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ABSTRACT 

 

 Truck platooning can potentially increase the operational efficiency of freight movement 

on U.S. corridors, improving commercial productivity and economic vibrancy. Predicting each 

leader vehicle trajectory in the autonomous truck platoon using Artificial Intelligence (AI) can 

enhance platoon efficiency and safety. Reliance on classical AI may not be efficient for this 

purpose as it will increase the computational burden for each truck in the platoon. However, 

Quantum Artificial Intelligence (AI) can be used in this scenario to enhance learning efficiency, 

learning capacity, and run-time improvements. This study developed and evaluated a Long Short-

Term Memory Networks (LSTM) model and a hybrid quantum-classical LSTM (QLSTM) for 

predicting the trajectory of each leader vehicle of an autonomous truck platoon. Both the LSTM 

and QLSTM provided comparable results. However, Quantum-AI is more efficient in real-time 

management for an automated truck platoon as it requires less computational burden. The QLSTM 

training required less data compared to LSTM. Moreover, QLSTM also used fewer parameters 

compared to classical LSTM. This study also evaluated an autonomous truck platoon's operational 

efficacy and string stability with the prediction of trajectory from both classical LSTM and 

QLSTM using the Intelligent Driver Model (IDM). The platoon operating with LSTM and 

QLSTM trajectory prediction showed comparable operational efficiency. Moreover, the platoon 

operating with QLSTM trajectory prediction provided better string stability compared to LSTM. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background and Motivation 

The joining of two or more trucks in convoy utilizing wireless connectivity and autonomous 

driving assistance systems is known as truck platooning. When these vehicles are connected for 

some distance on a highway, they automatically maintain a safe, close distance between each other. 

According to the U.S. Department of Transportation, 72 percent of goods in the U.S. are 

transported by trucks; therefore, finding safer and more efficient ways to move them is essential 

(Economics and Industry Data, 2022). Truck platooning can potentially increase the operational 

efficiency of freight movements on U.S. corridors to improve commercial productivity and 

economic vibrancy. Although real-world deployments of truck platooning are still in their infancy, 

a previous study has found that 63% of total miles driven by trucks in 2016 could be made platoon-

able, considering the speed threshold for platoon-able truck identification to be 50 mph (Lammert 

et al., 2018). In (Lammert et al., 2018), the authors used low-resolution data from 57,000 unique 

trucks for two weeks. Other literature shows a 5% to 15% reduction in fuel consumption based on 

the platoon configuration (Al-Qadi et al., 2021). Using Adaptive Cruise Control (ACC) or 

Cooperative Adaptive Cruise Control (CACC) applications to form platoons, a recent study found 

a 7.9% reduction in fuel consumption by 2025 and an increase in the capacity of platoon-able road 

segments (Noruzoliaee et al., 2021). Such advances can lead to noticeable savings of $868 million 

for the U.S. trucking industry, and a reduction in infrastructure improvement needs up to $4.8 

billion (Noruzoliaee et al., 2021). That’s why Academia and the trucking industry have been 

carrying out research with the aim of accelerating the broad implementation of truck platooning. 

Over the past few decades, there have been various partnerships between governments and private 
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companies that have demonstrated the use of autonomous truck platooning in practical situations. 

One notable example of this research is the UC Berkeley PATH program's partnership with the 

Volvo Group. The program demonstrated the advantages of an automated truck platoon in a real-

world scenario. The study found that truck platooning could reduce fuel consumption by up to 

10% for the lead vehicle and up to 15% for the following vehicles. The study also showed that 

platooning could improve road safety by reducing the risk of accidents caused by driver error 

(Tsugawa et al., 2016). 

Artificial Intelligence (AI) can be used to predict each leader vehicle trajectory in autonomous 

truck platooning to improve platoon safety. Reliance on classical AI may not be efficient for this 

purpose as it will increase the computational burden for each truck in the platoon (Shladover et al., 

2018). Quantum Artificial Intelligence (AI), however, can be used in this scenario to enhance 

learning efficiency, learning capacity, and run-time improvements (Islam et al., 2022; Dunjko & 

Briegel, 2018).  

1.2 Hypothesis and Contribution  

In this study, an algorithm was developed to predict the trajectory of the lead vehicle of an 

autonomous truck platoon so that the follower truck can adjust its speed and direction during a 

sudden change of trajectory using both Long Short Term Memory Network (LSTM) and Quantum 

Long Short-Term Memory Network (QLSTM). We hypothesize that the developed hybrid 

classical-quantum model with the mix of classical and Quantum-AI models will be more robust 

than the classical counterpart and less vulnerable to both (1) noise and variations in large-scale 

heterogeneous data and (2) inherent errors in the quantum-only approach. Though the quantum 

computer is in its infancy, it is expected that Quantum-AI will be more efficient in real-time 

autonomous truck platoon management and require less computational cost in the future. We also 
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hypothesize that the accuracy of Quantum-AI algorithms to predict vehicle trajectory will be 

comparable to classical models. In addition, this study evaluated the operational efficacy and string 

stability of an autonomous truck platoon with the trajectory prediction of each truck using both 

classical LSTM and QLSTM. We hypothesize that the platoon operating with QLSTM trajectory 

prediction will have better operational efficacy and string stability. 

1.3 Objectives 

The objectives of this study are as follows: 

• Develop a trajectory prediction model of the leader vehicle of an autonomous truck platoon 

by using LSTM and QLSTM, and 

• Evaluate the operational efficacy and string stability of the autonomous truck platoon with 

the trajectory prediction of each truck using both classical LSTM and QLSTM. 
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CHAPTER TWO 

LITERATURE REVIEW 

Truck platooning is the idea that two or more trucks may be linked together through 

automation technology and driving support systems to increase safety and efficiency. Through 

wireless communication, the trucks in a platoon interact with one another, enabling them to drive 

in close proximity to each other. The following trucks are programmed to automatically perform 

maneuvers such as braking, accelerating, and decelerating, in response to the actions of the lead 

truck. This arrangement enhances the aerodynamics of the trucks, leading to decreased fuel 

consumption (Patten et al., 2012). Researchers found, through testbed experiments six percent fuel 

savings for leader vehicles and ten percent for follower vehicles in a platoon (Alam et al., 2015; 

Lammert et al., 2014). Moreover, less fuel consumption led to cost savings and reduced emissions 

(Scora and Barth, 2006). Furthermore, a truck platoon can reduce congestion as the trucks will 

take less space in the platoon than driving separately (Schladoverr et al., 2015; Van Arem et al., 

2006). Also, platooning can enhance traffic safety because the vehicle in platoon results in less 

human error and lower reaction time, thus reducing rear-end collisions. Finally, truck platooning 

can decrease travel time and increase roadway capacity (Lee et al., 2021). 

With the advancement of automated vehicle technology, it is now possible for multiple 

automated trucks to travel together at a minimum safety distance or form a platoon through 

vehicle-to-everything (V2X) communication technology (Lee et al., 2021). With the rapid 

advancement of 5G and V2X communication technology, automated truck platooning is being 

studied by both researchers and industry (Tsugawa et al., 2016; Alam et al., 2015). As the current 

infrastructure cannot support a fully autonomous truck platoon, semi-automated platooning is 

being tested. As per the EU truck platooning roadmap, it is projected that the follower trucks within 
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a platoon will attain SAE Level 4 automation (automated driving without a driver) by 2025 

(EAMA, 2019).  

Several studies found that connected vehicle platoons can use a trajectory-tracking control 

model for better operational efficiency (Li et al., 2017; Chu et al., 2017). In a recent study, it was 

found that around 36% of truck platoons could be effectively managed by adjusting their speed, 

without the need to modify their routes or schedules (Ma et al., 2021). Truck platoons can make 

safe, efficient driving decisions with accurate road user trajectory predictions (Wei et al., 2020). 

Besides, with a precise prediction of the trajectory of the leader truck, the follower trucks can 

adjust their speed and direction during a sudden change of trajectory. Trajectory prediction can 

also minimize travel time, avoid congestion, and develop methods for future utilization of the road 

network (Yan & Shen 2019).  

Truck platooning is a safety-critical application which requires trajectory prediction 

models for a platoon to have a high accuracy to prevent adverse consequences. Artificial 

intelligence (AI) has several successful applications in trajectory prediction. For example, the 

Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers were used for 

lane change prediction, which predicted a lane change action before the actual lane change with 

success (Dou et al., 2016). Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) 

for prediction systems can process massive volumes of data. Various research fields, including 

trajectory prediction, are experiencing unprecedented growth due to the advent of deep learning 

techniques and computer capacity. Dai et al. proposed a modified LSTM model for trajectory 

prediction (Dai et al., 2019). Du et al. created a predictive model for the trajectory of connected 

vehicle platoons using a digital twin-based approach (Du et al., 2021). 
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Introducing a quantum algorithm into the domain of Artificial Intelligence (AI) has improved 

the performance of hybrid machine-learning models (Dunjko & Wittek, 2020). In Artificial 

Intelligence (AI), quantum computing generates multiple states with measurable performance 

essential for transfer learning (Bassman et al., 2021). Similarly, quantum annealing, and quantum 

random walk offer optimization from the previously suggested multiple guesses. Usually, it 

generates NP-hard solutions (Crosson & Harrow, 2016), and Quantum AI techniques have been 

developed to cope with these problems (Sgarbas, 2007). The capacity of Quantum Neural 

Networks (QNNs) to extract solutions from intricate probability distributions is what makes them 

useful in machine learning models. This is achieved by encoding information into a quantum state 

through a quantum feature map, which is a type of variational quantum algorithm (Abbas et al., 

2021). With the extension of AI and machine learning, Quantum deep learning has also gained 

renown in solving intractable problems on regular classical computers (Wiebe et al., 2014). Patel 

et al. (2019) applied a Quantum Neural Network (Q-NN) for signature verification, and the 

accuracy was 95% compared to the classical neural network (CNN), which achieved 89% accuracy 

(Patel et al., 2019). Furthermore, Patel & Tiwari (2014) utilized Quantum Binary NN (Q-BNN) 

model for breast cancer classification and compared it against Gaussian Processes, NNs, 

Multilayer Perceptron (MLP), Support Vector Machine (SVM). Q-BNN achieved above 95% 

accuracy, whereas other methods were less than 80% accurate (Patel & Tiwari, 2014). Chen et al. 

(2020) applied a Quantum Convolutional Neural network (Q-CNN) for image classification and 

reported higher accuracy (94%) than classical CNN (90%) (Chen et al., 2020). Wang et al. (2022) 

showed that Quantum Stochastic Networks (Q-SNN) could achieve better performance against 

classical networks classifying sentences (Wang et al. 2022). Q-SNN converged faster and with 

higher accuracy compared to classical SNN. Quantum computing applications in AI have been 
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beneficial in many fields, such as in operational optimization (Azad et al., 2022; Zhang et al., 

2020), transportation systems cyber-security (Khan et al., 2021), and human traffic intention 

estimation and trajectory prediction (Busemeyer & Bruza, 2012; Song et al., 2022). In autonomous 

vehicles and quantum computers developments, previous assumptions regarding the interaction 

between autonomous vehicles and pedestrians being classical in the sense that behavior is rational 

are no longer sacrosanct. It is now assumed to follow the quantum decision theory, making human 

behavior irrational, and violating classical cognitive and decision theory (Song et al., 2022). 

Academics have concluded that the interplay between interference and entanglement in quantum 

mechanics and human cognition shares several common traits (Busemeyer & Bruza, 2012). This 

observation has resulted in a prevailing trend. 

Car-following models regulate a driver's actions in relation to the vehicle directly in front of 

them in the same lane (Brackstone and McDonald, 1999). There are five categories in which car-

following models can be classified: the Gazis-Herman-Rothery (GHR) model, the Collision 

Avoidance (CA) model, the Linear Model, the Fuzzy-logic-based model, and the Optimal Velocity 

(OV) model, including its variations (Panwai and Dia, 2005; Brackstone and McDonald, 1999). 

One of the first and most advanced models for cars that followed is the Gazis-Herman-Rothery 

(GHR) model. The model has the drawback of having characteristics that change depending on the 

driving environment. Similar to the GHR model, the linear model has been extensively 

investigated; however, although having a very straightforward and linear shape, it is less widely 

used due to the challenges associated with parameter calibration. Given the characteristics of car-

following behaviors, fuzzy logic seems like a realistic attempt to incorporate into the car-following 

theory. However, the usefulness of such efforts is constrained by the challenge of calibrating the 

membership function, which is the fundamental idea of fuzzy logic. However, the most popular 
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car-following model for simulation is arguably Gipps’ adaptation of the Collision Avoidance (CA) 

model. A very recent car-following model, the Optimal Velocity (OV) concept, was initially put 

forth in 1990. The model is distinctive in how it depicts stop-and-go and backed-up traffic. Later, 

two OV model variations, named Generalized Force (GF) model and Full Velocity Difference 

(FVD) model, were developed to address OV model problems with data agreement and startup 

process. 
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CHAPTER THREE 

METHOD 

The following subsections provide a description of the various steps of the method, as presented 

in Figure 3.1. 

 

Figure 3.1 Research Method 

3.1 Simulation Network Development and Data Generation 

 For a simulation duration of 900 seconds, we utilized MATLAB to simulate a platoon of 

five automated trucks employing Cooperative Adaptive Cruise Control (CACC). This platoon 

consisted of one leader and four follower trucks, and it was derived from (Salek, 2022). The leader 

truck starts at a distance of 163 meters, and the other trucks are placed at distances of 127, 91, 56, 

and 20 meters from the starting point, respectively. All five trucks are moving at an initial speed 

of 31.44 m/s, or 70.3 mph. Input parameters for the simulation include the number of trucks in the 

platoon, the total simulation time, the initial position and speed of the follower trucks, the location 
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and speed profile of the lead truck, and the constant required time headway. A simulation step size 

of 0.1 sec and a constant desired time headway of 0.5 sec were used. Figure 3.2 and Table 3.1 

show the speed profile of the leader truck from 0 sec to 900 sec.  

 

Figure 3.2: Speed Profile of the Leader Truck 

TABLE 3.1 Speed Profile of the Leader Truck 

Time Interval Speed Profile of the Leader Truck 

0 s to 149 s Uniform speed of 31.44 m/s (70.3 mph) 

149 s to 158 s Speed changes from 31.44 m/s (70.3 mph) to 19.69 m/s (44.04 mph) 

158 s to 240 s Uniform speed of 19.69 m/s (44.04 mph) 

240 s to 359 s Speed changes from 19.69 m/s (44.04 mph) to 31.44 m/s (70.3 mph) 

359 s to 562 s Uniform speed of 31.44 m/s (70.3 mph) 

562 s to 569 s Speed changes from 31.44 m/s (74.3 mph) to 24.15 m/s (54.02 mph) 

569 s to 634 s Uniform speed of 24.15m/sec (54.02 mph) 

634 s to 712 s Speed changes from 24.15 m/s (54.02 mph) to 31.44 m/s (70.3 mph) 
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712 s to 900 s Uniform speed of 31.44 m/s (70.3 mph) 

 

The I-26 freeway in South Carolina’s Berkeley, Orangeburg, and Dorchester County was 

the site of a calibrated traffic simulation network that Rahman et al. used to determine the speed 

profile of the leader truck (Rahman et al., 2015). The PTV VISSIM traffic simulation software 

was used to design the I-26 roadway network. It was calibrated using field data to simulate traffic 

volumes and trip durations within 10% of the actual data on those variables. On the VISSIM I-26 

network, there are two areas with reduced speed limits of 55 and 45-mph. The 75-mph limit applies 

to the remaining sections of the simulated I-26 network. The following assumptions are made for 

the simulated truck platoon: 

• The truck platoon operates in the same lane, 

• All the trucks of the platoon have the exact dimensions and vehicle dynamics, 

• There are no vertical or horizontal curves in the section, 

• After the platoon formation, no trucks attempt to join the platoon or exit the platoon, 

• There is no noticeable delay in the following trucks’ real-time receipt of their 

immediate neighboring trucks’ location and speed information. 

To simulate the platoon consisting of one leader truck and four following trucks, we solved 

a group of first-order differential equations in MATLAB. We followed the methodology presented 

by Rahman et al. to create a system of first-order differential equations and utilized the "ode45" 

MATLAB solver (Rahman et al. 2017). Finally, the trajectory dataset was generated for all five 

trucks from timestamp 0 sec to 900 sec. As shown in Table 3.2, the dataset contains the following 



12 
 

fields: (i) timestamp, (ii) X_pos (absolute X coordinate of the vehicle), (iii) Distance (distance 

covered by the vehicle in m), and (iv) Speed (speed of the vehicle in m/s). 

TABLE 3.2: Vehicle Trajectory Dataset 

Time X_Pos Distance Speed 

0 162.8806 0 31.44032 

0.1 166.0247 3.144032 31.44032 

0.2 169.1687 3.144032 31.44032 

0.3 172.3127 3.144032 31.44032 

0.4 175.4568 3.144032 31.44032 

 

At first, we divide the trajectory dataset into two separate datasets. One dataset (from the 

time stamp 0 sec to 450 sec) was used for model development, and another dataset (from the time 

stamp 451 sec to 900 sec) was used to evaluate the model. Then, the dataset used for model 

development was split into the train dataset (70%) and test dataset (30%) 

3.2 Vehicle Trajectory Prediction using LSTM and Hybrid Classical Quantum Computing 

LSTM (Long Short-Term Memory) is a recurrent Neural Network (RNN) applicable to a 

broad range of problems aiming to analyse or classify sequential data. LSTM can be used to predict 

the speed of the leader vehicle of a platoon based on the historical data sequences with great 

success. LSTM uses a certain number of past observations to predict the future. Sequence Length 

is the deciding factor in choosing the number of observations the LSTM considers in advance. If 

the sequence length is n, then the LSTM considers the last n observations to predict the 

(n+1)𝑡ℎ observation. In this study, a sequence length of 3 was used. We used the train dataset to 
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train the LSTM model, and the test dataset to test the model. A learning rate of 0.0001 that gave 

accurate results was decided after some experimentation. The number of epochs used was 20.  

 The LSTM’s efficiency and trainability can be improved by replacing some of the layers 

in the LSTM with variational quantum layers, a quantum-classical hybrid model of LSTM. 

Quantum LSTM (QLSTM) can learn significantly more information after the first training epoch 

than its classical counterpart and better learning capability of the local features while having fewer 

parameters than classical LSTM (Chen et al., 2020). We used the same datasets for classical LSTM 

model development and evaluations for QLSTM model development and evaluation. This study 

used Pennylane-enabled variational quantum layers to replace the LSTM layers. The following 

variational quantum circuits shown in Figure 3.3 serve as the foundation for the variational 

quantum layers: 

 

Figure 3.3: VQC Architecture for QLSTM (adapted from Chen et al., 2020) 

 These variational quantum circuits were run on the built-in Pennylane simulator. This study 

used four qubits, one variation layer, and a learning rate of 0.05. The parameters were chosen 

through experimentation on fewer epochs to see which produces the best outcomes.  
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3.3 Trajectory Prediction Model Evaluation 

Three performance metrics were used to evaluate the models: Mean Average Error (MAE), 

Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The MAE 

calculates the average of the absolute differences between predicted and actual values. The RMSE 

calculates the square root of the average squared differences between predicted and actual values. 

The MAPE represents the average of absolute percentage errors. The performance matrices can be 

measured from the following Equations: 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
                                                                                                                           (1) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑛
                                                                                                                   (2)   

 𝑀𝐴𝑃𝐸 = ( 
∑ |

𝑦𝑖−𝑥𝑖
𝑦𝑖

|𝑛
𝑖=1

𝑛
 × 100)                                                                                                       (3) 

 

3.4 Platoon Stability Evaluation using Intelligent Driver Model  

Finally, this study evaluated the automated truck platoon’s stability with trajectory 

prediction from classical LSTM and QLSTM using Intelligent Driver Model (IDM) by comparing 

the following: 

• Speed Profiles 

• Inter-truck gap profiles 

• Jerk profiles 

Where 𝑦𝑖 = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ  𝑠𝑎𝑚𝑝𝑙𝑒, 𝑥𝑖 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑠𝑎𝑚𝑝𝑙𝑒   1 

 𝑎𝑛𝑑 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  2 
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A simplified version of IDM for acceleration (Treiber et al., 2000) of the control vehicle 

can be expressed as, 

𝑎𝑐 = 𝑎 [1 − (
𝑣𝑐

𝑣𝑑𝑒𝑠
)

𝛿

− (
𝑑∗(𝑣𝑐,   ∆𝑣𝑙)

𝑑𝑙
)

2

]                                                                                             (4) 

where 

𝑎 is the normal acceleration, 

∆𝑣𝑙 is the gap between the control vehicle and the leading vehicle,  

𝑑∗(𝑣𝑐 ,   ∆𝑣𝑙) is the desired gap between the control vehicle and its leading vehicle, and 

𝛿 is an exponent for the vehicle’s acceleration. 

The acceleration of the control vehicle in the IDM model has two parts: 1 − (
𝑣𝑐

𝑣𝑑𝑒𝑠
)

𝛿

 accounts for 

the desired acceleration of the control vehicle and (
𝑑∗(𝑣𝑐,   ∆𝑣𝑙)

𝑑𝑑𝑒𝑠
)

2

accounts for the braking 

deceleration of the control vehicle when its immediate leading vehicle is decelerating. The 

desired gap 𝑑∗(𝑣𝑐,   ∆𝑣𝑙) is defined as follows, 

𝑑∗(𝑣𝑐 ,   ∆𝑣𝑙) = 𝑑𝑚𝑖𝑛 + max [0, (𝑑𝑑𝑒𝑠 +
𝑣𝑐∆𝑣𝑙

2√𝑎𝑏
)]                                                                           (5) 

where 

𝑑𝑚𝑖𝑛 is the minimum gap to be maintained between two vehicles, and 

𝑏 is the normal comfortable braking deceleration. 

For the N-vehicle simulation scenario, the acceleration of the N-th vehicle can be written as, 
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𝑥𝑛̈ = 𝑎 [1 − (
𝑥𝑛̇

𝑣𝑑𝑒𝑠
)

𝛿

− (
𝑑∗(𝑥𝑛̇,   ∆𝑥𝑛̇)

𝑥𝑛−1−𝑥𝑛−𝑙
)

2

]                                                                                          (6) 

where 

∆𝑥𝑛̇ = 𝑥𝑛−1̇ − 𝑥𝑛̇                                                                                                                          (7) 

𝑑∗(𝑥𝑛̇,   ∆𝑥𝑛̇) = 𝑑𝑚𝑖𝑛 + max [0, (𝑑𝑑𝑒𝑠 +
𝑥𝑛̇∆𝑥𝑛̇

2√𝑎𝑏
)]                                                                        (8) 

The string stability of the platoon was also evaluated by giving the predicted trajectory of 

the platoon obtained from the LSTM and QLSTM as input in the Intelligent Driver Model. The 

sum of squared speed error (SSSE) was used as an evaluation matrix (Salek et al., 2022). SSSE at 

a given timestamp can be calculated from the following equation:  

𝑆𝑆𝑆𝐸 (𝑡𝑖) = (𝑣𝐿(𝑡𝑖) − 𝑣1(𝑡𝑖))2 − ∑ (𝑣𝑗−1(𝑡𝑖
𝑁
𝑗=2 ) − 𝑣𝑗(𝑡𝑖))2                                                          (9)                                       

where 𝑇ℎ,𝑗(𝑡𝑖) is the actual time headway of the 𝑗𝑡ℎ follower truck at 𝑡𝑖with its immediate leading 

truck, 𝑣𝐿(𝑡𝑖) is the leader truck’s speed at 𝑡𝑖, and 𝑣𝑗(𝑡𝑖) is the 𝑗𝑡ℎ follower truck’s speed at 𝑡𝑖. 

For an autonomous truck platoon to be considered string stable, the non-zero speed 

errors of any truck should not be amplified in the preceding or following trucks (Bose and 

Ioannou, 2001; Pueboobpaphan and Van Arem, 2010). A lower value of SSSE indicates better 

string stability. We compared the SSSE values to determine which model demonstrated 

higher string stability for the autonomous truck platoon. 
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CHAPTER FOUR 

         ANALYSIS 

 The comparison of training loss and testing loss for the LSTM and the QLSTM is shown 

in Figure 4.1 and Figure 4.2, respectively. The QLSTM learns significantly more information for 

the training loss in the early epochs than the LSTM, and its results converge much faster than its 

classical counterpart. Similarly, we can see that the QLSTM learns substantially more information 

than the LSTM in the first few epochs for the testing loss and converges to a lower value more 

quickly. It proves that the QLSTM has better trainability than the LSTM. 

 

Figure 4.1: Comparison of training loss 
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Figure 4.2: Comparison of testing loss 

Figure 4.3 shows a comparison of the Mean Absolute Error for the trajectory prediction 

with LSTM and QLSTM for each truck in the autonomous truck platoon. Predicted trajectories 

that use QLSTM have 4% to 8% less mean absolute error than the predicted trajectories that use 

LSTM.  

 

Figure 4.3: Comparison of Mean Absolute Error 
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Figure 4.4 shows a comparison of the root mean squared error for the trajectory prediction 

with LSTM and QLSTM for each truck in the autonomous truck platoon. Predicted trajectories 

that use QLSTM have 3% to 6% less root mean squared error Predicted trajectories that use LSTM.  

 

Figure 4.4: Comparison of Root Mean Squared Error 

 Figure 4.5 shows a comparison of the Mean Absolute Percentage Error for the trajectory 

prediction with LSTM and QLSTM for each truck in the autonomous truck platoon Predicted 

trajectories that use QLSTM have almost the same mean absolute percentage error as the 

Predicted trajectories that use LSTM. 
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Figure 4.5: Comparison of Mean Absolute Percentage Error  

 Figure 4.6 shows the speed profile of every truck in the platoon for the original trajectory 

and figures 4.7-4.8 6 present the speed profile of every truck in the platoon for predicted trajectory 

by LSTM and QLSTM, respectively. The situations that require critical evaluation involve when 

the leader truck enters areas with lower speed limits and applies brake to keep its speed within the 

reduced speed limit. In all three scenarios, it was noted that every follower truck could closely 

match the leader truck’s speed profile throughout the whole simulation. From the figures we see 

that, the speed profiles of autonomous trucks using LSTM and QLSTM prediction for trajectory 

is almost same of the speed profiles with original trajectory. From this finding it can be inferred 

that the predicted trajectory using both LSTM and QLSTM can be used for truck platooning 

operations when original trajectory is not available. 
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Figure 4.6: Speed profiles of autonomous trucks with original trajectory 

 

Figure 4.7: Speed profiles of autonomous trucks using LSTM trajectory prediction 
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Figure 4.8: Speed profiles of autonomous trucks using QLSTM trajectory prediction 

Figures 4.9 presents the inter-truck gap profiles between every two trucks in the platoon 

for the original trajectory and figures 4.10-4.11 show the inter-truck gap profiles between every 

two trucks in the platoon for predicted trajectory by LSTM and QLSTM, respectively. From the 

inter-truck gap profiles, it can be deduced that there is no risk of a collision between the trucks in 

the platoon because none of the inter-truck gaps exhibit zero or a negative value. Also, the inter-

truck gap profiles demonstrate that each following vehicle can consistently maintain a safe distance 

of at least 10 meters from the truck directly in front of it. Overall, the platoon’s followers maintain 

uniform spacing for all the three scenarios. From the figures we see that, the inter-truck gap profiles 

of autonomous trucks using LSTM and QLSTM prediction for trajectory is almost same of the 

inter-truck gap profiles with original trajectory. It’s because of the higher accuracy in prediction 

of trajectory of the autonomous trucks. 
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Figure 4.9: Inter-truck gap profiles of automated trucks with original trajectory 

 

Figure 4.10: Inter-truck gap profiles using LSTM trajectory prediction 
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Figure 4.11: Inter-truck gap profiles using QLSTM trajectory prediction 

 Figure 4.12 shows jerks for every truck in the platoon for the original trajectory and 

figures 4.13-4.14 present jerks for every truck in the platoon for the predicted trajectory by LSTM 

and QLSTM, respectively. From the figures we can see that jerk is higher for the two short intervals 

that follow the two non-linear deceleration stages (during which the follower trucks attempt to 

resume uniform speed) in   all three scenarios. Except for the two brief intervals that follow the 

two non-linear deceleration stages (during which the follower trucks attempt to resume uniform 

speed), the jerk is almost zero for all three scenarios.  From the figures it is evident that, the jerk 

profiles of autonomous trucks using LSTM and QLSTM prediction for trajectory is almost same 

of the jerk profiles with original trajectory which denotes the higher accuracy in prediction of 

trajectory using both LSTM and QLSTM.  
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Figure 4.12: Jerk profiles of autonomous trucks with original trajectory 

 

Figure 4.13: Jerk profiles of autonomous trucks using LSTM trajectory prediction 
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Figure 4.14: Jerk profiles of autonomous trucks using QLSTM trajectory prediction 

 Figures 4.15 and 4.16 present the SSSE profiles for LSTM and QLSTM trajectory 

prediction, respectively. We used the SSSE profiles to evaluate the string stability of the 

autonomous truck platoon. Here, the platoon using QLSTM trajectory prediction had lower SSSE 

than the platoon using LSTM. The figures show that both scenarios lead to SSSE values near 0, 

except for the two brief periods after the two non-linear deceleration phases, where the following 

trucks strive to return to a uniform speed. Furthermore, even after these two brief intervals, the 

SSSE of the QLSTM remains lower than that of the LSTM. Thus, the QLSTM offers better string 

stability than the LSTM in all traffic conditions. 
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Figure 4.15: SSSE profiles of autonomous trucks using LSTM trajectory prediction 

 

Figure 4.16: SSSE profiles of autonomous trucks using QLSTM trajectory prediction 
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Although the results from LSTM and QLSTM are almost the same, the QLSTM used fewer 

parameters (181) than classical LSTM (1425). So, it can be inferred that the QLSTM will require 

less data for predicting the trajectory of the trucks in an autonomous truck platoon. 
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CHAPTER FIVE 

CONCLUSIONS 

 I(n this study, we used MATLAB to simulate a platoon of five autonomous trucks (with 

one leader truck and four following trucks) for a duration of 900 seconds. A set of first-order 

differential equations was solved in MATLAB to mimic the platoon of five trucks. Finally, the 

trajectory dataset was generated for all five trucks from timestamp 0 sec to 900 sec. Then, the 

study developed and evaluated an LSTM model as well as a QLSTM for predicting the trajectory 

of the leader vehicle of an automated truck platoon. This study also evaluated an autonomous truck 

platoon's operational efficacy and string stability of the autonomous truck platoon with the 

prediction of trajectory from both classical LSTM and QLSTM using the IDM. 

5.1 Summary of Findings 

 The analysis found that both the LSTM and QLSTM gave comparable results. It can be 

inferred that Quantum-AI will be more efficient in real-time management and require less 

computational burden for an Automated Truck Platoon. The QLSTM learned significantly more 

about the training loss in the early epochs than the LSTM, and its results converge much more 

quickly than its classical counterpart. Moreover, QLSTM also used fewer parameters compared to 

classical LSTM. Besides, the QLSTM learns substantially more information than the LSTM in the 

first few epochs for the testing loss and converges to a lower value more quickly. In addition, this 

study also evaluated the operational efficacy and string stability of the autonomous truck platoon 

with trajectory prediction from both classical LSTM and QLSTM using the IDM. The platoon 

operating with LSTM and QLSTM trajectory prediction showed comparable operational 
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efficiency. Moreover, the platoon operating with QLSTM trajectory prediction provided better 

string stability. 

 This study showed that, QLSTM can be used very effectively to predict the speed trajectory 

of the leader truck in an automated truck platoon, producing results that are on par with those of 

its classical counterpart while requiring significantly fewer training parameters and yielding more 

data per epoch. It is expected that with the development of quantum computers, hybrid quantum-

classical artificial intelligence would become more efficient in real-time management and require 

less computational burden for an autonomous truck platoon. 

5.2 Limitations and Future Research Direction 

 The following subsections present the study’s limitations for this thesis and future research 

direction. 

5.2.1 Limitations 

In a real quantum computer, in some scenarios, it may be required to reduce the number of 

gates in a quantum circuit is required to improve the overall efficiency and speed of the 

computation, but it may also come at the cost of some accuracy.  In this study, we used pennylane 

simulator which acts as an ideal quantum computer free from any errors. Another limitation of this 

study is that the automated platoon formation didn’t consider trucks entering and exiting the 

platoon. We also did not consider the lateral movement of the trucks in the platoon. Our future 

study will focus on predicting the trajectory of the leader vehicle of an automated truck platoon 

with both longitudinal and lateral movement as well as trucks entering and exiting the platoon. 

Currently, the model doesn’t consider the heterogeneity of vehicles and existing communication 
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delay present in a real-world setting. Future studies will also evaluate the efficacy of the trajectory 

prediction algorithm in the real-world environment using real automated trucks. 

5.2.2 Future Research Directions 

The author recommends the following to advance the study presented in this thesis: 

• An application development platform can be developed for implementing the approach 

developed in the study to help researchers and developers implement the autonomous 

truck platooning strategy.  

• Future research can be extended to utilize the evolving power of quantum computers 

to improve the prediction efficacy of QLSTM. 

• The current research can be extended to use real-world autonomous truck platoon data 

to evaluate the comparative efficacy of LSTM and QLSTM in the performance of 

autonomous truck platoon. 

• A future study should evaluate autonomous truck platoon performance for different 

types of autonomous vehicle controllers besides IDM. 

• A field evaluation with an actual autonomous truck platoon is recommended using the 

approach presented in this thesis for different traffic conditions. 
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APPENDIX A 

MATLAB CODE FOR TRAJECTORY GENERATION IN IDM 

 

# IDM Model 

function [dy] = idm(t,y,N,Tfinal,Xfinal,Vfinal, Th_const) 

dy = zeros(2*N,1); 

%--------parameter 

x0_dot =33.2; % unit is m/sec 

delta =4; 

a=2; 

b=2.94; 

kk = 1/(2*sqrt(a*b)); 

lc=15; 

Th=Th_const; % Time headway 

s0=0; % minimum gap =2.0 meters 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

x0 = interp1(Tfinal,Xfinal,t); 

% v  = diff(x0); 

v  = interp1(Tfinal,Vfinal,t); 

 

Delta_v(1) = y(N+1)-v; 

s(1) = x0-y(1) - lc; 

s_star(1) = s0 + max(0,y(N+1)*Th + y(N+1)*Delta_v(1)*kk); 
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for i=2:N 

    Delta_v(i) = y(N+i)-y(N+i-1); 

    s(i)       = y(i-1)-y(i) - lc; 

    s_star(i)  = s0 + max(0,y(N+i)*Th + y(N+i)*Delta_v(i)*kk); 

end 

%-main system-- %%%% 

for i=1:N 

    dy(i) = y(i+N); 

end   

for i=1:N 

    dy(i+N) = a*(1 - (y(i+N)/x0_dot).^delta - (s_star(i)/s(i)).^2); 

end 

 

end 

 

# Codes for Leader Vehicle Trajectory Generation 

 

close all; clear all; clc; 

 

%%%%%%%%%% INPUT PARAMETERS  %%%%%%%%%%  

l = 15;                                     % Length of trucks 

s0 = 5;                                     % Minimum safety gap 

Th_const = 0.4;                             % Constant time gap 
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N_follower = 4;                             % Number of follower trucks 

%%%%%%%%%%% Initialize the leader truck's trajectory %%%%%%%%%%%%% 

Xfinal = zeros(0,0);                        % Position 

Tfinal = zeros(0,0);                        % Timestamps 

Vfinal = load('Vfinal.txt');                % Speed 

 

F_time = size(Vfinal,1) - 1;                % Total time 

xb = [0:1:F_time]'; 

xa = [0:0.1:F_time]'; 

Vfinal = interp1(xb, Vfinal, xa);           % Interpolate speed 

 

%%%%%%%%%%% Determine the leader truck's trajectory %%%%%%%%%%%%% 

k = 0 ; 

N = N_follower + 1; 

init_gap = 31.4403232*Th_const + l + s0; 

 

for i=0:0.1:F_time 

    if i == 0 

        s1 = init_gap*N; 

        X = s1; 

        Xprevious = s1; 

    else 

        s2 = ((Vfinal(k+1,1) + Vfinal(k,1))/2)*0.1; 
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        X = Xprevious + s2; 

        Xprevious = X; 

    end 

     

    Xfinal=[Xfinal;X]; 

    Tfinal=[Tfinal;i]; 

     

    k = k +1; 

end 

 

%%%%%%%%%%% Save trajectory %%%%%%%%%%%%% 

writematrix(Tfinal, 'T.txt'); 

writematrix(Xfinal, 'X_L.txt'); 

writematrix(Vfinal, 'V_L.txt'); 

 

# Codes for Follower Vehicle Trajectory Generation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

 

close all; clear all; clc; 

 

%%%%%%%%%% INPUT PARAMETERS  %%%%%%%%%%  

l = 15;                       % Length of trucks 
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s0 = 5;                       % Minimum safety gap 

Th_const = 0.5;               % Constant time gap 

N_follower = 1;               % Number of follower trucks to be geenrated 

 

%%%%%%%%%%% Load the preceeding truck's trajectory %%%%%%%%%%%%% 

Xfinal = load('X_L.txt');     % Position 

Tfinal = load('T.txt');     % Timestamps 

Vfinal = load('V_L.txt');     % Speed 

 

%%%%%%%%%% DERIVED PARAMETERS  %%%%%%%%%%  

N = N_follower + 1; 

F_time = Tfinal(end); 

init_gap = 31.4403232*Th_const + l + s0; 

 

%%%%%%%%%%%% Initial Position and Speed %%%%%%%% 

initial_values = zeros(2*N,1); 

 

for i = 1:N 

    initial_values(i) = Xfinal(1,1) - init_gap*i; 

    initial_values(i+N) = Vfinal(1,1); 

end 

 

%%%%%%%%%%%%%%%%%%% SOLUTION OF SYSTEM OF EQUATIONS  %%%%% 
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tspan = 0:0.001:F_time; 

[T,Yidm] = ode45( @(t,y) ... 

    idm(t, y, N, Tfinal, Xfinal, Vfinal, Th_const), tspan, initial_values); 

 

%%%%%%%%%%% Determine the follower truck's trajectory %%%%%%%%%%%%% 

xa = [0:0.1:F_time]'; 

 

X_f = interp1(tspan,Yidm(:,1),xa); 

V_f = interp1(tspan,Yidm(:,N+1),xa); 

 

%%%%%%%%%%%% Plot IDM ---Speed %%%%%%%%%%%%%%% 

figure(1); 

hold on; 

builtin('plot',Tfinal,Vfinal,'k-','LineWidth', 1) 

plot(Tfinal,V_f,'r-','Linewidth',1) 

 

xlabel('Time (sec)') 

ylabel('Speed (m/sec)') 

xlim([0 900]) 

ylim([15 40]) 

 

legend([builtin('plot',Tfinal,Vfinal,'k-','LineWidth', 1) ... 

    plot(Tfinal,V_f,'r-','Linewidth',1)], ... 
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    'Preceeding truck','Follower truck'); 

grid on 

box on 

 

%%%%%%%%%%%%%Plot IDM ---Position %%%%%%%%%%%%%%% 

figure(2); 

hold on; 

builtin('plot',Tfinal,Xfinal,'k-','LineWidth', 1) 

plot(Tfinal,X_f,'r-','Linewidth',1) 

 

xlabel('Time (sec)') 

ylabel('Position (m)') 

xlim([0 900]) 

legend([builtin('plot',Tfinal,Xfinal,'k-','LineWidth', 1)... 

    plot(Tfinal,X_f,'r-','Linewidth',1)], ... 

    'Preceeding truck','Follower truck'); 

grid on 

box on 

 

%%%%%%%%%%% Determine the follower truck's gaps %%%%%%%%%%%%% 

gap_idm = Xfinal - X_f - l; 

Th_idm = gap_idm(:)./V_f(:); 
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%%%%%%%%%%%%% Plot IDM ---Gap %%%%%%%%%%%%%%% 

figure(3); 

hold on; 

plot(Tfinal,gap_idm,'r-','Linewidth',1) 

 

xlabel('Time (sec)') 

ylabel('Inter-truck gaps (m)') 

 

legend([plot(Tfinal,gap_idm,'r-','Linewidth',1)], ... 

    'Preceeding truck & follower truck'); 

grid on; 

box on; 

 

%%%%%%%%%%%%% Plot IDM ---Time gap %%%%%%%%%%%%%%% 

figure(4); 

hold on; 

plot(Tfinal,Th_idm,'r-','Linewidth',1) 

 

xlabel('Time (sec)') 

ylabel('Time gap (sec)') 

 

legend([plot(Tfinal,Th_idm,'r-','Linewidth',1)], ... 

    'Preceeding truck & follower truck'); 
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grid on; 

box on; 

 

%%%%%%%%%%% Save trajectory %%%%%%%%%%%%% 

writematrix(X_f, 'X_f1.txt'); 

writematrix(V_f, 'V_f1.txt'); 

 

# Codes for Plot 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 

close all; clear all; clc; 

 

%%%%%%%%%% INPUT PARAMETERS  %%%%%%%%%%  

N = 4; %Number of follower trucks 

l = 15; %Length of trucks 

F_time = 900;   % final time 

Th_const = 0.5; 

 

%%%%%%%%%%% Load all trucks' trajectories %%%%%%%%%%%%% 

T = load('T.txt'); 

Vfinal = load('V_L.txt'); 

Xfinal = load('X_L.txt'); 

Xfinal1 = load('X_f1.txt'); 
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Vfinal1 = load('V_f1.txt'); 

Xfinal2 = load('X_f2.txt'); 

Vfinal2 = load('V_f2.txt'); 

Xfinal3 = load('X_f3.txt'); 

Vfinal3 = load('V_f3.txt'); 

Xfinal4 = load('X_f4.txt'); 

Vfinal4 = load('V_f4.txt'); 

 

Yidm=[Xfinal1,Xfinal2,Xfinal3,Xfinal4,... 

    Vfinal1,Vfinal2,Vfinal3,Vfinal4]; 

% ---------------------------------------------------------------------- 

%%%%%%%%%%%%Plot IDM ---Velocity%%%%%%%%%%%%%%% 

figure(1); 

hold on; 

builtin('plot',T,Vfinal,'k-','LineWidth', 1) 

plot(T,Yidm(:,N+1),'r-','Linewidth',1) 

plot(T,Yidm(:,N+2),'g--','Linewidth',1) 

plot(T,Yidm(:,N+3),'m-.','Linewidth',1) 

plot(T,Yidm(:,N+4),'b:','Linewidth',1.5) 

 

 

xlabel('Time (s)') 

ylabel('Speed (m/s)') 
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xlim([0 900]) 

ylim([15 35]) 

legend([builtin('plot',T,Vfinal,'k-','LineWidth', 1) ... 

    plot(T,Yidm(:,N+1),'r-','Linewidth',1) ... 

    plot(T,Yidm(:,N+2),'g--','Linewidth',1) ... 

    plot(T,Yidm(:,N+3),'m-.','Linewidth',1) ... 

    plot(T,Yidm(:,N+4),'b:','Linewidth',1.5)], ... 

    'Leader truck','Follower truck 1','Follower truck 2',... 

    'Follower truck 3','Follower truck 4'); 

grid on 

box on 

 

%%%%%%%%%%%%%Plot IDM ---Position %%%%%%%%%%%%%%% 

figure(2); 

hold on 

builtin('plot',T,Xfinal,'k-','LineWidth', 1) 

plot(T,Yidm(:,1),'r-','Linewidth',1) 

plot(T,Yidm(:,2),'g--','Linewidth',1) 

plot(T,Yidm(:,3),'m-.','Linewidth',1) 

plot(T,Yidm(:,4),'b:','Linewidth',1.5) 

 

 

xlabel('Time (s)') 
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ylabel('Position (m)') 

xlim([0 900]) 

legend([builtin('plot',T,Xfinal,'k-','LineWidth', 1)... 

plot(T,Yidm(:,1),'r-','Linewidth',1)... 

plot(T,Yidm(:,2),'g--','Linewidth',1)... 

plot(T,Yidm(:,3),'m-.','Linewidth',1)... 

plot(T,Yidm(:,4),'b:','Linewidth',1.5)], ... 

    'Leader truck','Follower truck 1','Follower truck 2',... 

    'Follower truck 3','Follower truck 4'); 

grid on 

box on 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 

 

[r,c] = size(Yidm); 

gap_idm = zeros(r,N); 

Th_idm = zeros(r,N); 

 

for i = 1:N 

    if i==1 

        gap_idm(:,i) = Xfinal - Yidm(:,i) - l; 

    else 
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        gap_idm(:,i) = Yidm(:,i-1) - Yidm(:,i) - l; 

    end 

end 

 

for i = 1:N 

    Th_idm(:,i) = gap_idm(:,i)./Yidm(:,N+i); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 

% %%%%%%%%%%%%%Plot IDM ---Gap %%%%%%%%%%%%%%% 

figure(3); 

hold on 

plot(T,gap_idm(:,1),'r-','Linewidth',1) 

plot(T,gap_idm(:,2),'g--','Linewidth',1) 

plot(T,gap_idm(:,3),'m-.','Linewidth',1) 

plot(T,gap_idm(:,4),'b:','Linewidth',1.5) 

 

 

xlabel(['Time (s)']) 

ylabel('Space gap with preceding truck (m)') 

xlim([0 900]) 
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legend([plot(T,gap_idm(:,1),'r-','Linewidth',1)... 

plot(T,gap_idm(:,2),'g--','Linewidth',1)... 

plot(T,gap_idm(:,3),'m-.','Linewidth',1)... 

plot(T,gap_idm(:,4),'b:','Linewidth',1.5)], ... 

    'Follower truck 1','Follower truck 2', ... 

    'Follower truck 3','Follower truck 4'); 

grid on 

box on 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% 

% %%%%%%%%%%%%%Plot IDM ---Time gap %%%%%%%%%%%%%%% 

figure(4); 

hold on 

plot(T,Th_idm(:,1),'r-','Linewidth',1) 

plot(T,Th_idm(:,2),'g--','Linewidth',1) 

plot(T,Th_idm(:,3),'m-.','Linewidth',1) 

plot(T,Th_idm(:,4),'b:','Linewidth',1.5) 

 

 

xlabel(['Time (s)']) 

ylabel('Time gap with preceding truck (s)') 

xlim([0 900]) 
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legend([plot(T,Th_idm(:,1),'r-','Linewidth',1)... 

plot(T,Th_idm(:,2),'g--','Linewidth',1)... 

plot(T,Th_idm(:,3),'m-.','Linewidth',1)... 

plot(T,Th_idm(:,4),'b:','Linewidth',1.5)], ... 

    'Follower truck 1','Follower truck 2', ... 

    'Follower truck 3','Follower truck 4'); 

grid on 

box on 

%%%%%%%%%%%%%%%%Plot ACC & JERK%%%%%%% 

[r,c] = size(Yidm); 

acc_idm = zeros(r, N-1); 

jerk_idm = zeros(r, N-1); 

 

del_t = T(2) - T(1); 

 

for j = 1:N 

    for i = 1:r-1 

            acc_idm(i,j) = (Yidm(i+1,N+j) - Yidm(i,N+j))/del_t; 

    end 

end 

 

for j = 1:N 

    for i = 1:r-1 
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        jerk_idm(i,j) = (acc_idm(i+1,j) - acc_idm(i,j))/del_t; 

    end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%Plot IDM ---Acc %%%%%%%%%%%%%%% 

figure(5); 

hold on 

plot(T,acc_idm(:,1),'r-','Linewidth',1) 

plot(T,acc_idm(:,2),'g--','Linewidth',1) 

plot(T,acc_idm(:,3),'m-.','Linewidth',1) 

plot(T,acc_idm(:,4),'b:','Linewidth',1.5) 

 

xlabel(['Time (s)']) 

ylabel('Acceleration (m/s^2)') 

xlim([0 900]) 

 

legend([plot(T,acc_idm(:,1),'r-','Linewidth',1)... 

plot(T,acc_idm(:,2),'g--','Linewidth',1)... 

plot(T,acc_idm(:,3),'m-.','Linewidth',1)... 

plot(T,acc_idm(:,4),'b:','Linewidth',1.5)], ... 

    'Follower truck 1','Follower truck 2', ... 
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    'Follower truck 3','Follower truck 4'); 

grid on 

box on 

 

%%%%%%%%%%%%%Plot IDM ---Jerk %%%%%%%%%%%%%%% 

figure(6); 

hold on 

plot(T,jerk_idm(:,1),'r-','Linewidth',1) 

plot(T,jerk_idm(:,2),'g--','Linewidth',1) 

plot(T,jerk_idm(:,3),'m-.','Linewidth',1) 

plot(T,jerk_idm(:,4),'b:','Linewidth',1.5) 

 

xlabel(['Time (s)']) 

ylabel('Jerk (m/s^3)') 

xlim([0 900]) 

 

legend([plot(T,jerk_idm(:,1),'r-','Linewidth',1)... 

plot(T,jerk_idm(:,2),'g--','Linewidth',1)... 

plot(T,jerk_idm(:,3),'m-.','Linewidth',1)... 

plot(T,jerk_idm(:,4),'b:','Linewidth',1.5)], ... 

    'Follower truck 1','Follower truck 2', ... 

    'Follower truck 3','Follower truck 4'); 

grid on 
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box on 

 

% %%%%%%%%%%%%%%%%%%%%%%% Plot SSSE 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

E_vel_idm = [Vfinal, Yidm(:,N+1:end-1)] - Yidm(:,N+1:end); 

SSE_vel_idm  = sum(E_vel_idm.^2, 2); 

 

figure(7); 

hold on; 

plot(T,SSE_vel_idm,'g-.','LineWidth',2) 

xlabel('Time (sec)') 

xlim([0 900]) 

ylabel('SSSE (m^2/sec^2)') 

% legend([plot(T,SSE_vel_idm,'g-.','LineWidth',2)], ... 

%     '#####'); 

grid on 

box on 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% 

set(findall(gcf,'-property','FontSize'),'FontSize',12) 
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Appendix B 

Python Code for Trajectory Prediction 

# Defining LSTM and QLSTM Model  

import torch 

from torch import nn 

from torch.utils.data import Dataset 

import pennylane as qml 

 

class SequenceDataset(Dataset): 

def __init__(self, dataframe, target, features, sequence_length=5): 

self.features = features 

self.target = target 

self.sequence_length = sequence_length 

self.y = torch.tensor(dataframe[self.target].values).float() 

self.X = torch.tensor(dataframe[self.features].values).float() 

 

def __len__(self): 

return self.X.shape[0] 

 

def __getitem__(self, i):  

if i >= self.sequence_length - 1: 

i_start = i - self.sequence_length + 1 

x = self.X[i_start:(i + 1), :] 
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else: 

padding = self.X[0].repeat(self.sequence_length - i - 1, 1) 

x = self.X[0:(i + 1), :] 

x = torch.cat((padding, x), 0) 

 

return x, self.y[i] 

 

class ShallowRegressionLSTM(nn.Module): 

def __init__(self, num_sensors, hidden_units): 

super().__init__() 

self.num_sensors = num_sensors # this is the number of features 

self.hidden_units = hidden_units 

self.num_layers = 1 

 

self.lstm = nn.LSTM( 

input_size=num_sensors, 

hidden_size=hidden_units, 

batch_first=True, 

num_layers=self.num_layers 

) 

 

self.linear = nn.Linear(in_features=self.hidden_units, out_features=1) 
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def forward(self, x): 

batch_size = x.shape[0] 

h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

_, (hn, _) = self.lstm(x, (h0, c0)) 

out = self.linear(hn[0]).flatten() # First dim of Hn is num_layers, which is set to 1 above. 

 

return out 

class QLSTM(nn.Module): 

def __init__(self,  

input_size,  

hidden_size,  

n_qubits=4, 

n_qlayers=1, 

n_vrotations=3, 

batch_first=True, 

return_sequences=False,  

return_state=False, 

backend="default.qubit"): 

super(QLSTM, self).__init__() 

self.n_inputs = input_size 

self.hidden_size = hidden_size 

self.concat_size = self.n_inputs + self.hidden_size 
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self.n_qubits = n_qubits 

self.n_qlayers = n_qlayers 

self.n_vrotations = n_vrotations 

self.backend = backend # "default.qubit", "qiskit.basicaer", "qiskit.ibm" 

 

self.batch_first = batch_first 

self.return_sequences = return_sequences 

self.return_state = return_state 

self.wires_forget = [f"wire_forget_{i}" for i in range(self.n_qubits)] 

self.wires_input = [f"wire_input_{i}" for i in range(self.n_qubits)] 

self.wires_update = [f"wire_update_{i}" for i in range(self.n_qubits)] 

self.wires_output = [f"wire_output_{i}" for i in range(self.n_qubits)] 

 

self.dev_forget = qml.device(self.backend, wires=self.wires_forget) 

self.dev_input = qml.device(self.backend, wires=self.wires_input) 

self.dev_update = qml.device(self.backend, wires=self.wires_update) 

self.dev_output = qml.device(self.backend, wires=self.wires_output) 

 

#self.dev_forget = qml.device(self.backend, wires=self.n_qubits) 

#self.dev_input = qml.device(self.backend, wires=self.n_qubits) 

#self.dev_update = qml.device(self.backend, wires=self.n_qubits) 

#self.dev_output = qml.device(self.backend, wires=self.n_qubits) 

def ansatz(params, wires_type): 
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# Entangling layer. 

for i in range(1,3):  

for j in range(self.n_qubits): 

if j + i < self.n_qubits: 

qml.CNOT(wires=[wires_type[j], wires_type[j + i]]) 

else: 

qml.CNOT(wires=[wires_type[j], wires_type[j + i - self.n_qubits]]) 

 

# Variational layer. 

for i in range(self.n_qubits): 

qml.RX(params[0][i], wires=wires_type[i]) 

qml.RY(params[1][i], wires=wires_type[i]) 

qml.RZ(params[2][i], wires=wires_type[i]) 

def VQC(features, weights, wires_type): 

# Preproccess input data to encode the initial state. 

#qml.templates.AngleEmbedding(features, wires=wires_type) 

ry_params = [torch.arctan(feature) for feature in features] 

rz_params = [torch.arctan(feature**2) for feature in features] 

for i in range(self.n_qubits): 

qml.Hadamard(wires=wires_type[i]) 

qml.RY(ry_params[i], wires=wires_type[i]) 

qml.RZ(ry_params[i], wires=wires_type[i]) 

#Variational block. 
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qml.layer(ansatz, self.n_qlayers, weights, wires_type = wires_type) 

 

def _circuit_forget(inputs, weights): 

VQC(inputs, weights, self.wires_forget) 

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_forget] 

self.qlayer_forget = qml.QNode(_circuit_forget, self.dev_forget, interface="torch") 

 

def _circuit_input(inputs, weights): 

VQC(inputs, weights, self.wires_input) 

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_input] 

self.qlayer_input = qml.QNode(_circuit_input, self.dev_input, interface="torch") 

 

def _circuit_update(inputs, weights): 

VQC(inputs, weights, self.wires_update) 

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_update] 

self.qlayer_update = qml.QNode(_circuit_update, self.dev_update, interface="torch") 

 

def _circuit_output(inputs, weights): 

VQC(inputs, weights, self.wires_output) 

return [qml.expval(qml.PauliZ(wires=i)) for i in self.wires_output] 

self.qlayer_output = qml.QNode(_circuit_output, self.dev_output, interface="torch") 

 

weight_shapes = {"weights": (self.n_qlayers, self.n_vrotations, self.n_qubits)} 
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print(f"weight_shapes = (n_qlayers, n_vrotations, n_qubits) = ({self.n_qlayers}, 

{self.n_vrotations}, {self.n_qubits})") 

 

self.clayer_in = torch.nn.Linear(self.concat_size, self.n_qubits) 

self.VQC = { 

'forget': qml.qnn.TorchLayer(self.qlayer_forget, weight_shapes), 

'input': qml.qnn.TorchLayer(self.qlayer_input, weight_shapes), 

'update': qml.qnn.TorchLayer(self.qlayer_update, weight_shapes), 

'output': qml.qnn.TorchLayer(self.qlayer_output, weight_shapes) 

} 

self.clayer_out = torch.nn.Linear(self.n_qubits, self.hidden_size) 

#self.clayer_out = [torch.nn.Linear(n_qubits, self.hidden_size) for _ in range(4)] 

 

def forward(self, x, init_states=None): 

''' 

x.shape is (batch_size, seq_length, feature_size) 

recurrent_activation -> sigmoid 

activation -> tanh 

''' 

if self.batch_first is True: 

batch_size, seq_length, features_size = x.size() 

else: 

seq_length, batch_size, features_size = x.size() 
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hidden_seq = [] 

if init_states is None: 

h_t = torch.zeros(batch_size, self.hidden_size) # hidden state (output) 

c_t = torch.zeros(batch_size, self.hidden_size) # cell state 

else: 

# for now we ignore the fact that in PyTorch you can stack multiple RNNs 

# so we take only the first elements of the init_states tuple init_states[0][0], init_states[1][0] 

h_t, c_t = init_states 

h_t = h_t[0] 

c_t = c_t[0] 

 

for t in range(seq_length): 

# get features from the t-th element in seq, for all entries in the batch 

x_t = x[:, t, :] 

# Concatenate input and hidden state 

v_t = torch.cat((h_t, x_t), dim=1) 

 

# match qubit dimension 

y_t = self.clayer_in(v_t) 

 

f_t = torch.sigmoid(self.clayer_out(self.VQC['forget'](y_t))) # forget block 

i_t = torch.sigmoid(self.clayer_out(self.VQC['input'](y_t))) # input block 
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g_t = torch.tanh(self.clayer_out(self.VQC['update'](y_t))) # update block 

o_t = torch.sigmoid(self.clayer_out(self.VQC['output'](y_t))) # output block 

 

c_t = (f_t * c_t) + (i_t * g_t) 

h_t = o_t * torch.tanh(c_t) 

 

hidden_seq.append(h_t.unsqueeze(0)) 

hidden_seq = torch.cat(hidden_seq, dim=0) 

hidden_seq = hidden_seq.transpose(0, 1).contiguous() 

return hidden_seq, (h_t, c_t) 

class QShallowRegressionLSTM(nn.Module): 

def __init__(self, num_sensors, hidden_units, n_qubits=0, n_qlayers=1): 

super().__init__() 

self.num_sensors = num_sensors # this is the number of features 

self.hidden_units = hidden_units 

self.num_layers = 1 

 

#self.lstm = nn.LSTM( 

# input_size=num_sensors, 

# hidden_size=hidden_units, 

# batch_first=True, 

# num_layers=self.num_layers 

#) 
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self.lstm = QLSTM( 

input_size=num_sensors, 

hidden_size=hidden_units, 

batch_first=True, 

n_qubits = n_qubits, 

n_qlayers= n_qlayers 

) 

 

self.linear = nn.Linear(in_features=self.hidden_units, out_features=1) 

 

def forward(self, x): 

batch_size = x.shape[0] 

h0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

c0 = torch.zeros(self.num_layers, batch_size, self.hidden_units).requires_grad_() 

_, (hn, _) = self.lstm(x, (h0, c0)) 

out = self.linear(hn).flatten() # First dim of Hn is num_layers, which is set to 1 above. 

 

return out 

 

# Importing Libraries 

import helper 

import pandas as pd 

from utils import * 



61 
 

import time 

import numpy as np 

import math 

import matplotlib.pyplot as plt 

import torch 

from torch.utils.data import DataLoader 

from torch import nn 

from IPython.display import Image 

import pandas as pd 

import seaborn as sns 

 

#Importing Data Set 

df = pd.read_csv(‘Train_Data.csv') 

df 

target = "Speed" 

features = ['Time', 'X_Pos', 'Distance'] 

 

# Data Processing 

size = int(len(df) * 0.70) 

df_train = df.loc[:size].copy() 

df_test = df.loc[size:].copy() 

df_eval = pd.read_csv('Eval_Data.csv') 

target_mean = df_train[target].mean() 
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target_stdev = df_train[target].std() 

 

for c in df_train.columns: 

    mean = df_train[c].mean() 

    stdev = df_train[c].std() 

 

    df_train[c] = (df_train[c] - mean) / stdev 

    df_test[c] = (df_test[c] - mean) / stdev 

    df_eval[c] = (df_eval[c] - mean) / stdev 

from Factory import SequenceDataset 

 

torch.manual_seed(101) 

 

batch_size = 1 

sequence_length = 3 

 

train_dataset = SequenceDataset( 

    df_train, 

    target=target, 

    features=features, 

    sequence_length=sequence_length 

) 

test_dataset = SequenceDataset( 
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    df_test, 

    target=target, 

    features=features, 

    sequence_length=sequence_length 

) 

eval_dataset = SequenceDataset( 

    df_eval, 

    target=target, 

    features=features, 

    sequence_length=sequence_length 

) 

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) 

test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False) 

eval_loader = DataLoader(eval_dataset, batch_size=batch_size, shuffle=False) 

 

X, y = next(iter(train_loader)) 

 

print("Features shape:", X.shape) 

print("Target shape:", y.shape) 

 

def train_model(data_loader, model, loss_function, optimizer): 

    num_batches = len(data_loader) 

    total_loss = 0 
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    model.train() 

     

    for X, y in data_loader: 

        output = model(X) 

        loss = loss_function(output, y) 

 

        optimizer.zero_grad() 

        loss.backward() 

        optimizer.step() 

 

        total_loss += loss.item() 

 

    avg_loss = total_loss / num_batches 

    print(f"Train loss: {avg_loss}") 

    return avg_loss 

 

def test_model(data_loader, model, loss_function): 

     

    num_batches = len(data_loader) 

    total_loss = 0 

 

    model.eval() 

    with torch.no_grad(): 
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        for X, y in data_loader: 

            output = model(X) 

            total_loss += loss_function(output, y).item() 

 

    avg_loss = total_loss / num_batches 

    print(f"Test loss: {avg_loss}") 

    return avg_loss 

 

def eval_model(data_loader, model, loss_function): 

     

    num_batches = len(data_loader) 

    total_loss = 0 

 

    model.eval() 

    with torch.no_grad(): 

        for X, y in data_loader: 

            output = model(X) 

            total_loss += loss_function(output, y).item() 

 

    avg_loss = total_loss / num_batches 

    print(f"Test loss: {avg_loss}") 

    return avg_loss 
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# Running the Classical LSTM 

from Factory import ShallowRegressionLSTM 

learning_rate = 0.0001 

num_hidden_units = 16 

 

model = ShallowRegressionLSTM(num_sensors=len(features), 

hidden_units=num_hidden_units) 

loss_function = nn.MSELoss() 

optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) 

classical_loss_train = [] 

classical_loss_test = [] 

print("Untrained test\n--------") 

test_loss = test_model(test_loader, model, loss_function) 

print() 

classical_loss_test.append(test_loss) 

 

for ix_epoch in range(20): 

    print(f"Epoch {ix_epoch}\n---------") 

    train_loss = train_model(train_loader, model, loss_function, optimizer=optimizer) 

    test_loss = test_model(test_loader, model, loss_function) 

    print() 

    classical_loss_train.append(train_loss) 

    classical_loss_test.append(test_loss) 
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def predict(data_loader, model): 

    """Just like `test_loop` function but keep track of the outputs instead of the loss 

    function. 

    """ 

    output = torch.tensor([]) 

    model.eval() 

    with torch.no_grad(): 

        for X, _ in data_loader: 

            y_star = model(X) 

            output = torch.cat((output, y_star), 0) 

     

    return output 

train_eval_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False) 

ystar_col = "Model forecast" 

df_train[ystar_col] = predict(train_eval_loader, model).numpy() 

df_test[ystar_col] = predict(test_loader, model).numpy() 

df_out = pd.concat((df_train, df_test))[[target, ystar_col]] 

 

for c in df_out.columns: 

    df_out[c] = df_out[c] * target_stdev + target_mean 

 

print(df_out) 

df_eval[ystar_col] = predict(eval_loader, model).numpy() 
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df_out1 = pd.concat((df_train, df_eval))[[target, ystar_col]] 

for c in df_out1.columns: 

    df_out1[c] = df_out1[c] * target_stdev + target_mean 

 

print(file_name = 'Leader_Prediction_LSTM.xlsx' 

df_out1.to_excel(file_name)df_out1) 

 

# Running the QLSTM 

from Factory import QShallowRegressionLSTM 

learning_rate = 0.05 

num_hidden_units = 16 

 

Qmodel = QShallowRegressionLSTM(num_sensors=len(features), 

hidden_units=num_hidden_units, n_qubits=4) 

loss_function = nn.MSELoss() 

optimizer = torch.optim.Adagrad(Qmodel.parameters(), lr=learning_rate) 

quantum_loss_train = [] 

quantum_loss_test = [] 

print("Untrained test\n--------") 

start = time.time() 

test_loss = test_model(test_loader, Qmodel, loss_function) 

end = time.time() 

print("Execution time", end - start) 
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quantum_loss_test.append(test_loss) 

 

for ix_epoch in range(20): 

    print(f"Epoch {ix_epoch}\n---------") 

    start = time.time() 

    train_loss = train_model(train_loader, Qmodel, loss_function, optimizer=optimizer) 

    test_loss = test_model(test_loader, Qmodel, loss_function) 

    end = time.time() 

    print("Execution time", end - start) 

    quantum_loss_train.append(train_loss) 

    quantum_loss_test.append(test_loss) 

train_eval_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False) 

 

ystar_col_Q = "Model forecast" 

df_train[ystar_col_Q] = predict(train_eval_loader, Qmodel).numpy() 

df_test[ystar_col_Q] = predict(test_loader, Qmodel).numpy() 

 

df_out_Q = pd.concat((df_train, df_test))[[target, ystar_col_Q]] 

 

for c in df_out_Q.columns: 

    df_out_Q[c] = df_out_Q[c] * target_stdev + target_mean 

 

print(df_out_Q) 
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df_eval[ystar_col_Q] = predict(eval_loader, model).numpy() 

df_out1_Q = pd.concat((df_train, df_eval))[[target, ystar_col]] 

for c in df_out1_Q.columns: 

    df_out1_Q[c] = df_out1_Q[c] * target_stdev + target_mean 

 

print(df_out1_Q) 

file_name1 = 'Leader_Prediction_QLSTM.xlsx' 

df_out1.to_excel(file_name1) 

 

# Comparison of Train Loss Values 

plt.figure(figsize=(8, 6)) 

plt.plot(classical_loss_train, label = "LSTM") 

plt.plot(quantum_loss_train, label = "QLSTM") 

plt.ylabel('Train Loss') 

plt.xlabel('Epoch') 

plt.legend() 

plt.show() 

 

 # Comparison of Test Loss Values 

plt.figure(figsize=(8, 6)) 

plt.plot(classical_loss_test, label = "LSTM") 

plt.plot(quantum_loss_test, label = "QLSTM") 

plt.ylabel('Test Loss') 
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plt.xlabel('Epoch') 

plt.legend() 

plt.show() 

 

# Comparison of Number of Parameters Used 

total_params = sum(p.numel() for p in model.parameters() if p.requires_grad) 

total_params_Q = sum(p.numel() for p in Qmodel.parameters() if p.requires_grad) 

 

print("No. of parameters for Classical LSTM: ", total_params) 

print("No. of parameters for QLSTM: ", total_params_Q) 
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