
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2023

Improving Inference Speed of Perception Systems in Autonomous Improving Inference Speed of Perception Systems in Autonomous

Unmanned Ground Vehicles Unmanned Ground Vehicles

Bradley Selee
bselee@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Selee, Bradley, "Improving Inference Speed of Perception Systems in Autonomous Unmanned Ground
Vehicles" (2023). All Theses. 4053.
https://tigerprints.clemson.edu/all_theses/4053

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4053&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4053&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/4053?utm_source=tigerprints.clemson.edu%2Fall_theses%2F4053&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Improving Inference Speed of Perception Systems in
Autonomous Unmanned Ground Vehicles

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

Computer Engineering

by

Bradley Robert Selee

May 2023

Accepted by:

Dr. Melissa Smith, Committee Chair

Dr. Yongkai Wu

Dr. Jon C. Calhoun

Abstract

Autonomous vehicle (AV) development has become one of the largest research challenges in

businesses and research institutions. While much research has been done, autonomous driving still

requires extensive amounts of research due to its immense, multi-factorial difficulty. Autonomous

vehicles rely on many complex systems to function, make accurate decisions, and, above all, provide

maximum safety. One of the most crucial components of autonomous driving is the perception

system.

The perception system allows the vehicle to identify its surroundings and make accurate,

but safe, decisions through the use of computer vision techniques like object detection, image

segmentation, and path planning. Due to the recent advances in deep learning, state-of-the-art

computer vision algorithms have made exceptional progress. However, for production-ready autonomous

driving, these algorithms must be nearly perfect. Furthermore, even though perception systems are

a widely researched area, most research focuses on urban environments and there exists a great need

for autonomy in other areas. Specifically, autonomy for unmanned ground vehicles (UGV) needs to

be explored. Autonomous UGVs allow for a wide range of applications like military usage, extreme

climate exploration, and rescue missions.

This research aims to investigate bottlenecks within a perception system of autonomous

UGVs and methods of improving them. The primary investigation focuses on the inference speed of

semantic segmentation using deep learning techniques. Unlike object detection, semantic segmentation

provides a much better understanding of the environment by providing pixel-wise classification

rather than only creating bounding boxes. However, semantic segmentation comes at a much higher

computational cost. Secondly, this thesis looks at increasing the image transfer time from a mounted

camera to a video processing unit (which serves the deep learning model) using lossy compression.

Due to the nature of lossy compression, we must also understand how lossy compression affects

ii

the classification accuracy of semantic segmentation. Finally, the challenges faced and preliminary

results from future work relating to temporal consistency are discussed.

iii

Dedication

This thesis is dedicated to my parents for their constant support during the physical and

mental battles of the COVID-19 pandemic. This thesis is also dedicated to everyone link who

endured similar mental battles during the pandemic. Lastly, this thesis is dedicated to Dr. Smith

for giving me this opportunity and setting me up for success upon graduation.

iv

Acknowledgments

First, I would like to acknowledge Dr. Melissa C. Smith for establishing the undergraduate

Machine Learning and Big Data Creative Inquiry. This truly helped me find my passion, strengthened

my motivation for continuous learning, and my decision to pursue a master’s degree.

Next, I would like to acknowledge Dr. Jon C. Calhoun who I have known since my junior

year of undergrad. He has always offered immense amounts of support in my undergrad and graduate

years, even when dealing with many other commitments. Dr. Calhoun is dedicated to ensuring his

students learn and will go above what is required while creating a friendly atmosphere.

I would also like to acknowledge Dr. Yongkai Wu. Dr. Wu helped transition my research

from TensorFlow to PyTorch from the knowledge and practice gained in his class. Some of the

models built and experiments run throughout this research would have been made much harder if I

had not switched to PyTorch.

Lastly, I would like to acknowledge Dr. Harlan Russell. He has offered an incredible amount

of support in my undergrad years as my advisor and met with me countless times to discuss graduate

school and other options. He has also been very flexible and helpful during my transition to graduate

school.

This work was supported by Clemson University’s Virtual Prototyping of Autonomy Enabled

Ground Systems (VIPR-GS), under Cooperative Agreement W56HZV-21-2-0001 with the US Army

DEVCOM Ground Vehicle Systems Center (GVSC).

Part of this research was also supported by the U.S. National Science Foundation under

Grants SHF-1910197 and SHF-1943114.

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.

OPSEC #7385

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . vii

List of Figures . viii

1 Introduction . 1

2 Background . 5
2.1 Computer Vision Using Deep Learning . 5
2.2 Datasets . 11
2.3 Segmentation in Unstructured Environments . 14
2.4 Data Compression . 15
2.5 Summary . 15

3 Related Work . 17
3.1 High Inference Speed Semantic Segmentation DNNs 17
3.2 Off-Road Environment Semantic Segmentation . 18
3.3 Data Compression to Reduce Latency . 19

4 Research Design and Methods . 20
4.1 Evaluation of Semantic Segmentation . 20
4.2 Semantic Segmentation with Lossy Compression . 25

5 Experimental Results and Discussion . 29
5.1 Evaluation of Semantic Segmentation . 29
5.2 Semantic Segmentation with Lossy Compression . 32

6 Conclusion . 38
6.1 Future Work and Preliminary Results . 39

Bibliography . 42

vi

List of Tables

5.1 Individual class IoU from the Rellis-3D dataset . 30
5.2 Individual class IoU from the Cityscapes dataset . 31
5.3 Inference speed and mIoU comparison of this work and the original work [38] 32

vii

List of Figures

2.1 Convolution operation. 7
2.2 ResNet bottleneck component. 8
2.3 (a) Semantic segmentation [51] (b) Instance segmentation [51] (c) Panoptic segmentation

[39] . 9
2.4 Full convolutional network [32]. 10
2.5 Dilated convolution. 11
2.6 Random ImageNet images [15]. 12
2.7 Random Pascal VOC image. 13
2.8 Random Cityscapes image. 13

4.1 SwiftNet Architecture. The green blocks represent ResNet-18 blocks. The orange
blocks represent 1 × 1 convolutions to establish dimensionality. The red circles
represent element-wise summation. The blue blocks represent upsampling using
bilinear interpolation. 22

4.2 Rellis-3D ontology. 23
4.3 Random images from Rellis-3D (a) Raw image (b) Ground truth label image with the

color map applied (c) Ground truth label image of class IDs 24
4.4 Local data transmission setup to simulate an autonomous off-road vehicle. Our

local computer represents the camera, and the Jetson Xavier represents the Video
Processing Unit. Both devices are connected through two Ethernet cables and a
Network Switch (Linksys SE1500). 26

4.5 FFMPEG image quality (compression level) to compression ratio. The baseline
represents level 1, with no compression. 27

5.1 Segmented images with SwiftNet from the Rellis-3D test set: original image (top),
predicted segmented image (middle), and ground truth segmented label (bottom) . . 33

5.2 Evaluation of mIoU at each compression level using a model trained only on the
baseline dataset (no compression). 34

5.3 Evaluation of mIoU on six different image quality levels, trained on its respective
image quality level. 35

5.4 Overall transmission speedup of the entire compressed Rellis-3D test set. Values above
1.0 represent a positive speedup, and values below 1.0 did not benefit from compression. 35

5.5 Transfer, compression, and overall system time for the entire Rellis-3D test set when
using a different number of images. Compression levels below the dashed red line
show an end-to-end speedup compared to the baseline. 36

6.1 AuxAdapt method using SwiftNet as the main network and HRNet as the lightweight
auxiliary network. 39

6.2 AuxAdapt results (right) compared with original SwiftNet predictions (left) over a
period of 3 frames. 41

viii

Chapter 1

Introduction

Research in self-driving cars has made great strides, primarily due to the rise of deep

learning (DL) techniques [28]. With this immense progress in artificial intelligence (AI), state-

of-the-art (SOTA) computer vision algorithms have greatly favored DL rather than standard, non-

neural network computer vision algorithms. These recent improvements in DL have enabled the

advancements made in autonomous vehicles. Current advanced driver assistance systems (ADAS)

support low-level autonomy like lane assists and blind spot alerting [33]. These ADAS operate at

what is considered level 1 and level 2 autonomy because drivers are still required to perform some

actions. However, research is now focused on advancing high levels of autonomy: level 3 (conditional

automation), level 4 (high automation), and, ultimately, level 5 (full automation) [53]. To one-day

support full automation, several autonomy systems must be improved, most notably the perception

systems.

The perception system in autonomous vehicles remains one of the most critical systems.

These systems include many components such as a wide range of sensors, a complex collection

of vision algorithms, and an intricate hardware setup while simultaneously communicating with

other systems in the autonomous vehicle. All of these components could create bottlenecks and

unnecessary overhead within the perception system, ultimately delaying the time until the vehicle

can make an accurate yet safe decision. Reducing the overhead in certain components can alleviate

this delay.

Perception algorithms play a vital role in these autonomous systems because they must

quickly understand the vehicle’s surroundings in order to make accurate decisions. Two major types

1

of image classification algorithms exist in autonomous vehicle systems: object detection [43] and

semantic image segmentation [11]. Object detection can be defined as classifying objects of interest

and identifying their locations in an image using bounding boxes [68], while semantic segmentation

classifies every pixel in an image into a defined set of class labels [32, 61]. Compared to object

detection, semantic segmentation provides a much better understanding of the environment, but at

a significant computational cost [23, 22]. Specifically, a trade-off between high segmentation accuracy

and high inference speed occurs in deep neural networks (DNN) [22, 33, 18]. This creates an issue

because AVs must make decisions exceptionally quickly but be accurate enough to make the correct

decision. Most modern semantic segmentation algorithms utilize DNNs and many DNNs adopt the

encoder-decoder structure [11, 35]. The encoder consists of a feature extractor, like ResNet [22],

which uses convolutional layers [2] to downsample the original image into a feature map. After

extracting meaningful features, the decoder upsamples the feature map back to its original image

size, creating a semantic map of class probabilities [61].

Typically, more accurate semantic segmentation models require longer inference time. Likewise,

models with faster inference speed suffer in accuracy loss [67]. This makes perception a challenge

in autonomous vehicles. A vision system must have acceptable accuracy in order to make correct

decisions but at the same time needs to make these decisions in real-time [33]. In recent years,

research has made great progress in developing DNN architectures that speed up semantic segmentation

inference time while maintaining an acceptable level of accuracy [67, 38, 65]. Many of these fast

inference models were designed and trained for urban environments, most notably for use in self-

driving cars [5]. Additionally, the primary benchmark dataset used for training and evaluation was

the Cityscapes dataset [13], which contains thousands of semantically labeled images (2048×1024)

from urban environments.

Unfortunately, there is a lack of research evaluating semantic segmentation in the off-road

setting; this can be seen from the absence of research investigating this domain and the scarcity of

labeled off-road datasets [64, 25]. Autonomous off-road driving covers a wide range of applications

like exploration, rescue, and military use. Just like self-driving cars, perception systems are critical

for autonomy in unmanned ground vehicles (UGV) and other off-road vehicles [57]. The evaluation

of semantic segmentation DNNs in off-road environments is a necessity to integrate higher levels

of autonomy in UGVs. Furthermore, there are two key features that can make off-road semantic

segmentation more challenging than urban settings [54]. Firstly, the environments are unstructured

2

by nature, which makes identifying traversable areas more difficult. Next, the environments are

very noisy due to the type of objects. This can lead to poor generalization of the deep learning

model. On the other hand, due to the application of most UGVs, it may be acceptable for semantic

segmentation to be less accurate in off-road environments. Because UGVs are typically very large

and durable, they can drive over smaller objects. Therefore, detecting obstacles like logs and bushes

can be less important, while focusing on faster inference speed could be considered more important.

Even though off-road and urban environments contain vastly different terrain, many of the same

latency bottlenecks occur in the perception system. Real-time perception systems contain other

bottlenecks too and are not only limited by their DNN.

In an autonomous vehicle, a camera must transmit the video feed to an edge device for image

processing, as seen in Figure 4.4. Within this transfer, some latency exists [14]. Compressing the

images from the camera feed reduces the latency between this data transfer [41, 42]. Autonomous

vehicles generate up to 40 TB of data during daily usage [62]. High-resolution cameras and sensors

can generate about 4 TB+ of data per day [1]. Without compression, processing and storing this

data would require extensive hardware. Compression has been consistently used in solutions to many

data problems, therefore, it is logical that compression can improve various overheads in perception

systems.

This research focuses on improving the inference speed of perception systems in autonomous

UGVs. Therefore, most of the evaluation is performed in off-road terrain; this is also where the

novelty lies. First, SwiftNet [38], a semantic segmentation deep learning model designed for high

inference speed and accuracy on high-resolution images, is leveraged. The model is then adapted

to train and evaluate on the Rellis-3D dataset [25, 18]. Rellis-3D is an extensive off-road dataset

designed for semantic segmentation, containing 6234 labeled 1920×1200 images. Next, reducing

local image data transfer latency using JPEG compression is looked at. Compression reduces the

amount of data over a local network. This size reduction minimizes the latency of local transfer

for the images. In a real-time scenario, the system transfers more images and reduces the overall

latency. Due to natural data loss from lossy compression, an understanding of the effects of training

and evaluating semantic segmentation models on compressed images must be obtained. Finally, the

challenges faced during real-life deployment and propose a method to increase temporal consistency

are discussed.

While a majority of this work is application based, I believe this work provides the following

3

contributions to the literature [48, 17]:

• Evaluation of a high inference speed semantic segmentation model, SwiftNet for use in off-road

unmanned ground vehicles

• Replication and verification of SwiftNet’s accuracy and inference speed on the Cityscapes

benchmark dataset and Rellis-3D, a new off-road dataset

• Exploration of lossy compression to reduce image transfer latency in real-time perception

systems.

• Evaluation of semantic segmentation on compressed images at different compression ratios and

a method to increase the mIoU of the compressed images.

• Offering a unique and complex perspective by considering the perception of autonomous

vehicles in off-road terrain rather than urban environments.

4

Chapter 2

Background

For the purpose of this thesis, we assume the audience has a foundational understanding of

machine learning (ML) concepts, as well as a basic understanding of deep learning.

The main component of this work is computer vision. Due to the major successes in

deep learning, standard non-neural network computer vision algorithms are not covered. Instead,

this section discusses foundational components and major vision tasks related to computer vision

using deep learning. Next, we discuss major benchmark datasets related to semantic segmentation

along with less-known datasets crucial to this research. After, we compare structured terrain with

unstructured terrain and explain the difficulties with the latter. Then, we provide a brief background

of lossy data compression, which we use in the second part of our research.

2.1 Computer Vision Using Deep Learning

Computer vision allows machines to gain visual knowledge similar to what humans see.

While machine learning has existed for a long time now [28], up until recently rule-based algorithms

dominated computer vision techniques. For example, assume the goal is to locate colorful balls on

a white tile floor in an image. One simple, non-machine learning, approach would be to convert the

image to the hue saturation value (HSV) color space, then create and adjust a threshold of the hue

values until you have a binary image segmenting the desired ball. This works well because the HSV

color space only has one channel, hue, which describes the color feature of the balls, and one threshold

is much easier to find compared to three thresholds in the RGB color space [7]. This standard rule-

5

based algorithm works very well for very simple tasks. Now, assume the same task as described

above, however, instead of a white tile floor the colorful balls are scattered in the forest. Segmenting

these balls from the background using the non-ML approach we just described becomes a lot more

difficult. We can extend this problem to a real-world example, segmenting a myriad of obstacles

and terrain in an autonomous vehicle driving at high speeds. Many rule-based vision algorithms will

fail this task quickly [58], however, using deep learning approaches we can approximate functions

using the visual features within images to segment the labels of interest with much greater success.

Most deep learning methods for computer vision follow a similar architecture [58]. First, semantic

features are extracted from images utilizing convolutional layers, then the architecture is modified

for the desired task: image classification, object detection, or image segmentation. While there exist

several other vision tasks, this section will only focus on a few. Furthermore, this work specifically

focuses on the task of semantic image segmentation so it will be covered much more heavily than

image classification and object detection.

2.1.1 Feature Extraction

In computer vision tasks, feature extraction is one of the foundational components of any

deep neural network (DNN) with convolutional layers [2]. DNNs learn the important features within

an image through a series of convolutional and pooling operations, creating rich feature maps [58].

Convolutional layers use various kernels to extract information from neighboring pixels, capturing

spatial context. Similarly, the pooling slides a small window across the image and extracts additional

spatial features. The method of extraction depends on the type of pooling. Max pooling locates the

maximum pixel value in a n × n window, while average pooling averages all the pixels in a n × n

window. Often, downsampling of the feature map occurs during pooling; many times, padding is

applied during convolution to prevent downsampling [58].

2.1.2 Image Classification

A complex combination of many convolutional and pooling layers creates a feature extractor

that produces many small-resolution feature maps with rich information about an image. Several

feature extractor networks have been designed with great success and now appear as the backbone

of many other DNNs.

6

Figure 2.1: Convolution operation.

Image classification aims to classify an image into one of many labels. For this, feature

extractors typically conclude with fully connected layers that provide probabilities of an image

being assigned that label. In 1998, Yann LeCun created the LeNet-5 architecture designed for

image recognition, composed of a series of convolutional neural networks [29]. This was one of

the first pioneering efforts in image classification using deep learning. Due to the computational

cost of deep learning, a long drought of deep learning research occurred. It was not until 2012

that AlexNet was created. AlexNet is another image classification DNN, but with a much more

complex architecture [27] by creating multiple branches, achieving top-1 and top-5 error rates of

37.5% and 17.0%, respectively on the ImageNet dataset [45]. From here, research in deep learning

for computer vision exploded and networks continued to become deeper. In 2014, GoogLeNet was

created. A 22-layer DNN achieving top-5 error of 15.3% on the ImageNet dataset [52]. Finally, in

2015 the first residual network was created, ResNet. ResNet is a feature extractor with 151 layers,

achieving a top-5 error rate of 3.57% on ImageNet. The top-5 error rate is the percentage of times

the classifier failed to include the proper class among its top five guesses. ResNet is a massive

residual network composed of a series of bottleneck components with identity mapping. Figure 2.2

shows the bottleneck component. In this case, identity mapping is the element-wise summation of

previous feature maps before being processed by a series of convolutional layers, with the output

of bottleneck convolutions. Depending on the use case, ResNet is a SOTA feature extractor and is

still widely used today as the backbone for many different architectures designed for various vision

tasks like object detection and image segmentation. ResNet can be made lighter weight using fewer

bottleneck components, allowing one to trade off accuracy for speed.

7

Figure 2.2: ResNet bottleneck component.

2.1.3 Object Detection

Another very common computer vision task is object detection. This task classifies objects

of interest and identifies their locations in an image using bounding boxes [69]. All object detectors

begin with feature extraction and, therefore, use a backbone similar to ResNet. Object detectors

can be split into two types: two-stage detectors and one-stage detectors. Two-stage detectors try to

achieve very high accuracy and contain several additional components. Because of this, it allows for

a slower yet more accurate feature extractor. Two very popular two-stage detectors Mask R-CNN

and Faster R-CNN [21, 19] both use a ResNet-50 as their backbone. Today, arguably, YoloV4 [6] is

the most popular one-stage object detector and the most popular object detector in general. Due to

its main goal of speed, it uses a variant of ResNet called DarkNet-53 which is slightly more efficient.

Object detection plays a critical role in autonomous driving applications, allowing vehicles to

detect pedestrians and road signs, understand their environment, localize themselves relative to other

vehicles, and make the final movement decision [33]. While this has demonstrated impressive results,

full image segmentation provides a more complete understanding of images. However, providing

accurate, full image segmentation has proven very difficult in a real-time setting.

8

2.1.4 Image Segmentation

Image segmentation can be classified into three different categories: semantic segmentation,

instance segmentation, and panoptic segmentation. Semantic segmentation, the focus of this work,

classifies every pixel in an image based on a defined set of classes and does not detect different

instances of the same class. Instance segmentation classifies every pixel in an object and distinguishes

between each instance, but does not label every pixel in the image. Lastly, panoptic segmentation

combines semantic and instance segmentation to label every pixel in an image as well as distinguish

between each instance of the same label [35]. Figure 2.3 shows a visual of each type of segmentation.

(a) (b) (c)

Figure 2.3: (a) Semantic segmentation [51] (b) Instance segmentation [51] (c) Panoptic
segmentation [39]

Semantic segmentation provides a broad understanding of a vehicle’s surroundings which

can be useful to search for traversable areas. Because semantic segmentation networks do not require

the localization of objects, their DNN architecture is fairly simple and can be easily compared to

image classification. Most semantic segmentation architectures follow an encoder-decoder structure.

The encoder is similar to a feature extractor which encodes a raw image into feature maps through

the use of convolutional and pooling layers. After obtaining this semantic representation of the

image, the resulting feature map is upsampled, with interpolation, back to the original image size

except the depth size corresponds to the number of classes being identified. This results in pixel-wise

probabilities of each pixel being labeled a specific class. After taking the maximum probability for

each pixel along the channel axis, the DNN produces a fully segmented image [35].

Even though semantic segmentation provides a much better understanding of an image

compared to object detection, it is much more computationally expensive due to pixel-wise classification.

Thus, there exists a large trade-off between segmentation accuracy and inference speed in the

9

Figure 2.4: Full convolutional network [32].

literature. In 2014, the first semantic segmentation architecture was described using a fully convolutional

network (FCN) shown in figure 2.4 [32]. This simple network consists of a backbone to encode the

image features and uses interpolation as the decoder to upsample the feature maps back to the

original image size. In 2015, U-net [44] revolutionized semantic segmentation by improving FCN. U-

net follows a similar structure as FCN but instead of upsampling once, it upsamples in stages. During

each upsampling stage, higher-resolution feature maps from previous encoder steps are combined to

capture the previous context. From here, the DeepLab architecture series [10, 11, 12] was the next

major improvement in semantic segmentation. They designed additional modules to further capture

the feature space of images in more depth. Along with other innovations, the main component

which came from DeepLab was the atrous convolution. Atrous convolution, or dilated convolution,

captures different widths of spatial context by dilating the traditional convolution described by figure

2.5. For example, a 3 × 3 convolution kernel with a dilation factor of 2 spans a 5 × 5 region but

only captures 9 pixels by skipping every 2 pixels. DeepLabV3+, the final iteration of DeepLab,

uses a ResNet-101 backbone but replaces the last few convolutional layers with dilated convolutions.

Additionally, the resulting features maps are passed through an atrous spatial pyramid pooling

module (ASPP) which performs atrous convolution on the same features maps at different dilation

rates. DeepLabV3+ substantially improved the accuracy of semantic segmentation, although, at a

high computation cost.

While the previous segmentation models prove effective, they all focus on accuracy rather

than inference speed, greatly reducing their functionality in real-time applications. One of the

first attempts at creating a real-time semantic segmentation network on high-resolution images was

ICNet [67]. In this architecture, three branches are created which each contain a separate feature

extractor. The top branch downsamples the original image by a factor of 4, then extracts features

through a full ResNet, the middle branch downsamples the image by a factor of 2 and uses a lighter-

10

Figure 2.5: Dilated convolution.

weight feature extractor, and the last branch uses a very lightweight feature extractor on the full

resolution image. Finally, the corresponding feature maps from each branch are fused together and

then upsample back to the original image size to produce a segmented image. This architecture was

able to achieve 30 fps on 1024 × 2048 images. This thesis utilizes a similar architecture, SwiftNet,

which will be described in the methodology section. Segmentation accuracy and timing methods

will also be described in the methods section.

2.2 Datasets

To compare and measure the accuracy of different DNN architectures, many benchmark

datasets have been created. This allows one to train their model on the datasets’ train set and

evaluate its performance on the validation set. In many cases, the test set is private and can only be

accessed by submitting a model to the evaluation server; this prevents fine-tuning on the test set to

keep model comparisons fair and more generalizable. In this section, major semantic segmentation

benchmark datasets will be introduced as well as a common dataset used for pretraining. The main

dataset used in this thesis, Rellis-3D [25], will be introduced in the methodology section.

For the task of image classification, most evaluations use the ImageNet dataset [15, 45].

Today, ImageNet contains over 14 million images each labeled 1 of 1000 classes of commonly seen

objects. In section 2.1.2, ImageNet was the primary benchmark used to assess the accuracy of image

classification and compare different architectures. Furthermore, researchers very commonly use

ImageNet to pre-train networks designed for other vision tasks as a form of transfer learning [63]. For

network pretraining, researchers typically use a subset of 1.2 million images from the ILSVRC2010

11

challenge [45]. Pre-training initializes the weights of a DNN with already learned features designed

for a similar task. For example, using this method, a network designed for semantic segmentation

can be pre-trained on ImageNet to learn basic features which make up objects (e.g., curves, shapes,

orientation); then, the network can be fine-tuned on the semantic segmentation dataset. The benefits

of pre-training bring some controversy, however, many models throughout the literature pre-train

on ImageNet [63].

(a) Goldfish (b) Cannon (c) Dogsled

Figure 2.6: Random ImageNet images [15].

Similar to image classification, many semantic segmentation benchmark datasets exist to

compare various architectures. Pascal VOC 2012 was one of the first benchmark datasets for semantic

segmentation [16]. It contains just under 7,000 semantically labeled images and 20 classes which

include vehicles, animals, and common household objects shown in figure 2.7. Image sizes vary

between width and height of 500 pixels. Due to its low resolution, and other factors, the pascal

dataset is no longer used as much to assess a semantic segmentation DNN.

A much more relevant dataset, and probably the most benchmarked semantic segmentation

dataset, is Cityscapes [13]. The Cityscapes dataset contains thousands of semantically labeled street

view images from many cities. 5000 high-resolution images were collected from an ego vehicle for

the train and validation set which contains 19 classes. Unwanted classes were labeled as void and

should be ignored during training and inference. Cityscapes remains a primary benchmark dataset

for several reasons. Firstly, each image is 2048x1024 pixels which evaluates a model’s computational

efficiency while simultaneously evaluates its segmentation accuracy. Secondly, one of the primary

applications for semantic segmentation is autonomous driving therefore Cityscapes helps simulate a

real-time scenario. Figure 2.8 shows an example image from the Cityscapes dataset.

Regularly, these benchmark datasets rely on common objects and environments one would

come across. For example, because of the myriad research on self-driving cars, many urban environment

12

(a) RGB image (b) Label image

Figure 2.7: Random Pascal VOC image.

(a) RGB image (b) Label image

Figure 2.8: Random Cityscapes image.

13

datasets exist. Unfortunately, little data and research exist in the off-road domain, most notably for

autonomous unmanned ground vehicles (UGV). This absence of research can be seen from the lack

of research articles and scarcity of labeled off-road datasets [64, 25].

2.3 Segmentation in Unstructured Environments

Due to the increasing demands in today’s world, autonomous UGVs have become of large

interest. These UGVs cover a wide range of applications like military usage, extreme climate

exploration, and search and rescue missions. However, this off-road space provides a completely

different rule set than urban environments. Urban areas contain roads, street signs, crosswalks,

curbs, and, in general, a much more structured terrain. On the other hand, off-road terrain is very

unstructured by nature making it a much more challenging domain [54].

Just like in self-driving cars, perception systems are critical for autonomy in UGVs and other

off-road vehicles [57]. The evaluation of semantic segmentation DNNs in off-road environments is a

necessity to integrate higher levels of autonomy in UGVs. However, many factors exist which make

off-road semantic segmentation more challenging than in urban settings [54]. In off-road terrain, no

clear navigation path exists due to its ever-changing landscape, this makes identifying traversable

areas a lot more difficult. Additionally, off-road environments are very noisy due to the type of

objects. This can lead to poor generalization of a deep learning model, which can be detrimental in

a fog-of-war type scenario. More so, images must be segmented in real-time due to the high speeds

UGVs need to travel at. This proves difficult, as mentioned before, a trade-off between inference

speed and segmentation accuracy occurs in DNNs. On the contrary, due to the application of most

UGVs, it may be acceptable for semantic segmentation to be less accurate in off-road environments.

Because UGVs are typically very large and durable, they can drive over smaller objects. Therefore,

detecting obstacles like logs and bushes can be less important, while focusing on faster inference

speed could be considered more important.

In addition to speeding up the inference time of a DNN in a perception system, other

bottlenecks exist and can also be investigated. One of these bottlenecks is the image transfer time

from a mounted camera on an autonomous vehicle to its video processing unit where the DNN is

housed. In this research, we also investigated the use of lossy compression to speed up this image

transfer time. Section 2.4 briefly covers a background on lossy compression. The actual experimental

14

setup is described in the methodology and results section.

2.4 Data Compression

The time to transfer data over a network is directly correlated with the size of the data.

Reducing the amount of data transferred with data compression should speed up the overall transfer

time. Data compression reduces the overall data footprint (size) of files using a variety of algorithms.

The type of algorithm depends heavily on the type of data being compressed. The heuristic may

involve lossless compression, lossy compression, or a mix of both [47]. Lossless compression reduces

the data footprint without any loss to the original data. Unfortunately, the lossless compression ratio

is severely limited and, currently, it is near impossible to exceed a compression ratio greater than 2

[20]. Lossy compression also reduces the data footprint, but almost always results in original data loss

when decoding. Therefore, one can achieve much higher compression ratios. Lossy data compression

heuristics try to balance data reduction and data loss by combining several techniques. Many lossy

algorithms compress data in a series of stages using involving data profiling, data manipulation, and

data transforms. A very common lossy compression scheme for image data is JPEG compression

[59]. JPEG compression works by using a discrete cosine transform (DCT) followed by Huffman

encoding. DCT translates the image information from the spatial domain to the frequency domain

which represents the data in a more compact form [24]. Huffman encoding is a lossless compression

technique that represents symbols that appear most frequently with the least number of bits. JPEG

compression is the standard for image files because it greatly reduces its size with little visual data

loss. Another, more extensive, lossy compressor that takes advantage of multiple compression stages

is SZ3 [30]. SZ3 allows a user to adjust the error bound which balances the amount of compression

with the amount of data loss. Furthermore, SZ3 can be tailored to the specific type of data in order

to improve its efficiency.

2.5 Summary

Since the explosion of deep learning, many SOTA algorithms have been replaced by DNNs

across many disciplines: computer vision, natural language processing, regression, anomaly prediction,

and much more. Most computer vision DNNs structure their architecture in a similar way. First, an

15

encoder component extracts semantic features from images using convolutional and pooling layers.

Then, a secondary component tailors the DNN to the task-specific goal. For image classification,

the secondary component uses fully connected layers to create predicted class probabilities from the

feature maps. For object detection, the secondary component uses convolutional layers to form a

final prediction feature map such that each cell has a specified number of bounding box predictions

[6]. Finally, for semantic segmentation, the secondary component typically uses interpolation to

upsample the resulting feature maps back to the original input size, ultimately creating a semantic

map of pixel-wise probabilities for each class of interest. In the research field of semantic segmentation,

some of the most popular architectures include FCN, U-net, and DeepLab. While the architectures

have been very successful, they struggle with inference speed which makes real-time deployment

nearly impossible. More research needs to study DNN architectures that can perform full image

segmentation in real-time. Furthermore, with the rise of autonomous driving, many benchmark

datasets and research goals evaluate these segmentation models in city-like environments, however,

not much research investigates off-road terrain for use in autonomous UGVs. The off-road domain

typically presents harder challenges due to its unstructured nature. Unlike having roads, street signs,

and boundaries, off-road typically has no clear path, a mesh of different, overlapping obstacles, and

uncertainty. Furthermore, due to the lack of structure, DNNs usually struggle to generalize well on

unseen off-road terrain. Other bottlenecks in an autonomous perception system should be explored

and experimented with ways to improve the overall perception speed, not just the inference time in a

DNN. One bottleneck is the image to video processing unit transfer time. Compressing images from

a live video feed will speed up the transfer time, however, then a compressed image will be passed

through the DNN. For this method to be viable, the impact of image compression on DNN accuracy

must be investigated. The following section discusses related work similar to the experiments run

in this thesis.

16

Chapter 3

Related Work

The two major works in this thesis evaluate methods to improve the overall perception

system time, specifically for UGVs, by investigating various bottlenecks. The first work evaluates a

highly efficient semantic segmentation DNN on off-road terrain. The second work compresses data

from a live camera feed to speed up the transfer time as it approaches the DNN; then, the accuracy

of the DNN is evaluated on the compressed data. This section discusses work in the literature similar

to the experiments performed in this thesis.

3.1 High Inference Speed Semantic Segmentation DNNs

The trade-off between accuracy and inference speed in semantic segmentation has been

realized for quite a while now [22, 33, 18]. Several efforts have been made to speed up semantic

segmentation inference while reducing the accuracy as little as possible. Although, not much research

evaluates inference speed and accuracy in an off-road setting.

One of the first successful attempts at a high inference speed and maintaining an acceptable

level of accuracy was ICNet, accomplished by creating a multi-branch architecture [67]. First,

the original image is downsampled by a factor of 2 and 4, then each image size is passed to a

branch of the network with the smallest image going through the most amount of convolutional

layers, and the larger images going through the least amount of convolutional layers. Finally, each

branch is fused together by a cascade module. BiSeNet [65] is another multi-branch attempt to

utilize larger and smaller image sizes on different branches. BiSeNet has two paths. The first

17

path uses a lightweight model and is designed to grab context information and the second path

has only three convolutional layers which extract spatial information. A feature fusion module is

used to merge the extracted features from both paths. Several other attempts exist that experiment

with similar, but different, architectures to retain representative image features with less expensive

convolutional operations [35]. While many of these models are effective, they are only evaluated on

the primary benchmark dataset Cityscapes, and secondary datasets like CamVid (another city-like

environment), and COCO-stuff (common objects in context) [8, 9]. Most models were not evaluated

in an unstructured, off-road environment.

3.2 Off-Road Environment Semantic Segmentation

Even though many semantic segmentation models do not evaluate performance on off-road

datasets, there still exists research which investigates semantic segmentation in the off-road setting

with datasets like RUGD and Rellis-3D [64, 25]. Even with the existence of off-road datasets, there

is still the issue of class imbalance and irregular objects. To overcome these problems, OFFSEG

[57] strives to create a two-stage framework for rich semantic segmentation results. The first stage

condenses the ontology into four classes (sky, obstacles, traversable, and non-traversable regions),

then trains a BiSeNet model on this reduced ontology. In the second stage, the regions of interest

are extracted from the segmented image, and then further sub-classes (grass, mud, puddle, etc)

are created using k-means clustering [3] from the regions of interest. Finally, the segmented sub-

classes are appended to the first segmented image. This results in a detailed semantic image of

class labels. Another approach explores transfer learning to alleviate the lack of off-road datasets

[63, 49]. In this approach, a lightweight model based on VGG-16 [36] is trained using synthetic

data as the intermediate domain. Then, the synthetically pre-trained model is trained with a real

off-road dataset called the Freiburg Forest dataset [56]. Unfortunately, the accuracy of the model

pre-trained with synthetic data achieved about the same accuracy as the model without pre-trained

synthetic data.

This thesis evaluates a SOTA semantic segmentation DNN, SwiftNet, on a large off-road

dataset, Rellis-3D. The primary goal of this study is to investigate the inference of SwiftNet on

off-road images while maintaining an acceptable level of accuracy.

18

3.3 Data Compression to Reduce Latency

Several studies exist which demonstrate the use of data compression to reduce latency for

a variety of applications. In [31], the authors target data compression on mobile-edge computing

for energy internet through a local area network (LAN). In their work, they design a framework

that uses several lossy compression algorithms to improve random access potential and reduce

transmission latency. With their framework, network latency is reduced when measured from

200 to 300 random accesses compared to the traditional architecture. Another study [42] tries

to minimize the network bandwidth requirements using H.264 video compression [34] for a roadside

pedestrian safety application. The researchers develop an error-bound lossy compression strategy

to dynamically adjust the compression levels of video frames in different weather conditions. Video

transmission bandwidth requirements are reduced by up to 14× other SOTA strategies. This

thesis expands upon this research by instead of utilizing object detection with YOLOv3 [43] in

an urban environment; we investigate semantic segmentation using SwiftNet [38] in an off-road

setting. Furthermore, this thesis measures latency in a local Ethernet-connected system instead of

bandwidth through a wireless network.

Because we use JPEG-compressed images for deep learning, the effects of lossy compression

on DNNs must be understood. In [4], the authors compress time series data using a compression

method called Discrete Wavelet Transform and study the effect of classification accuracy from a fully

convolutional network (FCN). They found that the FCN model could still achieve 80-90% accuracy

on compressed data. Our experiments investigate a similar problem but with semantic segmentation

accuracy on image data.

The remainder of this thesis covers the methodology for our work, experimental results, a

discussion of the results, and future work to be considered.

19

Chapter 4

Research Design and Methods

In this thesis, two bottlenecks within an autonomous perception system of UGVs were

investigated. First, the primary investigation evaluates a SOTA deep learning model, SwiftNet,

designed for real-time inference on high-resolution, off-road images. Much of literature focuses on

segmentation accuracy rather than inference speed. This work seeks to add to the literature by

evaluating inference speed as the primary metric. After, we discuss the secondary investigation.

This considers the image transfer time through an Ethernet cable from a mounted camera to a

processing unit containing the DNN. We compress the images from the mounted camera, transfer

the data to the processing unit, and measure the overall speedup. We aim to improve the Ethernet

transfer time through image compression without a substantial decrease in accuracy. For both

investigations, the PyTorch deep learning framework is used[40].

4.1 Evaluation of Semantic Segmentation

The following section discusses the methods to design, implement, train, and evaluate

SwiftNet. Specifically, this includes the DNN architecture, the off-road dataset, the training protocol,

the evaluation protocol, and the metrics used.

4.1.1 SwiftNet Architecture

SwiftNet follows two common methodologies in architecture design discussed in section 2.1.

Firstly, SwiftNet follows an encoder-decoder structure. Secondly, SwiftNet pre-trains the image

20

encoder on the ImageNet dataset [50] in order to benefit from the knowledge learned. The encoder

is built from lightweight feature extractors, ResNet-18 and Mobile Net V2 [46]. The decoder, which

upsamples the rich feature maps to the original input size, consists of a ladder-style structure

with two inputs: the low-resolution feature maps from the preceding upsampling module, and

the high-resolution feature maps from the corresponding encoder block. Finally, the upsampled

input features and adjacent encoder features combine with elementwise summation and fused with

a 3x3 convolution. The SwiftNet implementation has two architectures, a single-scale architecture,

and a multi-scale architecture with pyramidal fusion [38]. The multi-scale architecture, shown in

Figure 4.1, extracts features at three different image sizes using three different branches. Each

of the four encoder blocks shares the same parameters between branches. SwiftNet also uses a

unique loss function called the boundary-aware loss [69]. This emphasizes the importance of pixels

near semantic boundaries in hopes of avoiding overfitting in small objects [37]. In this thesis, the

multi-scale architecture based on the ResNet-18 backbone is opted for due to the quality of their

results.

4.1.2 Rellis-3D Dataset

Rellis-3D is an extensive off-road dataset designed for semantic segmentation, containing

6234 labeled 1920× 1200 images [25] with 20 class labels. Figure 4.3 shows random images, colored

ground truth labels, and normal ground truth labels from the Rellis-3D dataset. For this research,

70% of the data was used for the train set and the remaining 30% was used for the test set. Figure

4.2 shows the Rellis-3D ontology. Rellis-3D contains 20 class labels which consist of traversable areas

like dirt, grass, asphalt, rubble, and obstacles like bushes, trees, objects, and poles. Because the

dataset was recorded after a rainy day, there are very few dirt labels so this label was excluded from

the study.

4.1.3 Implementation

After establishing SwiftNet for the Cityscapes dataset, the model was adjusted to run with

the Rellis-3D dataset. Most notably the number of output channels were changed to match the

number of classes in Rellis-3D, a created a custom dataset class for Rellis-3D was created, and the

mean and standard deviation of Rellis-3D were calculated. The Cityscapes and Rellis-3D dataset

21

Figure 4.1: SwiftNet Architecture. The green blocks represent ResNet-18 blocks. The orange blocks
represent 1 × 1 convolutions to establish dimensionality. The red circles represent element-wise
summation. The blue blocks represent upsampling using bilinear interpolation.

22

Figure 4.2: Rellis-3D ontology.

follow the same training and evaluation protocol on a single Titan RTX GPU.

4.1.4 Training

This research follows the same training protocol as in [38]. In detail, SwiftNet uses the

Adam optimizer [26], the boundary-aware loss function, and an initial learning rate of 4 ·10−4 which

decays with cosine annealing at a decay rate of 10−4. Each image in the train set was augmented

with random horizontal flipping [50], random scaling between 0.5−2.0, and random cropping of size

768 × 768. Finally, each image was normalized by using the mean and standard deviation of the

dataset. The batch size is set to 14 and the model was trained for 250 epochs. During training, the

model saves the weights from the epoch with the highest accuracy. The weights with the highest

accuracy were used for the evaluation phase.

4.1.5 Evaluation

For model evaluation, the Rellis-3D test set was used which contains 1,870 images. The

primary metric was inference speed, frames per second (fps), and the model’s accuracy was the

secondary metric. When describing the accuracy of a semantic segmentation model, the primary

metric used is the Jaccard Index [16], also known as the intersection over union (IoU), shown in

equation 4.1. The intersection and union rely on the true positive (TP), false positive (FP), and

false negative (FN) values. Pixels labeled as void do not contribute to the score. To describe the

overall IoU, the mean IoU is used (mIoU), an average of all the class IoU scores shown in equation

23

(a) (b) (c)

Figure 4.3: Random images from Rellis-3D (a) Raw image (b) Ground truth label image with the
color map applied (c) Ground truth label image of class IDs

24

4.2.

IoUclass =
TP

TP + FP + FN
(4.1)

mIoU =

∑
IoUclass

n classes
(4.2)

For timing the inference speed in PyTorch, a similar approach as in [38] was followed.

Algorithm 1 shows the timing method assuming a batch size of 1 in frames per second. It is important

Algorithm 1 Proposed timing approach in PyTorch

device = torch.device(’cuda’)

n = len(dataset_loader)

model.eval()

model.to(device)

torch.cuda.synchronize()

start_t = perf_counter()

with torch.inference_mode():

for data, target in dataset_loader:

data, target = data.to(device)

outputs = model(data)

_, pred = torch.max(outputs, 1)

pred = pred.byte().cpu()

torch.cuda.synchronize()

end_t = perf_counter()

FPS = n / (end_t - start_t)

to note that the current literature is very ambiguous in describing inference speed. Inference speed

depends on many factors such as hardware used and the exact timing interval in code. Many papers

describe the GPU used for inference, however, not many papers describe the exact timing interval.

For example, if the GPU to CPU transfer time is left out, this reduces a lot of overhead and could

artificially inflate the FPS. The next section focuses on our secondary bottleneck investigation using

lossy compression.

4.2 Semantic Segmentation with Lossy Compression

A real-time perception system in autonomous vehicles can be described similarly to figure

4.4. Reducing the latency from the camera feed to the video processing unit speeds up the overall

system time. For this work, the setup first takes in camera data (to simulate this pipeline, the

Rellis-3D images are used) and performs lossy JPEG compression with FFMPEG. SCP transfers

25

Autonomous Off-Road Vehicle

Camera Video Processing Unit

Network SwitchEthernet Ethernet

Run Video Compression
FFMPEG on Images

CPU GPU

Figure 4.4: Local data transmission setup to simulate an autonomous off-road vehicle. Our local
computer represents the camera, and the Jetson Xavier represents the Video Processing Unit. Both
devices are connected through two Ethernet cables and a Network Switch (Linksys SE1500).

the image data over Ethernet to a local network switch and then sent to the local Jetson Xavier,

which serves as the video processing unit. The Jetson Xavier then performs semantic segmentation

using SwiftNet to classify the terrain from the compressed image data. We also seek to understand

the effects of image compression on segmentation accuracy

To benefit from image compression, the time to send compressed images, Tcomp send, must

be less than the time to send uncompressed images, Tsend. Where Tsend is defined as the data size

over the Ethernet bandwidth (BW), TComp is defined as the amount of time to compress the image,

and Tcomp send is defined as the sum of the time to compress the data and the time to send the

compressed data.

Tsend =
Size

BW
(4.3)

Tcomp send =
Size

TComp
+

Comp Size

BW
(4.4)

Tcomp send < Tsend (4.5)

The following section describes the approach to implement compression in a real-time vision

system. First, the compression method, dataset, and DNN for this experiment are discussed. Then,

the data transfer setup is described.

26

4.2.1 Image Compression

With the FFMPEG tool [55], the Rellis-3D train and test set were compressed using JPEG

compression [59] into 31 different compression levels. This research uses compression level to describe

the image quality tuner value on FFMPEG. Compression levels correspond to an average compression

ratio shown in figure 4.5, so a higher compression level equates to a higher compression ratio. The

compression ratio is the relative reduction in data size from the JPEG compression algorithm.

baseline 5 10 15 20 25 30
Compression Level (Image Quality)

0

2

4

6

8

10

12

14

16

Co
m

pr
es

sio
n

Ra
tio

Figure 4.5: FFMPEG image quality (compression level) to compression ratio. The baseline
represents level 1, with no compression.

4.2.2 Semantic Segmentation

Like the primary investigation, SwiftNet is used for semantic segmentation. SwiftNet is

utilized because it favors high inference speed, which will more likely be found in a real-time

perception system compared to other DNNs like DeepLabV3+ [11] which favors higher accuracy.

Two experiments regarding semantic segmentation accuracy are performed on compressed images.

First, a baseline model was trained on the Rellis-3D train set without compression. Then, the mIoU

was evaluated at each compression level using the test set to observe how compression affects the

model’s accuracy. Secondly, a model is trained at six different compression levels (5, 10, 15, 20, 25,

and 30) and the mIoU was evaluated at the corresponding compression level. For example, if the

model was trained on the train set with level 15 compression, this model was evaluated at the level

15 compressed test set.

27

4.2.3 Data Transmission

To simulate image transfer in an autonomous vehicle, a local Ethernet system described in

figure 4.4 was set up. To verify the communication and find the theoretical limits of our system,

the bandwidth from our local computer to the Jetson Xavier using iPerf3 was measured. Secure

Copy Protocol (SCP) was used to send three sets of compressed images through the system for the

image transfer experiments. The transfer between the two local hosts for each image set at different

compression levels was timed. The next section presents the results of both investigations.

28

Chapter 5

Experimental Results and

Discussion

In this chapter, the results of both investigations will be discussed. Preliminary results from

future work topics will be included in the future work section.

5.1 Evaluation of Semantic Segmentation

First, this thesis presents unique results for the inference speed and mIoU on the Rellis-3D

dataset. Although this research focuses on off-road environments, Cityscapes results will be shown

and compared to the original SwiftNet paper [38]. This can serve as replication and verification of

results.

5.1.1 Rellis-3D

Using SwiftNet’s multi-scale architecture on the Rellis-3D dataset, an average inference

speed of 24 FPS with an mIoU of 77.9% was achieved. These results are encouraging due to the

difficulty of segmenting unstructured terrain. Similarly, in the IoU class breakdown, table 5.1,

traversable and non-traversable regions obtain higher accuracy than smaller objects. Autonomous

UGVs are interested in traversing off-road terrain and are more likely to drive over small objects like

logs and poles rather than avoid them. In this scenario, higher inference speed is favored over higher

29

accuracy. Figure 5.1 shows various segmentation results from the Rellis-3D dataset. The figure is

split into two rows. For each row, the top image represents the raw camera image, the middle image

represents the SwiftNet prediction, and the bottom image represents the ground truth labels.

Class IoU (%)

grass 91.83
tree 90.04
pole 42.15
water 81.48
sky 97.54

vehicle 67.30
object 72.73
asphalt 86.08
building 65.08

log 61.79
person 92.52
fence 65.61
bush 85.09

concrete 91.24
barrier 87.63
puddle 80.96
mud 65.46
rubble 77.87

Table 5.1: Individual class IoU from the Rellis-3D dataset

The inference speed achieved in this work on Rellis-3D is lower by about 10 FPS than

what was achieved in the original SwitfNet study on the Cityscapes dataset, which inferences at

34 FPS on a GTX 1080Ti GPU with the multi-scale architecture. Several reasons exist as to why

the study presented here might have achieved lower than expected inference speed compared to the

original study. First, the Rellis-3D images are 1920× 1200 which is a total of 1920 ∗ 1200 = 2304000

pixels. The Cityscapes images are 2048 ∗ 1024 = 2097152 pixels, making the Rellis-3D images more

computationally expensive. However, in this study, when timing SwiftNet on the Cityscapes dataset

there is minimal difference in inference speed between datasets. Second, the inference speed is timed

at the start of the forward pass after the model and tensor are transferred to the GPU, and the

timing ends after the predicted classes for each pixel is transferred back to the CPU. If the timing

ends after the predicted classes but before the GPU to CPU transfer, the inference speed increases

to 30 FPS. Even though this study obtained a lower inference speed than the original SwiftNet

work, it still obtains high inference speed and can be a very viable DNN in perception systems

for autonomous UGVs. In terms of accuracy, this study achieved a higher mIoU than the original

30

Class IoU (%)

road 95.10
sidewalk 79.40
building 91.30
wall 50.10
fence 49.11
pole 61.84

taffic light 67.91
traff sign 74.96
vegetation 91.98
terrain 58.64
sky 94.10

person 80.76
rider 61.50
car 94.17
truck 67.58
bus 82.33
train 65.41

motorcycle 54.81
bicycle 75.93

Table 5.2: Individual class IoU from the Cityscapes dataset

SwiftNet work on the Cityscapes dataset, which is summarized in table 5.3. Two major reasons for

this could be that Cityscapes uses 19 labels while Rellis-3D only uses 18, and Rellis-3D has more

images in its training set than Cityscapes.

5.1.2 Cityscapes

In this research, the Cityscapes data set was used to implement SwiftNet and attempt to

replicate the original research. Because this thesis focuses on off-road environments, this section is

only briefly covered. The Cityscapes dataset contains 5000 images for semantic scene understanding

in urban environments [13]. It contains a train set of 2975 images, a validation set of 500 images,

and a test set of 1525 images. The test set labels are private and an mIoU score on the test can

only be obtained by submitting a model to the evaluation server. For this reason, the current study

evaluates the trained SwiftNet model on the validation set. In this study, SwiftNet attains 26.9 FPS

with an mIoU of 73.5%. Like Rellis-3D, Cityscapes produces slightly lower FPS than the original

study. Additionally, the mIoU appears slightly lower than the original. Additionally, the mIoU

appears slightly lower than the original, which may be attributed to the stochastic nature of the

neural network training process. Table 5.2 shows the individual IoU score for each label and table

31

5.3 summarizes the metrics between the current and original study.

Study Dataset FPS mIoU (%)

Current study Rellis-3D 24.5 77.9

Current study Cityscapes 26.9 73.5

Original study Cityscapes 34.0 75.9

Table 5.3: Inference speed and mIoU comparison of this work and the original work [38]

5.2 Semantic Segmentation with Lossy Compression

This section covers the results of the experiments pertaining to lossy compression and data

transfer. First, the semantic segmentation accuracy of the SwiftNet model at various compression

levels was explored. This includes the baseline model evaluated at multiple compression levels and

the model trained at six different compression levels. Second, the latency of Ethernet transfer, the

overhead of compression, and the overall end-to-end segmentation were timed.

5.2.1 Segmentation Accuracy of Various Compression Levels

When compressing images in autonomous vehicles, the compressed images must achieve an

acceptable level of accuracy in the environment to navigate safely. Like before, because this research

focuses on autonomy in UGVs, the Rellis-3D dataset was used. The same training and evaluating

protocol as in section 4.1.4 was followed. Figure 5.2 illustrates the mIoU for the uncompressed model

evaluated with test data compressed to a given level.

The baseline evaluation with no compression achieves a relatively high mIoU of 78.92%.

From here, the accuracy steadily decreases in small increments when evaluated at each compression

level. The most significant drop in accuracy occurs from compression level 27-31, the lowest mIoU

being 67.90%. The most significant end-to-end speedup in later experiments occurs towards the

higher compression ratios. Therefore, maintaining higher accuracy at these compression ratios

becomes crucial. The following experiment obtains higher accuracy at the end compression range.

32

Figure 5.1: Segmented images with SwiftNet from the Rellis-3D test set: original image (top),
predicted segmented image (middle), and ground truth segmented label (bottom)

33

baseline 6 11 16 21 26 31
Compression Level

68

70

72

74

76

78

m
ea

n
Io

U
(%

)

mIoU per Compression Level

Figure 5.2: Evaluation of mIoU at each compression level using a model trained only on the baseline
dataset (no compression).

5.2.2 Training with Various Compression Levels

Due to the data loss from the JPEG lossy compression, a deep learning model can misclassify

object boundaries if the pixel has high enough distortion. From this study, training a segmentation

model on these distorted images with a given compression level and then evaluating using the same

level achieves higher mIoU at higher compression ratios. The highest compression level reaches a

mIoU of 74.9%, a 7% mIoU increase from the baseline trained model at the same compression ratio.

Due to time constraints, only six different compression levels were trained for 100 epochs. Figure

5.3 shows a significant drop off in accuracy compared to figure 5.2 from compression levels 2-6, but

from level 6-30, only a 2% mIoU drop exists. Furthermore, compression levels 20-30 in figure 5.3

show a significant improvement in mIoU compared to figure 5.2. This most likely occurs because

lossy compression slightly distorts the features of an object, so training a model on the distorted

features will allow it to learn the object better. These results show a strong semantic segmentation

accuracy when training and evaluating compressed images; further experiments now focus on image

compression for increased end-to-end system speed.

Looking at figure 5.3 and 5.4 we can see that a compression-trained model performs best at

compression level 12 or above. Looking at the accuracy depreciation, the range 12-25 stays within

0.4% mIoU difference on either end. When the compression level goes above this range into the

25-31 levels, the mIoU takes another 0.5% decrease.

34

baseline 5 10 15 20 25 30
Compression Level

75.0

75.5

76.0

76.5

77.0

77.5

78.0

78.5

79.0

m
ea

n
Io

U
(%

)

mIoU per Compression Level

Figure 5.3: Evaluation of mIoU on six different image quality levels, trained on its respective image
quality level.

2 7 12 17 22 27 32
Compression Level

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Sp
ee

du
p

Ra
tio

Overall Speedup

Figure 5.4: Overall transmission speedup of the entire compressed Rellis-3D test set. Values above
1.0 represent a positive speedup, and values below 1.0 did not benefit from compression.

5.2.3 Transfer, Compression, and End-to-End Timing

Using SCP, the transfer and compression time of the Rellis-3D test set (1870 images),

ten images, and one image were measured. The compression time contains a summation of per-

image compression. Figure 5.5 provides the transfer and compression times for three sets of images

measured, corresponding to the blue and orange bars, respectively. The baseline level does not

include an orange bar because the baseline has no compression. The total summation of orange

and blue bars provides the entire end-to-end system time. Compression levels below the red dashed

line demonstrate a positive overall speedup when inducing compression to reduce the image transfer

35

baseline 6 11 16 21 26 31
Compression Level

0

5

10

15

20

25

30

m
icr

os
ec

on
ds

 (1
x1

07)

Transfer Time Across Ethernet
Compression Time of the Test Set

(a) Transfer batch size: full test set of 1870 images.

baseline 6 11 16 21 26 31
Compression Level

0

5

10

15

20

m
icr

os
ec

on
ds

 (1
x1

05)

Transfer Time Across Ethernet
Compression Time of Ten Images

(b) Transfer batch size of 10 images.

baseline 6 11 16 21 26 31
Compression Level

0

1

2

3

4

5

6

m
icr

os
ec

on
ds

 (1
x1

05)

Transfer Time Across Ethernet
Compression Time of One Image

(c) Transfer batch size of 1 image.

Figure 5.5: Transfer, compression, and overall system time for the entire Rellis-3D test set when
using a different number of images. Compression levels below the dashed red line show an end-to-end
speedup compared to the baseline.

time.

In figure 5.5(a), the first positive system speedup occurs beginning at compression level 12

compared to baseline. The speedup continues to increase in small increments to compression level 31.

Compression level 31 shows the greatest speedup of 1.18×. While figure 5.5(a) results look promising,

in a real-time perception system, it may be unreasonable to compress and transmit over 1000 images

before segmenting occurs. Figure 5.5(b) shows a positive speedup beginning at compression level 11

and continuing to gradually increase to compression level 31 by 1.14×. Compressing and transmitting

36

ten images at a time shows a very noticeable speedup in overall system time. This could be very

viable in a real-time perception system due to the high frame rate of modern cameras. More so,

figure 5.3 shows a high mIoU score for the compression levels at which the speedup occurs. Finally,

while figure 5.5(c) does show a speedup beginning at compression level 9, no consistent speedup

trend exists compared to the other figures. The highest speedup occurs at level 30 by 1.06×. The

compression and transfer times stay very similar across compression levels, most likely due to the

very small compression sample and the maximum bandwidth capabilities of our real-time system

setup. The speedup gained through sending a different amount of images is due to the overhead of

setting up the communication protocol. The 5.5(c) had this overhead on every image in the dataset,

while 5.5(b) was able to send 10 images before introducing more over head. 5.5(a) only required this

setup once before transferring the dataset.

37

Chapter 6

Conclusion

With the continued effort to integrate higher levels of autonomy in self-driving cars, research

in autonomous UGVs falls behind. The evaluation of state-of-the-art DNNs in off-road terrain

helps alleviate these gaps. In the context of perception, semantic segmentation provides a better

understanding of the surroundings than object detection but at a higher computational complexity.

SwiftNet demonstrates strong semantic segmentation results in terms of both inference speed and

accuracy in less structured environments. Because components of perception systems in autonomous

UGVs must operate in real-time, other bottlenecks exist other than the DNN inference speed.

Another bottleneck is the communication latency within the perception system, specifically through

Ethernet. This thesis finds that compressing groups of images before transferring them to the

processing unit reduces the latency with slight accuracy loss. Much of this accuracy loss can be

recovered by training the DNN on compressed images beforehand.

The primary investigation was evaluated in real-life scenarios through a live video feed

on a Husky robot. Upon deployment, two major challenges were faced: fog of war and temporal

consistency. Naturally, increasing inference speed through a DNNs architecture can lead to both of

these challenges, but so can highly accurate models. Fog of war relates to the uncertainty of the

environment in military scenarios, such as a dust storm in the desert. In general, fog of war can

be referred to as the generalization of a deep learning model. The second challenge we faced was

temporal consistency. This refers to the uncertainty of a DNN prediction, causing the prediction to

vary between two or more classes of each frame in a video, resulting in a flickering effect. Because

temporal consistency has a major effect on motion planning and the development of a cost map, this

38

challenge was chosen to be investigated first. The following section provides very brief preliminary

results in an effort to increase temporal consistency on a live video feed.

6.1 Future Work and Preliminary Results

To help increase temporal consistency, a method similar to AuxAdapt [66] shown in figure

6.1 was used. The main idea behind AuxAdapt is to make the DNN predictions more confident.

This works by using a powerful, but efficient, main segmentation network and a lightweight auxiliary

Figure 6.1: AuxAdapt method using SwiftNet as the main network and HRNet as the lightweight
auxiliary network.

network. For this work, SwiftNet is used as the main network and a lightweight version of HRNet

39

as the auxiliary network [60]. The main network was fully trained on Rellis-3D and the AuxNet

was only pre-trained on the ImageNet. The main network inputs the full-resolution image and the

auxiliary network inputs a downsampled image, in this case by a factor of 3. The logits from both

networks are combined with element-wise summation and a final segmentation map is created by

taking the maximum logits for each class channel. The cross-entropy loss is found by using the

AuxNet predictions and the final segmentation map as the ground truth labels. Finally, we perform

backpropagation only on the lightweight AuxNet because the main network is kept frozen. This

allows the overall system to become more confident with the main network’s predictions. Similarly,

this method does not add much overhead because we use a small input image on a lightweight

network and only backpropagate on this lightweight network. This allows us to keep the overall

system in real-time.

Figure 6.2 tries to demonstrate the increase in temporal consistency. The results become

more noticeable when seeing the video in real-time. The left image shows the regular SwiftNet

predictions and the right image shows the AuxAdapt predictions. Frame 1 on the left shows good

but inconsistent predictions when a color should be fully solid, while the right image shows a more

solid segmentation result. On the other hand, the right image is too confident with its predictions

and does not pick up the stop sign well. Looking at frames 2 and 3, the left images show more

spotty predictions, some of which appear in frames 1 and 3 but not frame 2, creating this flickering

effect. The right image shows a more solid and fluent prediction result throughout all 3 frames.

This thesis demonstrated two techniques that can improve inference speed in autonomous

perception systems. First, the viability of a robust DNN to perform real-time off-road terrain

segmentation was evaluated. Second, a method to improve the image to DNN transfer time using

lossy compression was proposed and tested. Due to the focus on faster inference speed, several

challenges mentioned above were intensified through trade-offs in architecture and image quality.

Future work now focuses on increasing the generalization of off-road terrain and continuing to

improve temporal consistency without additional overhead.

40

(a) Frame 1.

(b) Frame 2.

(c) Frame 3.

Figure 6.2: AuxAdapt results (right) compared with original SwiftNet predictions (left) over a period
of 3 frames.

41

Bibliography

[1] Autonomous vehicle data storage. https://premioinc.com/pages/autonomous-vehicle-data-
storage (Date last accessed 10-Nov-2022).

[2] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (ICET), pages
1–6. Ieee, 2017.

[3] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical
report, Stanford, 2006.

[4] Joseph Azar, Abdallah Makhoul, Raphaël Couturier, and Jacques Demerjian. Robust iot time
series classification with data compression and deep learning. Neurocomputing, 398:222–234,
2020.

[5] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B
Cardoso, Avelino Forechi, Luan Jesus, Rodrigo Berriel, Thiago M Paixao, Filipe Mutz, et al.
Self-driving cars: A survey. Expert Systems with Applications, 165:113816, 2021.

[6] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[7] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional
Programmer, 25(11):120–123, 2000.

[8] Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla. Segmentation and
recognition using structure from motion point clouds. In European conference on computer
vision, pages 44–57. Springer, 2008.

[9] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in
context. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1209–1218, 2018.

[10] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–
848, 2017.

[11] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[12] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.
Encoder-decoder with atrous separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 801–818, 2018.

42

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3213–3223, 2016.

[14] J-D Decotignie. Ethernet-based real-time and industrial communications. Proceedings of the
IEEE, 93(6):1102–1117, 2005.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[16] Mark Everingham, SM Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes challenge: A retrospective. International
journal of computer vision, 111(1):98–136, 2015.

[17] Max H Faykus, Bradley Selee, Jon C Calhoun, and Melissa C Smith. Lossy compression to
reduce latency of local image transfer for autonomous off-road perception systems. In 2022
IEEE International Conference on Big Data (Big Data), pages 3146–3152. IEEE, 2022.

[18] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Pablo
Martinez-Gonzalez, and Jose Garcia-Rodriguez. A survey on deep learning techniques for image
and video semantic segmentation. Applied Soft Computing, 70:41–65, 2018.

[19] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[20] Apoorv Gupta, Aman Bansal, and Vidhi Khanduja. Modern lossless compression techniques:
Review, comparison and analysis. In 2017 Second International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pages 1–8. IEEE, 2017.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of
the IEEE international conference on computer vision, pages 2961–2969, 2017.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[23] Markus Hofmarcher, Thomas Unterthiner, José Arjona-Medina, Günter Klambauer, Sepp
Hochreiter, and Bernhard Nessler. Visual scene understanding for autonomous driving using
semantic segmentation. In Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, pages 285–296. Springer, 2019.

[24] Abir Jaafar Hussain, Ali Al-Fayadh, and Naeem Radi. Image compression techniques: A survey
in lossless and lossy algorithms. Neurocomputing, 300:44–69, 2018.

[25] Peng Jiang, Philip Osteen, Maggie Wigness, and Srikanth Saripalli. Rellis-3d dataset: Data,
benchmarks and analysis. In 2021 IEEE international conference on robotics and automation
(ICRA), pages 1110–1116. IEEE, 2021.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

43

[28] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

[29] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M Gok, Jiannan Tian,
Junjing Deng, Jon C Calhoun, Dingwen Tao, et al. Sz3: A modular framework for composing
prediction-based error-bounded lossy compressors. IEEE Transactions on Big Data, 2022.

[31] Luning Liu, Xin Chen, Zhaoming Lu, Luhan Wang, and Xiangming Wen. Mobile-edge
computing framework with data compression for wireless network in energy internet. Tsinghua
Science and Technology, 24(3):271–280, 2019.

[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3431–3440, 2015.

[33] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence applications in
the development of autonomous vehicles: a survey. IEEE/CAA Journal of Automatica Sinica,
7(2):315–329, 2020.

[34] Detlev Marpe, Thomas Wiegand, and Gary J Sullivan. The h. 264/mpeg4 advanced video
coding standard and its applications. IEEE communications magazine, 44(8):134–143, 2006.

[35] Yujian Mo, Yan Wu, Xinneng Yang, Feilin Liu, and Yujun Liao. Review the state-of-the-art
technologies of semantic segmentation based on deep learning. Neurocomputing, 493:626–646,
2022.

[36] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution network for
semantic segmentation. In Proceedings of the IEEE international conference on computer vision,
pages 1520–1528, 2015.

[37] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic. In defense of pre-trained imagenet
architectures for real-time semantic segmentation of road-driving images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12607–12616,
2019.

[38] Marin Oršić and Sinǐsa Šegvić. Efficient semantic segmentation with pyramidal fusion. Pattern
Recognition, 110:107611, 2021.

[39] Papers With Code. Panoptic segmentation], 2023. [Online; accessed March 27, 2023].

[40] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[41] Mizanur Rahman, Mhafuzul Islam, Jon Calhoun, and Mashrur Chowdhury. Real-time
pedestrian detection approach with an efficient data communication bandwidth strategy.
Transportation research record, 2673(6):129–139, 2019.

[42] Mizanur Rahman, Mhafuzul Islam, Cavender Holt, Jon Calhoun, and Mashrur Chowdhury.
Dynamic error-bounded lossy compression to reduce the bandwidth requirement for real-time
vision-based pedestrian safety applications. Journal of Real-Time Image Processing, 19(1):117–
131, 2022.

44

[43] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9,
2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

[45] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

[46] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[47] Khalid Sayood. Introduction to data compression. Morgan Kaufmann, 2017.

[48] Bradley Selee, Max Faykus, and Melissa Smith. Semantic segmentation with high inference
speed in off-road environments. Technical report, SAE Technical Paper, 2023.

[49] Suvash Sharma, John E Ball, Bo Tang, Daniel W Carruth, Matthew Doude, and
Muhammad Aminul Islam. Semantic segmentation with transfer learning for off-road
autonomous driving. Sensors, 19(11):2577, 2019.

[50] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of big data, 6(1):1–48, 2019.

[51] superannotate. Complete guide to semantic segmentation [updated 2023], 2023. [Online;
accessed March 27, 2023].

[52] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9,
2015.

[53] Araz Taeihagh and Hazel Si Min Lim. Governing autonomous vehicles: emerging responses for
safety, liability, privacy, cybersecurity, and industry risks. Transport reviews, 39(1):103–128,
2019.

[54] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James
Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Hoffmann, et al. Stanley: The
robot that won the darpa grand challenge. In The 2005 DARPA grand challenge, pages 1–43.
Springer, 2007.

[55] Suramya Tomar. Converting video formats with ffmpeg. Linux Journal, 2006(146):10, 2006.

[56] Abhinav Valada, Gabriel L Oliveira, Thomas Brox, and Wolfram Burgard. Deep multispectral
semantic scene understanding of forested environments using multimodal fusion. In
International symposium on experimental robotics, pages 465–477. Springer, 2016.

[57] Kasi Viswanath, Kartikeya Singh, Peng Jiang, PB Sujit, and Srikanth Saripalli. Offseg:
A semantic segmentation framework for off-road driving. In 2021 IEEE 17th International
Conference on Automation Science and Engineering (CASE), pages 354–359. IEEE, 2021.

45

[58] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Eftychios Protopapadakis,
et al. Deep learning for computer vision: A brief review. Computational intelligence and
neuroscience, 2018, 2018.

[59] G.K. Wallace. The jpeg still picture compression standard. IEEE Transactions on Consumer
Electronics, 38(1):xviii–xxxiv, 1992.

[60] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong
Liu, Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation
learning for visual recognition. IEEE transactions on pattern analysis and machine intelligence,
43(10):3349–3364, 2020.

[61] Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison
Cottrell. Understanding convolution for semantic segmentation. In 2018 IEEE winter conference
on applications of computer vision (WACV), pages 1451–1460. Ieee, 2018.

[62] Ruijun Wang, Liangkai Liu, and Weisong Shi. Hydraspace: Computational data storage for
autonomous vehicles. In 2020 IEEE 6th International Conference on Collaboration and Internet
Computing (CIC), pages 70–77. IEEE, 2020.

[63] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal
of Big data, 3(1):1–40, 2016.

[64] Maggie Wigness, Sungmin Eum, John G Rogers, David Han, and Heesung Kwon. A rugd
dataset for autonomous navigation and visual perception in unstructured outdoor environments.
In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5000–5007. IEEE, 2019.

[65] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao, Gang Yu, and Nong Sang. Bisenet:
Bilateral segmentation network for real-time semantic segmentation. In Proceedings of the
European conference on computer vision (ECCV), pages 325–341, 2018.

[66] Yizhe Zhang, Shubhankar Borse, Hong Cai, and Fatih Porikli. Auxadapt: Stable and efficient
test-time adaptation for temporally consistent video semantic segmentation. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 2339–2348,
2022.

[67] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, and Jiaya Jia. Icnet for real-time
semantic segmentation on high-resolution images. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

[68] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object detection with deep
learning: A review. IEEE transactions on neural networks and learning systems, 30(11):3212–
3232, 2019.

[69] Mingmin Zhen, Jinglu Wang, Lei Zhou, Tian Fang, and Long Quan. Learning fully dense neural
networks for image semantic segmentation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 9283–9290, 2019.

46

	Improving Inference Speed of Perception Systems in Autonomous Unmanned Ground Vehicles
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background
	Computer Vision Using Deep Learning
	Datasets
	Segmentation in Unstructured Environments
	Data Compression
	Summary

	Related Work
	High Inference Speed Semantic Segmentation DNNs
	Off-Road Environment Semantic Segmentation
	Data Compression to Reduce Latency

	Research Design and Methods
	Evaluation of Semantic Segmentation
	Semantic Segmentation with Lossy Compression

	Experimental Results and Discussion
	Evaluation of Semantic Segmentation
	Semantic Segmentation with Lossy Compression

	Conclusion
	Future Work and Preliminary Results

	Bibliography

