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Abstract

This thesis investigates Cohen-Macaulay properties of squarefree monomial ideals, which is

an important line of inquiry in the field of combinatorial commutative algebra. A famous example

of this is Villareal’s edge ideal [11]: given a finite simple graph G with vertices x1, . . . , xn, the edge

ideal of G is generated by all the monomials of the form xixj where xi and xj are adjacent in G.

Villareal’s characterization of Cohen-Macaulay edge ideals associated to trees is an often-cited result

in the literature. This was extended to chordal and bipartite graphs by Herzog, Hibi, and Zheng in

[7] and by Herzog and Hibi in [6].

In 2020, Sharifan and Moradi [10] introduced a related construction called the closed neigh-

borhood ideal of a graph. Whereas an edge ideal of a graph G is generated by monomials associated

to each edge in G, the closed neighborhood ideal is generated by monomials associated to its closed

neighborhoods. In 2021, Sather-Wagstaff and Honeycutt [8] characterized trees whose closed neigh-

borhood ideals are Cohen-Macaulay. We will provide a generalization of this characterization to

chordal graphs and bipartite graphs. Additionally, we will survey the behavior of the depth of

closed neighborhood ideals under certain graph operations.
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Chapter 1

Introduction

Let R = k[x1, . . . , xn] be a polynomial ring over a field. Unless otherwise specified, we will

always use this ring. Likewise, throughout this thesis, G will always be a finite simple graph with

a vertex set V (G) = {x1, . . . , xn}. The recurring theme of this thesis is to associate squarefree

monomial ideals in R to G, and to use properties of G to deduce algebraic properties of the ideal.

This introduction will provide two examples of ideals associated to graphs. First, edge

ideals, which are very well-studied, then closed neighborhood ideals, which are rather new. The

novel results in this thesis deal with closed neighborhood ideals. The purpose of discussing edge

ideals is to supply the appropriate motivation for closed neighborhood ideals, as many basic results

about closed neighborhood ideals are analogous to results for edge ideals.

Chapters 2–4 will provide all the necessary algebraic and graph theoretic background for

the reader, while Chapter 5 will discuss our new results.

1.1 Edge Ideals

Edge ideals provide a 1-1 correspondence between squarefree quadratic monomial ideals

(ideals generated by monomials of the form xixj with i ̸= j) and finite simple graphs. Let us start

with a definition.
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Definition 1.1.1. The edge ideal of G, denoted I(G), is the squarefree monomial ideal in R,

I(G) = ⟨xixj : xi ∼ xj⟩

where xi ∼ xj if xi and xj are adjacent in G, i.e., xixj is an edge in G.

We provide a simple example, which will become a running example throughout this thesis.

Example 1.1.2. Let G be the butterfly graph with vertices as labeled below.

x1

x2

x3

x4

x5

Then I(G) = ⟨x1x2, x1x3, x2x3, x3x4, x3x5, x4x5⟩ because the edges of G are x1x2, x1x3, and so on.

Edge ideals were introduced in [11] by Villarreal. Much of the theory of edge ideals has

been concerned with conditions under which the quotient ring R/I(G) is Cohen-Macaulay, in which

case G is called a Cohen-Macaulay graph.

Cohen-Macaulayness is an important and largely studied property of a ring in many fields,

including algebraic geometry. It is a niceness condition like smoothness and unmixedness that is

nicer in the sense that it is preserved under taking general hypersurface sections.

Villarreal found in the aforementioned paper that a tree T is Cohen-Macaulay if and only

if every minimal vertex cover of T has the same size [11, Corollary 2.5]. We will define the Cohen-

Macaulay property in Chapter 3, but we will address vertex covers now.

Definition 1.1.3. A vertex cover of G is a set of vertices C ⊂ V (G) such that for every edge

e ∈ E(G), there is a vertex v ∈ C such that v is incident with e. A vertex cover is said to be

minimal if it does not properly contain any vertex cover.

Minimal vertex covers have a strong connection to special primes in R called minimal primes,

which we define as follows.

Definition 1.1.4. Let I ⊂ R be an ideal. A minimal prime of I is a prime ideal P containing I

that does not properly contain any other prime ideal containing I.

2



Minimal primes provide the main connection between vertex covers and edge ideals. We

state this connection in the following theorem.

Theorem 1.1.5 ([11], Page 279). The minimal primes of I(G) are exactly the prime ideals generated

by the minimal vertex covers of G. In other words, if P is the set of minimal vertex covers of G,

then I(G) has the following irreducible decomposition.

I(G) =
⋂
P∈P

⟨P ⟩

Example 1.1.6. Consider the graph from Example 1.1.2.

x1

x2

x3

x4

x5

Then {x1, x3, x4} is a minimal vertex cover of G: indeed, every edge of G is incident with x1, x3,

or x4, and no proper subset of {x1, x3, x4} vertices is a vertex cover. It is straightforward to show

that the remaining minimal vertex covers are {x2, x3, x4}, {x1, x3, x5}, {x2, x3, x5}, {x1, x2, x4, x5}.

Thus, Theorem 1.1.5 implies that I(G) has the following irreducible decomposition.

I(G) = ⟨x1, x3, x4⟩ ∩ ⟨x2, x3, x4⟩ ∩ ⟨x1, x3, x5⟩ ∩ ⟨x2, x3, x5⟩ ∩ ⟨x1, x2, x4, x5⟩

We can already read certain algebraic properties off of this decomposition theorem: for

example, the height of the ideal I(G) is simply the number of variables that generate its smallest

minimal prime, in this case 3. Hence R/I(G) has (Krull) dimension 5− 3 = 2. We will define height

and dimension in Chapter 3.

A graph G is said to be well-covered if all of its minimal vertex covers have the same

size; in this event, the ideal I(G) is unmixed. We will see in Theorem 3.3.4 below that if R/I(G)

is Cohen-Macaulay, then I(G) is necessarily unmixed. Hence, if G is a Cohen-Macaulay graph,

then it is well-covered. In particular, this shows that the butterfly graph in Example 1.1.2 is not

Cohen-Macaulay. Moreover, for trees, Villarreal proves the following.

Theorem 1.1.7 ([11], Corollary 2.5). Let G be a tree. Then G is Cohen-Macaulay if and only if it

is well-covered.

3



Example 1.1.8. The following graph is Cohen-Macaulay because it is a tree and one checks readily

that its minimal vertex covers all have size 3.

x1 x2

x3

x4

x5

x6

1.2 Closed Neighborhood Ideals

Closed neighborhood ideals are constructed similarly to edge ideals, but the monomials

we add correspond to closed neighborhoods of vertices in a graph G. We will start by defining

closed neighborhoods.

Definition 1.2.1. The closed neighborhood of a vertex v ∈ G is the set

N [v] = {v ∈ G : y ∼ x or v = x}.

Example 1.2.2. Consider the butterfly graph in Example 1.1.2. Then N [x1] = {x1, x2, x3}.

Definition 1.2.3. The closed neighborhood ideal of G, denoted CNI(G), is the squarefree

monomial ideal

CNI(G) =

〈 ∏
xi∈N [xj ]

xi : xj ∈ G

〉
.

Example 1.2.4. Let C4 be the 4-cycle with vertices as labeled below.

x1 x2

x3x4

Then CNI(C4) = ⟨x1x2x3, x2x3x4, x3x4x1, x4x1x2⟩ because N [x1] = {x1, x2, x4}, N [x2] = {x1, x2, x3},

and so on.

Closed neighborhood ideals are a more recent construction than edge ideals. They were

introduced by Sharifan and Moradi in [10] in 2020. They study the projective dimension and
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regularity of closed neighborhood ideals, and provide a decomposition theorem similar to that in the

case of edge ideals. To state this theorem, we first define dominating sets.

Definition 1.2.5. A dominating set of G is a set of vertices D ⊂ V (G) such that for every vertex

x ∈ V (G), there is a vertex y ∈ D such that x ∈ N [y], i.e. for every vertex x ∈ V (G), x has a

neighbor in D or x is itself in D. A dominating set is minimal if it does not properly contain any

dominating set of G.

Example 1.2.6. Consider the graph C4 in Example 1.2.4.

x1 x2

x3x4

Then {x1, x2} is a minimal dominating set, because x3 ∼ x2 and x4 ∼ x1, and neither {x1} nor

{x2} are dominating sets of G. It is straightforward to show that the remaining minimal dominating

are exactly {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}, and {x3, x4}.

The next result says that minimal dominating sets play the same role in decomposing closed

neighborhood ideals as vertex covers do for edge ideals.

Theorem 1.2.7 ([10], Lemma 2.2). The minimal primes of CNI(G) are exactly the prime ideals

generated by the minimal dominating sets of G. In other words, if D is the set of minimal dominating

sets of G, then CNI(G) has the following irredundant prime decomposition.

CNI(G) =
⋂

D∈D
⟨D⟩

Example 1.2.8. We have enumerated the minimal dominating sets in Example 1.2.4, so Theo-

rem 1.2.7 gives the following decomposition of CNI(C4).

CNI(C4) = ⟨x1, x2⟩ ∩ ⟨x1, x3⟩ ∩ ⟨x1, x4⟩ ∩ ⟨x2, x3⟩ ∩ ⟨x2, x4⟩ ∩ ⟨x3, x4⟩

Again, this decomposition allows us to immediately compute the height of a closed neighbor-

hood ideal of a graph G, and therefore the dimension of R/CNI(G). The 4-cycle in Example 1.2.4,

5



for instance, has height 2 and dimension 2. If all minimal dominating sets of G have the same size,

then G is said to be well-dominated, and correspondingly the ideal CNI(G) is unmixed.

Much of this thesis is following the work of Honeycutt and Sather-Wagstaff, who published a

similar theorem to Villarreal’s in [8]. To state this theorem, we need only assert one more definition.

Definition 1.2.9. A graph G is called a whisker graph if every vertex of G has degree 1, or has

a unique degree-1 neighbor. Equivalently, G is a whisker graph if it is obtained by the following

process: start with a graph H, and append exactly one new vertex to each vertex in H. These new

vertices are called the whiskers of G.

Example 1.2.10. Example 1.1.8 is a whisker graph. Its whiskers are x1, x5, and x6.

Theorem 1.2.11 ([8], Corollary 3.12). For a tree T , the following are equivalent.

(i) T is well-dominated.

(ii) T is a whisker graph.

(iii) R/CNI(T ) is a complete intersection.

(iv) CNI(T ) is Cohen-Macaulay.

In particular, the Cohen-Macaulay condition for T is independent of the field k.

We will define a complete intersection ideal along with Cohen-Macaulayness in Chapter 3.

In Chapter 5, two of our main results will be the following two generalizations of this theorem to

bipartite graphs and to chordal graphs; see Theorems 5.3.6 and 5.4.9.

Theorem 1.2.12. Let B be a connected bipartite graph with more than 4 vertices. Then the following

are equivalent.

(i) B is well-dominated.

(ii) B is a whisker graph.

(iii) CNI(B) is a complete intersection.

(iv) R/CNI(B) is Cohen-Macaulay.

In particular, the Cohen-Macaulay condition for B is independent of the field k.

6



Theorem 1.2.13. Let G be a chordal graph. Then the following are equivalent.

(i) G is well-dominated.

(ii) CNI(G) is a complete intersection.

(iii) R/CNI(G) is Cohen-Macaulay.

In particular, the Cohen-Macaulay condition for G is independent of the field k.

7



Chapter 2

Monomial Ideals - Background

The edge ideals and closed neighborhood ideals discussed in Section 1 belong to a special

class of ideals called squarefree monomial ideals.

2.1 Definitions and Examples

Let us start with a few definitions.

Definition 2.1.1. A monomial in the ring R = k[x1, . . . , xn] is an element of the form
∏

1≤i≤n

xki
i

where each ki ∈ N = {0, 1, 2, . . .}. A monomial is said to be squarefree if ki ≤ 1 for every i.

A monomial, in other words, is a product of powers of variables. For example x1x
2
2 is a

monomial in k[x1, x2], though it is not squarefree.

Definition 2.1.2. If m is a monomial, then the support of m (denoted supp(m)) is the set of

variables in m with nonzero exponent.

Example 2.1.3. Let R = k[x1, x2, x3, x4]. The support of x1x
2
2x4 is {x1, x2, x4}.

Definition 2.1.4. A monomial ideal I ⊂ R is an ideal with a generating set consisting entirely

of monomials. A monomial ideal is squarefree if it has a generating set consisting entirely of

squarefree monomials.

Example 2.1.5. Let I = ⟨x1x2, x2x
2
3, x

3
3x4⟩ and J = ⟨x1x2, x2x3, x3x4⟩. Then I is a monomial

ideal and J is a squarefree monomial ideal.
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Example 2.1.6. Any closed neighborhood ideal or edge ideal is a squarefree monomial ideal.

Monomial ideals have a number of useful combinatorial properties, and squarefree monomial

ideals even more so, as we will see after the assertion of a few more theorems, starting with Dickson’s

Lemma, a special case of Hilbert’s Basis Theorem.

Theorem 2.1.7 ([9], Theorem 1.3.1). Let I ⊂ R be a monomial ideal. Then I is generated by a

finite set of monomials.

Theorem 2.1.8 ([9], Theorem 1.1.9). Let I be a monomial ideal with monomial generators m1,m2, . . . ,mk.

Then for each monomial f ∈ R, we have f ∈ I if and only if mi | f for some i.

These theorems tell us that ideal membership is very easy to test for monomial ideals given

a monomial generating set. It also allows us to quickly spot redundant and irredundant generators.

Definition 2.1.9. A generating set of monomials S = {m1, . . . ,mk} for a monomial ideal I is

redundant if I is generated by some proper subset of S. Otherwise, it is irredundant.

Example 2.1.10. The sets {x1x2x3, x
2
1x2x3} and {x1x2x3} are both generating sets for the mono-

mial ideal I = ⟨x1x2x3⟩. The first is redundant whereas the latter is irredundant.

Corollary 2.1.11. Each monomial ideal I has a unique irredundant monomial generating set.

This corollary and the previous few theorems all together assert that each monomial ideal

I is generated by a unique, finite, irredundant set of monomials.

This thesis will restrict its discussion to squarefree monomial ideals, as they arrive most

naturally from graphs. Hence, the remaining sections of this chapter will primarily be concerned

with computations for squarefree monomial ideals.

2.2 Irreducible Decompositions

We stated in Chapter 1 that closed neighborhood ideals and edge ideals can be decomposed

into intersections of prime ideals that are generated by sets which somehow cover the graph. In

the case of edge ideals, these were vertex covers, which “cover” every edge; in the case of closed

neighborhood ideals, these were dominating sets, which “cover” each closed neighborhood. In this

section, we will make this more precise by establishing the connection between squarefree monomial

ideals and simplicial complexes; see Examples 2.2.11 and 2.2.12.

9



Definition 2.2.1. A simplicial complex ∆ with vertex set V = {x1, . . . , xn} is a downward-closed

collection of subsets of V : that is, ∆ ∈ P (V ) is such that whenever G ⊆ F ∈ ∆, we have G ∈ ∆. The

elements of ∆ are called faces of ∆ and the maximal faces (those not properly contained in another

face) are called facets. If ∆ has facets F1, . . . , Fn, then we will sometimes write ∆ = ⟨F1, . . . , Fn⟩

and say that ∆ is generated by F1, . . . , Fn. Additionally, if F = {f1, . . . , fn} is a collection of

faces of ∆ such that every facet of ∆ is in F , we may also write ∆ = ⟨f1, . . . , fn⟩.

Example 2.2.2. Let V = {a, b, c, d}. Then ∆ as below is a simplicial complex on V with facets

{a, b, c}, {b, d}, and {c, d}.

a b

c d

Definition 2.2.3. Let ∆ be a simplicial complex. The dimension of a face F ∈ ∆ is dim(F ) =

|F | − 1. The dimension of ∆, abbreviated dim(∆), is the maximum dimension of its faces.

Example 2.2.4. The simplicial complex in Example 2.2.2 has dimension 2.

Simplicial complexes on vertices x1, . . . , xn turn out to be in a 1 − 1 correspondence with

squarefree monomial ideals in k[x1, . . . , xn].

Definition 2.2.5. The facet ideal of a simplicial complex ∆ on x1, . . . , xn, denoted F(∆), is the

ideal in k[x1, . . . , xn] generated by squarefree monomials whose supports are the facets of ∆.

Example 2.2.6. Consider again the simplicial complex in Example 2.2.2. The facets of ∆ are

{a, b, c}, {b, d}, and {b, c}. Then F(∆) = ⟨abc, bd, bc⟩.

Definition 2.2.5 provides our main 1-1 correspondence between squarefree monomial ideals

and simplicial complexes.

Definition 2.2.7. Let I ⊂ k[x1, . . . , xn] be a squarefree monomial ideal generated by squarefree

monomials m1, . . .mk. Then the facet complex of I denoted δ(I) is the simplicial complex on

x1, . . . , xn generated by the facets supp(m1), . . ., supp(mk).

Example 2.2.8. Let I = ⟨abc, bd, bc⟩ ⊂ k[a, b, c, d]. Then δ(I) is the simplicial complex given in

Example 2.2.2.
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It is easy to see that the maps δ and F are inverses of each other, and consequently define a

bijection between simplicial complexes on x1, . . . , xn and squarefree monomial ideals in k[x1, . . . , xn].

Through this bijection, combinatorial data about simplicial complexes can reveal algebraic data

about their corresponding ideals, and vice versa. To establish this, we need the following definition.

Definition 2.2.9. Let ∆ be a simplicial complex on V . A vertex cover of ∆ is a set C ⊂ V such

that for every facet F ∈ ∆, there is some vertex v ∈ C such that v ∈ F . A vertex cover is called

minimal if it does not properly contain any vertex cover.

Example 2.2.10. Consider the simplicial complex ∆ in Example 2.2.2.

a b

c d

The set {a, d} is a vertex cover because the facets of ∆ are {a, b, c}, {b, d}, and {c, d}, each of which

contains a or d. Moreover, {a, d} is a minimal vertex cover, since neither {a} nor {d} are vertex

covers. One readily checks that the remaining minimal vertex covers are {b, c}, {b, d}, and {c, d}.

Example 2.2.11. Set ∆ = ⟨{x, y} : x, y ∈ V (G), x ∼ y⟩. In other words ∆ is the simplicial complex

generated by the edges of our graph G. Then the vertex covers of ∆ are precisely the vertex covers

of G as a graph.

Example 2.2.12. Set ∆ = ⟨N [x] : x ∈ V (G)⟩. In other words ∆ is the simplicial complex whose

faces are the subsets of closed neighborhoods in our graph G. Then the vertex covers of ∆ as a

simplicial complex are precisely the dominating sets of G.

One might wonder if there’s a decomposition theorem for the facet ideal of a simplicial

complex similar to Theorems 1.1.5 and 1.2.7. In fact, the facet ideal of a simplicial complex is the

intersection of prime ideals generated by its minimal vertex covers.

Theorem 2.2.13 ([4], Proposition 1.8). Let ∆ be a simplicial complex on x1, . . . , xn, and let V be

the set of minimal vertex covers of ∆. Then F(∆) has the following irreducible decomposition.

F(∆) =
⋂
V ∈V

⟨V ⟩
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In the case of closed neighborhood ideals and edge ideals, this theorem specializes to the

decomposition theorems discussed in the introduction. We close with a simple theorem about the

dimension of a facet ideal. We will define and discuss dimension in more depth in Chapter 3.

Theorem 2.2.14. Let ∆ be a simplicial complex on x1, . . . , xn. If k is the size of the smallest

minimal vertex cover of ∆, then dim
(
R/F(∆)) = n− k.

Proof. By Theorem 2.2.13, ht(F) = k. So, Corollary 3.1.8 implies dim(R/F(∆)) = n− k.

Example 2.2.15. Theorem 2.2.13 recovers the fact from Section 1.2. that dim(R/CNI(G)) is the

size of the smallest minimal dominating set of G.

2.3 Colon Ideals

Colon ideals, also known as ideal quotients, play a special role in the study of monomial

ideals and simplicial complexes.

Definition 2.3.1. Let R be a commutative ring and I, J ⊆ R ideals. The colon ideal or ideal

quotient, denoted (I : J), is the set {r ∈ R : rJ ⊆ I}. If J is cyclic and generated by the element

f , then we will sometimes write (I : J) as (I : f) instead. The colon ideal (I : J) is itself an ideal

that contains I.

Example 2.3.2. Let R = Z. Let I = 6Z and J = 2Z. Then (I : J) = 3Z.

Example 2.3.3. Suppose I ⊂ R and that f ∈ I. Then (I : f) = R.

In the case of monomial ideals, computing colon ideals is very simple.

Theorem 2.3.4 ([9], Theorem 2.5.4). Suppose that I = ⟨f1, . . . , fm⟩ and J = ⟨g1, . . . , gn⟩ are

squarefree monomial ideals, and moreover that the generating sets {f1, . . . , fm} and {g1, . . . , gn} are

irredundant. Then

(I : J) =

n⋂
i=1

( m∑
j=1

(⟨fj⟩ : gi)
)
.

Note that when taking a colon of a squarefree monomial ideal I by a cyclic ideal generated

by a squarefree monomial g, this amounts to “deleting” the variables of g from the generators of I.
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Corollary 2.3.5. Let I ⊂ k[x1, . . . , xn] be a squarefree monomial ideal with minimal monomial

generators f1, . . . , fm and let g be a monomial. Then (I : f) = ⟨ f1
gcd(f1,g)

, . . . , fm
gcd(fm,g) ⟩.

Proof. It is straightforward to see that (⟨fi⟩ : g) = ⟨ fi
gcd(fi,g)

⟩ for each monomial fi. Then by

Theorem 2.3.4, we have (I : g) =
∑m

i=1⟨
fi

gcd(fi,g)
⟩ = ⟨ f1

gcd(f1,g)
, . . . , fm

gcd(fm,g) ⟩.

We give an example of this computation next.

Example 2.3.6. Let R = k[x1, x2, x3, x4], and let I = ⟨x1x2x3, x2x4, x1x3x4⟩ and J = ⟨x1x3⟩.

Then we have

(I : J) = (⟨x1x2x3⟩ : x1x3) + (⟨x2x4⟩ : x1x3) + (⟨x1x3x4⟩ : x1x3)

by Theorem 2.3.4, and Corollary 2.3.4 gives

(⟨x1x2x3⟩ : x1x3) = ⟨x2⟩

(⟨x2x4⟩ : x1x3) = ⟨x2x4⟩

(⟨x1x3x4⟩ : x1x3) = ⟨x4⟩

hence (I : J) = ⟨x2, x2x4, x4⟩ = ⟨x2, x4⟩.

Example 2.3.7. Let ∆ = ⟨F1, . . . , Fn⟩ be a simplicial complex on V . Let x ∈ V , and define

∆− x = ⟨F1 − {x}, . . . , Fn − {x}⟩. Then (F(∆) : x) = F(∆− x).

We can also compute colon ideals via irreducible decompositions.

Theorem 2.3.8 ([9], Theorem 7.4.4). Let I and J = ⟨f1, . . . , fk⟩ be squarefree monomial ideals and

suppose that I has minimal primes P1, . . . , Pn. Then (I : J) has the following decomposition.

(I : J) =
⋂

f1,...,fk ̸∈Pi

Pi

Colon ideals yield a special exact sequence that will play an important role Chapter 5.

Theorem 2.3.9. Let R be a commutative ring, and let I ⊆ R be an ideal. If x ∈ R, then there is

an exact sequences of R-modules

0 // R/(I : x) // R/I // R/(I, x) // 0
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where (I, x) = I + (x).

We will see special applications of this exact sequence near the end of the following chapter.
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Chapter 3

Cohen-Macaulayness - Background

Cohen-Macaulay rings and modules are often studied in combinatorial commutative algebra.

Throughout this thesis, our main concern will be characterizing Cohen-Macaulay rings that arise

from closed neighborhood ideals. Throughout this chapter, we will assume that k is a field, J ⊂

k[x1, . . . , xn] is an ideal, and set R = k[x1, . . . , xn]/J .

3.1 Dimension

The dimension and depth of rings and modules provide two different measures of algebraic

information. We will start by defining dimension for both modules and rings. First, we introduce

the following notation: if A is a commutative ring with identity, then Spec(A) denotes the set of

prime ideals in A.

Definition 3.1.1. Let P ⊂ R be a prime ideal. The height of P , denoted ht(P ), is defined as

follows.

ht(P ) = max{k : ∃P0, . . . , Pk ∈ Spec(R), P = P0 ⊋ . . . ⊋ Pk}

In other words, it is the maximal length of a strictly descending sequence of prime ideals contained in

P . Such a maximal chain exists due to a theorem of Krull [1, Theorem A.1] because R is Noetherian.

If I is not a prime ideal, then we define

ht(I) = min{ht(P ) : P ∈ Spec(R), I ⊂ P}.
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Equivalently, ht(I) is the minimum height of its minimal primes.

Example 3.1.2. Let I = ⟨xn1 , . . . , xnp⟩ ⊂ k[x1, . . . , xn] where xni ̸= xnj for all i, j. In other words,

I is generated by p distinct variables. Then ht(I) = p.

Example 3.1.3. Let R = k[x1, x2, x3, x4] and set I = ⟨x1x2x3, x2x3x4, x3x4x1, x4x1x2⟩. Then it is

straigtforward to show that I has irreducible decomposition

I = ⟨x1, x2⟩ ∩ ⟨x1, x3⟩ ∩ ⟨x1, x4⟩ ∩ ⟨x2, x3⟩ ∩ ⟨x2, x4⟩ ∩ ⟨x3, x4⟩.

so ht(I) = 2.

Definition 3.1.4. The dimension of R, denoted dim(R), is defined as follows.

dim(R) = sup{ht(P ) : P ∈ Spec(R)}

The following theorem allows us to compute the dimension of a polynomial ring over a field.

Theorem 3.1.5 ([1], Theorem A.12). Let A be a Noetherian ring. Then dim(A[x]) = dim(A) + 1.

Example 3.1.6. Let R = k[x1, . . . , xn]. Then dim(R) = n. This follows from induction via

Theorem 3.1.5.

Theorem 3.1.7 ([1], Theorem A.16). Let P ∈ Spec(R). Then

ht(P ) = dim(R)− dim(R/P ).

Corollary 3.1.8. Let R = k[x1, . . . , xn] and let I ⊂ R be an ideal. Then ht(I) = dim(R)−dim(R/I).

It is important to note that dimension can also be defined for A-modules.

Definition 3.1.9. Let A be Noetherian and let M be a finitely generated A-module. The dimension

of M is defined as follows,

dimA(M) = dim(A/Ann(M))

where Ann(M) = {r ∈ A : rm = 0 for all m ∈ M}.

Note that if I ⊂ A is an ideal, then dimA(A/I) = dim(A/I). That is, the dimension of A/I

as an A-module is the same as its dimension as a ring. Since our usual ring R is Noetherian and we
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are primarily concerned with R-modules of the form R/I where I is an ideal in R, which are finitely

generated, we will simply write dim(R/I) in place of dimR(R/I).

Next, let us discuss briefly the combinatorial aspects of dimension we will use in this thesis.

Example 3.1.10. Let G be a graph on {x1, . . . xn} and consider the closed neighborhood ideal

I = CNI(G) ⊂ k[x1, . . . , xn]. Recall that I is an intersection of primes generated by minimal

dominating sets of G (Theorem 1.2.7). Let γ(G) be the size the smallest minimal dominating set of

G. Then ht(CNI(G)) = γ(G) so dim(R/CNI(G)) = n− γ(G).

The final definition of this section is an algebraic version of well covered and well dominated

graphs called unmixedness.

Definition 3.1.11. Let I ⊂ R be a squarefree monomial ideal with minimal primes P1, . . . , Pm.

Then I is said to be unmixed if ht(P1) = ht(P2) = . . . = ht(Pm).

3.2 Depth

Depth is the other parameter with which we will be concerned. Roughly speaking, depth, as

we will define it, is another measure of the size of an R-module. We make this idea precise with the

following definitions. For this section and the following section, we will assume that k is a field and

R = k[x1, . . . , xn]/J where J is generated by homogeneous elements, and that M = R/I where I is

generated by homogeneous elements. Moreover, m will denote the maximal ideal m = ⟨x1, . . . , xn⟩R.

Definition 3.2.1. An element r ∈ R is said to be an M-regular element of R if rM ̸= M and

whenever m ∈ M and rm = 0, then m = 0.

Example 3.2.2. Let R = k[x1, x2, x3] and let I = ⟨x1⟩. Now, set M = R/I. Then x2, x3 are both

M -regular elements, because M ∼= k[x2, x3] is an integral domain.

Definition 3.2.3. Consider a sequence of homogeneous elements f = f1, . . . , fm ∈ m and define

Ni = M/⟨f1, . . . , fi⟩M . Then f is called an M-regular sequence if for every i = 0, . . . ,m−1, the

element fi+1 is Ni-regular.

Example 3.2.4. The sequence of variables x1, . . . , xn is an R-regular sequence.

We are now ready to define depth.
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Definition 3.2.5. The depth of M , denoted depthR(M), is the length of the longest homogeneous

M -regular sequence in m.

Let us now assert a theorem of Rees about regular sequences of M .

Theorem 3.2.6 ([1], Theorem 1.2.5). All maximal homogeneous M -regular sequences in m have the

same length.

This leads to the following theorem about the depth of R modulo a regular sequence.

Theorem 3.2.7 ([1], Proposition 1.2.10 (d)). Suppose that f1, . . . , fm is a homogeneous R-regular

sequence. Then depth(R/⟨f1, . . . , fm⟩R) = depth(R)−m.

We conclude this section with one last theorem about the relationship between depth and

dimension of M .

Theorem 3.2.8 ([1], Theorem 1.2.12). depth(M) ≤ dim(M).

3.3 The Cohen-Macaulay Property

Now that we have established a few theorems about dimension and depth, we are now poised

to define Cohen-Macaulayness and establish a few crucial theorems about Cohen-Macaulay rings and

Cohen-Macaulay modules.

Definition 3.3.1. M is said to be a Cohen-Macaulay module if dim(M) = depth(M).

Definition 3.3.2. R is a Cohen-Macaulay ring if it is a Cohen-Macaulay as a module over itself.

Example 3.3.3. The ring R = k[x1, . . . , xn] is a Cohen-Macaulay ring, since x1, x2, . . . , xn is a

maximal homogeneous R-regular sequence, so

n ≤ depth(R) ≤ dim(R) = n

by Theorem 3.2.8 and Example 3.1.6.

Cohen-Macaulay rings and modules are studied for a number of nice algebro-geometric and

combinatorial properties. One “nice” property of Cohen-Macaulay in the setting of quotients of

polynomial rings is unmixedness.
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Theorem 3.3.4 ([9], Theorem 5.3.16). Let R = k[x1, . . . , xn] and suppose M = R/I is a Cohen-

Macaulay module over R. Then I is an unmixed ideal.

We will now discuss a special class of ideals I ⊂ R which are Cohen-Macaulay. The following

definition can be stated in a more general fashion, but we will specialize to the case of polynomial

rings here.

Definition 3.3.5. An ideal I ⊂ R = k[x1, . . . , xn] is said to be a complete intersection if it is

generated by an R-regular sequence.

Example 3.3.6. Let R = k[x1, x2, x3]. Then ⟨x1x2, x3⟩ is a complete intersection ideal.

Theorem 3.3.7. Let I ⊂ R = k[x1, . . . , xn] be a squarefree monomial ideal. Then I is a complete

intersection if and only if its generating monomials have disjoint support.

Theorem 3.3.8. If I ⊂ R = k[x1, . . . , xn] is a complete intersection ideal, then R/I is a Cohen-

Macaulay ring.

Proof. Note that depth(R) = dim(R) = n, so if I is generated by a regular sequence of length

r, then R/I has depth n − r by Theorem 3.2.7. Moreover, Proposition A.4 from [1] implies that

dim(R/I) = n− r. Hence, R/I is Cohen-Macaulay over R (and consequently, over itself).

3.4 Depth and Exact Sequences

We will conclude this chapter by discussing a few results regarding the behavior of depth

for modules that form exact sequences. In particular, we will use homological information to bound

(and in some cases, determine) the depth of quotient rings. In this section, we will take R to be the

polynomial ring k[x1, · · · , xn] where k is a field.

Theorem 3.4.1 ([1], Proposition 1.2.9). Let M = R/I1, N = R/I2, and U = R/I3 where I1, I2, I3 ⊂

R are generated by homogeneous elements. Suppose further there is an exact sequence as follows.

0 //U //M //N //0

Then we have the following inequality.

depth(M) ≥ min{depth(U), depth(N)}
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This theorem, part of the Depth Lemma, is frequently used in more general cases. In the

case of monomial ideals, we have the following strengthening.

Theorem 3.4.2 ([2], Theorem 4.3). Let I ⊂ R be a monomial ideal, and f a monomial. Then

depth(R/I) ∈ {depth(R/(I : f))), depth(R/(I, f))}

Moreover, if depth(R/(I, f)) ≥ depth(R/(I : f)), then depth(R/I) = depth(R/(I : f))

This theorem can be seen as a strengthening of Theorem 3.4.1 by considering the following

exact sequence from Theorem 2.3.9.

0 //R/(I : f) //R/I //R/(I, f) //0

We will conclude this chapter by stating an important related result that we will make use

of in Chapter 5.

Theorem 3.4.3 ([2], Lemma 4.1). Let I ⊂ R be a monomial ideal and f a monomial. Then

depth(R/I) ≤ depth(R/(I : f)).

It is worth noting that this theorem actually supplies the second part of Theorem 3.4.2 after

establishing that depth(R/I) ∈ {depth(R/(I : f)),depth(R/(I, f))}.
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Chapter 4

Graph Theory - Background

The main results of this thesis are restricted to squarefree monomial ideals that arise from

graphs. Hence, we will cover some preliminaries of graph theory and notation that we will use

frequently. Throughout this chapter, G will always be a finite simple graph.

4.1 Definitions and Notation

Notation 4.1.1. The vertex set of G will be abbreviated as V (G).

Definition 4.1.2. Let H ⊆ V (G). Then the subgraph induced by H, denoted G[H], us the

graph with vertices in H and an edge xy whenever xy is an edge in G.

Example 4.1.3. Consider the butterfly graph below, G.

x1

x2

x3

x4

x5

If H = {x1, x2, x3, x5}, then G[H] is the following graph.

x1

x2 x5

x3
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One interesting characteristic of the butterfly graph is the presence of a vertex adjacent to

all other vertices in the graph.

Definition 4.1.4. A vertex v ∈ V (G) is a universal vertex if every other vertex in G is adjacent

to v.

Example 4.1.5. Consider the graph G in Example 4.1.3. In this case, x3 is a universal vertex.

Notation 4.1.6. Let G be a graph and S a set of vertices in G. Then we define G − S = G[Sc].

That is, G− S is the induced subgraph on vertices not in S.

Notation 4.1.7. If x, y are adjacent in G, then we will use the notation x ∼G y. When the graph

is unambiguous, we will simply write x ∼ y.

Definition 4.1.8. Let x ∈ V (G). The open neighborhood of x, N(x), is defined as follows.

N(x) = {y ∈ V (G) : x ∼ y}

Definition 4.1.9. Let G be a graph and x ∈ V (G). The closed neighborhood of x, denoted

N [x], is the set N(x) ∪ {x}.

Example 4.1.10. Consider the butterfly graph from Example 4.1.3.

x1

x2

x3

x4

x5

Then N(x2) = {x1, x3} and N [x2] = {x1, x2, x3}.

4.2 Vertex Covers and Independent Sets

Recall from Chapter 1 that edge ideals decompose into intersections of primes generated

by vertex covers, via Theorem 1.1.5. Here, we will discuss vertex covers and their complements,

independent sets.

Definition 4.2.1. A set V ⊆ V (G) is called a vertex cover of G if every edge in G is incident

with a vertex in V . A vertex cover is minimal if it does not properly contain any vertex cover.
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Definition 4.2.2. The vertex covering number of G, denoted τ(G), is the size of the smallest

vertex cover of G.

Example 4.2.3. Consider the butterfly graph in Example 4.1.3. The minimal vertex covers of G

are {x1, x3, x4}, {x1, x3, x5}, {x2, x3, x4}, {x2, x3, x5}, {x1, x2, x4, x5}, so τ(G) = 3.

Definition 4.2.4. An independent set for G is a set M of vertices of G which are pairwise non-

adjacent. An independent set is maximal if it isn’t properly contained in any other independent set.

Definition 4.2.5. The independence number of G, denoted α(G), is the size of the largest

independent set in G.

Example 4.2.6. Consider the butterfly graph from Example 4.1.3. Then {x2, x5} is an independent

set since x2 and x5 are not adjacent. Moreover, it is maximal since x1, x3, and x4 are all adjacent

to x2 or x5. It is straightforward to show that the remaining maximal independent sets in G are

{x2, x4}, {x1, x5}, {x1, x4}, and {x3}. Hence, α(G) = 2.

Vertex covers and independent sets are connected in the following manner.

Theorem 4.2.7. A subset V ⊆ V (G) is a vertex cover if and only if V c is an independent set.

Moreover, V is a minimal vertex cover if and only if V c is a maximal independent set.

Proof. Suppose V is a vertex cover. Let x, y ∈ V c. Then if x ∼ y is an edge, then the edge xy is

not covered by V , which is a contradiction. Thus any two x, y ∈ V c are not adjacent. Conversely,

suppose M is an independent set. Then if xy is an edge in G, then at least one of x, y ̸∈ M . Hence

M c contains a vertex incident with any given edge of G.

Now, suppose V is a minimal vertex cover. Note that V c is an independent set by the

previous discussion. Then if V c ⊊ N ⊆ V (G), then N c ⊊ V , so N c is not a vertex cover by

minimality of V . This implies that N is not an independent set, so V c is a maximal independent set.

Conversely, suppose M is a maximal independent set. Note that M c is a vertex cover by the

previous discussion. Then if U ⊊ M c, then M ⊊ U c, so U c is not an independent set by maximality

of M , and therefore U is not vertex cover. Thus M c is a minimal vertex cover.

Now, we will define a well-covered graph.

Definition 4.2.8. A graph G is said to be well-covered if all of its minimal vertex covers have

the same size.
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Example 4.2.9. The butterfly graph G from Example 4.1.3 is not well covered, since {x3} and

{x2, x5} are both maximal independent sets.

An easy connection between well-covered graphs and maximal independent sets is given by

the following theorem.

Theorem 4.2.10. G is well-covered if and only if every maximal independent set for G has the

same size.

Proof. Recall from Theorem 4.2.7 that minimal vertex covers are exactly the complements of max-

imal independent sets. If all the minimal vertex covers of G have the same size then all of the

maximal independent sets of G have the same size, and vice versa.

4.3 Dominating Sets

Dominating sets are another way of covering graphs. Rather than covering the edges of G,

they cover the closed neighborhoods of G. We may define them as follows.

Definition 4.3.1. A dominating set of G is a set of vertices D such that every vertex v ∈ V (G)

is either in D or adjacent to a vertex in D. A dominating set is minimal if it does not properly

contain any dominating set.

Observation 4.3.2. Let H be a spanning subgraph of G and suppose D is a dominating set of H.

Then D is also a dominating set of G.

Definition 4.3.3. The domination number of G, denoted γ(G), is the size of the smallest dom-

inating set of G. The size of the largest minimal dominating set is denoted Γ(G).

Example 4.3.4. Consider the butterfly graph G from Example 4.1.3.

x1

x2

x3

x4

x5

Then {x3} is a dominating set since every vertex in G is in the closed neighborhood of x3. Moreover,

it is minimal, since its only proper subset is empty and hence not a dominating set. It is straight-

forward to show that the remaining minimal dominating sets are {x1, x4}, {x1, x5}, {x2, x4}, and

{x2, x5}. Hence, γ(G) = 1 and Γ(G) = 2.
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Definition 4.3.5. The graph G is well-dominated if all of its minimal dominating sets have the

same size.

We now establish a simple proposition about minimal dominating sets that will become

useful in Chapter 5.

Observation 4.3.6. Let G be a connected graph with two or more vertices. If D is a minimal

dominating set in G, then its complement Dc is a dominating set.

Proof. Let x ∈ G. We wish to show that x ∈ Dc or there is a vertex v ∈ Dc such that x ∼ v. If

x ∈ Dc, we are done, so suppose that x ∈ D instead. If x has no neighbors in Dc, then all of its

neighbors are in D. But then D is not minimal as D − {x} is a dominating set, which contradicts

our assumption.

There is an important connection between dominating sets and independent sets, which we

describe in the following proposition.

Proposition 4.3.7. Let M be a maximal independent set of G. Then M is also a minimal domi-

nating set of G.

Proof. Suppose for contradiction that M is not a dominating set. Then, there is a vertex v ∈ V (G)

that is not in M and not adjacent to any vertex in M , so M∪{v} is an independent set, contradicting

maximality. It follows that M is a dominating set.

Moreover, M is a minimal dominating set, since for every set of vertices N ⊊ M , there is

a vertex v′ ∈ M − N that is not in N nor is it adjacent to any vertex in N . Hence N is not a

dominating set, so M is minimal.

Corollary 4.3.8. Let M be a maximal independent set of G. Then we have the following inequalities.

γ(G) ≤ |M | ≤ Γ(G)

Proof. By Proposition 4.3.7, M is a minimal dominating set.

We conclude with the following theorem.

Theorem 4.3.9. If G is well-dominated, then it is well-covered.
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Proof. Suppose G is well-dominated. Then γ(G) = Γ(G). By Corollary 4.3.8, if M is a maximal

independent set of G, then |M | = γ(G). Hence all maximal independent sets of G have the same

size, so by Theorem 4.2.10, G is well-covered.

Note that the converse of Theorem 4.3.9 does not hold, as shown in the following example.

Example 4.3.10. Consider the utility graph G below.

x1

x2

x3

x4

x5

x6

It is straightforward to see that the minimal vertex covers G are precisely {x1, x2, x3} and {x4, x5, x6}.

Hence, G is well-covered. On the other hand, G is not well-dominated, as both {x2, x5} and

{x1, x2, x3} are minimal dominating sets.

4.4 Special Types of Graphs

This section will serve as a miscellany of graph families that are important or even central

to this thesis. We will begin with bipartite graphs, which play a major role in Chapter 5.

Definition 4.4.1. A bipartite graph G is a graph whose vertex set V (G) can be partitioned into

two nonempty sets A and B so that every vertex in A is adjacent only to vertices in B, and vice versa.

Example 4.4.2. The utility graph from Example 4.3.10, otherwise known as K3,3 is bipartite.

Bipartite graphs can also be characterized by their cycles. This characterization will be

important in Chapter 5.

Theorem 4.4.3 ([3], 1.6.1). A graph on at least two vertices is bipartite if and only if it contains

no odd cycle.

Example 4.4.4. Any tree T on at least two vertices is a bipartite graph. This is because a tree is

acyclic, and thus contains no odd cycle.
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Let us now introduce a special family of bipartite graphs that generalizes Example 4.4.2.

Definition 4.4.5. Let s, t be two positive integers. The complete bipartite graph Ks,t, is the

bipartite graph with partite sets A and B such that |A| = s and |B| = t, where every vertex in A is

adjacent to every vertex in B.

Chordal graphs are another important family of graphs in combinatorial commutative al-

gebra. In [7], Herzog, Hibi, and Zheng characterize the chordal graphs with Cohen-Macaulay edge

ideals. We will likewise characterize the chordal graphs with Cohen-Macaulay closed neighborhood

ideals in Chapter 5.

Definition 4.4.6. A graph G is chordal if every n-cycle of G with n > 3 has a chord.

Example 4.4.7. Any tree is vacuously a chordal graph.

Example 4.4.8. The following graph is a chordal graph.

We close this chapter by introducing two more graphs that will feature in Chapter 5.

Definition 4.4.9. Let n be a positive integer. The n-star is the graph K1,n.

Example 4.4.10. The following graph is a 3-star.

Definition 4.4.11. The null graph on k vertices, denoted Nk, is the graph with k vertices and

no edges.
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Definition 4.4.12. Let G and H be graphs with disjoint vertex sets. The join of G and H, denoted

G+H, is the graph with vertices V (G)∪V (H), such that there is an edge between x and y in G+H

provided any of the following are true.

(i) x ∼G y.

(ii) x ∼H y.

(iii) x ∈ G and y ∈ H.

Example 4.4.13. Let G and H be the following graphs.

G H

Then G+H is the graph from Example 4.4.8.

G+H

Example 4.4.14. Ks,t
∼= Ns +Nt.
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Chapter 5

Results

In this chapter we will introduce novel results about closed neighborhood ideals with an

emphasis on decomposition theorems, the behavior of closed neighborhood ideals under graph op-

erations, calculations of depth, and, of course, Cohen-Macaulay properties. Unless otherwise stated

R will always be the a polynomial ring k[x1, . . . , xn] where k is a field, and G will always be a finite

simple graph with vertex set V (G) = {x1, . . . , xn}.

Before beginning, it is important to discuss the following vocabulary. We will often refer to

the depth and dimension of R/CNI(G) as simply the depth of G or the dimension of G. Likewise,

we call call G a Cohen-Macaulay graph if R/CNI(G) is Cohen-Macaulay as an R-module, and

a complete intersection graph if CNI(G) is a complete intersection ideal.

5.1 Definitions and Notation

Before proving our new results, let us first reassert a number of important definitions and

theorems. We will begin by defining the closed neighborhood ideal itself.

Definition 5.1.1. The closed neighborhood ideal of G, denoted CNI(G), is the squarefree

monomial ideal

CNI(G) =

〈 ∏
xi∈N [xj ]

xi : xj ∈ G

〉
.

This chapter will restrict its attention to closed neighborhood ideals and the algebraic prop-

erties thereof. One of the main tools in studying these ideals is the following theorem.
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Theorem 5.1.2 ([10], Lemma 2.2). The minimal primes of CNI(G) are exactly the prime ideals

generated by the minimal dominating sets of G. In other words, if D is the set of minimal dominating

sets of G, then CNI(G) has the following irredundant prime decomposition.

CNI(G) =
⋂

D∈D
⟨D⟩

This allows us to relate algebraic information about closed neighborhood ideals to their

dominating sets. The following theorems provide this connection.

Theorem 5.1.3. Suppose that G has n vertices. Then we have ht(CNI(G)) = γ(G). Additionally,

dim(R/CNI(G)) = n− γ(G)

Proof. By definition, the height of an ideal in a Noetherian ring is the minimal height of its minimal

primes. Since by Theorem 5.1.2 the minimal primes of CNI(G) are precisely the ideals generated

by its minimal dominating sets ⟨D1⟩, . . . , ⟨Dk⟩. But the height of these minimal primes are simply

|D1|, . . . , |Dk| respectively, so the height of CNI(G) is the size of its smallest minimal dominating

set, i.e., γ(G). Additionally, by Corollary 3.1.8, dim(R/CNI(G)) = n− γ(G).

Theorem 5.1.4. CNI(G) is unmixed if and only if G is well dominated.

Proof. By Theorem 5.1.2 the minimal primes of CNI(G) are precisely the primes generated by its

minimal dominating sets.

5.2 Spanning Trees and Dominating Sets

In this section we prove that every closed neighborhood ideal of a connected graph G can

be decomposed into closed neighborhood ideals of its spanning trees; see Theorem 5.2.3. To prove

this, we will first establish the following lemma.

Lemma 5.2.1. Suppose G is connected, and let D be a minimal dominating set of G. Then there

is a spanning tree T of G such that D is a minimal dominating set of T .

Proof. Let C be any cycle in G, if one exists. We will show that there exists an edge e ∈ C such

that D is a minimal dominating set of G− e.

Case 1: C ⊆ D. In this case, we may delete any edge e in C and C − e is also dominated by D.
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Similarly, G − e is dominated by D. Indeed, suppose x ∈ G − e. If x ∈ D then x is dominated by

D in G− e. On the other hand, if x ̸∈ D, then there exists some y ∈ D such that xy is an edge in

G. Since x ̸∈ D, we have xy ̸= e so xy ∈ G − e and x remains dominated by D. Additionally, D

still dominates G− e minimally; if otherwise, then there is a set D′ ⊊ D that dominates G− e, and

therefore dominates G, which contradicts the minimality of D. Finally, G− e remains connected, as

we may replace e in any path containing e with the path C − e.

Case 2: C ⊈ D. In this case, there exists a vertex v ∈ C such that v /∈ D. Then v has two distinct

neighbors in C, call them u and u′. If at least one of u, u′ is not in D, then let our deleted edge e be

the edge uv or u′v respectively. Then D dominates G − e, since e was not an edge between v ̸∈ D

and a vertex in D. Moreover, D still dominates G−e minimally by the same reasoning as in Case 1.

If instead both u, u′ ∈ D, then let e be the edge uv. Then D still dominates C − e since u′ ∼ v in

G− e. Moreover, D still dominates G− e minimally by the same reasoning as in Case 1.

By sequentially deleting an edge for every cycle in G according to either case above, we

construct a spanning tree of G that has D as a minimal dominating set.

This helpful lemma allows us to construct spanning trees of G with a given minimal domi-

nating set of G. Throughout this section, we will establish results that allow us to use facts about

the spanning trees of a graph G to determine algebraic properties of CNI(G).

Observation 5.2.2. Let H be a spanning subgraph of G. Then CNI(G) ⊆ CNI(H).

Proof. This observation follows from the simple fact that NH [x] ⊆ NG[x] for all x ∈ V (G). Hence

the monomial generators of CNI(H) all divide the monomial generators of CNI(G).

This observation will give us one containment in the proof of the following theorem.

Theorem 5.2.3. Let G be connected and let T1, . . . , Tk be the spanning trees of G. Then

CNI(G) = ∩k
i=1 CNI(Ti).

Proof. Each Ti is a spanning subgraph, so by Observation 5.2.2, we have that CNI(G) ⊆ ∩k
i=1 CNI(Ti).

Now, note that by Theorem 5.1.2, we have CNI(G) = ∩m
j=1⟨Dj⟩ where the Dj ’s are the minimal

dominating sets of G. But each Dj is similarly a minimal dominating set of some Tj so that

CNI(Tj) ⊆ ⟨Dj⟩. Hence, ∩k
i=1 CNI(Ti) ⊆ ∩m

j=1⟨Dj⟩ = CNI(G).
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We will think of this theorem as a decomposition theorem, similar to Theorem 1.2.7. In fact,

we can use the irreducible decompositions of spanning trees to relate the dimension of CNI(G) to

the dimension of its spanning trees, in the same way we relate the height of a squarefree monomial

ideal I to its minimal primes.

Corollary 5.2.4. Let G be connected with spanning trees {T1, . . . , Tk}. Then we have the following.

dim(R/CNI(G)) = max{dim(R/CNI(Ti))}ki=1

Proof. For each spanning tree Ti we have an irreducible decomposition CNI(Ti) = ∩ni
j=1⟨Di,j⟩.

By Theorem 5.2.3, we have that CNI(G) = ∩k
i=1 ∩ni

j=1 ⟨Di,j⟩, which is an intersection of prime

ideals. So, ht(CNI(G)) is the minimal height of the D′
i,js, which is also the minimal height of the

tree ideals CNI(Ti). Hence, ht(CNI(G)) = min{ht(CNI(Ti)) : 1 ≤ i ≤ k}. Then it follows that

dim(R/CNI(G)) = max{dim(R/CNI(Ti)) : 1 ≤ i ≤ k}.

Corollary 5.2.5. Let G be a connected graph whose every spanning tree is well-dominated. Then

G is well dominated and R/CNI(G) has dimension |G|/2.

Proof. Note that if T is any spanning tree of G, it must be well dominated by assumption, and

hence a whisker graph by Theorem 1.2.11; so dim(CNI(T )) = |T |/2 = |G|/2, as the whiskers

of T form a minimal dominating set. Then if T1, . . . , Tk are the spanning trees of G, we have an

irreducible decomposition CNI(Ti) = ∩ni
j=1⟨Di,j⟩ where |Di,j | = |G|/2. By Theorem 5.2.3, CNI(G) =

∩k
i=1∩

ni
j=1 ⟨Di,j⟩, which is an intersection over prime ideals each with dimension |G|/2. Then CNI(G)

is unmixed so G is well-dominated, and by Corollary 5.2.4 we have dim(R/CNI(G)) = |G|/2.

5.3 Cohen-Macaulay Bipartite Graphs

Here, we will give our main characterization of Cohen-Macaulay bipartite graphs. We start

by observing a simple fact about the dimension of closed neighborhood ideals. It complements

Corollary 5.2.5 by considering graphs whose spanning trees are not necessarily well dominated.

Observation 5.3.1. For any connected graph G, we have dim(R/CNI(G)) ≥ |G|/2.

Proof. Recall that dim(R/CNI(G)) = |G| − γ(G). Let D be a minimal dominating set of G. If

|D| < |G|/2, then γ(G) ≤ |G|/2 so |G| − γ(G) > |G|/2 and we are done. If |D| ≥ |G|/2, then
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Dc is a dominating set by Observation 4.3.6 such that |Dc| ≤ |G|/2. Then Dc contains a minimal

dominating set D′ such that |D′| ≤ |G|/2, so γ(G) ≤ |G|/2 hence |G| − γ(G) ≥ |G|/2.

This lower bound on dimension will allow us to lift results from trees to graphs. Moreover,

this is tight for a well-dominated bipartite graph, as shown in the following observation.

Observation 5.3.2. Let G be a connected bipartite graph with partite sets A and B. Then A and

B are minimal dominating sets. Moreover, if G is well-dominated, then dim(R/CNI(G)) = |G|/2 =

|A| = |B|.

Proof. We will show without loss of generality that A is a minimal dominating set. So, suppose

x ∈ G. Then x ∈ A or x ∈ B. If x ∈ A, then x is dominated by A. If x ∈ B, then x has a neighbor

in A since G is connected and bipartite, so x is dominated by A. On the other hand, if A′ ⊊ A, then

there is a vertex y ∈ A so that y ̸∈ A′. But y ∈ A, so y has no neighbor in A′ and is therefore not

dominated by A′. So A is a minimal dominating set.

If G is well-dominated, then A and B are minimal dominating sets. Hence |A| = |B|.

But |G| = |A| + |B| so |A| = |B| = |G|/2, so γ(G) = |G|/2, so we have by Theorem 5.1.3 that

dim(R/CNI(G)) = |G| − |G|/2 = |G|/2.

Following this observation, we see that well-dominated connected graphs of dimension |G|/2

admit the following characterization in terms of their spanning trees.

Proposition 5.3.3. Let G be a connected graph such that dim(R/CNI(G)) = |G|/2. Then G is

well-dominated if and only if every spanning tree of G is a whisker graph.

Proof. The first direction follows immediately from Theorem 1.2.11 and Corollary 5.2.5. For the

converse, assume that G is well-dominated and that dim(G) = |G|/2. Let T be a spanning tree

of G and suppose for contradiction that T is not a whisker graph, i.e., not well-dominated by

Theorem 1.2.11. Then T contains a minimal dominating set D of size |D| ≠ |G|/2. If |D| < |G|/2,

then since D is also a dominating set of G, there is a minimal dominating set of G,D′ ⊆ D so

that |D′| < |G|/2, which contradicts our assumption that G is well-dominated. On the other hand,

if |D| ≥ |G|/2, then |Dc| < |G|/2 since |D| ̸= |G|/2. Moreover, Dc is a dominating set of G by

Observation 4.3.6, so there is a minimal dominating set D′ ⊆ Dc of G such that |D′| < |G|/2,

so again G is not well-dominated as assumed. Thus, T must be well-dominated, and therefore a

whisker graph.
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Corollary 5.3.4. Let G be a connected bipartite graph. Then G is well-dominated if and only if its

every spanning tree is a whisker graph.

Proof. Note that G has partitions A,B which are both minimal dominating sets. Suppose that G

is well-dominated; then |A| = |B| = |G|/2, so dim(R/CNI(G)) = |G|/2. Then applying Propo-

sition 5.3.3, every spanning tree G is whisker graph. The other direction follows from Corol-

lary 5.2.5.

Before getting to our main result of this section, we make one more remark about whisker graphs.

Remark 5.3.5. If G is a whisker graph, then CNI(G) is a complete intersection ideal.

Proof. Suppose G is a whisker graph. Then the irredundant generators of B are precisely the

squarefree quadratic monomials of the form xixj where xj is a whisker adjacent to xi. This is

because if xi is not a whisker, then it has a unique neighbor xj that is a whisker, and N [xj ] =

{xi, xj} ⊆ N [xi]. Moreover, the fact that G is whiskered implies that the monomial generators are

given by whiskers, and these monomials have disjoint support. Then by Theorem 3.3.7, CNI(G) is

a complete intersection ideal.

We will provide a generalization of this remark in Theorem 5.4.2 in the following section.

We are now ready to state and prove the main theorem of this section, which is Theorem 1.2.12

from the introduction.

Theorem 5.3.6. Let B be a connected bipartite graph with more than 4 vertices. Then the following

are equivalent.

(i) B is well-dominated.

(ii) B is a whisker graph.

(iii) CNI(B) is a complete intersection.

(iv) R/CNI(B) is Cohen-Macaulay.

In particular, the Cohen-Macaulay condition for B is independent of the field k.

Proof. (iii) =⇒ (iv) is Theorem 3.3.8, (iv) =⇒ (i) is just Theorems 3.3.4 and 5.1.4, and

(ii) =⇒ (iii) follows from Remark 5.3.5. All that remains is to show that (i) =⇒ (ii).
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(i =⇒ ii) We show this by contradiction. Suppose that B is well-dominated, but not a

whisker graph. Observation 5.3.2 implies that dim(B) = |B|/2. Let T be a spanning tree of B; by

Proposition 5.3.3, T is a whisker graph.

Let H be the set of vertices so that T is obtained by whiskering T [H]. Because B is not a

whisker graph of B[H], there must be some vertex v ∈ B \H that is degree 1 (i.e., a leaf) in T , but

degree greater than 1 in B. Let e be an edge not in T that is incident with v in B. Then T + e has

a cycle C that contains v and the edge e, that is also a cycle in B. Now, Let u be the other vertex

incident with edge e. Further, note that since C is a cycle in a bipartite graph, C must be an even

cycle. Now, we write C = ux1 . . . xnv, and since C is an even cycle, n ≥ 2.

Let d be the edge ux1 and consider the graph S = T + e− d. Corollary 1.5.2 in [3] asserts

that a connected graph G is a tree if and only if it has |G| − 1 edges. Note that S is connected since

C is a cycle in T + e which is connected, and any path from x to y in T + e, if it contains the edge

d, can be substituted for a path going through the rest of C instead. Certainly T + e− d has |S| − 1

edges, so S is a tree, and a spanning tree of B. Then by assumption, S is a whisker graph.

Since v has exactly two neighbors in S, namely u and xn, and xn is not a whisker (it has

neighbors v and xn−1), we see that u must the whisker of v in S. But then u has exactly two

neighbors in T + e, namely v and x1. Hence u has only one neighbor in T , namely x1, so u is a leaf

in T .

Now, let d′ be the edge x1x2 and consider the graph S′ = T + e− d′. Then S′ is a spanning

tree of B by the same reasoning as before, so in particular S′ is a whisker graph by assumption.

Now, since u is a leaf in T , its unique neighbor in T is just x1. Similarly, v has a unique neighbor xn

in T . Hence, the neighbors of u in S′ are exactly v and x1, and the neighbors of v in S′ are exactly

u and xn. Then u and v both have degree 2 in S′. However, both cannot have a degree 1 neighbor

in S′; if they did, then S would have the 3-path x1uvxn as a connected component. However, S′ is

connected and has more than 4 vertices, so this is impossible. Then S′ is not a whisker graph, as

every vertex in a whisker graph is either degree 1, or has a unique neighbor of degree 1; but one of

u or v has no neighbor of degree 1. On the other hand, we assumed every spanning tree of B is a

whisker graph, so this is a contradiction.
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5.4 Complete Intersection Closed Neighborhood Ideals and

Cohen-Macaulay Chordal Graphs

We have found that, like trees, bipartite graphs are Cohen-Macaulay if and only if they are

whisker graphs. In this section, we will generalize this and characterize the graphs that are complete

intersections. To this end, we assert our first definition.

Definition 5.4.1. A simplicial clique K in G is a clique containing a vertex v such that N [v] = K.

In this event, v is called a simplicial vertex of K.

We may now state and prove the following theorem.

Theorem 5.4.2. A graph G is a complete intersection graph if and only if its vertex set can be

partitioned into disjoint simplicial cliques.

Proof. (⇐) Suppose the vertex set of G can be partitioned into simplicial cliques S1, . . . , Sk, where

each Si contains a simplicial vertex si. As every vertex in G falls in some Si, every closed neigh-

borhood in G contains some Si. Thus, the non-redundant generators of CNI(G) are precisely the

monomials mSi
, which have pairwise disjoint support. Then by Theorem 3.3.7, CNI(G) is a complete

intersection.

(⇒) Suppose CNI(G) is a complete intersection. Then its generators M1, . . . ,Mk corre-

sponding to the closed neighborhoods of vertices v1, . . . , vk have disjoint support. Moreover, if

x ∈ V (G), then Mi|MN [x] for some i, so N [vi] ⊆ N [x]. Hence vi ∈ N [x], so vi ∼ x, implying that

x ∈ N [vi] so x|Mi. Hence every vertex of G appears in some monomial Mi. Then by Theorem 3.3.7,

not only do the generators of CNI(G) all have disjoint support, but they also partition the vertices of

G. Moreover, for any vertex v ∈ G, there is a unique generator Mi s.t. supp(Mi) ⊆ N [v]; otherwise,

N [v] corresponds to a non-redundant generator that is not among the Mi’s. It follows that each set

of vertices supp(Mi) is a clique, and moreover, that each vi is a simplicial vertex in Mi. Thus the

set {supp(Mi)}ki=1 partitions G into simplicial cliques.

We give the property described in Theorem 5.4.2 a name in the following definition. The

name HHZ refers to the authors of [7], Herzog, Hibi, and Zheng, who use this property in [7,

Theorem, 2.1] but do not name it.
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Definition 5.4.3. If a graph G can be partitioned into disjoint simplicial cliques, then G is said to

be an HHZ graph.

Example 5.4.4. The following graph is an HHZ graph. Its simplicial cliques are the apparent

3-clique, the 4-clique, and 5-clique.

Example 5.4.5. The butterfly graph from Example 1.1.2 is not an HHZ graph. It is indeed a union

of its simplicial cliques, but cannot be partitioned into them.

Note that the HHZ condition can be seen as a generalization of a whisker graph; every

whisker graph can be partitioned into simplicial cliques – specifically, its whiskers. We may now use

Theorem 5.4.2 to characterize complete intersections in various graph families.

Corollary 5.4.6. Let G be an n-regular graph with n ≥ 1. Then CNI(G) is a complete intersection

if and only if G is a disjoint union of Kn+1 graphs.

Proof. By Theorem 5.4.2, CNI(G) is a complete intersection if and only if G is HHZ. Then let s

be a simplicial vertex in a maximal simplicial clique S ⊆ G. Since G is n-regular, s has exactly n

neighbors so |S| = n+ 1. Since S is a clique, and every vertex v in S also has exactly n neighbors,

those n neighbors of v must all be in S, so the maximal simplicial cliques in G are disconnected

from each other. Conversely, every disjoint union of Kn+1 graphs is straightforwardly partitionable

into simplicial cliques.

Corollary 5.4.7. Let G be a triangle-free connected graph with more than one vertex. Then CNI(G)

is a complete intersection if and only if G is a whisker graph.
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Proof. Suppose CNI(G) is a complete intersection, so by Theorem 5.4.2 G is an HHZ graph. Since

G contains no triangles, its simplicial cliques can only be 2-cliques or 1-cliques. A connected graph

with a simplicial 1-clique, however, can only be the graph containing a single vertex, as a simplicial

1-clique is an isolated vertex. G has more than one vertex, however, so its maximal simplicial

cliques must all be 2-cliques, but a simplicial 2-clique is just a whisker. The converse holds by

Remark 5.3.5.

Corollary 5.4.8. Let G be an HHZ graph with with simplicial cliques S1, . . . , Sk. Then G is well-

dominated with minimal dominating sets of size k.

Proof. Suppose that G is an HHZ graph. Then Theorem 5.4.2 implies that CNI(G) is a complete

intersection ideal, and in particular, Theorem 3.3.8 shows that R/CNI(G) is Cohen-Macaulay. By

Theorem 3.3.4, CNI(G) is unmixed, so G is well-dominated. Moreover, if s1 ∈ S1, . . . , sk ∈ Sk are

simplicial vertices, then {s1, . . . , sk} is a minimal dominating set.

Here is the main result of this section. It is Theorem 1.2.13 from the introduction.

Theorem 5.4.9. Let G be a chordal graph. Then the following are equivalent.

(i) G is well-dominated.

(ii) G is an HHZ graph.

(iii) CNI(G) is a complete intersection.

(iv) R/CNI(G) is Cohen-Macaulay.

In particular, the Cohen-Macaulay condition for G is independent of the field k.

Proof. (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). By Theorem 4.3.9, a well-dominated graph is well-covered.

Moreover, a chordal graph is well-covered if and only if it is HHZ [7, Theorem 2.1]. Therefore, if G

is a well dominated chordal graph, then it is HHZ, so G is a complete intersection by Theorem 5.4.2

and therefore Cohen-Macaulay by Theorem 3.3.8.

(iv) =⇒ (i). If G is Cohen-Macaulay, then CNI(G) is unmixed so G is well-dominated.

We close this discussion with a simple theorem about the depth of complete intersections

that will become helpful for computing depth in subsequent sections.

38



Lemma 5.4.10. Let G be an HHZ graph with n vertices and simplicial cliques S1, . . . , Sk. Then we

have depth(R/CNI(G)) = n− k.

Proof. Note that the generating monomials of G are exactly mS1
, . . . ,mSk

, which forms a regular

sequence. Then by Theorem 3.2.7, we have depth(R/CNI(G)) = n− k.

5.5 Restricted Closed Neighborhood Ideals and Redundancy

We now turn our attention towards the behavior of depth under certain redundancy condi-

tions. To this end, we consider restricted closed neighborhood ideals, which provide a notion of closed

neighborhood ideals restricted to certain vertices in G. We will use restricted closed neighborhood

ideals to better understand the closed neighborhood ideals of induced subgraphs of G.

Definition 5.5.1. Let H be a subset of V (G). Then the restricted closed neighborhood ideal

at H, denoted CNIG(H), is the squarefree monomial ideal in R generated by closed neighborhoods

of vertices in H. In other words, CNIG(H) = ⟨mN [x] : x ∈ H⟩.

Example 5.5.2. Let G be the 4-cycle as labeled below, and let H = {x1, x2}.

x1 x2

x3x4

Then CNIG(H) = ⟨x1x2x4, x1x2x3⟩. Note that this is not the same as the closed neighborhood ideal

of the induced subgraph G[H], which is CNI(G[H]) = ⟨x1x2⟩.

Like closed neighborhood ideals, restricted closed neighborhood ideals have their own notion

of domination and their own irreducible decomposition theorem, similar to Theorem 1.2.7.

Definition 5.5.3. Let G be a graph and H ⊆ V (G). An H-dominating set D is a set of vertices

of G such that for all x ∈ H, there exists y ∈ D such that x ∼ y or x = y. An H-dominating set is

called minimal if it does not properly contain any other H-dominating set.

Definition 5.5.4. Let H ⊆ V (G). Then the H-domination number, denoted γG(H), is the size

of the smallest H-dominating set.
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Example 5.5.5. The minimal H-dominating sets in Example 5.5.2 are the sets {x1}, {x2}, {x3, x4}.

Hence, γG(H) = 1.

The notion of a minimal H-dominating set provides the following decomposition theorem

for restricted closed neighborhood ideals.

Theorem 5.5.6. Suppose G is a graph and H ⊆ V (G). Let D be the set of minimal H-dominating

sets in G. Then CNIG(H) = ∩D∈D⟨D⟩. In other words, the minimal primes of CNIG(H) are

precisely the primes generated by minimal H-dominating sets of G.

Proof. Let D be a set of vertices of G. If D is a minimal H-dominating set, then every minimal

monomial generator of CNIG(H) contains some vertex in D, so CNIG(H) ⊆ ⟨D⟩.

Conversely, suppose CNIG(H) ⊆ ⟨D⟩. For every minimal monomial generator m = mN [x] ∈

CNIG(H), there is a vertex v ∈ D such that v|m, in other words, v ∈ supp(m) = N [x]. But then

every closed neighborhood of vertices of H must contain some v ∈ D, so D is an H-dominating set.

Next, let P1, . . . , Pr be the prime ideals in the irredundant irreducible decomposition of

CNIG(H). It follows that for each Pi, the set supp(Pi) is H-dominating. Moreover, supp(Pi)

is minimal, or else Pi is redundant. It follows that D = {supp(P1), . . . , supp(Pr)}, so we have

CNIG(H) = ∩1≤i≤rPi = ∩D∈D⟨D⟩.

Next, we apply restricted closed neighborhood ideals to realize closed neighborhood ideals

of induced subgraphs as colon ideals.

Corollary 5.5.7. Let G be a graph and H ⊆ V (G). Then CNIG(H) : mHc = CNI(G[H]).

Proof. Let D be the set of minimal H-dominating sets D of G such that D ∩ Hc = ∅. Then

CNIG(H) : mHc = ∩D∈D⟨D⟩ by Theorem 5.5.6 and Theorem 2.3.8. But D consists precisely of the

minimal dominating sets of H, so ∩D∈D⟨D⟩ = CNI(G[H]).

Corollary 5.5.7 allows us to “remove” certain vertices by a natural algebraic operation on

the restricted neighborhood ideal of a graph. In certain cases, we can lift this result to regular closed

neighborhood ideals, via the following definitions and propositions.

Definition 5.5.8. A set of vertices S is said to be redundant if for all x ∈ S, there exists some

y ̸∈ S such that N [y] ⊆ N [x], or equivalently, mN [y] | mN [x].
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Example 5.5.9. Let R = k[x1, x2, x3, x4, x5] and consider the house graph with vertices labeled

as follows.

x1

x3

x2

x4

x5

Then the set {x3, x4} is redundant.

Observation 5.5.10. If S is a redundant set of vertices in G, then CNIG(G− S) = CNI(G).

The following proposition provides a relationship between redundant sets of vertices and

colon ideals.

Proposition 5.5.11. Let S be a redundant set of vertices in G. Then CNI(G) : mS = CNI(G−S).

Proof. Let H = Sc. By Observation 5.5.10 we have that CNIG(G[H]) = CNIG(G − S) = CNI(G).

Then we have that

CNI(G) : mS = CNIG(H) : mHc = CNI(G[H]) = CNI(G− S)

by Corollary 5.5.7.

Observation 5.5.12. Let S be a redundant set of vertices. Then

depth(R/(CNI(G− S)) ≥ depth(R/CNI(G)).

Proof. This a direct application of Theorem 3.4.3 to CNI(G− S) = CNI(G) : mS .

To conclude our discussion of redundant sets of vertices, we first define two parameters of

an ideal that allow us to perform inductive arguments. The first one is nonstandard.

Definition 5.5.13. The total degree of a monomial ideal I, denoted τ(I), is the sum of the degrees

of its minimal monomial generators.
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Example 5.5.14. Let R = k[x1, x2, x3, x4] The ideal ⟨x1x2, x2x3x4⟩ has total degree 2 + 3 = 5.

Definition 5.5.15. The minimal number of generators of a monomial I, denoted µ(I), is the

size of the smallest monomial generating set of I.

Example 5.5.16. In Example 5.5.9, we have µ(CNI(G)) = 3. This is because the smallest monomial

generating set is {x1x2x3, x1x2x4, x3x4x5}.

Theorem 5.5.17. Let I be a squarefree monomial ideal in the ring R = k[x1, . . . , kn]. Then

depth(R/I) ≥ n− µ(I).

Proof. We show this by induction on the total degree of I. Suppose the theorem holds for all J such

that τ(J) < τ(I). If I is a prime ideal, i.e. all of its minimal monomial generators have degree 1,

then depth
(
R/CNI(G)

)
= |G| − µ(CNI(G)) by Theorem 3.2.7 and we are done. Note that this also

covers the base case τ(I) = 1. Otherwise, choose some variable xi such that xi ̸∈ I, but xi divides

some minimal monomial generator of I. Let J1 = I : xi and let J2 = I+xi. Now, by Corollary 2.3.5,

it is easy to see that that τ(J1), τ(J2) < τ(I), so J1, J2 satisfy the induction hypothesis. Moreover,

by choice of xi, by Corollary 2.3.5 we have that µ(J1), µ(J2) ≤ µ(I). By Theorem 3.4.2, either

depth(R/I) = depth(R/J1) ≥ n − µ(J1) ≥ n − µ(I) or depth(R/I) = depth(R/J2) ≥ n − µ(J2) ≥

n− µ(I), as desired.

Corollary 5.5.18. Let S be a redundant set of vertices in G. Then depth(R/CNI(G)) ≥ |S|.

Proof. Note that |S| + µ(G) ≤ |G| . Then Theorem 5.5.17 implies that |S| ≤ |G| − µ(G) ≤

depth(R/CNI(G)).

In certain cases, deletion of a redundant set of vertices allows for a quick computation of

the depth of a closed neighborhood ideal.

Example 5.5.19. Let R = k[x1, x2, x3, x4]. Consider the following graph G.

x1

x2

x3 x4

Then γ(G) = 1, because {x3} is a minimal dominating set, so dimR/CNI(G) = 3. Since G is

not well-dominated, it is not Cohen-Macaulay, so depth(R/CNI(G)) < 3. On the other hand,
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the set {x1, x2} is redundant, so Corollary 5.5.18 implies that 2 ≤ depth(R/CNI(G)) < 3, so

depth(R/CNI(G)) = 2.

We may also apply Corollary 5.5.18 towards the following theorem about the depth of trees.

Proposition 5.5.20. Assume G is a tree with n ≥ 3. Let L be its set of leaves. Then γG(L) ≤

depth(R/CNI(G)) ≤ n− |L|.

Proof. Let S be a smallest L-dominating set. We may assume that S itself contains no leaves:

if x ∈ S is a leaf, then let y be its neighbor. Since n ≥ 3, y is not a leaf. Certainly, the set

S′ = (S ∪ {y}) \ {x} is still an L-dominating set, since the only leaf dominated by x is x itself, and

x is dominated by y ∈ S′. Moreover, |S′| ≤ |S|, so S′ must also be a smallest L-dominating set.

With S as above containing no leaves, S is a redundant set. This is because each x ∈

S has a neighbor y that is a leaf, and N [y] ⊆ N [x]. Hence we have by Corollary 5.5.18 that

depth(R/CNI(G)) ≥ |S| = γG(L). On the other hand, depth(R/CNI(G)) ≤ depth(R/(CNI(G−S))

by Observation 5.5.12. But depth(R/(CNI(G−S)) ≤ n−|L| since G−S has |L| isolated vertices.

In the following theorem, we specialize these results to the discussion of deleting simplicial

cliques and non-simplicial vertices of simplicial cliques.

Theorem 5.5.21. Let G be a graph and let K be a simplicial clique in G. Then let S be a set of

non-simplicial vertices in K. Then

1. depth(R/(CNI(G− S)) ≥ depth(R/CNI(G)), and

2. depth(R/(CNI(G−K)) > depth(R/CNI(G)).

Proof. The set S is redundant since if v ∈ K is a simplicial vertex and s ∈ S, then N [v] ⊆ N [s].

Hence CNI(G − S) = (CNI(G) : mS) by Proposition 5.5.11. Next, Theorem 3.4.2 implies that

depth(R/CNI(G : mS)) ≥ depth(R/CNI(G)), so part 1 follows.

For 2, let V be the set of simplicial vertices in K and set M = R/CNI(G−K). Note that

that mV has disjoint support from all the monomial generators of CNI(G −K). Hence, mV is an

M -regular element, and we have the following.

M/mV M ∼= R/(CNI(G−K) + ⟨mV ⟩) ∼= R/(CNI(G− S))

43



Thus, Theorem 3.2.7 explains the equality in the following.

depth(R/(CNI(G−K)) = depth(R/(CNI(G− S)) + 1 > depth(R/CNI(G))

The inequality is by Part 1.

We put these theorems to use by computing the depth of the following family of graphs.

Definition 5.5.22. The windmill graph Wd(k, n) is the graph obtained by attaching n many

k-cliques at a single shared universal vertex, where n, k ≥ 2.

Example 5.5.23. Here is Wd(4, 4).

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9 x10

x11

x12

Before asserting our theorem about windmill graphs, let us first note that Wd(k, n) has exactly

n(k − 1) + 1 vertices.

Theorem 5.5.24. Let n, k ≥ 2. Let r = n(k − 1) and let R = k[x0, . . . , xr]. Let G = Wd(k, n) on

vertices x0, . . . , xr. Then depth(R/CNI(G)) = n(k − 2) + 1

Proof. Without loss of generality, let x0 be the universal vertex of G. Note that x0 is a non-simplicial

vertex in a simplicial clique. Then by Theorem 5.5.21

depth(R/CNI(G)) ≤ depth(R/(CNI(G− x0)).
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But G− x0 is a disjoint union of n cliques, hence a complete intersection with n generators, which

has depth n(k−1)+1−n = n(k−2)+1, so depth(R/CNI(G)) ≤ n(k−2)+1. On the other hand, by

selecting x0 and choosing k−2 vertices from each clique in G other than x0, we construct a redundant

set containing n(k−2)+1 vertices, hence, by Corollary 5.5.18, depth(R/CNI(G)) ≥ n(k−2)+1.

5.6 Depths of Joins of Graphs

Recall that the join of two graphs G and H is a graph G+H whose underlying vertex set is

V (G)∪V (H) (we assume that V (G) and V (H) are disjoint), and whose edges are exactly the edges

in G, the edges in H, and all edges between x ∈ G and y ∈ H. Throughout this section, we will

always take R to be the polynomial ring in n = |G+H| = |G|+ |H| variables, and we will consider

CNI(G) and CNI(H) to both be squarefree monomial ideals in R, even if G and H do not have as

many vertices as R has variables, unless otherwise specified.

Lemma 5.6.1. Given graphs G,H, we have

depth(R/(CNI(G+H)) ∈ {n− 2, depth(R/CNI(G)), depth(R/(CNI(H))}.

Moreover, if depth(R/CNI(G)), depth(R/(CNI(H)) ≤ n− 2, then

depth(R/(CNI(G+H)) = min{depth(R/CNI(G)), depth(R/(CNI(H)))}.

Proof. This follows from repeated application of Theorem 3.4.2. Note that

(CNI(G+H) : mG) = (CNIG+H(G) : mG) + (CNIG+H(H) : mG) = ⟨mH⟩+CNI(H) = CNI(H).

Now, let

J = CNI(G+H) + ⟨mG⟩ = mH · CNI(G) + ⟨mG⟩,

so that

depth(R/(CNI(G+H)) ∈ {depth(R/(CNI(H)),depth(R/J)} (5.6.1.1)
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by Theorem 3.4.2. Then J + ⟨mH⟩ = ⟨mG,mH⟩ and (J : mH) = CNI(G). Hence,

depth(R/J) ∈ {n− 2,depth(R/CNI(G))} (5.6.1.2)

again by Theorem 3.4.2. By combining (5.6.1.1) and (5.6.1.2), we have that

depth(R/(CNI(G+H)) ∈ {n− 2,depth(R/CNI(G)),depth(R/(CNI(H))}.

For the second part, suppose that depth(R/CNI(G)),depth(R/(CNI(H)) ≤ n− 2, and set

J2 = J1 + ⟨mH⟩. Recall from the second part of Theorem 3.4.2 that if

depth(R/(J : mH)) ≤ depth(R/(J + ⟨mH⟩))

then depth(R/J) = depth(R/(J : mH)) = depth(R/CNI(G)). On the other hand, we have that

depth(R/(J : mH)) = depth(R/CNI(G)) ≤ n− 2 = depth(R/⟨mG,mH⟩) = depth(R/(J + ⟨mH⟩))

so it follows that depth(R/J) = depth(R/CNI(G)). Therefore, (5.6.1.1) implies that

depth(R/(CNI(G+H)) ∈ {depth(R/(CNI(H)),depth(R/(CNI(G))}.

Again, by the second part of Theorem 3.4.2, if depth(R/(CNI(H)) ≤ depth(R/(CNI(G)), then

we have that depth(R/(CNI(G + H)) = depth(R/(CNI(H)). The exact same argument while

swapping the roles of G and H reveals that if depth(R/CNI(G)) ≤ depth(R/(CNI(H)), then

depth(R/(CNI(G + H)) = depth(R/CNI(G)). Hence, depth(R/(CNI(G + H)) is the minimum

of the other depths.

We now use Lemma 5.6.1 to compute the depth of the closed neighborhood ideals of complete

bipartite graphs.

Theorem 5.6.2. Let G = Ks,t and n = s+ t where s, t ≥ 1. Then depth(R/CNI(G)) = min{s, t}.

Proof. First, suppose s or t is 1, then G is just a star. But a closed neighborhood ideal of a star with n

vertices is an ideal of the form I = ⟨x1x2, . . . , x1xn⟩. Theorem 3.4.2 implies that depth(R/I) is either
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depth(R/(I : x1)) or depth(R/(I, x1)). But (I : x1) = ⟨x2, . . . , xn⟩ and, in addition, I+ ⟨x1⟩ = ⟨x1⟩,

which have depth 1 and n−1 respectively. Since in this case depth(R/(I : x1)) ≤ depth(R/(I+⟨x1⟩)),

by the second part of Theorem 3.4.2, we have depth(R/CNI(G)) = depth(R/(I : x1)) = 1.

If s, t ≥ 2 then note thatG can be seen asNs+Nt. Moreover, depth(R/CNI(Ns)) = t ≤ n−2

and depth(R/CNI(Nt)) = s ≤ n− 2, so by Lemma 5.6.1, depth(R/CNI(G)) = min{s, t}.

Lemma 5.6.1 also allows us to immediately generate a new family of Cohen-Macaulay graphs.

First, we establish the a new definition.

Definition 5.6.3. The codepth of a graph G in the polynomial R, denoted codepthR(G), is

dim(R)− depth(R/CNI(G)).

Codepth does not depend on the number of variables in the ring R, as implied by the

following proposition.

Proposition 5.6.4. Let m = |G|, n > m, and set k = n − m, R = k[x1, . . . , xn], and Q =

k[x1, . . . , xm]. Then depth(R/CNI(G)) − k = depth(Q/CNI(G)). In particular, we have that

codepthR(G) = codepthQ(G).

Proof. Let I = ⟨xm+1, . . . , xn⟩ and note that Q ∼= R/I. It follows that (R/CNI(G))/I ∼= Q/CNI(G).

But it is straightforward that xm+1, . . . , xn is a regular sequence of length k in R/CNI(G), so

Theorem 3.2.7 implies that depth(R/CNI(G)) − k = depth(Q/CNI(G)), as desired. This implies

straightforwardly that codepthR(G) = codepthQ(G).

Hence, from here on out we will write codepth(G) rather than codepthR(G). We now state

the following easy corollary of Lemma 5.6.1.

Corollary 5.6.5. Let G,H be graphs such with codepth 2. Then codepth(G+H) = 2.

Proof. This follows quickly from Lemma 5.6.1.

One might wonder what happens when G has codepth 1 rather than codepth 2. Such graphs

have the following property.

Observation 5.6.6. Suppose that codepth(G) = 1. Then G has a universal vertex.
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Proof. Since G has codepth 1, we have that depth(R/CNI(G)) = n− 1. Theorem 3.2.8 implies that

n− 1 ≤ dim(R/CNI(G)). Hence, γ(G) = 1, meaning there exists a vertex x ∈ V (G) such that {x}

is a dominating set of G. Then {x} is a universal vertex.

Universal vertices also have a predictable behavior under graph joins.

Observation 5.6.7. G+H has a universal vertex if and only if G or H has a universal vertex.

Proof. For the first direction, suppose without loss of generality that G has a universal vertex x.

Then every vertex in V (G) is adjacent to x in G+H. Moreover, every vertex in V (H) is adjacent

to x in G+H by the definition of the join of two graphs.

Conversely, suppose G + H has a universal vertex. Then there is a vertex x ∈ V (G + H)

such that every vertex in G+H is adjacent to x. Since V (G+H) = V (G)∪ V (H), we may assume

without loss of generality that x ∈ V (G). Then it is straightforward to see that x is a universal

vertex in G as well.

On the other hand, if neither G nor H have a universal vertex, then we have the folowing.

Observation 5.6.8. Suppose neither G nor H has a universal vertex. Then γ(G+H) = 2.

Proof. By Observation 5.6.7, γ(G +H) > 1. On the other hand, if x ∈ V (G) and y ∈ V (H), then

{x, y} is a minimal dominating set of G+H.

Theorem 5.6.9. Suppose G,H are graphs with codepth 2, and furthermore that neither G nor H

has a universal vertex. Then G+H is Cohen-Macaulay.

Proof. If neither G nor H has a universal vertex, then dim(R/CNI(G + H)) = n − 2 by Obser-

vation 5.6.8. Theorem 5.6.5 implies that depth(R/CNI(G + H)) = n − 2, so G + H is Cohen-

Macaulay.

Using this theorem, we can generate a large family of Cohen-Macaulay graphs. To make

this simpler, we assert the following fact.

From Proposition 5.6.4 and Observation 5.6.7, it is straightforward to see that if G and H

satisfy the hypotheses of Theorem 5.6.9, then so does G+H. Hence we can build larger and larger

Cohen-Macaulay graphs by joining together graphs of depth n− 2 in an inductive fashion. To this

end, we close with a few examples of such graphs.
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Example 5.6.10. Consider the house graph G from Example 5.5.9.

x1

x3

x2

x4

x5

Note that CNI(G) = ⟨x1x2x3, x1x2x4, x3x4x5⟩. Let J1 = (CNI(G) : x1x2) = ⟨x3, x4⟩ and let

J2 = CNI(G) + ⟨x1, x2⟩ = ⟨x1x2, x3x4x5⟩. Both J1 and J2 are complete intersection ideals with

2 generators, so R/J1 and R/J2 both have depth 3. Theorem 3.4.2 then implies that R/CNI(G)

also has depth 3, so G has codepth 2. Also, note that G does not have a universal vertex. Therefore

G satisfies the hypotheses of Theorem 5.6.9.

Proposition 5.6.11. Let G be an HHZ graph with exactly two maximal simplicial cliques S1, S2.

Then G satisfies the hypotheses of Theorem 5.6.9.

Proof. Since CNI(G) = ⟨mS1
,mS2

⟩, Theorem 3.2.7 implies that depth(R/CNI(G)) = n− 2. More-

over, G has no universal vertex, since if v ∈ V (G) were universal, then setting s1, s2 to be simplicial

vertices in S1 and S2 respectively, we must have v ∼ s1 and v ∼ s2, meaning v ∈ S1 and v ∈ S2. But

G is an HHZ graph, so S1 and S2 are disjoint. Therefore, G satisfies the hypotheses of Theorem 5.6.9,

as desired.

By recursively joining graphs such as those in Example 5.6.10 and Proposition 5.6.11, we

obtain a large family of Cohen-Macaulay graphs.

Example 5.6.12. Consider the house graph G from Example 5.5.9, and define kG to be graph

obtained by joining G to itself k-times. For example, 3G = (G+G)+G. Note that Proposition 5.6.7

implies that kG does not have a universal vertex. Then kG is Cohen-Macaulay by Theorem 5.6.9

and induction.

More generally, we have the following family of Cohen-Macaulay graphs.

Example 5.6.13. Let F be a finite collection of graphs with codepth 2, none of which has a universal

vertex. Then any graph obtained by joining any number of the graphs in F in any order is Cohen-

Macaulay.
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Chapter 6

Future Questions

6.1 Perfect Graphs

Our characterization of chordal and bipartite graphs in Theorems 5.4.9 and 5.3.6 might leave

one wondering if these theorems can be further generalized. In particular, chordal and bipartite

graphs are both special cases of a large family of graphs called perfect graphs. Let us briefly define

the parameters that characterize a perfect graph.

Definition 6.1.1. An n-coloring of a graph G by the set X = {1, 2, . . . , n} is a map f : V (G) 7→ X.

A coloring f is called proper if x ∼ y =⇒ f(x) ̸= f(y), i.e., adjacent vertices are assigned

different colors. The chromatic number of G, denoted χ(G), is smallest number k such that there

is a proper k-coloring of G.

Example 6.1.2. A complete graph Kn has chromatic number n.

Example 6.1.3. The house graph below has chromatic number 3. For instance, let f(x1) = f(x4) =

1, f(x2) = f(x3) = 2, and f(x4) = 3.

x1

x3

x2

x4

x5
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Definition 6.1.4. The maximum clique number of G, denoted ω(G), is the size of the largest

clique in G.

Example 6.1.5. Let G be the house graph in Example 6.1.3. Then ω(G) = 3.

We are now ready to define perfect graphs.

Definition 6.1.6. G is called a perfect graph if χ(G) = ω(G), and, moreover, χ(H) = ω(H) for

every induced subgraph H of G.

Both bipartite graphs [3, Page 135] and chordal graphs [3, Proposition 5.5.2] are standard

examples of perfect graphs. It is therefore tempting to generalize Theorems 5.3.6 and 5.4.9 by

conjecturing that all well-dominated perfect graphs are Cohen-Macaulay. However, this is not the

case, as seen in the following smallest counterexample over Q.

Example 6.1.7. Let G be the complement of the cycle C8 and let R = Q[x1, . . . , x8]. Then a

calculation with Macaulay2 [5] reveals that G is well-dominated and perfect, but dim(R/CNI(G)) = 6

and depth(R/CNI(G)) = 5.

This leads us to the following question.

Question 6.1.8. Which perfect graphs are Cohen-Macaulay?

6.2 Inductive Depth Computations

Much of Section 5.5 centered around inductive arguments using Theorem 3.4.2, which allows

us to bound, and in some cases compute, the depths of graphs. The crux of each such computation

was to make a “smart” choice of monomial m so that (CNI(G) : m) and CNI(G) + ⟨m⟩ have known

depth. For instance, in Example 5.6.10, we computed the depth of the house graph in one step by

choosing the monomial m = x1x2; the resulting ideals (CNI(G) : m) and CNI(G) + ⟨m⟩ were just

complete intersection ideals. On the other hand, our proof of Theorem 5.6.1 requires a two-step

argument by choosing the monomials mH and then mG, and performing the same argument in the

opposite order. This leads us to the following two questions.

Question 6.2.1. Under what conditions on G is there a monomial m such that (CNI(G) : m) and

CNI(G) + ⟨m⟩ are complete intersections?
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Question 6.2.2. Let k < n. Can Theorem 5.6.1 be generalized to graphs with depth n − k by an

inductive argument?
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