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Abstract 

The extraction and conversion of human voice information are crucial in several 

applications across multiple subject areas such as medicine, music technology and 

human-computer interaction. The presented research employs the variation of laryngeal 

bioimpedance, measured during phonation, for extracting and processing voice 

information. Compared to sound recordings and microphones, bioimpedance readings 

deliver a much simpler signal, allowing fast and computationally non-taxing processing. In 

the first stage of this research, a novel system for measuring laryngeal bioimpedance was 

designed and built. The circuit design was implemented with a multiplexed sensor system 

based on multiple electrode pairs to allow self-calibration of the sensors and increase 

usability and applicability. In the following stage, the resulting device was used to generate 

a novel dataset of laryngeal bioimpedance measurements for the distinction of speech and 

singing. This was then used in the training and deployment of an Artificial Neural Network 

using the Mel Frequency Cepstrum Coefficients of the recorded bioimpedance 

measurements. A real-time system for converting voice into digital control messages was 

developed and presented as the third stage of this research. The system was implemented 

using the MIDI protocol for using voice to control hardware and software electronic 

instruments. The thesis then concludes with the integration of the complete system. The 

conducted research results in a self-calibrating device for the measurement of laryngeal 

bioimpedance which delivers an fast and efficacious real-time voice-to-MIDI conversion. In 

addition, the creation of a unique dataset for the distinction of singing and speech allowed 

the deployment of real-time classification system. Collectively, the proposed system 

improves applicability and usability of laryngeal bioimpedance and expands the existing 

knowledge in the distinction of speech and singing. 
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1.1. Overview 

This chapter will outline the motivation behind the research presented in this thesis. First, 

an analysis of the rationale underpinning this project is provided to identify and underline 

the significance of this research and the problems it seeks to address. Then, the main 

objectives in renewing laryngeal bioimpedance measurement technology and its 

application in non-medical fields are presented and analysed. Next, the contributions to 

knowledge are discussed, and the publications arising from this research are presented. 

Finally, the chapter concludes by describing the overall structure of the thesis. 

1.2. Research rationale 

In medical voice analysis, bioimpedance measurements of the larynx are mainly employed 

to evaluate and assess the performances of vocal folds to identify dysfunctions or 

malformities. Despite the valuable information that such an approach provides, the optimal 

implementation of such a method is affected by external elements. Systems that use 

laryngeal bioimpedance, such as Electroglottography (EGG) or Laryngography, are highly 

affected by the need for individualised sensor placement as a consequence of 

physiological differences between humans and the requirement of both medical and 

technical expertise for correct operation. These limitations cause this method to be uneasy 

to implement and apply, which, in turn, significantly limits its range of possible applications. 

Such drawbacks resulted in the use of laryngeal bioimpedance being deemed inefficient 

and unreliable in medical diagnosis, which, consequently, caused significant limitations to 

its non-medical applicability. Laryngeal bioimpedance, however, can deliver unique 

information regarding human voice production as it is measured directly at the vocal folds 

(Herbst, 2019). Voice analysis and voice feature extraction are commonly bound to sound 

recordings and microphones. Compared to sound and microphone signals, however, the 
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laryngeal signal appears significantly easier and computationally sustainable to process, 

which can greatly simplify the development of systems for extracting and processing 

human voice information, especially for real-time applications.  

 This research seeks to design a reliable and modern laryngeal bioimpedance 

measurement system addressing both usability and applicability through the development 

of a self-calibrating sensor system. This implementation aims to overcome the difficulties 

in the measurement system’s deployment caused by the need of individualised and 

accurate sensors’ placement, and in turn extend the employment of such technique across 

non-medical fields. Such areas of application include voice act classification, voice 

conversion for music technologies, and human-machine interaction. The expansion of 

laryngeal bioimpedance measurements to non-medical implementations highlights the 

importance of this research in improving both the usability and the applicability of this 

technique. 

1.3. Aim and objectives 

The main aim of the presented research is to develop a novel laryngeal bioimpedance 

measurement system for the real-time extraction, classification, and processing of voice 

information using machine learning and digital signal processing techniques.  

 The core objectives are: 

i. Design and construction of a novel device for measuring laryngeal bioimpedance 

featuring modern electronic components and an innovative multi-pair sensor 

system. The design aims to create a compact and self-deployable device to expand 

laryngeal signals’ applicability in medical and non-medical applications. Improving 
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the ease of sensor placement would bypass the need for technical and medical 

expertise in the usage of the device. 

ii. Development of an self-calibrating sensor system to improve the system’s usability. 

By providing sensor placement self-calibration, the system tackles the drawbacks of 

laryngeal analysis caused by the need for individualised placement. 

iii. Training and deployment of an Artificial Neural Network (ANN) for the binary 

classification of voice acts between speech and singing. The use of an ANN allows 

the classification of voice acts and, in turn, to discard unwanted signals for the 

processing of the extracted voice information. 

iv. The development of a novel system for the real-time conversion of voice into digital 

control messages using laryngeal bioimpedance measurements and the Musical 

Digital Interface (MIDI) protocol. This seeks to tackle the gap in true real-time voice-

to-MIDI conversion across both the relative literature and the market 

v. Combining self-calibrating sensors, ANN classifier and voice-to-MIDI converter into 

a standalone system featuring self-deployability, real-time conversion of singing 

information into MIDI messages, and discarding of non-singing voice acts. 

1.4. Contributions to knowledge 

The chapters presented in the thesis aim to highlight and present the six contributions to 

knowledge made within the development of the presented project. These are: 

i. Design of a novel laryngeal bioimpedance measurement device 

Based on the operating principles of bioimpedance measurement, a laryngeal 

bioimpedance measurement device was designed and constructed. The device seeks to 

improve the old-fashioned design of both the sensor system and the internal electronics 
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commonly found across existing devices such as electroglottographs. The proposed circuit 

aims to overcome usability and applicability issues by implementing a novel multiplexed 

sensor system. Moreover, the circuit design sets out to implement a compact and cost-

effective method for implementing laryngeal bioimpedance measurement. In addition, it 

seeks to target the gap in the existing literature concerning the circuit implementation of 

such method and the lack of development in this technology's state of the art across the 

past two decades. 

ii. Self-calibrated sensor placement 

To improve usability and deployability of the laryngeal measurement device, the 

multiplexed sensor system is controlled by performing an analysis of the resultant signal, 

allowing placement evaluation and self-calibration. 

iii. Laryngeal bioimpedance singing/speaking voice act dataset 

In this contribution, a unique dataset for the classification of speech and singing through 

laryngeal bioimpedance is created. The dataset is composed of 7200 samples with a 

50:50 ratio of singing and speaking. The novelty of the collected dataset resides in being 

comprised of both singing and speaking voices samples of laryngeal bioimpedance. 

Previously documented datasets, in fact, show solely singing voice recordings (Kehrakos, 

Kouzoupis and Chousidis, 2016) or sustained vowel phonation in speech acts (Orlikoff, 

1991). The ethical issues of conversant consent, risk of harm, confidentiality, and 

anonymity, as well as any conflict of interest, have been considered in this research study. 

iv. Statistical analysis of fundamental frequency stability in speech and singing 

An analysis of the literature shows several published works discussing the fundamental 

frequency as the main element for the distinction of speaking and singing, with the latter 
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exhibiting higher stability (de Medeiros, 2021). This differentiation, however, stands as a 

hypothesis as almost the entirety of the conducted research depends on perceptual 

analysis and a very small amount of work is found in mathematically proving such 

assumption. De Medeiros et al. (2021) present an acoustical analysis of such difference, 

concluding in the inability to verify the hypothesis statistically. The study of the collected 

laryngeal bioimpedance samples of speaking and singing demonstrates a significant 

difference in the variability of the fundamental frequency value. In fact, speaking samples 

exhibit a much higher average variability across the whole dataset in comparison with 

singing. The results of the analysed data permit to statistically verify the underlying 

hypothesis of speech and singing differing in fundamental frequency stability. 

v. High accuracy real-time Machine Learning voice act classifier 

In this contribution, a Neural Network model is designed and trained for the binary 

classification of speech and singing. As the fundamental frequency stability was proved to 

be a significantly impactful factor in distinguishing speech and singing, using laryngeal 

bioimpedance readings allows to deploy a light yet efficient model. This arises from the 

characteristics of the laryngeal signal. As laryngeal bioimpedance is measured at the vocal 

folds level, the vocal tract is bypassed, and the resulting signal effectively represents the 

fundamental frequency of voice. This characteristic allows the implementation of a very 

simple and light, fully connected architecture featuring a single hidden layer. Such 

structure permits the deployment of the prediction system in a real-time environment whilst 

maintaining an accuracy value above 90%.  
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vi. True real-time voice-to-MIDI converter 

As a final contribution, the laryngeal analysis signal is used for the real-time conversion of 

voice into MIDI. The use of laryngeal bioimpedance, as opposed to audio signals, yields a 

much faster and more accurate evaluation of the fundamental frequency, which allows an 

effective true real-time deployment of the system. Moreover, the fast evaluation of the 

fundamental frequency allows the system to instantaneously evaluate microtonal shifting 

between the note produced by a user and the frequency value dictated by the tempered 

scale. Such evaluation bestows the system with the ability to use pitch-bend to both avoid 

undesirable corrections and mimic the frequency variations performed during a sustained 

phonation. 

1.5. Publications arising from this research 

Eugenio Donati, Christos Chousidis. "Electroglottography based real-time voice-to-MIDI 

controller." Elsevier Journal of Neuroscience and Informatics, 2022  

Eugenio Donati, Christos Chousidis. “Electroglottography based voice-to-MIDI real-time 

converter with AI voice act classification.” 17th IEEE Medical Measurement & Application 

conference, 2022  

1.6. Document structure 

This thesis is comprised of 9 chapters covering the work undertaken in the analysis of the 

literature and the completion of the aim and objectives. 

 Chapter 1 presents a brief introduction to the conducted work covering the research 

rationale, the aim and objectives, the contributions to knowledge and the publication 

derived from the conducted research. 
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 Chapter 2 covers the basic background theory regarding human phonation and the 

acquisition of laryngeal bioimpedance measurements. 

 Chapter 3 presents an analysis of the literature and state of the art of various 

aspects underlying the presented research. The literature covering laryngeal impedance is 

examined, followed by an analysis of the literature on the use of neural networks in the 

classification of the human voice. Finally, the literature and state of the market behind 

voice-to-MIDI conversion are observed and discussed. 

 Chapter 4 sits as the first chapter discussing the development of the system. This 

covers the design, testing and construction of a bioimpedance measurement device. First, 

a discussion of the underlying principles of operation is carried out, followed by an analysis 

of the circuit design and simulation. The multiplexing system used for the self-calibration of 

the sensor placement is discussed, followed by the construction of the hardware from the 

PCB design to the testing of the assembled circuit.  

 Chapter 5 describes the use of multiplexing in the development of a self-calibrating 

electrode system. A description of the dedicated electrodes and their configuration is 

presented, followed by an overview of the software’s implementation. 

 Chapter 6 covers the development of the neural network classifier, from the creation 

of the dataset to the real-time deployment of the system. Firstly, a statistical analysis of the 

fundamental frequency stability in the differentiation between speech and singing is 

presented and analysed. A brief background on neural networks is given, and the 

dataset's creation is discussed, from data collection to augmentation. The rationale behind 

the neural network and its architecture design are then discussed, followed by an 
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evaluation of the resulting performances. The chapter is then closed with an analysis of 

the classifier performances in a real-time environment. 

 Chapter 7 introduces the use of laryngeal bioimpedance for the conversion of voice 

into MIDI messages and briefly introduces the MIDI protocol. Following, a description of 

the employed pitch tracking algorithm is presented analysing the motivation and the 

mathematical development. The pitch tracking algorithm code implementation is then 

described, and its performances are assessed. Successively, a thorough description of the 

C++ code for the conversion of voice into MIDI is presented, and the chapter concludes 

with an assessment of the system’s performance. 

 Chapter 8 covers the implementation of the entire system using real-time 

classification to discard non-singing acts in the conversion of voice into MIDI. The system 

setup and configuration are presented, and the results and analysed. 

 Finally, chapter 9 summarises the work undertaken during this research and 

provides an insight into the future of laryngeal bioimpedance analysis in the extraction, 

classification, and conversion of human voice information.  
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2.1. Human phonatory apparatus 

The human phonatory apparatus has been studied in detail since the 19th century, when 

the first physiological observations were made through a series of mirrors reflecting 

sunlight (Garcia, 1856). The phonatory apparatus effectively converts kinetic energy (more 

specifically, aerodynamic energy) into acoustic energy (Titze, 1988, 1992). It comprises 

three main sections: the respiratory system, the larynx, and the vocal tract.  

In the first stage, the respiratory system produces a constant flow of air through the 

processes known as expansion and compression. During expansion, the diaphragm is 

lowered, the rib cage is expanded, and the air is inhaled, filling the lungs. Conversely, 

during compression, the diaphragm is risen, the rib cage is compressed, and the air 

pressure in the lungs is decreased by exhaling. The pressure alternation in the lungs 

produces a steady stream of air which is then passed through the trachea and acts as the 

source of aerodynamic kinetic energy (Titze, 1994).  

In the second stage, the airflow reaches the larynx, where the vocal folds (or vocal 

cords) reside. The folds, during breathing, are set in an idle adducted position (opened) 

and are then moved in an abducted position (closed) during the phonation process. When 

the airflow from the trachea impacts the vocal folds, the consequent vibration results in a 

self-sustained oscillation process that represents the effective sound source of the human 

voice (Van den Berg, 1957; Titze, 1994). Although a constant flow of air is applied from 

below, the folds continuously move closer and further apart in a cycle. This phenomenon is 

possible thanks to the interchange of elastic force and Bernoulli’s force which, 

respectively, allow the estrangement and approach of the folds. When the airstream 

initially impacts the larynx, elastic force applies, and the folds are pushed apart. When the 

maximum distance position is reached, velocity is at its peak, and, per Bernoulli's force, 
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the potential energy decreases and the folds fall back in the abducted position. This cyclic 

process creates the alternation of pressure levels that defines the produced sound (Titze, 

1983, 1988). Figure 2.1 shows one vibrational cycle of the vocal folds during phonation, 

where A and H represent the initial and final abducted positions, and the stages from B to 

G show the estrangement and approach. 

 

Figure 2.1 - Vocal folds' phonation cycle 

  As part of the final stage, the sound signal generated from the vocal folds’ 

oscillation passes through the pharynx and reaches the vocal tract. Here, the sound 

impacts a series of surfaces and obstacles as the pharyngeal cavity, the mouth cavity, and 

the nasal cavity. The contact with such surfaces causes a series of resonances through 

reflection and neighbouring vibration. These resonances combine with the simple sound 

generated by the vocal folds in the form of multiple harmonics. This process enriches the 

signal and creates a distinguishable voice sound. (Fant, 1979; Rothemberg, 1981). 

2.2. Principle of bioelectrical impedance 

In electronics, impedance represents the effective resistance of a circuit to Alternating 

Current (AC). It is defined as the complex ratio of voltage to current where the “real” part is 
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equal to the resistance, and the “imaginary” part represents the ensemble of capacitive 

and inductive properties of the circuit or, in other words, the Reactance (Callegaro, 2016). 

Impedance, therefore, depends on the presence of either capacitive or inductive elements.  

 The electrical properties of living tissue have been studied and analysed since the 

19th century (Herman, 1872). As shown by Herman (1872) and Thomasset (1962, 1963) 

the biological elements of the human tissue play a role in the body's reaction to electrical 

current as they present a behaviour similar to that of electronic components. The 

extracellular and intracellular fluids provide resistance, whereas the cells’ membrane, 

formed by non-conductive lipids between two layers of conductive proteins, provides 

capacitance (figure 2.2). Given the “capacitor-like” structure of the cells, alternating current 

interacts differently with the tissue based on frequency. In electronics, for frequencies 

closer to zero (where zero frequency is effectively Direct Current (DC)), current is not 

passed through capacitive components. In contrast, higher frequencies travel with ease 

through capacitive elements. Similarly, in living tissues, the bioimpedance at low 

frequencies mainly depends on extracellular fluids, whereas at high frequencies, it also 

depends on cells and intracellular fluids. Because of these properties, high frequencies 

propagate easily across living tissue. Therefore, they result in safer applications of 

electrical current on human tissue (IEC 60601-1:2020 Medical electrical equipment, 

International Electrotechnical Commission). 

 Multiple circuits were proposed throughout the years to describe the reaction of 

human tissue to current (Gudivaka et al., 1999), showing both parallel and serial 

arrangements. The most commonly used is Fricke’s electrical model (Fricke, 1924), where 

the cells’ capacitance and intracellular fluids’ resistance in series are connected in parallel 
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with the extracellular fluids’ resistance. Figure 2.2 shows Fricke’s electrical model and how 

it is comparable to livings cells. 

 

Figure 2.2 - Fricke’s Electrical Model 

2.3. Electroglottography 

Electroglottography (EGG) is a method utilised in medical applications to evaluate the 

behaviour of vocal folds and measure laryngeal bioimpedance. Firstly introduced in 1959 

by the French otolaryngologist Fabre, EGG is based on the measurement of bioelectrical 

impedance across the larynx and its relation to the movement of the vocal folds (Fabre, 

1959). In its operation, a low voltage and high frequency signal is applied across the larynx 

using two electrodes placed at each side of the neck. Figure 2.3 shows a diagram of the 

electrode placement.  

 

Figure 2.3 - Electroglottography electrodes placement (Chen, 2016) 
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The cyclic estrangement and approach of the folds’ vibrational cycle changes the level of 

bioelectrical impedance across the larynx, which, in turn, affects the signal applied through 

the electrodes, effectively performing an amplitude modulation (AM). Therefore, the 

impedance variations are measured through an AM demodulation that delivers the 

electroglottographic signal by reporting the amplitude modulation index over time. The 

signal resulting from this analysis offers a simple curve which reflects the degree of 

contact of the vocal folds during the phonatory oscillation. Figure 2.4 shows an example of 

a generic EGG signal. 

 

Figure 2.4 - Sampled laryngeal signal 

 A second technique for extracting the electroglottographic signal is to measure the 

level of conductance across the larynx. However, being conductance and impedance 

reciprocal, the difference only resides in the measurement approach whilst the principles 

of operation remain identical. 

2.4. Summary and discussion 

This chapter presented the theoretical concepts underpinning the development of the 

research proposed in this thesis. First a description of the human phonatory apparatus is 
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presented followed by an analysis of the principles behind the conduction of current 

through living tissue and bioelectrical impedance. The chapter then closes with a 

description of the functioning of laryngeal bioimpedance measurement. 

 Laryngeal bioimpedance measurements are performed by applying an electrical 

current through the larynx and evaluating the effect caused the varying impedance of the 

vocal folds’ vibration. As a result, this technique directly relies on the conductivity of human 

tissue in tandem with the physiology of the phonation system. This characteristic places 

the phonatory apparatus and the bioelectrical properties of human tissue at the foundation 

of the presented research.  
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3.1. State-of-the-art in Laryngeal Bioimpedance 

Laryngeal Bioimpedance, mainly in the form of EGG, has, in the last two decades, been 

deemed inefficient and unreliable due to a series of usage complications. The combined 

medical and technical knowledge required, together with the need for individualisation, 

causes the application of this system to be complex and highly time-consuming. 

Furthermore, the “old-fashioned” design of both the internal electronics and the electrodes, 

results in this method being highly susceptible to external interferences and noise (Celata 

and Ricci, 2021). These drawbacks caused the EGG systems to be partially discredited as 

an analysis technique (Mitra, 2004; Herbst, 2019). 

 The proposed research focuses on designing a laryngeal bioimpedance device 

based on the principles underlying the EGG approach. The literature on the designing and 

developing of EGG is, however, quite scarce. There are, in fact, very few available 

publications describing circuit design and construction of such devices. The original 

publication by Fabre in 1959 bases the system operation on the differential measurement 

of electrical conductance across the larynx. The design was based on vacuum tubes and a 

microammeter measurement system (Fabre, 1959). A similar design was then proposed 

by Frokjaer-Jensen and Thorvaldsen in (1968). 

 One of the main improvements in this technology was shown by Fourcin and 

Abberton (1972). This work proposes a new measurement system based on a pair of 

double electrodes to detect the changes of impedance in the excitation signal during 

phonation (Fourcin and Abberton, 1972). In this configuration, the excitation voltage is 

measured across the discs of the electrodes, whereas the rings couple the measuring 

system and the subject with the circuit ground reference. This new approach saw its first 

applications in medical diagnosis in 1972. Fourcin and Abberton showed its performance 
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in the evaluation of pathological conditions of the larynx and proposed how this 

visualisation of the phonation cycle could improve speech training for deaf patients by 

providing information on pitch control, intonation and voice patterns. In 1972 moreover, an 

alternative measuring configuration was proposed by Rothenberg where single electrodes 

are used connected either in parallel or in series (Rothenberg, 1990) 

 Between 1980s and 1990s, the EGG technology reached a “mature” stage where it 

was scientifically left behind due to its usage limitations (Herbst, 2019). In fact, the 

literature in the last two decades shows mainly interest concerning result analysis and 

applications related, almost entirely, to medical diagnosis and evaluation. The only modern 

publication available regarding EGG design was proposed in 2009 by Sarvaiya, Pandey 

and Pandey. The authors propose a more modern design based on operational amplifiers 

and other integrated circuits for the demodulation and filtering of the EGG signal (Sarvaiya, 

Pandey and Pandey, 2009). 

 The research proposed in this thesis seeks to address and contribute to the gap in 

the literature concerning the design and development of laryngeal bioimpedance sensor 

systems. In particular, the author believes that modernisation and improvement of such a 

system could result in a broader spectrum of applications in both medical and non-medical 

fields. 

3.2. Singing voice classification in machine learning 

Within the field of singing voice classification, the current literature mainly focuses on 

singing voice detection (SVD). Such a process is defined as the task of determining the 

presence, or otherwise, of a singing voice in a certain audio segment. This operation is 

generally conducted by extracting audio features from a given segment which are then fed 
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to a classification system (Monir, R., Kostrzewa, D. and Mrozek, D., 2022). For such 

methodology, approaches based on Artificial Neural Networks (ANN) are becoming 

extensively used for the powerful capabilities they offer in classification problems (Zhang, 

X. et al., 2020).  

 An SVD system based on ANN is proposed by Romero-Arenas, Gómez-Espinosa 

and Valdes-Aguirre (2022), presenting the implementation of Long-Term Recurrent 

Convolutional Networks (LRCN). Because in LRCNs different audio features can be 

combined in consecutive audio frames, the authors employ the use of 7 different audio 

features: Zero-Crossing Rate (ZCR), Mel Frequency Cepstrum Coefficients (MFCC), 

Linear Prediction Cepstral Coefficients (LPCC), Chroma, Perceptual Linear Prediction 

(PLP) and spectra. The CNN layer of the neural network performs feature extraction and 

feeds the Long Short-Term Memory (LSTM) layer that performs feature encoding and 

produces a prediction. Despite the accuracy of the model exceeding 90%, the LRCNs 

model results complex and computationally demanding. Moreover, the system was not 

tested on live inputs. The system is presented in figure 3.1. 

 

Figure 3.1 - Romero-Arenas, Gómez-Espinosa and Valdes-Aguirre, 2022 
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 Another multi-feature SVD system is proposed by Chen et al. (2019), employing 

four classic features: MFCC, LPCC, Mel filter bank and Chroma. In this implementation, 

Gated Recurrent Units are used with a Recurrent Neural Network (GRU-RNN) to tackle 

the loss caused by the gradient vanish problem of conventional RNNs (figure 3.2). The 

proposed model exceeds 90% of maximum accuracy but presents itself as a highly 

complex model and would result inefficient in real-time applications. 

 

Figure 3.2 - Chen et al., 2019 

 An example of a multi-featured approach employing a simpler network architecture 

is presented by Zhang et al. (2020). In this work, Feature Fusion combines image vectors 

with other numerical data so to improve the performance of the network. Namely, the 

chosen features were MFCC heat maps, LPCCs and Chroma. The resulting feature vector 

is then used as an input for a 2-layer CNN. The overall performance of the network 

delivers accuracy values between 80% and 90%, depending on the feature combination. 

However, the use of convolutional layers and image processing renders the system 

inefficient for real-time deployment.  

 

Figure 3.3 - Zhang et al., 2020 
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 Another approach based on a simpler CNN is proposed by Schütler and Grill (2015) 

using a CNN to detect singing voice from Mel spectrograms. Here the authors concentrate 

on the application of data augmentation techniques for the improvement of the model. The 

dataset is augmented by processing the audio samples with pitch-shifting and time-

stretching techniques to increase the dataset size. The deployed system offers an 

accuracy of 91%. Despite the high accuracy, the use of Image recognition and CNN 

results lengthy and computationally expensive for use in real-time environments. 

Furthermore, the system was solely trained and tested on pre-recorded audio and no 

analysis was conducted on live audio inputs.  

 The use of complex networks, image recognition techniques and multi-feature 

frameworks appears lengthy and computationally expensive. Despite the definition of real-

time is dependent on the application and context, when referring to voice-to-MIDI 

conversion, latency is required to remain below 15-20ms for it to be considered true real-

time (Donati, E. and Chousidis, C., 2022; Stowell, D. and Plumbley, M.D., 2010). 

Furthermore, the above-mentioned systems all tackle the detection of singing voice within 

music tracks and lengthy audio recordings and not the distinction between singing and 

speaking.  

 Literature on speech-singing automatic distinction is rather scarce in recent years; 

the main recent work is presented by de Medeiros et al. (2021). The authors propose the 

use of fully connected Deep Neural Networks trained with fundamental frequency values of 

speech and singing. The extraction of the fundamental frequency value was conducted 

through a log-linear regression of the Fast Fourier Transform (FFT) coefficients extracted 

from an audio segment. The use of ANNs and numerical values significantly reduces the 

pre-processing time and the computational expenses necessary. Nevertheless, the use of 
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recorded sound and microphones would highly affect the overall accuracy and 

performance of the system due to surrounding sound sources, microphone sensitivity and 

microphone characteristics.  

 The analysis of the literature shows how the common key element for both singing-

speaking distinction and SVD is the use of microphones. Using a microphone in an 

acoustically non-controlled environment can result in several artefacts compromising the 

evaluation of the singing voice data. For implementations relying on fundamental 

frequency readings, such as singing-speaking distinction, the use of microphones highly 

impacts the results as it could cause an erroneous reading. 

 This project tries to tackle the classification between singing voice and speaking 

voice through bioimpedance measurements. The proposed approach employs laryngeal 

bioimpedance signals to extract the necessary fundamental frequency information. The 

use of these bio-signals allows to bypass any external interference and, as it performs its 

measurements directly at the vocal folds, provides a clear representation of the 

fundamental frequency of voice. The system employs a DNN using MFCCs as input 

features to both create a training dataset and perform real-time prediction on a live 

laryngeal bioimpedance input. As seen across the literature, MFCCs are widely used in 

voice analysis and SVD and are considered as the most appropriate for such applications 

(Rocamora and Herrera, 2007). 

3.3. Audio and Voice, conversion to MIDI 

The main challenge for audio-to-MIDI conversion resides in the evaluation of the 

fundamental frequency, also referred to as f0. The extraction of the fundamental frequency, 

also known as pitch estimation, can grow even more challenging in real-time 



Chapter 3 Literature Review 

 

24  

implementations. Depending on the available computational resources, pitch estimation 

could take up to 40-50ms resulting in audible delay between the sound and the generated 

MIDI output. A method to improve the accuracy and speed of pitch estimation is proposed 

by Arvin and Doraisamy (2008). To avoid frequency domain calculations such as FFT, the 

authors employ a windowed peak detection method. The peak detection operation is 

performed with a 100ms window which makes it inefficient for true-real-time deployment. 

Moreover, the research shows how the overall performance of the system is highly 

dependent on silent environments and high-sensitivity microphones. Figure 3.4 shows the 

results proposed by the authors. 

 

Figure 3.4 - Results of MIDI transcription per window size ( Aervin and Doraisamy, 2008) 

 Another approach (Derrien, 2014) designed explicitly for MIDI conversion is 

proposed by combining autocorrelation and probabilistic models. This approach delivers 

accurate readings with an interval of about 12ms, making it employable for real-time voice-

to-MIDI conversion. The system, however, was only tested on downsampled pre-recorded 

guitar sounds. The use of pre-recorded and downsampled sounds highly affects the 

outcome of the system as the real-time processing of an audio input stream is fully 

bypassed. In 2020, Kumar and Kumar (Kumar and Kumar, 2020) proposed a method 

based on a modified wavelet transform. Even though this method can produce high 

accuracy readings, and in some cases lower error than FFT analysis, it was designed to 

work on moving windows of 110ms, resulting inefficient for real-time implementations.   
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 Most of the recent literature, however, relies on machine learning and neural 

networks (Goodman, Gemst and Tiňo, 2021). Whereas such methodology could be highly 

accurate and effective for static analysis, employing a neural network could cause the 

pitch estimation system to be too slow for real-time usage. Recent ANN based approaches 

mainly focus on using CNN with image recognition techniques varying from spectral 

analysis (Zhang, Chen and Yin, 2020) to visual information such as gestures or hand 

positioning in instrumental technique (Koepe, Wiles, Zisserman, 2019). These models can 

deliver accurate readings in complex situations and perform with high accuracy in 

multipitch estimation tasks. Nevertheless, the computational needs of CNNs, together with 

lengthy pre-processing tasks, makes a deep learning approach unsuitable for real-time 

pitch estimation. 

 The audio-to-MIDI conversion becomes even more challenging when applied to 

voice. This is due to the many ways in which different voices can differ. A method for 

voice-to-MIDI conversion proposed by Viitaniemi, T., Klapuri, A. and Eronen (2003), 

implements a probabilistic model based on the musical likelihood of certain notes 

appearing. Despite the system reaching high accuracy with an overall error below 9%, it 

was run solely on a database of audio recordings and no tests were run in a real-time 

setting. Similarly, the Correntropy method proposed by Antonelli and Rizzi (2003) 

produces high accuracy readings with low latency but lacks testing in real-time voice 

inputs. 

 The state of the research in both audio-to-MIDI and voice-to-MIDI conversion shows 

the high dependence of the conversion on processing power and silent environments. 

Even when a computationally efficient method can be employed, surrounding sound 

sources and microphone characteristics can strongly affect performance.  
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 Despite the lack of literature on specific voice-to-MIDI conversion, several platforms 

are available on the market. The A2M platform developed by Beatbar performs an audio-

to-MIDI conversion on any live input, including microphones. The system offers a choice 

between FTT and autocorrelation pitch estimation and provides manual control to balance 

accuracy and latency. However, the balance shift between accuracy and latency affects 

the platform's performance based on the type of input and acoustic environment. 

Furthermore, A2M does not offer any support for pitch bending. All musical notes on the 

tempered scale are tuned to a specific frequency; if a singer were to produce a note 

matching the standardised value of the tempered scale, the system wouldn’t be able to 

tune on the performer but would trigger the “corrected” note. 

 Another example of voice-to-MIDI conversion software is the Doubler2 by Vochlea. 

This system is designed to lock the MIDI output on a specific key by performing a less 

accurate pitch estimation. This allows an easier input processing whilst maintaining good 

accuracy as the distance between notes is of several hertz. Although this makes the 

system more computationally efficient, it doesn’t allow microtonal changes between note 

and legato due to the lack of pitch bend. In addition, the developers of Doubler2 specify 

the necessity of using dynamic microphones for the input whilst suggesting the usage of a 

specifically designed microphone. Such information indicates how a low-sensitivity 

microphone, and a quiet environment are necessary to avoid external interferences and 

obtain optimal performance. Such necessity, moreover, links to the common drawback of 

microphone usage in voice-to-MIDI conversion systems. As a microphone provides a 

continuous stream of audio input, a conversion system will react to whatever sound is 

picked up and consequently generate a MIDI message for non-voice sounds. 
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 Alongside the generation of MIDI notes from a singing voice, a parallel branch of 

research refers to using voice to control sound parameters via MIDI. In this case, the audio 

signal features of voice are employed to control synthesisers or effects. An example of this 

is the Walwhactor which uses vowel detection to control guitar filtering (Loscos and 

Aussenac, 2005). In other implementations, moreover, some articulatory aspects of the 

human voice were considered. In the case of the Mouthesizer, for instance, mouth and 

facial movements are tracked to control sound synthesis parameters (Lyons, Haehnel, 

Tetsutani, 2003). Reed and McPerson, presented in 2020 a method to implement voice as 

a control tool using Surface Electromyography (sEMG) (Reed and McPherson, 2020). This 

research is one of the very few approaches across the literature employing a methodology 

that relies on the articulatory properties of the human voice. 

 The project presented in this thesis seeks to tackle the difficulties in delivering 

voice-to-MIDI real-time conversion by using laryngeal bioimpedance as a signal source. 

Compared to audio, the poorer spectral content and the simpler waveform of laryngeal 

bioimpedance allow the implementation of simplistic methods for extracting the 

fundamental frequency. Furthermore, as such a measurement approach is conducted at 

the larynx stage, it results immune to external sound interferences. This research seeks to 

enrich the current literature in voice-to-MIDI true-real-time conversion and target the 

broader scope of applying biomedical sensor systems to use the articulatory 

characteristics of the human phonation system as a means for the extraction and 

conversion of voice information. 

3.4. Bioimpedance-to-MIDI 

The conversion of singing notes using bio-signals presents minimal literature. The only 

case across the literature shows a system that uses EGG as a signal source. Kehrakos, 
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Kouzoupis and Chousidis, (2016) proposed the use of autocorrelation in a non-real-time 

environment to extract both note and pitch-bend MIDI messages from recorded EGG 

samples. The project stands as a proof of concept showing how EGG can be significantly 

effective in the conversion of voice into MIDI because of its simple morphology and poor 

spectral content. Despite the successful implementation of the system, the analysis was 

solely performed on pre-recoded samples, and no real-time processing was conducted.  
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- Development of dedicated multi-sensor electrodes 
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4.1. Introduction 

The first objective underpinning this research project is the design and construction of a 

novel dedicated laryngeal bioimpedance measurement device. In the last two decades, 

systems like EGGs have been deemed inefficient and uneasy to use; this is due to the 

need for individualised placement and the requirement of both technical and medical 

knowledge for the correct operation of the device. The old-fashioned designs of both 

circuitry and electrodes, moreover, causes the EGG systems to be susceptible to noise 

and external interferences. This research seeks to overcome such drawbacks by 

proposing a novel laryngeal bioimpedance measurement device based on modern 

electronics and featuring a multi-electrode sensor system for easier deployment and self-

calibration. 

 This chapter analyses the circuit design and its simulation within a computer 

environment, followed by a description of the multi-electrode sensor system. The chapter 

then concludes with the construction and testing of the finalised device. 

4.2. Principles of operation 

As mentioned in chapter 2, laryngeal impedance analysis shows the movement of the 

vocal folds by measuring the variation of bioimpedance during an act of phonation. The 

fundamental principle behind its functioning resides in how the movement of vocal folds 

affects the applied voltage. When a signal is applied to a subject, the estrangement and 

approach of the vocal folds create an over-time variation of the impedance across the 

larynx that effectively behaves like an amplitude modulator and creates an AM signal. As 

the modulating signal is the oscillation of the vocal folds, it is possible to obtain a 

representative signal of their movement by performing an AM demodulation. Amplitude 
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demodulation, however, is alone not sufficient to deliver a satisfying signal. The 

impedance variations caused by the oscillation of the vocal folds are relatively small and 

result in an index of modulation in the order of microvolts. For this reason, the system also 

needs a signal amplification stage to sufficiently amplify the demodulated signal. Figure 

4.1 shows an equivalent circuit representation of the basic EGG principle. 

 

Figure 4.1 - EGG principle of operation equivalent circuit 

4.3. Measurement system 

The initial step in designing a laryngeal measurement device resides in the sensor system. 

The configuration of the electrodes was based on the EGG Fourcin impedance detector 

shown in figure 4.2 (Fourcin, 1979). This configuration uses a pair of double electrodes 

where the ring acts as indifferent electrodes that couples the tested tissue with the circuit 

ground reference. The use of electrodes with guard rings allows to reduce interferences by 

shorting together the reference rings (Fourcin, 1974) when compared to the use of single 

surface electrodes.    

 

Figure 4.2 - Fourcin impedance detector (Sarvaiya, Pandey and Pandey, 2011) 
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 As shown in figure 4.2, above, each electrode is connected to the circuitry through a 

1:1 transformer. This provides galvanic insulation between the system and the tested 

subject, ensuring the safety of the bio-measurement. In addition, a current limiting resistor 

(Rs) is placed between the voltage source and the first electrode to ensure a safe current 

level to be applied to the test subject. 

 The second element to be considered for the measurement signal is the current to 

be applied across the larynx through the electrodes, also refer to as excitation current. As 

it was mentioned in the background theory (chapter 2), when dealing with bioimpedance, 

frequency plays a major role in the safety of the system due to the reactive properties of 

human tissue. Moreover, using a higher frequency facilitates the system in its performance 

as the impedance will depend primarily on the resistive properties of the tissue. This is due 

to human tissue presenting mainly capacitive reactance (IEC 60601-1:2020 Medical 

electrical equipment, International Electrotechnical Commission). The use of higher 

frequencies ensures a greater level of safety as it allows the human body to handle higher 

levels of current. This is due to capacitive reactance decreasing with an increase in 

frequency as proven by equation 4.1.  

 For XC = Capacitive Reactance 

 𝑋𝑐 = 	
1

2𝜋𝑓𝐶
 

 
(4.1) 

For these reasons, the commonly used excitation frequency for laryngeal bioimpedance 

ranges between 400kHz and 5MHz with voltage between 1V and 2V peak-to-peak 

(Childers, 1984; Rothenberg and Mahshie, 1988). In accordance, the design proposed in 

this thesis employs a 2MHz sinusoidal signal with an amplitude of 2V peak-to-peak. 
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 To ensure the system's safety, the current limiting resistor between the voltage 

source and the first electrode is calculated to maintain a safe current level based on the 

excitation signal's voltage and frequency. The regulations for the application of electrical 

current to living tissues, dictated by the IEC 6060-1 International Standards, state that the 

safe level of current is given by the relation between the excitation frequency (FE) and a 

current of 10µA for a signal of 1kHz (IEC 60601-1:2020 Medical electrical equipment, 

International Electrotechnical Commission). This is shown by equation 4.2.  

 𝐼!"#$% =	
𝐹&
1𝑘𝐻𝑧

∙ 10µ𝐴 
 

(4.2) 

 Therefore, for a 2MHz signal: 

 2𝑀𝐻𝑧
1𝑘𝐻𝑧

∙ 10µ𝐴 = 20	𝑚𝐴!" 
 

(4.3) 

 Given the known safety threshold of 20mA, the required current limiting resistor (Rs) 

for a 2Vp-p signal is calculated as follows: 

 2𝑉'(' ≅ 0.707	𝑉)*+  
(4.3) 

 𝑅, =
0.707	𝑉)*+
20	𝑚𝐴!"

≅ 36	𝛺 
 

(4.4) 

 Given the chosen electrodes configuration shown in figure 4.2, and the excitation 

signal, the measurement system of the circuit was designed as shown in figure 4.3. 

 

Figure 4.3 - EGG circuit design, impedance measurement section 
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In this configuration, the role of the resistor Rs is solely to provide a maximum threshold of 

safety for the current flowing through the electrodes. The isolating transformer separating 

the voltage source from the electrodes is to be considered for the evaluation of the current 

being effectively supplied to the first electrode. For a chosen transformer Coilcraft WB1010 

exhibiting a primary coil inductance of 95µH the inductive reactance XL is calculated as 

follows: 

 𝑋- = 2𝜋𝑓𝐿  
(4.5a) 

 𝑋- = 2𝜋 ∙ 2𝑀𝐻𝑧 ∙ 95µ𝐻 ≅ 1194𝛺 (4.5b) 

 In an RL circuit, impedance Z represents the opposition of the circuit to alternating 

current and is defined as a phasor denoting the complex sum of resistive and inductive 

elements. The impedance of the RL network can be then evaluated through Pythagoras’s 

theorem as shown in equation 4.6. 

 
𝑍 = B𝑅. + 𝑋-. 

 
(4.6a) 

 𝑋- = 2𝜋 ∙ 2𝑀𝐻𝑧 ∙ 95µ𝐻 ≅ 1194𝛺 (4.6b) 

 For the configuration shown in figure 4.3, therefore, the amount of current flowing is 

defined as follows: 

 𝐼 =
𝑉)*+
𝑍

 
 

(4.7a) 

 0.707	𝑉)*+
1195𝛺

≅ 600µ𝐴 
 

(4.7b) 

The result obtained from equation 4.7 shows that the current being supplied to the 

electrodes is well below the safety threshold defined by equation 4.3.  
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4.4. AM Demodulation 

The core functioning of a laryngeal bioimpedance measurement circuit depends on two 

main modules: an AM Demodulator and a Small Signal Amplifier. The process of 

Amplitude Demodulation consists in separating the carrier signal from the embedded 

modulating signal. Several techniques can be employed for the demodulation of AM 

signals such as wave rectification, product detection or asynchronous detection. A further 

analysis of demodulation theory and techniques is not presented in this thesis as it is 

beyond the scope of the proposed research. 

 In the proposed design, the demodulator was based on full-wave rectification and 

filtering. The AM signal resulting from the vocal folds modulation is firstly fed to a full-wave 

rectifier; the result of the rectification is then passed to a high-pass filter to ensure DC 

coupling and remove any possible offset; thirdly, a lowpass filter is applied to remove any 

high frequency interference. Once filtered, the resulting signal is passed to the 

amplification stage. Figure 4.4 shows a block diagram of the demodulation section. 

 

Figure 4.4 - AM Demodulator block diagram 

 The rest of this section will go through each part of the amplitude demodulation 

process analysing its performance and output. To simulate the design, the demodulator 

will be fed with an arbitrary AM signal which will allow a performance analysis. 

4.4.1. Full-wave Rectifier 

Full-wave rectification is a process used to convert a bipolar AC signal into one of constant 

polarity which, in mathematical terms, is equivalent to compute the absolute value of the 
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input voltage. In this design, a full-wave rectifier was implemented using the AD8036 

clamping amplifier. Compared to classic diode bridges, the use of a clamping amplifier 

offers significantly better performances, in terms of noise and distortion, especially at 

higher frequencies. The circuit diagram for the rectifier is shown in figure 4.5; the circuit 

design and components values were selected in accordance with the circuit provided in 

the datasheet (Analog Devices, 2010). 

 

Figure 4.5 - AD8036 Full-wave Rectifier 

 In this configuration the clamping amplifier AD8036 is set into a unity gain inverting 

configuration. When the voltage at the inverting input is negative, the amp acts like a 

regular unity gain inverting amplifier. The output results in a signal of equal amplitude and 

reverse polarity. The AD8036 functions by clamping the signal at the level specified to VH 

and VL (respectively, high voltage clamp input and low voltage clamp input). In this 

scenario, no clamping process is carried out as the voltage at VL is negative and, 

therefore, lower than the positive voltage at the output. The high voltage clamp VH is left 

floating as it plays no part in this configuration. 

 When the voltage at the input is positive, on the other hand, the output of the 

AD8036 depends on the combination of two different factors. First, the inverting amplifier 
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configuration multiplies the input by -1, due to the unity gain, and results in a signal of 

inverse polarity and equal amplitude. Second, the output signal is clamped at a voltage 

equal to 2VL; as VL is equal to the input, this results in a signal with equal polarity and 

double amplitude. The sum of these two processes effectively produces a signal equal to 

the input multiplied by the gain of the amp. Given the unity gain of this configuration, the 

result is effectively a copy of the input. 

 The combination of the two polarities produces a fully rectified version of the input 

signal with a slight offset due to the internal characteristics of the IC. However, when the 

system is fed with an AM signal, the full-wave rectification results in a modulated output 

characterised by the absolute values of the input and the same modulating frequency. For 

simulation purposes the circuit was simulated with an AM signal produced by a 150Hz 

modulating signal; such frequency was selected as it represents a common value in 

fundamental frequency of human voice. Figures 4.6 and 4.7, respectively, show the output 

of the rectifier for a sinusoidal input and for an AM input. 

 

Figure 4.6 - Full-wave rectifier output (blue) for single sine wave input (red) 
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Figure 4.7 - Full-wave rectifier output (blue) for an AM input (red) 

4.4.2. Filter section 

To isolate the modulator from the rectified AM signal, a high-pass filter and a low-pass 

filter are combined in series to create a bandpass response. As the system operates on 

human voice and the laryngeal bioimpedance signal represents the fundamental 

frequency, the pass band of the filter configuration was designed to operate within the 

fundamental frequency range of the human voice.  

4.4.2.1. High-pass filter 

The first filter to be used is a high-pass filter. The main purpose of this filter is to remove 

the offset of the rectified AM signal and ensure an AC-coupled output. This first filter was 

designed to exhibit a Butterworth type response using a second-order Sallen-Key active 

filter configuration. The Sallen-Key topology provides a flat response and high stability at 

low frequencies as well as being preferable for achieving the low Q-factor required for a 

Butterworth response (Self, 2010). As this first filter is primarily used to remove any DC 

component, a cut-off frequency of 30Hz was selected to remove any offset whilst staying 
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below the threshold of the lowest fundamental frequency in human voice, 100Hz. Figure 

4.8 shows the schematic for the high-pass filter. 

 

Figure 4.8 - Sallen-Key Active High-pass Filter 

The components values for the high-pass filter were selected through an evaluation of the 

transfer function and the desired cut-off of 30Hz. 

 First a node analysis is performed at V1 (4.8) and Vout (4.9): 

 
V1) (𝑉/ − 𝑉01)𝑠𝐶2 +

𝑉/ − 𝑉345
𝑅2

+ (𝑉/ − 𝑉345)𝑠𝐶6 = 0 
 

(4.8) 

 
Vout) 

𝑉345
𝑅7

+ (𝑉345 − 𝑉/)𝑠𝐶6 = 0 
 

(4.9a) 
 

  (𝑉345 − 𝑉/)𝑠𝐶6 = −
𝑉345
𝑅7

 
 

(4.9b) 

 (𝑉345 − 𝑉/) = −
𝑉345
𝑅7𝑠𝐶6

 
 

(4.9c) 

 𝑉/ = 𝑉345 +
𝑉345
𝑅7𝑠𝐶6

 
 

(4.9d) 
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 Equation 4.9d is then substituted in equation 4.8: 

!"𝑉!"# +
𝑉!"#
𝑅$𝑠𝐶%

( − 𝑉&'* 𝑠𝐶( +
𝑉!"# +

𝑉!"#
𝑅$𝑠𝐶%

− 𝑉!"#
𝑅(

+ "𝑉!"# +
𝑉!"#
𝑅$𝑠𝐶%

− 𝑉!"#( 𝑠𝐶% = 0 
 

(4.10a) 

!"𝑉!"# +
𝑉!"#
𝑅$𝑠𝐶%

( − 𝑉&'* 𝑠𝐶(𝑅( + 𝑉!"# +
𝑉!"#
𝑅$𝑠𝐶%

− 𝑉!"# + "𝑉!"# +
𝑉!"#
𝑅$𝑠𝐶%

− 𝑉!"#( 𝑠𝐶%𝑅( = 0 
 

(4.10b) 

 
𝑉345𝑠𝐶2𝑅2 +

𝑉345
𝑅7𝑠𝐶6

− 𝑉01𝑠𝐶2𝑅2 +
𝑉345
𝑅7𝑠𝐶6

+
𝑉345𝑠𝐶6𝑅2
𝑅7𝑠𝐶6

= 0 
 

(4.10c) 

 𝑉!"#𝑠$𝐶%𝑅%𝑅&𝐶' + 𝑉!"#𝑠𝐶%𝑅% − 𝑉()𝑠$𝐶%𝑅%𝑅&𝐶' + 𝑉!"# + 𝑉!"#𝑠𝐶'𝑅% = 0 (4.10d) 

 𝑉345(𝑠.𝐶2𝑅2𝑅7𝐶6 + 𝑠(𝐶2𝑅2 + 𝐶6𝑅2) + 1) − 𝑉01𝑠.𝐶2𝑅2𝑅7𝐶6 = 0 (4.10e) 

 						𝑉345(𝑠.𝐶2𝑅2𝑅7𝐶6 + 𝑠(𝐶2𝑅2 + 𝐶6𝑅2) + 1) = 𝑉01𝑠.𝐶2𝑅2𝑅7𝐶6 (4.10f) 

 As the transfer function of a system can be defined as the ratio of output and input, 

equation 4.10 is solved for  8)*+
8,-

: 

 𝑉345
𝑉01

=
𝑠.𝐶2𝑅2𝑅7𝐶6

𝑠.𝐶2𝑅2𝑅7𝐶6 + 𝑠(𝐶2𝑅2 + 𝐶6𝑅2) + 1
 

 
(4.11) 

 For R = R4 = R5 and C = C5 = C6: 

 𝑉345
𝑉01

=
𝑠.(𝐶𝑅).

𝑠.(𝐶𝑅). + 𝑠(2𝐶𝑅) + 1
 

 
(4.12) 

 Comparing 4.12 with the known Butterworth transfer function for high-pass filters 

(equation 4.13) yields the definition of the angular frequency cut-off for the analysed 

circuit: 
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𝐻(,) =

𝑠.
𝜔.

𝑠.
𝜔. +

𝑠√2
𝜔 + 1

 

 
(4.13) 

 ∴ 𝜔 =
1
𝐶𝑅

 
 

(4.14) 

 For a desired cut-off frequency fc = 30Hz, R is calculated using a typical value for C 

of 0.1µF: 

 𝜔 =
1
𝐶𝑅

𝜔	 
 

(4.15a) 

 𝜔 = 2𝜋𝑓; = 60𝜋	 (4.15b) 

 𝑅 =
1
𝜔𝐶

	 
 

(4.16a) 

 𝑅 =
1

60𝜋 ∙ 0.1µ𝐹
≅ 53000𝛺	 

 
(4.16a) 

 For a calculated needed resistance of 53kΩ a typical value of 51kΩ was selected 

for both R4 and R5. This resulted in a cut-off frequency of about 31Hz as shown by 

equation 4.17. 

 𝑓; =
1

2𝜋𝑅𝐶
=

1
2𝜋 ∙ 51𝑘𝛺 ∙ 0.1µ𝐹

≅ 31𝐻𝑧		 
 

(4.17) 

The filter was tested through a computer simulation to evaluate both its frequency 

response and its functioning with the rectified AM at its input. The simulation shows how 

the high-pass filter removes the offset introduced by the AD8036 and AC-couples the 

rectified AM, creating a bipolar signal. However, an DC offset appears to be introduced in 

the resulting signal together with the positive voltage of the output being slightly higher 

than the negative voltage. This is caused by the simulation software and does not 
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represent a problem, as the following low-pass filter isolates the modulating signal. Figure 

4.9 shows the frequency response of the filter and figure 4.10 compares the rectified AM 

signal (green) to the output of the high-pass filter (red). 

 

Figure 4.9 - High-pass Filter frequency response 

 

Figure 4.10 - High-pass Filter output (red) vs input (green) 

4.4.2.2. Low-pass filter 

Following the high-pass filter, a low-pass filter is fundamental for completing the 

demodulation process as it removes the high frequency components of the excitation 

signal and isolates the lower frequency modulator. In singing voices, the highest register is 
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considered to extend up to around 1kHz of fundamental frequency. For this reason, the 

employed filter was designed to yield a cut-off frequency of about 3kHz in order to remove 

any high frequency interreferences whilst leaving unaffected the region below 1kHz.  

 The use of a passive filter, as opposed to an active design, was chosen as it yields 

better response at high frequencies. While active filters feature higher stability at low 

frequencies, they present ripples at high frequencies, allowing small portions of voltage to 

pass through. In an EGG circuit, the very small variations of bioimpedance provide a very 

low modulation index that in turn results in a very low voltage. If small portions of high 

frequency voltage are leaked by an active filter, this will affect the signal morphology once 

processed by the small signal amplifier. 

 

Figure 4.11 - Passive Low-pass filter 

The components values for the high-pass filter were selected through an evaluation of the 

transfer function and the desired cut-off of 3kHz. 

 First a node analysis is performed: 

 
V1) 

(𝑉/ − 𝑉01)
𝑅6

+
𝑉/ − 𝑉345

𝑅<
+ 𝑠𝐶< = 0 

 
(4.18a) 

 𝑉/𝑅< − 𝑉01𝑅< + 𝑉/𝑅6 − 𝑉345𝑅6 + 𝑠𝐶<𝑉/𝑅6𝑅< (4.18b) 
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 𝑉/(𝑅6 + 𝑅< + 𝑠𝐶<𝑉/𝑅6𝑅<) − 𝑉01𝑅< − 𝑉345𝑅6 (4.18c) 

 
Vout) 

𝑉345 − 𝑉/
𝑅<

+ 𝑠𝐶=𝑉345 = 0 
 

(4.19a) 

  𝑉345 − 𝑉/ = −𝑠𝐶=𝑉345𝑅<  
(4.19b) 

 𝑉/ = 𝑠𝐶=𝑉345 + 𝑉345  
(4.19c) 

 𝑉/ = 𝑉345(𝑠𝐶=𝑉345 + 1)  
(4.19d) 

 Equation 4.19d is then substituted in equation 4.18a: 

 𝑉345(𝑠𝐶=𝑉345 + 1)(𝑅6 + 𝑅< + 𝑠𝐶<𝑉/𝑅6𝑅<) − 𝑉01𝑅< − 𝑉345𝑅6 (4.20a) 

 𝑉345((𝑠𝐶=𝑉345 + 1)(𝑅6 + 𝑅< + 𝑠𝐶<𝑉/𝑅6𝑅<) − 𝑅6) = 𝑉01𝑅< (4.20b) 

 Equation 4.20b is solved for  8)*+
8,-

: 

 𝑉345
𝑉01

=
𝑅<

(𝑠𝐶=𝑅< + 1)(𝑅6 + 𝑅< + 𝑠𝐶<𝑅6𝑅<) − 𝑅6
 

 
(4.21a) 

 𝑉!"#
𝑉&'

=
𝑅)

𝑅% + 𝑅) + 𝑠𝐶)𝑅%𝑅) + 𝑠𝐶*𝑅)𝑅% + 𝑠𝐶*𝑅)+ + 𝑠+𝐶)𝐶*𝑅%𝑅)+ − 𝑅%
  

(4.21b) 

 𝑉345
𝑉01

=
1

1 + 𝑠𝐶<𝑅6 + 𝑠𝐶=𝑅6 + 𝑠𝐶=𝑅< + 𝑠.𝐶<𝐶=𝑅6𝑅<
 

 
(4.21c) 

 𝑉345
𝑉01

=
1

𝑠.𝐶<𝐶=𝑅6𝑅< + 𝑠(𝐶<𝑅6 + 𝐶=𝑅6 + 𝐶=𝑅<) + 1
 

 
(4.21d) 

 For R = R6 = R7 and C = C7 = C8: 

 𝑉345
𝑉01

=
1

𝑠.(𝐶𝑅). + 𝑠(3𝐶𝑅) + 1
 

 
(4.22) 
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 4.22 is compared to the known Butterworth transfer function for low-pass filters 

(equation 4.23): 

 𝐻(,) =
1

𝑠.
𝜔. +

𝑠√2
𝜔 + 1

 
 

(4.23) 

 ∴ 𝜔 =
1
𝐶𝑅

 
 

(4.24) 

 For a desired cut-off frequency fc = 3kHz, R is calculated using a typical value for C 

of 10nF: 

 𝜔 =
1
𝐶𝑅

𝜔	 
 

(4.25a) 

 𝜔 = 2𝜋𝑓; = 6000𝜋	 (4.25b) 

 𝑅 =
1
𝜔𝐶

	 
 

(4.26a) 

 𝑅 =
1

60000𝜋 ∙ 10𝑛𝐹
≅ 5300𝛺	 

 
(4.26a) 

 For the calculated resistance, a typical value of 5.1kΩ was selected resulting in a 

frequency of about 3.1kHz: 

 𝑓; =
1

2𝜋𝑅𝐶
=

1
2𝜋 ∙ 51𝑘𝛺 ∙ 0.1µ𝐹

≅ 3100𝐻𝑧		 
 

(4.27) 

To test the performances of the passive filter a frequency response analysis was run in 

comparison with an active design featuring the same cut-off frequency and components 

value. Figure 16 shows how the passive design provides almost 70dB more attenuation in 

the 2MHz region (excitation signal frequency).  
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 The the low-pass filter was then simulated to analyse the frequency response and 

to test its functioning on the output of the previous high-pass filter. The low-pass filter 

successfully removes the high frequency content resulting in a sinusoidal signal that 

represents the modulating signal of the original AM source. Figure 4.12 shows the shows 

the frequency response of the filter for the desired cut-off frequency of 3kHz whilst figure 

shows the comparison of its input (green) and output (red). 

 

Figure 4.12 - Low-pass filter response, active (red) vs passive (blue)  

 

Figure 4.13 - Low-pass filter output (red) vs input (green) 
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4.5. Small signal amplifier 

After successful demodulation, the system's final stage is amplifying the resulting signal to 

a viable level. Because the impedance variations during the oscillation of the vocal folds 

are very small, the modulation index applied to the carrier is in turn quite small. As a result, 

the signal obtained through the amplitude demodulator is itself rather small in voltage with 

typical peak values of around 1-2mV (Childers and Krishnamurthy, 1985). To amplify such 

signals, the system was implemented with an Instrumentation Amplifier (InAmp). InAmps 

are a type of differential amplifier featuring very low noise, very high open-loop gain and a 

very high common-mode rejection ratio. These characteristics make such devices 

particularly suitable for amplifying very small signals while minimising noise's impact. An 

example can be found in microphone pre-amplifiers where an input presenting an 

amplitude between 1mV and 10mV is amplified to a level of about 1V with minimal noise.  

 A common configuration for InAmps, used to maximise amplification and minimise 

noise, is the implementation of a balanced connection. Balanced connections operate by 

feeding a differential amplifier with two copies of the same signal 180° out of phase with 

each other. As a differential amplifier amplifies the difference between its inputs, a 

balanced connection can double the amplification headroom as it is applied to a signal 

with twice the amplitude of its original non-inversed version. This is proven by equation 6.  

 For V1 = input; V2 = -V1; Vout = amplifier output and A = gain: 

 𝑉345 = 𝐴(𝑉/ − 𝑉.) (4.28) 

 𝑉345 = 𝐴(𝑉/ − (−𝑉/)) (4.29) 

 𝑉345 = 𝐴(2𝑉/) (4.30) 
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Whereas the difference between two inverse signals delivers a higher amplitude, any 

noise common to both signals that is picked up between the source and the amplifier will 

be cancelled out through subtraction. 

 To implement this configuration, a balanced signal converter circuit was designed to 

provide two inverse copies of the AM demodulation output. This is achieved by generating 

two copies of the input with inverse polarity. The input signal is firstly fed into a voltage 

buffer to isolate the receiving amplifier from the source and deliver an exact copy of the 

input. The output of the buffer is then fed to a unity gain inverting amplifier that creates a 

signal of equal amplitude and opposite polarity. The two resulting signals are then fed to 

the inputs of a Texas Instruments INA217 InAmp. This Instrumentation Amplifer features a 

gain range up to a factor of 2000 and a typical common-mode rejection ratio of around 

120dB. Figure 4.14 shows the schematic of the small signal amplifier module. 

 

Figure 4.14 - Small signal amplifier using balanced connection and InAmp 

 Resistor R12 is the main gain control for the InAmp and was selected according to 

the information provided by the INA217 datasheet for a value of 20Ω, corresponding to an 
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amplification of 500. A sinusoidal signal with frequency 150Hz and amplitude 2mVp-p was 

used to simulate the design. Such frequency was chosen as it represents a typical value 

within the human voice fundamental frequency range. Figure 4.15 shows the outputs of 

the balanced signal converter circuit and the final amplified output. 

 

Figure 4.15 - Small signal amplifier simulation for 5mV sine wave. Input(red), inverted input(green), amplified 

output(blue) 

The simulation results for the InAmp show an output with an amplitude of 2Vp-p matching 

the expected result, as proven by equation 7. 

 For V1 = 2mVp-p; V2 = -2mVp-p and A = 500: 

 𝑉345 = 𝐴(𝑉/ − 𝑉.) (4.31a) 

 𝑉345 = 500 L2𝑚𝑉'(' − M−2𝑚𝑉'('NO (4.31b) 

 500 ∙ 4𝑚𝑉'(' = 2𝑉'('	 (4.31c) 

4.6. The full circuit 

 Once each section of the circuit was designed and simulated, the entire circuit was 

assembled and evaluated within the simulation software. To correctly visualise the 
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functioning of the circuit, an arbitrary AM source was used, and the gain of the small signal 

amplifier was reduced. The circuit design performs as intended and the final output clearly 

reflects the modulating frequency of the AM source. The source was produced by 

modulating a 2MHz carrier sinusoid and a modulating signal with frequency 150Hz. 

Figures 4.16 and 4.17, respectively show the full circuit schematic and the final simulation 

output. 

 

Figure 4.16 - Laryngeal bioimpedance measurement device full circuit schematic 
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Figure 4.17 - Full circuit simulation result, AM source (green) vs final output (red) 

The result of the full circuit simulation shows how the system successfully isolate the 

modulating signal from the carrier and performs a final amplification. The simulation 

analysis in figure 4.17 shows how the amplified output of the full circuit matches in 

frequency the modulating frequency of the AM input. 

4.7. Excitation signal oscillator 

Once the design of the circuit was completed and simulated, the following stage was the 

design of a sinusoidal oscillator to provide the excitation signal. The signal oscillator 

completes the circuit and allows the system to perform independently without needing an 

external excitation source.  

 To achieve the desired signal with a frequency of 2MHz the signal source was 

implemented using a Colpitts oscillator design. Colpitts circuits are a class of LC feedback 

oscillators and thus employ a resonant inductive-capacitive circuit in combination with an 

amplifier. In the Colpitts design, the LC network is comprised of a resonant tank made of 

an inductor in parallel with two series capacitors and acts as a resonant band-pass filter 

and sets the oscillation frequency of the Colpitts. The tank circuit is then placed in the 
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feedback loop of a BJT Common Emitter Amplifier that provides the gain element of the 

oscillator. In this design, however, it was chosen to employ a JFET Common Source 

Amplifier to maintain a more stable voltage at the output when connected to a load. Figure 

4.18 shows the design of the Colpitts Oscillator. 

 

Figure 4.18 - JFET based Colpitts Oscillator 

4.7.1. Resonant frequency of the tank circuit: 

For the LC network to oscillate, the reactance of both capacitors and the inductor must be 

equal at the desired frequency. Because of components availability the inductor was 

selected for a typical value of 10µH. The needed capacitance for a 2MHz output and a 

10µH inductance is calculated as follows: 

 𝑋- = 2𝜋𝑓𝐿																												𝑋"	535 =
1

2𝜋𝑓𝐶535
 

 
(4.32) 
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 For a 2MHz output and a given inductor L = 10µH: 

 2𝜋𝑓𝐿	 =
1

2𝜋𝑓𝐶535
 

 
(4.33a) 

 (2𝜋𝑓).𝐿 =
1
𝐶535

 
 

(4.33b) 

 𝐶535 =
1

(2𝜋𝑓).𝐿
 

 
(4.33c) 

 1
(2𝜋𝑓).𝐿

=
1

(2𝜋 ∙ 2𝑀𝐻𝑧). ∙ 10µ𝐻
≅ 0.6𝑛𝐹 

 
(4.33c) 

 For Ctot = 0.6nF and a typical value C1 = 1nF 

 𝐶/ ∙ 𝐶.
𝐶/ + 𝐶.

=
1𝑛𝐹 ∙ 𝐶.
1𝑛𝐹 + 𝐶.

= 0.6𝑛𝐹 
 

(4.34a) 

 𝐶. = 1.5𝑛𝐹 (4.34b) 

4.7.2. Amplifier section, conditions for oscillation 

The Barkhausen criterion states that for any oscillator to achieve oscillation, the product 

between the gain (Av) and the feedback attenuation (b) must be equal to or greater than 1. 

Whereas the attenuation is given by the ratio of the series capacitors in the LC circuit, to 

calculate the gain of a JFET common source amplifier, some values need to be measured 

from the transistor itself. First the current through the JFET when the gate-source voltage 

is zero (IDSS) and second the level of gate-source voltage for an IDSS of zero (VGS(off)). Both 

IDSS and VGS(off) are to be measured directly on the transistor. As shown in equation (4.35), 

IDSS and VGS(off) are used to calculate the JFET Forward Transconductance gm. The gain of 

the common source amplifier is then defined as the product of gm and the drain resistance 
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R19 (Floyd, 2013). For the N-JFET 2N3819 in common source configuration with a supply 

voltage of 9V said values are calculated as follows. 

For IDSS = 3.65mA (measured) and VGS(off) = -2.2V (measured): 

 𝑔# =
2𝐼?++

Q	𝑉@+(3AA)	Q
= 	
7.3𝑚𝐴
2.2𝑉

= 3.3𝑚𝑆 
 

(4.35) 

 𝐴B = 𝑔# ∙ 𝑅? (4.36a) 

 𝐴B = 𝑔# ∙ 𝑅/C = 3.3𝑚𝑆 ∙ 1.5𝑘𝛺 = 4.95 (4.36b) 

For C1 = 1nF and C2=1.5nF: 

 𝛽 =
𝐶/
𝐶.
=

1	𝑛𝐹
1.5	𝑛𝐹

= 0.6 
(4.37) 

As per Barkhausen criterion: 

 𝐴B ∙ 𝛽 ≥ 1	 ⟶ 	4.95 ∙ 0.6 > 4.35 (4.38) 

4.7.3. Output  

Once the circuit analysis was completed, the circuit was simulated. The simulation shows 

the correct functioning of the Colpitts Oscillator, delivering a 2MHz with an output 

amplitude of about 2Vp-p. The circuit simulation confirms the right conditions for oscillation 

and the correct resonant frequency. The Colpitts oscillator, however, exhibit non-linear 

behaviour as per its nature of harmonic oscillator; such characteristic makes it problematic 

to accurately compute the output amplitude a priori. Figure 4.19 shows the output of the 

oscillator. 
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Figure 4.19 - Colpitts oscillator simulation output 

Therefore, the desired level of 2Vp-p was achieved by empirically testing different 

components’ values for the common source amplifier during simulation. To achieve an AC-

coupled signal, a DC blocking capacitor is added at the output (C21 in figure 4.18). 

4.8. Multi-sensor system 

One of the principles underlying the development of a novel device is implementing a 

multi-sensor measurement system. This seeks out to overthrow the drawbacks concerning 

the difficulty in sensor placement due to the need for individualisation by developing a 

multi-electrode sensor system to allow self-calibration.  

 To achieve a controllable multi-sensor, the device was implemented with a 

multiplexing system that allows to interchange between several pairs of electrodes. The 

system was designed using Texas Instrument CD4052. This IC is a dual 8-channel 

digitally analogue multiplexer/demultiplexer, which can be controlled by providing a binary 

logic from an external Microcontroller Unit (MCU). Figure 4.20 and table 1, respectively 

show the layout of the CD4052 and its truth table. 
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Figure 4.20 - CD4052 pinout (Texas Instrument, 2017) 

Table 1 - CD4052 Truth Table 

INPUT STATES  
ON CHANNELS(S) INH A B 

0 0 0 x0, y0 
0 0 1 x1, y1 
0 1 0 x2, y2 
0 1 1 x3, y3 
1 X X None 

 

 To allow the CD4052 to select different pair of electrodes, the multiplexing system is 

placed between the excitation voltage generator and the input of the AM demodulator 

module. In this configuration, the excitation voltage is fed to one of the CD4052 internal 

units acting as a decoder. Based on the logic provided to the IC logic ports, the excitation 

voltage is routed from the common input to one of the output ports. Conversely, the 

second unit of the IC acts as an encoder routing the signal received from the active input 

port to the common output. As each of the input/output ports of the CD4052 is connected 

to a different electrode, such configuration allows to select, through binary logic, different 

pairs of electrodes. Figure 4.21 shows the multiplexing system configuration for three pairs 

of electrodes. The performance of the design will be analysed in chapter 5.  
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Figure 4.21 - Multiplexing system design for three pairs of electrodes 

4.9. Printed circuit board implementation 

To finalise the device, the circuit was prototyped on a breadboard and then a dedicated 

Printed Circuit Board (PCB) was designed and fabricated. This section will show the PCB 

design and the test run to evaluate its functioning. The overall system was designed to run 

off a bipolar ±6V power supply with the exemption of the oscillator module that is powered 

by a single 9V supply. The use of two separate power supply is dependent on the 

prototyping stage of the design; further development of the system would include the 

implementation of an internal power supply circuitry for the device to be powered through a 

single DC supply. The various sections of the circuit were tested and analysed through an 

oscilloscope, and the completed system was tested in a real-world setting for the 

measurement of the vocal folds during phonation. Figure 26 shows the entire circuit on the 

designed PCB. 
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Figure 4.22 - Full PCB for the overall device 

4.9.1. AM demodulator 

The first section of the device is comprised of the AM demodulation module. To evaluate 

the performance of the system, the circuit was tested by feeding an AM signal from a 

function generator that featured a 2Vp-p sine wave carrier with a frequency of 2MHz, and 

a 200Hz sine wave modulating signal. The amplitude modulation is applied with a 

modulation index of 10%.  

 The first stage of the demodulation module is the full-wave rectifier based on the 

AD8036 clamping amplifier. The values obtained from the oscilloscope (figure 4.23 to 

4.25) confirm the correct functioning of the system and match the behaviour observed 

during the computer simulation. Figure 4.23 shows the input AM signal compared to the 

output of the full-wave rectifier. Once rectified, the resultant signal is passed through a 

filter module comprised of one active high-pass filter and one passive low-pass filter in 

series. The first removes the DC offset introduced by the AD8036 and AC couples the 

rectified AM, whilst the second removes the 2MHz carrier and isolates the modulator 
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frequency. The circuit's behaviour matches the expected results, and the modulator 

frequency is successfully isolated. Figures 4.24 and 4.25 respectively show the output of 

the high-pass and low-pass filters. 

 

Figure 4.23 - Input AM signal (blue) vs output of full-wave rectifier (yellow) 

 

Figure 4.24 - AM input (blue) vs High-pass filter output (yellow) 
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Figure 4.25 - AM input (blue) vs Low-pass filter output (yellow) 

4.9.2. Small signal amplifier 

The second stage of the system is comprised of the small signal amplifier based on the 

balanced signal converter and an instrumentation amplifier. To optimise the performances 

of the InaAmp in a real-world scenario, the circuit design was modified. Firstly, to avoid 

any DC signal being passed to the input of the InAmp, and thus amplified at the output, 

two AC coupling capacitors were added in front of the input pins of the instrumentation 

amplifier. Secondly, two resistors were added between the capacitors and the input pins to 

provide the DC return path to ground. As this RC network effectively creates a high-pass 

filter, the values of the components were selected to provide a cut-off frequency as closed 

as possible to the DC level. For a typical value of capacitance of 10µF a high value of 

resistance is chosen to keep the cut-off frequency as close as possible to the DC line. 

 In addition, as for the simulation, the gain of the instrumentation amplifier was 

reduced from a factor of 500 to a factor of 40. This change avoids saturation and 

adequately display a comparative result between the AM input and the final amplified 

output. This choice was made for demonstration purposes as a lower gain in the amplifier 
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section allows a higher modulation index for the AM input and, in turn, a better 

visualisation of the circuit behaviour at each stage. Figure 4.26 shows the modified InAmp 

circuit. 

 

Figure 4.26 – Modified Instrumentation Amplifier configuration 

 The evaluation of the circuit performances shows the correct behaviour of the 

device for both the balanced signal converter and InAmp circuits. Figures 31 and 32 

respectively show the oscilloscope readings for the balanced signal and instrumentation 

amplifier output. 

 

Figure 4.27 – Balanced signal, buffered output (yellow), inverted output (green), AM input (blue) 
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Figure 4.28 - Instrumentation Amplifier output (yellow) vs AM input signal(blue) 

 The final output of the system for a given AM input delivers the expected results. 

With a 1Vp-p carrier signal and a modulation index of 10%, the modulating signal is 

expected to have an amplitude of about 100mVp-p once demodulated from the carrier. For 

a gain of 40, as proposed in the testing phase, an output amplitude of about 8Vp-p is thus 

expected. The oscilloscope results shown in figure 4.28 confirm the correct functioning of 

the system matching the expected amplitude. 

4.9.3. Colpitts oscillator and multiplexing system 

The final testing of the assembled circuit concerned the oscillator providing the excitation 

voltage and the multiplexing system. Firstly, the behaviour of the Colpitts oscillator was 

evaluated, and, secondly, its output was fed into the common input of one unit of the 

CD4052 set in decoder configuration. To control the behaviour of the decoder, an Arduino 

was set as a 4-bit binary counter. The Arduino allows to switch between the outputs of the 

decoder with specific time intervals so that the oscillator can be routed to a different output 

every iteratively. In this design the decoder was set to switch routing one per second so 

that in deployment stage the placement evaluation could be run by providing a four-
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seconds sustained phonation. The placement evaluation procedure will be further 

analysed in chapter 5. Figures 4.29 and 4.30 respectively show the output of the Colpitts 

oscillator and the over-time functioning of the multiplexing system.  

 

Figure 4.29 - Colpitts oscillator output 

 

Figure 4.30 - Multiplexing of the oscillator output 

 Figure 4.30 demonstrates the correct functioning of the multiplexing system. Here 

each output of the CD4052 is measured on a different channel of the oscilloscope which 

shows the iteration of the multiplexing channels over time. For the multiplexing system to 



Chapter 4 A Novel Device for Vocal Folds Evaluation 

 

64  

be deployed in a real-world scenario, then, two pairs of multi-sensor electrodes were 

designed and fabricated. Both designs feature a round surface, one providing four pick-up 

discs (PU) and the second providing three. The number of pick-up units were dictated by 

the necessity of maintaining a compact design for the multiplexing system so to not 

exceed the four channels available on a single CD4052. In both cases, the remaining 

electrode surface around the discs acts as the “ring” and, thus, as the user-device 

reference coupling. To include multiple sensor-points per electrode, the PUs were 

designed having a surface of about 1cm2 reducing from the typical laryngography 

electrode size of 2-3cm2 (Frokjaer-Jensen and Thorvaldsen, 1968; Conture, Rothenberg, 

and Molitor, 1986). Both electrodes were constructed as copper Printed Circuit Boards 

with Hot Air Soldering Layer (HASL) coating and a standard PCB thickness of 1.6mm. To 

connect the sensors to the circuit, a 5-pin DIN MIDI connector was employed. Figures 4.31 

and 4.32 show both electrodes' design and the fabricated PCB. 

 

Figure 4.31 - Multi-sensor electrodes design for 4pu and 3pu 
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Figure 4.32 - Multi-sensor electrodes fabricated PCBs 

4.9.4. Final device and overall system testing 

Once all the sections of the circuit were tested and observed to function, the final circuit 

was fully assembled, encased in a metal enclosure to further reduce any possible 

interference. In addition, a 2nd order Sallen-Key high-pass filter with cut-off frequency of 

about 70Hz was implemented at the output to remove any mains low frequency 

interference. The filter design and performances match those analysed in section 4.4.2.1. 

The device's overall performance was tested on several volunteers, including the author, 

while performing several sustained phonations with different pitches and voice intensities. 

Since the amplitude modulation is performed within the larynx, different physiologies in 

different subjects change the amount of bioimpedance variation, making the index of 

modulation impossible to know a priori. This makes it impossible to test such system for 

specific modulation conditions.  

 To facilitate testing, the multiplexer was implemented with a switch that can 

interrupt the connection with the MCU and keep the system on a single channel; a 

potentiometer was also added as gain resistor for the InAmp for extra flexibility. Upon 
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testing, the output of the system exhibits a periodic signal matching the typical waveform 

morphology of larynx bioimpedance variations at different frequencies. Figures 4.34 to 

4.38 show the final output for 5 different testing instances and figure 4.39 shows the 

finalised assembled device. 

 

Figure 4.33 - Final output of the assembled device (1) 

 

Figure 4.34 - Final output of assembled device (2) 
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Figure 4.35 - Final output of assembled device (3) 

 

Figure 4.36 - Final output of assembled device (4) 
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Figure 4.37 - Final output of the assembled device (5) 

 

Figure 4.38 - Finalised bioimpedance measurement device 
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4.10. Summary and discussion 

This chapter analysed the design and development of a dedicated hardware for the 

measurement of laryngeal bioimpedance variations. The design was constructed around 

the underlying principles of laryngeal bioimpedance measurements and is formed of two 

main sections, an AM demodulator, and a small signal amplifier.  

 For the AM demodulator a full-wave rectification circuit was implemented using a 

clamping amplifier followed by a band-pass filter formed as combination of an active 

Sallen-Key high-pass filter and a passive low-pass filter. This process removes the carrier 

and isolates the modulating signal that represents the vocal folds’ oscillation. For the 

amplification stage, a small signal amplifier is implemented using an instrumentation 

amplifier. The InAmp was se as a differential amplifier and a balanced connection was 

used to reduce noise and achieve higher amplification. The full circuit was first designed 

and simulated within a computer environment and then a dedicated PCB was produced 

and fabricated. The resulting device was finally tested in a laboratory environment and the 

generated output was analysed. 

 The produced hardware delivers a signal output that matches the known 

morphology of laryngeal bioimpedance variations. The testing of the device confirms the 

expected results in comparison with both the theoretical analysis and the computer 

simulation. The design of the multiplexing system results efficient in the managing of a 

multichannel system and demonstrates the correct functioning of the multi-sensor 

electrodes design. 
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5.1. Introduction 

One of the objectives underpinning this research project is to improve laryngeal 

bioimpedance measurements by implementing a novel system with self-calibration 

capabilities. In existing systems, such as EGG, a major drawback is represented by the 

need to individualise the sensor system and the necessity for both medical and technical 

expertise for a successful placement of the electrodes. In this research it is proposed to 

tackle these issues by implementing a laryngeal bioimpedance measurement device with 

multi-sensor electrodes and a multiplexing system to select the different pairs of sensors. 

 This chapter describes how the multiplexing system and the multi-PU electrodes 

were employed to create a self-calibrating system capable of evaluating the best 

placement across the neck. The configuration of the electrodes and the multiplexing 

system are described alongside the MCU behaviour. Finally, the self-calibration 

methodology is analysed, and the performances are evaluated. 

5.2.  Electrodes and multiplexer configuration 

The first step in the development of the multi-sensor system was the configuration of the 

electrodes and the multiplexing mechanism. The first consideration to be carried out was 

the mirrored arrangement needed for the electrodes to ensure a parallel alignment of the 

PUs. The measurement is performed by applying an AC voltage across the vocal folds and 

extracting the resulting modulation. A non-parallel alignment of the electrodes would result 

in an inaccurate signal morphology as the excitation voltage would be applied diagonally 

and not horizontally across the folds. The CD4052 used for the multiplexing, however, 

includes two decoder/encoder units both controlled by the same binary logic. To ensure a 

parallel pairing of the electrodes, the PUs were connected in a different order for each of 



Chapter 5 Self-Calibrating Sensor Placement 

 

72  

the units. Figure 5.1 shows the layout of the electrodes for both units of de 

encoder/decoder. 

 

Figure 5.1 - Multi-sensor electrodes: multiplexer routing 

Although the CD4052 provides four channels to each unit, preliminary testing showed the 

3-PUs design to yield better performances. Upon first placement, in fact, the 3-PUs 

electrodes showed a success rate of about 85% against the 40% of the 4-PUs design. 

This is due to the smaller gap between the pickup discs, which results in better surface 

coverage. An increased surface coverage leaves less error margin in initial placement 

which further reduce the need of individualised placement. A further scientific analysis of 

the optimal electrode design is at this stage beyond the scope of the proposed research. 

5.3. Placement evaluation and self-calibration 

Once the electrodes and the multiplexing system were configured, a program was 

designed to interact with the CD4052 to evaluate optimal placement and select the 

appropriate sensor pair. During the initial testing conducted on the author, it was observed 
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that the primary indication of optimal placement is the amplitude of the bioimpedance 

signal. The best placement is represented by the electrode pair delivering the highest 

amplitude and, thus, the self-calibration mechanism was based on a Root Mean Square 

(RMS) evaluation of the laryngeal readings. A program was designed in Python to analyse 

the sensors' output through a USB audio interface and send serial communications to an 

Arduino board connected to the CD4052. This is achieved by performing three recordings 

of the laryngeal bioimpedance with an interval of 1s for an overall duration of 3s.  

 The program progresses as follows: 

i. An audio stream is created with a 44.1kHz sampling frequency and 512 samples 

buffer size. 

ii. A serial communication is sent to Arduino which produces a binary logic setting the 

CD4052 to “Pair 1”. 

iii. The signal input stream is recorded for 1s, and the data is stored in a container 

array. 

iv. A serial communication is sent to Arduino to switch the CD4052 to “Pair 2”. Step iii 

is then repeated. After 1s, Arduino switches to “Pair 3”, and step iii is repeated once 

more. 

v. The resulting 3 data arrays are computed, an average RMS value is calculated for 

each, and the three amplitude values are converted in dB Full Scale (dBFS).  

vi. The highest dB value among the three is evaluated.  

vii. A serial communication is sent to Arduino that sets the CD4052 on the best pair 

based on the highest amplitude reading.  
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 The program's testing shows the system's correct functioning and allows it to auto-

calibrate the sensor system by performing a sustained 3s phonation. Figure 5.2 shows the 

flowchart of the program script.  

 

Figure 5.2 - Autocalibration system Python script flowchart 

 The program running on the Arduino board simultaneously creates a binary logic 

based on the received message by setting two of its digital output pins to either 5v or 0v 

(HIGH and LOW states, respectively). Said pins are then connected to the channel 

selection pins of the CD4052 so to control the selection of the electrode pairs. The codes 

for both the Python script and the Arduino can be found in appendices A.1 and A.2. 

 



Chapter 5 Self-Calibrating Sensor Placement 

 

75  

5.4. Summary and discussion 

This chapter analysed the use of multi-sensor electrodes for the development of a self-

calibrating the sensor system. The configuration of the electrodes with the multiplexing 

system was described, and the use of RMS estimation for selecting the optimal pair was 

presented.  

 This implementation delivers a self-calibrating system that improves the applicability 

and usability of laryngeal bioimpedance measurement systems, such as EGGs or 

laryngographs for the development of novel devices in both medical and non-medical 

applications. The self-calibrating sensor system described in this chapter tackles the need 

for individualisation and the combination of technical and medical knowledge as it allows 

easier deployment. Its implementation with a system converting human voice into digital 

control signals, moreover, allows the tuning of the sensors by providing a calibration phase 

for the converter. As a result, the calibration phase improves the usability of the conversion 

system by overcoming the time-consuming placement of the electrodes in every instance 

of use.  
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6.1. Introduction 

One of the research challenges tackled in this research project is the use of machine 

learning for the binary classification of singing and speaking voices. The main aim of this 

research is to extract voice information to be converted into control signals for electronic 

musical instruments and digital sound generators. Nowadays, such conversion is mainly 

achieved through the Musical Instrument Digital Interface (MIDI) protocol, which acts as a 

delivery system for the extracted information. As this process interacts with musical 

instruments, isolating a singing voice from other types of phonation is necessary to avoid 

the delivery of unwanted signals. The use of bioimpedance measurements for the 

extraction of voice information is based on an analysis of the vocal folds’ behaviour. This 

feature entails, however, that a signal will be delivered for any displacement of the vocal 

folds. Implementing a real-time machine learning classifier would allow to convert voice 

information to digital control messages for singing acts whilst discarding speech artefacts. 

In this challenge, the author proposes the implementation of an Artificial Neural Network 

(ANN) with numerical data input obtained by extracting the Mel Frequency Cepstrum 

Coefficients (MFCCs) of the bioimpedance readings. The use of an ANN, as opposed to 

other machine learning approaches, also serves as a base for future developments. It is 

believed that for further implementation the use of a neural network will allow to discern 

other signals dependent on vocal folds displacement such as for instance coughing or 

swallowing offering higher precision in comparison to other machine learning 

methodologies.  

 This chapter will describe the theoretical concepts underpinning the differentiation 

between speech and singing, followed by a description of the creation and data pre-

processing of the dataset. A description of the feature extraction process and training of 
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the dataset is then carried out, followed by the testing and evaluation of the system. 

Finally, the real-time deployment of the ANN is described and evaluated. 

6.2. The dataset 

One of the main challenges this research faced was the lack of available datasets 

containing singing and speaking bioimpedance measurements. The first step after the 

conclusion and testing of the analogue device, hence, was the creation of a dedicated 

dataset. The dataset was recorded from 12 participants, each performing 100 sung notes 

at different frequencies and 100 spoken words with different intonations, delivering a total 

of 2400 bioimpedance samples. The selected words were chosen to include sustained 

vocalic content, sibilant consonants, and instances of mute consonants, both at the 

beginning and in the middle of the word, to ensure more generalised data. The words and 

their distribution are shown in table 2. 

Table 2 - Spoken words for bioimpedance singing vs speaking dataset 

Spoken word Instances per participant 
Cause 20 
Sure 20 
More 20 

Flower/Flour 20 
Shooting 20 

 

 Once the recordings were collected, the dataset was run through a data 

augmentation process to expand its size and break linearity for a most efficient 

implementation with the neural network application. The data augmentation process was 

carried out using pitch shifting; each sample was pitch-shifted both up and down by three 

semitones creating three versions of each: original, pitched-up and pitched-down. The use 

of pitch shifting for data augmentation has proven to be highly effective in increasing the 
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volume and obtaining more generalised datasets (Schlüter and Grill, 2015). In the 

presented case, pitch shifting allows to produce extra data with different frequency content 

whilst not significantly affecting the signal morphology. Data augmentation delivered a 

novel dataset of 7200 bioimpedance measurement samples with a 50:50 ratio between 

singing and speaking.  

6.3. Fundamental frequency stability in the distinction of speech and singing 

The production of voice relies on the vocal folds’ oscillation acting as the sound source of 

the human phonation system. This oscillation effectively represents the fundamental 

frequency (f0) of voice, which is then enriched in its harmonic content through the 

resonances added by the vocal tract. Within this process, speech and signing feature 

distinct articulatory properties and consequently generate sounds which are perceived as 

different. Existing research indicates f0 as one of the most impactful factors in the 

distinction between speaking and singing voices. Due to the different levels of vocal folds’ 

tension used in singing for the control of pitch and duration (Vijayan et al., 2018), f0 is 

assumed to exhibit higher stability in singing and, in turn, higher variability in speech. 

Almost the entirety of the available literature, however, hypothesises such distinction 

based on perceptual analysis of the vocal sound and very little has been done to 

analytically demonstrate such difference (de Medeiros et al., 2021). In the research 

presented in this thesis, the author proposes to fill this gap by providing a statical analysis 

of f0 variations using bioimpedance measurements.  

 Bioimpedance measurements performed across the larynx generate a signal that 

mirrors the oscillation of the vocal folds and represents the f0 of any phonation. Therefore, 

an f0 evaluation of the bioimpedance measurements was conducted on several samples to 

analytically demonstrate the higher variability of f0 in speech. First, the speaking and 
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singing recordings from the dataset were cut to all feature a duration of 200ms to ensure 

the presence of only meaningful data. For each sample, then, several values of f0 were 

extracted using the autocorrelation method known as Yin. The autocorrelation of the Yin 

algorithm was set with a window size of 1024 samples and a hop length of 512. This 

resulted in 19 readings of fundamental frequency per sample, as proven by equation 6.1. 

For sample rate = 44100, samples duration = 0.2s: 

 𝑛°	𝑜𝑓	𝑓0	𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 =
𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	

𝑤𝑖𝑛𝑑𝑜𝑤	𝑠𝑖𝑧𝑒 − ℎ𝑜𝑝	𝑙𝑒𝑛𝑔𝑡ℎ	 + 1 =
44100 ∙ 0.2s
1024 − 512 + 1 ≅ 19  

(6.1a) 

To maintain only valuable information and discard possible errors caused by recording 

artefacts and incomplete signal periods, the first two and last two f0 readings were 

discarded in each sample. Once the array of f0 readings was obtained for each sample the 

content of the arrays is plotted in two Box Plots, one for singing (figure 6.1) and one for 

speech (figure 6.2). To ensure visibility and readability, 25 samples were plotted in each 

graph. The variability calculation was also performed for the selected batches and resulted 

in an average value of 0.02 for the 25 singing samples and 5.88 for the 25 speaking 

samples. Figures 6.1 and 6.22 show the box plots for singing and speech respectively. 

Further data is presented in Appendix B.  

 The plots presented in figures 6.1 and 6.2 clearly depict a significantly higher level 

of variation of f0 in speaking. These results, alongside the variability values, support the 

hypothesis for which the higher vocal folds’ tension in singing causes higher stability of f0. 

This confirms the fundamental frequency as a highly impactful factor in the discretion of 

speaking voice and singing voice. 
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Figure 6.1 - Box Plot for f0 values of 25 randomly positioned singing samples 

 

Figure 6.2 - Box Plot for f0 values of 25 randomly positioned speech samples 

6.4. Background on MFCC and ANN 

6.4.1. Mel Frequency Cepstrum Coefficients  

Once the dataset was constructed and augmented, the samples were processed to extract 

MFCCs and create a training dataset for the input of an ANN. In recent years, MFCCs 

have become broadly employed across the literature in the field of human voice feature 

extraction. Such extensive usage derives from the ability to accurately deliver spectral 
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information in the human voice frequency band. This ability arises from the use of the Mel 

frequency scale. The Mel scale is a perceptual pitch scale based on the auditory judgment 

of listeners, and it was first defined by Stevens, Volkmann, and Newman in 1937. The 

scale is based on a reference point which defines a pitch of 1000mel as equal to a tuned 

frequency of 1kHz. The Mel frequency scale aims at representing the distances between 

pitches in the same way in which those would be perceived by humans or, in other words, 

seeks to mimic the frequency characteristics of hearing. In human hearing, the sound is 

perceived logarithmically; thus, a change of 300Hz between 200Hz and 500Hz would 

appear obvious, whereas between 10200Hz and 10500Hz, for instance, would result 

imperceptible. Therefore, as it imitates human hearing and uses 1kHz as a reference, the 

Mel scale exhibits quasi-linearity below 1kHz whilst showing a logarithmic behaviour above 

it (Liu and Lilin, 2022). The relation between Mel and Hertz is shown in equation 6.2 and 

plotted in figure 6.3.  

 𝑀𝑒𝑙 = 2595 log,- "1 +
𝐻𝑧
700( 

 
(6.2) 

 

Figure 6.3 - Mel Frequency scale vs Hz scale 
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As human hearing perceives with the most accuracy the frequencies within the vocal 

range, thus, the MFCCs, become particularly effective in the spectral analysis of human 

voice as they offer a higher resolution than conventional FFT.  

MFCCs are derived as follows: 

i. A Discrete Fourier Transform (DFT) is performed on the input signal. 

ii. The powers of the resulting spectrum are mapped to the Mel scale by applying a 

bank of overlapping triangular windows, typically 20 or 40. The number of windows 

decreases with an increase in frequency, which replicates the logarithmic behaviour 

of the Mel scale. Figure 6.4 shows a typical Mel filter bank. 

 

Figure 6.4 - Mel filter bank triangular windows 

iii. The frequency bands created by the Mel filter bank are computed, and the 

logarithms of their power are calculated. 

iv. The resulting values are processed through a Discrete Cosine Transform (DCT).   

v. The MFCCs are the values of amplitude in the resulting DCT spectrum. 
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vi. The output is an array of coefficients with size dependent on the number of 

windows and the size of the DFT window. 

6.4.2. Artificial Neural Networks 

The binary classification problem for the distinction between speech and singing was 

approached in this research by implementing an Artificial Neural Network. ANNs represent 

the backbone of the Machine Learning (ML) subset known as Deep Learning.  

 ANNs are complex structures designed to imitate the learning system of biological 

brains through the implementation of artificial neurons. An artificial neuron is, in fact, a 

mathematical model that approximates the behaviour of biological neurons and, like its 

biological counterpart, features multiple inputs and one single output. These neurons are 

then connected to each other through what are known as synapses. In ANNs, these 

synapses are of paramount importance as an artificial neuron effectively calculates the 

weighted sum of its inputs, where the weight of each input is given by the relative synapse. 

Once the neuron has calculated the weighted sum of its inputs, an activation function is 

applied to the result to bestow a new weight to the output synapse. To create a full neural 

network, multiple artificial neurons are organised in layers and interconnected, mimicking, 

once again, the internal structure of a biological brain. Figure 6.5 shows an ANN in its 

most basic configuration. 

 

Figure 6.5 - Basic input-output ANN 
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In its most basic configuration (figure 45), a neural network only presents an input layer 

and an output layer. To further improve an ANN, its structure can be enriched with extra 

layers of neurons added between input and output. These layers are known as Hidden 

Layers and are intended to add depth to the structure. Figure 6.6 shows an example of an 

ANN featuring a single hidden layer. 

 

Figure 6.6 - ANN with one hidden layer 

 In this architecture, when a set of variables is presented to the input layer, one of 

the input neurons passes the values to all the neurons in the hidden layer. All the neurons 

in the hidden layer, thus, receive all parameters. Each hidden neuron, however, gives 

precedence to one or more values over the rest, creating a specific weight. The weight 

determines how significant a specific value is for a particular neuron and brings each 

hidden neuron to look for something specific in the original set of values. 

 The functioning of ANNs is based on a learning process which trains the network in 

classifying input according to specific labels and characteristics. This is usually achieved 

by computing the amount of error between the processed output of the neural network and 

the given target output; once computed, the error information is fed backwards into the 

network through backpropagation. The backpropagation of the error successively allows 

the ANN to determine how much error each neuron is responsible for and, consequently, 

to adjust the weight and reduce the error at the output of the successive epoch.The 
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reduction of the output error, when compared to the previous epoch, allows a tuning of the 

synapses’ weights, increasing reliability, accuracy, and generalisation of the model. 

6.5. Data pre-processing 

For the training of an ANN, the MFCCs were used to extract numerical features from the 

7200 generated samples and create a dataset for training and testing. The extraction of 

the MFCCs delivers a two-dimensional array of coefficients where the dimensions are 

dependent on two factors: the number of windows in the Mel filter bank and the relation 

between sample duration and DFT window size. In the assembled dataset, however, all 

recordings exhibit different durations due to both the phonation type and the speaker. This 

generates a different size MFCC array depending on the duration of the relative recording. 

A duration of 500ms, for instance, with 20 triangular windows, a sampling frequency of 

44.1kHz, and a DFT frame size of 512 samples, will result in an MFCC array of dimension 

20x43. This is confirmed by equation 6.3. 

For sample rate = 44100, frame size = 512, samples duration = 0.5s: 

 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 44100 ∙ 0.5s = 22050 (6.3a) 

 
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑟𝑎𝑚𝑒𝑠 =

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒𝑠	
𝑓𝑟𝑎𝑚𝑒	𝑠𝑖𝑧𝑒

=
22050
512

= 43 
 

(6.3b) 

 Whereas the number of frames exhibits a different value based on the length of the 

processed sample, the number of windows remains constant across the dataset as all 

samples are processed through a 20 windows Mel filter bank. 

 For the assembling of the dataset, the resulting MFCC from the processing of a 

single sample were organised into a CSV file to be then fed to an ANN classifier. Figure 

6.7 shows an MFCC output array for an example sample with a 500ms duration. 
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Figure 6.7 - MFCC output array for a sample duration of 500ms 

To create a feature matrix appropriate for the input of an ANN, the size of the coefficients 

array is reduced by computing the mean value of each window generating a single 

coefficient per Mel window. As the Mel filter bank size is constant at 20, every sample in 

the dataset will result in a 20x1 array which is then re-arranged into a 1x20 feature matrix. 

The procedure of computing the mean values of each window ensures an equal size array 

for all samples despite the difference in duration between samples (Zakariah, 2022). Since 

the means are calculated over the frame axis, the length of which is dependent on the 

sample duration, this process “removes the time variable” and overcomes the different 

durations of the recordings. 

 Once the coefficients’ means are computed and organised in a 1x20 matrix, feature 

scaling is applied, and the resulting data is standardised to zero mean and unit variance. 

The scaling of the values ensures the correct functioning of the ANN classifier as it 

guarantees a homogeneous order of magnitude across the entire dataset. If the values are 

part of different orders of magnitude, some in the tens and some in the hundreds for 

instance, the ANN would assume higher values to be more significant. Thus, feature 
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scaling ensures that each value is weighted in context appropriately. Figure 6.8 shows the 

final 1x20 scaled array for a single bioimpedance recording. 

 

Figure 6.8 - 1x20 feature scaled MFCC array for a single sample 

Finally, all the individual feature matrices obtained from the processing of the entire 

dataset were labelled in accordance with their typology as “sing” or “speech” and 

organised into a single CSV file representing the full dataset. Figure 6.9 shows a portion of 

the resulting CSV where each row represents the 1x20 feature matrix of one recorded 

sample. 

 

Figure 6.9 - Labelled MFCC dataset for the training (portion) 

6.6. Artificial Neural Network architecture 

The first concept underlying the design of the ANN architecture is the implementation of a 

real-time voice classifier to develop a real-time voice feature extraction and conversion 

system based on bioimpedance measurements. For a MIDI conversion to be considered 

real-time, the delay between phonation and message delivery cannot exceed 20ms 

(Stowell and Plumbley, 2010). Based on this concept, the ANN design was approached 

aiming at deploying the simplest and lightest architecture possible capable of achieving a 
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satisfying classification accuracy. The ANN was implemented using the Keras library in 

Python; the complete code is presented in Appendix C. 

 Based on the training data's shape, the ANN's architecture was constructed starting 

with an input layer of 20 neurons to match the 20 windows employed in the Mel filter bank 

for the extraction of the MFCCs. To maintain simplicity and fast processing, the classifier 

was featured with a single hidden layer comprised of 40 neurons implemented with a 

Rectified Linear Unit (ReLU) activation function. The ReLU activation ensures that not all 

neurons are employed simultaneously, and only those receiving positive values are 

activated, making the network computationally efficient. The output layer of the network 

was then implemented using a single neuron featuring a Sigmoid activation function as per 

the binary nature of the problem. Such architecture was constructed according to empirical 

observations; whilst maintaining the same input and output shapes, the system was tested 

with different hidden layer configurations to deduct the optimal architecture. The testing 

process of the different configurations will be observed in more detail in section 6.5 of this 

chapter. Figure 6.10 shows the finalised ANN architecture. 

 

Figure 6.10 - ANN architecture with relative input data array 
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6.7. ANN performance evaluation 

Using the constructed dataset, the classifier was finally tested, and an evaluation of its 

overall accuracy was performed for both training data and “unseen” data. 

 Firstly, the assembled dataset of MFCCs was split randomly between training and 

validation data with a percentage of respectively 70% and 30%. The training was run over 

50 epochs, and different configurations of the hidden layer were tested to evaluate the 

optimal architecture. In all test cases, the training was completed in around 22s with an 

accuracy exceeding 90% in four out of five instances. The testing of the different 

architectures showed a hidden layer of 40 neurons to be the optimal configuration, with a 

total accuracy of around 96% in training and a validation accuracy of about 94%. Figures 

6.11 and 6.12, respectively show the accuracy score for all tested architectures and the 

accuracy curve for the 40 hidden neurons ANN configuration. 

 

Figure 6.11 - Training and validation accuracy for different hidden layer configurations 



Chapter 6 Real-Time Voice Classifier 

 

91  

 

Figure 6.12 - Model accuracy curve for 40 hidden neurons 

 Once the model training was completed, the classifier performance was tested 

using a dataset of 250 “unseen” samples. The testing dataset was obtained from the same 

participant of the training dataset. The ANN classifier delivered a test accuracy of 92%. 

Figure 6.13 shows the confusion matrix for the testing of the classifier. 

 

Figure 6.13 - Confusion matrix for ANN testing with "unseen" data 



Chapter 6 Real-Time Voice Classifier 

 

92  

6.8. Real-time distinction of speaking and singing voices 

Once the ANN was constructed, trained, and tested, a real-time testing framework was 

assembled to evaluate the classifier's ability to distinguish speech and singing in a real-

time environment. The signal output from the bioimpedance measurement device was fed 

to the input of an audio interface and then streamed to a dedicated program. To evaluate 

the accuracy of the classifier in a real-time setting, the program script was designed to 

produce a MIDI note number representing the labelled produced by the ANN. The MIDI 

messages are then streamed over serial communication to a Digital Audio Workstation 

(DAW) where they are recorded simultaneously with the bioimpedance measurement. This 

setup allows to show the signal morphology and the predicted label over time, describing, 

in turn, the system's accuracy. For each sampling frame of the input, the incoming signal is 

processed as follows: 

i. The bioimpedance measurement signal is sampled at 44.1kHz with a buffer size of 

8820 samples. 

ii. The MFCCs are extracted, their mean values per window are calculated, and 

feature scaling is applied. 

iii. The resulting array is rearranged to feed the ANN classifier. 

iv. The classifier performs a prediction and categorises the input as either Speech or 

Singing. 

Figure 6.14 shows the flowchart of the program; figure 6.15 shows the output of both the 

bioimpedance signal and the predicted label within the DAW. 
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Figure 6.14 – Program for real-time prediction on bioimpedance measurements 

 

Figure 6.15 - Real-time evaluation using audio and MIDI recordings 
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The real-time testing of the ANN showed an efficient behaviour of the system, yielding a 

prediction error of around 6%. Nevertheless, the system exhibits a delay of about 200ms in 

between predictions, making its real-time applicability highly dependent on the application. 

While it would result as usable for the delivery of control messages in several human-

machine interaction applications, a 200ms latency exceeds the acceptable threshold for 

the specific conversion into musical information. 

6.9. Summary and discussion 

This chapter presented the development of a neural network for the discretion of singing 

and speaking voices using laryngeal bioimpedance measurements. Firstly, an analysis 

was carried out on how f0 characteristics sit as the main element of distinction between 

speaking and singing. Then, a description of the novel dataset generated is presented, 

followed by a background on the feature extraction techniques employed for this research 

project. The chapter then concluded with a description of the neural network architecture, 

followed by an analysis of its accuracy and an evaluation of its performance in real-time 

applications. 

 The first element in the binary classification of speech and singing was the study of 

the fundamental frequency as the main discerning factor. It is generally assumed for 

singing to exhibit higher stability in the fundamental frequency given the higher tension 

applied to the vocal folds for pitch tuning and control. However, an analysis of the literature 

shows this differentiation being hypothesised solely through perceptual analysis without 

any mathematical or statistical confirmation. Using bioimpedance measurements, it was 

possible to perform a statistical analysis of the fundamental frequency variability as the 

laryngeal signal effectively represents the fundamental frequency of voice.  
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 The development of an ANN for voice act classification was based on its 

implementation for the real-time conversion of human voice information into control 

signals. This dictated for the neural network to be designed and constructed with the 

simplest possible architecture. The use of MFCCs in the form of numerical data allowed to 

avoid computationally demanding operations such as convolution and image processing 

that, in turn, allowed the use of a fully connected neural network. The classifier was 

deployed using a three-layer ANN, which delivered a maximum accuracy of 92% on new 

samples. The system was then implemented in a real-time environment, delivering a total 

accuracy of 94% with a latency between predictions of around 200ms. Such latency is 

mainly dependent on the input buffer that was set to be of size 8820 samples as, for a 

sampling frequency of 44.1kHz, this corresponds to about 200ms of signal. Further testing 

and evaluation using smaller buffer sizes, however, proved to produce a much higher error 

setting 200ms as the minimum signal portion needed for optimal performances. The main 

reason behind such constriction resides in the very difference between speaking and 

singing acts. As previously discussed, the articulatory differences between speech and 

singing, result in speech exhibiting an over-time fluctuation of the fundamental frequency. 

As per this characteristic, therefore, the ANN classifier requires a sufficient number of 

signal periods to be able to detect f0 variability. 

 Whether the presence of a 200ms delay can be considered real-time is highly 

dependent on the application. In this research project, the application of a real-time ANN 

classifier is intended to discard unwanted signals during the conversion of voice into MIDI 

messages. For such purpose, however, a latency of 200ms sits above the minimum 

threshold required for true real-time. The outcome of the current design, however, 

suggests for the implementation of the ANN with a voice-to-MIDI converter to be carried 



Chapter 6 Real-Time Voice Classifier 

 

96  

out in a parallel structure. This would allow the classifier to act as a gate in the transition 

between speaking and singing. Chapters 7 and 8 will analyse the development of a novel 

voice-to-MIDI conversion system and its deployment in combination with the real-time 

classification system.  
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Chapter 7 

7. A Novel Voice-to-MIDI Converter 

- Background on the MIDI protocol 

- Real-time f0 tracking 

-   Voice-to-MIDI conversion 

- System performance assessment 
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7.1. Introduction 

The main aim underlying the development of the presented research project focuses on 

extracting voice information for the generation of control messages using bioimpedance 

measurements. This development was based on the use of the Musical Instrument Digital 

Interface (MIDI) protocol for the control of electronic musical instruments and sound 

generators. As opposed to other systems mimicking musical instruments, the use of 

human voice prevents the implementation of physical controls for the delivery of MIDI 

messages. This is mainly due to the nature of human phonation, where internal articulatory 

elements control sound generation as opposed to mechanical instruments. Therefore, the 

conversion of human voice into MIDI requires an extraction of its sound characteristics 

and, primarily, its amplitude envelope and fundamental frequency. The processing of 

voice, however, is commonly based on the use of microphones and sound recordings. 

This causes the process to be lengthy and computationally expensive whilst subject to 

noise and external interferences, especially in terms of frequency. This makes such an 

approach inefficient for the consideration of its real-time capabilities. The use of 

bioimpedance measurements sits at the foundation of this research as it allows the system 

to directly examine the f0 of any produced phonation, improving the efficiency and speed of 

voice feature extraction. 

 In this chapter, a novel voice-to-MIDI conversion system based on bioimpedance 

measurements is introduced and discussed. The system was designed around speed and 

computational efficiency so as to achieve the fastest conversion possible and a true real-

time functioning. First, an introduction to the MIDI protocol is provided, followed by the 

techniques employed for f0 analysis and MIDI conversion. The chapter then concludes with 
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an analysis and evaluation of its performance. The full MIDI conversion system was 

developed in C++ within the Bela development board. 

7.2. Background on the MIDI protocol 

For the last three decades, MIDI has stood as the primary method for communication 

across a variety of devices. Initially developed in the early 1980s, the MIDI protocol is a 

technical communication and interfacing standard for the synchronisation and 

interoperability of several electronic musical instruments and structures. 

 Its principles of operation revolve around the exchange of digital messages 

between devices in the form of binary data. MIDI presents a series of predefined 

messages, each addressing a certain aspect of control. These messages are comprised of 

three bytes, each conveying a piece of specific information that can be divided into two 

types, status byte and data byte. Whilst the first specifies the type of message, the latter, 

describes the parameters of the message. The distinction between the two types of bytes 

is contained in the first bit of each 8-bit word with 1 and 0, respectively, indicating status 

and data. Figure 7.1 shows the structure of a typical MIDI message. 

 

Figure 7.1 - MIDI message structure 
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According to what it can be seen in figure 7.1, a MIDI message can be summarised as 

follows: 

i. The bit on the far left, or the most significant bit, denotes the byte type. 

ii. Each byte, status or data, has seven free bits and, thus, 27 (128) possible values. 

iii. The first byte in a message is the status byte and contains information about the 

message type and channel number. These are carried by the first 3-bit following the 

most significant bit and the last 4-bit of the word. Thus, 23 (8) types of messages 

and 24 (16) channels are available.  

iv. Each data byte provides 27 (128) possible values carrying the specific message 

parameters. 

As seen by the structure of a status byte, MIDI features eight types of messages, each 

performing a specific task. Amongst them, this research project employs three messages 

to control receiving structures through MIDI; note-on, note-off and pitch-end. These 

messages behave as follows: 

i. Note-on 

This message is employed to make a receiving instrument trigger a specific musical note; 

it contains pitch and velocity information, each carried by one data byte. As each data byte 

offers 128 possible values for the message parameters, the pitch and the velocity are 

expressed in values ranging between 0 and 127. 

ii. Note-off 

This message is employed following a note-on, and it triggers the receiving instruments to 

interrupt the played note. The first data byte carries the same pitch information of the 

preceding note-on message, whilst the second data byte specifies a velocity of 0. 
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iii. Pitch-bend 

This message is usually transmitted whilst a note is being played and represents a shift in 

pitch from the one set by the note-on message. The range of said shift is typically specified 

by the receiving instrument with a common default setting of ±2 semitones. Pitch-bend is 

the only message type to employ both data bytes for a single parameter and thus offers a 

resolution of 214, ranging from 0 to 16383. Moreover, pitch-bend delivers a gradual 

increase or decrease in frequency and is, therefore, able to “move” between semitones.  

7.3. Real-time f0 tracking  

The most important information for the conversion of voice into musical notes is 

undoubtedly the fundamental frequency of a sung note. As mentioned, bioimpedance 

measurements provide a simpler signal compared to microphones and, in turn, allow the 

employment of less complex computational procedures to accurately track f0. Given the 

morphology of the signal obtained from the bioimpedance measurement device, the 

evaluation of f0 was conducted using a Zero Crossing Rate (ZCR) method based on linear 

interpolation. 

7.3.1. Linear interpolation for zero-crossing estimation 

Linear interpolation is a curve fitting method used to find the straight line intersecting two 

given points. If two points with coordinates (x1, y1) and (x2, y2) are considered, the straight 

line connecting said points is known as the linear interpolant. For any value of x along the 

linear interpolant, the value of y can be derived through a comparison of slopes, as shown 

by equation 7.1. This can be represented geometrically as presented in figure 7.2. 

 𝑦 − 𝑦/
𝑥 − 𝑥/

=
𝑦. − 𝑦/
𝑥. − 𝑥/

  
(7.1) 
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Figure 7.2 - Linear interpolation 

As any point along the linear interpolant can be derived through equation 7.1, linear 

interpolation can be used to evaluate the zero-crossing points for any known bipolar 

function (Mog and Ribeiro, 2004). This can be achieved by imposing the following rules:  

i. The two considered points must be adjacent on the x-axis. 

ii. The two considered points must have opposite signs for y. 

iii. The y value for the point on the linear interpolant must be set as 0. 

 From 7.1 solve for x: 

 
𝑥 =

(𝑦 − 𝑦/)(𝑥. − 𝑥/)
𝑦. − 𝑦/

+ 𝑥/ 
 

(7.1) 

 Set x2 = x1 + 1: 

 
𝑥 =

(𝑦 − 𝑦/)(𝑥/ + 1 − 𝑥/)
𝑦. − 𝑦/

+ 𝑥/ 
 

(7.2a) 
 

 
𝑥 =

(𝑥/𝑦 + 𝑦−𝑥/𝑦 − 𝑥/𝑦/ − 𝑦/ + 𝑥/𝑦/)
𝑦. − 𝑦/

+ 𝑥/ 
 

(7.2b) 

 𝑥 =
𝑦 − 𝑦/
𝑦. − 𝑦/

+ 𝑥/ 
 

(7.2c) 
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 For y1 < 0 < y2 or y1 > 0 > y2 set y = 0: 

 𝑥 = 𝑥/ −
𝑦/

𝑦. − 𝑦/
  

(7.3) 

Equation 7.3 permits the evaluation of the zero-crossing point of any bipolar function for 

which both the points and their polarity are known. An example of implementation is 

proposed in equation 7.4 and illustrated in figure 7.3 for an arbitrary sinusoidal function. 

 For two known adjacent points along the sinusoidal curve: 

  A (2, -0.6) and B (3, 0.6): 

 𝑥 = 𝑥/ −
𝑦/

𝑦. − 𝑦/
  

(7.4a) 
 

 𝑥 = 2 −
−0.6

0.6 − (−0.6)
= 2.5 

 
(7.4b) 

 

Figure 7.3 - Linear interpolation for the zero-crossing evaluation of a known function 

7.3.1. The fundamental frequency tracking algorithm 

In signal processing, linear interpolation can be applied as a ZCR method to extract the 

fundamental frequency of a periodic signal. The Zero Crossing Rate represents the rate at 

which a signal changes from positive to negative and from negative to positive. As the 
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period of a signal can be described as the time needed for it to go from its maximum 

positive to its maximum negative and back, ZCR can be implemented in simple 

monophonic signals to evaluate the period duration and, consequently, the fundamental 

frequency. Commonly, for period estimation, only the positive-going or the negative-going 

crossings are considered as the distance between two zero-crossings with the same 

direction is effectively equal to the duration of a single period. In this implementation, the 

period estimation was conducted by counting the positive-going crossings. The 

fundamental frequency of the input was then calculated as the inverse of the period. 

 First, the output of the bioimpedance measurement is fed to the Bela Analogue to 

Digital Converter (ADC) and sampled with a rate of 44.1kHz and a buffer size of 512 

samples. The algorithm loops through the input buffer and evaluates the sign changes. For 

every instance where a positive-going crossing is detected, a linear interpolation is run on 

the two adjacent sample points. As in discrete signals every sample is an integer value, 

the linear interpolation delivers a floating-point index value representing the theoretical 

position of the zero in between integer samples. Once calculated, the interpolation result is 

appended to an array for each loop iteration. Figure 7.4 shows the code implementation 

for the extraction of the zero-crossing indices. 

 

Figure 7.4 - Code implementation for f0 extraction based on ZCR and linear interpolation 
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The described process delivers an array containing several zero-crossing instances 

depending on the frequency of the bioimpedance measurement. Given a buffer size of 

512, in fact, a higher frequency input would display more periods when compared to a 

lower frequency. Such a difference in the rate of oscillation results in the number of zero 

crossings being dependent on the input frequency.  

 Once all the positive-going zero-crossing are identified, the duration of each period 

in the buffer is computed by calculating the distance between adjacent zero-crossings. To 

obtain a single f0 per input buffer, an average of the durations across the array is 

calculated. Finally, the value of f0 is computed as the ratio between sampling frequency 

and period duration in samples. This is equivalent to computing the inverse of the period 

duration in seconds as the sample rate effectively represents 1s duration. Figure 7.5 

shows the code implementation for the average period calculation and f0 estimation.  

 

Figure 7.5 - Average period duration and f0 calculation 

 Once implemented, the f0 tracking was tested with a sinusoidal input of known 

frequency 220Hz which represents a typical singing voice frequency. The Bela board IDE 
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ensures fast audio processing by reserving a thread for the audio stream to which the 

highest priority is given. This characteristic causes the time stamp evaluation to be 

untruthful within the Bela itself, as the time evaluation will be run at the lowest priority. To 

evaluate the system, the program is set to output a MIDI note-off message, for an arbitrary 

note value of 50 (D3), every time a new frequency reading is delivered. The MIDI output is 

then analysed with a MIDI monitor, which provides a time stamp for each message. The 

accuracy of the frequency evaluation, on the other hand, is printed within the Bela IDE in 

real-time. Table 3 shows a sample of 10 readings from the f0 evaluation. 

Table 3 - f0 tracking evaluation for timing and frequency value 

# TIMESTAMP SOURCE 
 

MESSAGE 
 

DATA 
 

LATENCY FREQUENCY  

1 15:09:45.410 From Bela Note Off D3             0 n.a. 219.95 

2 15:09:45.421 From Bela Note Off D3             0 00.011s 220.05 

3 15:09:45.433 From Bela Note Off D3             0 00.012s 219.95 

4 15:09:45.445 From Bela Note Off D3             0 00.012s 219.403 

5 15:09:45.468 From Bela Note Off D3             0 00.023s 219.95 

6 15:09:45.468 From Bela Note Off D3             0 00.000s 219.95 

7 15:09:45.479 From Bela Note Off D3             0 00.011s 219.95 

8 15:09:45.491 From Bela Note Off D3             0 00.012s 220.5 

9 15:09:45.503 From Bela Note Off D3             0 00.012s 219.95 

10 15:09:45.514 From Bela Note Off D3             0 00.011s 219.403 

 

The performance assessment of the f0 tracking program shows that the algorithm can 

deliver frequency readings with a maximum latency of about 12ms and an accuracy of 

about 98%. However, the frequency evaluation error of 2% is negligible in this application 

given the relation between semitones; such a relation is analysed in detail in the next 

section. Notably, the MIDI monitor shows a latency of 23ms and 0ms for instances 5 and 
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6, respectively. This happens as an error caused by the MIDI monitor printing, which adds 

up two messages and results in one exhibiting the combined latency of the two and the 

second carrying a zero latency.  

7.4. Amplitude tracking and MIDI messages allocation 

Human voice is a unique musical instrument, and, as such, its sound and its parameters 

are controlled and generated in a unique manner. While in most instruments, the 

parameters controlling sound aspects are entirely dependent on the mechanical 

characteristics of a physical object, in the human voice, such aspects are reliant on the 

internal physiology of the phonation system itself. The absence of external mechanics 

deprives a voice conversion system of the possibility of implementing physical controls for 

the on and off states of the MIDI note messages. The MIDI allocation system, thus, was 

based on a real-time evaluation of the voice amplitude. 

7.4.1. Amplitude tracking 

 The amplitude tracking of the vocal bioimpedance variation was conducted by 

performing a real-time RMS estimation for each input buffer acquired by the Bela board. 

The RMS estimation allows the system to assess the current state of the envelope and 

evaluate whether the singing act is in its attack/release or steady state. The laryngeal 

bioimpedance measurements, however, cannot provide accurate amplitude information for 

the system to evaluate the current state of the envelope. This issue arises from the 

physiological characteristics of the phonatory apparatus as the amplitude of the produced 

sound depends on the airflow’s pressure and not on the vocal folds. For such reason, the 

alternation of note-on and note-off was implemented through a binary approach 

differentiating between attack/release and steady state. The threshold for this method was 
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derived through measurements and empirical observation. For each buffer of the sampled 

signal, the RMS is calculated and converted into dB FS, as shown by equations 7.5 and 

7.6. 

 For a discrete input x[n]:  

 

𝑅𝑀𝑆 = e∑ 𝑥1.D
1E/
𝑁

 
 

(7.5) 

 𝑑𝐵𝐹𝑆 = 20	log/F 𝑅𝑀𝑆 (7.6) 

7.4.2. MIDI note allocation 

The impossibility of implementing physical controls for triggering MIDI notes is prone to 

errors regarding the correct allocation of note messages. During a legato, for instance, the 

pitch produced by a singer would vary over time across the steady state of the amplitude 

envelope; this event could cause the triggering of multiple note-on messages whilst 

outputting a note-off message solely for the last note of the sequence. Building the 

allocation system exclusively according to the steady or non-steady state of the amplitude 

would then result in all the produced notes, besides the last, remaining active.  

 To avoid the stacking of active notes, the allocation system was based on the use 

of a buffer. First, the buffer is created to contain the MIDI note 0, which is then sent out as 

a note-off message. This process initiates the buffer, and a counter is used to ensure a 

single instance of this action. Once the initialisation is completed, the amplitude threshold 

is evaluated. If exceeded, the frequency value calculated by the f0 tracking algorithm is 

converted into a MIDI note value in line with the MIDI standards and the rules of the 

musical tempered scale. According to the equal temperament, an octave represents a 

doubling in frequency and is made of 12 semitones. As a result, an octave represents a 
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ratio of 2:1, with the ratio between adjacent semitones being approximately 1.0595. For 

two successive notes, A4 = 440Hz and A#4 = 466.16, for instance, the ratio is calculated 

as presented in equation 7.6. 

 𝐴#4
𝐴4

=
466.16
4440

≈ 1.0595 
 

(7.6) 

According to the MIDI standards, the reference point of the tempered scale of 440Hz is 

equal to note number 69. Using this information, the relative frequency for MIDI note “n” 

can be calculated as shown in equation 7.7. 

 
𝑓1 = 2G

1(6C
/. H ∙ 440𝐻𝑧 

(7.7) 

Conversely, given a frequency fn the corresponding MIDI note “M” can be derived by 

equation 7.8. 

 
𝑀 = n12 log.

𝑓1
440𝐻𝑧

o + 69 
 

(7.8) 

 Once the MIDI note number is calculated as specified by equation 24, a note-on 

message is sent out with a fixed velocity value of 110, and the buffer is updated to contain 

the newly generated note. In addition, another counter is employed to ensure the 

triggering of a single note, guaranteeing a single instance of the last operation. Once the 

phonation act is interrupted and the amplitude drops below the threshold, a note-off 

message is sent out for the note number contained in the buffer, deactivating the 

previously triggered note.  

 The described process ensures that for a prolonged phonation, only one note-on 

and one note-off message are generated. Despite accounting for the triggering of stacked 

note-on messages, this configuration cannot reflect an overtime pitch variation as 
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produced, for instance, during a legato. This issue was addressed with the employment of 

pitch-bend values. Figure 7.6 shows the flowchart for the MIDI allocation process. 

 

 

Figure 7.6 - Flowchart of MIDI allocation algorithm 
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7.4.3. Microtonal displacement and pitch-bend allocation 

Another aspect of voice related to its unique nature is the tuning of the pitch during a 

singing act. In most cases, a singer is not able to perfectly tune the voice to the precise 

frequency as defined by the tempered scale. Consequently, a microtonal displacement of 

frequency will often take place. MIDI note numbers are only processed as integer values 

and thus cannot specify microtonal variations or, in other words, values in between 

semitones. This causes the conversion of voice into MIDI notes to be “corrected” to match 

the frequency values dictated by the tempered scale. In turn, such “undesired corrections” 

cause a receiving instrument not to be tuned to the exact frequency produced by the 

singer. Such microtonal displacement between singer and MIDI notes was addressed 

using pitch-bend messages. 

 In the proposed system, the MIDI note value is obtained from the voice by 

converting the f0 value extracted through linear interpolation into a MIDI note number. This 

calculation delivers results with decimal points based on the frequency value being 

converted. As the MIDI protocol processes notes only as integer values, the conversion 

results are rounded to the closest integer before being outputted as note messages. 

Calculating the difference between the decimal point MIDI note and its rounded version 

makes it possible to numerically represent the changes between semitones. The resulting 

numerical changes are subsequently rescaled into pitch-bend values, which are then 

outputted together with the note-on messages during the MIDI note allocation. The 

application of pitch-bend in combination with the tempered note allows the system to avoid 

“undesirable corrections” and tune a receiving instrument to the exact frequency produced 

by a singer. 
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 To allow the such process to mimic the legato effect, the pitch-bend allocation was 

set to be computed for every sampling frame of the signal input during the steady state of 

the amplitude. Whereas the note-on message is sent out only at the start of the phonation, 

the pitch-bend values are continuously calculated and outputted until a note-off is 

produced.  This is achieved by comparing the MIDI note corresponding to the f0 value of 

each sampling frame to the one stored in the buffer. When the note-on is outputted, the 

microtonal shift is calculated, and the corresponding pitch-bend value is outputted and 

stored in a dedicated buffer. Whilst in the following frame no note-on is produced, the 

difference in frequency from the previous frame is evaluated in terms of pitch-bend values. 

Then, the frequency change is applied by gradually matching the pitch-bend buffer value 

to the newly calculated value. This process is carried out until the steady state is exited 

and the note-off is triggered. 

 This configuration allows the system to “navigate” through the frequency variations 

during a sustained phonation ensuring the correct tuning between singer and converter. 

Figures 7.7 and 7.8 respectively show the pitch-bend's behaviour over a sustained 

phonation, and the flowchart of its implementation in the MIDI allocation algorithm.  

 

Figure 7.7 - Pitch-bend behaviour over sustained phonation 
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Figure 7.8 - Flowchart of MIDI allocation algorithm with pitch-bend 

7.5. System performance assessment 

The voice-to-MIDI conversion system was then implemented in full on a Bela development 

board through the programming language C++. The complete code for the MIDI 

conversion and allocation is presented in Appendix D. The Bela board is an embedded 

system specifically designed for audio processing that offers fast performances in real-time 

environments. This platform computes audio on a dedicated thread independent from all 

other operations conducted. The audio thread, in addition, is given the highest priority in 

processing, which allows achieving latencies as low as 100µs (McPherson, 2017). To test 

the system the output of the bioimpedance e measurement system is fed into the audio 

input of the Bela with a frequency of 44.1kHz and a buffer size of 512 samples. Bela was 
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then set to interact with a computer via USB to deliver the MIDI messages over serial 

communication. To evaluate the system performances, the bioimpedance system was also 

fed into the input of an audio interface to be recorded within a Digital Audio Workstation. 

The DAW, then, was set to simultaneously record the laryngeal bioimpedance signal and 

the MIDI messages transmitted by Bela. The evaluation of the system performances was 

conducted by comparing the bioimpedance signal with the recorded MIDI messages. A 

spectrogram of the recorded laryngeal signal was generated to analyse its frequency and 

how said frequency variated over time. Alongside the spectral analysis, the MIDI notes and 

pitch-bend messages delivered by Bela were recorded inside the DAW and observed 

through a MIDI monitor. Four base notes were produced by a singer to each of which a 

variation in legato was applied; the three base notes are A2, E3, Bb3 and C4. Figures 7.9 

to 7.12 present the comparison between the MIDI messages and the spectral content of 

the bioimpedance signal. 

 

Figure 7.9 - Laryngeal phonation spectrogram and generated MIDI comparison for note A2 
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Figure 7.10 - Laryngeal phonation spectrogram and generated MIDI comparison for note E3 

 

Figure 7.11 - Laryngeal phonation spectrogram and generated MIDI comparison for note Bb3 
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Figure 7.12 - Laryngeal phonation spectrogram and generated MIDI comparison for note C4 

 The result analysis presented in the figures above demonstrates the correct 

functioning of the voice-to-MIDI conversion system under two primary aspects. First, the 

spectral analysis of the laryngeal signal compared with the generated MIDI note number 

shows the correct functioning of the Linear Interpolation ZCR algorithm for the estimation 

of f0. The mathematical conversion of MIDI note number into frequency, as previously 

presented in section 7.4.2, demonstrates how the pitch produced by the singer matches 

the frequency value related to the delivered MIDI note. Second, both the DAW and the 

MIDI monitor show a correct allocation of the note-on and note-off messages, proving the 

successful operation of the buffer system and the binary amplitude methodology. Third, 

comparing the frequency variation in the bioimpedance spectrogram with both the 

recorded MIDI and the MIDI monitor data, shows the correct processing and allocation of 

the pitch-bend values in mimicking frequency variation in legato. Indeed, the pitch-bend 
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curve recorded within the DAW shows an overtime variation that matches the patterns of 

the fundamental frequency variation as plotted in the relative spectrogram. 

 Alongside the accuracy of the performances, the speed of processing was also 

analysed. For a voice-to-MIDI conversion system, the latency in delivering the MIDI 

messages should not exceed a threshold of 20ms for it to be acoustically perceived as true 

real-time (Donati, E. and Chousidis, C., 2022; Stowell, D. and Plumbley, M.D., 2010). An 

evaluation of the latency was conducted by analysing the timestamps of the MIDI output 

through a MIDI monitor. The results are presented in table 4 and show the overall voice-to-

MIDI system delivering messages in true real-time as it exhibits a maximum latency of 

12ms. Table 4 also shows how the first note-on and the first pitch-bend value are 

outputted simultaneously, confirming the correct functioning of the system in avoiding 

“undesirable corrections” of the sung note to match the tempered scale frequencies. 

Table 4 - Latency evaluation of MIDI output for voice-to-MIDI real-time converter 

TIMESTAMP SOURCE 
 

MESSAGE 
 

DATA 
 

LATENCY 

16:57:06.293 From Bela Note-on A3                 110 n.a. 

16:57:06.293 From Bela Pitch-Bend -266 00.000 

16:57:06.305 From Bela Pitch-Bend -271 00.012 

16:57:06.316 From Bela Pitch-Bend -276 00.011 

16:57:06.328 From Bela Pitch-Bend -281 00.012 

… 

16:57:07.454 From Bela Pitch-Bend -766 00.012 

16:57:07.466 From Bela Pitch-Bend -771 00.012 

16:57:07.477 From Bela Pitch-Bend -776 00.011 

16:57:07.489 From Bela Pitch-Bend -781 00.012 

16:57:07.501 From Bela Note Off A3                     0 00.012 
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7.6. Summary and discussion 

This chapter presented the design and development of a novel system for delivering MIDI 

messages through human voice. First, a background on the MIDI protocol was presented, 

followed by a description of the method implemented for the tracking of the voice pitch. 

Then, an analysis of the conversion and allocation of MIDI messages from bioimpedance 

laryngeal measurements is carried out considering amplitude tracking of the input, 

allocation of notes, and microtonal displacement accountment through pitch-bend 

processing. Finally, the chapter concludes with an analysis of the system performances in 

both terms of precision and processing speed. 

 The approach to voice-to-MIDI conversion using bioimpedance signals allowed a 

more efficient and faster generation of MIDI messages compared to microphone-based 

systems. The primary advantage of the approach proposed by the author is in the 

estimation of the fundamental frequency of singing voices. The simplicity of the laryngeal 

signal and its scarce harmonic content grant the system the ability to accurately perform 

an estimation of f0 whilst avoiding frequency domain calculations. In the presented design, 

the pitch estimation for the conversion to MIDI notes was carried out using a ZCR method 

based on Linear Interpolation. Indeed, avoiding frequency operations resulted being highly 

computationally sustainable, which, in turn, granted true real-time performances to the 

overall conversion. The system assessment showed an overall maximum latency of 12ms 

between the acquisition of the bioimpedance signal and the delivery of a MIDI message. 

Such latency, moreover, is almost entirely due to the size of the sampling buffer. In this 

system, the signal acquisition is performed with a sampling frequency of 44.1kHz and a 

buffer of size 512 samples, which is equivalent to an 11ms time frame. This demonstrates 

how the use of time domain calculations on laryngeal readings allows the accurate 
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extraction of f0 information in less than 1ms. Moreover, the high precision of the f0 

evaluation allowed an efficient and accurate estimation of the frequency displacement 

happening between a sung note and the corresponding frequency dictated by the equal 

temperament. This evaluation allowed a correct allocation of pitch-bend messages in 

accounting for the above-mentioned frequency disparity and ensured the tuning between a 

user and a MIDI receiving instrument. The assessment of the system demonstrated a 

correct allocation of the pitch-bend messages, with its values matching the pattern of the 

frequency variation observed in the spectral imaging of the laryngeal signal.  

 The analysis of the delay between signal acquisition and MIDI messages, in 

addition, suggests how the overall latency could be reduced for specific voice registers by 

minimising the size of the input buffer. As a ZCR method requires at least one signal 

period for an accurate evaluation of f0, the author believes that a smaller buffer size could 

be used in accordance with the period duration of the lowest note of a given voice register. 

For instance, the lowest note for a contralto sits at about 174Hz, which exhibits a period 

duration of about 5.7ms; for a sampling frequency of 44.1kHz, this is equivalent to about 

254 samples and would allow the use of a 256 samples buffer. This would half the time 

employed for signal acquisition and, consequently, the overall latency by implementing a 

precision adjustment for the system to interact within the frequency bands of specific voice 

registers. 
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8.1. Introduction 

The main aim of this research project is to develop a self-deployable system for converting 

voice information into MIDI messages using laryngeal bioimpedance measurements. The 

previous chapters presented several stages of development describing the design and 

construction of the dedicated hardware, the implementation of a multi-sensor system for 

self-calibration, the deployment of a high accuracy real-time ANN for voice act 

classification, and an embedded system for real-time voice-to-MIDI conversion. This 

chapter will go through the system integration and will conduct an evaluation of its overall 

performance. 

8.2. System integration 

One of the main drawbacks arising from the conducted research was the significant 

latency between the classifier’s predictions. As discussed in chapter 6, such delay is 

dependent on the need of the system to acquire several signal periods to be able to detect 

fluctuations in f0. As for a MIDI conversion the maximum latency should be below 20ms, a 

combination of the conversion system and the ANN in series would cause the overall 

performances to be way above the limit of real-time processing. For this reason, the AI 

classification was implemented in parallel with the MIDI converter so to act as a gate. This 

allows the voice-to-MIDI system to perform at its lowest latency, and the conversion to be 

externally interrupted according to the ANN predictions. 

 The parallel processing was achieved by deploying the ANN within a computer, 

whilst maintaining the voice-to-MIDI converter as an independent embedded system 

based on Bela. Despite being capable of serial communication, the Bela system shows 

significant drawbacks in such an application due to the serial data being processed in a 
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low-priority thread. For this reason, the Python script running the ANN is made to 

communicate in serial with an Arduino, which is then programmed to communicate with 

the Bela board via digital I/O. In addition, the self-calibration system is also implemented 

within the same script, and the Arduino is set to control the multiplexing system of the 

hardware device. Finally, the output of the bioimpedance sensor device is fed to the MIDI 

converter through the internal ADC of the Bela board and to the Python program using an 

external audio interface. A DAW and a MIDI monitor are run within the computer to 

evaluate the overall performance. Figure 8.1 shows the diagram for the full system 

configuration. 

 

Figure 8.1 - Full system integration diagram  
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The functioning of the system develops as follows: 

i. The laryngeal bioimpedance signal is sampled in and the self-calibration system is 

run to select the optimal sensor placement. 

ii. The Python script communicates with Arduino, which provides a binary logic to the 

multiplexing system of the hardware to select the most suitable pair of electrodes. 

iii. Once calibrated, the measurement device is active, and its signal output is fed to 

the Python program and to Bela. 

iv. The MIDI conversion system and the ANN run simultaneously. If the classifier 

produces a “Speech” label, the Arduino will produce a HIGH state at the digital 

output pin connected to Bela. Within the Bela board, whenever a HIGH state is 

received at the relative digital input, the input amplitude variable is forced to zero, 

causing the conversion to be interrupted. Whenever the digital input of Bela exhibits 

a LOW state, on the other hand, the MIDI conversion is performed normally. 

To analyse the performances of the integrated system, the MIDI output, the prediction 

labels, and the laryngeal signal are recorded within the DAW. As previously shown in 

chapter 6, in order to compare the bioimpedance signal with the labels produced by the 

ANN, an arbitrary MIDI note is produced for each prediction, which is then recorded within 

the DAW. Figure 8.2 shows a comparison between the laryngeal bioimpedance signal, the 

produced MIDI messages, and the classifier predictions, in the form of MIDI notes, 

recorded simultaneously in the DAW. 
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Figure 8.2 - Full system evaluation laryngeal signal, ANN prediction, MIDI output and pitch-bend 

 As shown in figure 8.2, the prediction system performs as intended and successfully 

acts as a gate to either trigger or stop the conversion of the voice information into MIDI. As 

it can be seen, the conversion into MIDI is present only when the classifier labels the input 

as Singing, here represented by MIDI note C3. Most of the error appearing in the 
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prediction system occurs during a silent transition or a speech segment. For such reason, 

some erroneous MIDI notes are generated as a cause of a false singing label; in figure 

8.2, these are highlighted in yellow. The latency in the prediction system represents the 

main drawback existing at the project's current stage, as about 200ms are needed for the 

neural network to produce an accurate prediction. Nevertheless, the accuracy of the ANN 

matches the results obtained in the non-real-time testing, and the MIDI messages 

allocation also reflects the accurate performances of the system presented in the previous 

chapter. 

8.3. Summary and discussion 

This chapter presented an evaluation of the system integration, analysing the 

simultaneous performances of the ANN classifier and the MIDI conversion. Initially, a 

description of the system integration and testing setup is presented, followed by a detailed 

description of its functioning. The chapter is then concluded with an analysis of the 

obtained results. 

 The implementation of the system with all his stages resulted efficient, and it 

maintained the performances previously observed in each of his parts. The main issue 

with the current stage is represented by the excessive latency exhibited by the ANN 

classifier. For a voice-to-MIDI conversion, the maximum delay between phonation and 

relative MIDI message must not exceed the 20ms threshold for it to be perceived as real-

time. As the classifier shows a delay of about 200ms between predictions, it prevents the 

system from being implemented serially. Thus, a parallel setup was used for which the 

classifier acts as a gate control that opens and closes the stream of MIDI messages based 

on the prediction label. The parallel structure allows the performances of the MIDI 

conversion not to be affected by the prediction latencies and to maintain a maximum delay 
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of 12ms. Nevertheless, as the MIDI messages are let through only when a Singing label is 

received, the latency of the prediction system will cause the first MIDI note for a singing act 

to be delayed by 200ms.  

 Although the individual elements of the system maintained their performances, 

further work is required for the implementation of a true real-time implementation. The 

author believes that a combination of feature extraction and statistical methods could 

eventually allow the network to be trained on smaller portions of the signal and deliver 

real-time predictions with lower latency. 
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9.1. Introduction 

The research presented in this thesis sought to develop a novel system for the real-time 

conversion of singing voice into control messages using measurements of laryngeal 

bioimpedance variation. The extraction and conversion of human voice information are 

commonly based on the use of microphones and sound recordings, which poses several 

limitations due to the computationally expensive and lengthy procedures required. The use 

of laryngeal bioimpedance delivers a simpler signal which allows the implementation of 

faster and less taxing methods for the extraction of the relevant information. Currently, 

existing devices, such as electroglottographs, have been deemed inefficient and of low 

usability due to the operational complexity and the old-fashioned design of the electronics. 

In particular, their operability is highly affected by the individualisation needs arising from 

the physiological differences between users. These limitations, throughout the last few 

decades, caused a lack of modernisation and development of the technology itself and a 

diminishing of its applications in both medical and non-medical fields. Laryngeal 

bioimpedance, however, delivers unique information regarding human voice and, 

specifically, about the fundamental frequency (f0) of any given phonation. This data is 

highly significant in the processing of voice and, particularly, for detecting and converting 

singing voice information.  

 The presented research was motivated by the specific challenge of employing the 

unique information provided by laryngeal bioimpedance to discern singing voice and, 

subsequently, convert it into digital control messages. Such implementation not only 

delivers a novel method for real-time voice conversion but also provides insight into the 

differentiation between speech and singing.   
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9.2. Research development and contributions to knowledge 

In this project's first stage, a dedicated circuit for the measurement of laryngeal 

bioimpedance was developed and tested. The circuit design was based on the founding 

principles of varying bioimpedance measurement, and a fully analogue approach was 

undertaken. The design was firstly simulated in a computer environment and then built and 

tested in a laboratory setting. The physical testing of the system showed a significant 

match with the expected outcome and delivered clean and precise readings reflecting the 

known morphology of laryngeal bioimpedance signals. In addition, to tackle the limitations 

posed by the need for individualisation, a novel multiplexed sensor system was 

implemented to deliver self-calibration capabilities. This was achieved by implementing a 

circuit with an analogue multiplexer controlling a dedicated set of sensors comprised of 

multiple pairs of electrodes. Compared to the more classical single pair, this new approach 

reduces the need for individualisation and simplifies the sensor placement for optimal 

operation. The multiplexer within the circuit is controlled through a binary logic delivered by 

an external microcontroller unit (MCU). An amplitude evaluation of the signal is then 

conducted for each pair of electrodes setting the highest Root Mean Square (RMS) value 

as the deciding factor for self-calibration. 

 The project's second stage described the development of an Artificial Neural 

Network (ANN) for the discretion of singing and speech using laryngeal bioimpedance 

readings. For the training and testing of the ANN, a dataset was created using the 

constructed circuit, resulting in 1200 samples of singing and 1200 of speech. A data 

augmentation process was then applied to increase the size and break linearity based on 

upward and downward pitch shifting. This resulted in 7200 samples with a 50:50 ratio of 



Chapter 9 Conclusions 

 

130  

speech and singing. The dataset represents one of the contributions to knowledge of this 

research as it stands as a unique collection of data in the speech-singing differentiation. 

 For the training of the ANN, the dataset was processed to extract the Mel 

Frequency Cepstrum Coefficients (MFCCs) to generate an array of numerical values for 

the representation of individual samples. Using numerical data allows the employment of a 

simple fully connected architecture, featuring a single hidden layer and a total structure of 

20x40x1. The use of numerical data and the implementation of a light architecture result 

computationally inexpensive and, in turn, allow the ANN to deliver fast prediction for its 

deployment in real-time applications. Once trained, the ANN yielded an accuracy of 93.6% 

in validation and of 92% when tested with “never seen” samples. The classifier was then 

run in a real-time setting to perform prediction over a live input stream from the laryngeal 

bioimpedance sensor system. The real-time implementation exhibited an accuracy of 

about 91%, with a latency between predictions of about 200ms. Whether such latency can 

be considered real-time is highly dependent on the application. However, it exceeds the 

maximum threshold of 20ms for voice conversion into MIDI. Such significant latency is 

mainly due to the need for the ANN to be inputted with a sufficient amount of signal; as the 

distinction between speech and singing is mainly dependent on the stability of the 

fundamental frequency (f0), several signal periods are required to evaluate over time 

variations of f0.  

 In addition to the training of the network, the dataset was used to run a statistical 

evaluation of the fundamental frequency (f0) stability for the comparison of singing and 

speaking. The distinction between speaking voice and singing voice is commonly assumed 

to be primarily dependent on the stability of f0. An analysis of the literature, however, 

showed how a minimal amount of work had been conducted to statistically prove such 
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distinction, with almost all of the experiments being based on a perceptual analysis. A 

statistical analysis of f0 variation was conducted across the dataset using bioimpedance 

measurement. The conducted experiment demonstrated a significant difference in f0 

stability, exhibiting an average variance of about 2 for singing and an average variance of 

over 500 for speech. As the oscillation of the vocal folds effectively represents f0, laryngeal 

bioimpedance permitted to verify the hypothesis of f0 being more stable in singing. 

 In the third part of the presented research, a system for converting voice into MIDI 

was designed within the embedded development board of Bela. Given the simplicity of the 

laryngeal signal, the pitch tracking for the conversion of voice into MIDI notes was run in 

the time domain using a Zero Crossing Rate (ZCR) algorithm based on linear interpolation. 

The ZCR algorithm showed an accuracy of 98% with a latency of 11ms. Once the f0 is 

evaluated, the MIDI notes are allocated using a threshold defining the state of the voice 

amplitude envelope between steady and attack/release. The f0 value is then used to 

calculate the frequency deviation of the singer from the value dictated by the tempered 

scale to avoid “undesired corrections”. Such implementation allows pitch-bend to navigate 

through frequency variations happening during the steady state of the amplitude and, thus, 

mimic the legato effect. The testing of the system resulted in precise and true real-time 

performances with a maximum latency between signal acquisition and MIDI delivery of 

12ms. 

 The fourth and final section of the presented research is represented by the 

combination of the various section into a single independent system. Given that the ANN 

predictions showed a latency of about 200ms, the two were combined in a parallel 

structure to maintain the speed of the MIDI conversion and ensure real-time performance. 

First, a Python script runs the autocalibration process, and the electrode pair is selected. 
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Second, when running the real-time classifier, the script communicates the prediction 

outcome to an Arduino board, which communicates with the Bela environment. The MIDI 

conversion program running on Bela is then triggered to stop outputting MIDI whenever a 

“Speech” label is received. The system showed good precision, with the ANN maintaining 

a 91% accuracy and the MIDI conversion correctly allocating notes and pitch-bend 

messages. Despite the parallel structure, the ANN prediction latency still poses a limitation 

as it causes the MIDI delivery to be excessively delayed when switching from speaking to 

singing. 

9.3.  Future work 

The work presented in this thesis opens a series of challenges for the further improvement 

and development of the system that require to be addressed by future research. 

 The first area of research sits within the improvement of the hardware design. 

Further system development would rely upon two main aspects: circuit design and 

sensors. First, regarding circuit design, the implementation of Surface Mounted technology 

could further increase portability and, in turn, usability whilst maintaining the cost-

effectiveness of the design. Second, redesigning the electrodes implementing more pairs 

within a single sensor set and implementing flexible materials would not only improve the 

applicability of the overall system but would further improve the self-calibration accuracy 

and efficiency. In addition, further research could be conducted in the evaluation of the 

electrodes’ size and configuration. A scientific testing and analysis of the electrodes could 

be carried out in selecting the optimal number of pickup units as well as their positioning 

and distribution. 
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 The second area of research tackles the data pre-processing for the training and 

deployment of the ANN. As the differentiation between speech and singing mainly 

depends on the fundamental frequency stability, the system requires sufficient signal 

periods to analyse an f0 variation over time. This requirement causes the real-time data 

acquisition to employ a buffer size exceeding the maximum latency threshold. A future 

investigation of the laryngeal signal could allow the application of different techniques for 

feature extraction by implementing advanced statistics to reduce the amount of signal 

needed for the discretion of the voice acts. A reduction of the signal portion required would 

allow a reduction of the buffer size and, in turn, a lessening of the latency between 

predictions. Furthermore, the deep learning implantation could be expanded to recognise 

and categorise other signals caused by vocal folds displacement such as cough or 

swallowing. Such implementation could further refine the selectivity of the system in 

isolating singing and reducing the error in the triggering of the MIDI messages. 

 In addition to the development regarding the conversion of voice into MIDI and the 

classification of speech and singing, the improvement of the hardware and the creation of 

a more extensive and more varied dataset could spawn significant impact in various 

applications and research in both medical and non-medical areas. In medical fields, such 

improvement could allow the implementation of the measurement system in combination 

with deep learning for the detection of malformities and pathological condition within the 

vocal folds as well as providing a tool for the control of assistive technologies for physically 

impaired individuals. In non-medical environments, several applications could target voice 

activated devices, human-machine interaction in general engineering, control surfaces for 

music technology, and educational tools for applications such as vocal coaching and ear 

training. 
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Appendix A: Codes for self-calibration of the electrodes 

The self-calibration of the sensors was developed connecting a Python script with an 

Arduino development board via serial communication. Whilst Python samples the 

bioimpedance signal and evaluates its RMS values, the Arduino environment controls the 

multiplexing system in the hardware by setting the binary logic in accordance with the 

RMS evaluation system. Both codes described in chapter 5 are presented below. 

A.1 Python code 

i. Setup 

# Importing libraries 

import serial 

import time 

import numpy as np 

import math 

import struct 

import time 

import pyaudio 

 

# Opening a serial communication channel with the connected Arduino board 

arduino = serial.Serial('/dev/cu.usbmodem14101', 9600)  

 

chunk = 512     # Set the buffer size at 512 samples 

sample_format = pyaudio.paFloat32       # Declares the import format as 32bit Floats 

channels = 1     # Set the input stream to mono 

fs = 44100       # Sample rate set ad 44100Hz 

seconds = 1      # Length of the recordings 

p = pyaudio.PyAudio() # Creating an object for the input stream 

 

 



 Appendix A: Codes for self-calibration of the electrodes 

 

135  

# Declaring the stream with its variables and parameters 

stream = p.open(format=sample_format, 

                channels=channels, 

                rate=fs, 

                frames_per_buffer=chunk, 

                input_device_index=2, # Selects the desired input ADC 

                input=True) 

# Declaring 3 empty arrays to store the audio data in 

pair_1 = [] 

pair_2 = [] 

pair_3 = [] 

for x in range(3, 0, -1): # Counter as visual feedback for user 

    print(x) 

    time.sleep(1) 

print("START") 

ii. Multi-sensor recording and dB evaluation 

# RECORDING 2 (1st PAIR) 

arduino.write(b"a")     # Serial output for Arduino sets the Multiplexing to 1st PAIR 

for i in range(0, int(fs/chunk*seconds)):     # 1s loop: 512 per samples iteration 

    data=stream.read(chunk, exception_on_overflow = False)     # Reads input stream 

    x = struct.unpack(str(int(chunk))+'f', data)      # Unpack raw bunary in floats 

    pair_1.append(x)    # Appends the extracted data to an array 

print("change")     # Visual feedback for end of loop and change of pair 

# RECORDING 2 (2nd PAIR) 

arduino.write(b"b") 

for i in range(0, int(fs/chunk*seconds)): 

    data=stream.read(chunk, exception_on_overflow = False) 

    x = struct.unpack(str(int(chunk,))+'f', data)  

    pair_2.append(x) 

print("change") 

# RECORDING 3 (3rd PAIR) 
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arduino.write(b"c") 

for i in range(0, int(fs/chunk*seconds)): 

    data=stream.read(chunk, exception_on_overflow = False) 

    x = struct.unpack(str(int(chunk))+'f', data)  

    pair_3.append(x) 

print("STOP") 

# Stop and close the stream  

stream.stop_stream() 

stream.close() 

p.terminate() # Terminate the PortAudio interface 

 

# Caculates db of the recorded input frame and evaluates highest 

# 1st PAIR 

pair_1np = np.array(pair_1)     # Place the recorded data into a Numpy Array 

rms = np.sqrt(np.mean(pair_1np**2))     # Calculates RMS values of the recorded signal 

db1 = 20 * math.log10(rms)     # Converts RMS values into dBFS 

# 2nd PAIR 

pair_2np = np.array(pair_2) 

rms = np.sqrt(np.mean(pair_2np**2)) 

db2 = 20 * math.log10(rms) 

# 3rd PAIR 

pair_3np = np.array(pair_3) 

rms = np.sqrt(np.mean(pair_3np**2)) 

db3 = 20 * math.log10(rms) 

 

pairs = [db1, db2, db3]     # Stores the three db values in a single list 

print(max(pairs))     # Prints the highest dB value 

print(np.argmax(pairs)+1)     # Prints pair number corresponding to highest dB value 
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iii. Serial communication to Arduino for optimal placement. 

# Communicate to Arduino to select best pair of electrodes 

if np.argmax(pairs) == 0: # If highest dBFS is for pair 1, send an 'a' to Arduino 

    arduino.write(b"a") 

else if np.argmax(pairs) == 1: # If highest dBFS is for pair 2, send an 'b' to Arduino 

    arduino.write(b"b") 

else if np.argmax(pairs) == 2: # If highest dBFS is for pair 3, send an 'c' to Arduino 

    arduino.write(b"c") 

arduino.write(b"x")     # Communicates to Ardujino completion of process      

print("Pair", np.argmax(pairs)+1, "selected")    # Prints optimal pair number 

 

A.2 Arduino code 

//Variables declaration for pins control 
int b = 9; 
int a = 10; 
 
//Variables declaration for serial input 
int incomingByte; 
int ctrl = 0; // Declares variable to ensure single iteration 
 
 
void setup() { 
  pinMode(b, OUTPUT); //Setting up pin 9 as digital output for binary logic 
  pinMode(a, OUTPUT); // Setting up pin 10 as digital output for binary logic 
  Serial.begin(9600); // opens serial communication 
} 
 
void loop() { 
// Checks for incoming serial and stores incoming message in dedicated variable 
  if (Serial.available() > 0) { 
    incomingByte = Serial.read(); 
  } 
  if(ctrl==0) // Checks for indication of first iteration  
  { 
    if (incomingByte == 'a') { 
    // Sets binary logic to first pair if incoming serial is ‘a’ 
    digitalWrite(b, 0); 
    digitalWrite(a, 0); 
    } 
    if (incomingByte == 'b') { 
    // Sets binary logic to second pair if incoming serial is ‘b’ 
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    digitalWrite(b, 0); 
    digitalWrite(a, 1); 
    } 
    if (incomingByte == 'c') { 
    // Sets binary logic to third pair if incoming serial is ‘c’ 
    digitalWrite(b, 1); 
    digitalWrite(a, 0); 
    } 
    if (incomingByte == 'x') { 
    // Sets control variable to 1 to ensure single execution 
      ctrl = 1; 
    } 
  } 
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Appendix B: Statistical evaluation of f0 stability in speech and singing 

The comparison of fundamental frequency stability for speech described in chapter 6 

presented 25 example per voice act. Below further 200 entries with a 50:50 ratio of singing 

and speaking are presented.  

 

 

Figure A.0.1 - Box Plot for f0 values of 100 singing samples 
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Figure A.0.2 - Box Plot for f0 values of 100 speaking samples 

The statistical analysis shows an average f0 variability of 0.05 over the 100 samples of 

singing and of 6.05 over the 100 speaking samples. The analysis further supports the 

hypothesis that places f0 as a highly impactful distinction factor in the discretion of speech 

and singing. 
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Appendix C: ANN implementation in Python 

The artificial neural network employed in this research project was designed in Python 

using the Keras library for the Tensorflow development framework. The code for the 

implementation of the ANN described in chapter 6 is presented below. 

i. Setup and data pre-processing 

# Importing libraries 

import numpy as np 

import pandas as pd 

import tensorflow as tf 

import keras 

import matplotlib.pyplot as plt 

# Data pre-processing 

dataset = pd.read_csv('path_to_dataset_.CSV’) 

x = dataset.iloc[:, 1:].values # Extract values 

y = dataset.iloc[:, 0].values # Extract dependent variables 

# Encoding categorical data 

from sklearn.preprocessing import LabelEncoder 

le = LabelEncoder() # Label encoder 

y = le.fit_transform(y) 

mapping = dict(zip(le.classes_, range(0, len(le.classes_)))) # Labels-encoding pairing 

# Splitting dataset in training and test sets 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

sc = StandardScaler() # Calling StandardSclaer object 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, 

 random_state=0) # Random split 70-30 
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x_train = sc.fit_transform(x_train) # Feature scaling 

x_test = sc.fit_transform(x_test) # Feature scaling 

ii. Building the ANN 

# Initialising ANN as a sequential neural network 

ann = tf.keras.models.Sequential() 

# Adding input layer (20 nodes) 

ann.add(tf.keras.layers.Input(shape=(20,))) 

# Adding hidden layer (40 nodes) 

ann.add(tf.keras.layers.Dense(units=40, activation='relu')) 

#2 Aadding output layer 

ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) 

# Compiling ANN 

ann.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

iii. Training ANN 

# Setup network training  

from timeit import default_timer as timer 

class TimingCallback(keras.callbacks.Callback): 

    def __init__(self, logs={}): 

        self.logs=[] 

    def on_epoch_begin(self, epoch, logs={}): 

        self.starttime = timer() 

    def on_epoch_end(self, epoch, logs={}): 

        self.logs.append(timer()-self.starttime) 

cb = TimingCallback() 
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# Start training and validation 

history = ann.fit(x_train, y_train, batch_size=16, epochs=100,    

                validation_data=(x_test, y_test), callbacks=[cb]) 

# Prints results of validation and time per epoch 

print("\nTraining time: ", sum(cb.logs), "seconds") 

print('Validation Accuracy: ', (history.history['val_accuracy'][-1])*100, '%') 

iv. Model evaluation 

# Import evaluation data and encode categorical data 

input_pred = pd.read_csv('Path_to_evaluation_data_CSV') 

input_prediction = input_pred.iloc[:, 1:].values 

input_label = input_pred.iloc[:, 0].values 

# Performs prediction on evaluation dataset 

prediction = ann.predict(sc.transform(input_prediction)) 

# Creates empty list  

prediction_list = [ 

# Encodes labels to prediction results 

for x in range(len(prediction)): 

    if prediction[x] > 0.5: 

        prediction_list.append('speech') 

    else: 

        prediction_list.append('sing') 

# Prints predictions list 

print(len(prediction_list)) 

# Prrinting results of evaluation  

from sklearn.metrics import confusion_matrix, accuracy_score, plot_confusion_matrix 
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# Define confusion matrix of evaluation results 

cm = confusion_matrix(input_label, prediction_list) 

print(cm) # Prints confusion matrix (numerical) 

# Formats and prints accurqcy score for evaluation 

acc_score = accuracy_score(input_label, prediction_list) 

print('\n', acc_score * 100,  '% Accuracy score') 
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Appendix D: Full C++ code for voice-to-MIDI converter in Bela 

The voice-to-MIDI conversion system was implemented within the Bela board IDE using 

the programming language C++. The code implementation for the MIDI conversion and 

allocation system described in chapter 7 is presented below. 

#include <Bela.h> 
#include <algorithm> 
#include <iostream> 
#include <math.h> 
#include <libraries/Midi/Midi.h> 
#include <stdlib.h> 
 
using namespace std; 
 
Midi MIDI; 
const char* MidiPort0 = "hw:0,0,0"; 

///PROTOTYPES DECLARATION/// 
float f0_extraction(float data[], int buff_size); 
float amplitude_db(float data[], int buff_size); 
void midi_handler(BelaContext *context, float hz, int db); 

///GLOBAL VARIABLES DECLARATION/// 
int gInputPin = 1; 
int gStatus = 0; 
int gPrevious = 1; 
int zc = 0; 
int sr = 0; 
double midi_buffer = 0; 
double midi_note = 0; 
double freq_diff = 0; 
int pitch_bend = 0; 
int pitch_bend_buffer = 0; 
int st_range = 24; 
bool n = 0; 
bool i = 0; 
bool a = 0; 
 

///CORE/// 
bool setup(BelaContext *context, void *userData) 
{ 
    MIDI.writeTo(MidiPort0); //Sets up MIDI output port 
    sr = context->audioSampleRate; //Sets global sampling frequency  
     
    return true; 
} 
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void render(BelaContext *context, void *userData) 
{ 
     
    float data[context->audioFrames]; // Declare array container for input data 
     
    for(unsigned int n = 0; n < context->audioFrames; n++) //Reads input for 512 samples 
    { 
        float in = 0; //Declares variable to store individual input samples 
        in = audioRead(context, n, 0); //Reads in put sample  
        data[n] = in; //Appends input sample to data array 
    } 
     
    int db = amplitude_db(data, context->audioFrames); //Calls db evaluation function 
    float hz = f0_extraction(data, context->audioFrames); //Calls pitch tracking function 
    midi_handler(context, hz, db); //Calls MIDI allocation funtion 
 
} 
 
void cleanup(BelaContext *context, void *userData) 
{ 
 
} 
 

///FUNCTIONS/// 
float f0_extraction(float data[], int buff_size) 
{ 
    int n = 0; //Initialise a counter 
    float crossings[buff_size/2]; //Inititliase an ampety array to store the crossingi 
indices 
     
    for (int i=0; i<buff_size; i++) //Loop to scroll through the buffer 
        { 
            if ((data[i] < 0) && (data[i+1] > 0)) //Identifies positive-going crossings  
            { 
                zc = i-data[i]/(data[i+1]-data[i]); //Linear Interpolation 
                crossings[n] = zc; //Appends ZC index in array 
                n++; //Increase counter n 
            } 
        } 
        float diff[n-1]; //Creates array of size euqal to the number of non zero ZC 
        float mean_T = 0.0; //Initialise variable 
     
        for (int i=0; i<n-1; i++) //Calculates duration of each period and stores in 
array diff[] 
        { 
            diff[i] = crossings[i+1] - crossings[i]; 
        } 
     
        for (int i=0; i<n-1; i++) //Sums all the duration values contained in diff[] 
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        { 
            mean_T += diff[i]; 
        } 
     
        mean_T /= n-1; //Average period duration in buffer 
         
        float hz = sr/mean_T; /*Frequency calculation. (44100/duration in sample) 
                                as equicvalent to (1/duration in seconds) */ 
        return hz; 
} 
 
float amplitude_db(float data[], int buff_size) 
{ 
    float sum = 0; //Initalises variable for the sum of the powers of the input 
     
    for (int i=0; i<buff_size; i++) 
    { 
        sum += pow(data[i], 2); //Calculates the sum of the powers of the input data 
    } 
     
    float rms = sqrt(sum/buff_size); //Calculate RMS 
    float db = 20*log10(rms); //Converts RMS in dB FS 
    return round(db); 
} 
 
void midi_handler(BelaContext *context, float hz, int db) 
{ 
    if ((db < -12) && (i == 0)) //Checks if the input amplitude is below -12db FS and if 
the counter variable for signl execution is 0 
    { 
        MIDI.writeNoteOff(0, midi_buffer, 0); //Writes note off for previous MIDI note 
(initialisation on first execution) 
        midi_note = 0; //rRe-initialise MIDI_note variable 
        i = 1; //Set execiution counter to 1 
        n = 0; //Re-Initiliase second counter  
    } 
         
    if (db > -12) //Checks if input amplituyde is above -012dB 
    { 
        if (n == 0) //Checks counter variable for wether a note-on was already sent  
        { 
            midi_note = 69 + (12*log2(hz/440.0)); //Converts Hertz in MIDI note number 
            //Ensures note to be within 0 and 127 
            if (midi_note > 127) 
            { 
                midi_note = 127; 
            } 
 
            else if (midi_note < 0) 
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            { 
                midi_note = 0; 
            } 
            else if (isnan(midi_note)) 
            { 
                midi_note = 0; 
            } 
 
            freq_diff = midi_note - round(midi_note); //Calculates displacement from 
tempered scale in cents 
             
            if ((freq_diff >= -st_range/2) && (freq_diff <= st_range/2)) //checks if 
displacement is within pitch-bend range 
            { 
                pitch_bend = (((freq_diff-(-12))*16384)/24)+(0); //Converts displacement 
from cents to pitch-bend 
            } 
            //Ensures the diplacement values to be in pitch-bend range 
            else if (freq_diff < -st_range/2) 
            { 
                pitch_bend = 0; 
            } 
            else if (freq_diff > st_range/2) 
            { 
                pitch_bend = 16383; 
            } 
            //Rounds MIDI note and pith-bend to integer values 
            int note_out = round(midi_note);  
            int pb_out = round(pitch_bend); 
                 
            MIDI.writeNoteOn(0, note_out, 110); //Outputs MIDI note-on 
            MIDI.writePitchBend(0, pb_out); //Outputs pitch-bend value 
            midi_buffer = note_out; //Updates MIDI buffer with latest MIDI note 
            pitch_bend_buffer = pitch_bend; //Updates pitch-bend buffer to contain 
latest pitch-bend value 
            //Updates counter variables 
            n = 1; 
            i = 0; 
        } 
         
        else if (n==1) //Checks counter variable for wether a note-on was already sent  
        { 
            midi_note = 69 + (12*log2(hz/440.0)); //Converts Hertz in MIDI note number 
            freq_diff = midi_note - round(midi_buffer); //Calculates difference between 
buffer and new note 
             
 
            if ((freq_diff >= -st_range/2) && (freq_diff <= 12)) //checks if 
displacement is within pitch-bend range 
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            { 
                pitch_bend = (((freq_diff-(-12))*16384)/24)+(0); //Converts displacement 
from cents to pitch-bend 
            } 
            //Ensures the diplacement values to be in pitch-bend range 
            else if (freq_diff < -st_range/2) 
            { 
                pitch_bend = 0; 
            } 
            else if (freq_diff > st_range/2) 
            { 
                pitch_bend = 16383; 
            } 
             
            if (pitch_bend > pitch_bend_buffer) //Checks if new pitch-bend is greater 
than buffer 
            { 
                pitch_bend_buffer += 5; //Increases buffer by 5 
                //If  buffer is greater than new value updates buffer 
                if (pitch_bend_buffer > pitch_bend) 
                { 
                    pitch_bend_buffer = pitch_bend; 
                } 
                pitch_bend_buffer = round(pitch_bend_buffer); //Rounds pitch-bend to 
integer value 
                MIDI.writePitchBend(0, pitch_bend_buffer); //Outputs pitch-bend value 
            } 
             
            else if (pitch_bend < pitch_bend_buffer) //Checks if new pitch-bend is less 
than buffer 
            { 
                pitch_bend_buffer -= 5; //Decreases buffer by 5 
                //If  buffer is less than new value updates buffer 
                if (pitch_bend_buffer < pitch_bend) 
                { 
                    pitch_bend_buffer = pitch_bend; 
                } 
                pitch_bend_buffer = round(pitch_bend_buffer); //Rounds pitch-bend to 
integer value 
                MIDI.writePitchBend(0, round(pitch_bend_buffer)); //Outputs pitch-bend 
value 
            } 
        } 
    } 
} 
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