
Clemson University Clemson University

TigerPrints TigerPrints

All Theses Theses

5-2023

Quantum Artificial Intelligence Supported Autonomous Truck Quantum Artificial Intelligence Supported Autonomous Truck

Platooning Platooning

Pronab Kumar Biswas
pronabb@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

 Part of the Transportation Engineering Commons

Recommended Citation Recommended Citation
Biswas, Pronab Kumar, "Quantum Artificial Intelligence Supported Autonomous Truck Platooning" (2023).
All Theses. 3987.
https://tigerprints.clemson.edu/all_theses/3987

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for
inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact
kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_theses
https://tigerprints.clemson.edu/theses
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3987&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/3987?utm_source=tigerprints.clemson.edu%2Fall_theses%2F3987&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

QUANTUM ARTIFICIAL INTELLIGENCE SUPPORTED

AUTONOMOUS TRUCK PLATOONING

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

Civil Engineering

by

Pronab Kumar Biswas

May 2023

Accepted by:

Dr. Mashrur Chowdhury, Committee Chair

Dr. Sakib Mahmud Khan

Dr. Yao Wang

ii

ABSTRACT

 Truck platooning can potentially increase the operational efficiency of freight movement

on U.S. corridors, improving commercial productivity and economic vibrancy. Predicting each

leader vehicle trajectory in the autonomous truck platoon using Artificial Intelligence (AI) can

enhance platoon efficiency and safety. Reliance on classical AI may not be efficient for this

purpose as it will increase the computational burden for each truck in the platoon. However,

Quantum Artificial Intelligence (AI) can be used in this scenario to enhance learning efficiency,

learning capacity, and run-time improvements. This study developed and evaluated a Long Short-

Term Memory Networks (LSTM) model and a hybrid quantum-classical LSTM (QLSTM) for

predicting the trajectory of each leader vehicle of an autonomous truck platoon. Both the LSTM

and QLSTM provided comparable results. However, Quantum-AI is more efficient in real-time

management for an automated truck platoon as it requires less computational burden. The QLSTM

training required less data compared to LSTM. Moreover, QLSTM also used fewer parameters

compared to classical LSTM. This study also evaluated an autonomous truck platoon's operational

efficacy and string stability with the prediction of trajectory from both classical LSTM and

QLSTM using the Intelligent Driver Model (IDM). The platoon operating with LSTM and

QLSTM trajectory prediction showed comparable operational efficiency. Moreover, the platoon

operating with QLSTM trajectory prediction provided better string stability compared to LSTM.

iii

DEDICATION

To my beloved parents, my wife, and my daughter for whom my whole life pertains.

iv

ACKNOWLEDGEMENTS

I would like to express my gratitude to everyone who played a part in helping me successfully

graduate from the Glenn Department of Civil Engineering at Clemson University. Firstly, I want

to thank my advisor, Dr. Mashrur Chowdhury, for his guidance and support during my graduate

studies. I feel fortunate to have known him and to have been a part of his research group. Secondly,

I am grateful to Dr. Sakib Mahmud Khan and Dr. Yao Wang for their insightful comments and

suggestions, which helped me to refine my thesis. Additionally, I want to thank the members of

the research group for their valuable feedback and scholarly discussions. I would like to give

special thanks to Sabbir Salek for his assistance with the research. I am also thankful to my friends

at Clemson, who made Clemson my second home, thousands of miles away from my family. A

particular thank you goes to Kristin Baker, who helped me with administrative tasks since my first

day as a graduate student in the Glenn Department of Civil Engineering at Clemson University.

Above all, I would like to express my deepest gratitude to Methila Sarker Pooja, my better half,

who is the reason for my achievements so far in life and makes me who I am.

v

TABLE OF CONTENTS

 Page

TITLE PAGE……………………………………………………………………………...…….i

ABSTRACT…………………………………………………………………………………….ii

DEDICATION…………………………………………………………………………………iii

ACKNOWLEDGEMENTS……………………………………………………………………iv

LIST OF TABLES…………………………………………………………………………….vii

LIST OF FIGURES…………………………………………………………………………..viii

CHAPTER

 I. INTRODUCTION………………………………………………………………………..1

 1.1 Background and Motivation………………………………………………………...1

 1.2 Hypothesis and Contribution………………………………………………………..2

 1.3 Objectives…………………………………………………………………………...3

 II. LITERATURE REVIEW………………………………………………………………..4

 III. METHOD……………………………………………………………………………….9

 3.1 Simulation Network Development and Data Generation……………………………9

 3.2 Vehicle Trajectory Prediction using LSTM and Hybrid Classical

 Quantum Computing……………………………………………………………...12

 3.3 Trajectory Prediction Model Evaluation…………………………………………...14

 3.4 Platoon Stability Evaluation using Intelligent Driver Model………………………14

 IV. ANALYSIS……………………………………………………………………………17

 V. CONCLUSIONS……………………………………………………………………….29

 5.1 Summary of Findings………………………………………………………………29

 5.2 Limitations and Future Research Direction………………………………………..30

 5.2.1 Limitations…………………………………………………………………...30

 5.2.2 Future Research Direction…………………………………………………...31

APPENDICES…………………………………………………………………………………32

vi

Table of Contents (Continued) Page

 A: MATLAB Code for Trajectory Generation in IDM…………………………………….33

 B: Python Code for Trajectory Prediction and Evaluation…………………………………51

REFERENCES………………………………………………………………………………...72

vii

LIST OF TABLES

Table Page

 3.1 Speed Profile of the Leader Truck……………………………………………………10

 3.2: Vehicle Trajectory Dataset…………………………………………………………..12

viii

LIST OF FIGURES

Figure Page

 3.1 Research Method……………………………………………………………………….9

 3.2 Speed Profile of the Leader Truck…………………………………………………….10

 3.3 VQC Architecture for QLSTM (adapted from Chen et al., 2020)…………………….13

 4.1 Comparison of training loss…………………………………………………………...17

 4.2 Comparison of testing loss…………………………………………………………….18

 4.3 Comparison of Mean Absolute Error………………………………………………….18

 4.4 Comparison of Root Mean Squared Error…………………………………………….19

 4.5 Comparison of Mean Absolute Percentage Error……………………………………..20

 4.6 Speed profiles of autonomous trucks with original trajectory………………………...21

 4.7 Speed profiles of autonomous trucks using LSTM trajectory prediction……………..21

 4.8 Speed profiles of autonomous trucks using QLSTM trajectory prediction…………...22

 4.9 Inter-truck gap profiles of automated trucks with original trajectory………………....23

 4.10 Inter-truck gap profiles using LSTM trajectory prediction…………………………..23

 4.11 Inter-truck gap profiles using QLSTM trajectory prediction………………………...24

 4.12 Jerk profiles of autonomous trucks with original trajectory………………………....25

 4.13 Jerk profiles of autonomous trucks using LSTM trajectory prediction……………...25

 4.14 Jerk profiles of autonomous trucks using QLSTM trajectory prediction…………....26

 4.15 SSSE profiles of autonomous trucks using LSTM trajectory prediction……………27

 4.16 SSSE profiles of autonomous trucks using QLSTM trajectory prediction………….27

1

CHAPTER ONE

INTRODUCTION

1.1 Background and Motivation

The joining of two or more trucks in convoy utilizing wireless connectivity and autonomous

driving assistance systems is known as truck platooning. When these vehicles are connected for

some distance on a highway, they automatically maintain a safe, close distance between each other.

According to the U.S. Department of Transportation, 72 percent of goods in the U.S. are

transported by trucks; therefore, finding safer and more efficient ways to move them is essential

(Economics and Industry Data, 2022). Truck platooning can potentially increase the operational

efficiency of freight movements on U.S. corridors to improve commercial productivity and

economic vibrancy. Although real-world deployments of truck platooning are still in their infancy,

a previous study has found that 63% of total miles driven by trucks in 2016 could be made platoon-

able, considering the speed threshold for platoon-able truck identification to be 50 mph (Lammert

et al., 2018). In (Lammert et al., 2018), the authors used low-resolution data from 57,000 unique

trucks for two weeks. Other literature shows a 5% to 15% reduction in fuel consumption based on

the platoon configuration (Al-Qadi et al., 2021). Using Adaptive Cruise Control (ACC) or

Cooperative Adaptive Cruise Control (CACC) applications to form platoons, a recent study found

a 7.9% reduction in fuel consumption by 2025 and an increase in the capacity of platoon-able road

segments (Noruzoliaee et al., 2021). Such advances can lead to noticeable savings of $868 million

for the U.S. trucking industry, and a reduction in infrastructure improvement needs up to $4.8

billion (Noruzoliaee et al., 2021). That’s why Academia and the trucking industry have been

carrying out research with the aim of accelerating the broad implementation of truck platooning.

Over the past few decades, there have been various partnerships between governments and private

2

companies that have demonstrated the use of autonomous truck platooning in practical situations.

One notable example of this research is the UC Berkeley PATH program's partnership with the

Volvo Group. The program demonstrated the advantages of an automated truck platoon in a real-

world scenario. The study found that truck platooning could reduce fuel consumption by up to

10% for the lead vehicle and up to 15% for the following vehicles. The study also showed that

platooning could improve road safety by reducing the risk of accidents caused by driver error

(Tsugawa et al., 2016).

Artificial Intelligence (AI) can be used to predict each leader vehicle trajectory in autonomous

truck platooning to improve platoon safety. Reliance on classical AI may not be efficient for this

purpose as it will increase the computational burden for each truck in the platoon (Shladover et al.,

2018). Quantum Artificial Intelligence (AI), however, can be used in this scenario to enhance

learning efficiency, learning capacity, and run-time improvements (Islam et al., 2022; Dunjko &

Briegel, 2018).

1.2 Hypothesis and Contribution

In this study, an algorithm was developed to predict the trajectory of the lead vehicle of an

autonomous truck platoon so that the follower truck can adjust its speed and direction during a

sudden change of trajectory using both Long Short Term Memory Network (LSTM) and Quantum

Long Short-Term Memory Network (QLSTM). We hypothesize that the developed hybrid

classical-quantum model with the mix of classical and Quantum-AI models will be more robust

than the classical counterpart and less vulnerable to both (1) noise and variations in large-scale

heterogeneous data and (2) inherent errors in the quantum-only approach. Though the quantum

computer is in its infancy, it is expected that Quantum-AI will be more efficient in real-time

autonomous truck platoon management and require less computational cost in the future. We also

3

hypothesize that the accuracy of Quantum-AI algorithms to predict vehicle trajectory will be

comparable to classical models. In addition, this study evaluated the operational efficacy and string

stability of an autonomous truck platoon with the trajectory prediction of each truck using both

classical LSTM and QLSTM. We hypothesize that the platoon operating with QLSTM trajectory

prediction will have better operational efficacy and string stability.

1.3 Objectives

The objectives of this study are as follows:

• Develop a trajectory prediction model of the leader vehicle of an autonomous truck platoon

by using LSTM and QLSTM, and

• Evaluate the operational efficacy and string stability of the autonomous truck platoon with

the trajectory prediction of each truck using both classical LSTM and QLSTM.

4

CHAPTER TWO

LITERATURE REVIEW

Truck platooning is the idea that two or more trucks may be linked together through

automation technology and driving support systems to increase safety and efficiency. Through

wireless communication, the trucks in a platoon interact with one another, enabling them to drive

in close proximity to each other. The following trucks are programmed to automatically perform

maneuvers such as braking, accelerating, and decelerating, in response to the actions of the lead

truck. This arrangement enhances the aerodynamics of the trucks, leading to decreased fuel

consumption (Patten et al., 2012). Researchers found, through testbed experiments six percent fuel

savings for leader vehicles and ten percent for follower vehicles in a platoon (Alam et al., 2015;

Lammert et al., 2014). Moreover, less fuel consumption led to cost savings and reduced emissions

(Scora and Barth, 2006). Furthermore, a truck platoon can reduce congestion as the trucks will

take less space in the platoon than driving separately (Schladoverr et al., 2015; Van Arem et al.,

2006). Also, platooning can enhance traffic safety because the vehicle in platoon results in less

human error and lower reaction time, thus reducing rear-end collisions. Finally, truck platooning

can decrease travel time and increase roadway capacity (Lee et al., 2021).

With the advancement of automated vehicle technology, it is now possible for multiple

automated trucks to travel together at a minimum safety distance or form a platoon through

vehicle-to-everything (V2X) communication technology (Lee et al., 2021). With the rapid

advancement of 5G and V2X communication technology, automated truck platooning is being

studied by both researchers and industry (Tsugawa et al., 2016; Alam et al., 2015). As the current

infrastructure cannot support a fully autonomous truck platoon, semi-automated platooning is

being tested. As per the EU truck platooning roadmap, it is projected that the follower trucks within

5

a platoon will attain SAE Level 4 automation (automated driving without a driver) by 2025

(EAMA, 2019).

Several studies found that connected vehicle platoons can use a trajectory-tracking control

model for better operational efficiency (Li et al., 2017; Chu et al., 2017). In a recent study, it was

found that around 36% of truck platoons could be effectively managed by adjusting their speed,

without the need to modify their routes or schedules (Ma et al., 2021). Truck platoons can make

safe, efficient driving decisions with accurate road user trajectory predictions (Wei et al., 2020).

Besides, with a precise prediction of the trajectory of the leader truck, the follower trucks can

adjust their speed and direction during a sudden change of trajectory. Trajectory prediction can

also minimize travel time, avoid congestion, and develop methods for future utilization of the road

network (Yan & Shen 2019).

Truck platooning is a safety-critical application which requires trajectory prediction

models for a platoon to have a high accuracy to prevent adverse consequences. Artificial

intelligence (AI) has several successful applications in trajectory prediction. For example, the

Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers were used for

lane change prediction, which predicted a lane change action before the actual lane change with

success (Dou et al., 2016). Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)

for prediction systems can process massive volumes of data. Various research fields, including

trajectory prediction, are experiencing unprecedented growth due to the advent of deep learning

techniques and computer capacity. Dai et al. proposed a modified LSTM model for trajectory

prediction (Dai et al., 2019). Du et al. created a predictive model for the trajectory of connected

vehicle platoons using a digital twin-based approach (Du et al., 2021).

6

Introducing a quantum algorithm into the domain of Artificial Intelligence (AI) has improved

the performance of hybrid machine-learning models (Dunjko & Wittek, 2020). In Artificial

Intelligence (AI), quantum computing generates multiple states with measurable performance

essential for transfer learning (Bassman et al., 2021). Similarly, quantum annealing, and quantum

random walk offer optimization from the previously suggested multiple guesses. Usually, it

generates NP-hard solutions (Crosson & Harrow, 2016), and Quantum AI techniques have been

developed to cope with these problems (Sgarbas, 2007). The capacity of Quantum Neural

Networks (QNNs) to extract solutions from intricate probability distributions is what makes them

useful in machine learning models. This is achieved by encoding information into a quantum state

through a quantum feature map, which is a type of variational quantum algorithm (Abbas et al.,

2021). With the extension of AI and machine learning, Quantum deep learning has also gained

renown in solving intractable problems on regular classical computers (Wiebe et al., 2014). Patel

et al. (2019) applied a Quantum Neural Network (Q-NN) for signature verification, and the

accuracy was 95% compared to the classical neural network (CNN), which achieved 89% accuracy

(Patel et al., 2019). Furthermore, Patel & Tiwari (2014) utilized Quantum Binary NN (Q-BNN)

model for breast cancer classification and compared it against Gaussian Processes, NNs,

Multilayer Perceptron (MLP), Support Vector Machine (SVM). Q-BNN achieved above 95%

accuracy, whereas other methods were less than 80% accurate (Patel & Tiwari, 2014). Chen et al.

(2020) applied a Quantum Convolutional Neural network (Q-CNN) for image classification and

reported higher accuracy (94%) than classical CNN (90%) (Chen et al., 2020). Wang et al. (2022)

showed that Quantum Stochastic Networks (Q-SNN) could achieve better performance against

classical networks classifying sentences (Wang et al. 2022). Q-SNN converged faster and with

higher accuracy compared to classical SNN. Quantum computing applications in AI have been

7

beneficial in many fields, such as in operational optimization (Azad et al., 2022; Zhang et al.,

2020), transportation systems cyber-security (Khan et al., 2021), and human traffic intention

estimation and trajectory prediction (Busemeyer & Bruza, 2012; Song et al., 2022). In autonomous

vehicles and quantum computers developments, previous assumptions regarding the interaction

between autonomous vehicles and pedestrians being classical in the sense that behavior is rational

are no longer sacrosanct. It is now assumed to follow the quantum decision theory, making human

behavior irrational, and violating classical cognitive and decision theory (Song et al., 2022).

Academics have concluded that the interplay between interference and entanglement in quantum

mechanics and human cognition shares several common traits (Busemeyer & Bruza, 2012). This

observation has resulted in a prevailing trend.

Car-following models regulate a driver's actions in relation to the vehicle directly in front of

them in the same lane (Brackstone and McDonald, 1999). There are five categories in which car-

following models can be classified: the Gazis-Herman-Rothery (GHR) model, the Collision

Avoidance (CA) model, the Linear Model, the Fuzzy-logic-based model, and the Optimal Velocity

(OV) model, including its variations (Panwai and Dia, 2005; Brackstone and McDonald, 1999).

One of the first and most advanced models for cars that followed is the Gazis-Herman-Rothery

(GHR) model. The model has the drawback of having characteristics that change depending on the

driving environment. Similar to the GHR model, the linear model has been extensively

investigated; however, although having a very straightforward and linear shape, it is less widely

used due to the challenges associated with parameter calibration. Given the characteristics of car-

following behaviors, fuzzy logic seems like a realistic attempt to incorporate into the car-following

theory. However, the usefulness of such efforts is constrained by the challenge of calibrating the

membership function, which is the fundamental idea of fuzzy logic. However, the most popular

8

car-following model for simulation is arguably Gipps’ adaptation of the Collision Avoidance (CA)

model. A very recent car-following model, the Optimal Velocity (OV) concept, was initially put

forth in 1990. The model is distinctive in how it depicts stop-and-go and backed-up traffic. Later,

two OV model variations, named Generalized Force (GF) model and Full Velocity Difference

(FVD) model, were developed to address OV model problems with data agreement and startup

process.

9

CHAPTER THREE

METHOD

The following subsections provide a description of the various steps of the method, as presented

in Figure 3.1.

Figure 3.1 Research Method

3.1 Simulation Network Development and Data Generation

 For a simulation duration of 900 seconds, we utilized MATLAB to simulate a platoon of

five automated trucks employing Cooperative Adaptive Cruise Control (CACC). This platoon

consisted of one leader and four follower trucks, and it was derived from (Salek, 2022). The leader

truck starts at a distance of 163 meters, and the other trucks are placed at distances of 127, 91, 56,

and 20 meters from the starting point, respectively. All five trucks are moving at an initial speed

of 31.44 m/s, or 70.3 mph. Input parameters for the simulation include the number of trucks in the

platoon, the total simulation time, the initial position and speed of the follower trucks, the location

10

and speed profile of the lead truck, and the constant required time headway. A simulation step size

of 0.1 sec and a constant desired time headway of 0.5 sec were used. Figure 3.2 and Table 3.1

show the speed profile of the leader truck from 0 sec to 900 sec.

Figure 3.2: Speed Profile of the Leader Truck

TABLE 3.1 Speed Profile of the Leader Truck

Time Interval Speed Profile of the Leader Truck

0 s to 149 s Uniform speed of 31.44 m/s (70.3 mph)

149 s to 158 s Speed changes from 31.44 m/s (70.3 mph) to 19.69 m/s (44.04 mph)

158 s to 240 s Uniform speed of 19.69 m/s (44.04 mph)

240 s to 359 s Speed changes from 19.69 m/s (44.04 mph) to 31.44 m/s (70.3 mph)

359 s to 562 s Uniform speed of 31.44 m/s (70.3 mph)

562 s to 569 s Speed changes from 31.44 m/s (74.3 mph) to 24.15 m/s (54.02 mph)

569 s to 634 s Uniform speed of 24.15m/sec (54.02 mph)

634 s to 712 s Speed changes from 24.15 m/s (54.02 mph) to 31.44 m/s (70.3 mph)

11

712 s to 900 s Uniform speed of 31.44 m/s (70.3 mph)

The I-26 freeway in South Carolina’s Berkeley, Orangeburg, and Dorchester County was

the site of a calibrated traffic simulation network that Rahman et al. used to determine the speed

profile of the leader truck (Rahman et al., 2015). The PTV VISSIM traffic simulation software

was used to design the I-26 roadway network. It was calibrated using field data to simulate traffic

volumes and trip durations within 10% of the actual data on those variables. On the VISSIM I-26

network, there are two areas with reduced speed limits of 55 and 45-mph. The 75-mph limit applies

to the remaining sections of the simulated I-26 network. The following assumptions are made for

the simulated truck platoon:

• The truck platoon operates in the same lane,

• All the trucks of the platoon have the exact dimensions and vehicle dynamics,

• There are no vertical or horizontal curves in the section,

• After the platoon formation, no trucks attempt to join the platoon or exit the platoon,

• There is no noticeable delay in the following trucks’ real-time receipt of their

immediate neighboring trucks’ location and speed information.

To simulate the platoon consisting of one leader truck and four following trucks, we solved

a group of first-order differential equations in MATLAB. We followed the methodology presented

by Rahman et al. to create a system of first-order differential equations and utilized the "ode45"

MATLAB solver (Rahman et al. 2017). Finally, the trajectory dataset was generated for all five

trucks from timestamp 0 sec to 900 sec. As shown in Table 3.2, the dataset contains the following

12

fields: (i) timestamp, (ii) X_pos (absolute X coordinate of the vehicle), (iii) Distance (distance

covered by the vehicle in m), and (iv) Speed (speed of the vehicle in m/s).

TABLE 3.2: Vehicle Trajectory Dataset

Time X_Pos Distance Speed

0 162.8806 0 31.44032

0.1 166.0247 3.144032 31.44032

0.2 169.1687 3.144032 31.44032

0.3 172.3127 3.144032 31.44032

0.4 175.4568 3.144032 31.44032

At first, we divide the trajectory dataset into two separate datasets. One dataset (from the

time stamp 0 sec to 450 sec) was used for model development, and another dataset (from the time

stamp 451 sec to 900 sec) was used to evaluate the model. Then, the dataset used for model

development was split into the train dataset (70%) and test dataset (30%)

3.2 Vehicle Trajectory Prediction using LSTM and Hybrid Classical Quantum Computing

LSTM (Long Short-Term Memory) is a recurrent Neural Network (RNN) applicable to a

broad range of problems aiming to analyse or classify sequential data. LSTM can be used to predict

the speed of the leader vehicle of a platoon based on the historical data sequences with great

success. LSTM uses a certain number of past observations to predict the future. Sequence Length

is the deciding factor in choosing the number of observations the LSTM considers in advance. If

the sequence length is n, then the LSTM considers the last n observations to predict the

(n+1)𝑡ℎ observation. In this study, a sequence length of 3 was used. We used the train dataset to

13

train the LSTM model, and the test dataset to test the model. A learning rate of 0.0001 that gave

accurate results was decided after some experimentation. The number of epochs used was 20.

 The LSTM’s efficiency and trainability can be improved by replacing some of the layers

in the LSTM with variational quantum layers, a quantum-classical hybrid model of LSTM.

Quantum LSTM (QLSTM) can learn significantly more information after the first training epoch

than its classical counterpart and better learning capability of the local features while having fewer

parameters than classical LSTM (Chen et al., 2020). We used the same datasets for classical LSTM

model development and evaluations for QLSTM model development and evaluation. This study

used Pennylane-enabled variational quantum layers to replace the LSTM layers. The following

variational quantum circuits shown in Figure 3.3 serve as the foundation for the variational

quantum layers:

Figure 3.3: VQC Architecture for QLSTM (adapted from Chen et al., 2020)

 These variational quantum circuits were run on the built-in Pennylane simulator. This study

used four qubits, one variation layer, and a learning rate of 0.05. The parameters were chosen

through experimentation on fewer epochs to see which produces the best outcomes.

14

3.3 Trajectory Prediction Model Evaluation

Three performance metrics were used to evaluate the models: Mean Average Error (MAE),

Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The MAE

calculates the average of the absolute differences between predicted and actual values. The RMSE

calculates the square root of the average squared differences between predicted and actual values.

The MAPE represents the average of absolute percentage errors. The performance matrices can be

measured from the following Equations:

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
 (1)

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
 (2)

 𝑀𝐴𝑃𝐸 = (
∑ |

𝑦𝑖−𝑥𝑖
𝑦𝑖

|𝑛
𝑖=1

𝑛
 × 100) (3)

3.4 Platoon Stability Evaluation using Intelligent Driver Model

Finally, this study evaluated the automated truck platoon’s stability with trajectory

prediction from classical LSTM and QLSTM using Intelligent Driver Model (IDM) by comparing

the following:

• Speed Profiles

• Inter-truck gap profiles

• Jerk profiles

Where 𝑦𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒, 𝑥𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒 1

 𝑎𝑛𝑑 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 2

15

A simplified version of IDM for acceleration (Treiber et al., 2000) of the control vehicle

can be expressed as,

𝑎𝑐 = 𝑎 [1 − (
𝑣𝑐

𝑣𝑑𝑒𝑠
)

𝛿

− (
𝑑∗(𝑣𝑐, ∆𝑣𝑙)

𝑑𝑙
)

2

] (4)

where

𝑎 is the normal acceleration,

∆𝑣𝑙 is the gap between the control vehicle and the leading vehicle,

𝑑∗(𝑣𝑐 , ∆𝑣𝑙) is the desired gap between the control vehicle and its leading vehicle, and

𝛿 is an exponent for the vehicle’s acceleration.

The acceleration of the control vehicle in the IDM model has two parts: 1 − (
𝑣𝑐

𝑣𝑑𝑒𝑠
)

𝛿

 accounts for

the desired acceleration of the control vehicle and (
𝑑∗(𝑣𝑐, ∆𝑣𝑙)

𝑑𝑑𝑒𝑠
)

2

accounts for the braking

deceleration of the control vehicle when its immediate leading vehicle is decelerating. The

desired gap 𝑑∗(𝑣𝑐, ∆𝑣𝑙) is defined as follows,

𝑑∗(𝑣𝑐 , ∆𝑣𝑙) = 𝑑𝑚𝑖𝑛 + max [0, (𝑑𝑑𝑒𝑠 +
𝑣𝑐∆𝑣𝑙

2√𝑎𝑏
)] (5)

where

𝑑𝑚𝑖𝑛 is the minimum gap to be maintained between two vehicles, and

𝑏 is the normal comfortable braking deceleration.

For the N-vehicle simulation scenario, the acceleration of the N-th vehicle can be written as,

16

𝑥𝑛̈ = 𝑎 [1 − (
𝑥𝑛̇

𝑣𝑑𝑒𝑠
)

𝛿

− (
𝑑∗(𝑥𝑛̇, ∆𝑥𝑛̇)

𝑥𝑛−1−𝑥𝑛−𝑙
)

2

] (6)

where

∆𝑥𝑛̇ = 𝑥𝑛−1̇ − 𝑥𝑛̇ (7)

𝑑∗(𝑥𝑛̇, ∆𝑥𝑛̇) = 𝑑𝑚𝑖𝑛 + max [0, (𝑑𝑑𝑒𝑠 +
𝑥𝑛̇∆𝑥𝑛̇

2√𝑎𝑏
)] (8)

The string stability of the platoon was also evaluated by giving the predicted trajectory of

the platoon obtained from the LSTM and QLSTM as input in the Intelligent Driver Model. The

sum of squared speed error (SSSE) was used as an evaluation matrix (Salek et al., 2022). SSSE at

a given timestamp can be calculated from the following equation:

𝑆𝑆𝑆𝐸 (𝑡𝑖) = (𝑣𝐿(𝑡𝑖) − 𝑣1(𝑡𝑖))2 − ∑ (𝑣𝑗−1(𝑡𝑖
𝑁
𝑗=2) − 𝑣𝑗(𝑡𝑖))2 (9)

where 𝑇ℎ,𝑗(𝑡𝑖) is the actual time headway of the 𝑗𝑡ℎ follower truck at 𝑡𝑖with its immediate leading

truck, 𝑣𝐿(𝑡𝑖) is the leader truck’s speed at 𝑡𝑖, and 𝑣𝑗(𝑡𝑖) is the 𝑗𝑡ℎ follower truck’s speed at 𝑡𝑖.

For an autonomous truck platoon to be considered string stable, the non-zero speed

errors of any truck should not be amplified in the preceding or following trucks (Bose and

Ioannou, 2001; Pueboobpaphan and Van Arem, 2010). A lower value of SSSE indicates better

string stability. We compared the SSSE values to determine which model demonstrated

higher string stability for the autonomous truck platoon.

17

CHAPTER FOUR

 ANALYSIS

 The comparison of training loss and testing loss for the LSTM and the QLSTM is shown

in Figure 4.1 and Figure 4.2, respectively. The QLSTM learns significantly more information for

the training loss in the early epochs than the LSTM, and its results converge much faster than its

classical counterpart. Similarly, we can see that the QLSTM learns substantially more information

than the LSTM in the first few epochs for the testing loss and converges to a lower value more

quickly. It proves that the QLSTM has better trainability than the LSTM.

Figure 4.1: Comparison of training loss

18

Figure 4.2: Comparison of testing loss

Figure 4.3 shows a comparison of the Mean Absolute Error for the trajectory prediction

with LSTM and QLSTM for each truck in the autonomous truck platoon. Predicted trajectories

that use QLSTM have 4% to 8% less mean absolute error than the predicted trajectories that use

LSTM.

Figure 4.3: Comparison of Mean Absolute Error

19

Figure 4.4 shows a comparison of the root mean squared error for the trajectory prediction

with LSTM and QLSTM for each truck in the autonomous truck platoon. Predicted trajectories

that use QLSTM have 3% to 6% less root mean squared error Predicted trajectories that use LSTM.

Figure 4.4: Comparison of Root Mean Squared Error

 Figure 4.5 shows a comparison of the Mean Absolute Percentage Error for the trajectory

prediction with LSTM and QLSTM for each truck in the autonomous truck platoon Predicted

trajectories that use QLSTM have almost the same mean absolute percentage error as the

Predicted trajectories that use LSTM.

20

Figure 4.5: Comparison of Mean Absolute Percentage Error

 Figure 4.6 shows the speed profile of every truck in the platoon for the original trajectory

and figures 4.7-4.8 6 present the speed profile of every truck in the platoon for predicted trajectory

by LSTM and QLSTM, respectively. The situations that require critical evaluation involve when

the leader truck enters areas with lower speed limits and applies brake to keep its speed within the

reduced speed limit. In all three scenarios, it was noted that every follower truck could closely

match the leader truck’s speed profile throughout the whole simulation. From the figures we see

that, the speed profiles of autonomous trucks using LSTM and QLSTM prediction for trajectory

is almost same of the speed profiles with original trajectory. From this finding it can be inferred

that the predicted trajectory using both LSTM and QLSTM can be used for truck platooning

operations when original trajectory is not available.

21

Figure 4.6: Speed profiles of autonomous trucks with original trajectory

Figure 4.7: Speed profiles of autonomous trucks using LSTM trajectory prediction

22

Figure 4.8: Speed profiles of autonomous trucks using QLSTM trajectory prediction

Figures 4.9 presents the inter-truck gap profiles between every two trucks in the platoon

for the original trajectory and figures 4.10-4.11 show the inter-truck gap profiles between every

two trucks in the platoon for predicted trajectory by LSTM and QLSTM, respectively. From the

inter-truck gap profiles, it can be deduced that there is no risk of a collision between the trucks in

the platoon because none of the inter-truck gaps exhibit zero or a negative value. Also, the inter-

truck gap profiles demonstrate that each following vehicle can consistently maintain a safe distance

of at least 10 meters from the truck directly in front of it. Overall, the platoon’s followers maintain

uniform spacing for all the three scenarios. From the figures we see that, the inter-truck gap profiles

of autonomous trucks using LSTM and QLSTM prediction for trajectory is almost same of the

inter-truck gap profiles with original trajectory. It’s because of the higher accuracy in prediction

of trajectory of the autonomous trucks.

23

Figure 4.9: Inter-truck gap profiles of automated trucks with original trajectory

Figure 4.10: Inter-truck gap profiles using LSTM trajectory prediction

24

Figure 4.11: Inter-truck gap profiles using QLSTM trajectory prediction

 Figure 4.12 shows jerks for every truck in the platoon for the original trajectory and

figures 4.13-4.14 present jerks for every truck in the platoon for the predicted trajectory by LSTM

and QLSTM, respectively. From the figures we can see that jerk is higher for the two short intervals

that follow the two non-linear deceleration stages (during which the follower trucks attempt to

resume uniform speed) in all three scenarios. Except for the two brief intervals that follow the

two non-linear deceleration stages (during which the follower trucks attempt to resume uniform

speed), the jerk is almost zero for all three scenarios. From the figures it is evident that, the jerk

profiles of autonomous trucks using LSTM and QLSTM prediction for trajectory is almost same

of the jerk profiles with original trajectory which denotes the higher accuracy in prediction of

trajectory using both LSTM and QLSTM.

25

Figure 4.12: Jerk profiles of autonomous trucks with original trajectory

Figure 4.13: Jerk profiles of autonomous trucks using LSTM trajectory prediction

26

Figure 4.14: Jerk profiles of autonomous trucks using QLSTM trajectory prediction

 Figures 4.15 and 4.16 present the SSSE profiles for LSTM and QLSTM trajectory

prediction, respectively. We used the SSSE profiles to evaluate the string stability of the

autonomous truck platoon. Here, the platoon using QLSTM trajectory prediction had lower SSSE

than the platoon using LSTM. The figures show that both scenarios lead to SSSE values near 0,

except for the two brief periods after the two non-linear deceleration phases, where the following

trucks strive to return to a uniform speed. Furthermore, even after these two brief intervals, the

SSSE of the QLSTM remains lower than that of the LSTM. Thus, the QLSTM offers better string

stability than the LSTM in all traffic conditions.

27

Figure 4.15: SSSE profiles of autonomous trucks using LSTM trajectory prediction

Figure 4.16: SSSE profiles of autonomous trucks using QLSTM trajectory prediction

28

Although the results from LSTM and QLSTM are almost the same, the QLSTM used fewer

parameters (181) than classical LSTM (1425). So, it can be inferred that the QLSTM will require

less data for predicting the trajectory of the trucks in an autonomous truck platoon.

29

CHAPTER FIVE

CONCLUSIONS

 I(n this study, we used MATLAB to simulate a platoon of five autonomous trucks (with

one leader truck and four following trucks) for a duration of 900 seconds. A set of first-order

differential equations was solved in MATLAB to mimic the platoon of five trucks. Finally, the

trajectory dataset was generated for all five trucks from timestamp 0 sec to 900 sec. Then, the

study developed and evaluated an LSTM model as well as a QLSTM for predicting the trajectory

of the leader vehicle of an automated truck platoon. This study also evaluated an autonomous truck

platoon's operational efficacy and string stability of the autonomous truck platoon with the

prediction of trajectory from both classical LSTM and QLSTM using the IDM.

5.1 Summary of Findings

 The analysis found that both the LSTM and QLSTM gave comparable results. It can be

inferred that Quantum-AI will be more efficient in real-time management and require less

computational burden for an Automated Truck Platoon. The QLSTM learned significantly more

about the training loss in the early epochs than the LSTM, and its results converge much more

quickly than its classical counterpart. Moreover, QLSTM also used fewer parameters compared to

classical LSTM. Besides, the QLSTM learns substantially more information than the LSTM in the

first few epochs for the testing loss and converges to a lower value more quickly. In addition, this

study also evaluated the operational efficacy and string stability of the autonomous truck platoon

with trajectory prediction from both classical LSTM and QLSTM using the IDM. The platoon

operating with LSTM and QLSTM trajectory prediction showed comparable operational

30

efficiency. Moreover, the platoon operating with QLSTM trajectory prediction provided better

string stability.

 This study showed that, QLSTM can be used very effectively to predict the speed trajectory

of the leader truck in an automated truck platoon, producing results that are on par with those of

its classical counterpart while requiring significantly fewer training parameters and yielding more

data per epoch. It is expected that with the development of quantum computers, hybrid quantum-

classical artificial intelligence would become more efficient in real-time management and require

less computational burden for an autonomous truck platoon.

5.2 Limitations and Future Research Direction

 The following subsections present the study’s limitations for this thesis and future research

direction.

5.2.1 Limitations

In a real quantum computer, in some scenarios, it may be required to reduce the number of

gates in a quantum circuit is required to improve the overall efficiency and speed of the

computation, but it may also come at the cost of some accuracy. In this study, we used pennylane

simulator which acts as an ideal quantum computer free from any errors. Another limitation of this

study is that the automated platoon formation didn’t consider trucks entering and exiting the

platoon. We also did not consider the lateral movement of the trucks in the platoon. Our future

study will focus on predicting the trajectory of the leader vehicle of an automated truck platoon

with both longitudinal and lateral movement as well as trucks entering and exiting the platoon.

Currently, the model doesn’t consider the heterogeneity of vehicles and existing communication

31

delay present in a real-world setting. Future studies will also evaluate the efficacy of the trajectory

prediction algorithm in the real-world environment using real automated trucks.

5.2.2 Future Research Directions

The author recommends the following to advance the study presented in this thesis:

• An application development platform can be developed for implementing the approach

developed in the study to help researchers and developers implement the autonomous

truck platooning strategy.

• Future research can be extended to utilize the evolving power of quantum computers

to improve the prediction efficacy of QLSTM.

• The current research can be extended to use real-world autonomous truck platoon data

to evaluate the comparative efficacy of LSTM and QLSTM in the performance of

autonomous truck platoon.

• A future study should evaluate autonomous truck platoon performance for different

types of autonomous vehicle controllers besides IDM.

• A field evaluation with an actual autonomous truck platoon is recommended using the

approach presented in this thesis for different traffic conditions.

32

.

APPENDICES

33

APPENDIX A

MATLAB CODE FOR TRAJECTORY GENERATION IN IDM

IDM Model

function [dy] = idm(t,y,N,Tfinal,Xfinal,Vfinal, Th_const)

dy = zeros(2*N,1);

%--------parameter

x0_dot =33.2; % unit is m/sec

delta =4;

a=2;

b=2.94;

kk = 1/(2*sqrt(a*b));

lc=15;

Th=Th_const; % Time headway

s0=0; % minimum gap =2.0 meters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x0 = interp1(Tfinal,Xfinal,t);

% v = diff(x0);

v = interp1(Tfinal,Vfinal,t);

Delta_v(1) = y(N+1)-v;

s(1) = x0-y(1) - lc;

s_star(1) = s0 + max(0,y(N+1)*Th + y(N+1)*Delta_v(1)*kk);

34

for i=2:N

 Delta_v(i) = y(N+i)-y(N+i-1);

 s(i) = y(i-1)-y(i) - lc;

 s_star(i) = s0 + max(0,y(N+i)*Th + y(N+i)*Delta_v(i)*kk);

end

%-main system-- %%%%

for i=1:N

 dy(i) = y(i+N);

end

for i=1:N

 dy(i+N) = a*(1 - (y(i+N)/x0_dot).^delta - (s_star(i)/s(i)).^2);

end

end

Codes for Leader Vehicle Trajectory Generation

close all; clear all; clc;

%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%

l = 15; % Length of trucks

s0 = 5; % Minimum safety gap

Th_const = 0.4; % Constant time gap

35

N_follower = 4; % Number of follower trucks

%%%%%%%%%%% Initialize the leader truck's trajectory %%%%%%%%%%%%%

Xfinal = zeros(0,0); % Position

Tfinal = zeros(0,0); % Timestamps

Vfinal = load('Vfinal.txt'); % Speed

F_time = size(Vfinal,1) - 1; % Total time

xb = [0:1:F_time]';

xa = [0:0.1:F_time]';

Vfinal = interp1(xb, Vfinal, xa); % Interpolate speed

%%%%%%%%%%% Determine the leader truck's trajectory %%%%%%%%%%%%%

k = 0 ;

N = N_follower + 1;

init_gap = 31.4403232*Th_const + l + s0;

for i=0:0.1:F_time

 if i == 0

 s1 = init_gap*N;

 X = s1;

 Xprevious = s1;

 else

 s2 = ((Vfinal(k+1,1) + Vfinal(k,1))/2)*0.1;

36

 X = Xprevious + s2;

 Xprevious = X;

 end

 Xfinal=[Xfinal;X];

 Tfinal=[Tfinal;i];

 k = k +1;

end

%%%%%%%%%%% Save trajectory %%%%%%%%%%%%%

writematrix(Tfinal, 'T.txt');

writematrix(Xfinal, 'X_L.txt');

writematrix(Vfinal, 'V_L.txt');

Codes for Follower Vehicle Trajectory Generation

%%

%%%%%%%

close all; clear all; clc;

%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%

l = 15; % Length of trucks

37

s0 = 5; % Minimum safety gap

Th_const = 0.5; % Constant time gap

N_follower = 1; % Number of follower trucks to be geenrated

%%%%%%%%%%% Load the preceeding truck's trajectory %%%%%%%%%%%%%

Xfinal = load('X_L.txt'); % Position

Tfinal = load('T.txt'); % Timestamps

Vfinal = load('V_L.txt'); % Speed

%%%%%%%%%% DERIVED PARAMETERS %%%%%%%%%%

N = N_follower + 1;

F_time = Tfinal(end);

init_gap = 31.4403232*Th_const + l + s0;

%%%%%%%%%%%% Initial Position and Speed %%%%%%%%

initial_values = zeros(2*N,1);

for i = 1:N

 initial_values(i) = Xfinal(1,1) - init_gap*i;

 initial_values(i+N) = Vfinal(1,1);

end

%%%%%%%%%%%%%%%%%%% SOLUTION OF SYSTEM OF EQUATIONS %%%%%

38

tspan = 0:0.001:F_time;

[T,Yidm] = ode45(@(t,y) ...

 idm(t, y, N, Tfinal, Xfinal, Vfinal, Th_const), tspan, initial_values);

%%%%%%%%%%% Determine the follower truck's trajectory %%%%%%%%%%%%%

xa = [0:0.1:F_time]';

X_f = interp1(tspan,Yidm(:,1),xa);

V_f = interp1(tspan,Yidm(:,N+1),xa);

%%%%%%%%%%%% Plot IDM ---Speed %%%%%%%%%%%%%%%

figure(1);

hold on;

builtin('plot',Tfinal,Vfinal,'k-','LineWidth', 1)

plot(Tfinal,V_f,'r-','Linewidth',1)

xlabel('Time (sec)')

ylabel('Speed (m/sec)')

xlim([0 900])

ylim([15 40])

legend([builtin('plot',Tfinal,Vfinal,'k-','LineWidth', 1) ...

 plot(Tfinal,V_f,'r-','Linewidth',1)], ...

39

 'Preceeding truck','Follower truck');

grid on

box on

%%%%%%%%%%%%%Plot IDM ---Position %%%%%%%%%%%%%%%

figure(2);

hold on;

builtin('plot',Tfinal,Xfinal,'k-','LineWidth', 1)

plot(Tfinal,X_f,'r-','Linewidth',1)

xlabel('Time (sec)')

ylabel('Position (m)')

xlim([0 900])

legend([builtin('plot',Tfinal,Xfinal,'k-','LineWidth', 1)...

 plot(Tfinal,X_f,'r-','Linewidth',1)], ...

 'Preceeding truck','Follower truck');

grid on

box on

%%%%%%%%%%% Determine the follower truck's gaps %%%%%%%%%%%%%

gap_idm = Xfinal - X_f - l;

Th_idm = gap_idm(:)./V_f(:);

40

%%%%%%%%%%%%% Plot IDM ---Gap %%%%%%%%%%%%%%%

figure(3);

hold on;

plot(Tfinal,gap_idm,'r-','Linewidth',1)

xlabel('Time (sec)')

ylabel('Inter-truck gaps (m)')

legend([plot(Tfinal,gap_idm,'r-','Linewidth',1)], ...

 'Preceeding truck & follower truck');

grid on;

box on;

%%%%%%%%%%%%% Plot IDM ---Time gap %%%%%%%%%%%%%%%

figure(4);

hold on;

plot(Tfinal,Th_idm,'r-','Linewidth',1)

xlabel('Time (sec)')

ylabel('Time gap (sec)')

legend([plot(Tfinal,Th_idm,'r-','Linewidth',1)], ...

 'Preceeding truck & follower truck');

41

grid on;

box on;

%%%%%%%%%%% Save trajectory %%%%%%%%%%%%%

writematrix(X_f, 'X_f1.txt');

writematrix(V_f, 'V_f1.txt');

Codes for Plot

%%

%%%%%%%

close all; clear all; clc;

%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%

N = 4; %Number of follower trucks

l = 15; %Length of trucks

F_time = 900; % final time

Th_const = 0.5;

%%%%%%%%%%% Load all trucks' trajectories %%%%%%%%%%%%%

T = load('T.txt');

Vfinal = load('V_L.txt');

Xfinal = load('X_L.txt');

Xfinal1 = load('X_f1.txt');

42

Vfinal1 = load('V_f1.txt');

Xfinal2 = load('X_f2.txt');

Vfinal2 = load('V_f2.txt');

Xfinal3 = load('X_f3.txt');

Vfinal3 = load('V_f3.txt');

Xfinal4 = load('X_f4.txt');

Vfinal4 = load('V_f4.txt');

Yidm=[Xfinal1,Xfinal2,Xfinal3,Xfinal4,...

 Vfinal1,Vfinal2,Vfinal3,Vfinal4];

% --

%%%%%%%%%%%%Plot IDM ---Velocity%%%%%%%%%%%%%%%

figure(1);

hold on;

builtin('plot',T,Vfinal,'k-','LineWidth', 1)

plot(T,Yidm(:,N+1),'r-','Linewidth',1)

plot(T,Yidm(:,N+2),'g--','Linewidth',1)

plot(T,Yidm(:,N+3),'m-.','Linewidth',1)

plot(T,Yidm(:,N+4),'b:','Linewidth',1.5)

xlabel('Time (s)')

ylabel('Speed (m/s)')

43

xlim([0 900])

ylim([15 35])

legend([builtin('plot',T,Vfinal,'k-','LineWidth', 1) ...

 plot(T,Yidm(:,N+1),'r-','Linewidth',1) ...

 plot(T,Yidm(:,N+2),'g--','Linewidth',1) ...

 plot(T,Yidm(:,N+3),'m-.','Linewidth',1) ...

 plot(T,Yidm(:,N+4),'b:','Linewidth',1.5)], ...

 'Leader truck','Follower truck 1','Follower truck 2',...

 'Follower truck 3','Follower truck 4');

grid on

box on

%%%%%%%%%%%%%Plot IDM ---Position %%%%%%%%%%%%%%%

figure(2);

hold on

builtin('plot',T,Xfinal,'k-','LineWidth', 1)

plot(T,Yidm(:,1),'r-','Linewidth',1)

plot(T,Yidm(:,2),'g--','Linewidth',1)

plot(T,Yidm(:,3),'m-.','Linewidth',1)

plot(T,Yidm(:,4),'b:','Linewidth',1.5)

xlabel('Time (s)')

44

ylabel('Position (m)')

xlim([0 900])

legend([builtin('plot',T,Xfinal,'k-','LineWidth', 1)...

plot(T,Yidm(:,1),'r-','Linewidth',1)...

plot(T,Yidm(:,2),'g--','Linewidth',1)...

plot(T,Yidm(:,3),'m-.','Linewidth',1)...

plot(T,Yidm(:,4),'b:','Linewidth',1.5)], ...

 'Leader truck','Follower truck 1','Follower truck 2',...

 'Follower truck 3','Follower truck 4');

grid on

box on

%%

%%%%%%%%%%%%

[r,c] = size(Yidm);

gap_idm = zeros(r,N);

Th_idm = zeros(r,N);

for i = 1:N

 if i==1

 gap_idm(:,i) = Xfinal - Yidm(:,i) - l;

 else

45

 gap_idm(:,i) = Yidm(:,i-1) - Yidm(:,i) - l;

 end

end

for i = 1:N

 Th_idm(:,i) = gap_idm(:,i)./Yidm(:,N+i);

end

%%

%%%%%%%%%%%%

% %%%%%%%%%%%%%Plot IDM ---Gap %%%%%%%%%%%%%%%

figure(3);

hold on

plot(T,gap_idm(:,1),'r-','Linewidth',1)

plot(T,gap_idm(:,2),'g--','Linewidth',1)

plot(T,gap_idm(:,3),'m-.','Linewidth',1)

plot(T,gap_idm(:,4),'b:','Linewidth',1.5)

xlabel(['Time (s)'])

ylabel('Space gap with preceding truck (m)')

xlim([0 900])

46

legend([plot(T,gap_idm(:,1),'r-','Linewidth',1)...

plot(T,gap_idm(:,2),'g--','Linewidth',1)...

plot(T,gap_idm(:,3),'m-.','Linewidth',1)...

plot(T,gap_idm(:,4),'b:','Linewidth',1.5)], ...

 'Follower truck 1','Follower truck 2', ...

 'Follower truck 3','Follower truck 4');

grid on

box on

%%

%%%%%%%%%%%%

% %%%%%%%%%%%%%Plot IDM ---Time gap %%%%%%%%%%%%%%%

figure(4);

hold on

plot(T,Th_idm(:,1),'r-','Linewidth',1)

plot(T,Th_idm(:,2),'g--','Linewidth',1)

plot(T,Th_idm(:,3),'m-.','Linewidth',1)

plot(T,Th_idm(:,4),'b:','Linewidth',1.5)

xlabel(['Time (s)'])

ylabel('Time gap with preceding truck (s)')

xlim([0 900])

47

legend([plot(T,Th_idm(:,1),'r-','Linewidth',1)...

plot(T,Th_idm(:,2),'g--','Linewidth',1)...

plot(T,Th_idm(:,3),'m-.','Linewidth',1)...

plot(T,Th_idm(:,4),'b:','Linewidth',1.5)], ...

 'Follower truck 1','Follower truck 2', ...

 'Follower truck 3','Follower truck 4');

grid on

box on

%%%%%%%%%%%%%%%%Plot ACC & JERK%%%%%%%

[r,c] = size(Yidm);

acc_idm = zeros(r, N-1);

jerk_idm = zeros(r, N-1);

del_t = T(2) - T(1);

for j = 1:N

 for i = 1:r-1

 acc_idm(i,j) = (Yidm(i+1,N+j) - Yidm(i,N+j))/del_t;

 end

end

for j = 1:N

 for i = 1:r-1

48

 jerk_idm(i,j) = (acc_idm(i+1,j) - acc_idm(i,j))/del_t;

 end

end

%%

%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%Plot IDM ---Acc %%%%%%%%%%%%%%%

figure(5);

hold on

plot(T,acc_idm(:,1),'r-','Linewidth',1)

plot(T,acc_idm(:,2),'g--','Linewidth',1)

plot(T,acc_idm(:,3),'m-.','Linewidth',1)

plot(T,acc_idm(:,4),'b:','Linewidth',1.5)

xlabel(['Time (s)'])

ylabel('Acceleration (m/s^2)')

xlim([0 900])

legend([plot(T,acc_idm(:,1),'r-','Linewidth',1)...

plot(T,acc_idm(:,2),'g--','Linewidth',1)...

plot(T,acc_idm(:,3),'m-.','Linewidth',1)...

plot(T,acc_idm(:,4),'b:','Linewidth',1.5)], ...

 'Follower truck 1','Follower truck 2', ...

49

 'Follower truck 3','Follower truck 4');

grid on

box on

%%%%%%%%%%%%%Plot IDM ---Jerk %%%%%%%%%%%%%%%

figure(6);

hold on

plot(T,jerk_idm(:,1),'r-','Linewidth',1)

plot(T,jerk_idm(:,2),'g--','Linewidth',1)

plot(T,jerk_idm(:,3),'m-.','Linewidth',1)

plot(T,jerk_idm(:,4),'b:','Linewidth',1.5)

xlabel(['Time (s)'])

ylabel('Jerk (m/s^3)')

xlim([0 900])

legend([plot(T,jerk_idm(:,1),'r-','Linewidth',1)...

plot(T,jerk_idm(:,2),'g--','Linewidth',1)...

plot(T,jerk_idm(:,3),'m-.','Linewidth',1)...

plot(T,jerk_idm(:,4),'b:','Linewidth',1.5)], ...

 'Follower truck 1','Follower truck 2', ...

 'Follower truck 3','Follower truck 4');

grid on

50

box on

% %%%%%%%%%%%%%%%%%%%%%%% Plot SSSE

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

E_vel_idm = [Vfinal, Yidm(:,N+1:end-1)] - Yidm(:,N+1:end);

SSE_vel_idm = sum(E_vel_idm.^2, 2);

figure(7);

hold on;

plot(T,SSE_vel_idm,'g-.','LineWidth',2)

xlabel('Time (sec)')

xlim([0 900])

ylabel('SSSE (m^2/sec^2)')

% legend([plot(T,SSE_vel_idm,'g-.','LineWidth',2)], ...

% '#####');

grid on

box on

%%

%%%%%%%%

set(findall(gcf,'-property','FontSize'),'FontSize',12)

51

Appendix B

Python Code for Trajectory Prediction

Defining LSTM and QLSTM Model

import torch

from torch import nn

from torch.utils.data import Dataset

import pennylane as qml

class SequenceDataset(Dataset):

def __init__(self, dataframe, target, features, sequence_length=5):

self.features = features

self.target = target

self.sequence_length = sequence_length

self.y = torch.tensor(dataframe[self.target].values).float()

self.X = torch.tensor(dataframe[self.features].values).float()

def __len__(self):

return self.X.shape[0]

def __getitem__(self, i):

if i >= self.sequence_length - 1:

i_start = i - self.sequence_length + 1

x = self.X[i_start:(i + 1), :]

52

else:

padding = self.X[0].repeat(self.sequence_length - i - 1, 1)

x = self.X[0:(i + 1), :]

x = torch.cat((padding, x), 0)

return x, self.y[i]

class ShallowRegressionLSTM(nn.Module):

def __init__(self, num_sensors, hidden_units):

super().__init__()

self.num_sensors = num_sensors # this is the number of features

self.hidden_units = hidden_units

self.num_layers = 1

self.lstm = nn.LSTM(

input_size=num_sensors,

hidden_size=hidden_units,

batch_first=True,

num_layers=self.num_layers

)

self.linear = nn.Linear(in_features=self.hidden_units, out_features=1)

53

def forward(self, x):

batch_size = x.shape[0]

h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

_, (hn, _) = self.lstm(x, (h0, c0))

out = self.linear(hn[0]).flatten() # First dim of Hn is num_layers, which is set to 1 above.

return out

class QLSTM(nn.Module):

def __init__(self,

input_size,

hidden_size,

n_qubits=4,

n_qlayers=1,

n_vrotations=3,

batch_first=True,

return_sequences=False,

return_state=False,

backend="default.qubit"):

super(QLSTM, self).__init__()

self.n_inputs = input_size

self.hidden_size = hidden_size

self.concat_size = self.n_inputs + self.hidden_size

54

self.n_qubits = n_qubits

self.n_qlayers = n_qlayers

self.n_vrotations = n_vrotations

self.backend = backend # "default.qubit", "qiskit.basicaer", "qiskit.ibm"

self.batch_first = batch_first

self.return_sequences = return_sequences

self.return_state = return_state

self.wires_forget = [f"wire_forget_{i}" for i in range(self.n_qubits)]

self.wires_input = [f"wire_input_{i}" for i in range(self.n_qubits)]

self.wires_update = [f"wire_update_{i}" for i in range(self.n_qubits)]

self.wires_output = [f"wire_output_{i}" for i in range(self.n_qubits)]

self.dev_forget = qml.device(self.backend, wires=self.wires_forget)

self.dev_input = qml.device(self.backend, wires=self.wires_input)

self.dev_update = qml.device(self.backend, wires=self.wires_update)

self.dev_output = qml.device(self.backend, wires=self.wires_output)

#self.dev_forget = qml.device(self.backend, wires=self.n_qubits)

#self.dev_input = qml.device(self.backend, wires=self.n_qubits)

#self.dev_update = qml.device(self.backend, wires=self.n_qubits)

#self.dev_output = qml.device(self.backend, wires=self.n_qubits)

def ansatz(params, wires_type):

55

Entangling layer.

for i in range(1,3):

for j in range(self.n_qubits):

if j + i < self.n_qubits:

qml.CNOT(wires=[wires_type[j], wires_type[j + i]])

else:

qml.CNOT(wires=[wires_type[j], wires_type[j + i - self.n_qubits]])

Variational layer.

for i in range(self.n_qubits):

qml.RX(params[0][i], wires=wires_type[i])

qml.RY(params[1][i], wires=wires_type[i])

qml.RZ(params[2][i], wires=wires_type[i])

def VQC(features, weights, wires_type):

Preproccess input data to encode the initial state.

#qml.templates.AngleEmbedding(features, wires=wires_type)

ry_params = [torch.arctan(feature) for feature in features]

rz_params = [torch.arctan(feature**2) for feature in features]

for i in range(self.n_qubits):

qml.Hadamard(wires=wires_type[i])

qml.RY(ry_params[i], wires=wires_type[i])

qml.RZ(ry_params[i], wires=wires_type[i])

#Variational block.

56

qml.layer(ansatz, self.n_qlayers, weights, wires_type = wires_type)

def _circuit_forget(inputs, weights):

VQC(inputs, weights, self.wires_forget)

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_forget]

self.qlayer_forget = qml.QNode(_circuit_forget, self.dev_forget, interface="torch")

def _circuit_input(inputs, weights):

VQC(inputs, weights, self.wires_input)

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_input]

self.qlayer_input = qml.QNode(_circuit_input, self.dev_input, interface="torch")

def _circuit_update(inputs, weights):

VQC(inputs, weights, self.wires_update)

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_update]

self.qlayer_update = qml.QNode(_circuit_update, self.dev_update, interface="torch")

def _circuit_output(inputs, weights):

VQC(inputs, weights, self.wires_output)

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_output]

self.qlayer_output = qml.QNode(_circuit_output, self.dev_output, interface="torch")

weight_shapes = {"weights": (self.n_qlayers, self.n_vrotations, self.n_qubits)}

57

print(f"weight_shapes = (n_qlayers, n_vrotations, n_qubits) = ({self.n_qlayers},

{self.n_vrotations}, {self.n_qubits})")

self.clayer_in = torch.nn.Linear(self.concat_size, self.n_qubits)

self.VQC = {

'forget': qml.qnn.TorchLayer(self.qlayer_forget, weight_shapes),

'input': qml.qnn.TorchLayer(self.qlayer_input, weight_shapes),

'update': qml.qnn.TorchLayer(self.qlayer_update, weight_shapes),

'output': qml.qnn.TorchLayer(self.qlayer_output, weight_shapes)

}

self.clayer_out = torch.nn.Linear(self.n_qubits, self.hidden_size)

#self.clayer_out = [torch.nn.Linear(n_qubits, self.hidden_size) for _ in range(4)]

def forward(self, x, init_states=None):

'''

x.shape is (batch_size, seq_length, feature_size)

recurrent_activation -> sigmoid

activation -> tanh

'''

if self.batch_first is True:

batch_size, seq_length, features_size = x.size()

else:

seq_length, batch_size, features_size = x.size()

58

hidden_seq = []

if init_states is None:

h_t = torch.zeros(batch_size, self.hidden_size) # hidden state (output)

c_t = torch.zeros(batch_size, self.hidden_size) # cell state

else:

for now we ignore the fact that in PyTorch you can stack multiple RNNs

so we take only the first elements of the init_states tuple init_states[0][0], init_states[1][0]

h_t, c_t = init_states

h_t = h_t[0]

c_t = c_t[0]

for t in range(seq_length):

get features from the t-th element in seq, for all entries in the batch

x_t = x[:, t, :]

Concatenate input and hidden state

v_t = torch.cat((h_t, x_t), dim=1)

match qubit dimension

y_t = self.clayer_in(v_t)

f_t = torch.sigmoid(self.clayer_out(self.VQC['forget'](y_t))) # forget block

i_t = torch.sigmoid(self.clayer_out(self.VQC['input'](y_t))) # input block

59

g_t = torch.tanh(self.clayer_out(self.VQC['update'](y_t))) # update block

o_t = torch.sigmoid(self.clayer_out(self.VQC['output'](y_t))) # output block

c_t = (f_t * c_t) + (i_t * g_t)

h_t = o_t * torch.tanh(c_t)

hidden_seq.append(h_t.unsqueeze(0))

hidden_seq = torch.cat(hidden_seq, dim=0)

hidden_seq = hidden_seq.transpose(0, 1).contiguous()

return hidden_seq, (h_t, c_t)

class QShallowRegressionLSTM(nn.Module):

def __init__(self, num_sensors, hidden_units, n_qubits=0, n_qlayers=1):

super().__init__()

self.num_sensors = num_sensors # this is the number of features

self.hidden_units = hidden_units

self.num_layers = 1

#self.lstm = nn.LSTM(

input_size=num_sensors,

hidden_size=hidden_units,

batch_first=True,

num_layers=self.num_layers

#)

60

self.lstm = QLSTM(

input_size=num_sensors,

hidden_size=hidden_units,

batch_first=True,

n_qubits = n_qubits,

n_qlayers= n_qlayers

)

self.linear = nn.Linear(in_features=self.hidden_units, out_features=1)

def forward(self, x):

batch_size = x.shape[0]

h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_()

_, (hn, _) = self.lstm(x, (h0, c0))

out = self.linear(hn).flatten() # First dim of Hn is num_layers, which is set to 1 above.

return out

Importing Libraries

import helper

import pandas as pd

from utils import *

61

import time

import numpy as np

import math

import matplotlib.pyplot as plt

import torch

from torch.utils.data import DataLoader

from torch import nn

from IPython.display import Image

import pandas as pd

import seaborn as sns

#Importing Data Set

df = pd.read_csv(‘Train_Data.csv')

df

target = "Speed"

features = ['Time', 'X_Pos', 'Distance']

Data Processing

size = int(len(df) * 0.70)

df_train = df.loc[:size].copy()

df_test = df.loc[size:].copy()

df_eval = pd.read_csv('Eval_Data.csv')

target_mean = df_train[target].mean()

62

target_stdev = df_train[target].std()

for c in df_train.columns:

 mean = df_train[c].mean()

 stdev = df_train[c].std()

 df_train[c] = (df_train[c] - mean) / stdev

 df_test[c] = (df_test[c] - mean) / stdev

 df_eval[c] = (df_eval[c] - mean) / stdev

from Factory import SequenceDataset

torch.manual_seed(101)

batch_size = 1

sequence_length = 3

train_dataset = SequenceDataset(

 df_train,

 target=target,

 features=features,

 sequence_length=sequence_length

)

test_dataset = SequenceDataset(

63

 df_test,

 target=target,

 features=features,

 sequence_length=sequence_length

)

eval_dataset = SequenceDataset(

 df_eval,

 target=target,

 features=features,

 sequence_length=sequence_length

)

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)

test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

eval_loader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=False)

X, y = next(iter(train_loader))

print("Features shape:", X.shape)

print("Target shape:", y.shape)

def train_model(data_loader, model, loss_function, optimizer):

 num_batches = len(data_loader)

 total_loss = 0

64

 model.train()

 for X, y in data_loader:

 output = model(X)

 loss = loss_function(output, y)

 optimizer.zero_grad()

 loss.backward()

 optimizer.step()

 total_loss += loss.item()

 avg_loss = total_loss / num_batches

 print(f"Train loss: {avg_loss}")

 return avg_loss

def test_model(data_loader, model, loss_function):

 num_batches = len(data_loader)

 total_loss = 0

 model.eval()

 with torch.no_grad():

65

 for X, y in data_loader:

 output = model(X)

 total_loss += loss_function(output, y).item()

 avg_loss = total_loss / num_batches

 print(f"Test loss: {avg_loss}")

 return avg_loss

def eval_model(data_loader, model, loss_function):

 num_batches = len(data_loader)

 total_loss = 0

 model.eval()

 with torch.no_grad():

 for X, y in data_loader:

 output = model(X)

 total_loss += loss_function(output, y).item()

 avg_loss = total_loss / num_batches

 print(f"Test loss: {avg_loss}")

 return avg_loss

66

Running the Classical LSTM

from Factory import ShallowRegressionLSTM

learning_rate = 0.0001

num_hidden_units = 16

model = ShallowRegressionLSTM(num_sensors=len(features),

hidden_units=num_hidden_units)

loss_function = nn.MSELoss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

classical_loss_train = []

classical_loss_test = []

print("Untrained test\n--------")

test_loss = test_model(test_loader, model, loss_function)

print()

classical_loss_test.append(test_loss)

for ix_epoch in range(20):

 print(f"Epoch {ix_epoch}\n---------")

 train_loss = train_model(train_loader, model, loss_function, optimizer=optimizer)

 test_loss = test_model(test_loader, model, loss_function)

 print()

 classical_loss_train.append(train_loss)

 classical_loss_test.append(test_loss)

67

def predict(data_loader, model):

 """Just like `test_loop` function but keep track of the outputs instead of the loss

 function.

 """

 output = torch.tensor([])

 model.eval()

 with torch.no_grad():

 for X, _ in data_loader:

 y_star = model(X)

 output = torch.cat((output, y_star), 0)

 return output

train_eval_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)

ystar_col = "Model forecast"

df_train[ystar_col] = predict(train_eval_loader, model).numpy()

df_test[ystar_col] = predict(test_loader, model).numpy()

df_out = pd.concat((df_train, df_test))[[target, ystar_col]]

for c in df_out.columns:

 df_out[c] = df_out[c] * target_stdev + target_mean

print(df_out)

df_eval[ystar_col] = predict(eval_loader, model).numpy()

68

df_out1 = pd.concat((df_train, df_eval))[[target, ystar_col]]

for c in df_out1.columns:

 df_out1[c] = df_out1[c] * target_stdev + target_mean

print(file_name = 'Leader_Prediction_LSTM.xlsx'

df_out1.to_excel(file_name)df_out1)

Running the QLSTM

from Factory import QShallowRegressionLSTM

learning_rate = 0.05

num_hidden_units = 16

Qmodel = QShallowRegressionLSTM(num_sensors=len(features),

hidden_units=num_hidden_units, n_qubits=4)

loss_function = nn.MSELoss()

optimizer = torch.optim.Adagrad(Qmodel.parameters(), lr=learning_rate)

quantum_loss_train = []

quantum_loss_test = []

print("Untrained test\n--------")

start = time.time()

test_loss = test_model(test_loader, Qmodel, loss_function)

end = time.time()

print("Execution time", end - start)

69

quantum_loss_test.append(test_loss)

for ix_epoch in range(20):

 print(f"Epoch {ix_epoch}\n---------")

 start = time.time()

 train_loss = train_model(train_loader, Qmodel, loss_function, optimizer=optimizer)

 test_loss = test_model(test_loader, Qmodel, loss_function)

 end = time.time()

 print("Execution time", end - start)

 quantum_loss_train.append(train_loss)

 quantum_loss_test.append(test_loss)

train_eval_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)

ystar_col_Q = "Model forecast"

df_train[ystar_col_Q] = predict(train_eval_loader, Qmodel).numpy()

df_test[ystar_col_Q] = predict(test_loader, Qmodel).numpy()

df_out_Q = pd.concat((df_train, df_test))[[target, ystar_col_Q]]

for c in df_out_Q.columns:

 df_out_Q[c] = df_out_Q[c] * target_stdev + target_mean

print(df_out_Q)

70

df_eval[ystar_col_Q] = predict(eval_loader, model).numpy()

df_out1_Q = pd.concat((df_train, df_eval))[[target, ystar_col]]

for c in df_out1_Q.columns:

 df_out1_Q[c] = df_out1_Q[c] * target_stdev + target_mean

print(df_out1_Q)

file_name1 = 'Leader_Prediction_QLSTM.xlsx'

df_out1.to_excel(file_name1)

Comparison of Train Loss Values

plt.figure(figsize=(8, 6))

plt.plot(classical_loss_train, label = "LSTM")

plt.plot(quantum_loss_train, label = "QLSTM")

plt.ylabel('Train Loss')

plt.xlabel('Epoch')

plt.legend()

plt.show()

 # Comparison of Test Loss Values

plt.figure(figsize=(8, 6))

plt.plot(classical_loss_test, label = "LSTM")

plt.plot(quantum_loss_test, label = "QLSTM")

plt.ylabel('Test Loss')

71

plt.xlabel('Epoch')

plt.legend()

plt.show()

Comparison of Number of Parameters Used

total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)

total_params_Q = sum(p.numel() for p in Qmodel.parameters() if p.requires_grad)

print("No. of parameters for Classical LSTM: ", total_params)

print("No. of parameters for QLSTM: ", total_params_Q)

72

REFERENCES

Abbas, A., Sutter, D., Zoufal, C., Lucchi, A., Figalli, A., & Woerner, S., 2021. The power

of quantum neural networks. [Nature Computational Science, 403–409.

Alam, A., Besselink, B., Turri, V., Martensson, J., Johansson, K.H., 2015. Heavy-duty

vehicle platooning for sustainable freight transportation: a cooperative method to enhance safety

and efficiency IEEE Control Syst, 35, pp. 34-56, 10.1109/MCS.2015.2471046

Al-Qadi, I.L., Okte, E., Ramakrishnan, A., Zhou, Q. and Sayeh, W., 2021. Truck-

Platoonable Pavement Sections in Illinois’ Network. Illinois Center for Transportation/Illinois

Department of Transportation

Azad, U., Behera, B. K., Ahmed, E. A., Panigrahi, P. K., & Farouk, A., 2022. Solving

Vehicle Routing Problem Using Quantum Approximate Optimization Algorithm. IEEE

Transactions on Intelligent Transportation Systems, 1-10.

Bassman, L., Urbanek, M., Metcalf, M., Carter, J., Kemper, A. F., & Jong, W. A., 2021.

Simulating quantum materials with digital quantum computers. Quantum Science and Technology,

Volume 6, Number 4, 043002.

Brackstone, M., and McDonald, M. “Car-Following: A Historical Review”. Transportation

Research Part F: Traffic Psychology and Behavior, Vol. 2, No. 4, pp. 181-196, 1999.

Busemeyer, J. R., & Bruza, P. D., 2012. Quantum models of cognition and decision.

Cambridge University Press.

73

Chen, H., Miao, F., & Shen, X., 2020. Hyperspectral Remote Sensing Image Classification

with CNN Based on Quantum Genetic-Optimized Sparse Representation. IEEE Access (Volume:

8), 99900 – 99909.

Chen, S.Y., Yoo, S., & Fang, Y.L., 2020. Quantum Long Short-Term Memory,

https://arxiv.org/pdf/2009.01783.pdf.

Crosson, E., & Harrow, A. W., 2016. Simulated Quantum Annealing Can Be Exponentially

Faster Than Classical Simulated Annealing. IEEE 57th Annual Symposium on Foundations of

Computer Science (FOCS) (p. DOI: 10.1109/FOCS.2016.81). New Brunswick, NJ, USA: IEEE.

Dai, S., Li, L., & Z. Li, "Modeling vehicle interactions via modified lstm models for

trajectory prediction", IEEE Access, vol. 7, pp. 38 287-38 296, 2019

Dou, Y., Yan, F., and Feng, D., 2016. "Lane changing prediction at highway lane drops

using support vector machine and artificial neural network classifiers", pp. 901-906.

Du, H., Leng, S., He, J., & Zhou, L., 2021. "Digital Twin Based Trajectory Prediction for

Platoons of Connected Intelligent Vehicles," IEEE 29th International Conference on Network

Protocols (ICNP), Dallas, TX, USA, 2021, pp. 1-6, doi: 10.1109/ICNP52444.2021.9651970

Dunjko, V. and Briegel, H.J., 2018. Machine learning & artificial intelligence in the

quantum domain: a review of recent progress. Reports on Progress in Physics, 81(7), p.074001.

Dunjko, V., & Wittek, P., 2020. A non-review of Quantum Machine Learning: Trends and

exploration. The open journal for quantum science, Volume 4, 32.

EAMA, “Infographic on EU roadmap for truck platooning,” 2019,.

https://www.acea.be/uploads/publications/Platooning_roadmap.pdf.

74

Economics and Industry Data [WWW document], 2022. URL

https://www.trucking.org/economics-and-industry-data (accessed 2.20.22)

Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation.

1997;9(8):1735–1780. doi: 10.1162/neco.1997.9.8.1735

Islam, M., Chowdhury, M., Khan, Z., and Khan, S. M., 2022. "Hybrid Quantum-Classical

Neural Network for Cloud-Supported In-Vehicle Cyberattack Detection," in IEEE Sensors Letters,

vol. 6, no. 4, pp. 1-4, Art no. 6001204, doi: 10.1109/LSENS.2022.3153931

Jeong, E., Oh, C., & Lee, S., 2017. “Is vehicle automation enough to prevent crashes? Role

of traffic operations in automated driving environments for traffic safety,” Accident Analysis &

Prevention, vol. 104, pp. 115–124.

Khan, Z., Khan, S. M., Tine, J. M., Comert, A. T., Rice, D., Comert, G., . . . Chowdhury,

M., 2021. Hybrid Quantum-Classical Neural Network for Incident Detection. DeepAI,

https://arxiv.org/ftp/arxiv/papers/2108/2108.01127.pdf.

Lammert, M.P., Bugbee, B., Hou, Y., Muratori, M., Holden, J., Duran, A.W., Mack, A.

and Swaney, E., 2018. Exploring telematics big data for truck platooning opportunities (No.

NREL/CP-5400-70869). National Renewable Energy Lab. (NREL), Golden, CO (United States)

Lee, S., Oh, C., Lee, G., "Impact of Automated Truck Platooning on the Performance of

Freeway Mixed Traffic Flow", Journal of Advanced Transportation, vol. 2021, Article ID

8888930, 13 pages, 2021. https://doi.org/10.1155/2021/8888930.

75

Ma, X., Huo, E., Yu, H., Li, H., 2021. “Mining truck platooning patterns through massive

trajectory data”, Knowledge-Based Systems, Volume 221, 106972, ISSN 0950-7051,

https://doi.org/10.1016/j.knosys.2021.106972.

Noruzoliaee, M., Zou, B. and Zhou, Y.J., 2021. Truck platooning in the US national road

network: A system-level modeling approach. Transportation Research Part E: Logistics and

Transportation Review, 145, p.102200.

Panwai, S., and Dia, H., 2005. “Comparative Evaluation of Microscopic Car-Following

Behavior”. IEEE Transactions on Intelligent Transportation Systems, Vol. 6, No. 3, pp. 314-325.

Papadoulis, A., Quddus, M., & and Imprialou, M., 2019. “Evaluating the safety impact of

connected and autonomous vehicles on motorways,” Accident Analysis & Prevention, vol. 124,

pp. 12–22.

Patel, O. P., & Tiwari, A., 2014. Quantum Inspired Binary Neural Network Algorithm.

International Conference on Information Technology (p. DOI: 10.1109/ICIT.2014.29).

Bhubaneswar, India: IEEE.

Patel, O. P., Tiwari, A., Chaudhary, R., Nuthalapati, S. V., Bharill, N., Prasad, M., . . .

Hussain, O. K., 2019. Enhanced quantum-based neural network learning and its application to

signature verification. Soft Computing, Volume 23, 3067–3080.

Rahman, M. S. and Abdel-Aty, M., 2018. “Longitudinal safety evaluation of connected

vehicles’ platooning on expressways,” Accident Analysis & Prevention, vol. 117, pp. 381–391.

76

Rahman, M., Chowdhury, M., Dey, K., Islam, M.R., Khan, T., 2017. Evaluation of Driver

Car-Following Behavior Models for Cooperative Adaptive Cruise Control Systems.

Transportation Research Record 2622, 84–95. https://doi.org/10.3141/2622-08

Rahman, M., Khan, S.M., Chowdhury, M., Huynh, N., Ogle, J., Dey, K., Bhavsar, P., 2015.

Incident Command System Strategies for Incident Management on Freeways: A Simulation

Analysis. Presented at the Transportation Research Board 94th Annual Meeting Transportation

Research Board

Salek, M Sabbir, "Theoretical Development and Numerical Validation of an Asymmetric

Linear Bilateral Control Model for an Automated Truck Platoon" (2021). All Theses. 3708

Sgarbas, K. N., 2007. The Road to Quantum Artificial Intelligence. Wire Communications

Lab., Dept. of Electrical and Computer Engineering, arXiv preprint arXiv:0705.3360.

Shladover, S.E., Yun, X., Yang, L., Ramezani, H., Spring, J., Nowakowski, C.V., Nelson,

D., Thompson, D. and Kailas, A., 2018. Cooperative adaptive cruise control (CACC) for partially

automated truck platooning (No. CA18-2623). California. Dept. of Transportation. Division of

Research and Innovation.

Song, Q., Fu, W., Wang, W., Sun, Y., Wang, D., & Zhou, J., 2022. Quantum decision

making in automatic driving. Scientific reports 12.1, 1-15.

Song, Q., Wang, W., Fu, W., Sun, Y., Wang, D., & Gao, Z., 2022. Research on quantum

cognition in autonomous driving. Scientific Reports Volume 12, Article number: 300,

https://doi.org/10.1038/s41598-021-04239-y.

77

Treiber, M., Hennecke, A., & Helbing, D., 2000. Congested Traffic States in Empirical

Observations and Microscopic Simulations. Physical Review E, Vol. 62, No. 2, 2000, pp. 1805–

1824. https://doi.org/10.1103/PhysRevE.62.1805.

Tsugawa, S., Jeschke, S., Shladover, S.E., 2016. A Review of Truck Platooning Projects

for Energy Savings. IEEE Transactions on Intelligent Vehicles 1, 68–77.

https://doi.org/10.1109/TIV.2016.2577499

Wang, L.-J., Lin, J.-Y., & Wu, S., 2022. Implementation of quantum stochastic walks for

function approximation, two-dimensional data classification, and sequence classification.

Quantum Physics, arXiv:2103.03018.

Wang, M., Maarseveen, S., Happee, R., Tool, O., & Arem, B.V, 2019. “Benefits and risks

of truck platooning on freeway operations near entrance ramp,” Transportation Research Record:

Journal of the Transportation Research Board, vol. 2673, no. 8, pp. 588–602.

Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., & Xiong, Z., 2020. "Enhanced object

detection with deep convolutional neural networks for advanced driving assistance", IEEE

Transactions on Intelligent Transportation Systems, vol. 21, no. 4, pp. 1572-1583.

Wiebe, N., Kapoor, A., & Svore, K. M., 2014. Quantum Deep Learning. Quantum Physics,

arXiv:1412.3489.

Yan L., & Shen H., 2019. TOP: optimizing vehicle driving speed with vehicle trajectories

for travel time minimization and road congestion avoidance. ACM Transactions on Cyber-

Physical Systems, 4(2), 1–25. doi: 10.1145/336216

78

Zhang, B., Wilschut, E. S., Willemsen, D. M. C., & Martens, M. H., 2019. “Transitions to

manual control from highly automated driving in non-critical truck platooning scenarios,”

Transportation Research Part F: Traffic Psychology and Behaviour, vol. 64, pp. 84–97.

Zhang, D., Wang, J., Fan, H., Zhang, T., Gao, J., & Yang, P., 2020. New method of traffic

flow forecasting based on quantum particle swarm optimization strategy for intelligent

transportation system. International Journal of Communication Systems,

https://doi.org/10.1002/dac.4647.

	Quantum Artificial Intelligence Supported Autonomous Truck Platooning
	Recommended Citation

	tmp.1682136398.pdf.V3ECr

