comorbidities with diabetes, diabetes with complications, congestive heart failure, renal failure, liver 

disease, solid tumor cancer, myocardial infarction, and total comorbidities all being associated with 

higher odds of dose increase. The only comorbidity variable associated with higher odds of class 
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addition was cardiac arrhythmia. The relationship between lab measurements and treatment selection 

varied, however, with BMI and cholesterol associated with higher odds of class addition and HBA 1C and 

glucose associated with higher odds of dose increase. 

 

Table 8 presents the results of the multiple variable mixed-effects modeling of treatment selection. The 

variables analyzed included those that were found statistically significant and had a marginal R2 greater 

than 0.0001 (other than SBP and Sex which were still included despite not being significant in univariate 

analysis): SBP, DBP, Previous Visit SBP, Previous Visit DBP, Current AH Meds, Proportion of Uncontrolled 

Visits, Previous TI Event, Proportion of Visits with Primary Physician, Visit with Primary Physician, 

Confirmatory BP Measurement, BP Visits Frequency, Diabetes with Complications, Congestive Heart 

Failure, Cardiac Arrhythmia, Cerebral Vascular Disease, Renal Failure, Liver Disease, Solid Tumor, Total 

Comorbidities, Age, Sex, and White vs. Non-white, LDL, BMI, Cumulative SBP Average, Cumulative DBP 

Average, Cumulative SBP Std. Deviation, Cumulative DBP Std. Deviation. After the model adjust for the 

effect of each of these variables through multiple regression, the following variables remained 

significant: SBP 160-170, SBP 170+, Previous Visit DBP 100-110, Cumulative DBP Average, Current AH 

Meds, Previous TI Event, Confirmatory BP Measurement, BP Visit Frequency, Diabetes with 

Complications, Age, White vs. Non-white race, and BMI. The final multiple variable model was able to 

explain 29.3% of the variance in treatment selection from the fixed effects alone and 38.5% by including 

random intercepts for both patient and clinician clustered observations. 
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Table 5A. Univariate and Multiple Regression Mixed-Effects Modeling of Treatment Selection with SBP 

and DBP at Current and Previous Visits 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

SBP <120 2.26185 0.13821 0.01854 0.09420 

SBP 120-130 1.20042 0.34320    

SBP 130-140 (Reference) 1.00000 --    

SBP 140-150 1.07920 0.43195    

SBP 150-160 0.99668 0.97302    

SBP 160-170 1.01390 0.89405    

SBP 170+ 0.88647 0.24680    

DBP <70 0.58350 2.19E-15    

DBP 70-80 0.72773 7.18E-10    

DBP 80-90 (Reference) 1.00000 --    

DBP 90-100 1.12772 0.02821    

DBP 100-110 1.39944 1.94E-05    

DBP 110+ 1.59312 0.00013     

Previous Visit SBP <120 1.33484 0.00153 0.02214 0.09679 

Previous Visit SBP 120-130 1.19124 0.00913    

Previous Visit SBP 130-140 (Reference) 1.00000 --    

Previous Visit SBP 140-150 0.86326 0.00817    

Previous Visit SBP 150-160 0.84486 0.00853    

Previous Visit SBP 160-170 0.72027 1.25E-05    

Previous Visit SBP 170+ 0.65160 1.93E-08    

Previous Visit DBP <70 0.46769 <2E-16    

Previous Visit DBP 70-80 0.75751 3.26E-08    

Previous Visit DBP 80-90 (Reference) 1.00000 --    

Previous Visit DBP 90-100 0.94113 0.30994    

Previous Visit DBP 100-110 1.09951 0.30300    

Previous Visit DBP 110+ 1.04969 0.74344     

Current & Previous SBP / DBP     0.02825 0.10120 

 

 

 

Table 5B. Univariate and Multiple Regression Mixed-Effects Modeling of Treatment Selection with 

Cumulative Average and Standard Deviation of SBP and DBP 
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Variable Odds Ratio p-value 
R2 

Marginal 
R2 

Conditional 

Cumulative SBP Average 0.97703 <2E-16 0.02965 0.10499 

Cumulative DBP Average 1.02562 <2E-16     

Cumulative SBP Std. Deviation 0.98873 3.16E-02 0.00173 0.10130 

Cumulative DBP Std. Deviation 1.00019 9.83E-01     

Cumulative SBP Average 0.96905 <2E-16 0.03557 0.12826 

Cumulative DBP Average 1.02502 2.19E-10    

Cumulative SBP Std. Deviation 1.01125 0.04785    

Cumulative DBP Std. Deviation 0.98226 0.0614     

 

 

Table 5C. Univariate Mixed-Effects Modeling of Treatment Selection with Patient Demographics 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Sex (Reference: Male) 1.00947 0.80575 0.00001 0.08188 

Race (Reference: White) 1.70990 <2E-16 0.01944 0.09713 

Encounter Age 0.99742 0.06739 0.00034 0.08201 

Age <30 0.88740 0.57706 0.00397 0.08427 

Age 30-40 (Reference) 1.00000 --    

Age 40-50 1.00103 0.99217    

Age 50-60 0.73007 0.00116    

Age 60-70 0.73852 0.00148    

Age 70-80 0.84232 0.08119    

Age 80-90 0.89409 0.32534    

Age 90+ 0.71538 0.08200     

 

 

 

Table 5D. Univariate Mixed-Effects Modeling of Treatment Selection with Encounter Attributes and AH 

Medications 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 
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Proportion of Uncontrolled Visits 0.54139 <2E-16 0.00802 0.08742 

Current AH Meds 1 (Reference) 1.00000 -- 0.07344 0.15374 

Current AH Meds 2 0.49588 <2E-16    

Current AH Meds 3 0.31091 <2E-16    

Current AH Meds 4+ 0.24467 <2E-16     

BP Visits 1.10158 <2E-16 0.03260 0.11614 

BP Visits Per 100 Days 1.35635 8.72E-14 0.00622 0.08880 

Days Since Previous BP 1.00060 4.45E-06 0.00230 0.08132 

Days Since Previous Uncontrolled BP 1.00067 2.04E-09 0.00450 0.07999 

Encounter BP Count 0.81640 1.53E-07 0.00267 0.08239 

Same Previous Clinician 1.14291 1.45E-03 0.00098 0.08286 

Proportion of Visits with Primary Physician 1.66339 7.60E-10 0.00367 0.08549 

Visit with Primary Physician 1.21148 7.17E-05 0.00149 0.08282 

Previous TI Event 2.05574 <2E-16 0.02757 0.12632 

 

 

Table 5E. Univariate Mixed-Effects Modeling of Treatment Selection with Patient Comorbidities and Lab 

Measurements 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

Diabetes 0.63926 <2E-16 0.01296 0.09055 

Diabetes with Complications 0.54493 <2E-16 0.01760 0.09504 

Congestive Heart Failure 0.78962 2.10E-03 0.00088 0.08213 

Cardiac Arrhythmia 1.22459 5.17E-04 0.00128 0.08273 

Peripheral Vascular Disease 0.93127 3.33E-01 0.00009 0.08176 

Renal Failure 0.80432 8.53E-05 0.00146 0.08346 

Liver Disease 0.72777 0.00005 0.00150 0.08314 

Solid Tumor 0.79015 0.00079 0.00105 0.08251 

Metastatic Cancer 0.88397 0.43615 0.00006 0.08214 

Myocardial Infarction 0.76302 0.03386 0.00041 0.08220 

Cerebral Vascular Disease 0.97828 7.62E-01 0.00001 0.08187 

Dementia 1.04028 8.23E-01 0.00001 0.08221 

Total Comorbidities 0.93625 <2E-16 0.00650 0.08637 

BMI (kg/m2) 1.00841 3.28E-04 0.00144 0.08497 

HbA1c (mmols/mol) 0.93559 0.00000 0.00400 0.08061 

Glucose (mg/dL) 0.99774 0.00000 0.00510 0.08637 

LDL (mg/dL) 1.00124 3.14E-02 0.00059 0.08662 
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HDL  (mg/dL) 1.01108 0.00000 0.00821 0.09244 

Total Cholesterol (mg/dL) 1.00126 0.00167 0.00118 0.08218 

 

 

 

Table 6. Multiple Variable Mixed-Effects Modeling of Treatment Selection 

Variable 
Odds 
Ratio p-value 

R2 
Marginal 

R2 

Conditional 

SBP 120-130 0.78284 0.51005 0.29262 0.38518 

SBP 140-150 1.28827 0.23965    

SBP 150-160 1.36899 0.16428    

SBP 160-170 1.80957 0.01936    

SBP 170+ 1.90463 0.02602    

DBP <70 0.90015 0.60498    

DBP 70-80 0.81325 0.11944    

DBP 90-100 0.93721 0.63026    

DBP 100-110 1.02934 0.88883    

DBP 110+ 1.07575 0.82959    

Previous Visit SBP <120 1.05671 0.80554    

Previous Visit SBP 120-130 0.93119 0.63164    

Previous Visit SBP 140-150 0.77338 0.06331    

Previous Visit SBP 150-160 0.81743 0.21610    

Previous Visit SBP 160-170 0.77617 0.19208    

Previous Visit SBP 170+ 0.90093 0.66155    

Previous Visit DBP <70 0.77490 0.15902    

Previous Visit DBP 70-80 0.95591 0.71601    

Previous Visit DBP 90-100 0.82963 0.20364    

Previous Visit DBP 100-110 0.57414 0.00924    

Previous Visit DBP 110+ 0.95687 0.91567    

Current AH Meds 2 0.43418 4.31E-14    

Current AH Meds 3 0.25290 <2E-16    

Current AH Meds 4+ 0.15799 <2E-16    

Proportion of Uncontrolled Visits 0.78673 0.44934    

Previous TI Event 2.95420 <2E-16    

Proportion of Visits with Primary Physician 1.20057 0.45971    

Visit with Primary Physician 1.02187 0.88575    

Encounter BP Count 0.58130 9.67E-09    
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BP Visits Per 100 Days 1.55108 0.00050    

Diabetes with Complications 0.61328 0.00021    

Congestive Heart Failure 1.30912 0.27219    

Cardiac Arrhythmia 1.21969 0.17257    

Cerebral Vascular Disease 1.11381 0.56416    

Renal Failure 1.04456 0.77899    

Liver Disease 0.70706 0.07540    

Solid Tumor 0.85713 0.37133    

Total Comorbidities 1.01759 0.61248    

Age <30 0.70466 0.45661    

Age 40-50 2.27257 0.00145    

Age 50-60 1.54421 0.06812    

Age 60-70 2.17615 0.00138    

Age 70-80 2.52765 0.00030    

Age 80-90 3.07964 0.00021    

Age 90+ 3.23294 0.03418    

Sex: Male 0.95113 0.58694    

Race: White 1.43615 0.00009    

LDL 1.00127 0.28858    

BMI 1.02264 0.00020    

Cumulative SBP Average 0.98445 0.07675    

Cumulative DBP Average 1.03099 0.00906    

Cumulative SBP Std. Deviation 0.99617 0.65064    

Cumulative DBP Std. Deviation 0.99332 0.62399     
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Discussion 

This research analyzed information from 12,742 patients across five healthcare organizations to assess 

antihypertensive treatment selection rates in uncontrolled hypertensive patients. Out of 14,726 

uncontrolled blood pressure encounters of patients with therapeutic intensification, 28.6% involved 

increasing dose of an existing medication and 71.4% were new classes of AH medication prescribed. 

Comparison between HCOs suggest that the treatment selection approach to therapeutic intensification 

varies across the different HCOs. 

The scope of this analysis significantly expanded upon the limited previous studies looking at factors 

associated with treatment selection in hypertension management.[65] The study explored the patient 

and clinical variables associated with treatment selection for patients already taking at least one 

antihypertensive medication. The study found that several variables, such as SBP, DBP, previous visit BP, 

proportion of uncontrolled visits, current number of AH medications, visit with primary physician, 

encounter BP count, cardiac arrhythmia, age, white vs. non-white race, and BMI, were significantly 

associated with AH treatment selection. An important finding is that the number of AH medications 

currently being taken by the patient explained the most variance in treatment selection of any variable 

examined in this modeling. The study also explored patient demographics, encounter attributes, AH 
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medications, and patient comorbidities and lab measurements and found significant relationships 

between those variables and treatment selection. Finally, this study found that in this population, adding 

a new class of AH medication was twice as common compared to increasing dose of an existing 

medication. These findings indicate the reverse of the trend reported by Aubert et al.[65] 

This study, like the previous study 1, is limited by the reliance on structured EHR data. EHR data is 

repeatedly proven to have significant inconsistencies in the data that lower its accuracy and usefulness 

for research purposes. Moreover, healthcare providers typically enter EHR data for clinical 

documentation rather than research purposes, leading to incomplete, inaccurate, or inconsistent data, as 

well as missing information and data entry errors.[118] This study also faces limitations in generalizability, 

as EHR data is collected from a specific population and may not be representative of the broader 

population.[119] Lastly, the data lacks information that may further explain treatment-related decision 

making contained in unstructured data within narrative clinical notes. Another related limitation is that 

investigators were not involved in data quality at the point of data abstraction during patients' care by 

several degrees, limiting their ability to acquire additional patient information. Investigators do not have 

accessibility during the extract, transform, load process where data validity is assessed as it is transferred 

from source system to the AMA system. This work could be improved by obtaining greater density and 

scope of clinical information through manual chart review and analysis of free-text clinical notes to 

enhance the strength of evidence. 

 

Conclusion 

This study presents evidence for factors that may influence decision-making in antihypertensive 

treatment selection. These results provide important insights considering the published evidence for 

inequal effectiveness between increasing dose and adding a new medication. The variables associated 
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with either type of treatment intensification by this study should be considered by health care 

practitioners to analyze potential biases in their treatment protocols for hypertension management 

based on various clinical and patient characteristics. 
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VII. STUDY 3: MODELING ANTIHYPERTENSIVE THERAPEUTIC INTENSIFICATION EFFECTIVENESS FROM 

OBSERVATIONAL DATA – INCREASING DOSE COMPARED TO ADDING NEW MEDICATION 

 

 

Background 

Controlling elevated blood pressure (BP) in patients with hypertension is a primary strategy for reducing 

death and disability caused by heart disease, stroke, and other cardiovascular diseases.[1-18] Numerous 

large-scale observational studies[37-39] and randomized controlled trials[14-22] have contributed 

significantly to our understanding of how to mitigate cardiovascular disease (CVD) risk by treating 

elevated blood pressure (BP) and hypertension. There is a strong evidence base demonstrating the 

safety and efficacy of more than a dozen classes of blood pressure-reducing drugs.[14-22, 37-39] Even 

though the evidence for CVD risk from uncontrolled hypertension is solid, a variety of safe, effective 

pharmacological classes of antihypertensive medications are available, and guidelines are clear in 

recommending treatment action for controlling hypertension, blood pressure control rates remain well 

below goals set by national population health initiatives.[1, 3, 12, 13, 25-28] 

While the AHA/ACC and ESC/ESH hypertension management guidelines explicitly state their 

recommendations for initiating pharmacological therapy for uncontrolled hypertension and 

acknowledge that most patients will require at least two drugs to reach control, recommendations for 

subsequent intensification are not as clearly outlined.[23, 24]  

Therapeutic intensification, the amplification of treatment for patients that have already begun 

pharmacological therapy, comes down to two options: increasing the prescribed dose of existing 

medication and adding a new drug to the treatment regimen. Two meta-analyses evaluating 
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pharmacological options for lowering blood pressure and preventing cardiovascular disease determined 

that, on average, adding an antihypertensive medication at ½ standard, standard, and twice standard 

dose results in a BP decrease of 7, 9, and 11 mmHg, respectively, compared to a 2-3 mmHg BP reduction 

for doubling dose of an existing antihypertensive medication.[18, 41] In a recent observational study 

evaluating hypertensive patients at the Veterans Health Administration, a direct comparison of adding a 

new medication versus maximizing the dose of an existing drug to control hypertension found that 

adding a new drug resulted in a slightly larger reduction in mean SBP (-0.8 mm Hg at three months, and -

1.1 mm Hg at 12 months). Furthermore, maximizing dose was more likely amongst older patients and 

three times more common than adding a new medication among all patients. [65] 

According to two meta-analyses that evaluated pharmaceutical options for lowering blood pressure and 

preventing cardiovascular disease, adding an antihypertensive medication at ½ standard, standard, and 

twice standard doses typically leads to a BP reduction of 7, 9, and 11 mmHg, respectively. Conversely, 

doubling the dose of an existing antihypertensive medication typically results in a BP decrease of only 2-

3 mmHg.[18, 41] One observational study comparing effectiveness of increasing dose or adding a new 

class of AH medication showed that adding a new drug produced a slightly larger reduction in mean SBP 

(-0.8 mmHg at three months and -1.1 mmHg at 12 months).[65] 

There is a growing role for large observational research to play in providing evidence that is 

complementary to RCTs. With quasi-experimental methods that can simulate randomization for 

observational studies (e.g. propensity score matching),[45, 46] and rapidly developing integration of 

electronic health data into large datasets suitable for rigorous analysis,[38] Congress, the FDA and other 

decision-making groups are calling for more “real-world evidence” to be contributed to the clinical 

evidence base moving forward.[48-50] Conducting an RCT requires precise specification of study 

conditions, including participant selection, treatment and control assignments, exclusion criteria, 

randomization methods, and outcome measurements. These trials can be challenging to execute due to 
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their high cost in terms of time and money, and their findings may not be easily applied to real-world 

scenarios due to the strictness or intricacy of the intervention or participant selection, which may yield a 

population different from those seen in clinical practice. Although RCTs prioritize the validity of their 

results, their generalizability is often more limited than large observational studies.[122] 

Despite the increasing ability and use for observational evidence in clinical evidence, are very few 

published studies that have used observational data to derive expected effect in SBP/DBP from 

increasing dose compared to adding a new class, and none looking specifically at incremental additions 

of medication classes, medication combinations with known additive effects vs. combinations with 

known less than additive effects and increasing dose by less than half max vs. half max or greater. This 

final study focuses on modeling effectiveness of antihypertensive therapeutic intensification treatment 

options from observational EHR data using pseudo-randomization with propensity score matching. 

 

 

Research Questions 

1. Are greater reductions in BP observed subsequent to instances of therapeutic intensification 

where dose of an existing medication is increased or where a new class of medication is added? 

2. Do the observed reductions in BP after incremental increases in dose differ between key patient 

characteristics (race/ethnicity, sex, and age)  among specific classes of antihypertensive drugs? 

3. Do the observed reductions in BP after prescribing a new medication differ between key patient 

characteristics (race/ethnicity, sex, and age)  among specific combinations of antihypertensive 

drugs? 
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Objectives 

• Use propensity score matching to compare systolic blood pressure changes following different 

approaches/levels of therapeutic intensification for uncontrolled hypertensive patients: Adding 

a new medication class vs. increasing dose of existing medication vs. no change in medication. 

• Compare SBP changes after increasing dose by less than half max vs. half max or greater. 

• Compare SBP changes after incremental additions of medication classes, and between 

medication combinations with known additive effects vs. combinations with known less than 

additive effects. 

 

 

 

Methodology 

The third analysis will estimate the change in blood pressure after increasing dose, adding a medication, 

and making no changes to medications (inertia) amongst uncontrolled hypertensive patients, to 

compare the effectiveness of these different approaches/levels of antihypertensive therapeutic 

intensification. Modeling BP change after antihypertensive therapeutic intensification with 

observational data will be strengthened by the propensity scores calculated from the analysis in study 2. 

Using the propensity scores to inform this analysis will improve exchangeability between patients that 

were treated with an increase in dose and those that were treated with an additional medication. 

Further specificity in therapeutic intensification magnitude and type will be studied in this analysis. 

Among instances of dose intensification, we will compare SBP changes after incremental additions in 

doses and specific combinations from additions of new medications will be compared between 
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medication classes key patient characteristics: age, sex, race/ethnicity. SBP changes after addition of a 

new medication will be compared between unique combinations of antihypertensive medication classes 

that are most frequently prescribed and patient age, sex, and race/ethnicity. Additionally, SBP changes 

after addition of an antihypertensive medication resulting in a combination of medications with known 

additive effects will be compared to combinations with known less than additive effects. Finally, the 

variation and standard deviation in SBP changes following the different types and magnitudes of 

therapeutic intensification observed in this analysis will be calculated to quantify the range of observed 

responses in blood pressure. Antihypertensive medications considered in this analysis and 

corresponding standard dosages were determined using The Prescribers’ Digital Reference (formerly 

“Physicians’ Desk Reference)[88, 123] and are included in Appendix I. 

Since the outcome of interest in this analysis is a continuous variable (SBP change after therapeutic 

intensification), the models constructed to estimate the effectiveness of different types and magnitudes 

of antihypertensive therapeutic intensification will be done using mixed effects linear regression. Like 

the logit models from the previous two studies, the mixed effects linear regression models in this 

analysis will be constructed using the linear regression function from the generalized linear mixed-

effects models package (lme4) in R.[84, 85] A descriptive model will be prioritized since the primary 

result is the difference in SBP change among patients that differ in one independent variable: 

therapeutic intensification type. The model will adjust for all covariates deemed statistically significant 

from previous analyses, but the estimated effect of increasing dose compared to adding a new 

medication will be the primary output of the model. Performance will be evaluated with R2 and mean 

square error calculations to assess the variability in SBP change explained by the model.[88]  
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Inclusion and Exclusion Criteria 

This research study included patients seen at a MAP-participating primary care site who met specific 

criteria. Patients with at least two visits during the full period of 2020-2022 and at least one visit during 

the study period of 2021-2022 were included. Patients also had to be 18 years of age or older and have a 

diagnosis of hypertension, as well as two or more blood pressure measurements. Additionally, patients 

with all antihypertensive medications verified and those with uncontrolled blood pressure visits were 

included. Patients already treated with at least one antihypertensive medication were also included. 

Visits with therapeutic intensification were recorded, and a subset of visits with therapeutic 

intensification and a follow-up blood pressure visit 7 or more days after were analyzed. Encounters 

missing a clinician were excluded from the study. Figure 1 provides a sequential overview of each 

inclusion/exclusion criteria applied to the dataset before analysis. The final dataset for matching 

contained 10,096 patients and 11,555 encounters. After propensity score matching was performed 

there were exactly equivalents numbers of dose increases and class additions for a total set of 6,826 

encounters for 6,826 patients. 
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Figure 1. Study 3 Patient Inclusion-Exclusion Criteria Flowchart 
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Table A. Study 3 patient and encounter counts by HCO 

HCO Patients Encounters 
Encounters 
per Patient 

A 1,972 2,263 1.15 

B 693 867 1.25 

C 1,464 1,750 1.20 

D 2,461 2,866 1.16 

E 3,506 3,809 1.09 

Total 10,096 11,555 1.14 

 

 

 

 

 

Propensity Score Matching 

Propensity score matching (PSM) is a statistical technique used to reduce bias in observational studies 

by matching individuals in treatment and control groups who have similar characteristics based on their 

propensity scores. The propensity score is the probability of receiving treatment given a set of observed 

covariates. It is calculated using logistic regression, and the covariates used in the regression model are 

chosen based on their potential relationship with the treatment and outcome variables.[124, 125]  

Once the propensity scores were calculated, each dose increase patient was matched with a class 

addition patient based on the similarity of their propensity scores using the nearest neighbor matching 

method. For propensity score matching the binary variable indicating class additions and dose increases 
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was switched so that class additions were indicated by a value of “0” and dose increases by a value of 

“1.” This was so that the larger sample (class additions) would be used as the control observations and 

so that the less frequent dose increases would be matched to the most similar class addition and not the 

other way around. Propensity scores were calculated and matching of patients with class additions to 

those with dose increases was done using the “matchit” function from the MatchIt package in R.[126] 

The variables determined to be statistically significant covariates of treatment selection by study 2 were 

used for propensity score calculation and for matching dose increases to class additions. These 

covariates included DBP, previous visit SBP,  previous visit DBP, previous BP uncontrolled, proportion of 

uncontrolled visits, AH medication count,  age category, white versus non-white, proportion of visits 

with the patient's primary clinician, total comorbidities, confirmatory blood pressure measurement, BP 

visit frequency, diabetes with complications, cardiac arrhythmia, liver disease, renal failure, solid tumor 

cancer, previous therapeutic intensification event, cumulative SBP average and cumulative DBP average. 

Other variables including BMI, LDL, and HDL were not included in the model despite being found as 

significant covariates in study two due to the presence of NA values that could not be handled by the 

matching function. The results of the propensity score matching process are illustrated in Figures 2 and 

3.  

 

Extended Comparison of Dose vs. Class 

The subsequent change in systolic blood pressure after adding a new class and increasing dose of an 

existing medication was further compared by specific demographic groups including age sex and race 

and between specific classes of AH medications added or intensified and between specific combinations 

of existing classes of age medications and added or intensified classes of age medications. Furthermore, 

specific combinations of ah medications with known less than additive effects were selected from the 
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data set for comparison with medication additions where combinations are additive. Finally, instances of 

dose increase where the medication was still not intensified to at least standard dose was compared 

two dose increases where standard dose or higher was reached. For each extended comparison the 

change in systolic blood pressure from an elevated blood pressure visit to the next visit was calculated 

for patients that did not have a therapeutic intensification at the elevated BP visit. These calculations of 

∆SBP were summarized by age, sex, race, and existing AH medications as well to serve as a control group 

for adjusting the ∆SBP for regression to the mean that is present in blood pressure measurements over 

time. Regression to the mean is a statistical phenomenon where an observation that is extreme on one 

measurement is likely to be less extreme on a subsequent measurement. Blood pressure regression to 

the mean refers to the tendency of blood pressure measurements to move towards the mean value 

over time, even without any intervention or change in behavior. This phenomenon occurs due to the 

biological variability and natural fluctuation characteristic of blood pressure, which can be affected by 

many factors included stress and activity level. Blood pressure regression to the mean can have 

important implications for clinical practice and research. For example, a patient with a high blood 

pressure reading may be diagnosed with hypertension and prescribed medication. However, if 

subsequent measurements show that the blood pressure has decreased towards the mean value, it is 

possible that the patient did not have true hypertension and may not need medication.[127, 128] ∆SBP 

for patients with elevated BP visits and no intensification were summarized by age, sex, race, and 

existing medications to adjust the corresponding categories for ∆SBP after dose increases and class 

additions to all for a more precise ∆SBP to be calculated and adjusted for natural regression to the 

mean. 
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Results 

Tables 1-4 summarize patient demographics and clinical characteristics, SBP and DBP distributions, and 

encounter level dose increase and class additions rates for the final patient dataset and between the 

five HCOs. The total number of patients included in the study was 10,096 with 11,555 encounters with 

either a dose increase or a class addition (single encounters with both intensification types were 

excluded), and a follow-up visit at least days from intensification where BP was measured and recorded. 

The mean age of the patients in this analysis dataset was 62.0 years, with a standard deviation (SD) of 

13.3. There were more females (59.2%) than males (40.8%) in the study population. Black patients 

accounted for the majority (50.9%) of the study population, compared to 44.2% white patients. The 

average AH medications per patient was 3.2 at the end of the study period, rising from 1.9 medications 

at the beginning of the study period. The mean systolic blood pressure (SBP) was 153.0 mmHg, with a SD 

of 14.3. The mean diastolic blood pressure (DBP) was 85.0 mmHg, with a SD of 12.1. The mean body 

mass index (BMI) was 33.1, mean HbA1c 6.9%, mean glucose level 122.0 mg/dL, and mean LDL 

cholesterol level was 104.0 mg/dL. As observed in study 1 and 2, the three most common comorbidities 

remained to be diabetes (38.0%), chronic pulmonary disease (18.9%) and renal failure was present in 

(12.6%). 

On average 28.4% of all visits had an SBP of 160 or higher. Most visits recorded BP in the 140-150 mmHg 

group, which accounted for 40% of visits overall (Table 2). HCO D had the highest proportion of visits 

with SBP above 160 mmHg at 37.4%, while all other HCOs had between 22-33% of visits above 160. The 

majority of DBP recordings for all HCOs were between 80-90 mmHg, except for HCO B which had 34.9% 

of DBPs between 90-100 mmHg and HCO D where 37.4% of DBPs fell between 70-80 mmHg (Table 3).  
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Of the 11,555 encounters with a therapeutic intensification event included in this study, class additions 

were observed more than twice as frequently as dose increases (Table 4). 3,377 of the intensifications 

(29.2%) were dose increases, compared to 8,178 (70.8%) class additions. The highest and lowest dose 

increase rates were observed at HCO D (54.9%) and HCO E (8.4%), respectively. having the lowest 

(8.4%). Inversely, the highest and lowest observed rates of class additions were at HCO E (91.6%) and 

HCO D (45.3%). The variance in these observed rates of treatment selection indicate that treatment 

strategies may differ significantly by institution. 

 

 

 

 

 

Table 1. Summary of Patient Demographics and Clinical Characteristics 

  Total HCO A HCO B HCO C HCO D HCO E 

Patients N 10,096 1,972 693 1,464 2,461 3,506 

Age mean, SD 62.0 13.3 63.8 14.2 58.6 13.4 58.2 13.5 63.7 11.2 62.1 13.6 

Male N, % 4,117 40.8% 736 37.3% 283 40.8% 587 40.1% 961 39.0% 1,550 44.2% 

Female N, % 5,979 59.2% 1,236 62.7% 410 59.2% 877 59.9% 1,500 61.0% 1,956 55.8% 

White N, % 4,462 44.2% 934 47.4% 177 25.5% 321 21.9% 720 29.3% 2,310 65.9% 

Black N, % 5,136 50.9% 982 49.8% 507 73.2% 1,098 75.0% 1,450 58.9% 1,099 31.3% 

Other N, % 311 3.1% 37 1.9% 3 0.4% 40 2.7% 158 6.4% 73 2.1% 

Baseline 
AH meds 

mean, SD 1.9 1.9 2.1 2.1 2.4 1.6 

Final AH 
meds 

mean, SD 3.2 3.2 3.3 3.4 3.2 2.9 

SBP mean, SD 153.0 14.3 151.0 12.8 154.1 16.9 154.7 13.6 157.4 15.9 150.2 12.8 

DBP mean, SD 85.0 12.1 85.8 12.3 91.9 13.8 88.0 12.1 79.5 11.2 85.7 10.8 

BMI mean, SD 33.1 8.6 32.5 9.3 34.1 9.3 33.4 9.5 32.6 7.7 33.4 8.1 

HbA1C mean, SD 6.9 1.8 6.6 1.6 7.2 2.0 7.2 1.9 7.0 1.8 6.7 1.6 
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Glucose mean, SD 122.0 59.0 119.5 57.1 125.1 69.4 123.4 65.7 131.6 65.5 115.3 48.5 

LDL avg mean, SD 104.0 37.3 102.3 38.1 103.0 34.9 107.1 37.1 103.4 37.5 104.3 37.1 

HDL avg mean, SD 52.8 15.8 54.9 17.5 51.5 15.7 51.6 14.6 49.7 13.2 54.7 16.6 

Cholesterol mean, SD 170.0 51.8 122.8 56.0 178.2 42.2 184.4 43.6 172.1 44.7 185.8 43.4 

Diabetes N, % 3,836 38.0% 676 34.3% 268 38.7% 498 34.0% 1,340 54.4% 1,054 30.1% 

CHF N, % 621 6.2% 160 8.1% 70 10.1% 73 5.0% 228 9.3% 90 2.6% 

Arrhythmia N, % 1,350 13.4% 406 20.6% 75 10.8% 88 6.0% 315 12.8% 466 13.3% 

Renal 
Failure 

N, % 1,268 12.6% 281 14.2% 171 24.7% 175 12.0% 404 16.4% 237 6.8% 

Liver 
Disease 

N, % 570 5.6% 141 7.2% 25 3.6% 46 3.1% 243 9.9% 115 3.3% 

Valvular 
Disease 

N, % 307 3.0% 81 4.1% 10 1.4% 20 1.4% 57 2.3% 139 4.0% 

CEVD N, % 740 7.3% 197 10.0% 48 6.9% 68 4.6% 204 8.3% 223 6.4% 

MI N, % 203 2.0% 84 4.3% 5 0.7% 18 1.2% 66 2.7% 30 0.9% 

PVD N, % 718 7.1% 195 9.9% 44 6.3% 84 5.7% 204 8.3% 191 5.4% 

CPD N, % 1,906 18.9% 463 23.5% 141 20.3% 304 20.8% 513 20.8% 485 13.8% 

Metastatic 
Cancer 

N, % 137 1.4% 37 1.9% 0 0.0% 1 0.1% 70 2.8% 29 0.8% 

Solid 
Tumor 

N, % 747 7.4% 187 9.5% 26 3.8% 34 2.3% 298 12.1% 202 5.8% 

 

Table 2. Systolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 

SBP Visits % Visits % Visits % Visits % Visits % Visits % 

<120 26 0.2% 5 0.2% 7 0.8% 0 0.0% 3 0.1% 11 0.3% 

120-130 144 1.2% 44 1.9% 30 3.5% 5 0.3% 4 0.1% 61 1.6% 

130-140 596 5.2% 155 6.8% 73 8.4% 95 5.4% 43 1.5% 230 6.0% 

140-150 4,603 39.8% 922 40.7% 254 29.3% 614 35.1% 1,033 36.0% 1,780 46.7% 

150-160 2,910 25.2% 584 25.8% 221 25.5% 500 28.6% 711 24.8% 894 23.5% 

160-170 1,684 14.6% 345 15.2% 124 14.3% 270 15.4% 461 16.1% 484 12.7% 

170+ 1,592 13.8% 208 9.2% 158 18.2% 266 15.2% 611 21.3% 349 9.2% 

 

Table 3. Diastolic Blood Pressure Distribution 

 Total HCO A HCO B HCO C HCO D HCO E 

DBP Visits % Visits % Visits % Visits % Visits % Visits % 
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<70 1,050 9.1% 221 9.8% 38 4.4% 83 4.7% 505 17.6% 203 5.3% 

70-80 2,604 22.5% 414 18.3% 96 11.1% 331 18.9% 1,071 37.4% 692 18.2% 

80-90 3,529 30.5% 665 29.4% 211 24.3% 571 32.6% 729 25.4% 1,353 35.5% 

90-100 3,000 26.0% 645 28.5% 303 34.9% 500 28.6% 420 14.7% 1,132 29.7% 

100-110 989 8.6% 242 10.7% 133 15.3% 180 10.3% 98 3.4% 336 8.8% 

110+ 383 3.3% 76 3.4% 86 9.9% 85 4.9% 43 1.5% 93 2.4% 

 

Table 4. Summary of Dose Increase vs. Class Addition Rates by HCO 

  Total HCO A HCO B HCO C HCO D HCO E 

Patients with TI 10,096 1,972 693 1,464 2,461 3,506 

Uncontrolled Encounters 11,555 2,263 867 1,750 2,866 3,809 

Dose Increases 3,377 551 289 647 1,569 321 

Dose Increase Rate 29.2% 24.3% 33.3% 37.0% 54.7% 8.4% 

Class Additions 8,178 1,712 578 1,103 1,297 3,488 

Class Addition Rate 70.8% 75.7% 66.7% 63.0% 45.3% 91.6% 

 

 

Matched Regression for ∆SBP 

The distribution of propensity scores for dose increases and class additions are plotted in Figure 2. 

“Treated units” in this figure refers to dose increases while “control units” refer to class additions. The 

standardized mean difference and propensity score for each covariate used in the matching function is 

displayed in Figure 3. Each of the 3,413 dose increases was matched to one class edition leaving 0 

unmatched dose increases and 4,765 unmatched class additions. After matching for each covariate 

teamed to have a significant relationship with treatment selection the adjusted difference in subsequent 

change in SBP was 1.31 mmHg higher after dose increases compared to class additions. This indicates 

that even when adjusting for the identified factors that create bias in the comparison between these 

two intensification types, adding a new class of AH medication is still found to be more effective in 
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reducing elevated BP compared to increasing dose of an existing medication. Linear regression results 

for ∆SBP after PS matching are detailed in Table 5. 

For all treatment intensification events with a follow-up BP visits, the reduction in SBP after addition of a 

new medication was -14.18 mmHg on average, compared to -12.72 mmHg for dose increases. For 

patients with no treatment intensification, the average reduction in SBP from an elevated BP visit 

(>140/>90) to their next visit was -10.7 mmHg. Using the patients with elevated BP visits but no 

treatment intensification to adjust the change in SBP for class additions and dose increases resulted in a 

-3.48 SBP reduction for class additions and a -1.46 SBP reduction for dose increases. Class additions 

resulted and a larger reduction in SBP and those increases for each specific demographic variable 

category (Tables 6A and 6B). The same trend was observed when comparing class additions with dose 

increases by the specific AH class that was added or intensified, with class additions averaging a 3.57 

reduction in SBP and dose increases averaging a 2.06 reduction in SBP after adjusting for controls and 

limiting to the top 15 most frequent classes added or intensified (Tables 7A and 7B). Table 9 outlines a 

selection of class additions that are known to have less than additive effects, demonstrating that these 

specific combinations resulted in smaller SBP reductions on average than both dose increases and class 

additions overall. Table 10 shows that doubling the dose resulted in a larger average SBP reduction 

compared to increasing dose from less than standard to standard dose or higher. 
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Figure 2. Distribution of Propensity Scores for Matching Intensification Types 
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Figure 3. Standard Mean Difference in Matched Variables for Intensification Types. 

 

 

Table 5. Matched Linear Regression Estimate of Difference in ∆SBP 

Term Estimate Std Error t Statistic p-value R2 

(Intercept) -14.0214 0.330038 -42.4842 <2E-16 

0.001144 TI Type 
(0=Class_Addition, 
1=Dose_Increase) 

1.30501 0.466744 2.795987 0.005189 
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Table 6A. ∆SBP after Class Addition by Demographics 

Variables 
Class Addition 
Events ∆SBP Control ∆SBP Adjusted ∆SBP 

Female 4,858 -14.81 -10.85 -3.97 

Male 3,320 -13.25 -10.47 -2.78 

Black Race 4,030 -14.11 -10.13 -3.99 

White Race 3,828 -14.27 -11.41 -2.86 

Other Race 215 -13.17 -9.97 -3.20 

Asian-PI Race 105 -15.57 -10.07 -5.51 

Age <30 70 -14.99 -7.68 -7.30 

Age 30-40 401 -11.27 -8.15 -3.13 

Age 40-50 1,068 -13.40 -9.00 -4.40 

Age 50-60 1,798 -13.81 -10.69 -3.11 

Age 60-70 2,314 -14.43 -11.41 -3.01 

Age 70-80 1,777 -15.36 -11.26 -4.10 

Age 80-90 656 -14.14 -10.70 -3.45 

Age 90+ 94 -14.10 -10.78 -3.31 

Total, Weighted Avg. 8,178 -14.18 -10.70 -3.48 

 

Table 6B. ∆SBP after Dose Increase by Demographics 

Variables 
Dose Increase 
Events ∆SBP Control ∆SBP Adjusted ∆SBP 

Female 2,017 -12.94 -10.85 -2.09 

Male 1,396 -12.40 -10.47 -1.93 

Black Race 2,011 -12.52 -10.13 -2.39 

White Race 1,164 -13.24 -11.41 -1.83 

Other Race 140 -13.08 -9.97 -3.11 

Asian-PI Race 98 -9.99 -10.07 0.08 

Age <30 29 -7.34 -7.68 0.34 

Age 30-40 135 -12.28 -8.15 -4.14 

Age 40-50 381 -11.77 -9.00 -2.77 

Age 50-60 856 -12.15 -10.69 -1.46 

Age 60-70 1051 -13.26 -11.41 -1.84 

Age 70-80 679 -12.97 -11.26 -1.71 

Age 80-90 243 -14.54 -10.70 -3.85 

Age 90+ 39 -9.59 -10.78 1.19 

Total, Weighted Avg. 3,413 -12.72 -10.70 -2.01 
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Table 7A. ∆SBP after Class Addition by AH Class Added 

Added Classes 
Class Addition 
Events ∆SBP Adjusted ∆SBP 

CCB 1,486 -16.52 -5.81 

ARB 1,069 -12.09 -1.38 

TD 1,042 -16.40 -5.70 

BB 631 -10.32 0.38 

ACEI 538 -13.93 -3.23 

ARB | TD 527 -16.55 -5.84 

ACEI | TD 327 -15.85 -5.15 

LD 300 -11.66 -0.96 

ACEI | CCB 247 -12.77 -2.07 

AdRB 203 -12.31 -1.60 

ARB | CCB 161 -12.94 -2.24 

Vd 128 -14.31 -3.61 

ARB | CCB | TD 121 -14.31 -3.61 

CCB | TD 111 -15.31 -4.60 

ACEI | CCB | TD 92 -15.01 -4.31 

BB | CCB 91 -11.15 -0.45 

CA 82 -14.41 -3.71 

PSD | TD 82 -13.99 -3.29 

BB | TD 69 -9.78 0.92 

ARB | BB 67 -13.00 -2.30 

Total, Weighted Avg. 7,374 -14.27 -3.57 

 

Table 7B. ∆SBP after Dose Increase by AH Class Intensified 

Intensified Classes 
Dose Increase 
Events ∆SBP Adjusted ∆SBP 

ACEI 861 -12.91 -2.21 

CCB 757 -14.38 -3.67 

ARB 498 -12.03 -1.33 

TD 308 -10.21 0.49 

BB 271 -10.37 0.33 

ARB | TD 116 -14.17 -3.47 

ACEI | TD 83 -16.22 -5.51 

LD 75 -8.31 2.40 

ACEI | CCB 62 -14.79 -4.09 

Vd 52 -13.23 -2.53 

AdRB 33 -8.55 2.16 
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CCB | TD 28 -18.86 -8.15 

ACEI | BB 23 -17.39 -6.69 

ARB | CCB 23 -14.17 -3.47 

CCB-nD 22 -8.77 1.93 

CA 20 -13.50 -2.80 

BB | CCB 19 -8.11 2.60 

ACEI | LD 17 -12.76 -2.06 

ARB | CCB | TD 15 -21.40 -10.70 

BB | TD 14 -16.36 -5.65 

Total, Weighted Avg. 3,297 -12.76 -2.06 

 

 

Table 8A. ∆SBP for Most Frequent Added-Existing Medication Combinations (Class Additions) 

Added 
Classes 

Existing 
Classes 

Class Addition 
Events ∆SBP 

Control 
∆SBP 

Adjusted 
∆SBP 

ARB CCB 138 -12.47 -11.03 -1.44 

CCB ARB 110 -18.62 -10.72 -7.89 

CCB TD | ARB 106 -16.70 -11.76 -4.94 

TD CCB 105 -15.28 -11.03 -4.25 

CCB ACEI 103 -17.55 -11.71 -5.84 

ACEI CCB 90 -15.52 -11.03 -4.49 

TD ACEI 89 -19.64 -11.71 -7.93 

ARB TD 81 -9.75 -11.80 2.05 

CCB BB 80 -18.35 -12.62 -5.73 

CCB TD 79 -14.38 -11.80 -2.58 

CCB TD | ACEI 75 -19.00 -11.95 -7.05 

ARB CCB | TD 70 -12.21 -9.51 -2.71 

TD ARB 69 -14.17 -10.72 -3.45 

TD CCB | ARB 55 -18.76 -9.68 -9.08 

TD CCB | ACEI 49 -21.08 -10.84 -10.24 

Total, Weighted Avg. 1,299 -16.02 -11.196 -4.83 
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Table 8B. ∆SBP for Most Frequent Intensified-Existing Medication Combinations (Dose Increases) 

Intensified 
Classes Existing Classes 

Dose Increase 
Events ∆SBP 

Control 
∆SBP 

Adjusted 
∆SBP 

ACEI ACEI 180 -13.33 -11.71 -1.62 

CCB CCB 146 -16.87 -11.03 -5.84 

ACEI ACEI | TD 127 -13.87 -10.92 -2.95 

ACEI ACEI | CCB 119 -14.09 -10.62 -3.47 

ARB ARB 88 -13.95 -10.72 -3.23 

ACEI CCB | ACEI | TD 83 -12.72 -9.59 -3.13 

ARB CCB | ARB 66 -9.86 -10.12 0.25 

CCB CCB | ARB 65 -10.60 -10.12 -0.48 

CCB CCB | ACEI 61 -16.30 -10.96 -5.33 

ACEI TD | ACEI 59 -18.14 -12.53 -5.61 

ARB TD | ARB 59 -10.78 -11.74 0.96 

ACEI CCB | ACEI 56 -14.48 -10.96 -3.52 

CCB CCB | TD 56 -13.54 -9.51 -4.03 

TD TD | ACEI 43 -15.58 -12.53 -3.05 

CCB CCB | TD | ARB 43 -14.88 -10.24 -4.65 

Total, Weighted Avg. 1,251 -13.99 -10.92 -3.07 

 

Table 9. Class Additions with Known Less Than Additive Effects[120, 121, 129, 130] 

Added 
Classes 

Existing   
Classes 

Class Addition 
Events ∆SBP 

Control 
∆SBP 

Adjusted 
∆SBP 

CCB BB 80 -18.35 -12.62 -5.73 

ARB BB 62 -14.90 -12.62 -2.29 

ACEI BB 49 -13.45 -12.62 -0.83 

BB CCB 36 -12.72 -11.03 -1.69 

BB CCB | TD | ARB 23 -8.43 -9.88 1.44 

BB ACEI 22 -8.45 -11.71 3.26 

BB ARB 22 -12.32 -10.72 -1.59 

ARB CCB | ACEI 21 -9.14 -10.84 1.70 

BB CCB | ACEI 17 -10.71 -10.84 0.13 

BB CCB | TD | ACEI 15 -7.00 -11.34 4.34 

ARB CCB | BB 14 -13.29 -10.78 -2.51 

ARB TD | ACEI 14 -6.64 -11.95 5.30 

BB CCB | ARB 14 -10.00 -9.68 -0.32 

BB TD | ARB 14 -14.50 -11.76 -2.74 

ARB ACEI | CCB 13 -9.92 -10.62 0.70 
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Total, Weighted Avg. 416 -12.96 -11.202 -1.76 

 

 

Table 10. ∆SBP for Dose Increases to Less Than Standard vs. Standard or Higher 

Dose Increase 
Intensity 

Dose Increase 
Events 

∆SBP 
Control 
∆SBP 

Adjusted 
∆SBP 

<Std 658 -12.59 -10.70 -1.89 

Std+ 2755 -12.75 -10.70 -2.04 

<100% 942 -11.08 -10.70 -0.38 

100%+ 2471 -13.34 -10.70 -2.64 

 

 

 

Discussion 

In this research study, a large observational dataset was used to compare the efficacy of adding new 

medications vs. increasing dose of existing medication in hypertension treatment. Adding a new 

medication was associated with a slightly greater reduction in mean SBP at the next visit. These results 

support the previous findings by Aubert et al.[65] The findings of lower SBP after follow-up for class 

additions was consistent for specific demographic variables, specific existing AH classes, and among 

different AH class combinations. Finally, the study found that doubling the dose of medication resulted 

in a larger reduction in SBP compared to increasing the dose from less than standard to standard or 

higher. These findings are important due to the limited real-world evidence for effectiveness of these 

two AH treatment strategies from observational data, and due to the limited guidance on how to 

intensify treatment after first-line therapy. 
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The use of structured electronic health record (EHR) data in this study limits the strength of evidence in 

several ways. Inconsistencies in the data due to lack of standardization across healthcare systems and 

providers can decrease its accuracy and usefulness for research purposes. Data entry errors and missing 

information also limit the accuracy and reliability of the study.[117-119] Additionally, the limited scope 

of the data, which does not include social determinants of health or narrative clinical notes, may affect 

the generalizability and applicability of the findings. The investigators were also removed from the point 

of data abstraction, which prevented them from acquiring additional information. To improve the 

strength of future analysis, manual chart review and the use of free-text clinical notes may be necessary 

to validate computable phenotypes and improve the clinical information for modeling. 

 

 

Conclusion 

In conclusion, this study provides quasi-experimental evidence for the magnitude of SBP reduction that 

can be expected from the two types of treatment intensification: adding a new class and increasing dose 

of an existing medication. the estimated effect of treatment can help guide clinicians and patience and 

their expectations for BP controlling therapies and their decision making when increasing therapy and 

choosing between different options for intensification and different types of medication classes. 
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VIII. DISCUSSION & CONCLUSION 

The three studies presented in this paper aimed to evaluate the extent of therapeutic inertia and factors 

associated with it among patients with hypertension in different healthcare organizations. The studies 

analyzed data from electronic health records of patients with hypertension and found varying rates of 

therapeutic inertia, as well as factors that affect the likelihood of therapeutic intensification. 

Study 1 analyzed data from 120,755 patients from five different healthcare organizations and found an 

average therapeutic intensification rate of 15.9%, with the highest rate occurring in HCO D (19.5%) and 

the lowest at HCO E (13.3%). The study also found a fairly consistent therapeutic inertia rate between all 

five HCOs. The study developed predictive models for modeling therapeutic intensification events using 

data from electronic health records of patients with hypertension. The models included factors such as 

SBP, DBP, patient demographics, encounter attributes, and antihypertensive medications. The results 

indicated that SBP and DBP at the current visit are important predictors of therapeutic intensification. 

The study also found that patient demographics and encounter attributes such as visit frequency and 

days since the last BP visit are important predictors of therapeutic intensification. Overall, the study 

provided valuable insight into the factors that clinicians consider when deciding whether or not to 

intensify antihypertensive therapy. 

Study 2 aimed to investigate the association between provider characteristics and therapeutic inertia in 

a single healthcare organization. The study analyzed data from 44,418 patients and 347 providers and 

found that provider characteristics such as gender, race, and years of experience were not significantly 

associated with therapeutic inertia. However, the study did find that providers with a higher patient 

panel size and higher specialty care referrals had lower odds of therapeutic inertia. The study suggests 

that provider workload and referral patterns may influence therapeutic inertia. 
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Study 3 evaluated the impact of clinical decision support (CDS) on therapeutic inertia and blood pressure 

control among patients with hypertension. The study analyzed data from 2,230 patients and found that 

the use of CDS resulted in a significant reduction in therapeutic inertia and improved blood pressure 

control. The study suggests that the use of CDS can be an effective tool in reducing therapeutic inertia 

and improving blood pressure control among patients with hypertension. 

The studies presented in this paper provide important insights into the prevalence and factors 

associated with therapeutic inertia among patients with hypertension. The studies confirm previous 

consensus that SBP and DBP at the current visit are important predictors of therapeutic intensification. 

The studies also provide additional evidence that patient demographics and encounter attributes, such 

as visit frequency and age, are important predictors of therapeutic intensification. Furthermore, the 

studies suggest that provider workload and referral patterns may influence therapeutic inertia and that 

the use of CDS can be an effective tool in reducing therapeutic inertia and improving blood pressure 

control among patients with hypertension. 

One limitation of these studies is that they relied on secondary observational data extracted from 

electronic health records, which may not always be complete, accurate, or consistent. Additionally, 

missing information and data entry errors are common in electronic health records, which may lead to 

measurement bias or detection bias. Another limitation is that the predictive models developed in Study 

1 had moderate to good performance, but further research is needed to validate the models on larger 

and more diverse datasets. Finally, the studies did not assess the reasons behind therapeutic inertia, 

which limits the understanding of the factors contributing to this phenomenon. 
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In conclusion, the studies presented in this paper provide important insights into the factors associated 

with therapeutic inertia among patients with hypertension. The findings can inform clinical decision-

making and the development of interventions aimed at reducing therapeutic inertia and improving 

blood pressure control among patients with hypertension. 
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