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ABSTRACT 

The focus of this research is to investigate the effects of allostery on the 

function/activity of an enzyme, human immunodeficiency virus type 1 (HIV-1) protease, 

using well-defined statistical analyses of the dynamic changes of the protein and variants 

with unique single point substitutions 1. The experimental data1 evaluated here only 

characterized HIV-1 protease with one of its potential target substrates. Probing the 

dynamic interactions of the residues of an enzyme and its variants can offer insight of the 

developmental importance for allosteric signaling and their connection to a protein’s 

function. The realignment of the secondary structure elements can modulate the mobility 

along with the frequency of residue contacts as well as which residues are making contact 

together2-5. We postulate that if there are more contacts occurring within a structure the 

mobility is being constrained and therefore gaining novel contacts can negatively influence 

the function of a protein.  

 

The evolutionary importance of protein dynamics is probed by analyzing the 

residue positions possessing significant correlations and the relationship between 

experimental information1 (variant activities). We propose that the correlated dynamics of 

residues observed to have considerable correlations, if disrupted, can be used to infer the 

function of HIV-1 protease and its variants. Given the robustness of HIV-1 protease the 

identification of any significant constraint imposed on the dynamics from a potential 

allosteric site found to disrupt the catalytic activity of the variant is not plainly evident. We 
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also develop machine learning (ML) algorithms to predict the protein function/activity 

change caused by a single point substitution by using the DCC of each residue pair. 

Recognition of any substantial association between the dynamics of specific residues and 

allosteric communication or mechanism requires detailed examination of the dynamics of 

HIV-1 protease and its variants.  

 

We also explore the non-linear dependency between each pair of residues using 

Mutual Information (MI) and how it can influence the dynamics of HIV-1 protease and its 

variants. We suggest that if the residues of a protein receive more or less information than 

that of the WT it will adversely impact the function of the protein and can be used to support 

the classification of a variant structure. Furthermore, using the MI of residues obtained 

from the MD simulations for the HIV-1 protease structure, we build a ML model to predict 

a protein’s change in function caused by a single point substitution. Effectively the 

mobility, dynamics, and non-linear features tested in these studies are found to be useful 

towards the prediction of potentially drug resistant substitutions related to the catalytic 

efficiency of HIV-1 protease and the variants. 
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CHAPTER I 

 

INTRODUCTION 

 

Protein Fundamentals 

 

 Macromolecules, such as proteins, are dynamic structures made from polymerized 

amino acid compounds. Just like electrons, neutrons and protons are the building blocks of 

an atom/element, amino acids are the building blocks of a protein. Amino acids are organic 

compounds, with the 20 most common amino acids being composed of 5 primary elements 

(carbon, nitrogen, oxygen, sulfur, and hydrogen) 6-8. Each amino acid has an amino group 

and carboxyl group bridged by an alpha carbon (Cα), Figure 1.1A. The most distinguishing 

characteristic of an amino acid is the side chain (R group) stemming from the Cα; each side 

chain has unique chemical and physical properties that make a protein capable of adapting 

to their environment and purpose of completing a necessary function6-8, Figure 1.1A. Each 

side chain consists of a different number and/or arrangement of atoms with a terminal 

functional group such as hydroxyl, carboxyl, and alkyl group as well as a few special 

cases6-8. These functional groups generally provide the protein the ability to function as 

both hydrophilic and lipophilic mediators, meaning they are well suited to function in a 

polar solvent (water) as well as interact with non-polar substrates or lipids6-8. An amino 

acid sequence is translated from tRNA (aminoacyl-transfer ribonucleic acid) and mRNA 

(messenger ribonucleic acid) through the process of a condensation reaction, where the 
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lone pair of electrons from the amino group of one amino acid attacks the electron deficient 

carboxyl carbon of another amino acid forming a covalent bond, also called a peptide bond, 

and subsequently forming water as a byproduct6-10. As more amino acids are linked 

together from N (amino end) to C (carboxyl end) terminus a polypeptide chain is formed, 

with the Cα being the central node and linkage of peptide bonds making up the primary 

structure or backbone. 

 

Amino Acid Chain Dihedral Angle 

https://www.creative-proteomics.com/ 

Secondary Structure 

A) 

B) C) 

D) 
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Figure 1.1: Shows the A) basic amino acid structure, B) amino acid chain formation, C) 
dihedral angle, and D) secondary structure elements. 

 

  The next step for a polypeptide is the formation of secondary structure elements, 

these are unique characteristics of the backbone that form due to the rotation about the 

plane (highlighted regions) that contains the peptide bond, Figure 1.1B. These rotations are 

measured as the dihedral angle or the measure of rotation (ɸ and ψ angle) about the peptide 

bond between neighboring alpha carbons11-14, Figure 1.1C. Essentially, the lowest energy 

state is when both Ca are 180o apart (anti) which is referred to as a trans conformation, 

however the inclusion of the side chain and steric interactions produces various angles that 

can be more favorable as residue interactions occur11-14, Figure 1.1B&C. There are 4 major 

secondary structure elements (α-helices, β-sheets, coils and turns) with the α-helices and 

β-sheets being more rigid in nature as they tend to be more ordered, have less mobility and 

share in hydrogen bonding networks11-14, Figure 1.1D. Coils and turns are disordered 

sections of polypeptide chain that tend to have a greater range of mobility due to less 

restriction of rotation of the ɸ and ψ angles15, 16, Figure 1.1B-D.  

 

The collection of secondary structure elements is considered as a tertiary structure 

or the folded polypeptide chain contrived of a complex hydrogen bonding networks and 

dynamic residue interactions17-20, Figure 1.1D. Some tertiary structures can function 

independent of additional configurations and are termed as a monomeric chain18, 21-23, 

Figure 1.1D. However, most monomers can and will interact with one or more other 

monomers through oligomerization via non-covalent protein-protein interactions3, 18, 24. 
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The protein databank (PDB)6, 10, 25, 26 reports that the majority of the known proteins are 

asymmetrical, which is weighed heavily on monomers though dimers or higher-level 

oligomers of the structure may exist. Consequently, oligomeric proteins can form via 

homomeric (2 or more of identical amino acid chains) or heteromeric (2 or more non-

identical amino acid chains) interactions with other monomers6, 10, 25-27. Homomeric 

proteins are found to have symmetry whereas heteromeric proteins are asymmetric, with 

homomeric proteins making up the majority of the observed proteins in a cell 6, 10, 25-27. It 

is highly efficient for multiple homomeric subunits to come together and operate as a 

collective entity, particularly in the case of structural components of the cell 6, 10, 25-27. 

 

A protein is a fundamental component of biological systems that make up the 

structural component as well as the hardware and machinery that respond to stimuli 6, 10, 25-

27. The role of a protein is encoded based on its amino acid sequence, evolved such that, 

minor changes to the amino sequence can alter the output of the system and drive the 

system to be unstable 28-30. Proteins can be classified into several groups that are known to 

perform specific processes within a biological system 6, 10, 25-27. Structural proteins are 

fibrous proteins that make up the skeleton of the cell. While transporters, antibodies, 

messenger, and receptor, as well as enzymes are a major part of most metabolomic 

pathways for a biological system  31, 32. In these studies, I focus on enzymes. Enzymes are 

a specific type of protein known for carrying out necessary catalytic processes on small 

and large bio/molecules; depending on their purpose they can either promote or disrupt 

cellular function 33-37. Enzymes are highly important and efficient at transforming a 
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substrate into a necessary product 33-37. There are a number of different types of enzymes, 

but the research presented here focuses on a protease 33-37. A protease is responsible for 

breaking down other proteins, a particular important function that can be used for the 

removal or conversion of un/necessary proteins 33-37.  

 

The most common amino acid sequence that makes up a protein structure is termed 

the wild-type (WT)  sequence. The low frequency side chain fluctuations from each residue 

of the WT are uniquely characteristic of that amino acid sequence 38, 39. Thus, the WT is 

encoded and tuned to perform a specific task to meet the demand of the system. However, 

due to improper translation/transcription process substitutions, insertions or deletions of an 

amino acid occur producing variant structures 40-43. Variant structures retain most of the 

amino acid sequence from the WT depending on the number of edits to the amino acid 

sequence that occur but for simplicity we will focus on single point substitutions. A change 

from a single point substitution  may account for about a 1% difference from the WT, but 

can result in variants that can range from having greater or no activity towards a common 

substrate 40-43. The consequences that these conformational changes have locally that affect 

another non-adjoining region can be addressed by characterizing the alterations caused by 

packing defects. Changes caused by a single point substitution are often not directly 

connected to a known active site and some are deemed as allosteric “hotspots” 44-50. 

Allostery is a process where a change that occurs at one site influences the activity of 

another non-adjoining site 44-50. The mechanism of action for allosteric regulation is not 

very well understood, especially for changes that occur at distant sites. The study of intra-
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protein communication, networks, regulation, and stability can provide scientists the 

methods to design and understand drug delivery, disease, and cellular processes better 50-

54. Allosteric processes are found to be highly influential towards viral and disease 

progression as well as regulating the activity of an enzyme in order to preserve or disrupt 

cellular function 50-54. There are a number of approaches developed towards interpreting 

how allosteric affects propagate, though replication of the results or identification in other 

novel systems is often difficult. 

 

When performing in-silico modeling of protein structures the Protein Data Bank 

(PDB) 25, 26, 55-62 is one of the largest repositories of data regarding protein structure details. 

The structural details for a protein are obtained through analytical experimental methods 

such as nuclear magnetic resonance (NMR) and single-crystal X-ray diffraction methods 

that are capable of determining the position and arrangement of the elements of a structure 

with a resolutions close to 3.5Å or better 25, 26, 55-62. PDB files contain the structural details 

that account for the 3-dimensional position of each element in the structure 25, 26, 55-62. Most 

of the experimental processes used to identify a protein structure use either cryogenic 

temperatures or other processes that can trap potential energy in the crystalized protein 

structure. Therefore, when inputting a PDB file into an in-silico model it is essential to take 

precautionary measures to minimize, relax and temper the excess stress trapped in the 

crystal structure to ensure a more desirable outcome from the statistical methods 63-69. After 

minimizing and tempering the system, the protein can now be studied using molecular 

dynamics or other statistical methods to identify the mechanism of interest.  
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Molecular Dynamics 

 

The use of well-developed theoretical models combined with evolving 

computational methods offers  computational scientists the capabilities to advance the 

knowledge of the dynamic characteristics of protein structures 70-72. Numerical techniques, 

such as molecular dynamics (MD) simulations, grant theorists the ability to investigate 

changes in the dynamics of a system to acquire strong clues towards mechanisms that 

influence the function of a system 52, 73-78. The studies represented here focus on conducting 

atomistic molecular dynamic (MD) simulations using NAMD, where all the atoms of the 

system are accounted for to achieve the highest amount of detail of the system 79, 80. MD 

simulations can be performed using either an atomistic (all atom) or coarse-grained 

(reduced representation) model, coarse graining is different as it uses a reduced 

representation of the system 79, 80. An atomistic model is best suited for capturing refined 

detail of a system but is computational more costly, whereas a coarse-grained model offers 

less refined detail and is often used for identifying general characteristics that require less 

computational cost 81-83. Both models implement conditional parameters intended to 

approximate the environmental conditions to acquire a reasonable outcome (dynamics) of 

the system 81-83. A thorough analysis of the MD production must be performed in order to 

support whether the system has converged or equilibrated 47, 54, 84-86. Using a well 

equilibrated system can strengthen the accuracy and certainty that the statistical analysis 

techniques applied offer a legitimate assessment of the system 47, 54, 84-86. In summary, the 
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use of a well composed in-silico model can be used to better understand certain 

mechanisms of action, like allosteric communication, impact the function of an enzyme. 

 

There are various methods developed that can be used to analyze the production 

from a MD simulation with the intent of extracting, isolating, and uncovering beneficial 

details of the components of a system 63-69. The output of an MD simulation combined with 

the chemical and physical properties associated with the system is highly dimensional and 

requires well thought out dimensionality reduction techniques in order to identify trends 

and make the output more comprehensible. The first approach taken looks to characterize 

the mobility of the system by seeking to identify the allosteric pathways along with 

allosteric “hotspots”. Mobility is a multifaceted component of a protein such that the global 

structure requires flexibility and rigidity to adjust to the changes when interacting with a 

substrate as well as the solvent 87-89.  

 

Contacts 

 

A substitution alters the space, voids, or cavities that exists in the WT creating a 

reduction or expansion to the surrounding area that can cause denser or looser packing 

throughout the variant 90-97. The realignment caused by a substitution can change the 

residue contacts that are common to the WT as a result from the adjustments to the packing 

defects90-97. The adjustments to the internal packing can alter the interface between the 

protein and the solvent, the interface between small/large molecules, or respiratory actions 
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observed from the pulsation of the low frequency normal modes at longer timescales 90-94. 

Contact maps from the side chain interactions of the residues within a protein are 

commonly used by researchers as a means to interpret significant changes caused by 

realignments of a substitution90-97. From a theoretical standpoint, a contact is seen to occur 

within a structure when 2 residues come within ~3Å of each other, the median distance 

found for hydrogen bonding to occur 90-97. Similarly, van der Waals interactions, though 

weak, dictate as two objects come closer together, due to non-attractive forces, the more 

they are repelled apart 34, 98-100. In other words, if more residues are coming in contact with 

one another the mobility of the structure is constrained. Lowered van der Waals contact 

densities have been connected to less thermostability and accounts for a looser packing 

density of viral proteins, especially for RNA viral proteins 95-97, 101. Consequently, if an 

enzyme gains or loses contacts it should adversely affect the function of an enzyme. 

 

Many of the current approaches employed to investigate the mobility along with 

the packing defects question the thermodynamic stability of the structure, particularly for 

extremophilic proteins 88, 102-104. Extremophilic proteins,  such as thermophilic or barophilic 

proteins, are adeptly unique as they can operate at higher temperatures and pressures than 

that commonly observed in mesophilic organisms 88, 102-104. Mesophilic proteins thrive at 

moderate temperatures and pressures that support terrestrial life88, 102-104. Both thermophilic 

and mesophilic proteins have a hydrophobic core, but it is suggested that hydrophobic 

properties of the core found from thermophilic proteins allow for much more compacted 

core 88, 102-104. Having a more compact core would suggest that a thermophilic protein loses 
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the nature of packing that supports the function of the WT under mesophilic or moderate 

temperatures and therefore show an overall increase in contacts 88, 102-104. 

 

Stability 

 

The change in Gibbs free energy (ΔG or dG) is able to characterize the stability of 

a protein and commonly approached as the root for explaining the mobility of the system 

33, 105-107. MD simulations can be used for the study of how mechanical and thermal energy 

is able to perform work by a system 33, 105-107. Therefore, evaluating the change in Gibbs 

free energy (ΔG) contains components regarding the mobility of the structure, but also 

includes details relating to other features 102, 103, 108-110. By resolving the binding or folding 

free energy change upon substitution (ΔΔG or ddG) researchers offer insight into the 

influences of a single point substitution 102, 103, 108-110. It is observed that the electrostatic 

interactions between the binding pocket and the substrate are often the primary source 

acting on the binding of a substrate to an enzyme, though the dynamics plays a contributing 

role 102, 103, 108-110. Research suggests that the changes in stability caused by a single point 

substitution supports the observed free energy change upon substitution (ΔΔG) 102, 103, 108-

110. However, what is actually observable doesn’t adequately resemble the thermodynamic 

profile of a protein structure in-vitro/in-vivo 102, 103, 108-110. Thus, providing a reasonable 

characterization of the thermodynamic stability of a protein is regarded as a highly sought-

after concept by most theoretical bio-physicists and bio-chemists. Can the change in 

stability offer insight towards the function of a protein and its variants? Does stability offer 
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any detail towards the rigidity or flexibility of the side chain motion? Consequently, the 

correlations between protein function, stability and mobility need to be addressed 

adequately. 

 

The mechanistic nature of thermodynamic stability is very complex. Too often it is 

thought of as absolute conditions, where a protein folds or unfolds, binds or does not bind 

34, 89, 111-113. It can be quite certain a protein will fold or unfold when faced against extreme 

environmental conditions, but of course binding and catalysis is a much different aspect 34, 

89, 111-113. Mostly, extreme environmental conditions can be thought of as higher or lower 

than normal temperatures as well as higher or lower than normal pressure. These extreme 

environmental conditions can be unfavorable for proteins and can lead to thermo-

denaturing. While there are other situations, like chemical denaturing, that can drive a 

protein to become unstable or even unfold 34, 89, 111-113. Some variants lack the functional 

characteristics of an active counterpart (WT or CA variant) and the question often asked is 

whether or not it is able to fold. Non-functional variants are complex and though they lack 

activity towards a common substrate they may have preference towards different target 

substrates 34, 89, 111-113. In some other cases non-functional variants may be unable to fold 

but they may also be in a fixed opened or closed conformation that is unsuitable for normal 

function 34, 89, 111-113. When considering the completion of all of the steps for the binding of 

substrate followed by catalysis then release of a substrate, it can only occur from an active 

variant (including the WT), Figure 1.2. It is very unlikely for an inactive variant to complete 

all 3 steps for the catalysis of a substrate, considering the completion of all three steps is 
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reserved for the WT and active variants. It is more likely that an inactive variant only 

completes one or maybe two of the three main steps (please see Figure 1.2 and the 

corresponding caption) for the catalysis of a substrate 34, 89, 111-113. An inactive variant may 

be able to bind and release (but not catalyze) or it can bind and catalyze (but not release) 

as well as be completely non-interactive with a substrate 34, 89, 111-113.  

 

 

Figure 1.2: Reaction diagram for the folding free energy change (A) and binding free energy change (B) 
of a protein structure. Figure 1.2 (A) shows the three steps of folding of a protein; (1) unfolded monomer, 
(2) the formation of secondary structure elements, and (3) the completely folded monomer. Figure 1.2 
(B) shows the three steps associated with the binding and catalysis of a substrate; enzyme (E) + substrate 
(S), the ES complex, and the E + product (P). 

 

In general, it would be more logical to characterize the free energy change of binding 

or folding upon substitution (ΔΔG) as a scale of mobility, how flexible or rigid is the 

structure 34, 89, 111-113. Essentially, if the folding/binding free energy is found to be stable or 

unstable it cannot be considered as conclusive, such that it will or will not fold or bind the 

substrate. In many ways, much of the literature and resources used to evaluate the folding 

or binding free energy of a protein include additional methods that characterize the 
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flexibility of a structure, but there are still many challenges and variables that need to be 

addressed to best characterize a protein’s mobility 109, 114-116.  

 

Dynamic Cross Correlation  

 

The next method approached to examine the MD runs and structure of HIV-1 

protease is a dynamic cross correlation (DCC) 117-120. DCC is a method that can be used to 

identify the pairwise linear dependency of two components from a single conformational 

state or the ensemble of conformational states from the dynamics of a protein 65, 121-125. The 

DCC pairwise linear dependency function normalizes the relationship between two 

components117-120. If component 1 is at position i and component 2 is at position j, the 

normalization is described by the Pearson correlation coefficient between position i and j 

ranging from 1 (correlated) to -1 (anti-correlated). The output from a DCC is a r2 

symmetrical matrix, where r is the number of residues 117-120. A major benefit from a DCC 

matrix is that rigid secondary structure elements tend to be highly correlated and easily 

show disfunction 117-120. Consequently, there are r2 data attained from a DCC along with 

the fact that MD simulations of the same system can vary slightly each time it is conducted 

identification of significant changes versus systematic noise makes it tenuous to directly 

compare a larger number of variants 47, 126-130. Many researchers have proposed the 

evaluation of linear correlations could be a possible means to interpret catalytic function 

and/or observation of the allosteric pathways within a protein 47, 126-130. 
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Mutual Information 

 

An alternative method to DCC for investigating the residue interactions within a 

protein is Mutual Information (MI), which allows for the identification of both linear and 

non-linear mutual dependency between two variables 131-133. MI is a statistical method 

within information theory that focuses on the communication between  data sets 131, 132, 134-

136. The theory behind MI was developed by Shannon in 1948; Shannon defined entropy 

as a measure of information, choice and uncertainty, associated with the variables being 

studied, analogous to the concept of entropy from thermodynamics 131, 132. Many have 

adopted this theory to understand the uncertainty and noise associated with a biological, 

chemical, or physical phenomena 67, 134-137. It is remarked that as the choice becomes 

uncertain the entropy increases, greater than 0, information contained within an outcome 

increases as the uncertainty of the system/observation increases due to more possible 

outcomes 131, 132, eq. 1.1. When considering joint entropy ( H(Ri;Rj) ), the uncertainty 

remains the same as Shannon entropy, whereas knowing more about the shared states of 

residues i and j decreases the joint distribution, eq. 1.2 67, 134-137. 

 

 

 

 

𝐼(𝑅𝑖; 𝑅𝑗) =  ∑ ∑ 𝑝(𝑟𝑖,  𝑟𝑗) 𝑙𝑜𝑔
𝑝(𝑟𝑖, 𝑟𝑗)

𝑝(𝑟𝑖)𝑝(𝑟𝑗)
(𝑟𝑗∊𝑅𝑗)(𝑟𝑖∊𝑅𝑖)

   eq 1.2 

𝐻(𝑅𝑖; 𝑅𝑗) = −∑ ∑ 𝑝(𝑟𝑖,  𝑟𝑗) 𝑙𝑜𝑔 𝑝(𝑟𝑖,  𝑟𝑗)(𝑟𝑗∊𝑅𝑗)(𝑟𝑖∊𝑅𝑖)
    eq 1.1 
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Shannon entropy can be applied to acquire details that can be used to identify the 

coevolutionary dependency in multiple sequence alignments of residue pairs, something 

that was indistinguishable from the previous study of DCC 67, 134-137. Most co-evolution 

studies seek to identify residues within a specific distance, often neighboring, that coevolve 

67, 134-137. Some of the co-evolution studies question whether distant residue pairs coevolve 

as well but not much has been found to support this theory 67, 134-137. Much of the 

information discussed in the literature speculates it can be possible, but they also postulate 

that distant residue communication is less of a signal and mostly background noise 138-140. 

 

Consequently, if residue i affects residue j an allosteric effect may not be evident 

and a deeper understanding of the topological features that effect distant residues and 

ultimately a protein’s function should be further evaluated. Residues can pack close 

together and provide a means for the amino acid sequence to generate the secondary 

structures 28-30. Each residue has specific chemical features that effect the surrounding 

environment and since proteins are dynamic, the degrees of freedom between residues can 

vary depending on the neighboring residues 28-30. Within a protein structure each amino 

acid residue experiences many different environmental conditions and interactions, such 

that surface residues mostly interact with the solvent, bulk and interface residues primarily 

associate with other residues, and binding pocket residues come in contact with the solute 

or solvent, if accessible 93, 141-145. Consequently, the forces and interactions imposed on 

each residue can vary significantly, depending on the location and the neighboring 
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residues, constituting a considerable factor for the identity and/or pathway of allosteric 

communication 23, 50, 76, 146. 

 

HIV-1 Protease 

 

To better understand how the function/activity of an enzyme, human 

immunodeficiency virus type 1 (HIV-1)1, 34, 147-154 protease, and its variants can be modified 

from allosteric interactions we analyze the dynamic changes of the protein and variants 

with unique single point substitutions1. Incidentally, HIV-1 protease is a promiscuous 

enzyme and the experimental data1 evaluated here only characterized HIV-1 protease with 

one of its potential target substrates. Using well-defined statistical methods and techniques 

we seek to develop a clear understanding of how allosteric interactions are processed from 

one residue to the next within the symmetrical robust HIV-1 protease1, 34, 147-154.  

 

In my study, the structures of the HIV-1 protease variants with a known 

experimentally reported13 activity are exhaustively tested to better understand how 

dynamics influences allosteric signaling. Probing the dynamic interactions of the residues 

of an enzyme and its variants can offer insight of the developmental importance for 

allosteric signaling and their connection to a protein’s function 44, 74, 97, 155-165. The chapters 

in this study were designed as following: Chapter II we investigate how a single point 

substitution alters the conformational landscape of HIV-1 protease variants 13, 109, 165-175. 

The conformational changes obtained from MD simulations were evaluated using RMSF, 
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the residue contacts between non-neighboring residues and the folding/binding free energy 

changes upon a corresponding substitution to explore the relationship between the mobility 

of the structure upon a single point substitution and the protein’s function. Chapter III, we 

seek to understand whether the residue positions found to adopt significant correlations 

have any evolutionary importance based on their relationship towards the function of the 

HIV-1 protease variants 13, 109, 165-175. We examine the vitality of these evolutionarily 

important residues using dynamic cross-correlation (DCC) to identify if there is a 

relationship between experimental information1 (variant activities) and the protein 

dynamics of HIV-1 protease. The identification of any significant constraint imposed on 

the dynamics can lead researchers to expose potential allosteric sites found to disrupt the 

catalytic activity of the variant. Recognition of any substantial association between the 

dynamics of specific residues and allosteric communication or mechanism requires 

detailed examination of the dynamics of HIV-1 protease and its variants 109, 165-175. In 

Chapter IV we explore the non-linear dependency using the Mutual Information (MI) 

between each residue pair of the variant structures of HIV-1 protease, to investigate how 

the orthogonal information can assist us to understand the change in protein function upon 

single point substitution. We also consider how MI can be used as a metric for identifying 

allosteric “hotspots”. Due to the robust nature of HIV-1 protease and the dimensionality of 

the results, we are also able to predict the protein function/activity change caused by a 

single point substitution given the MI from the MD simulation of the protein using ML 

algorithms. Effectively the mobility, dynamics, and non-linear features tested in these 
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studies are found to be useful towards the prediction of potentially drug resistant 

substitutions related to the catalytic efficiency of HIV-1 protease and the variants.  

 

CHAPTER II 

 

CHANGES IN THE MOBILITY AND DYNAMICS WHICH IMPOSE 

CONSTRAINTS ON THE FUNCTION OF A PROTEIN 

 

Introduction 

 

 Macromolecules, such as proteins, are dynamic structures that operate as the 

fundamental machinery of biological systems needed to ensure optimal biological function 

of a host 28-30. Proteins are versatile biological tools used to form, align, transcribe, as well 

as catalyze cellular/metabolic components in support of proper cellular function of the host 

31, 32. Here we focus on enzymes, particularly enzymes found to regulate the viral lifecycle 

of HIV by catalyzing the matrix capsid (MA/CA) polypeptide. Enzymes are particularly 

useful at either promoting or disrupting cellular function, and in many ways, it is an 

essential part of their job 31, 32.  

 

Proteins are composed of amino acids linked together by peptide bonds forming a 

polypeptide chain 28-30. Each amino acid residue is joined from an N (amine end) to C 
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(carboxyl end) terminus with a side chain stemming from the Cα (alpha carbon) 28-30. The 

Cα is the central link from the side chains that makes up the backbone of the polypeptide 

chain. There are many distinguishing chemical and physical characteristics of an amino 

acid, with the functional groups associated with the side chain dictating their general 

nature. Each amino acid residue provides a unique local environment derived from the 

chemical and physical properties of the functional groups associated with its side chain31, 

32. The chemical and physical features of any residue contribute to the thermodynamic 

nature of the local and global environment 28-30. A protein takes advantage of each residues 

local environment that are, in turn, adapted to govern a protein's global behavior31, 32.  

 

The most common sequence of amino acids for a protein is known as the wild-type 

(WT) structure. Though during the transcription process alterations to the amino acid 

sequence is often changed that leads to the rise of variants of the protein due to 

substitutions, deletions, or insertions. Presently we focus on single point substitutions as 

they are the common case study towards assessing the evolutionary function of a protein 

54, 159, 166. Variants can be found to express greater, less, or no catalytic function towards a 

common substrate, with regard to the activity expressed by the WT 54, 159, 166. A single point 

substitution can transform the function of local environment and can also influence changes 

to occur at another non-adjoining distant site/s of the enzyme, which is known as allostery 

44-50. The study of single point substitutions can aid in the classification of regulatory 

pathways and networks that dictate the role of a protein’s dynamics 109, 167-169. 

Understanding these regulatory processes can outline how the gain or loss of function can 
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be correlated with a protein’s dynamics 109, 167-169. Interpreting how allosteric effects 

propagate, why a change at “A” can affect the function at “Z”, is a major area of focus 

within the bio-physical sciences 44-50. In general, a single point substitution only makes up 

1% or a smaller fraction of the protein structure, yet the influences on the functionality of 

the global structure results in variants with greater or no activity 54, 159, 166. Alternatively, 

much of the relative interactions from the common residues between the variant (VT) and 

WT continue to stimulate normal modes of activity and can suppress any observed 

allosteric behavior 54, 159, 166. Nonetheless, substitutions are highly important for regulating 

the activity of an enzyme as a means to preserve cellular function 50-54.  

 

Substitutions allow for a local realignment/adjustment that effects the adjoining 

neighboring residues and secondary structure, these local realignments can also cause 

changes to occur at a distant residues or regions of the structure 90, 142, 170-172. These 

adjustments disrupt the stability of a structure by promoting rigidity or flexibility at the 

substitution site as well as other regions of the protein 90, 142, 170-172. Some residues can be 

characterized by their ability to promote such changes, such as glycine, being the smallest 

amino acid, is more often found to increase flexibility. Whereas larger amino acids can be 

considered to cause more rigidity, however the impact any one residue has is not very well 

understood. This is mainly due to the nature of the exchange, substitutions that alter the 

function of the enzyme vary depending on the chemical and physical nature of the residue 

exchange 42, 173-178. Significant efforts have been made to examine a protein’s dynamics in 

order to interpret how a residue can be linked to an allosteric “hotspot” 107, 179-181. 
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Interpreting how these hotspots work can assist in enhanced targeting of druggable sites by 

either enabling or disabling an enzyme’s function allowing for improved control and 

treatment over a disease 107, 179-181.  

  

Here we study the human immunodeficiency virus type 1 (HIV-1) protease and 

several of its variants to better understand how allosteric hotspots influence a protein’s 

dynamics. HIV-1 protease is an essential enzyme in the maturation process for the viral 

replication in the immature AIDS (acquired immunodeficiency virus) virus 182. HIV-1 

protease is responsible for the cleavage of the matrix-capsid (MA/CA) substrate and eleven 

other sites from Gag and Gag-Pol poly protein complexes required for the viral replication 

process182. HIV-1 protease has two identical 99-amino acid residue chains that make up 

the robust C2 symmetrical dimer 183-185. Symmetry has been observed to contribute to the 

evolutionary stability and cooperative interactions between subunits of many oligomeric 

proteins, like that of HIV-1 protease 54, 186-190. HIV-1 protease is scrutinized heavily in both 

theoretical and experimental trials, particularly that of drug trials of protease inhibitors, 

due to its robustness and role in the viral life cycle 191-193. HIV-1 protease can rapidly 

produce functional and nonfunctional variants due to the inefficient replication process that 

allows for competing variant structures 191-193. Some of these competing variant structures 

can lead to drug resistance and poor binding of protease inhibitors 191-193. In some cases, 

the competitive variants can be preferentially selected for viral replication in the presence 

of a protease inhibitor drug 191-193. This preferential selection can be thought of as 

enzymatic evolution.  
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Here we institute molecular dynamic (MD) simulations to capture the low and high 

frequency harmonic and anharmonic motion from the side-chain fluctuations of an enzyme, 

HIV-1 protease 122, 194-198. Experimental data is a greater resource for interpreting how 

allosteric modulations can be used to regulate the activity of competitive variants of an 

enzyme like HIV-1 protease. Martinez et. al.1 examined the catalytic activity of 107 

variants of HIV-1 protease towards the cleavage of matrix-capsid (MA/CA) polypeptide 

domain. The variants are found to have a single amino acid substitution repeated in each 

chain of the C2 symmetrical dimer, Figure 2.1.  

 

Figure 2.1: The figure shown above is a front and back view of the HIV-1 protease (PDB 

id: 1hxw). The colored mutant residue positions are highlighted in a single chain, though 

each substitution was applied to both chains, to show the location of the catalytically 

inactive (CI) and catalytically active (CA) variant residue positions (red and blue 

respectively). Of the 99 common residues that make up each chain, there are 42 unique 

positions are found to cause an inactive variant and 12 positions are found to cause 

activity equal or greater than the WT structure 1. There are two residue positions that 

have both zero and greater activity, residues K20 and I64. The K20 CA residue is K20R, 

a basic-to-basic side chain substitution, but the K20 CI residue is K20E, a basic to acidic 

side chain substitution. Similarly, for I64 CA residue is I64V, a non-polar to non-polar 

side chain substitution, whereas the CI residue is I64T, a non-polar to polar side chain 

substitution. There are also a number of redundant positions that are shown to have zero 

activity 1.  

Front Back 
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The in-vitro experimental data1 presents variants that can be classified as either 

having equal to or greater than, moderate, or have zero activity compared to the WT. Here 

we focus on the 12 variants characterized as having equivalent or greater activity (colored 

blue in Figure 2.1) and the 56 (42 unique residues) variants characterized as having no 

observable activity (colored red in Figure 2.1) compared to the WT structure, Figure 2.1. 

Substitutions like these are evolutionarily important for regulating the activity of the viral 

protease. Since enzymes are very good at catalysis, the presence of non-functional variants 

ensures that the functional variants can still operate in the presence of drug inhibitors.  

 

Molecular dynamics makes it possible to characterize how mechanical and thermal 

energy from the bonds and atoms of a system is transformed into work 102, 103, 108-110. In the 

case of a protein the most predominate source of mechanical energy comes from the 

conformational changes from the amino acid side chains that result in fluctuations of the 

backbone of the structure102, 103, 108-110. Our research concentrates on the transfer of 

mechanic and thermal energy to/from the local and global environment using uniform 

environmental conditions meant to simulate the standard conditions that promote the 

regulatory function of amino acid substitutions 102, 103, 108-110. Much of the current literature 

utilizes the nature of thermophilic proteins through applied temperature gradients to 

characterize changes in nature of a protein 89, 199, 200. Thermophilic proteins are adeptly 
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unique as they can operate at higher temperatures, not commonly observed in normal 

cellular conditions of mesophilic proteins 88, 102-104. It is also suggested that in many 

instances, the thermodynamic properties of thermophiles are not directly comparable to 

mesophilic proteins, such as HIV-1 protease 88, 102-104. 

 

The amount of thermodynamic energy of a system is commonly measured using 

the change in Gibbs free energy (ΔG or dG) and can be used to understand its 

thermostability 102, 103, 108-110. In order to understand the influence of a single point 

substitution, researchers seek to resolve the binding or folding free energy change upon 

substitution (ΔΔG or ddG) 102, 103, 108-110. The binding free energy of an enzyme with a 

substrate is often found to be associated with the electrostatic interactions between the 

binding pocket and the substrate, though the dynamics plays a contributing role 102, 103, 108-

110. However, the changes in free energy change upon substitution (ddG) can provide 

evidence to support the change in stability that is often observed to influence the activity 

of an enzyme 102, 103, 108-110. Being able to equate the thermodynamic stability of a protein 

structure to what is actually experimentally observable is highly sought-after goal for most 

theoretical bio-physicists and bio-chemists. It is common to associate the thermodynamic 

stability of a protein with whether it will fold or unfold as well as function, but it is more 

complex than that. If a decrease in the free energy change upon substitution (ddG) is found 

to be stabilizing can this provide clues towards the function of a variant? Does stability 

offer any detail towards the rigidity or flexibility of the side chain motion? Consequently, 
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the correlations between protein function, stability and mobility need to be addressed 

adequately. 

 

 

It is apparent that the residues that make up the WT structure are essential for 

ensuring proper function of the protein, such that changes in any one residue can alter both 

the local and global environment 49, 50, 113. Being able to identify how these modifications 

can influence the stability of the structure can be used to uncover the regulatory nature of 

hotspots (key residues) and offer insight towards the nature of viral proteins, like HIV-1 

protease. Quite often the free energy change of binding or folding upon substitution (ddG) 

is used to interpret whether a residue substitution will impact the function of a protein23, 

201-203. Consequently, though much of the resources available can provide a reasonable 

prediction of the free energy change of binding or folding upon substitution (ddG) they are 

still highly disputed 23, 201-203.  

 

Thermodynamic stability is too often thought of as finite scenarios, where a protein 

folds or unfolds, binds or not but the mechanistic nature is very complex 34, 89, 111-113. When 

including the extrema of the environmental conditions it can be quite certain a protein will 

fold or unfold, but of course binding and catalysis is a much different aspect34, 89, 111-113. 

There are a number of situations that can drive a protein to unfold, and some select 

scenarios where it can’t fold even in adequate environmental conditions 34, 89, 111-113. Under 

normal conditions a variant should fold but may lack the functional characteristics of an 



26 

 

 

active counterpart (WT or CA variant) or have a different target substrate 34, 89, 111-113. In 

some other cases, the non-functional variants may be in a fixed opened or closed 

conformation that are unsuitable for normal function 34, 89, 111-113. When considering the 

binding of substrate then catalysis followed by the release of a substrate, it can only occur 

from an active variant (including the WT), but it is not impossible for an inactive variant 

to bind a substrate plus one and only one of the other subsequent steps 34, 89, 111-113. The 

challenge comes from having the third step, an inactive variant may be able to bind and 

release (but not catalyze) or it can bind and catalyze (but not release) 34, 89, 111-113. In general, 

the free energy change of binding or folding upon substitution (ddG) cannot be considered 

as finite, if the fold/binding free energy is stable or unstable, it would be more logically to 

characterize it with a scale of mobility, how flexible or rigid is the structure 34, 89, 111-113. In 

many ways much of the literature and resources used to evaluate the folding or binding of 

a protein include the characterization of the structures flexibility, but there are still many 

challenges and variables that need to be addressed to best characterize a proteins mobility 

109, 114-116.  

 

  Here we propose that an increase or decrease in the mobility of the residue side 

chains can be found to be adversely related to the activity of an enzyme. The root mean 

square fluctuation (RMSF) of each residue of a protein is a widely used method for 

determining the mobility within a protein 2-5. RMSF for dimers, like HIV-1 protease, 

closely follow the trends observed from the temperature B-factor used in characterization 

of the X-ray crystal structure of a PDB file 2-5. Furthermore, mobility can be modulated by 
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the realignment of secondary structure elements as well as the frequency of residue that 

come in contact with one another 2-5. Further, it can be postulated that if there are more 

contacts occurring within a structure the mobility is being constrained and therefore 

gaining novel contacts can negatively influence the function of a protein. Moreover, the 

change in free energy for the binding as well as the folding upon single point substitution 

for both the active and inactive variants are calculated to uncover if there is any relation 

between them to the function of the variants. 

 

Methods  

 

The following methodologies were used for modeling the WT and the variant 

structures of HIV-1 protease with the MA/CA substrate. Using the crystal structure from a 

PDB structure (PDB id: 1KJ4)208 that had the MA/CA substrate and a tetra-coordinated 

water molecule were extracted and placed into the binding pocket of the (PDB id: 

1HXW)209 structure is observed to have the same amino acid sequence consistent with the 

WT structure 210. Both PDB structures were aligned using superposition of the backbone 

atoms of the active site residues (within 4.5Å (angstrom) of the substrate) in order to place 

the substrate and water into the binding pocket of the WT structure. Using a software 

package called MODELLER 14. Each variant was created such that a single point 

substitution was generated in each chain of the appended WT structure. MODELLER14 

applies a harmonic potential that is specific to the substitution for every bond, angle, and 

improper dihedral angle while all of the other residues for the protein are restrained 14.  
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The structures (WT, 12 active variants and 56 inactive variants) were solvated in a 

water box of  TIP3P water molecules 211, with the minimum distance of any atom of the 

protein structure to any face of the box 10 Å or greater. Potassium chloride (KCl) ions were 

included when the system was solvated to achieve a salt concentration of 150 mM 

(millimolar), keeping the total charge of the system equal to zero 114, 212. Any water 

molecules that have an oxygen atom closer than 2.6 Å from the protein and substrate were 

removed from the system 114, 212. The energy minimization and the MD simulations of the 

structures were performed using the molecular mechanics package CHARMM213, with its 

22nd version of the force field214. A Particle-Mesh Ewald (PME) method was applied to 

treat the electrostatic interactions with a dielectric constant of 1 and a cutoff of 10 Å. The 

Lennard-Jones potential for any non-bonding interactions were set to 0 beyond 10 Å. 

Bonds involving hydrogen atoms were constrained using SHAKE215 during energy 

minimization and MD simulation. The MD simulation was performed in an NPT 

(isothermal–isobaric; N stands for constant number of particles, P stands for constant 

pressure, T stands for constant temperature) ensemble, where the temperature was 

maintained to an average of 300 K (Kelvin) using a Langevin thermostat while the pressure 

was maintained to 1 atm (atmosphere) using the Langevin piston method216.  

 

The solvent of the system was first minimized for 4000 steps using a steepest decent 

(SD) algorithm while keeping the protein and substrate atoms constrained. In the following 

steps, a force constant of 1000 kcal/molÅ (kilocalorie/molecule) was applied as a distance-
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based restraint to the substrate atoms and the atoms within 5 Å of the substrate from the 

catalytic site. The system was then minimized over 12000 steps using a SD algorithm while 

the distance-based restraint was scaled down to 800 kcal/molÅ. The solute atoms were then 

harmonically restrained with a force constant of 700 kcal/molÅ and minimized for 36000 

steps using a SD algorithm while the forces constant was scaled down to 100 kcal/molÅ.  

 

The system was gradually heated from 100 K to 300 K during 100 ps (picoseconds) 

of MD simulation with a 1 fs (femtosecond) time step with a distance-based restraint for 

the substrate and active site applied with a force constant of 150 kcal/molÅ. In the 

following steps, the atom-based restraint applied to the substrate and active site were 

removed to begin the MD simulation for the system. The MD simulation of the WT, 68 

variants and 35 variants structures with moderate activity (greater than 0 and less than 95% 

of the WT activity) was run for 72 ns (nanosecond). Additionally, most MD simulations 

equilibrated after 4 ns making a total of 68 ns of production for each structure that was run 

in triplicate for a total of 204 ns of production. 
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Energy 

 

 To calculate the energy profile of each variant and the WT, chain A was isolated 

from the structure in order to calculate the folding free energy. Whereas in order to evaluate 

the binding free energy the structures were divided into the enzyme (E), enzyme-substrate 

(ES), and substrate (S). The molecular mechanics (MM) energy was obtained for each 

component (E, ES, S) using the output from the MD production run using CHARMM 70, 

72, 217, 218. The maximum (max) and minimum (min) values of each energy term were taken 

from each MD production run in order to calculate each d/(Δ) energy term. For instance, 

the dMM (ΔMM) is calculated as the following:  

 

dMM(ES, E, S, A) = max(MM) -min(MM)                                       eq. 2.1 

dMM = (dMM(ES))- (dMM ( (E))- (dMM(S))                                         eq. 2.2 

Similarly, the Poisson–Boltzmann (PB) energy was calculated using delphipka219-221 for 

each component of the system.  

dPB(ES, E, S, A) = max(PB) -min(PB)                                         eq. 2.3 

dPB = (dPB(ES))- (dPB(E))- (dPB(S))                                         eq. 2.4 

The surface area (SA) energy term was calculated using VMD 72, 222, 223.  

dSA(ES, E, S, A) = max(SA) -min(SA)                                         eq. 2.5 
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dSA = (dSA(ES))- (dSA(E))- (dSA(S))                                         eq. 2.6 

MMPBSA is used to calculate the change in free energy (dG) as well as the change in free 

energy upon substitution (ddG) using the following methods. 

MMPBSA = dMM + dPB + dSA                                         eq. 2.7 

ddG = MMPBSA(Variant) – MMPBSA(WT)                                         eq. 2.8 

 Contact maps were calculated using VMD72, 222, 223 by measuring the contacts or 

clashes that occur when any atom of residue i is within 3Å of residue j. Hydrogen bonding 

occurs between 2.7 – 3.3 Å, making 3 Å  a reasonable cutoff as it is the median distance 

for hydrogen bonding to form based on a symmetrical distribution, though it can vary 

depending on the reactivity. However, we are looking for any form of contact occurring 

between the amino acid side chains, not just the potential of hydrogen bonding. Next the 

information was evaluated for significances by removing contact frequency that occur for 

less than 10% of the production length. Identification of common pairwise interactions was 

developed by eliminating redundant measurements where residue i (ri) does not equal 

residue j (rj) (ri != rj), while also removing neighboring residues (r(i,j)±1) for each variant 

case. A similar methodology was used to capture the common and novel contacts between 

each of the variants and the WT. 
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Chemical & Structural Properties of HIV-1 Protease  

Table 2.1: Comparison of the Chemical and Physical Features for the WT and each of the 12 CA and 56 CI variants (y-axis) 

with the 99 amino acids of the HIV-1 protease (x-axis)
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Table 2.1 seeks to outline a number of the relevant features related to the chemical 

and physical characteristics of the substitution for each variant. The legend on the bottom 

left and right are essentially the same, with the details regarding the CA variant are shown 

in the legend on the left and the CI variant are shown on the right. The color encoding is 

applied to the secondary structure element (SSE) that a residue is commonly found to 

belong. A second color encoding was generated for the region that the residue is observed 

to belong in relative to the global structure. Though we tend to think of these SSE as adding 

rigidity to a protein structure, they are dynamic in nature. These changes in the dynamic 

fluctuations can be seen with the alpha helix, chain A reports that residues 87-90 are 

responsible for forming the alpha helix but chain B reports that residues 87-92 are 

responsible for making up the alpha helix. Consequently, though a set of residues might be 

labeled as a being part of a specific SSE there is some uncertainty due to the dynamic 

nature of the residues.  

 

There are several important substitutions to consider, that are substitutions from or 

to glycine and substitutions from isoleucine to leucine which are only observed within the 

CI variant cases. There are 6 substitutions to glycine and 8 substitutions from glycine 

making up 25% of the CI variants. There are 2 positions, I47L and I62L, where isoleucine 

and leucine have almost identical chemical features with the only difference being 

displacement of a methyl group from the gamma to the beta carbon, in either case resulting 

in inactive variant. Having the methyl group closer to the alpha carbon could help regulate 
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the mobility by limiting the conformational flexibility of the beta carbon. Table 2.1 

dedicates a portion of detail towards the changes in molecular weight (MW), dipole 

moment, and the isoelectric point (pI) for each residue and the corresponding substitutions. 

An increase or decrease in any feature is represented by an upward or downward arrow, 

accordingly. About 60% of the CA variants are found to cause a decrease the mass, while 

slightly less for the CI variants approximately 50% of the variants are shown to have a 

decrease in mass. The CA variants are found to have more variants that decrease the dipole 

moment than those observed in the CI variants, 75% and 40% respectively. Fewer of the 

CA variants are seen to cause a decrease in the pI (40%) but there are only slightly more 

CI variants that cause a decrease in the pI (55%). Mostly, we can see the most 

distinguishing feature with greatest change or difference or influence upon substitution is 

the dipole moment. A decrease in the dipole moment can allow for more lipophilic nature 

of the protein. It is more common to see lipophilic residues to be buried in the core of a 

structure with very little to no interaction with the solvent, though the presence of lipophilic 

surface sites exists. 

 

We can also see the majority of substitutions resulting in a CI variant occur in the 

core and binding regions and are found to belong to a β-sheet or coil SSE. However, there 

are a few CI variants located with substitutions occurring in the hinge and elbow region as 

well as being part of an α-helix or turn element. The majority of substitutions resulting in 

a CA variant also occur in the core region of the structure located within a β-sheet SSE. 

Additionally, there are a few CA variants that appear on the elbow within a coil SSE. There 
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is only one substitution leading to a CA variant that takes place in the binding region within 

a β-sheet SSE. HIV-1 protease is a β-sheet rich structure and it’s believed that a β-sheet 

rich core can lead to better packing (Ansari 2021, Li 2013, Slack 2015). As residues pack 

closer together or are pushed apart due to realignment the amount of mobility they have 

can also increase or decrease. Likewise, the residues can have new or lose contacts with 

other residues that can result in changes in the allosteric network common to the WT.  

 

Results and Discussion 

 

Of the 99 amino acids observed in HIV-1 protease 107 variants were evaluated by 

Martinez 1 et.al., of which 12 of them are found to cause an active variant. On the other 

hand, 56 of the 107 variants evaluated, with only 42 of 56 being unique residue numbers 

of the 99 amino acids are found to cause an inactive variant Martinez 1. Of the two cases 

(active and inactive) there are 2 shared residue numbers, residues K20 and I64, that result 

in dysfunctional variants. Overall, in this study the number of substitutions leading to an 

inactive variant is greater than that of having an active variant resulting an imbalanced data 

set. This can be highly important for the regulation of HIV-1 protease78, 109, 116, 224, though 

the activity of the variants towards other substrates is unknown. 

 

Here, RMSF is used to investigate the mobility changes of residues over the length 

of MD production run. Residues that have more mobility should be less constrained due to 

the packing of the structure and will result in a higher RMSF and vice versa. The figure 
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below shows the RMSF of each residue (only for Cα) in chain A vs chain B (Figure 2.2) 

for the average of the 3 MD runs for the total MD production length of 72 ns for the WT 

structure. We see that most of the points fall near the linear regression line, which is 

expected as we deal with a homomeric protein dimer which has a C2 symmetrical behavior 

from the two identical chains. However, as the mobility increases, we can find a few 

residues with larger variations that deviate more from the linear fit line. These residues (49, 

50, 51) are associated with the flap region of HIV-1 protease which is an important region 

of this protein structure that directly interacts and are essential for catalysis of the substrate. 

Note that one of these three residues, 50, is found to be a CI variant. To further analyze this 

data to understand the protein’s activity upon a single point substitution, we compare the 

RMSF of each residue in WT structure to the one in variant structure.  
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Figure 2.2: The figure above shows the average RMSF for chain A (y axis) and chain B (x axis) 

for the total 72 ns of MD production for each trajectory. The mean of all 3 trajectories is 

represented as the points with the best fit line shown by the equation in the top left.  

 

The next set of figures, Figure 2.3 A&B, examines which residues of the variants 

are found to influence the mobility compared to the WT. Looking at the Figure 2.3 A, we 

can see the CA variants RMSF doesn’t deviate much from the WT. Looking at residue 

numbers 49:51 that are associated with the flap region, we can see more often the CA 

variants lower the mobility of those residues. Observing the changes in mobility for 

residues 49:51 for the CI variants shows that though we see some of the CI variants lower 

the mobility, but more CI variants increase the mobility of those residues. 

  

y = 0.80 x + 0.12 
R2 = 0.81 
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A) 

B) 



39 

 

 

Figure 2.3 A&B: The figures above show the RMSF (y axis) for the CA variants (A) and CI 

variants (B) of the residue numbers (x axis) for the total length of production. The WT is 

represented as the black line and each variant is shown as gray (top left (A) & top right (B)).  

 

 

 

A) 
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Figure 2.4 A&B: The figures above show the contacts that are observed in chain A for the CA variants 

(A) and CI variants (B). Each of the 99 residue numbers are shown on the x and y axis. The points 

represent contacts between 2 residues with the size of the point corresponding to the frequency observed 

throughout the production for the specific variant (see color legend).  

 

 Figures 2.4 A&B examines the total number of contacts that occur between non-

neighboring residues ( ri ± 1 or ri ± 2 ) throughout the MD production length for each variant 

structure and figure 2.5 A&B looks at all contacts that are seen to occur in 10% of the MD 

production length or more. However, through examination of higher frequency of contacts 

we observe differences in the contact maps of CA and CI variants, as well as differences 

in these maps compared to that of the WT, Figure S-2.3. There are a total of 359 non-

neighboring contacts (542 with neighboring) observed in the WT (Figure S-2.3); however, 

it is observed that the total number of contacts in the CA variants decreases, an average of 

341 non-neighboring contacts are seen compared to the 359 contacts found in the WT, 

B) 
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Figure 2.4A. Inversely, we see that the number of contacts found for most CI variants 

increases, an average of 367 contacts are found from the CI cases, Figure 2.4B. Though 

most of the residue contacts are preserved from what is seen in the WT, it is clear that the 

total number of contacts for a CA variant are less and the majority of the CI variants have 

more contacts. The observation of Figure 2.4 as well as RMSF results shows that in the 

case of CI variants, the residues tend to show higher mobility and higher number of contacts 

with regard to what is observed with the WT structure. As a result, it is likely the packing 

of the residues is unfavorable and causing the structures of the CI variants to be more rigid 

when bound with the substrate.  

  

 

A) 
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Figure 2.5 A&B: The figures above show the most common residue contacts that are gained or 

lost in chain A for at least 70% of the CA variants (A) and CI variants (B). Each of the 99 residue 

numbers are shown on the x and y axis. The points represent contacts between 2 residues with 

the size of the black points corresponding to the frequency observed throughout the production 

for the WT. Residues that are observed in the WT but not in the variant are considered a loss 

(red), inversely residues observed in the variant and not the WT are considered gain (blue). The 

size of the points is also scaled according to the average frequency observed from the 

corresponding variant case. 

 

 The next set of figures takes a deeper look at the impact of the gain or loss of 

contacts (Figures 2.5 A&B). This shows that the contacts of non-neighbor residues for the 

WT with the most common residues gained (blue) and lost (red) for the CA variants (A) 

and CI variants (B). As it was seen with Figures 2.4 A&B the CI variants have more 

contacts overall and we can see in Figures 2.5 A&B that the CI variants gain more but lose 

less contacts. The residue contacts that are exclusive for the CA or CI variant cases are 

B) 
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highlighted in the legend, Figures 2.5 A&B. It is observed that all of the common contacts 

gained for the CA variants are also represented in the CI variants, however there are several 

contacts that are gained in the CI variants not found in the CA variant cases Inversely, we 

can see that there are several common loss of contacts represented in the CA cases not 

found in the CI variant cases, with there being only one novel loss of contact observed in 

the CI variants.   

  

Figure 2.6 represents the residues of the CI variants that are found to have common 

gain of contact. We see that residue positions 14 and 16 make contacts with 63 and 64 

found within adjacent beta sheets, whereas the contact between residues 15 and 83 is buried 

within the core of the structure, Figure 2.6. The distance from any of the sidechains for the 

residues ranges between 6.3–7.9 Å. Notably the cutoff used to identify whether residues 

contact occurs was 3 Å, Figure S-2.3. We can see that the contacts found elsewhere are 

mostly located in coils within the core of the structure, Figure 2.6. In particularly, residues 

32-33 make contact with residues 79 and 82, respectively, and from the measurements 

observed in the WT we see the distance between them ranges from 5.6–9.5 Å. It can be 

observed that in the WT and given the orientation of these residues it takes a significant 

rearrangement for most/all of these contacts to occur.  
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Figure 2.6: These figures identify the structural orientation of the residues found to have 

novel gain of contact for the CI variants.  

 

Considering the novel loss of contacts observed in the CA variants we can see that 

there are 3 main regions that are impacted (the loop, core, and cantilever). It can be assumed 

that since these loss in contacts results in a CA variant, exclusively, these residue contacts 

might be least supportive towards an allosteric mechanism. While we can see that the only 

novel loss of contact observed in the CI variant cases are between residue numbers 30:87, 
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which falls within the binding site region. It is likely that given the importance of these 

residues and their influence in coordinating the substrate for catalysis they might be an 

intricate component towards influencing the activity of a variant.  

  

Figure 2.7: These figures identify the structural orientation of the residues found to have 

novel loss of contact for the CA variants. 
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Figure 2.8: These figures identify the structural orientation of the residues found to have 

novel loss of contact for the CI variants. 

 

We’ve examined the gain or loss of contact as well as the mobility in great detail, 

but we also want to understand if the differences observed influence the folding and/or 

binding free energy change upon single point substitution for the WT. The folding and 

binding free energy of each variant was scrutinized extensively using MMPBSA 
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calculations (eq. 2.7) as well as these software webservers; Prodigy, DUET, INPS, Eris, 

and DDGun 105, 110, 227-235, over the entire length of the MD production as well as 

calculations using the last frame of the MD production on remote web servers. The first 

component we will look at is the folding free energy change upon substitution (ddG). The 

total production length of a single monomer (chain A) of the WT and each variant was 

assessed by computing MMPBSA in order to approximate the change in free energy (dG) 

for each structure as well as the folding free energy change upon substitution (ddG). 

MMPBSA (eq. 2.7) is composed of three terms, with the first taking into account the 

translational mechanical motion with respect to classical mechanics, F = ma 115, 236-238. The 

second term looks at the energy impact from the electrostatic free energy associated with 

the polar solvent using Poisson-Boltzmann equation115, 236-238. The last term considers the 

influences given by non-polar solvent with regards to the solvent accessible surface area 

(SA) 115, 236-238.  

 

Two approaches were taken to understand the appropriate methodology to evaluate 

the change in free energy from the entire production using MMPBSA. The most common 

methodology used to calculate the folding free energy change upon substitution (ddG) is 

done by getting the average change in free energy (dG) for each structure or only using the 

last frame of production. Here we institute a third novel more dynamic measure of the 

folding free energy change upon substitution (ddG) from the output of the entire 

production. We consider the difference between the maximum and minimum change in 

free energy from the entire length of production, as a way to measure the range of change 
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of the Michaelis complex of the protein with the bound substrate. This method was 

approached since the change in energy of the system is dynamic, such that the change in 

MM/PB/SA can vary significant throughout the production length. The concept of using 

the average change in free energy (dG) for the length of production provides reasonable 

coverage of the dynamic nature of a MD run as well.  

 

Looking at Table 2.2, we see that the average change in free energy is dG(1) and 

the average change in folding free energy upon substitution is ddG(1), whereas, the change 

in free energy, dG(2), and the change in folding free energy upon substitution, ddG(2), are 

the difference (maximum and minimum) for the entire MD production length. In general, 

since we are only considering the change in folding free energy caused by a single point 

substitution the overall change is not expected to be extreme, Table 2.2 particularly with 

regard to ddG(2). Distinctly, most of the variants in either case (CA or CI) are found to be 

stabilizing with regards to ddG(2), Table 2.2. Conversely, ddG1 shows only 50% of the CA 

and ~30% of the CI are stabilizing and likewise when we take the average of both methods 

(ddG(1) and ddG(2)) together shows about the same result, Table 2.2. However, the overall 

nature of the results of ddG(2) alone corresponds better with the observations of the change 

in free energy upon substitution from the webservers 105, 110, 227-235, Table 2.2 and Table 2.3. 
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Table 2.2: Change in folding free energy (dG) and change in folding free energy upon 

substitution (ddG) using MMPBSA for method 1 (average) and method 2 (difference). 
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The next table reports the change in folding free energy upon substitution from 

several webservers105, 110, 227-235 using the last snapshot from the production, Table 2.3. The 

data collected from the DUET, INPS, Eris, and DDGun webservers105, 110, 227-235 affirms the 

magnitude and scale identified from ddG2 calculated from MMPBSA, Table 2.2 and Table 

2.3. However, we do see that there is a distinct trend where all of the webservers predict 

that more often the CA variants are less stabilizing than the CI variants, Table 2.3 B. The 

change in free energy upon substitution (ddG) calculations shown in Table 2.2 and 2.3 are 

informative, in that, though a monomer (chain A) of a variant may be CI the fold stability 

of the variant is greater than the WT. It also constituents that though the CI variants may 

be inoperable towards the given target they may be functional towards others and 

ultimately lower the drugability of functionally active variants. Further, it supports that 

many of these variants may be locked in a specific conformation (open or closed) that is 

stable yet unable to bind the substrate or become locked once a substrate is bound.  
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Table 2.3: Change in folding free energy upon substitution (ddG ) using the DUET, 

INPS, Eris, and DDGun webservers 105, 110, 227-235 
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We also used Prodigy105, 228, 229 as well as MMPBSA to calculate the change in 

binding free energy upon substitution for the enzyme substrate complex of the WT and 

each variant, Table S-2.1. A notable comparison of the change in free energy (dG) values 

calculated using prodigy with the difference method used with MMPBSA, we do see a 

slight over estimation of the change in free energy from the difference method. 

Additionally, prodigy predicted that all of the CA variants and most of the CI variants are 

destabilizing. Whereas the difference method used to calculate the change in free energy 

upon substitution (ddG2) shows most the CA variants are destabilizing while almost half 

of the CI variants are stabilizing.  

 

Conclusion 

 

It is not directly apparent how the chemical and physical properties influence the 

changes in a protein without characterizing the dynamic nature of a structure. We observed 

that many of the changes that occur in the CI variants of HIV-1 protease impact the mobility 

compared to the CA variants and WT. The strongest evidence is seen with regard to the 

gain and loss of contacts. We can see that the fewer number of contacts provides the CA 

variants greater or comparable activity to the WT, while the CI variants gain more and lose 

less contacts resulting in a greater number of contacts compared to the WT and CA variants. 

It is likely that the overall increase in contacts for the CI variants affects the conformational 

states that these residues transition between, whether there is more states or restriction of 

states.  
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It is also observed that the change in free energy upon a single point substitution 

for most of the variants are stabilizing, either CA or CI variants. Though there are mixed 

results with regards to the folding/binding free energy change upon substitution, it is more 

adequately characterizing the flexibility and rigidity of the structure. It is suggestive that 

the CI variants, based on the influence of the contacts observed, are stable but locked in 

various inoperable conformations. The most interesting consensus is shown from the 

webservers 105, 110, 227-235, such that more often the CI variants are found to be more 

stabilizing. Looking at this from a scale of flexible to rigid, “stable” would be more rigid 

and the overall increase in contacts confirms this assessment.  
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CHAPTER III 

 

THE IMPORTANCE OF ANTICORRELATION ON THE FUNCTION OF 

HIV-1 PROTEASE VARIANTS AND PREDICTING THE FUNCTION 

OF THE PROTEIN UPON SINGLE POINT SUBSTITUTION USING A 

ROBUST MACHINE LEARNING ALGORITHM AND DYNAMIC 

CROSS CORRELATION 

 

Introduction  

 

The evolutionary pathways and outcomes of an enzyme are significantly regulated 

by constraints imposed from the deleterious effects of amino acid substitutions on its 

functional properties 108, 239, 240. And therefore, identification and characterization of these 

constraints are critical for the efficiency and function of an enzyme as well as the 

categorization of variants that can be potentially drug resistant targets 108, 239, 240. Past and 

recent experimental and theoretical studies suggest that the characteristic dynamics of an 

enzyme are distinctive attributes that are evolutionarily selected features used to control 

their catalytic activity 66, 126, 128, 241-248. Essentially, for an enzyme to retain its catalytic 

activity, the mobility of the enzyme should remain the same or closest to what is observed 

in the WT. It has been further suggested that substitutions that have deleterious effects on 

the catalytic activity can alter the dynamics of an enzyme, imposing the idea that dynamics 
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can act as the constraint on its evolution 66, 126, 128, 241-248. The role of dynamics as a 

constraint on the evolution of an enzyme has not been very well characterized.  

 

The amino acid sequence that makes up a protein structure is resourcefully unique 

and so are the low frequency side chain fluctuations each residue encounters as well as the 

global perturbations from each domain of the structure 249. The term dynamics can be used 

to broadly describe these collective low and high frequency motions that have been 

evolutionarily adapted and optimized to provide specific vibrational modes to improve the 

interaction and function of a protein68. Several NMR (Nuclear Magnetic Resonance) and 

theoretical studies examine how a protein’s dynamics can be used to identify and interpret 

molecular recognition, allosteric regulation, and enzyme catalysis 74, 128, 250-253.  

 

One way to computationally characterize the effect of motion on the activity of an 

enzyme has been to analyze the covariance of displacement of each residue pair within the 

enzyme 128. Molecular dynamic (MD) simulations have been shown to capture most of the 

relevant correlated motions of residue interactions, including those deemed as the low 

frequency harmonic motion from the side-chain fluctuations that can support the 

interpretation of allosteric modulation 122, 194-198. Analyzing the correlated motions from a 

pair of residues using MD simulations has been frequent practice to study the role of a 

protein dynamics 86, 165, 254-257. These linearly correlated motions observed from the 

coordinates of MD simulations show the positively correlated motions are mainly a side-

effect of the secondary structures but can also result from long range coupling within the 
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protein 129, 137, 258, 259. However, most of the negatively correlated (anticorrelated) motions 

are not regarded as the result of a trivial relationship between residues and have been 

hypothesized to be an important dynamic feature linked to the activity of an enzyme 128. It 

has been suggested that the features that are important for the function of an enzyme are 

evolutionarily selected based on their anticorrelated motions with regard to specific 

residues 117, 260-262. Substitutions of the residues that contribute to the disruption of the 

anticorrelated regions are viewed as interfering with the activity of an enzyme 128. 

Therefore, it is postulated that a change in linear correlation can be considered as a 

parameter to address the impact a substitution has towards the function of any enzyme 129. 

 

The human immunodeficiency virus type 1 (HIV-1) protease is a virally encoded 

enzyme responsible for the cleavage of Gag and Gag-Pol poly proteins at eleven sites of 

the immature AIDS virus playing an important role in its maturation process for viral 

replication 182. The HIV-1 protease has a total of 198 amino acid residues that makes up 

the robust C2 symmetrical homodimer with two identical 99 amino acid residue chains 183-

185. Symmetry has been observed to contribute to the evolutionary stability and cooperative 

interactions between subunits of many oligomeric proteins, like that of HIV-1 protease 54, 

186-190. HIV-1 protease is one of the major targets towards AIDS treatment, due to its key 

role in the viral life cycle, as well as the scrutinized during drug trials of protease inhibitors 

191-193. However, the inefficient replication process of HIV-1 virus causes different 

mutational variants of HIV-1 protease to be rapidly produced allowing for the competition 

of functional variants. Some of these mutational variants can cause resistance against the 
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drug binding of protease inhibitors making them preferentially selected for viral replication 

in the presence of a protease inhibitor drug 191-193. This process of selecting different 

mutational variants of HIV-1 protease is looked on as enzymatic evolution 159, 263.  

 

In the current study, the role of how the dynamics can act as a constraint on the 

evolution of HIV-1 protease is sought by identifying how the highly correlated (both 

positively and negatively) residues from an MD simulation impact the known in-vitro 

experimental catalytically active and inactive variants (CA and CI, respectively), Figure 

3.1. The publication of the in-vitro experimental catalytic activity for 107 HIV-1 protease 

variants as measured towards the cleavage of the matrix-capsid (MA/CA) polypeptide 

domain has prompted us to ask whether (in this larger dataset) correlated motions can be 

meaningfully associated with the protein activity1. Experimental data published by 

Martinez et. al.1 demonstrated the effect of a single point substitution on the catalytic 

activity of HIV-1 protease towards the cleavage of MA/CA. The information provided by 

Martinez et.al.1 used in conjunction with the recently determined structure of HIV-1 

protease in the bound state with the MA/CA peptide substrates are sourced to explore the 

correlated motions within the relevant Michaelis complex 208. Each variant is described by 

having a single amino acid substitution repeated in each chain of the C2 symmetrical 

homodimer, Figure 3.1. The theoretical background of how residue dynamics acts towards 

improving or disrupting the catalytic efficiency of enzymes is not well established. 

Deriving the covariance between each residue pair of the HIV-1 protease and its variants 
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determined from a MD simulation is a suitable method to evaluate the relationship of 

dynamics and its association to in-vitro experimental activity.  

 

Figure 3.1: The figure shown above is a front and back view of the HIV-1 protease (PDB 
id: 1hxw). The colored mutant residue positions are highlighted in a single chain, though 
each substitution was applied to both chains, to show the location of the CI variant and 
CA variant residue positions (red and green respectively). Of the 99 common residues 
that make up each chain, there are 42 unique positions are found to cause an inactive 
variant and 12 positions are found to cause activity equal or greater than the WT 
structure 1.  

 

Inspection of the in-vitro experimental data1 presents 68 variants of the HIV-1 

protease with 12 characterized as having activity equal or greater than the WT as well as 

56 (42 unique residue positions) variants characterized as completely inactive compared to 

the WT structure, Figure 3.1. The amount of experimental data1 accompanied with the use 

of advanced statistical modeling methods makes it possible to elicit if any statistically 

significant results can be observed from the impact of the correlated motion on an enzyme’s 

activity. Modeling the HIV-1 protease WT and variant structures in the bound state with 

one of its natural substrates can offer insight of a bridge between the dynamics and the 

function of the robust symmetrical enzyme.  

 

Front Back 
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In the current study, we examine whether the residue positions found to possess 

significant correlations have any influence on the experimentally determined activity1 

(variant activities). In the following sections we look to uncover whether or not the 

correlated motion of residue pairs found to exhibit anti-correlation act as a dominant feature 

with regards to the function of a protein. We developed detailed statistical methods that 

can be used to explore the evidence linking the correlated motions from each pair of residue 

positions to the activity of the variants. Recognition of any substantial association between 

the dynamics of specific residues and allosteric interactions requires a detailed examination 

of the contributing factors that can regulate the dynamic cross-correlation (DCC) and the 

function of HIV-1 protease. We weigh the regulatory nature that the dynamics has on the 

activity of the HIV-1 protease variants by using machine learning (ML) algorithms to solve 

the binary-classification problem with regards to the function of the variant. Furthermore, 

the data from the DCC for each variant is assessed by the ML algorithms to predict if a 

single point substitution will lead to the disfunction in the activity of a protein compared 

to WT. The approaches taken here can help experimentalist as well as theorists in the study 

of enzyme activity as well as gain better control of allosteric interactions. 
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Methods  

 

Structure modeling, molecular dynamics simulation and covariance analysis:  

 

The models of HIV-1 protease with the MA/CA substrate native and variant 

complexes were prepared using the following methodology. The structure of the MA/CA 

substrate and a tetra coordinated water molecule were extracted from a crystal structure 

(PDB id: 1KJ4)208 and placed into the binding pocket of the native structure (PDB id: 

1HXW)209 that is described as having the same amino acid sequence consistent with the 

wild type (WT) structure210. The ligand and water were placed into the binding pocket of 

the WT structure by superposition of the backbone atoms of its active site residues (within 

4.5Å of ligand) with the corresponding atoms of 1KJ4. The single point substitutions were 

created using the appended WT structure generate each variant by using the software called 

MODELLER14. As described in the literature the bonds, angles, improper dihedral angles 

are constrained with a harmonic potential specific to the mutated residue while the other 

residues of the protein are restrained14.  

 

The energy minimization and MD simulations of the structures were performed 

using the molecular mechanics package CHARMM213, with its 22nd version of the force 

field214. A Particle-Mesh Ewald (PME) method was applied to treat the electrostatic 

interactions with a dielectric constant of 1 and a cutoff of 10 Å. The Lennard-Jones 
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potential for any non-bonding interactions were set to 0 beyond 10 Å. The structures were 

solvated in a water box of  TIP3P water molecules 264, with the minimum distance of any 

atom of the protein structure to any face of the box 10 Å or greater. Potassium chloride 

(KCl) ions were included when the system was solvated to achieve a salt concentration of 

150 mM (millimolar), keeping the total charge of the system equal to zero 114, 212. Any 

water molecules that have an oxygen atom closer than 2.6 Å from any of the solute atoms 

were removed from the system. Bonds involving hydrogen atoms were constrained using 

SHAKE215 during energy minimization and the MD simulation. The MD simulation was 

performed in an NPT ensemble, where the temperature was maintained to an average of 

300 K using a Langevin thermostat and pressure was maintained to 1 atm using the 

Langevin piston method265.  

 

The solvent of the system was first minimized for 4000 steps using a steepest decent 

(SD) algorithm while keeping the protein and substrate atoms constrained. In the following 

steps, a force constant of 1000 kcal/molÅ was applied as a distance-based restraint to the 

substrate atoms and the atoms within 5 Å of the substrate from the catalytic site. The system 

was then minimized over 12000 steps using a SD algorithm while the distance-based 

restraint was scaled down to 800 kcal/molÅ. The solute atoms were then harmonically 

restrained with a force constant of 700 kcal/molÅ and minimized for 36000 steps using a 

SD algorithm while the force constant was scaled down to 100 kcal/molÅ.  

 



63 

 

 

The system was gradually heated from 100 K to 300 K during 100 ps of the MD 

simulation with a 1 fs time step with a distance-based restraint for the substrate and active 

site was applied with a force constant of 150 kcal/molÅ. In the following steps, the atom-

based restraint applied to the substrate and active site were removed to begin the MD 

simulation for the system. The MD simulation of the WT and each of the 68 (12 active and 

56 inactive) variants were run for 72 ns. Additionally, most MD simulations equilibrated 

after 4 ns making a total of 68ns of production for each structure that was run in triplicate 

for a total of 204 ns production. 

 

The dynamic correlated motions (correlation C(i,j)) between each pair of amino 

acids are calculated with respect to the alpha carbons (Cα) displacement vectors of the 

individual amino acid residues as described by equation 1, using the Bio3d 120 library in 

R266-268. 

 

eq. 3.1 

 

Here, ri and rj are the displacement vectors for the Cα i and j residues, and the angle 

brackets denote an ensemble average. A dynamic cross-correlation (DCC) matrix was 

obtained, using the Bio3d library120, 269, for the WT and each variant consisting of 1982 data 

points each. Every point in the matrix is represented by a real number between 1 and −1, 
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describing the Pearson correlation related to the movements of each pair of the residues Cα 

within the HIV-1 protease enzyme.  

  

The results from the WT DCC matrix were further evaluated to determine whether 

residues (i ≠ j) exhibiting strong negatively (anti) or positively correlated motions, 

independently, are critical for the function of an enzyme. First the impact from the length 

of production was evaluated by sequentially removing 10 ns of production from the 

beginning of the subsequent production and the minimum anticorrelation was compared to 

each MD production run. In doing so, the residue pair that was found to cause the most 

anticorrelation was also obtained. The next calculation looked at the negatively correlated 

motions of the total production by iterating every 0.07 units from −0.10 to maximum 

anticorrelated value (−0.43). Then the number of unique residues that when substituted 

result in no activity are divided by the total number of unique residues for each bin, eq. 3.3.  

 

The positively correlated residues were also reviewed by iterating every 0.07 units 

from 0.10 to maximum correlated value less than 1. Likewise, for each bin the number of 

unique residues that when substituted result in an inactive variant are divided by the total 

number of unique residues for corresponding bin. The residue positions between −0.31 and 

−0.34 were isolated as it was the elbow point found to show an increase in the fraction of 

inactive variants. The fraction of residue positions between −0.31 and −0.34 were 

compared to multiple factors, first looking at the impact of the length of production, next 
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the number of residues known to cause inactivity divided by all unique residues with an 

experimentally determined activity and last all residues.  

 

The next set of calculations performed used the average known experimentally 

determined catalytic activity 1 for the residue within each bin using the same binning 

methods described for both the positive and anticorrelated residues. Lastly, anticorrelation 

was split into two groups, group 1) being highly anticorrelated and group 2) being 

moderately anticorrelated. Lastly, the average experimentally known percent catalytic 

activity for each group was also calculated. 

 

Machine learning model  

 

Moreover, to predict the protein function using the DCC information implementing 

the ML (Machine Learning) algorithms, the matrices from the DCC for each of the 56 

catalytically inactive (CI) and 12 catalytically active (CA) variant were prepared for 

analysis using a logistic regression model in R266-268 using the glmnet270 library. Logistic 

regression was used as it is best suited for classifying categorical inputs providing a binary 

response to uncategorized data. The CA variants are classified as active and numerically 

encoded as “1”, whereas the CI variants are classified as inactive and numerically encoded 

as “0”. The total anticorrelation and positive correlations (i ≠ j) were computed from the 

DCC of each variant for each of the 99 residues.  
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The dataset is composed of a 68 x 100 matrix, where 68 represents the 12 CA and 

56 CI variants and 100 is the 99 (independent features) residues of a single chain plus 1 

(target or dependent feature) from the numerically encoded experimental activity (either 1 

or 0 representing either active or inactive variants, respectfully) of HIV-1 protease. The 

variants were then split and shuffled into training and test sets retaining 20% of the data 

for testing. Since the data set is small and imbalanced implementing a synthetic 

oversampling of the minority cases (SMOTE) is highly recommended to improve the 

distribution of the number of cases between each target which was implemented in R using 

the smotefamily271 library266-268 providing a better balance of active to inactive cases. 

Having a greater number of features than the number of cases ends up overfitting and being 

an unrealistic prediction/model. I used variance inflation factor (VIF) by measuring the 

variance of the total anticorrelation for each residue pair in order to reduce the number of 

independent features and the amount of residue pairs with high multicollinearity. The 

greater the magnitude of VIF found from a pair of residues will likely increase 

multicollinearity within the dataset and therefore we only keep the residue found to have 

the greatest correlation to the target “activity”. Such that, if a feature, R1, has a significant 

correlation with features R3, R5, R8, we only keep the one that has the larger correlation 

to the target (experimental activity) and remove the rest of features in the dataset. The 

training dataset was input into a leave-one-out cross-validation (LOOCV), with the 

glmnet270 library in R266-268, where the number of folds being equal to the number of cases 

in the training data set. To evaluate the LOOCV the misclassification error was determined 

for the datum that was left out.  
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eq. 3.2 

Equation 3.2 shown above represents the leave-one-out cross-validation.272 A 

LOOCV fits a model by is repeated N times for each datum in the training set. Since the 

classification of active and inactive is binary this method aims to reduce the 

misclassification rate as well as bias and randomness. The maximum variance for the 

prediction can be found by using K=N, and therefore, represents the extrema of the data. 

Both a lasso and ridge penalty272 were evaluated, with similar results however, the lasso 

penalty was used for the model as it imposes a size constraint on the tuning parameter λ 

and reduces multicollinearity. The model was then used to evaluate the test set that was 

evaluated using confusion matrix along with the F1-score, recall, and precision. 

 

Results and Discussion  

 

  The symmetrical DCC matrix shown below represents the Pearson correlation of 

each pair of residues for the WT structure, Figure 3.2. The scale to the right of the Figure 

3.2 identifies positively correlated regions (correlation coefficient > 0) are colored from 

green to red, whereas negatively correlated regions (correlation coefficient < 0) are colored 

from cyan to dark blue. The DCC plot (on the left side) was depicted for the intra domain 

(interaction within a chain) as well as the inter domain (interaction between chains). Since 

this is a homodimer structure, the DCC of the intra domain chain A (region I) and chain B 

(region II) are similar and for the inter domain between chains A-B (region III) and chains 

𝐶𝑉 (𝜆) =
1

𝑁
  𝐿(𝑦𝑖  ,  𝜆(−𝐾(𝑖) ) (𝑥𝑖))

𝑁

𝑖=1
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B-A (region IV) are similar. For simplicity in the analysis, we focus only on the DCC of 

region I and III. In the inter domain, there is stronger anticorrelation seen between the 

residues in the inter domain with the rest of the structure; however, there are few residues 

that show strong positive correlation as well. On the other hand, in the intra domain DCC 

(region I) there is a good balance of positive and negative correlation between residues; 

however, looking at the total magnitude of positive vs negative correlation, we see that 

positive correlation is larger than the anticorrelation for residues i not equal to residue j, 

despite anticorrelation having a higher frequency (Figure S-3.1).   

 

Figure 3.2: (A) Representation Covariance matrix for the motion of Cα atoms in WT HIV-1 

protease bound to MA/CA substrate. The x and y axis are the residue numbers and the points 

represent a Pearson correlation value between 1 and -1 based on the average cross correlation 

value for 3 MD simulations of the WT structure. (B) Shows the regions of intra-protein and 

domain-domain correlations found in Figure 3.2A. 
 

Region I 
Intra-Domain 
Chain A - A 

Region IV 
Inter-Domain 
Chain B - A 

Region II 
Intra-Domain 
Chain B - B 

Region III 
Inter-Domain 
Chain A - B 

A B 
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Figure 3.3: Evaluation of the degradation of the minimum anticorrelation observed of 

the WT structure for every 10 ns of production. The total production of the WT consists 

of 62 ns and the covariance was calculated for each of the 6 bins above by removing 10 

ns from the end of each subsequent production of the WT. The residue pairs that are 

observed to have the greatest anticorrelation are shown below the respective production. 
 

It can be observed in Figure 3.3 that as the length of the production is reduced the 

magnitude of anticorrelation is also reduced. It is uncertain whether the magnitude of 

anticorrelation would increase more as the length of the production is increased further. 

However, in order to capture the greatest detail that relates dynamics and anticorrelation to 

the function of an enzyme it is advisable to use more than 32 ns of production run. A major 

observation that can be found in Figure 3.3, is that, as the length of production is reduced, 

we can see the residue pairs that have the greatest anticorrelation also change. Additionally, 

the residues found to exhibit the greatest anticorrelation are residue pairs found in separate 
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domains. Further scrutiny suggests that since the residue pairs change as the length of the 

production is reduced that the moderate correlations would also change as the production 

is reduced as well. Also, another factor that indicates the stability from the length of 

production is seen by having the same residue pairs are presented as the production length 

increases beyond 32 ns. Performing the same calculation with respect to the maximum 

positively correlated residues (greater than 0 and less than 1) does not show any pattern as 

we observed for the case of anticorrelation, Figure S-3.1. Secondly, the maximum 

positively correlated residue are more often neighboring residues, in the same chain.  

 

The anticorrelation was segmented into bins using the DCC matrix from the WT 

structure for the total length of production (72ns). We started binning the anticorrelation 

from -0.10 to the maximum identified anticorrelation of -0.43 to examined if the magnitude 

of anticorrelation for certain residues can be attributed to a protein’s catalytic activity, 

Figure 3.4. All the number of residues within each anticorrelated region are segmented 

every 0.07 units making 12 bins along the x-axis and the fraction of the number of residues 

known to cause a CI variant to the total anticorrelated residues, eq 3.3, are evaluated along 

the y-axis.  

𝑦 =
𝑛𝐶𝐼𝑉

𝑛𝑇𝑜𝑡𝑎𝑙
     eq. 3.3 

 

Here n represents the number of residues, 𝑛𝑇𝑜𝑡𝑎𝑙  and 𝑛𝐶𝐼𝑉  represent the total 

number of anticorrelated residues and the number of residues known to cause a CI variant 

seen in the 𝑛𝑇𝑜𝑡𝑎𝑙 for the corresponding bin, respectively. The following observations are 
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seen in Figures 3.4 & 3.5. First, at the lower magnitude of anti/positive correlation we can 

see most residues are present and likewise for the number of residues found to be associated 

with a CI or CA variant. In other words, as the number of residues having a larger 

magnitude of anti/positive correlation decreases the number of residues known to cause a 

CI variant shows an increase. The first observation can lead us to the second point. It can 

be indicative that if the residues show higher anticorrelation with the other residues, the 

probability that variation on those residues causes inactivity would be greater. In other 

words, though the proportion of inactive variants does not increase significantly as the 

anticorrelation increases in magnitude the residues that result in an inactive variant can 

influence the dynamics of anticorrelated motion. 
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Figure 3.4: This figure examines the relationship between the degree of negatively 

correlated motion associated with each unique residue position in HIV-1 protease and the 

impact of a substitution resulting in an inactive variant toward the MA/CA substrate. If 

anticorrelated motion are strongly linked to enzyme activity in this system, one might 

expect to observe a positive slope in this figure suggesting that specific sequence positions 

exhibiting stronger correlated motions would also be more likely to eliminate catalytic 

activity upon substitution. The data here demonstrates, though there is not a positive slope, 

that the substitutions that result in an inactive enzyme strongly influence anticorrelation. 

The number of residues in each chain were collected within an iteration of every 0.03 units 

from -0.18 to the maximum negative correlation (-0.43). Then, the sequence positions that 

when mutated result in the protein having no noticeable catalytic activity (44 unique 

residue positions in each chain of the homodimer) are divided by all residue positions (99 

residue positions in each chain of the homodimer) making up the fraction of catalytically 

inactive (CI) residue positions. The standard error was calculated from the confidence 

interval of the proportion, 𝑧0.95 √((𝑝(1 − 𝑝))/𝑛𝑝), shown by the error bars. 

 

Similarly, we examined whether the residues exhibiting positively correlated 

motions within the DCC of the WT structure could be linked to the catalytic activity of the 

HIV protease, Figure 3.5, the values of positive correlation are segmented into 12 bins 

along the x-axis and the fraction of the number of residues known to cause a CI variant to 

the total positive correlated residues, eq 3, is evaluated along the y-axis, Figure 3.5. As we 

stated in the section above (Observation for Fig 3a), we see that the higher number of 

residues caused CI variant occurs in the lower magnitude of positive correlation and as the 

magnitude of positive correlation increases the less variants caused CI variant fell in this 

range of residues. However, there is a difference between highly positive correlated 

residues vs highly negative ones. In the larger positive correlation range, the probability of 

having variation lead to CI variant is not as high as for the larger negative correlation range. 

For instance, we have the following probabilities for the last three bins of positives 

correlation vs anticorrelation: 0.46, 0.37, 0.5 vs 0.61, 0.67, 1.00. This can show how 
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important the influence of anticorrelation from the CI residues or in other words, in the 

relationship of protein function and activity. 

 

 

Figure 3.5: This figure examines the relationship between the degree of positively 

correlated motion associated with specific sequence positions in HIV-1 protease and the 

impact of a substitution of those residue positions on the peptidase activity toward the 

MA/CA substrate. If correlated motion were strongly linked to enzyme activity in this 

system, one might expect to observe a positive slope in this figure suggesting that 

specific sequence positions exhibiting stronger correlated motions would also be more 

likely to eliminate catalytic activity upon substitution. The data here demonstrates 

significant sensitivity of the degree of correlated motion with respect to the impact of 

substitution on enzyme catalytic activity. The number of unique residues were collected 

by iterating of every 0.07 units from 0.10 to maximum correlated motion not equal to 1. 

Within each bin the residue positions known to result in the protein having no noticeable 

catalytic activity (44 residue positions in each chain of the homodimer) are divided by 

all residue positions identified as having correlation in that range, making up the fraction 

of residue positions. The standard error was calculated from the confidence interval of 

the proportion, z0.95 √((p(1 − p))/np) , shown by the error bars. 
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In the next two figures the correlation values were segmented using the same 

binning method that was applied for Figure 3.5 A&B. However, the average known 

catalytic activity was calculated from the experimental data1, whereas a bin consisted of 

only residues with known experimental activity and the average of the bin was then 

calculated for a bin, and is represented along the y-axis, Figure 3.6A. We expect that the 

dynamics of the enzyme is anticipated to impact the average catalytic activity of the 

residues and there should be a decrease in the average catalytic activity as the absolute 

value of the magnitude of anticorrelation increases. Figure 3.6A shows that the average 

activity of residues decreases as the absolute value of the magnitude of anticorrelation 

increases. In other words, it indicates that there is a relationship between anticorrelated 

residues and the activity of an enzyme. Moreover, it shows that when the residues are 

anticorrelated but not strongly, the variation on these residues can lead to the activity of 

enzyme. Similarly, in Figure 3.6B, if the average catalytic activity of residue positions has 

greater influence on positive correlation is considered to affect the dynamics of the enzyme 

more there should be a decrease in the average catalytic activity as the positive correlation 

increases. These results from Figure 3.6B suggest that residues exhibiting significant 

positively correlated motions are not as critical for the function of the WT structure of HIV-

1 protease.  
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Figure 3.6A: This figure examines the relationship between the degree of negatively 

correlated motion associated with specific sequence positions in HIV-1 protease and the 

impact of the average peptidase activity toward the MA/CA substrate. If correlated motion 

were strongly linked to enzyme activity in this system, it can be expected to observe a 

negative slope in this figure suggesting that specific sequence positions exhibiting stronger 

anticorrelated motions would also be more likely to eliminate catalytic activity upon 

substitution. The data here demonstrates that the degree of anticorrelated motion with 

respect to the impact of substitution on enzyme catalytic activity is statistically significant. 

The number of residues in each chain were collected within an iteration of every 0.03 units 

from -0.1 to the maximum negative correlation (-0.43). Then, the average of the known 

catalytic activity was calculated for the sequence positions within each bin. The standard 

error was calculated using = √
(𝑥− 𝜇)2

𝑁
√𝑁⁄ , shown by the error bars. 
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Figure 3.6B: This figure examines the relationship between the degree of positively 

correlated motion associated with specific sequence positions in HIV-1 protease and the 

impact of the average peptidase activity toward the MA/CA substrate. If correlated motion 

were strongly linked to enzyme activity in this system, it would be expected to observe a 

negative slope in this figure suggesting that specific sequence positions exhibiting stronger 

correlated motions would also be more likely to eliminate catalytic activity upon 

substitution. The number of residues in each chain were collected within an iteration of 

every 0.07 units from 0.10 to the maximum correlation less than 1. The average of the 

known catalytic activity was calculated for the sequence positions within each bin. The 

standard error was calculated using 𝑆𝐸 =  √
(𝑥− 𝜇)2

𝑁
√𝑁⁄ , shown by the error bars. 

 

The residues, based on the WT DCC matrix, were separated into two groups, Table 

3.1. Group 1 represents residues that are considered to be highly anticorrelated (Cij ≤ -0.31) 

and Group 2 are residues that are found to be moderately anticorrelated (-0.10 > Cij > -

0.31), Table 3.1. The objective was to compare the effect of substitutions within each group 

of these residues on the activity of the enzyme. The residues exhibiting the strongest 
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negatively correlated motions should exhibit the largest changes in the activity upon 

substitution since anticorrelation is hypothesized to be critical for the function of the 

enzyme. The results seen in Table 3.1 indicate that almost half of the residue in either group 

are reported as having no catalytic activity compared to the WT structure. In other words, 

the amino acid positions that show greater negatively correlated motions are slightly more 

sensitive towards substitutions in comparison to positions that show weak negatively 

correlated motion. Likewise, the average percent catalytic activity within each group is 

~4% and ~20% for Group 1 and 2 respectively, showing the slight sensitive can 

dramatically reduce the average activity, Table 3.1.  

 

Table 3.1: Group 1 corresponds to the positions showing strongly negative correlation 

and Group 2 corresponds to the positions showing relatively weak negative correlation. 

 

 Though it is observable that the CI residues play a critical role in influencing the 

dynamic anticorrelated motions they only make up a little more than half the residue 

positions that are observed in group 1. The proportion of CI residue is smaller in group 2 

since every residue is found to exhibit anticorrelated motions in this group. The last column 

shows that, though active variants can influence the average activity in either group, the 

inactive variants have a greater influence on anticorrelated motion.   
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In further analysis, we perform ML algorithm to capture the relation between the 

DCC (positive/negative correlation) of the residues and the protein function/activity and 

whether we can predict if a single point substitution will lead to inactive/activity of the 

protein using the DCC map from the MD simulation. Before performing the ML algorithm, 

we need to take into account several factors in the active and inactive data sets 

(active/inactive datasets obtained using DCC for the CA/CI variants). The dataset is 

composed of 68 data points with each row belonging to one of the 12 CA and 56 CI 

variants. There are 99 columns (independent features) representing the residues in a single 

chain of HIV-1 protease and the value of each of these columns is the total anticorrelation 

rate of the corresponding residue with other residues (except with itself). Based on our 

observation in the previous sections, we collected only the total anticorrelation of residues. 

Also, we have a binary classification problem with the target value of 1 for the CA variants 

and 0 for the CI variants.  

 

Next, the dataset (shuffled) was split (randomly) into training and testing sets with 

80 and 20 percent of datapoints in each, respectively. To remove the potential overfitting 

issue from having a large number of features in our somewhat small database (58 CI and 

12 CA variants) we take advantage of the multicollinearity concern where there is a 

significant dependency between these independent features. By removing the 

multicollinearity issue, it leads us to a smaller set of 12 independent features, Figure S-3.2. 

In order to further reduce the potential bias in the system due to imbalanced dataset (58 

total variants), synthetic minority oversampling (SMOTE) was implemented on the 
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training data only to increase the number of active cases from 12 to 42. Using SMOTE 

allows for a less bias distribution of different classes in the dataset. The training data was 

fit to the logistic regression using a leave one out cross validation (LOOCV) technique. 

The LOOCV is used to complement the SMOTE and feature reduction techniques to 

adequately reduce bias and can be a good choice due to our small dataset. The LOOCV 

was applied using a binomial algorithm with a lasso penalty, the same calculation was done 

with a ridge penalty that provided similar results. A LOOCV can be used to find a minimum 

lambda that can be applied to the prediction algorithm as the normalization factor for 

performing the logistic regression calculation on the unclassified data. The 

misclassification error with the log(Lambda) on the x-axis and misclassification error on 

the y-axis, the vertical line representing the best lambda from the cross validation (Figure 

S-3.3). The fitted model was then validated on the training set and used to evaluate the 

performance of the model on the unseen datapoints from the test set. 
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Figure 3.7: Confusion matrices for the XGBoost model performance A) is the performance 

result of the training set and B) is the performance result of the test set with the recall, 

precision and F1-score shown at the bottom right. 

 

The performance of the trained model is shown in Figure 3.7 for the test set along 

with other metrices such as F1-score, recall and precision. The result shows that the model 

successfully can predict 9 CI variants out of 12 CI variants and 3 CA variants out of 3 CA 

variants. The misclassification rate for the test set is 0.20 that belongs to 3 false positives 

(FP). However, the overall performance of the model provides a good prediction of both 

classes, specifically minority (active) cases. 

 

 

 

 

A) B) 
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Table 3.2: Evaluation of 8 runs of the XGBoost model using different random seeds. 

 

 

To split the dataset into training and test sets, we implemented “seed” parameter 

which leads to slightly different resampled data for the training and test sets with a different 

value of the seed. In order to evaluate how different values of the seed impact the model 

and its performance, we used 8 different values for the seed in Table 3.2. This result 

indicates that the results are reproducible using different random seeds. 

 

Conclusions  

 

In this study, we examine whether the residue positions found to possess significant 

correlations have any influence on the experimental determined activity1 (variant 

activities). Though the inference from the present study shows a clear trend between 

activity and correlated dynamics for HIV-1 protease; in general, different proteins may 
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require different parameters, either longer or shorter MD simulations or reduced 

representations, to assess the impact correlated dynamics has on the activity. Whether the 

CA or CI variant can also be found active or inactive with any of the other substrates 

common to HIV-1 protease is also unknown. Though the system has equilibrated after a 

few ns, it is certain that observing the low frequency modes that account for the global 

anharmonic frequency could require greater than 32 ns of production. As a good measure, 

it is also evident that running simulations less the 32 ns dramatically reduces the number 

of cases observed to influence anticorrelation.  

 

The study of such progressively robust enzymes, such as HIV-1 protease, 

demonstrates that the dynamics plays a significant role as a constraint on its evolution. It 

is evident that as the magnitude of anticorrelation increases, becomes more negative, 

though less residues are observed more often they are associated with residue position that 

results in a CI variant. The characterization of the correlated motion from the residue 

positions of HIV-1 protease can allow scientists to have a greater understanding of how the 

dynamics plays a role in the function of an enzyme. Evaluating the residue positions from 

the DCC matrix of the WT structure and variants in this study provides evidence that 

dynamics can be a significant constraint on the evolution of HIV-1 protease. Examination 

of the obscure dynamic changes between a C2 symmetrical dimer and its variants showed 

that the greatest anticorrelated motions occur within the inter-domain region. Since these 

anticorrelated motions provide evidence of long-range inter-domain signaling that can aide 

in developing better classification of protein-protein interactions and how they can modify 
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an enzyme’s function. HIV-1 protease’s robustness towards substitutions and promiscuity 

towards several substrates makes it a very difficult system to characterize. However, from 

the thorough investigation conducted here we are able to identify the factors that influence 

change in the system and provided significant evidence that correlated motion acts as a 

constraint on the activity of HIV-1 protease. The statistical methods applied here aided us 

in linking the dominate correlated motions from each pair of residue positions to the 

activity of the variants. The machine learning (ML) algorithms used to solve the binary-

classification with regards to the function of the variants are able to predict the activity of 

an unknown variant effectively, based on the correlated dynamics. Furthermore, the 

methods applied here offer and can be applied to gain a better understanding of 

mechanisms associated with allosteric interactions.  
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CHAPTER IV 

 

UNDERSTANDING THE ROLE OF DYNAMICS USING MUTUAL 

INFORMATION AND DEVELOPING A ROBUST MACHINE 

LEARNING MODEL TO PREDICT THE FUNCTION OF HIV-1 

PROTEASE VARIANTS 

 

Introduction  

 

Variant structures arise due to the improper transcription of the amino acid 

sequence causing an insertion, deletion, or substitution of one or more of the amino acids 

commonly observed in the wild-type (WT) structure. In this chapter we focus specifically 

on substitutions and how the dynamics is used to regulate the function associated of these 

variant structures. Experimentalists and theorists use substitutions to examine the causality 

which is the general nature and function that represents the WT structure. In the case of a 

single point substitution, minor or major adjustments to the protein’s structure and function 

can drive over or under expression of a variant proteins caused by signal and response 

mechanisms that can alter the expected output that is required by the system 155, 273-276. The 

unique chemical and physical characteristics of any amino acid imposes an exclusive local 

environment when replaced by residue 33, 150, 277, 278. The amino acids that make up the WT 
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structure are assigned to provide optimal performance towards consuming its intended 

substrate and the amount of product produced. Though some of the variants can supply 

faster or more product, they may produce more product than necessary or consume the 

substrate faster than it comes available making them less favorable 33, 150, 277, 278. 

Effectively, the inherent conformational states provided by the WT amino acid sequence 

is a means to regulate the correct amount of product is available and the rate of consumption 

is acceptable 249, 279-281. To understand more of how a protein’s structure and function can 

be related, we need to examine how a residue is able to distinguish changes from 

information provided at distant sites that alter the function of the structure.  

 

The alterations caused by a substitution or some other event at a location on an 

enzyme can regulate the function of another non-adjoining distant location of the enzyme, 

which is known as allostery44-50. The study of protein communication networks, regulation, 

and stability can provide scientists the methods to design and understand drug delivery, 

disease, and cellular processes better 50-54. There are several approaches considered to aid 

in interpreting how the allosteric affects propagate, how a change at “A” can cause an affect 

at “Z”. The processes within a protein are highly important for regulating the activity of an 

enzyme in order to preserve cellular function 50-54. 

 

Though the changes are not always directly initiated within the catalytic site, the 

residues within the catalytic site of an enzyme have more responsible than most and 

therefore changes to those positions can have larger consequences 163, 282-285. It is also 
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important to note that the residues within a protein-protein interface, for oligomeric 

proteins, have a high degree of importance as they can disrupt the oligomerization of a 

protein 163, 282-285. The study of amino acid substitutions can advance the understanding of 

evolutionary pathways and the drugability of an enzyme 96, 274. Additionally, investigating 

the detailed characteristics of the contributing amino acids along with the functional 

properties of the residue position can be used to better understand the allosteric 

mechanisms 108, 239, 240.  

 

Biophysicists and biochemists have adopted a statistical method used to improve 

signal processing of communication devices called Mutual Information (MI) 131-133. MI is 

a statistic method within Information Theory that focuses on the communication of data 

sets 131, 132, 134-136. The theory behind MI was developed by Shannon in 1948, defining what 

is termed Shannon entropy (eq. 4.1): is the non-linear measure of the rate of information 

associated with the variables being studied, similar to the theory of entropy from 

thermodynamics 131, 132. In Shannon entropy, as the choice becomes certain the entropy 

vanishes, goes to 0, meaning information increases as the uncertainty of the 

system/observation increases 131, 132. When considering the joint probability distribution, 

the concept of uncertainty remains the same as that of Shannon entropy, whereas, knowing 

less about the information of residues i and/or j will increase the joint Shannon entropy 67, 

134-137. Many have adopted this theory to understand the uncertainty and the noise 

associated with a biological, chemical, or physical phenomena 67, 134-137. Thus, MI can be 

used to explore how the linear and non-linear mutual dependency between distant residue 
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interactions and how they can be used to interpret evidence of allosteric communication 

131-133. 

 

Consequently, much of the current studies utilize modified states or methods that 

require further amplification of the signal observed from the MI calculation67, 134-137. 

Ultimately a deeper understanding of the topological features that influence a proteins 

function caused by information sent from distant residues should be evaluated further 67, 

134-137. Within a protein structure each amino acid residue experiences many different 

environmental conditions and interactions such that: surface residues mostly interact with 

the solvent, bulk and interface residues primarily associate with other residues, and the 

binding pocket residues come in contact with the solute or solvent, if accessible 93, 141-145. 

Consequently, the forces and interactions imposed on each residue can vary significantly, 

depending on the location and neighboring residues, constituting a considerable factor for 

the identity and/or pathway of allosteric communication 23, 50, 76, 146. 

 

In order to develop a clear understanding of how information is passed from one 

residue to the next we focus on a symmetric robust protease, the human immunodeficiency 

virus type 1 (HIV-1) protease. Besides playing an important role in the maturation process 

and viral replication of the immature AIDS virus, HIV-1 protease is well characterized and 

common analog exploited for drug efficacy 148, 182, 286-289. The inefficient replication process 

of HIV-1 protease allows for the competition of functional variants that makes it 

challenging to find adequate protease inhibitors191-193. The competition of functional 
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variants combined with the responsible for the cleavage of Gag and Gag-Pol poly proteins 

at eleven sites, HIV-1 protease has a diverse selection of substrates 148, 182, 286-289. In the 

presence of a protease inhibitor drug, functional variants can cause resistance against the 

drug binding to the protease making them preferentially selected for viral replication 191-

193. This process of selecting different functional variants of the HIV-1 protease can also 

be thought as enzymatic evolution.  

 

Figure 4.1: The figure shown above is a front and back view of the HIV-1 protease (PDB 
id: 1hxw). Substitutions were carried out on both chains but the location of active and 
inactive substitutions are shown independently on a single chain. Each residue position 
known to be as active or have greater activity than the WT are highlighted in green and 
those shown to have zero activity compared to the WT are shown in red. Of the 99 
residues that make up each chain, there are 42 unique positions that are found to cause 
an inactive variant and 12 unique positions that are found to cause a variant with 
activity equal or greater than the WT structure.  

 

The HIV-1 protease is a homodimer of two identical 99 amino acid chains for a 

total of 198 residues. Besides the catalytic site, HIV-1 has several functional regions that 

support the operation of the robust C2 symmetrical homodimer that include the flap, elbow, 

hinge, core, and the protein-protein interface 54, 186-190. Symmetry has been observed to 

Front Back 
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contribute to the evolutionary stability and cooperative interactions between the subunits 

of many oligomeric proteins, like that of HIV-1 protease 54, 186-190.  

 

Here we utilize the publication of an in-vitro study of the experimental catalytic 

activity were 107 HIV-1 protease variants activity was measured towards the cleavage of 

the matrix-capsid (MA/CA) polypeptide domain1. The experimental data1 demonstrated 

that a single point substitution that occurs in both chains of the enzyme can diversely effect 

the catalytic activity of HIV-1 protease towards the cleavage of MA/CA. Closer inspection 

of the data1 presents 68 variants of the HIV-1 protease that can be considered highly active 

(12) or zero activity (56) with respect to the WT structure, Figure 4.1. Modeling the HIV-

1 protease (WT) and variant structures in the bound state with one of its natural substrates 

can offer insight of a bridge between the dynamics and the function of robust symmetrical 

enzymes. The information provide by Martinez et.al.1 is used in conjunction with the 

recently determined structure of HIV-1 protease in bound state with the MA/CA peptide 

substrate208. Studies such as Martinez et.al.1 as well as highly distinguished protein 

structures can assist researchers to explore the relevance of the protein dynamics and the 

role of allosteric signaling plays in the enzymatic evolution. Probing the dynamic 

interactions of the residues of an enzyme and its variants can offer insight for the 

developmental importance of allosteric signaling and their connection to a variant’s 

experimental activity.  
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Here we seek to understand how the non-linear dependency identified from the 

interactions of each pair of residue positions, using Mutual Information (MI), can be used 

to describe the dynamics of HIV-1 protease. Residues that receive more or less information 

than what is commonly observed from the WT may be associated with allosteric “hotspot” 

and/or disrupt the allosteric pathway/s within a protein. Interference to the allosteric 

pathway and/or an allosteric “hotspot” can adversely impact the function of the protein that 

can then be exploited as a target during drug trials. In this study we look to uncover if the 

communication sent or received by a substituted residue or the residue’s they interact with 

most can act as a constraint on the function of HIV-1 protease. We also use machine 

learning (ML) algorithms suited for solving binary-classification problems in order to 

assess if there is a connection between the non-linear pairwise interactions of HIV-1 

protease variants with their experimentally determined activity. Furthermore, using the ML 

algorithms to predict the impact caused by a single point substitution can aid scientists in 

better understanding the allosteric mechanisms that can influence the activity of a protein. 

 

Methods  

 

The models of the WT and variant complexes of HIV-1 protease with the MA/CA 

substrate were prepared using the following methodology. The structure of the MA/CA 

substrate and a tetra coordinated water molecule were extracted from a PDB file (PDB id: 

1KJ4)208 of HIV-1 protease. The MA/CA substrate and tetra coordinated water molecule 

were placed into the binding pocket of the WT structure (PDB id: 1HXW)209, with the same 
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amino acid sequence as the WT structure210. The substrate and tetra-coordinated water were 

transferred to the WT structure by aligning the backbone atoms of the active site (within 

4.5Å of ligand) for both PDB structures. Using software called MODELLER14 each variant 

was created such that a single point substitution was made in both chains of an appended 

WT structure. MODELLER14 allows the use of CHARMM213 packages, such that, the 

harmonic potentials specific to the bonds, angles, improper dihedral angles of the 

substituted residue are constrained while the other residues of the protein are restrained.  

 

The structures were solvated in a water box of  TIP3P water molecules 264, with the 

minimum distance of any atom of the protein structure to any face of the box 10 Å or 

greater. Potassium chloride (KCl) ions were included when the system was solvated to 

achieve a salt concentration of 150 mM (millimolar), keeping the total charge of the system 

equal to zero 114, 212. Any water molecules that have an oxygen atom closer than 2.6 Å from 

the protein and substrate were removed from the system. The energy minimization and the 

MD simulations of the structures were performed using the molecular mechanics package 

CHARMM213, with its 22nd version of the force field214. A Particle-Mesh Ewald (PME) 

method was applied to treat the electrostatic interactions with a dielectric constant of 1 and 

a cutoff of 10 Å. The Lennard-Jones potential for any non-bonding interactions were set to 

0 beyond 10 Å. Bonds involving hydrogen atoms were constrained using SHAKE215 during 

the energy minimization and the MD simulation. The MD simulation was performed in an 

NPT (constant pressure and temperature) ensemble, where the temperature was maintained 
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to an average of 300 K using a Langevin thermostat while the pressure was maintained to 

1 atm using the Langevin piston method265.  

 

The solvent of the system was first minimized for 4000 steps using a steepest decent 

(SD) algorithm while keeping protein and substrate atoms constrained. In the following 

steps, a force constant of 1000 kcal/molÅ was applied as a distance-based restraint to the 

substrate atoms and the atoms within 5Å of the substrate from the catalytic site. The system 

was then minimized over 12000 steps using a SD algorithm while the distance-based 

restraint was scaled down to 800 kcal/molÅ. The solute atoms were then harmonically 

restrained with a force constant of 700 kcal/molÅ and minimized for 36000 steps using a 

SD algorithm while the forces constant was scaled down to 100 kcal/molÅ.  

 

The system was gradually heated from 100 K to 300 K during 100 ps of MD 

simulation with a 1 fs time step with a distance-based restraint for the substrate and active 

site was applied with a force constant of 150 kcal/molÅ. In the following steps, the atom-

based restraint applied to the substrate and active site were removed to begin the MD 

simulation for the system. The MD simulation of the WT and each of the 68 (12 active and 

56 inactive) variants were run for 72 ns. Additionally, most MD simulations equilibrated 

after 4ns making a total of 68ns of production for each structure that was run in triplicate 

for a total of 204 ns production. 
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The alpha carbon (Cα) coordinates of the structure’s trajectory were extracted using 

the Bio3d120 library with the R programming language266-268. The Cα coordinates for each 

residue were subsequently scaled by calculating the magnitude of the vector.  

 

 

Next, the residues along with their scaled Cα coordinates were input into a K-means 

algorithm (implemented  the caret294 library with R267-269 ) to cluster residues based on their 

scaled Cα coordinates for all cases over the length of the MD production 290-292. An elbow 

method was applied to determine the optimal number of bins used to discretize the residues 

based on the scaled Cα coordinates, see Figure S-4.1. The Cα coordinates were then 

numerically encoding using the discretize function from the infotheo294 library with R266-

268 and the 115 bins. The MI was then calculated using the infotheo294 library with R266-268. 

The MI for the scaled Cα coordinates of each residue pair was calculated generating a 

square matrix of 1982 data points. The total MI of each residue was calculated from the 

pairwise MI by focusing exclusively on the interactions within a single domain, though the 

intra-domain MI for each residue was also calculated.  

 

Shannon entropy131, 132 describes the probability mass function that ri or rj share 

some measurable quantitative value, equation 4.2. In other terms, it is the individual 

entropy of one variable and the conditional entropy of another variable 131, 132. MI is the 

relative entropy between the joint distribution and the product distribution, eq. 4.2. The 

|𝑎|  =  √𝑥2 + 𝑦2 + 𝑧2      eq. 4.1 
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joint Mutual Information is the reduction in the uncertainty of one variable due to the 

knowledge of another. 

 

 

 

The total MI of each residue was calculated from the pairwise MI using the 

infotheo294 library in R266-268 for each variant and the WT, focusing mainly on the MI within 

a single domain, though the total MI for the inter-domain (Please see Figure 4.3A) 

interactions of each residue was also computed separately. Next, the total MI for the active 

and inactive variant cases were separated into variant residues with low, high, and neutral 

MI compared to the WT. Residues with low MI are found if 45% or less of the variants for 

a residue are shown to have less MI than the WT, Figure 4.2. Residues with high MI are 

found if 55% or more of the variants for a residue are shown to have more MI than the WT, 

Figure 4.2. Whereas a residue was found to be neutral if in the variant cases it shows a total 

MI of more than 45% and less than 55% of that in the WT structure, Figure 4.2. 

 

𝐼(𝑅𝑖; 𝑅𝑗) =  ∑ ∑ 𝑝(𝑟𝑖 ,  𝑟𝑗) 𝑙𝑜𝑔
𝑝(𝑟𝑖, 𝑟𝑗)

𝑝(𝑟𝑖)𝑝(𝑟𝑗)
(𝑟𝑗∊𝑅𝑗)(𝑟𝑖∊𝑅𝑖)   eq. 4.3 

𝐻(𝑅𝑖; 𝑅𝑗) = −∑ ∑ 𝑝(𝑟𝑖 ,  𝑟𝑗) 𝑙𝑜𝑔 𝑝(𝑟𝑖 ,  𝑟𝑗)(𝑟𝑗∊𝑅𝑗)(𝑟𝑖∊𝑅𝑖)   eq. 4.2 
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Figure 4.2: Venn diagram showing the separation of low (blue) , medium (green) and 
high (orange/red) MI where RVAR and RWT represent the residues of the variants and WT. 

 

Machine learning model 

 

 The 12 CA and 56 CI variants along with the 99 residues composed a matrix of 68 

rows and 99 columns representing the residues (independent features) along with the 

numerically encoded activity as a binary classifier (1 for CA and 0 for CI) for each case. 

Further, the dataset was split and shuffled into training and test sets using an 80/20 ratio. 

To handle the imbalance in the dataset, synthetic minority oversampling (SMOTE) was 

done, using the smotefamily271 library in R266-268, on the training set only. We took 

advantage of the issue with multicollinearity by removing the independent features with 

high multicollinearity using variance inflation factor (VIF). The greater the magnitude of 

VIF found from a pair of residues has a greater potential those residue pair will likely 

increase multicollinearity. Such that, if a feature, R1 is corelated to features R3, R5, R8, 

we only keep the one that has the larger to the target (dependent feature which is an 

experimental activity) and remove the rest of independent features in the dataset.  
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The training data was input into a leave-one-out cross-validation (LOOCV), using 

cv.glmnet function from the glmnet270 library in R266-268, with the number of folds being 

equal to the number of cases from the training data set. To evaluate the LOOCV the 

misclassification error was determined for the datum that was left out.  

 

eq. 4.4 

Equation 4.4 shown above represents the leave-one-out cross-validation272, 295-299. A 

LOOCV fits a model by repeating N times for each datum in the training set. Since having 

imbalanced data and using SMOTE271, 300 on the training data this method aims to reduce 

the misclassification rate as well as bias and randomness from the binary classification. 

The maximum variance for the prediction can be found by using K=N, and therefore, 

represents the extrema of the data. Both a lasso (L1) and ridge (L2) regression272, 295-299 

were evaluated, with similar results. However, the L1 regression was used for the model 

as it imposes a size constraint on the tuning parameter λ and reduces multicollinearity. The 

model was then used to evaluate the test as well as the training set for accuracy and 

misclassification using a confusion matrix along with the F1-score, recall, and precision 

metrics. 

  

𝐶𝑉 (𝜆) =
1

𝑁
  𝐿(𝑦𝑖  ,  𝜆(−𝐾(𝑖) ) (𝑥𝑖))

𝑁

𝑖=1
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Results and Discussion 

 

 

Figure 4.3: (A) Representation of the pairwise MI matrix of Cα atoms in WT of HIV-1 

protease bound to MA/CA substrate. The x and y axis are the residue numbers, and the 

points represent the normalized MI value between 0 and 1. (B) Shows the regions of 

intra-domain and inter-domain correlations found in Figure 4.2A. 

 

The pairwise MI matrix of the WT structure is shown in Figure 4.3A, where we can 

see a grid like pattern of information and junctions as transmissions are passed from one 

residue to another. Each point is colored differently based on the magnitude of MI and it 

appears that most of the pairwise MI values fall in the range of 0.1 to 0.5. Residue pairs 

found to have highest MI are found along the diagonal but there is evidence of moderate 

and high MI observed from distal residues throughout inter-domain region, Figure 4.2B. 

For example, residues 2 and 3 interact with residue 49 which are found in distinctly 

B A 

Region I 
Intra-Domain 
Chain A - A 

Region IV 
Inter-Domain 
Chain B - A 

Region II 
Intra-Domain 
Chain B - B 

Region III 
Inter-Domain 
Chain A - B 
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different positions of the protein. Residues 2 and 3 are found in the hinge region and on the 

other hand, residue 49 is found in the flap which is a predominant residue ensuring the flap 

is closed.  

 

Figure 4.4: Representation of a single chain of HIV-1 protease highlighting the position 

of residues 34 and 35 with respect to the alpha-helix 

 

Focusing on the inter-domain region, Figure 4.2A, there are a few spots with high 

MI that are found within residues of the alpha helix and non-neighboring residues. For 

example, residues 34 and 35, which most of time, show very low MI with other residues; 

however, they make a stronger interaction or higher MI with the residues of the alpha helix. 

Residues 34 and 35 are part of a coil section in the elbow region that passes between two 

neighboring beta sheets, of which, one is connected to the alpha helix, Figure 4.3. This 

communication/interaction between those distant residues might indicate that these 

residues may be functional residues on the allosteric pathway of the protein structure.  
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The total MI of each residue across the MD production runs was calculated for the 

HIV-1 protease WT and each variant structure (CA and CI variants described in Figure 4.4 

A&B, respectively). In figure 4.4A, there are 12 distinct colors representing the 12 CA 

variants structures. In Figure 4.4B, 56 diverse colors are used to describe the 56 CI variants 

structures. In both figures, the total MI of each residue of the WT structure is identified by 

the black cross to distinguish the changes from that of the variant’s structures. Comparing 

the total MI of each residue in the WT versus VT (variant type) shows that the variants 

(CA/CI) cause fluctuations/changes in the information that each residue carries throughout 

the MD simulation. Even though there is only a single point substitution in a VT structure, 

the changes found span across every residue (there are a few residues that do not show as 

much change compared to WT that is discussed further in the following section). These 

difference in the VT structures MI further supports the allosteric effect of non-neighboring 

residues. The allosteric communication in a VT structure can lead to the disruption of the 

evolutionary dynamics observed in the WT and as a result alter the catalytic 

activity/inactivity of the protein structure.  

 

It is observable that the residues from certain residues of a VT structure can also 

carry less or more information than that of the same residue in WT structure. A closer look 

at these figures, in Figure 4.5A we can see that there are some residues such as residues 

47-50 that have less MI than the same residues for the WT almost for all the 12 cases of 

CA variants. On the other hand, in Figure 4.5A, there are some residues such as residues 

32-34 that more often shown as having more MI than that of the same residues for the WT 
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for essential all of the 12 CA variants. This behavior is seen with regard to the CI variants 

as well, Figure 4.5B. For instance, residues 47-50 show less MI in majority of CI variant 

structures compared to the same residues for the WT. The opposite is seen with residues 

78-80 where almost all of the 56 CI variant structures show more MI than that seen in the 

same residues for the WT. These residues might be on the allosteric pathway and the 

information sent and received by them might have the greater influence on the protein 

function with regard to a single point substitution. Further analysis on these observations 

is investigated in greater detail in the follow sections. 

 

 

A) 
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Figure 4.5: Total MI of each residue for the WT and A) the active variants as well as B) the 

inactive variants. The WT is represented as a black cross and each variant is represented by a 

unique color, 12 colors for the active and 56 colors for the inactive. 

 

The total MI from the WT of each residue is depicted in Figure 4.6 A&B in which 

the residues are categorized into 3 classes based on the observations from Figures 4.5 A&B. 

For any residue, the total MI in variant structures (Figure 4.5 A&B) compared to the one 

in WT and if the residue has less MI than the WT for at least 55% of the total variant cases, 

it can be categorized as low MI. Residues with high MI are found if at least 55% of the 

variant cases for a residues are shown to have more MI than the WT. Whereas a residue 

was found to be neutral if the total MI for the variants cases of a residue exceeds that of 

the WT for less than 55% and greater than 45% of the variants. The focus of Figure 4.6 

A&B is to identify residues that can act as potential allosteric hotspots due to their increase 

B) 
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or decrease in MI based on the impact from a single point substitution. Figure 4.6 A&B 

shows the total MI of each residue of the WT with the residues found in the corresponding 

variant cases that are more often greater than (Blue), less than (Red) or neutral (Green) 

with respect to the MI from the WT. The residue numbers are represented on the x-axis 

and the total MI is shown along the y-axis. Figure 4.6A focuses exclusively on the CA 

variant cases and shows that 48 residues from the CA variants are more often less, 41 of 

the residues are found to have more and 10 are neutral MI with respect to that of the WT. 

The focus of Figure 4.6B is on the CI variant cases and shows that only 28 of the residues 

from the CI variants are more often less, 55 of the residues are found to have more and 16 

are neutral MI compared to that of the WT. The neutral residues vary slightly between the 

CA and CI variants, though residues 2, 13 and 60 are found to be neutral in either case. 

Each of the common residues are found in different locations of the structure with residue 

2 being part of the hinge, residue 13 is located within the cantilever while residue 60 is 

located within the elbow. Overall, we see that the CI variants more often cause an increase 

in information with respect to the MI from the WT. This suggests that the communication 

sent or received by the substituted residues or residues they interact with most are highly 

important for the function of the structure. 
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B) 

A) 
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Figure 4.6: Comparison of the total MI for the WT and A) the active variants as well as 

B) the inactive variants. Residues where the total MI of a variant’s residue is found to be 

more often greater than that of the WT are shown as red. Residues where the total MI of 

a variant’s residue is found to be more often less than that of the WT are shown as blue. 

Residues where the total MI of a variant’s residue is found to be more often similar to 

that of the WT are shown as green. 

 

 

Here, we take advantage of a machine learning (ML) technique to investigate 

whether one can predict if a single point substitution causes activity/inactivity of the 

protein. The dataset is composed of 68 data points with each row belonging to one of the 

12 CA and 56 CI variants. There are 99 columns (independent features) representing the 

residues in a single chain of HIV-1 protease and the value of each of these columns is the 

total MI rate of the corresponding residue with the other residues (except with itself). Also, 

we have a binary classification problem with the target value of 1 for the CA variants and 

0 for the CI variants. The dataset (shuffled) was split (randomly) into training and testing 

sets with 80 and 20 percent of datapoints in each, respectively. To remove the issue with 

potential overfitting from having a large number of features in our somewhat small 

database (58 CI and 12 CA variants) we take advantage of the multicollinearity concern 

where there is a significant dependency between these independent features. Removing the 

multicollinearity issue from the training dataset leads us to a smaller set of 14 independent 

features, Figure S-4.2H. In order to further reduce the potential bias in the system due to 

imbalanced dataset (58 total variants), synthetic minority oversampling (SMOTE) was 

implemented on the training data only to increase the number of active cases from 12 to 

42. Using SMOTE allows for a less bias distribution of different classes in the dataset.  
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The training data was fit to the logistic regression using a leave one out cross 

validation (LOOCV) technique. The LOOCV is used to complement the SMOTE and 

feature reduction techniques to adequately reduce bias and can be a good choice due to our 

small dataset. The LOOCV was applied using a binomial algorithm with a lasso penalty, 

the same calculation was done with a ridge penalty that provided comparable results. A 

LOOCV can be used to find a minimum lambda that can be applied to the prediction 

algorithm as the normalization factor for performing the logistic regression calculation on 

the unclassified data. The misclassification error with the log(Lambda) on the x-axis and 

misclassification error on the y-axis, the vertical line representing the best lambda from the 

cross validation (Figure S-4.3). The fitted model was then validated on the training set and 

used to evaluate the performance of the model on the unseen datapoints from the test set. 
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Figure 4.7: Confusion matrix of the Logistic Regression model performance A) the 

performance result of training set B) the performance result of test set with the recall, 

precision and F1-score shown at the bottom right. 

 

The performance of the trained model for the LOOCV logistic regression is shown 

in Figure 4.7A and the test set Figure 4.7B along with the corresponding metrices such as 

F1-score, recall and precision shown at the bottom right of the figure. The result shows that 

the model successfully can predict 8 CI variants out of 9 CI variants and 3 CA variants out 

of 4 CA variants. The misclassification belongs to 1 false negative (FN) and 1 false positive 

(FP). However, the overall performance of the model offers a good prediction of both 

classes specifically the minority (active) cases.  

 

  

A) B) 
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To improve the performance of the result, the XGBoost which in an ensemble 

model was implemented on the same train dataset and the result is shown in Figure S-4.4A 

and the test set Figure S-4.4B along with the corresponding metrices such as F1-score, 

recall and precision shown at the bottom right of the figure. However, the performance of 

the XGBoost for this use case is not good, as it compared to the one from the logistic 

regression. Overall, we developed a logistic regression algorithm that enables us to predict 

successfully whether a single point substitution can be counted as a CI or CA variant. 

Table 4.1: 8 runs of the logistic regression model using different random seeds. 

 

 

Conclusion 

 Allosteric signaling is a complex phenomenon that occurs within a protein structure 

that is uniquely shaped by the features of the amino acids that make up the structure. 

Relating the unique nature of the amino acids responsible for the change in activity requires 

in-depth examination of how the information is transformed between residues of the variant 
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cases. The total MI of the residue positions responsible for the change in activity offer 

supporting details to identify the relationship between dynamics and function of the variant. 

It can be observed that as the MI for a residue increases the amount of information disrupts 

the signals sent or received from the residues responsible for the function of the structure 

and results in an CI variant. Interestingly, if the information is suppressed more, as 

observed with the CA variants, for specific residues the function of the enzyme is 

moderately improved, given the CA variants observed in this study all have equivalent or 

greater activity than the WT. The residues seen to receive more or less information than 

what is commonly observed from the WT may be associated with allosteric “hotspots” 

and/or disrupt the allosteric pathway/s within a protein. These allosteric pathways and/or 

the allosteric “hotspots” can be exploited as a target during drug trials as they can adversely 

impact the function of the protein. Essentially, the communication from the residues 

responsible for the function of the enzyme can be tuned based on the modifications that 

occur depending on the allosteric behavior of the residue site. 

 

The approaches taken here allowed us to describe the dynamics of HIV-1 protease 

by evaluating the non-linear dependency identified from the interactions of each pair of 

residue positions, using Mutual Information (MI). In this study we look to uncover if the 

communication sent or received by a substituted residue or the residue’s they interact with 

most can act as a constraint on the function of HIV-1 protease. The machine learning (ML) 

algorithms offer a substantial assessment connecting the non-linear pairwise interactions 

of HIV-1 protease variants with their experimentally determined activity. Furthermore, 
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using the ML algorithms to predict the impact caused by a single point substitution offers 

a suitable method for solving binary-classification problem of identifying if a variant will 

be active or inactive from the MI obtained from the MD simulations of the HIV-1 protease 

variants. In general, the non-linear correlations associated with the dynamics we’ve 

examined here show there is a connection to the activity of HIV-1 protease and can aid 

scientist to better understanding of the allosteric mechanisms in other proteins. 
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Appendix A 

Supplementary figures for Chapter II  

  

Figure S-2.1: Increased frequency of contacts. 
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Figure S-2.2: Gain of contacts reference distance for the residues of the WT. 
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Table S-2.1: Change in binding free energy upon substitution (ddG) using MMPBSA 

and Prodigy 105, 110, 227-235. 
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Table S-2.2: Change in protein-protein binding free energy upon substitution (ddG) 

using Prodigy 105, 110, 227-235. 
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Figure S-2.3: Gain of contacts reference distance for the residues of the WT. 
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Figure S-2.4: The figures above show the MM energy (kcal/mol) along the y-axis and 
the individual components of the MM energy on the x-axis. Each of the CA variants (A) 
are represented as colored points and the WT is shown as a cross. Likewise, each of the 
CI variants (B) are represented as colored points and the WT is shown as a cross. 

 

Additionally, we looked at methods to understand the impact of substitutions on the 

protein-protein interactions of oligomerization for HIV-1 protease using a software called 

Prodigy105, 228, 229, developed by Vangone et.Al. Prodigy predicted that about 30% of the 

CA variants while 57% of the CI variants have a stabilizing protein-protein interaction, 

Supplementary Table A. Having a stable protein-protein interface for an enzyme like HIV-

1 protease is essential, however stability can be a sign that the variant is more likely to 

prefer a closed conformation.  
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Appendix B 

Supplementary figures for Chapter III  
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Figure S-3.1: 
Frequency  Total Magnitude 
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Residue Pairs with the Greatest Anti-Correlation 

Variant Variant # Residue 1 Residue 2 Activity 
T91A 91 25 45 1 

K20R 20 68 44 1 

K55R 55 56 34 1 

Q7R 7 51 25 1 

L10F 10 25 46 1 

L63P 63 22 46 1 

N37S 37 65 96 1 

R41S 41 85 52 1 

M46V 46 42 52 1 

I64V 64 99 27 1 

A71V 71 57 34 1 

I72V 72 99 27 1 

V56A 56 51 59 0 

T80A 80 33 46 0 

G94A 94 50 30 0 

T96A 96 95 69 0 

Q2R 2 57 79 0 

G40R 40 56 79 0 

W42R 42 54 76 0 

G68R 68 27 52 0 

P9R 9 5 72 0 

C95R 95 97 70 0 

T96N 96 77 53 0 

N83D 83 76 79 0 

N88D 88 23 59 0 

G94D 94 67 57 0 

L23Q 23 33 76 0 

K20E 20 68 57 0 

D25E 25 33 53 0 

G27E 27 13 91 0 

V32E 32 65 2 0 

Figure S-3.5: Residue pairs with greatest anticorrelation 
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G40E 40 40 27 0 

E21G 21 34 55 0 

D25G 25 61 51 0 

R57G 57 95 69 0 

D60G 60 57 55 0 

E65G 65 25 46 0 

R87G 87 68 96 0 

D29H 29 14 2 0 

Y59H 59 34 46 0 

P81H 81 20 47 0 

T31I 31 25 52 0 

I47L 47 82 53 0 

I62L 62 50 25 0 

V75L 75 82 58 0 

P81L 81 56 83 0 

E35K 35 42 23 0 

I64K 64 65 26 0 

R87K 87 70 96 0 

I15M 15 25 46 0 

I47M 47 93 14 0 

I85F 85 83 55 0 

L89P 89 14 91 0 

L38S 38 83 55 0 

G52S 52 24 53 0 

L76S 76 14 2 0 

R87S 87 14 27 0 

N88S 88 12 49 0 

L90S 90 9 50 0 

I3T 3 51 57 0 

I54T 54 52 26 0 

I64T 64 8 63 0 

I66T 66 35 53 0 

I85T 85 56 34 0 

C95Y 95 99 99 0 

G27V 27 43 81 0 

I50V 50 34 45 0 

G52V 52 80 57 0 
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Figure S-3.2: Feature selection from XGBoost models 
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Figure S-3.3: LOOCV Misclassification Error. 
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Figure S-3.4: Confusion matrices for the LR model performance A) is the performance 

result of the training set and B) is the performance result of the test set with the recall, 

precision and F1-score shown at the bottom right. 

   

A) B) 



128 

 

 

 

 

Appendix C 

Supplementary figures for Chapter IV  

 

 

 

 

 

 

 

  

Figure S-4.1: Results from K-means algorithm 
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Figure S-4.2A-H ; Feature selection from the LR model   
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Figure S-4.3: LOOCV misclassification error (log(Lambda)) 
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Figure S-4.4: Confusion matrix of the XGBoost model performance A) the 

performance result of training set B) the performance result of test set with the recall, 

precision and F1-score shown at the bottom right. 

  

A) B) 
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  Figure S-4.1: Total MI for each residue i with the neighboring residues i+1 and i-1. 
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Appendix D 

Notes from the Challenges and future work 

 A major concept I looked to cover under chapter I was the difference in internal 

volume, the empty space within a protein structure. The tools I used to evaluate the empty 

space were fpocket, which supplies a wealth of detail regarding the volume calculated. 

However, optimizing the tool to measure each structure equaling requires exhaustive 

parameterization and ultimately, I had to measure a single monomer collectively rather 

than identifying a set number of pockets. Given the time spent and the end result and the 

complexity of the analysis there was little to no supportive evidence. However, I had 

learned a lot about rationalizing the methods used to compute complex ratios as well as 

gain a better understanding of aggregation.  

 Also, while looking into the energies, I had calculated a number of features to 

include individual energy of a residue. I had done a number of procedures similar to what 

I had gone through with looking at the internal volume. Ultimately the scale and 

computational load was extremely high and a constant battle, but I believe there is some 

details within the changes in a residues internal energy that can help understand allostery 

more. 

 Future work, I’m creative and have goals in mind and I do see the expansive 

directions things can go. Focusing solely on the study of protein dynamics it would be 

interesting to study variant structures that have no known activity using the model I had 
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developed as well as work towards understanding the application of other methods and 

datasets.  

As I have started a career before completing this, the group I work with studies 

exposure science, whereas the research that I have begun there has broaden my knowledge 

of the resources available and the scope of how I will institute some of these concepts 

moving forward.  
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