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Abstract

The work and research of this paper sought to build upon traditional city generation and

simulation in creating a tool that both realistically simulates cities and their prominent features and

also creates aesthetic and artistically rich cities using assets that combine several contemporary or

near contemporary architectural styles. The major city features simulated are the surrounding ter-

rain, road networks, individual buildings, and building placement. The tools used to both create and

integrate these features were created in Houdini with Unreal Engine 5 as the intended final destina-

tion. This research was influenced by the city, town, and road networking of Ghost Recon:Wildlands.

Both games exhibit successful creation and integration of cities in a real-time open world that creates

a holistic and visually compelling experience. The software used in the development of this project

were Houdini, Maya, Unreal Engine 5, and Zbrush, as well as Adobe Substance Designer, Substance

Painter, and Photoshop. The city generation tool was built with the intent that it would be flexible.

In this context flexibility refers to the capability to create many different kinds of city regions based

on user specifications. Region size, road density and connectivity, and building types are examples

of qualities of the city that can be directly controlled. The tool currently uses one set of city assets

created with intent for use together and an overall design cohesion but is also built flexibly enough

that new building assets could be included, only requiring the addition of building generators for

the new set. Alternatively, assets developed with the current generation methods in mind could also

be used to change the visual style of the city. Buildings were both generated and placed based on

a district classification. Buildings were established as small residential, large residential, religious

buildings, and government/commercial before being placed in appropriate locations in the city based

on user district specifications.
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Chapter 1

Introduction

The work described in this paper was conducted with three specific goals. The first of these

was procedural city generation. Procedural city generation refers to a process by which the elements

of a city are placed and represented in a digital 3D environment. This process generally includes

rules and procedures by which significant elements of a city, such as buildings and roads, are placed.

Procedural cities might also include surrounding terrain and geographic features such as rivers. A

significant amount of research work has been conducted in reference to procedural cities, especially

their place in virtual worlds for use in movies and video games. A large variety of techniques are

used to accomplish various tasks depending on the feature being worked on and the use-case of the

work. The visual fidelity and context with which a generation might be used is also dependent on

the features and objectives of the respective work. The work of this paper focuses its procedural city

generation on terrain, roads, and buildings. Procedural work for the terrain is primarily based on

height maps. Roads are largely based on path cost evaluation, and building generation and placement

are based on the parameterization of a collection of representative 3D models. The second major

goal of the work related to conducting the procedural generation using combined architectural styles

in the buildings. A large swath of architectural styles were surveyed with the intent of identifying

three styles from similar time periods from largely different parts of the world. Ultimately, the

Aztec, Romanesque, and Songnic styles of architecture were chosen for combination in the city

model. Because all of the chosen architectural styles were based in old, feudal societies, organic old

world style roads were prioritized. Prominent features of these architectures were selected based

on a variety of factors including cultural similarities, dissimilarities, and overall visual interest and

1



variety. The final goal of this project is related to real-time visualization. Real-time visualization

refers to the ability to view and move around a scene that is lit and rendered in real time, as

opposed to a set image or camera path to be rendered and viewed later. Real-time visualization is

the standard for interactive applications, especially video games, while more traditional rendering

practices are more popular for movie, television, and feature length animation purposes. Real-time

visualization, however, could streamline the concept process and visualization for elements, especially

in the background of a scene. Real-time assets have the additional requirement of representing both

the model and texture in a highly optimized fashion. Unreal Engine 5 was used for the real-time

rendering of this work.

This work is related to the field of 3D graphics as a whole, especially as it relates to the

representation of virtual worlds. Procedural generation and tools are prominent modern techniques

for creating a large variety of assets at a large scale, and is especially relevant to this work both in the

design and construction of the models as well as the generation of the materials used in texturing.

The generated city layout and creation is related to both video game and movie set design. The

combination of different styles of architecture and their relationships with one another is of special

interest as well. The real-time nature of the project relates to real-time rendering and lighting.

Relevant terms and terminology can be found for review in Appendix C.

The goals of this project in their final state are to create a procedurally generated city

focusing on terrain, road, and building generation. This includes creating a convincing representative

geographic area and creating roads to effectively traverse the area in the style of old world societies.

Buildings should also be procedurally generated from a collection of elements representative of the

chosen three architectures. The resulting buildings should be identifiable by their component pieces

but should also ultimately create a new and compelling architectural style with aesthetic appeal.

Generated buildings and structures should be placed along roads on the terrain in a convincing

and realistic way. The buildings and terrain, additionally, should be textured and rendered in real-

time lighting. A user should, additionally, be able to move around a scene and view the generated

environment. Ultimately, this tool would be able to generate arbitrary terrain and roads, with

appropriate building placements based on user designations. The model kit and building generation

would be specific to this combined architecture, but elements of the model kit could be used in the

process of creating a new style. Any style of building generation would be able to be passed into

the rest of the system for final city generation.
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The architectural styles chosen for combination were selected in part because of their rela-

tive similarity in time period. While not strictly contemporary, focusing on societies with roughly

the same technology level and construction capabilities helped maintain cohesive materials and con-

struction methods. Additionally, similarities in culture and views of society, especially in how these

views are expressed in the architecture, led to the specific combination of styles. Another facet of

the combination is that while Songnic and Romanesque architecture both evolve and influence new

styles of architecture in China and Europe respectively, Aztec architecture is largely destroyed or

abandoned after the arrival of Spain in central America. Had the Spanish not conquered the area and

instead pursued a more diplomatic relationship with the Aztecs, they might have adopted architec-

tural elements of Romanesque architecture found in old churches of Spain. This would additionally

allow for the possibility of the Aztec’s meeting other civilizations, especially considering the Aztec

empire’s position in Mexico made it considerably easier for them to reach the Pacific ocean than any

European power at the time. Had they eventually come into contact with China, they may have

also taken inspiration from ancient Songnic architecture. The similarities in culture, materials, and

construction methods would only serve to show these proposed modifications and influences were

potentially possible for Aztec capabilities.
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Chapter 2

Related Work

The related works chapter focuses on discussing past research that informed many of the

decisions made in the research design. This chapter is also meant to better inform the reader of the

history of the field as it relates to the project. The following sections are divided by research paper

and largely discuss procedural workflows for city or building generation.

2.1 Survey of City Generation Techniques

A Survey of Procedural Techniques for City Generation by George Kelly and Hugh McCabe

introduces and describes generalized techniques useful in the field of procedural generation [4]. These

techniques may be used together or separately for a wide variety of applications depending on the

specific technique. They also identify three key qualities that each of these processes demonstrate as

important features. These qualities are abstraction, parametric control, and flexibility. Abstraction

refers to the process of removing the need for a user to understand procedures by instead creating an

algorithm for the computer to handle when a certain function is needed. Parametric control refers

to the ability to manipulate input values in a process or algorithm in order to control its output.

Flexibility in this context refers to the ability of a tool to produce a wide range of results without

needing to adhere to traditional physical limitations. The primary procedural techniques then dis-

cussed are fractals, L-systems, noise functions, tiling, and Voronoi patterning. More information

on noise functions is provided in Appendix C. Fractals are nested shapes generated by recursive

mathematical algorithms. These algorithms are useful for generating patterned and natural shapes
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with a large amount of overall cohesion. Kelly and Mccabe define this as ’self-similarity’[4] The

recursive nature of these functions also lend them naturally to producing various levels of detail.

L-systems refer to Lindenmayer systems[4]. They are a mathematical grammar model originally

developed to study growth patterns in algae. In addition, they can be used to create complex struc-

tures using a starting condition and a set of productions. L-systems are excellent at modeling and

generating complex organic structures with a relatively simple basis. Noise functions are mathe-

matical representations of randomized data. Seeded randomness creates parametric control in the

way random values are generated. A noise function first generates randomized data points which

are then related to each other using some kind of interpolation function, often linear or cubic. [8]

refers to the process of breaking a virtual world into a 2D grid of tiles for referencing and assembly.

Tiling is also used in texturing to allow a relatively small texture to cover a larger surface. Texture

tiling has become more advanced, especially in reference to landscapes where it has become common

practice to combine several textures, layered and interacting in complex ways to produce the final

material. This technique allows a level of detail over a large area that is not achievable with a single

image. Voronoi texturing is an algorithmic method of creating partitions on a surface based on

scattered points and their distance to their closest neighbors[11]. This algorithm creates sections

of space divided by intersecting lines. These cell structures can vary widely in shape and size and

these characteristics can be driven by the method of point placement for processing. The paper

goes on to discuss different applications of each method for different purposes in city generation. It

also evaluates each of these techniques against criteria relating to realism, scale, variation, input,

efficiency, control, and if it was usable in real-time.

2.2 Citygen

Citygen was an early journey into the power of procedural workflows and their ability to

produce a large amount of compelling content without simply adding more labor to a problem[5] This

is in part a result of the observation that ”additional artist numbers do not generate a proportional

yield of content”[5]. This paper also serves as a direct follow up to Kelly and Mccabe’s previous

paper discussing techniques for procedural city generation[4]. Citygen approaches their method of

generation in three stages, producing road networks and buildings. The first stage in this method

is the creation of the primary road network. This is generated as a planar graph with an associated

5



adjacency list. Sampling techniques are used to conform roads to the surrounding terrain. The

sampling techniques used in creating the primary roads create potential paths forward per sampling

technique, and changes in elevation are the most influential factor in determining a chosen path.

The closed shapes formed by the primary road networks are referred to as ’city cells’, and are the

deployment point for secondary roads[5]. Secondary roads follow a growth-based algorithm inspired

by, but distinct from, L-systems. The algorithm allows roads to grow from various starting points

on primary roads inward within a city cell in parallel to create the secondary road network. As

potential roads are proposed to be added, a snapping algorithm determines if the road should be

connected to nearby neighbors or removed based on contextual analysis. Enclosed regions in this

secondary road network are classified as city blocks. Each city block is divided into lots using a

subdivision algorithm. This algorithm attempts to maximize the amount of reasonable, build-able

lots in a given block. Buildings are then placed on lots with a bias in generation based hints provided

by the user. Suburban buildings retreat from the road while urban buildings attempt to maximize

their lot space based on the building’s footprint. After buildings are generated and placed, a city

with general consistency in nearby buildings and coherent roads has been created.

2.3 Ghost Recon: Wildlands

The development of the world in Ghost Recon:Wildlands, a video game made by Ubisoft

and released in 2015, used extensive procedural tools in its development relevant to the process

of city generation sought in this paper. The technical team, led by Benoit Martinez, developed

procedural terrain, roads, railways, bridges, towns, and cities for the game using these procedural

workflows[10]. The final terrain map was a 32k x 32k height-field when imported to the engine.

Layers on the height-field were used to store information about various parts of the terrain for

later use. Roads were created and driven by shortest path nodes in Houdini between designated

locations, driven by waypoints in the engine. This organization of the tool allowed artists to adjust

the placement of the roads in engine while still maintaining the procedural power of the shortest

path operation. Additional support was added to allow tunneling through areas of the height field

where appropriate for railways. Another important aspect of the believable terrain comes in the

form of the extensive vegetation scattered throughout the world using distribution maps and a

variety of rules based on the model’s size and orientation. Towns and cities are also created and
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populated procedurally with given elements using over four hundred thousand building modules and

village props combined. Additionally, supplementary tools for placing repeatable objects, such as

fences and walls, were developed in Houdini and used in the game engine[10]. The combination of

these techniques allowed Ubisoft to create and populate a world with over six hundred and fifty

kilometers of roads, ninety kilometers of railways, and fifty-eight villages all seamlessly connected in

a realistic and visually compelling fashion. The use of procedural tools without the need to invest

in traditional tool development aided tremendously in their production, populating about eighty

percent of the world. The work done in this production also demonstrates the progress made in

procedural generation for games since the publishing of Citygen in 2007[5].

2.4 Beyond Game Development

Seok Kim, Kavak, and Crooks’ paper Procedural Generation Beyond Game Development

seeks to understand how procedural cities, whose development has been largely tied to video games,

can be used to further other fields of research[6] They identify two primary points of research where

this technology would be especially helpful. The first of these is social simulation. Social simulation

is a paradigm in which ’agents’ are individual pieces of a simulation with a particular type that

drives their behavior and decision making. Examples of entities used as agents in social simulations

are cars, businesses, organizations, and people. Procedural city generation aids in this research in

that much of the real world data available is non-standardized and labor intensive to work with.

By creating realistic, arbitrary digital versions of urban areas through procedural generation, social

scientists would have behavior that closely models observed decision making in a closed environment

with easily traceable data. This streamlines the process of trying to ascertain large scale, emergent

patterns. The authors identify that this could be specifically useful in research concerning, ’the

impact of geography on the robustness of a theory’, ’comparing and aligning different theories’, and

’[s]tandardizing the structure of naming... geographic and population data’[6] The second area of

research identified was use as urban test-beds. Urban test beds are simulated regions of an urban

environment created with enough detail to conduct simulations for rigorous and repeatable research.

The two main components of a test-bed are the urban environment and population. Different levels

of abstraction in the representation of a city or given urban sample may vary depending on the

test or research being performed. The authors envision this application of cities being useful in the
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development of self-driving cars and transportation, smart cities, and planning for utility services and

local infrastructure. The authors then analyze the effectiveness of procedural city generation in the

proposed tasks based on plausibility, diversity vs controllability, interoperability, level of detail, ease

of use, and cost[6] They identify the absolute need for a city generation to be plausible, but assert

this is less limiting for cities due to both the desired and naturally occurring diversity. Similarly,

this diversity is a prominent and desired design feature, but because it is borne of randomness it

necessitates a level of control over outputs. In the same fashion, there are a wide variety of methods

that can be used a particular generation. In a research oriented tool different solutions for the

same piece of an environment with the ability to switch between them should be available. Level of

detail identifies the distinction that while most game applications of procedural cities seek a high

level of visual fidelity, this will vary largely depending on research purposes and the appropriate

amount of resources should be allocated to visuals based on needs. Diversity and control also

require significant parameters and their interaction to drive city creation. These controls need to be

usable, understandable, and effective in order to facilitate intent driven research. They also identify

cost as a major limiting factor in using real world data, and assess that procedural simulations will

be similarly undesirable if costly in price or labor requirements. Thus, an advanced and publicly

available procedural generator would need to be accessible in order for procedural generators to be

used in research as described by the authors.

2.5 Open Street Maps

Open Street Maps(OSM) is a free online tool that allows users to access real world city road

and building data for use in digital 3D applications. Open Street Map saves in its own .osm format,

which can be imported into 3D programs like Houdini. These files are easily made and downloaded

directly from the website. Houdini’s import of OSM data imports roads as primitive curves and

imports simple block representations for buildings. Uses for this curve representation for roads is

readily apparent in the context of the work done on Ghost Recon: Wildlands.

8



2.6 Rules Based Architecture Generation

The generation of historical architecture based on an established rule set discussed by Liu

and Ke Wu focuses on the architecture of the Song dynasty[9] Chinese architecture in this period

followed a carpentry system known as cai-fen to drive the production of building pieces. They

represent this system using a semantic approach, developing a formalized grammar to describe

the appropriate construction of various building types. The construction rules are driven by the

grammar, and the pieces are a custom module system created based on the description of pieces

in cai-fen. This work focuses primarily on the buildings present in a Beijing courtyard, modelling

both interior and exterior structures. The buildings of the Beijing courtyard are the gate, gate

house, opposite house, festooned gate, veranda, eastern and western side and ear houses, the main

house, and the backside house[9] Each building is generated individually before being placed in its

appropriate position in the courtyard. The paper makes mention of the importance of hierarchy in

Songnic society and its place in architecture. Several aspects of a building’s architecture indicate the

status of the homeowner. The number of bays in a mansion or palace served as a primary indicator,

with distinctions between 7 bay structures made by the ’grade’, or height and thickness, of timber

beams. Eight grades are described in total, descending in number while ascending in size. Timbers

of grades five through one are used in palaces and mansions, determined by the type of building

and number of bays. Additionally, roof styles had a strict hierarchy associated with their use. The

placements of modules and the types of buildings placed in a given courtyard generation are driven

by control parameters determined by the user. Control parameters are distinguished by structure.

For example, the main house structure is created using six control parameters.

2.7 Combining Procedural Workflows with Manual Editing

When integrating procedural and manual workflows, natural conflicts arise where designer

intentions and model determinations diverge. Bridging these gaps is a necessary part of integrating

procedural work into a convincing virtual world. When examining what tools may be required

and how integration might be conducted, the paper Integrating Procedural Generation and Manual

Editing of Virtual Worlds takes a declarative modeling approach to procedural work. In a declarative

workflow, a designer describes or places representations of features or locations in a sketch of the

virtual world. This sketch is then processed with customized procedural tools to place features
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where designated and handle interactions between overlapping or nearby features. This contextual

processing is referred to as consistency maintenance. This approach helped drive designer efficiency,

ease of use, and to establish an integration between manual and procedural work as a baseline.

After baseline procedural sketches were produced, manual editing operations to interact with this

generation method were considered. Editing operations were divided into coarse, medium, fine, and

micro level operations. Coarse level operations focus mainly on the largest features in the world,

including cities and mountains. At the medium level, large scale features are edited at a finer level.

At the fine level, individual object level elements are edited. At the micro level, data of a given object

such as a geometric mesh or texture is added or edited. Coarse and medium level edits are identified

as strong candidates for procedural workflows while edits made at the fine and micro level are more

oriented toward manual editing. Examples of potential edit operations are then detailed for different

elements of the declarative model with associated editing levels. This table also classified edits into

six generalized types of modifications, depending on what feature was being modified or what data

about a feature was being changed. The three major issues identified in subsequent analysis were

the need to preserve manual changes, the similar need to balance control versus overall consistency,

and the complications presented in an iterative modeling workflow. Preserving manual changes

complicates generation in that once a manual feature has been added to a procedural generation, it

must regenerate with this feature in mind. This may also cascade into requiring other features to

regenerate. Ensuring the integration of this feature and the correct regeneration of impacted features

is necessary both to allow a designer to execute their intent and to avoid frustration and loss of time

with lost work. Balancing control against consistency refers to the need for designers to be able to

manipulate the world versus the need for the world to make sense and follow its own rules. If no

consistency controls are in place, nonsensical designs or potentially large amounts of manual editing

are necessary, while too much consistency maintenance can cause the editing process to become

obtuse and frustrating. An iterative modeling workflow combines and exacerbates these problems,

as after an initial manual edit is made, additional edits may be made as well. Additionally, undo

and redo become complicated operations when large scale procedural operations must be computed.

Storing previous iterative states of procedural work takes a large amount of memory, so the team

addressed redo and undo processes using localized regeneration of features. There is, however,

concern that this may not be scalable for medium or coarse level operations. Fully regenerating

affected features may feel unresponsive or slow for expectations of the feature based on paradigm.
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Proposed solutions included further declarative processing by adding a large amount of low level

parameters to force implement desired features. The second solution is a two-phased approach in

which procedural and manual operations are performed and integrated separately in stages without

interacting directly. Both of these approaches allow editing with a relative level of simplicity, but

risk becoming restrictive in what designers are able to create. The last, and most desired, solution

is one that would integrate procedural and manual elements effectively across iterations. Needs of

such a system and potential mechanisms to allow its function, such as element grouping, feature and

area locking, and operation scope.
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Chapter 3

Research Design

The ultimate goals of the project were to create compelling cities, and to focus on combining

architectural styles to create something new. The tool created was also intended to be able to be

used in real-time, meaning that assets created needed to be both visually compelling and resource

efficient in order to achieve the best results. The chosen architectural styles that are integrated in

the base set of city assets were combined based on both complementary cultural significance as well

as complementary visual appeal. The three architectural styles combined were Aztec, Romanesque,

and Songnic architecture. All of these architectural styles exist within feudal societies spanning from

the second to the sixteenth century and located in largely separated parts of the world. A large

motivating factor in choosing architectural styles from a variety of locations was to create new and

diverse combinations of features that may not have realistically cross-pollinated over the course of

history. By combining features and rules from each style, the assets sought to create a new and

visually compelling style that can be partly identified by its component pieces while still looking

new and unique.

3.1 Architecture

3.1.1 Aztec Architecture

The most modern of the architectural styles used is the Aztec style, dominating what is

now central Mexico in the fifteenth and sixteenth centuries. Aztec architecture prominently includes
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tiered pyramids known as tecpans [3]. Despite the common purpose of the large structures to imply

power, no strict governing rules or features dictated which tecpan should be used for a given purpose.

The largest of the tecpans were imperial palaces in the capital, serving as seats of government and

religious power. Similarly, tribute city-state tecpans radiated out from seats of power in a hierarchical

fashion, keeping outer societies within the fold of the empire. These, however, only account for the

administrative uses of the tecpan. The other main functional uses of tecpans were as mansions

for the wealthy or as ’pleasure palaces and retreats’ [3], used for a variety of recreation including

dance halls, sports games, hunting lodges, and schools. These recreational buildings were especially

present in larger towns and cities. Tecpans typically held courtyards or community plazas at the

peak, as well as several buildings dependent on the function of the tecpan. The further into the

interior of the tecpan from the open plaza, the more privileged the access. The homes of nobles

in Aztec society were typically made of stone, while peasant homes were made of adobe bricks.

Additionally, non palace homes were typically constructed as two single story structures, comprised

of a building for living and a steam bath. Homes in general did not have doors. Aztec architecture

also prominently features symmetry and geometric patterns in its edifices. These patterns include

animal and nature motifs, religious motifs, and simple sweeping patterns ’represent[ing]... religious

tenets and the power of the state’ [1].

3.1.2 Romanesque Architecture

Romanesque architecture mainly refers to the style used throughout Europe, especially in

churches in France, Italy, and Spain. The architecture was largely developed by ’young monastic

communities’ [2] from the early eleventh to mid twelfth century. Despite the rules of the style, it

is widely flexible. Romanesque architecture focuses on using simple principles in combination to

create compelling structures. Simple proportions such as 1:2, 2:3, and 3:4 are used alongside the

golden ratio and are nested together, becoming complex through their combination across a surface.

The Romanesque style also achieves unity through repetition and continuation, extending features

and placing them across the structure in multiple scales and styles. These scales are also used in

hierarchy, similar to the common proportions, often with the larger version of a feature such as an

arch encapsulating a smaller version. Additionally, features are used with variety and contrast in

mind in order to help define pieces against their surroundings. This is achieved both by the variance

of scale, as well as by using a variety of moldings for arches and columns. Combinations of different
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shapes are also used, such as alternating between an arch and a pier in a compound pier. The

continued repetition of the same shapes, however varied, could become muddying and create very

busy structures. Because of this conflict, Romanesque architecture places emphasis on articulation,

creating clear boundaries between different features in a building [7]. The most prominently repeated

form of the Romanesque style is the semicircular arch, ever present in arcades, piers, arched doors

and windows, and the barrel vault roof. Other prominent features of the style include the blind

arch, Corinthian and Doric columns, buttresses, and tall bell towers that break proportion rules in

order to signify the importance of the building as a church.

3.1.3 Songnic Architecture

Songnic architecture was highly standardized, following the cai-fen module system for its

carpentry [9]. This system defined precise timber trades with specific sizes to be used based on the

size of the palace being constructed. Songnic beams were created with a 3:2 cross section ratio[9].

Palace size was defined by the number of ’bays’, or spaces between timbers along one long face of

the palace. These bays also followed a dimension of 2:3, width to height. The structures are defined

by these bays and timber grades, three to seven bay mansions, and seven to eleven bay palaces.

The bay number is always odd in order to maintain symmetry around the main opening of the

structure. A variety of roofs with a strict hierarchy are used based on the status of the building or

homeowner. Many of the roof types include distinct versions with and without central main ridges.

Roofs of the same type lacking the main ridge are distinguished with a ’Juanpeng’ identifier after

the main roof name. The nine prominent roof types were Yingshan, Yingshan Juanpeng, Xieshan,

Xieshan Juanpeng, Double Eaves Xieshan, Xuanshan, Wudian, cone tented roofs, and pyramidal

tented roofs. Structures, especially palaces, were constructed with multiple conjoined buildings

surrounding a central courtyard. An additionally important cultural aspect of Songnic architecture

is that, much like Aztec architecture, size, and especially height, imply power. The Song Dynasty of

China also followed a strict hierarchical structure that was carried into its architecture. In Songnic

architecture, however, the emperor and powers of the state could not appear to be less than that

of religion, meaning the imperial palace or local governor’s home needed to be the largest building

within a city. Pagoda towers, therefore, were significantly more prevalent in more rural areas and

very rarely seen within city walls. Songnic city walls were built of rammed earth, tapering in

thickness from the base to the peak.
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3.1.4 Combinations

Initial combinations in the architectural styles were identified first through both cultural and

structural similarities. All three styles utilize symmetry, scale as a metric of power, and hierarchical

distinctions in structure. Additionally, multi structure dwellings were a common factor between

Aztec and Songnic architecture. Timbers and their repetition served to communicate status in

Songnic architecture, while the similarly repeated columns in Romanesque architecture sought to

create unity in form. These and the hierarchical roofs of the Song Dynasty lend themselves naturally

to the repetition and hierarchy of forms used in Romanesque architecture. Different amounts of

repetition and different types of features, such as columns and arches of Romanesque architecture,

could be used to communicate status in a similar way. These factors created a strong base from

which to build other aspects of the combined style. Religious and government buildings are made

larger than private residences, and noble private residences are made larger than common ones.

Romanesque repetition of features in hierarchy creates unity across a single building while individual

choices in which types of features and how much of them might denote some kind of status, no matter

what kind of building they are placed on. This, as well as scale, has interesting implications on how

to interpret pagoda towers and raises the question of whether height or hierarchy of features should

be the primary marker of status.

Several distinctions between the styles must also be addressed in order to create a compelling

combination that does not lose its influences. While Songnic architecture largely focuses around

the silver ratio, Romanesque makes use of the golden ratio, the silver ratio, and several other

simple ratios in combination. Because of the more inclusive and dynamic potential arrangements

of the Romanesque style, while still including the fundamental proportions of the other, its rule of

proportion served as a driving force. Another conflict comes in the differences between how the Song

and Aztec empires distinguished government from religion. Songnic architecture is very strict about

the separation of religious and government buildings, with an insistence that government buildings

be larger, while Aztec architecture is largely ambivalent about relative size so long as it represented

the power and importance of the building. In order to bridge this gap, compromises between both

styles must be made to find an even middle ground. This was achieved by removing the distinction

that government buildings must be larger than religious ones, but also required the distinction

between the two structures. In order to accomplish this, double stair tecpans were used for religious
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structures while single stair tecpans were used for government, commercial, and private buildings.

Roofs are another interesting difference across styles. Because the Aztecs largely used stone or adobe

in their construction, roofing was primarily constructed of thatched grass or light volcanic stone as

a flat top to the building[1]. Songnic roofs were varied and followed hierarchy, while roman roofs

were largely tunnel or barrel vaults. The Songnic roofing style was chosen to create superior visual

interest, to distinguish shapes from existing semicircular features from the Romanesque style, and

to continue to emphasize the hierarchical emphasis of the styles and societies.

3.2 Terrain

The first aspect of the city generated in the process is the landscape. This was both de-

veloped early and exists first in the process because the terrain forms the foundation for other city

elements. For a compelling city, features such as roads and buildings should suit and be established

based on the surrounding geographic elements. The terrain is generated using a height-field work-

flow. This allows a very large representative area to be stored as a very small and usable file, lending

itself to the real-time nature of the final product. Height-fields are defined in Appendix C. The basic

workflow using height-fields to create terrain involved using a variety of noise fields to create initial

forms before using erosion simulation to create the effects of water run and sedimentation in the

terrain. Even with randomness in the noise, however, using the same noise patterns or erosion pro-

cesses will create very similar types of environments. In order to create a wide variety of geographic

features and an overall more realistic representation, four categories of landscape tiles were created.

These categories, or biomes, were created to have tiles with similar large scale features that varied

individually while also creating four distinct types of landscape pieces. The categories created were

plains, hills, mountains, and valleys or basins. Landscape tiles are of a uniform size, and there are

four tile varieties for each category. In order to create organic shapes and variety in the terrain,

randomized generation, placement, and orientation of the tiles was necessary. Tiles were generated

based on a square grid of user defined size in order to provide a large amount of flexibility. When

the grid size is set, randomized biomes, specific tiles, and orientations are assigned to each point.

Orientation randomness is locked at ninety degree turns in order to maintain grid alignment. These

random values are generated using a nondeterministic function, so each time the size of the grid is

changed a new set of tiles is generated. This ensures the same layout is not repeated for the same
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Figure 3.1: Terrain Node Graph breakdown

values. If repeatable randomness was desired, a seeded randomness independent from grid size could

be introduced. This would allow the grid size to be expanded or contracted without changing the

generation of existing tiles, and would also allow reproduction of tile sets at different sizes. This was

not included in the current design in order to streamline the process of quickly generating a variety

of layouts before creating a final piece with the desired generation. Instead, finished processing of a

given tile set can be saved for further use, and multiple finished states can be saved for comparison.

The grid will automatically resize and space points appropriately for tile alignment based on the

user specified grid size. Additionally, both more types of tiles in each category and more categories

could be added to the terrain generation by adding possible values to the random number genera-

tion and adding corresponding height-fields of an appropriate size. Once the tiles are generated, the

height-fields are spliced together and processed through a common erosion simulation. The terrain

is then exported as a 4033x4033 16 bit raw floating point file containing the height values. Details

about this file type are available in Appendix C. This file was then imported to Unreal Engine 5

using the landscape tool. Once imported, a gray diffuse version of the terrain is available to move

around and interact with.
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3.2.1 Landscape Shader

Once imported to Unreal Engine, a landscape material shader was created for the terrain.

This shader combined several physically based rendering(PBR) materials in paint-able layers on the

landscape. For more information on PBR materials, see Appendix C. The component materials

were developed using material graphs in Substance Designer. The component materials were rock,

coarse dirt, and grass. These materials were developed with the intent to layer one on top of the

other in the process of representing a realistic landscape. All of these materials were developed in

a similar workflow, first creating a base height map before extracting further material maps from

this basis. The bottom material in this layering was the rock material. The rock material uses a

low scale perlin noise as a basis, creating large areas of raised and lowered features. Rock shapes

generated using several nodes in sequence are then scattered across this background in two separate

passes with two separate sets of shapes. These shapes are then further modified to break up medium

and small level details, including adding scratch and dirt details. A warp is used to break smooth

edges on the shapes, while a fractal sum noise is used to create a rock-like surface texture. With the

height map now complete, other maps are constructed. A gradient map node is used to construct

the base color, while a normal node is used for the normal map. Ambient occlusion and roughness

maps are constructed primarily by mixing the height map with a levels node and optionally blending

with a grunge map. The middle coarse dirt material was created by first using perlin noise and dirt

noise maps within Substance Designer to create a base of irregularly mounded dirt. Rock shapes

are then scattered across the surface of this dirt. In order to better separate the rock shapes from

the background, a shape splatter color node is used with the data of the original shape splatter used

to scatter the rocks. This allows the rock elements to be colored separately from the background

gradient map before being placed on top in corresponding locations. The normal, roughness, and

ambient occlusion maps are constructed in the same fashion as the rock texture. The grass texture

follows a similar workflow, but additionally scatters leaf shapes created in Substance Designer in

addition to pebbles. The grass texture also uses the height gradient color map to distinguish between

dirt and grass levels in the background height material with fibrous surface texture over the grassy

areas. These maps are exported from Substance designer as 4096x4096 bitmaps, using a large texture

size because of the large amount of terrain to be covered. Additionally, in order to combat texture

tiling in later stages, additional copies of each material are generated at an eight times tile scale
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with randomized rotation as well.

When developing the landscape shader, textures first needed to be imported to the engine

through the process described in Chapter 4 Section 7. Once the textures are imported and prepared

for use in engine, both packed images for each material are imported to the shader. A material is

then constructed from the two images, utilizing a material function constructed to unpack materials

from images in this format. The images are imported to the shader graph as texture objects because

they will be sampled multiple times. The eight times scale copies of the materials are also placed in

the graph as texture objects. The absolute world position and division nodes are used to create UV

tiling settings to be shared by each material in the shader. Additional division nodes for the same

purpose at different scales are added later for anti-tiling techniques. All scales are set as editable

parameters for real-time adjustment. The constructed materials are then used to create a base layer

material automatically for the terrain. This automatic layering first places the grass material over

the rock material using a slope mask. This mask is generated using a slope mask node with a

vertical slope angle input. The slope blend falloff and slope material blend are created as editable

parameters. Masks to drive automatic layering are then generated using images rendered from the

height field in Houdini. These maps include erosion simulation information such as the sediment,

debris, water, and bedrock maps, as well as the height map itself. These masks are then stored

in a single image with one mask per channel before being imported to the engine. Each mask is

then used as the alpha for successive standard material layer blend nodes, stacking the materials

in order. This finalized auto material is then used as the bottom layer of the paint-able landscape

material. Additional layers for each material are added, with an optional top layer for painting

foliage megascans on the landscape. These layers are established by the landscape layer blend node.

For layer painting to work, however, the landscape tool must first be opened to the paint tab after

creating the landscape layer blend node in the material and applying the material to the landscape.

At this point, the created landscape layers will be visible in the landscape tool. Layer information

must be built and stored for each layer. Layers can be created for weight blending or height blending.

Only weight blended layers were used in this landscape material. Once layer information has been

built, materials can be painted freely from this window by selecting a layer and using the built-in

engine paint tool.

Additional processing is then added to material images before they are unpacked in order

to prevent tiling. Close range tiling is combated by first creating an additional copy of each material
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map by sampling the texture objects a second time. The first of the additional UV coordinates

are created, and should be very close to, but different from, the close range UV scale. The x and

y coordinates of the texture are then ’swizzled’, or swapped, in order to rotate the texture. The

image containing the normal map must then have its red and green channels swapped to account

for this change. The similarly scaled, rotated textures are then blended using a mask with large

blocks of black and white. This process hides the tiling artifacts of the textures close to the players,

but does little to combat it in the mid range. The large versions of the textures are then used to

improve this area. Texture coordinates of roughly eight times the size are created to be used with

the larger version of the textures. These maps are then similarly blended with a linear interpolation,

but instead of using a pre-existing mask, one is generated at run-time. This mask is created using

the camera depth fade node, which generates a mask based on distance from the camera. The fade

offset for this node is converted into a parameter used to control how far from the camera the mask

begins. The fade length input is also turned into a parameter, and controls the distance across which

the transition between the two materials will occur. This allows more distant areas to use the larger,

more randomized materials while using the blended standard and swizzled textures up close. The

”For Vertex Shader” boolean option on the camera depth fade node is also set to true in order to

ensure its mask is generated in the vertex shader instead of the pixel shader, which helps improve

performance.

3.3 Road Networks

When developing the road systems the main priorities were that the roads would function

well for navigating the terrain as well as reflect realistic city roads. The road systems were also

developed to reflect older roads with more organic shapes in order to maintain characteristics of

the feudal societies and time periods the architectural motifs are taken from. This meant ensuring

that intersections were limited to four connections, that corners were not too tight, and that roads

did not follow unrealistic or impassable paths. Additionally, the roads needed to be able to be

generated for an arbitrary terrain input, scaled appropriately, and make meaningful connections in

the landscape. To achieve these goals, the road generation is split into several steps. It begins with

an initial generation for major highways and large scale layout. This initial generation receives basic

processing to combine spline curves and create intersections where curves overlap. The next step is

20



both automatic and manual connections of the pieces generated in the initial step. These connected

pieces are then passed through a more complex processing step that makes slope based decisions

about which roads are valid and which need to be remapped for navigability. Once each of these

pieces are remapped and reintegrated to the initial curves, final processing and manual finalization

completes the road system for integration with the terrain.

3.3.1 Initial Generation

The initial road generation creates the basic shapes that the rest of the system will build

upon. Two different generation methods were created and can be freely switched between. The two

generate different outputs by utilizing similar workflows on slightly different inputs. Both methods

used the grid that sets the scale of the terrain as an input, and differed in that one method used

a Voronoi fracture of this grid while the other used a scrambled, dense version of the grid. In the

fracture based method, a cloud of 1,250 points are scattered across the surface of the grid and used to

create a Voronoi cell pattern along the surface. The grid method instead subdivides the grid 3 times

to create a similar density of mesh to the fracture method. Both methods then sample the terrain

and displace the points on the grid to the corresponding height on the terrain. For both methods,

this creates a low resolution copy of the terrain with a connected set of curves across it. In the

fracture method, overlapping points are fused and the surface curves are smoothed slightly. In both

methods, surface points are then displaced randomly at a uniform scale. In the fracture method,

edges with an interior angle lower than ninety degrees or higher than 125 degrees are removed. Start

and end points are then designated by the user before paths between these points are traced. These

paths primarily consider distance when deciding which curves to use. The initial generation at this

stage creates several curve shapes that will serve as the basis of the road network. The number of

shapes generated is dependent on the user specified start points, while the complexity of the shapes

are controlled both by the user generated end points and subsequent ”carve” Houdini nodes that

allow the user to control how far paths spread from the start toward their traced end destinations.

Through this functionality, users can control how developed each curve shape is before moving to

the next steps. The curves are then flattened for processing while height data is stored in a separate

variable for use later. A new initial curve in either method can be generated easily by changing

the seed for randomized displacement, and the fracture method shapes can be changed further by

changing the seed for the point cloud generated on the surface prior to the fracture.
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After the basic shapes are created, the points are relaxed, spreading them out from local

connections. This helps widen sharp joints and creates space between the curves for later processing.

As the relax operation can sometimes introduce overlap and complex shapes, near overlapping points

are fused and intersections are created at overlaps. The curves are then smoothed, reversing some

of the relax operation’s growth and creating smoother and more organic overall shapes. The curve

shapes are then passed through an assemble node, which packages the curves and separates each

shape as a ”piece”. These pieces are then connected automatically using a Connect Adjacent Pieces

node. The assemble node is critical to packaging and labeling the curve shapes appropriately for

connections. The connecting shapes are then merged with the original curve shapes. Additionally,

optional user defined lines can be added to ensure shapes are connected appropriately. Two manual

connections that can be toggled and manipulated by the user currently exist. Additional connection

elements can also be easily added as needed. These manual connection points can also be manip-

ulated at later stages to account for automated processing that may impact them after placement.

Near overlapping points are again fused, and intersections are created. The pieces are then merged

into one large curve shape and re-sampled to a uniform segment length. The assembled curve shape

is then passed along for complex, slope based processing.

3.3.2 Slope Processing

In order to obtain slope data to inform decisions about the roads, a mask was generated

on the terrain based on the slope angle. The mask began in areas with a slope angle of forty five

degrees and ended at a vertical angle of ninety degrees. This meant that areas with a slope of forty

five degrees or less received a zero value in the mask, while other areas received graded values up to

one at ninety degrees. These mask values were then used to determine what areas of the map were

navigable. A vex script first runs over the primitives in the curve shapes and deletes any where the

area it passes through has a mask value of 0.9 or higher. This eliminates very high slope areas from

the network and can be tuned to the user’s purpose. A python script then runs over the points in

the connected curve network. Vex was used for the first process as it automatically runs over every

element of a particular type for processing and handles it individually. For the task performed by

the python script, however, information about past points and access to those points was necessary.

Additionally, iteration variables were necessary. This was potentially solvable using Houdini for

loops, but that process would have been clunkier and less efficient. The python script then checks a
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points mask value, and when it detects that it has entered a high slope area, it begins keeping track

of the points in sequence as a ”chain”. The chain length and an identifying chain number are used

to distinguish high slope point chains. As a chain is constructed, its start point is stored. When

a slope value that does not qualify is reached, the chain end is recorded. The heights of the start

and end of the chain are then compared. If these heights differ significantly, then the high slope was

generally in one direction and the area requires a switchback pathing to traverse. If, instead, the

two heights are similar with high slope values between then it is likely a bridge is a better solution.

The chains are labeled accordingly, with a switchback or bridge start, center, and end recorded for

each chain. All points in the chain receive a chain number and the length of the chain for later use.

Bridge placement is currently not implemented and remains a flagging and detection feature only.

Areas that needed large height change were more common and more commonly impassable than

bridge candidates, and were therefore a higher priority to solve.

Areas flagged for switchback handling are then separated from the main curve shape. Switch-

back start, center, and end points are separated and maintained for processing. Span and center

points and their corresponding curve areas are removed from the main shape. Center points on

point chains with even chain lengths are slightly closer to the end point than start. To compensate

for this, all center points are re-centered based on start and end positions. The normal direction

is also calculated during this step. Start and end points are then labeled appropriately in groups

for use in the Houdini shortest path node. Simple square grids are then copied to each center point

with their orientation and scaled based on the chain length of the area being replaced. Each of these

grid locations is then processed separately as a primitive in a Houdini ”For Each” loop targeting

primitives. Four thousand points are scattered across the surface of the grid being processed. These

points are then connected using a Connect Adjacent Pieces node. This node allows each point to

search within a designated radius for a designated number of connections. Increasing these values

or the amount of points scattered across the grid will cause a significant increase in task time. Once

connections are made, near overlapping points are fused and the terrain data is sampled again to set

points to the appropriate height. This process essentially creates a triangular mesh representation

of the terrain geometry in the local area for path processing. Mask values from the terrain slope

mask are also sampled at the same time, and are inverted for the purpose of creating an appropriate

relationship in the path tracer. Each connecting piece of this newly created mesh is then passed

through another for each loop. This loop manually calculates and stores the slope value of each

23



Figure 3.2: Annotated Road Generation Node Graph

curve along the surface and scales the value of slope proportionally. This scaling up of the initial

value assists in driving the appropriate behavior in the path tracer.

Once all pieces have been processed, the wire frame of the terrain and the corresponding

start and end points, separated from the rest by their identifying chain number, are used to calculate

paths through the high slope area. The calculated slope for each piece serves as the primitive cost for

using that piece of the path. The inverted mask value is used as the angular turning cost attribute at

each point. The processing has thus created a direct relationship between slope and cost while also

creating an inverse relationship between slope and turning cost. These relationships create behavior

such that in high slope areas it is highly motivated to turn and find a low slope alternative. This is

further motivated by omitting distance from the cost. The generated curves are then flattened for

final processing and assembly. Once every switchback flagged area has been processed the same way,

turns that are too sharp are removed. After this, the amount of connections at each intersection is

counted and processed using Vex. Intersections with more than four connections are removed. Near

overlapping points are fused, and the process is repeated in order to clean complicated overlapping

areas and to ensure that no intersections contain more than four connected curves.
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3.3.3 Final Processing with Manual Editing

To begin the final processing steps, the original curve shapes with the switchback flagged

sections removed are merged with the newly calculated high slope paths. Near overlapping points

are fused and intersections are created. The splines are then merged into a single large curve shape.

The shapes are re-sampled to a uniform length of five meters before manual editing begins. Two

manual editing steps in which the user can remove primitives, then points for the road network

follow. Users are able to add and remove primitives from the selection to be deleted, and are able to

go back later and change these parameters. Removing primitives allows the user to remove pieces

of curves in whole, removing small disconnected pieces or parts of the road that are too cluttered,

superfluous, or otherwise non desirable. The second step that allows deletion of points allows the

user to make decisions changing the shapes of existing curves, as well shorten the ends of paths. The

curves are then cleaned to remove any remaining floating points or pieces from the editing before

being re-sampled to a length of two. It is at this point that the primitive road form can be saved to

further develop. Additionally, multiple versions of these could be saved to use with different terrains

or as different potential road layouts for a given terrain. Before being integrated to the terrain,

an additional layer of contextual editing is made available to the user. This repeats the manual

editing steps allowing the removal of both primitives and points, but this time does so with the

terrain visible and curves set to appropriate heights. By making the context of the roads visible

and obvious, an artist editing the layout will more easily be able to make decisions about which

roads are superfluous, necessary, and potentially optional for a given generation or design goal. The

masked terrain and final road curves are then both used as inputs in a volume modifying Vex node.

This node creates a distance curve of a user specified width along the curves on the surface of the

height-field. It uses a smoothing ease value, a minimum width, and a maximum width dictated by

the user to smooth the transition from the terrain to the road along the distance curve. A mask

is constructed around the curve using the smoothing to control the blending of the roads and the

underlying terrain. This masked representation of the road is then combined with the height-field

using a linear interpolation.
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3.4 Building Generation

3.4.1 Model Kit Design

Building generation was handled by first creating a model kit using architectural features

identified in the desired styles. The most prominent features of the Romanesque style were semicir-

cular piers and arches, Corinthian and Doric columns, unity through repetition, and the presence of

golden rectangles. The most prominent feature of the Aztec architecture were both administrative

and religious tecpans, most notably the double-staired pyramid. Songnic architecture strongly em-

phasized the silver ratio of 2:3, another simple ratio present in Romanesque architecture, strongly

defined and varied roof types, pagoda towers, and palaces distinguished by size and the number

of bays along its long face. With this in mind, models were created in Maya for the single and

double-staired pyramids, the Songnic roofs, and Romanesque columns. Additionally, modular seg-

ments for small and large houses, semicircular arches and piers, and pagoda towers were created.

The house component models were designed such that the floor and short sides of these buildings

were golden rectangles while the front and back facades were able to house a round number of silver

ratio bays. Pagoda segments were developed as octagonal prisms with golden rectangle outer faces.

These models were then imported to Houdini for assembly and combination.

3.4.2 Supporting Tools

One of the first tools developed for the building generators was an extendable pier or arch

dependent on a line. The tool detected the start and end of the line and placed respective start and

end pieces for a pier or arch. Intermediate points were replaced with the modular center piece. The

length of the line was altered according to the number of points designated by the user, allowing

the user to control the number of completed arches using the line points attribute. A control was

added to allow users to easily switch between piers and arches, using the same attribute to control

the length of either tool. A simple switch is then used to decide which arcade type should be

placed. A similar switch is used to control whether Doric or Corinthian columns are placed where

appropriate. The same semicircular arch door is used for each building on a designated face at

the center. Buildings were designed with hollow interiors, as well as usable holes in doors to allow

for further development and use. The current model kit, however, does lack windows and window

parameterization. Windows were ignored in favor of adding a large variety of previously established
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elements in a variety of configurations instead of breaking these configurations down further based

on window placement. This is additionally complicated by symmetry, which was a prominent piece

of design philosophy in all three architectural styles.

3.4.3 Building Parameterization

When constructing both large and small houses, the basis for wall placements is established

manually using the topology of the floor. Once these placements have been established, side walls, the

door wall, and the back wall are placed appropriately. The arch and pier tool was then expanded

for each type of house to place the appropriate amount of repeating arches on each wall in the

appropriate place according to length. In both houses the side walls receive the base number of

arches, while the front wall receives one less than the base number on each side of the door. The

back wall receives two additional arches compared to the sides, centered on the back wall. Columns

are also procedurally placed along the front and sides of the building in user designated amounts.

The pillars’ total span is constrained to the size of the respective wall, and nearby placements are

fused to prevent overlap. All rectangular Songnic roof styles were available for large houses, with

different scales applied to accommodate for differences in size of the initial models. A subset of

these roofs are made available to the small houses. Pagodas were generated using a vertical line as

a basis. The top end point is designated as the placement point for the roof while all other points

along the line receive wall pieces, assembled based on the floor, as well as interior roofs for each

segment. Similar to the arch tool, the line lengthens with the user defined point count, allowing

variable height towers based on a defined number of stories.

3.4.4 Generation and Saving

After the tools allowing the parameterized generation of each building type were completed,

they were used to generate and save a wide variety of each structure. Twenty eight small houses,

fifty large houses, and one hundred eight pagodas were generated using the building generation

tools. These buildings were saved using a file cache node. As these were individual objects being

saved, they were saved as one frame and not as a simulation. This reduces the size of the saved

files and keeps them relatively light to both save and load. Naming conventions were established for

each building type in order to organize them as they were saved. Naming conventions included all

27



changeable parameters in order to ensure if duplicate buildings were saved, only one of each version

of the building would be present when loading later. When buildings are loaded again after saving,

they are, however, able to be referenced by simple indices. A more complex system that parses the

naming convention to identify particular types of buildings could be developed and used if a project

had need of it.

Single stair pyramids are used as commercial and government squares while double stair

pyramids are used for religious housing and buildings. Single stair pyramids receive six buildings

across the surface. Each placement point is randomly determined to either be a large house or a

pagoda tower, and a random selection of previously generated buildings are placed on these slots.

Additionally, an extra index value is available in the random generation to populate an empty

building in one of the construction spaces. Double pyramids instead place two randomized small

houses at the top of the stairs, with two placements generating in the same way as the commercial

districts in the back of the pyramid square.

3.5 Building Materials

The feudal era of construction shared by the combined architectural styles influenced ma-

terial choices. Songnic architecture largely used stone and wood, but also incorporated metals such

as cast iron. Some pagoda structures were even built entirely from cast iron, constructed in layers.

Aztec architecture featured primarily stone. Floor materials were constructed to represent stone or

wood floors for structures. Wooden and stone wall materials were made, with the option of painted

wood as well. A simple clay tile material was made for roofing. A thatch roof material was made

for small houses. A light and dark stone material was made to represent the stone of the tecpans.

3.5.1 Material Generation

The house stone wall material uses several tile generators to create the base underlying

stone shapes. These randomly oriented, randomly placed tile generators with shape variance are

then stacked together and blurred to combine the shapes. Surface rock detail and variation are then

added on top before final maps are constructed. The stone floor material is similarly built using a tile

generator for basic shapes, but only uses one generator which is layered back over itself to reinforce

the shapes after surface details have been added to the stones. Dirt and general roughness details
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are added to the material textures as well before final maps are built. The dark stone material used

in the pyramids is constructed similarly to the rock material used in the landscape, using perlin

noise as a background for scattered rock shapes. The rock shapes in the dark stone, however, are

built to be more square and brick-like, unlike the round stones of the rock material. These shapes

are also stacked more closely and with less overlap in order to create the sense of placed, constructed

stones. The light stone material was created in Substance Painter using smart materials, combining

elements of several concrete materials, fill layers, and generators using smart masks.

The wooden boards material used for both wooden floors and walls was constructed using

a brick generated as the basis. The brick shapes were modified to be long horizontally with similar

vertical dimensions, and were sized to create an appealing and realistic repeating board pattern.

Wood grain detail is then added to the top of this material using a variety of blending operations

and noise maps. The ambient occlusion is inverted in order to ensure gaps between boards remain

rough and creates highlights on the raised wood details. Other maps are constructed from the height

map in the typical fashion. The tile roof material uses a tile generator as its basis, and largely follows

the same workflow to introduce scratch detail and rough clay surface variation. A gradient is used

to alter the height of the tiles from the top of the texture to the bottom, creating a slope along

it. This can later be tiled to create tiers of slopes in the material. The thatch roof material uses a

similar workflow, using boards for the basis shapes before using a gradient to create a slope along

it. The thatch, however, includes binding straps at the top border and frayed edges at the bottom.

Gradient masking is used to create extra feathering detail on the lower edge of the thatched roof.

Fibrous details are added throughout.

3.5.2 Manual Surfacing

After materials were generated, substance archive files were exported from Substance De-

signer and imported to Substance Painter for use in surfacing. Each piece of the model kit was

manually surfaced using a combination of the generated materials and existing smart materials

available in Substance Painter, namely the beech and walnut wood smart materials. Several simple

metallic materials were modified as well. Light dirt and wear were generated for each texture in

order to create a more imperfect and realistic final result. Several variations of each piece were

created in order to allow for variation in the final surfacing. Roofs with different combinations of

colored tiles and materials were generated. Walls and floors of wood and stone were generated for
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each structure. Columns were surfaced in stone, wood, and metal. Corinthian columns were also

given sculpted, high polygon count models in order to create the crown detail. These details are

transferred in the surfacing phase using texture baking. This process is more fully described in

Appendix C. Several versions of the high poly model were created in order to have several variations

of the Corinthian’s signature top. Walls and columns were forced to maintain material consistency

in the same structure, in order to maintain the overall look of the structure and ensure it remains

realistic. Base color, roughness, normal, height, metallic, and ambient occlusion maps are generated

for each texture.

3.6 Building Placement

After the road system is integrated with the terrain, generated and saved buildings can

be placed along the roads. This process begins by having the user define which primitives in the

road map correspond with four district types. These districts include commercial and government,

religious, large residential, and small residential classifications. After the user defines the areas for

buildings to be placed, points along the primitives in areas with a high slope are deleted. Points are

then scattered nearby the roads. These dense point clouds are fused down to potential placement

points. The fuse distance in this step dictates building spacing and the scattering parameters

dictate how far a building can be placed from the road. Building density is driven by both of these

parameters in combination. After potential building locations are identified, each point is processed.

An index value is given randomly in a range dependent on the building type. This index is used

to indicate which of the previously saved versions of the building will be placed in that position.

The terrain is then sampled for height and mask values of the new position. Points that have been

displaced into high slope areas are deleted. The remaining points are processed to find the closest

road. A new normal for the point is calculated based on the closest road shape, facing the building

toward the nearest road. The distance calculated in this step is then also used to remove points

deemed too close to the roads. Once processing is complete, buildings are scattered onto appropriate

points based on type and index. After buildings are placed, the terrain is processed to integrate the

buildings using the same method as was used when integrating the roads.
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Figure 3.3: City Generation Node Graph with labels

3.7 Unreal Engine

After texture bitmaps are exported from the Substance suite, they must be compressed be-

fore being transferred to Unreal Engine, as surfacing a high number of objects with unique materials

is not feasible when using six images per material. Images must then be compressed into channels,

as many maps are black and white and do not require full color to maintain their information. The

base color and normal maps are color, while the rest of the maps are black and white. The blue

channel of the normal map can be recalculated based on the red and green, and is also therefore

unnecessary. The roughness map of each texture is stored in the alpha channel of the base color

map. The normal map’s blue channel is used for the metallic map if the material has any metallic

components, and for the height map otherwise. The ambient occlusion map is stored in the alpha

channel. The alpha channels are used for the roughness and ambient occlusion maps, as maintaining

subtlety in value variations is more important in these maps when compared to metallic, height and

ambient occlusion. When these two constructed images are imported to the engine, the import set-

tings must also be set correctly. Because various information is being carried on different channels,

the images are imported in linear color space with appropriate compression. Color space is defined

for this context in Appendix C. This maintains all channels and prevents values from being altered

significantly by the compression algorithm. An unpacking material function was created in unreal to
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quickly create materials from these images. The ’unpacking’ process involves establishing 2 vectors

with a depth of four as the inputs, representing the two combined texture images with their four

channels. Most maps are simply sent out to appropriate outputs using channel masking to extract

the original images. The normal map, however, must be recalculated and adjusted because it has

been imported without a blue channel and at a value range of zero to one. To correct this, the red

and green values are multiplied by two, and then have one subtracted. This appropriately remaps

the normal values to a range of negative one to one. The blue channel is then calculated from the

corrected values using the DeriveNormalZ node.

The building elements are exported from Houdini using ROP Geometry Output nodes.

These nodes in Houdini allow objects to be exported as .obj files. The buildings are exported as four

files, one for each district type. This both lowers the overall size of the object to be imported

to Unreal and allows some control over material application. While both Houdini and Unreal

engine use meters as a base unit, and therefore match in scale, the .obj export file saved units in

centimeters. Additionally, Houdini uses a right handed, Y-up coordinate system while Unreal uses

a right handed, Z-up coordinate system. Because of these discrepancies, the objects are imported at

100 times scale to adjust for the unit change and rotated to match the new coordinate system. The

objects are then placed and aligned with their original position manually, but all objects maintain

their relative distances and orientations. Because the scale of the height field was altered slightly by

changing its resolution for Unreal import, objects were resized slightly to fit their original placement.

The building component objects were imported as instances per import, so all objects of the same

type from the same district share a material. Several materials for each piece were created, and a

unique material for each piece in each district was applied. The materials were selected and applied

manually, allowing the artist to maintain aesthetic color combinations and associations. This also

ensures material cohesion across a single building and is simple to achieve. This approach is limiting,

however, in the overall granularity of the material application. Other elements of the world space

were then adjusted to better create an aesthetically appealing landscape. The default exponential

height fog used in Unreal terrain was adjusted for the scale of the terrain. The sky light was then

adjusted, moving to a slightly warmer yellow light to mimic sunlight. The sky atmosphere was

adjusted to control how light both transports and scatters through the space. These settings have

a strong influence on how far and how clearly distant landscape elements can be seen.
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Chapter 4

Production

The production chapter focuses on displaying completed work based on the design described

in the previous chapter. It presents the work in the order it is processed in the system.

4.1 Terrain

Terrain images detail the terrain generation process, including individual tile generation,

tile combination, and final generation. The following four images are example tiles for each of the

four biome types used in terrain generation.
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Figure 4.1: Example ’Plains’ biome tile

Figure 4.2: Example ’Hills’ biome tile
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Figure 4.3: Example ’Mountain’ biome tile

Figure 4.4: Example ’Valley’ biome tile
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Figure 4.5: Terrain Tile Generation

This image displays assembled tile generations that have not yet been combined for pro-

cessing.
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Figure 4.6: Processing to identify tiling artifacts at borders

The final images of this section demonstrate the anti-tiling technique used when creating

the final terrain from the initial tile generation.
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Figure 4.7: Processing correcting tiling artifacts at borders

Figure 4.8: Example of a finalized initial terrain generation
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Figure 4.9: Low resolution terrain used as basis for road generation

4.2 Roads

Road images detail initial road generation, procedural and manual editing, and integration

with the terrain. The first images of the section demonstrate the low resolution proxy version of the

terrain and the initial road forms generated from it.
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Figure 4.10: Initial road generation using organic shapes

Figure 4.11: Initial road forms with both procedural and automatic connections
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Figure 4.12: Flagging and removal of areas identified for switchback pathing

Figures 4.12-4.15 demonstrate the high slope area processing performed on the roads, be-

ginning with the removal of flagged sections. Grids for localized path tracing are then scattered and

processed.
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Figure 4.13: Primitives scattered over switchback locations

Figure 4.14: Example of localized terrain used for switchback path tracing
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Figure 4.15: Localized switchback processing complete

The naive and contextual editing states are shown below in order to better communicate

the need for contextual editing.
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Figure 4.16: Naive editing stage for manual road editing

Figure 4.17: Contextual editing stage for manual road editing
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Figure 4.18: Road/terrain integration

The final images of the section demonstrate the process of integrating the road into the

terrain, displaying it both with and without supportive displays.
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Figure 4.19: A section of integrated road with a road curve display

Figure 4.20: The same section of integrated road as Figure 5.18 with no display
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Figure 4.21: Example small house generation

4.3 Buildings

4.3.1 Generated Buildings

This section gives example generations for each building generator produced.
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Figure 4.22: Example large house generation

Figure 4.23: Example pagoda generation
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Figure 4.24: Example singe stair tecpan generation

Figure 4.25: Example double stair tecpan generation
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Figure 4.26: Height-field integration for building placement

4.4 Placement

The following images show visual representations of the integration process for buildings.
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Figure 4.27: Height-field with buildings placed and a curve road display
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Figure 4.28: Coarse dirt color map

4.5 Materials

The materials section displays materials created in Substance Designer for the project.

4.5.1 Landscape Materials

Materials used in the landscape shader are displayed in their final state from Substance

Designer, both as a color map image and as a rendered material applied to a plane.
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Figure 4.29: Coarse dirt material plane

Figure 4.30: Rock color map
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Figure 4.31: Rock material plane

Figure 4.32: Sparse grass color map
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Figure 4.33: Sparse grass material plane

4.5.2 Building Materials

The first several materials are shown with their graphs in order to give a basic visual

representation of the creation process. More detailed material graph views are available in appendix

B. Subsequent images are represented in the same manner as the landscape materials.
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Figure 4.34: Thatch roof material graph

Figure 4.35: Blue tile roof material graph
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Figure 4.36: Wooden board map

Figure 4.37: Wooden board material plane
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Figure 4.38: Stone floor map

Figure 4.39: Stone floor material plane
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Chapter 5

Results

Images in this section depict example city generations rendered in Unreal Engine 5. The

images are all created from the same city generation output and depict different regions of the area

created. The final image visually displays the transition between different types of textures and

anti-tiling techniques used in the landscape shader.
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Figure 5.1: Example section of final city generation with materials, rendered in Unreal Engine

Figure 5.2: Example section of final city generation with materials, rendered in Unreal Engine
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Figure 5.3: Example section of final city generation with materials, rendered in Unreal Engine

Figure 5.4: Example section of final city generation with materials, rendered in Unreal Engine
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Figure 5.5: Example section of final city generation with materials, rendered in Unreal Engine

Figure 5.6: A close up of a surfaced single stair tecpan and its procedurally generated buildings,
surfaced and rendered in Unreal Engine
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Figure 5.7: Image displaying the anti tiling techniques in the landscape shader. Swizzled and blended
textures are shown up close, with a camera based fade to a larger texture in the distance.
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Chapter 6

Conclusions and Discussion

6.1 Analysis of Results and Workflow

The project was able to accomplish its baseline goals effectively. A procedural city generation

method creating terrain, buildings, and roads using combined architectural styles, presented in a

real-time lighting environment was created. The system can be used to create additional versions

or assets from the process. The terrain system is flexible, easy to add on to, and effectively hides

its tiling artifacts. It is also an efficient representation for game engines, with adjustable export

parameters depending on the size of the final output map. Continuing to process the map in

Houdini before exporting to Unreal allows the map the receive further feature based adjustments,

but also causes some complication in that the map must be resized slightly on import, necessitating

slight adjustments to building placement. Road generation effectively models old world roads and

navigates difficult terrain, winding up slopes and avoiding impassable areas. The road system also

combines procedural and manual workflows, accounting for iterative modeling by allowing the artist

to work in stages. The road system does rely on a significant amount of artist input after initial

generation to clean up the networks. Additionally, the road system is currently limited in its available

types of generation, as this work focused on organically shaped roads.

The building generation tool functions well to combine the model kit into compelling build-

ings. Each tool could be more advanced individually. Individual structures are somewhat simple

rectangles or octagonal towers. Building placement effectively uses user designated districts to drive

building types, and buildings are placed on the surface of the terrain with small flattened areas
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around them. Discrepancies in scale between the height-field before and after transitioning to Un-

real make placements somewhat unreliable when processed in Houdini and imported. The combined

architecture shows a strong overall design cohesion and effectively uses the elements of its compo-

nent styles, especially Songnic and Romanesque. Aztec influences can be seen in some stonework

patterning and the tecpans, but its representation could be improved overall. A large amount of

structures are currently able to be created by the system, but as they are generated manually to

be added to a library this process is somewhat slow. The absence of windows does impact how

realistic the structures seem, but this is alleviated somewhat by the repetition of piers, arches, and

columns across structures. Buttresses could also be added to building structures to further improve

the architectural representation.

6.2 Future Work

Much of the future work involves reorganizing tools and how the systems are used together.

Future versions of the terrain system could experiment with altering the terrain based on features in

Unreal Engine instead of Houdini in order to avoid scale discrepancies. Alternatively, a forced resizing

of the terrain to an appropriate export size could be done before processing for the features occurs.

If the terrain were altered in Unreal, the road generation tool could be imported as a Houdini Digital

Asset, taking the height-field file as an input and generating curves Unreal could use for processing.

This would likely involve altering the road system to focus more heavily on procedural processing

in Houdini before outputting curves to Unreal. Additionally, more generation options such as grid

focused roads or bridge support could be added. Because the road tool is designed to work for an

arbitrary height-field, it could be used independently of the other tools. Building generators are

very custom and dependent on the model kit, and should therefore be developed primarily to build

relationships in how different pieces are placed. The tool should then draw on models from a model

kit already imported to Unreal. The objects can then be instanced per building. This would allow

far more granular control over material application, and material application could additionally be

performed by the tool at generation time. This could then be used to generate single buildings or as

a supplementary tool. Similarly, building placement could use the same processes it currently uses to

create potential placement points, drawing on the building generator tools to produce buildings for

the city. Because it is simply generating points for placement with district designations, any number
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of arbitrary building generators could be used in conjunction with the city generator as long as they

use the same district designations. Thus, several model kits with corresponding sets of building

generators could be used to procedurally create a variety of areas with different architectural styles

over a realistic terrain, following an artist’s intent.
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Appendices
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Figure 1: Arch door

Appendix A Model Kit
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Figure 2: Arch door UV set

Figure 3: Corinthian column
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Figure 4: Corinthian column UV set
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Figure 5: Doric column
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Figure 6: Single semicircular arch
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Figure 7: Repeating semicircular arch end piece
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Figure 8: Repeating semicircular arch center piece
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Figure 9: Repeating pier end piece
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Figure 10: Repeating pier end piece
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Figure 11: Single stair tecpan
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Figure 12: Single stair tecpan UV set
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Figure 13: Double stair tecpan
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Figure 14: Small house floor
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Figure 15: Small house door wall
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Figure 16: Small house long wall
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Figure 17: Small house short wall
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Figure 18: Large house floor
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Figure 19: Large house door wall
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Figure 20: Large house door wall UV set
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Figure 21: Large house long wall
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Figure 22: Large house short wall
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Figure 23: Pagoda floor
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Figure 24: Pagoda wall
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Figure 25: Pagoda segment roof
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Figure 26: Pagoda roof
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Figure 27: Double Eaves Xieshan roof
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Figure 28: Xieshan roof
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Figure 29: Xieshan Juanpeng roof
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Figure 30: Yingshan roof
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Figure 31: Yingshan Juanpeng roof
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Figure 32: Xuanshan roof
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Figure 33: Wudian roof
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Figure 34: Wudian roof UV set
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Figure 35: Terrain generation node graph

Appendix B Node Graphs
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Figure 36: Road generation node graph

Figure 37: Building generators node graph
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Figure 38: Coarse dirt Substance Designer graph
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Figure 39: Rock Substance Designer graph
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Figure 40: Sparse grass Substance Designer graph
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Figure 41: Medium scale tiling Sparse Grass graph
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Figure 42: Tile roof Substance Designer graph
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Figure 43: Thatch roof Substance Designer graph
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Appendix C Relevant Terminology

A height-field is a data structure in which each point on a grid contains a value representing

the distance from the base to that point on the grid. By displacing points on the grid by their values,

high density terrain representation can be stored in very small raw floating point image formats.

RAW image files are files that store information in a matrix as indexed floating point

numbers. This allows a black and white image to be stored as simple floats instead of 3 or 1

channel color images. 16 bit refers to the floating point precision, or how memory is reserved for

maintaining accuracy in floating point numbers after the decimal point.

Noise in 3D art can refer to several things. In rendered images, noise typically refers to

graininess in the render where rendering has not fully resolved. In authoring textures and creating

terrain, noise refers to patterned randomness created by assigning an area of pixels random values

in a given range following some pattern, equation, or other algorithm.

PBR Material workflow references using texture images in a format that functions for Physi-

cally Based Rendering. This typically refers to a workflow using either metallic and roughness maps

or gloss and specular maps. Materials created in this project were created using a metallic and

roughness workflow, and each material generated a base color, normal, roughness, metallic, ambient

occlusion, and height map. Example maps and the construction process behind them are available

in Appendix B.

Texture baking refers to the process by which new maps representing geometric features

are generated for a mesh to assist in the texturing process. The texture baking will often involve

processing a higher detail mesh to translate its detail qualities to a more optimized version.

In the context of this project, color space refers to the way colors are stored in an image file

for later representation.
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