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Simple and affordable testing tools are often not accurate enough to be operationally relevant. For COVID-

19 detection, rapid point-of-care tests are cheap and provide results in minutes, but largely fail policymakers

accuracy requirements. We propose an analytical methodology, based on robust optimization, that identifies

optimal combinations of results from cheap tests for increased predictive accuracy. This methodological

tool allows policymakers to credibly quantify the benefits from combination testing and thus break the

trade-off between cost and accuracy. Our methodology is robust to noisy and partially missing input data

and incorporates operational constraints—relevant considerations in practice. We apply our methodology

to two datasets containing individual-level results of multiple COVID-19 rapid antibody and antigen tests,

respectively, to generate Pareto-dominating receiver operating characteristic (ROC) curves. We find that

combining only three rapid tests increases out-of-sample area under the curve (AUC) by 4% (6%) compared

with the best performing individual test for antibody (antigen) detection. We also find that a policymaker

who requires a specificity of at least 0.95 can improve sensitivity by 8% and 2% for antibody and antigen

testing, respectively, relative to available combination testing heuristics. Our numerical analysis demonstrates

that robust optimization is a powerful tool to avoid overfitting, accommodate missing data, and improve

out-of-sample performance. Based on our analytical and empirical results, policymakers should consider

approving and deploying a curated combination of cheap point-of-care tests in settings where ‘gold standard’

tests are too expensive or too slow.

Key words : Diagnostic operations; Combination testing; Knapsack; Robust optimization; Healthcare

analytics.
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1. Introduction

In diagnostic testing, there is a fundamental trade-off between diagnostic accuracy on the one hand,

and testing cost and speed on the other hand. For COVID-19, for instance, the laboratory-based

‘gold standard’ Reverse Transcription Polymerase Chain Reaction (RT-PCR) test for detection of

current infection requires expensive lab capacity and a supply chain connecting testing locations

and labs, which increases both processing time and costs. In contrast, point-of-care (POC) lateral

flow antigen tests are cheap and provide results in minutes, but largely fail policymakers accuracy

criteria (Wise 2020). The same dilemma is faced in the detection of acquired immunity after

infection, where lateral flow antibody tests offer lower accuracy than lab tests. This drawback is

exacerbated in the early phases of spread of a novel pathogen, when the first tests available may

be of lower quality. The inferior quality of POC tests has greatly limited their use for COVID-19

(Shuren and Stenzel 2021) and has resulted in millions wasted on purchasing tests subsequently

deemed unfit for use (Armstrong 2020).

Despite these shortcomings, experts argue that frequent, fast, and large-scale antigen testing

schemes, for which RT-PCR tests are clearly unsuitable, should be implemented to enable the

safe re-opening of economic activity (Mina et al. 2020, Larremore et al. 2021), especially in use

cases involving entry into public spaces such as airports, care homes, universities, and entertain-

ment or sporting venues. Similarly, efficient and widespread antibody testing is useful to assess

global immunity and prioritize vaccination delivery (Bubar et al. 2021). Beyond the specific case of

COVID-19 diagnostics, the usefulness of combining multiple, cheap diagnostic options to improve

overall accuracy extends to other healthcare contexts, as well as to applications such as mainte-

nance or recruitment, where results of multiple diagnostic or classification methods are aggregated

to make a single recommendation.

In this paper, we propose an optimization-based methodology to combine the results of different

POC tests to achieve higher accuracy without compromising affordability or convenience. Intu-

itively, there are potentially both systematic and stochastic mechanisms that motivate the idea of

combining results obtained from multiple tests. First, different tests can use different technologies

or detection strategies—e.g., the target protein, chemical reagents used, or how the tests are admin-

istered may differ. In this case, each test provides a different perspective on a patient’s underlying

condition and combining them will lead to a more comprehensive and accurate picture. Second,

test results are inherently random due to uncertainty in test administration, chemical processes,

and unobserved patient characteristics. In this case, if the correlation between test outcomes is low,

combining them can help reduce noise and improve accuracy. For both these reasons, we expect

that combining tests can improve accuracy. For a stylized example of the systematic or stochastic

mechanisms driving the benefits of combining tests, see Appendix A1.
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Any methodology for combining multiple test outcomes must overcome three fundamental chal-

lenges in the design of combination testing policies. The first is how to interpret an outcome

sequence of discordant yet potentially correlated test results—e.g., (+,−,+) in the simple case of

combining three tests—to classify a person as positive or negative. Heuristics, such as classifying

an outcome sequence as positive only if all the test outcomes are positive, are simple but can have

suboptimal performance.1 The second challenge is to select which tests to combine, when multi-

ple tests are available. A näıve approach of combining the tests with highest individual accuracy

may result in suboptimal outcomes if their results are not complementary when combined. Test

selection must also account for operational and budget constraints, affecting how many tests can

feasibly be combined in a given setting. The third challenge is ensuring an empirical evidence

base for the proposed combination testing policy—by using available data on the performance of

individual tests—while avoiding overfitting, which would result in poor out-of-sample classification

and therefore limit applicability.

Analytically, we formulate the policymaker’s problem as one of selecting and combining a subset

of available POC tests to maximize diagnostic accuracy, measured by sensitivity and specificity –

i.e., the probability that a condition-positive or condition-negative individual is classified as positive

or negative, respectively. First, for a given set of tests that are used in combination, we prove that

a simple ranking procedure identifies all classification rules with Pareto-optimal accuracy (§3.1),

by formulating this problem as a version of the well-studied knapsack problem. The resulting set

of optimal classification rules yields a dominating receiver operating characteristic (ROC) curve

– with the highest attainable area under the curve (AUC). Of potentially independent interest,

our proof provides an optimization-based derivation of the Neyman-Pearson lemma (McIntosh and

Pepe 2002). Note that our approach is non-parametric and does not require any assumptions about

the correlation structure among tests results. Second, we extend our formulation to incorporate the

selection of tests to be included in the combination, while accounting for the cost of adding each

test and the policymaker’s overall budget (§3.2). Third, we present a robust variant of the model

to account for noise in the input parameter estimates, such as the sensitivity and specificity of

individual POC tests (§3.3). Indeed, in practice, the data available for calibrating these parameters

is often limited, leading to finite-sample estimation error. For emergency use authorization, for

instance, manufacturers can use as few as 30 positive samples (Fitzpatrick et al. 2021), which

can result in overoptimistic estimates of test performance (Armstrong 2020). Our robust model

1 We note that standard Bayesian approaches might be used to interpret discordant outcomes in cases where priors
are available and the testing accuracy (sensitivity and specificity) are known for each test. However, such approaches
would not apply in settings where prevalence and accuracy must be estimated from noisy data, and would not allow
for efficiently optimizing which tests to combine.
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prevents such overfitting, and we provide theoretical guarantees on its out-of-sample diagnostic

performance. Fourth, data gathered for manufacturer-independent head-to-head comparisons of

tests often contains a significant number of missing entries, because all tests are not necessarily

applied on all samples. Importantly, we extend our robust formulation so that it can be directly

applied on data with missing entries (§3.4).

Empirically, we apply the four steps of our methodology to two datasets shared with us by

medical research institutions in the U.K. and Germany, which record the performance of multiple

commercially available point-of-care antibody (Adams et al. 2020) and antigen (Corman et al.

2021) tests for COVID-19 (§5.1–§5.4). Through this analysis we make several contributions. First,

we demonstrate that optimally combining multiple tests using our robust optimization method

improves diagnostic accuracy compared to using single tests or standard heuristics for combining

tests. Notably, we find that combining three tests achieves a 4% (6%) relative improvement in out-

of-sample AUC for antibody (antigen) testing, compared to using the best individual test. We also

find that if a policymaker requires specificity of at least 0.95, our methodology achieves 8% and

2% relative improvements in sensitivity for antibody and antigen detection, respectively, compared

with standard heuristics. Second, our analysis demonstrates that with limited available data the

risk of overfitting is significant, an issue that is efficiently mitigated by our robust formulation.

Similarly, regarding missing data, incorporating an imputation step into our robust combination

algorithm substantially outperforms policies generated using maximum likelihood imputation in

out-of-sample comparisons. Finally, we provide an illustrative example of how a decision maker

who is responsible for designing testing protocols in a given community (e.g., for managing access

to public spaces or outbreak detection) would apply our methodology to develop a testing policy,

even in the realistic situation where data is limited.

Our work has direct and immediate policy implications. We introduce an actionable method for

selecting and combining POC tests to achieve superior diagnostic accuracy. For detecting COVID-

19 infection, a combination of two or three POC tests is likely to be cheaper and faster than

RT-PCR, which requires both a lab infrastructure and a sample transportation supply chain (Böger

et al. 2021, Rubin 2020). Our method offers policymakers a tool to credibly quantify the benefits

from combination testing and quickly identify accurate combinations of tests if they exist. In addi-

tion, our combination testing approach delivers an entire ROC curve, which allows policymakers

to emphasize either sensitivity or specificity using the same combination of tests, depending on

their relative priorities for a particular population. Given our results, policymakers should consider

approving and deploying combinations of tests in settings where RT-PCR testing is too costly or

too slow, but individual POC tests do not provide enough diagnostic accuracy. Although directly

implementable by performing multiple tests made by different manufacturers, combination testing



Jain, Jónasson, Pauphilet, Ramdas: Robust Combination Testing
5

can also be implemented by creating a single diagnostic device that combines results from multiple

tests ‘under the hood’.

From a research standpoint, we believe this is the first paper to explore the value of optimally

combining multiple diagnostic tests, through analytical modeling and empirical analysis. The medi-

cal literature has considered simple heuristics for combining a given set of tests (Marshall 1989, Sox

et al. 2013), which can be sub-optimal when combining even as few as three tests. Our method not

only identifies how to combine tests but also which subset of tests to combine, without conducting

an exhaustive search. Furthermore, we provide much needed empirical evidence on the potential

benefits of combination testing. While we illustrate our findings on data from COVID-19 testing,

our model development is general and provides an application-agnostic methodology for combin-

ing the results of multiple tests. Therefore, our methodology can be applied in any setting where

data on different classifiers is collected on the same subject, be it for HR recruitment purposes

or machine maintenance. Our analysis demonstrates the value of structuring data collection such

that it allows for both head-to-head comparison of different tests as well as the development of

combination testing policies.

2. Literature Review

Our key contribution is to the ongoing debate on how to expand COVID-19 testing in a cost-

effective way (§2.1). Our analysis also contributes to the operations management literature on

diagnostics, clinical decision making, and operational innovations to battle COVID-19 (§2.2). More

generally, our analysis relates to the machine learning literature on combining predictions for

improved classification accuracy (§2.3) as well as prior work on the predictive power of using

multiple tests in the context of test sequencing (§2.4).

2.1. COVID-19 Testing

The ‘gold standard’ test for COVID-19, RT-PCR (Böger et al. 2021), requires laboratory equip-

ment, which increases the cost per test and induces sample-to-results delay of the order of 24-48

hours (Larremore et al. 2021). In addition, molecular laboratories in some countries have sometimes

stopped accepting samples for RT-PCR tests during demand surges, due to manpower shortages

(The Economic Times 2021).

At the same time, a plethora of POC tests have been developed for COVID-19 testing, both

for antibody and antigen identification. In fact, the U.S. Food & Drug Administration (FDA) has

approved over 200 different POC diagnostic tests for COVID-19 since the start of the pandemic

(FDA 2020). The majority of POC tests for COVID-19 rely on lateral flow technology. Cost esti-

mates for this type of POC tests (often around $6) vary across studies and range from one-third to

one-tenth the cost of an RT-PCR test (Böger et al. 2021, Rubin 2020). In addition, some progress
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has also been made in bringing the RT-PCR technology closer to the point of care. For example,

portable devices that achieve high sensitivity have been deployed at hospitals, to alleviate pressure

on laboratories (Gibani et al. 2020). However, these devices do not eliminate the need for expen-

sive reagents and often need to be operated by professionals (Gupta et al. 2021). The methods

presented in this paper would apply to any diagnostic technology.

Governments have committed significant funds to expand diagnostic testing during COVID-19,

including POC testing. The U.S. has pledged $50 billion for this purpose (Politico 2021) and the

U.K. has allocated 22 billion to its national testing program (National Audit Office 2020). However,

the use of POC tests in the battle against COVID-19 is widely debated. Deeks et al. (2021) argue

that POC testing can be useful, but only if highly accurate. They summarize trial results from the

U.K. and conclude that the potential harm of false negatives outweighs the potential benefits. In

contrast, Mina et al. (2020) argue in favor of POC test deployment, particularly for routine testing

of asymptomatic individuals, to maximize the overall sensitivity of the testing regime, despite

potentially low sensitivity for each individual.

Our methodological contribution and its empirical validation present a way to improve the accu-

racy of POC tests in a cost-efficient manner. Our data-driven approach reveals that the combination

of even two POC tests can significantly improve diagnostic accuracy over that of an individual

POC test, while remaining much faster and cheaper than RT-PCR testing.

It is worth noting that the overall cost of a test depends on a number of factors including volume

ordered, public subsidies, method of administration, and market competition. For RT-PCR tests,

for example, there is a wide variability in prices within and between countries (International Air

Transport Association 2021). There is also a lack of reliable and objective data on test costs. In a

comparison of test prices among 566 top U.S. hospitals, for example, Xiao and Rathi (2021) note

that two thirds disclosed none.

2.2. Diagnostic Operations and Clinical Decision Making

The clinical decision making literature has explored the utility and cost-effectiveness of conducting

additional tests (Weinstein and Fineberg 1980, Hershey et al. 1986, Sox et al. 2013), by considering

simple rules of thumb, e.g., classifying an outcome as positive if any test is positive (the any rule),

if all tests are positive (the all rule), or if the majority of tests is positive (the majority rule). This

literature examines the net utility from choosing each of the available courses of action by taking

as inputs a set of available tests; the diagnostic accuracy of each test; a set of alternative decisions

(e.g., “conduct two tests in parallel and treat if both are positive”); and the utility associated with

each course of action. However, no prior work provides a systematic methodology for classifying

the outcome sequences of m tests for best achievable sensitivity and specificity. A key contribution
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of our work is to develop such a method and demonstrate its effectiveness on real data. Using

our method, we identify the set of classification rules that dominate all other rules in terms of

sensitivity and specificity, for a given combination of tests. This set of best achievable classification

rules for a given set of tests can be summarized in a dominating ROC curve.

In the operations management literature, the value of increasing testing accuracy is ambiguous.

While performing additional tests can improve diagnostic accuracy, hence benefiting downstream

decision making, it can also generate additional delays. Early modeling work in the context of main-

tenance combines maintenance interventions with inspections to account for stochastically failing

equipment (McCall 1965, Wang 2002). Alizamir et al. (2013) analyze the trade-off between improv-

ing testing accuracy (e.g., by performing additional examinations) and treatment delays. They

present an optimal policy which depends on prior beliefs about the patient type and the congestion

level of the system. Kremer and de Véricourt (2022) conduct controlled laboratory experiments to

assess decision makers’ biases when balancing accuracy and congestion. Linking operational imple-

mentation and testing, Levi et al. (2019) study the scheduling trade-off between task diagnosis

and task processing and Aprahamian et al. (2019) develop an optimal scheme for testing groups

of patients using an imperfect single test, assuming subject-specific risk characteristics.

Recent papers have examined the operational implementation of testing to curb the spread of

COVID-19. Several have examined allocation of limited testing capacity – e.g., to health centers in

the Philippines (Buhat et al. 2021), patients with different probability of being infected (Calabrese

and Demers 2022), or to balance the immediate benefit of diagnosing infected individuals with

the benefit of learning population-level infection rates (Kasy and Teytelboym 2020). Bastani et al.

(2021) propose and implement a bandit framework to specifically target the allocation of tests to

incoming international travelers at the Greek border. Yang et al. (2022) develop a game-theoretic

queueing model to identify improved scheduling and pricing policies for COVID-19 testing facili-

ties. Pulia et al. (2020) propose a multi-tiered sequential testing policy in which patients are first

triaged at the point of care using rapid antigen tests, before using RT-PCR technology for diagnos-

tic confirmation. Drakopoulos and Randhawa (2021) consider tests as information products with

limited availability and demonstrate that if targeted allocation of tests is impossible, moderately

accurate tests are preferable in terms of social outcome. Dai and Singh (2021) explore the risk of

overtesting in situations where laboratories can decide on the diagnostic criterion (which controls

sensitivity) to apply for RT-PCR testing. These papers focus on the operational implementation

of a given testing policy with a given diagnostic accuracy. In contrast, we propose a methodology

for improving diagnostic accuracy.

In a conceptual article, Ramdas et al. (2020) suggest using multiple tests with independent

outcomes to increase the accuracy of COVID-19 testing. In this paper, we develop the methodology
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required to analyze data on the comparative performance of tests with correlated outcomes and

identify powerful and cost-effective combination strategies using data from two medical institutions.

2.3. Combining Predictions for Improved Accuracy

Our analysis relates to aggregation methods in machine learning—particularly stacking and bag-

ging. The idea of combining predictions from different models, originally proposed by Wolpert

(1992) and referred to as stacking (see Džeroski and Ženko 2004, for a review), is widely used

for binary classification. For instance, Barreno et al. (2007) leverage the Neyman-Pearson lemma

(Neyman and Pearson 1933) to optimally combine binary predictions obtained from different clas-

sifiers, by ranking outcome sequences by their likelihood ratios. In medical research, and cancer

screening in particular, the lemma has been applied to improve diagnostic accuracy by combining

different biomarkers (McIntosh and Pepe 2002). Our method recovers the likelihood ratio ranking

rule, using an optimization rather than statistical lens. In practice, however, each test is costly and

combining all of them would be impractical. Our optimization perspective naturally accounts for

such operational constraints and enables identification of the best subset of tests to be combined

together, without exhaustive enumeration.

Breiman (1996) proposes bootstrap aggregation or bagging, in which weak classification algo-

rithms (referred to as base learners) are trained on bootstrap samples of training data and then

aggregated into a single prediction (usually via a heuristic decision rule such as classifying according

to the majority of base learners or averaging across them). Our work shares the same aggregation

flavor. However, unlike bagging, our base learners are tests developed by different manufacturers

and not obtained on bootstrap samples. Hence, we learn the optimal aggregation policy directly

from data on test performance, without any knowledge about the data generating process for each

individual index test.

Finally, overfitting and out-of-sample performance are important practical issues in our setting,

which the standard Neyman-Pearson lemma and the likelihood ratio ranking rule (McIntosh and

Pepe 2002, Barreno et al. 2007) do not account for. In statistics, robust versions of the lemma

have been developed to account for distribution misspecification (Huber 1965, Huber and Strassen

1973), but have not been used in the context of combining tests. We formulate a robust knapsack

optimization problem to directly mitigate the impact of finite sample estimation error and missing

data on combination testing, while accounting for operational constraints. Compared with previous

work on robust knapsack problems with an uncertain objective (Monaci and Pferschy 2013, Cheng

et al. 2014), uncertainty affects both the objective and the constraints of our problem.
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2.4. Sequencing of tests

In medical decision making, there is a broad literature on contingent testing strategies. In this

approach patients are screened with a first test. If the result is positive, then the final diagnosis is

confirmed with a second test. These sequencing strategies have been studied, for instance, in the

context of mammography examinations (Alagoz et al. 2013) and COVID-19 (Smith et al. 2021,

Paltiel et al. 2020). For this to be useful in practice, the second (confirmatory) test should be more

reliable than the first one, which usually means that it is also more expensive or invasive. In the

context of COVID-19 detection, this would correspond to first performing a rapid antigen test, and

confirming any positive result with RT-PCR, e.g., as piloted in the UK in Liverpool (Wise 2020).

One insight from this literature is that the first-step ‘screening’ test needs to be accurate enough,

for these policies to be effective. A low false negative rate ensures that condition-positive individuals

are detected. A low false positive rate ensures that the second (expensive) test is not wasted on many

condition-negative individuals. However, with COVID-19 antigen tests, many have argued that

they do not meet such standards (Wise 2020). With regard to this literature, our key contribution

is to propose a solution to improve the accuracy of the first-step test, with little compromise on

their price so that such contingent testing strategies can be effective in practice. We also believe

that there are use cases, such as entry to public places, where one cannot afford a second-step

confirmation test because of monetary or time considerations. Therefore, improving the accuracy

of cheap and fast tests is of independent interest.

3. Model

In this section, we present a methodology for combining multiple tests for improved diagnostic

accuracy. We first demonstrate that the problem of optimally classifying outcome sequences from

multiple tests can be formulated as a knapsack problem (§3.1). Under this lens, we provide a new

proof of the Neyman-Pearson lemma from first principles. We then extend the knapsack model for

a given set of tests to the problem of selecting which tests to include in the combination, subject

to a budget constraint (§3.2). Finally, we present a robust version of the model to account for

in-sample estimation error (§3.3) and missing data (§3.4). Additionally, Appendix A3 provides a

detailed optimization formulation for how to sequence tests, once the policy has been determined.

In the following, we use lowercase non-bold faced (x), lowercase bold faced (x), uppercase bold

faced (X), and uppercase script faced (X ) characters to denote scalars, vectors, matrices, and sets

respectively. We use hats to denote sample estimates of population parameters. For x∈Rn, its ith

component is denoted xi and e is the vector of all ones.
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3.1. A Knapsack Perspective on Classifying Outcome Sequences

Let s denote an outcome sequence arising from performing m tests. For instance, when combining

2 tests, s can be one of 22 = 4 possibilities: (0,0), (1,0), (0,1), (1,1). Let Sm denote the set of all

possible outcome sequences given m tests and let n= |Sm|= 2m. We identify Sm as {1, . . . , n}.

Let âs (b̂s) denote the fraction of condition-positive (condition-negative) individuals in the data

sample with outcome sequence s. Observe that â (b̂) has n= 2m coordinates and fully characterizes

the joint distribution of the m test results on the condition-positive (condition-negative) individuals

in a non-parametric manner. A classification rule is a vector x ∈ [0,1]n, where xs indicates the

fraction of samples with outcome sequence s classified as positive. If xs = 1 (resp. 0), the rule

classifies outcome sequence s as positive (resp. negative). For instance, in the case of two tests, the

and rule, in which only individuals with both tests positive are classified as positive, corresponds

to

x(1,1) = 1, and xs = 0, for s∈ {(0,0), (1,0), (0,1)}.

We use the term classification rule for x on purpose since the problem can be viewed as a binary

classification problem of predicting the underlying condition given the outcome sequence s. For a

given rule x, its sensitivity is given by
∑

s âsxs and its specificity by 1−
∑

s b̂sxs. Given a target

specificity level t0 ∈ [0,1], the rule x that maximizes sensitivity while achieving a specificity of at

least t0 is the solution of the knapsack problem:

max
x∈[0,1]n

â>x s.t. b̂>x≤ (1− t0). (1)

From knapsack theory (Dantzig 1957), we immediately derive the optimal solution of (1):

Lemma 1. The solution obtained by sorting outcome sequences by decreasing values of âs/b̂s and

greedily filling the knapsack is optimal for (1).

In the context of disease screening, the Neyman-Pearson lemma implies that ordering outcome

sequences according to their likelihood ratios is optimal (McIntosh and Pepe 2002). Indeed, consider

a person whose outcome sequence is s and the null hypothesis that this person is condition-negative.

In this case, setting xs = 1 is analogous to rejecting the null hypothesis. The Neyman-Pearson

lemma states that the likelihood ratio rule, which rejects the null hypothesis whenever the likelihood

ratio âs/b̂s exceeds some desired threshold, is the uniformly most powerful test. In particular, this

ordering and the resulting optimal classification rule do not depend on the prevalence of the disease.

Lemma 1 recovers this simple result (see McIntosh and Pepe 2002, Section 3), yet by invoking tools

from optimization rather than statistics. This new perspective lends itself to natural extensions
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to account for operational and statistical estimation issues that we will present in the rest of this

section.

In Problem (1), we did not constrain the components of x to be binary. If xs ∈ (0,1), the rule is no

longer deterministic and a person with outcome s will be classified as positive with probability xs.

However, Lemma 1 shows that there always exists an optimal solution with at most one fractional

entry. Also, for certain specific values of t0, the optimal rule is integral. In the remainder of the

paper, we focus our attention on binary vectors x ∈ {0,1}n, i.e., deterministic mappings from

sequences s ∈ Sm to a positive/negative classification. Indeed, probabilistic classification rules,

while theoretically feasible, could prove harder to implement in practice.

By solving (1) for different values of t0 (as described in Algorithm 1 in Appendix A5), we

construct a piecewise linear ROC curve that represents the set of Pareto-dominating classification

rules.

3.2. Accounting for Operational Constraints

We leverage the knapsack optimization perspective from §3.1 to extend the analysis to account for

cost and operational constraints. To do so, we introduce a binary variable yk ∈ {0,1} indicating

whether test k = 1, . . . ,m is used by the classification rule x. Budget constraints can then be

expressed linearly as
∑m

k=1 ckyk ≤K, where ck is the cost of each individual test k and K is the

per-person total allowable budget.

We capture the logical relationship between x and y via linear constraints. For every outcome

sequence s, denote by s̄k the outcome sequence obtained by switching the result of test k, i.e,

s̄kj = sj, for j 6= k, and s̄kk = 1−sk. For a given classification rule x, if |xs−xs̄k |= 0, then, the results

of the m− 1 other tests being equal, the result of test k does not impact the classification. If this

is the case for all sequences s, then test k is not used, and we should have yk = 0. In other words,

we have the following constraints:

1

n

∑
s∈Sm

|xs−xs̄k | ≤ yk ≤
∑
s∈Sm

|xs−xs̄k |.

The first inequality enforces the constraint “yk = 0 =⇒ ∀s ∈ Sm, xs = xs̄k”, while the second

enforces the reverse implication. As a result, we consider combination rules in the following set:

X :=

x∈ {0,1}n
∣∣∣∣∣∣∣∃y ∈ {0,1}m, s.t.

c>y≤K,
1
n

∑
s∈Sm

|xs−xs̄k | ≤ yk ≤
∑
s∈Sm

|xs−xs̄k |,∀k

 .

Additional constraints can be added to the definition of X to account for multiple resources

or enforce some structure on the classification rule x. For instance, in Appendix A2, we propose

adding linear constraints on x and y to force the aggregation rule x to correspond to one of the



12

available heuristic rules (any, all, or majority rule). Tests might also follow different protocols

(e.g., saliva tests vs. nasal swab) and we can add constraints on y to capture patient preferences

(e.g., a limit on the number of nasal swabs required).

The above modeling of testing costs allows for heterogeneous costs across tests to be included in

the analysis. For simplicity and due to the absence of reliable data on test costs (Xiao and Rathi

2021), we will set ck = 1 in the implementation of the approach for our empirical results. Setting

ck = 1 for all k restricts the number of tests being used to at most K. As a result, our empirical

analysis focuses on simultaneously selecting K out of m tests to combine (y) and the decision rule

for that combination (x). In terms of terminology, we refer to x as the “(classification) rule” and

to y as the “test combination”, while we use the term “policy” to refer to both the tests selected

and how their results are to be interpreted.

3.3. Accounting for Noisy Estimation

Problem (1) uses in-sample estimates âs and b̂s and is not protected against estimation error. Our

optimization perspective enables us to use robust optimization to address this concern.

First, we construct an uncertainty set around â, denoted as Uâ, which describes a set of plausible

values for a. Then, we replace the sensitivity term â>x in the objective of (1) by its the worst-case

value over all a∈ Uâ, i.e., solve

max
x∈X

[
min
a∈Uâ

a>x

]
s.t. b̂>x≤ 1− t0. (2)

For clarity of exposition, we detail our approach to sensitivity estimation (based on â) only, but

also implement a conceptually similar approach for specificity (based on b̂).

We decompose the constraints defining Uâ into three categories: (i) a should define valid proba-

bilities on Sm, (ii) the components of a should be ‘close’ to their in-sample estimates â, and (iii)

the test sensitivities computed from the components of a should be consistent with confidence

intervals on the performance of each test. We formalize these constraints below:

First, a is a vector of probabilities: a≥ 0 and
∑

s∈Sm as = e>a= 1.

Second, since â are in-sample estimates of the underlying probabilities, any candidate probability

vector a could be different, yet close to â. Accordingly, we bound the total absolute deviation∑
s |as − âs| with the constraint

∑
s |as − âs| ≤ Γ, where Γ controls the level of robustness, i.e.,

protection against noise. Observe that total absolute deviation constraints are a special case of φ-

divergence constraints (Ben-Tal et al. 2013)2. In our experiments, we treat the robustness parameter

Γ as a hyper-parameter and calibrate its value using cross-validation (see §4.3).

2 Among φ-divergences, Van Parys et al. (2021) prove that uncertainty sets based on the KullbackLeibler divergence
are optimal in terms of out-of-sample disappointment. However, the resulting robust optimization problem here would
be a mixed-integer conic optimization problem over the exponential cone. For tractability considerations, we have
favored total absolute deviation, which leads to a simple mixed-integer linear program.
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Third, for each test k ∈ {1, . . . ,m} and any a,
∑

s:sk=1 as is the associated sensitivity of test k.

Assume that [p̂k − ρ̂k, p̂k + ρ̂k] defines a (1−α) confidence interval on the estimated sensitivity of

test k:

Assumption 1. The true probability vector a0 satisfies each constraint
∣∣∣∑s:sk=1 a0,s− p̂k

∣∣∣≤ ρ̂k,

for k= 1, . . . ,m, with probability at least 1−α.

Accordingly, it is reasonable to expect a to satisfy similar constraints:∣∣∣∣∣ ∑
s:sk=1

as− p̂k

∣∣∣∣∣≤ ρ̂k.
In practice, the values of p̂k and ρ̂k could be provided by the manufacturer or estimated from data.

Observe that the second and third categories of constraints described above serve different pur-

poses. The second group of constraints controls the deviation of a from â in absolute terms, whereas

in the third group of constraints, an under-estimate in one component of a could compensate

for an over-estimate in another. Furthermore, the bound
∑

s |as− âs| ≤ Γ weights all components

of a equally, while the sensitivity constraints exploit a particular problem structure, i.e., the set

{s : sk = 1}, which corresponds to test k being positive. By leveraging the fact that we can recon-

struct the individual test sensitivities (via partial summations), we notably reduce the size of the

uncertainty set (hence the conservatism of the approach).

Taken together, the uncertainty set Uâ is defined as:

Uâ :=

{
a≥ 0 : e>a= 1;

∑
s∈Sm

|as− âs| ≤ Γ;

∣∣∣∣∣ ∑
s:sk=1

as− p̂k

∣∣∣∣∣≤ ρ̂k,∀k
}
,

and Problem (2) returns the combination rule with the best worst-case sensitivity. Under Assump-

tion 1, our pessimistic estimate mina∈Uâ a
>x provides a valid lower bound on the true performance

of a combination rule, a>0 x:

Proposition 1. Assume the true probability vector a0 satisfies Assumption 1, and that Γ =

γ
√
n/N+ where N+ denotes the number of condition-positive observations in the training data and

γ ≥ 1. Then, with probability at least 1−mα− exp
(
−n

2
(γ− 1)2

)
we have

a>0 x≥ min
a∈Uâ

a>x.

A proof of Proposition 1 is included in Appendix A4. Put simply, this proposition states that

the probability of out-of-sample disappointment, i.e., the probability that the actual sensitivity

of rule x, a>0 x, is less than the conservative estimate mina∈Uâ a
>x is bounded above by the

probability (≤mα) that the sensitivity of at least one test included in rule x falls outside of its

(1−α) confidence interval, plus a term that exponentially decreases in Γ2 ∝ γ2. For the latter term
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to remain constant, we need γ to scale as 1/
√
n, i.e., Γ to scale as 1/

√
N+. Such probabilistic

guarantees are pervasive in robust optimization (see Bertsimas et al. 2021, and references therein).

For Γ = γ
√
n/N+, Bertsimas et al. (2021, Corollary 3) leads to an exponential term exp

(
− 1

2nN+γ
2
)
,

which is worse than the exponential term in Proposition 1, yet holds without any restriction on γ.

Finally, using strong duality, we can convert the inner minimization problem in Problem (2) into

one of maximization, and reformulate (2) as a convex discrete optimization problem, solvable by

branch-and-bound, as stated in Lemma 2 (proof included in Appendix A4).

Lemma 2. Problem (2) is equivalent to a mixed-integer linear optimization problem.

In practice, we apply a similar approach to b̂. By considering confidence intervals on the speci-

ficity of each test3, [q̂k− θ̂k, q̂k + θ̂k], we construct an analogous uncertainty set

Ub̂ =

{
b≥ 0 : e>b= 1;

∑
s∈Sm

|bs− b̂s| ≤ Γ;

∣∣∣∣∣ ∑
s:sk=0

bs− q̂k

∣∣∣∣∣≤ θ̂k,∀k
}
,

and consider a robust knapsack problem with uncertainty on both a and b:

max
x∈X

{
min
a∈Uâ

a>x

}
s.t. b>x≤ 1− t0,∀b∈ Ub̂. (3)

3.4. Accounting for partial observations

Next, we address another important source of uncertainty: missing data. Indeed, the ability to

accommodate missing data is crucial for practical impact since real data routinely contains missing

entries. In particular, in most studies that compare the performance of tests, all tests cannot be

conducted on all individuals due to experimental failure or limited volume of each biological sample

(see §4.1). Hence, a complete-case analysis would lead to different sample sizes for every subset of

tests, making apples-to-apples comparisons of sensitivity/specificity values difficult.

In the absence of missing data, we know all the test results for all individuals, i.e., we can

associate each individual with a single outcome sequence s ∈ Sm. We have access to a matrix

Z ∈ {0,1}N+×n, where Zi,s = 1 if individual i obtains sequence s. From Z, we can compute the

in-sample sensitivity estimates â= 1
N+Z

>e, or equivalently

âs =
1

N+

N+∑
i=1

Zi,s.

However, some individuals might have taken fewer than m tests. We cannot associate such

individuals with a single outcome sequence s. Instead, for each individual i, we consider the subset

3 Typically, more data is available for estimating specificity because condition-negative pre-COVID-19 freeze-dried
samples are available (whereas sensitivity estimation requires condition-positive samples), so the confidence intervals
on specificity estimates are smaller.
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S(i) of all outcome sequences that are consistent with the observed test results. If individual i took

all the tests, S(i) is a singleton. Formally, let s(i) ∈ {0,1,NA}m denote the observed sequence of

results for individual i. s
(i)
k = 1 (resp. 0) indicates that test k is positive (resp. negative), while

s
(i)
k = NA indicates that the result of test k is unavailable. Accordingly, S(i) is defined as S(i) = {s∈

Sm : ∀k, s(i)
k 6= NA =⇒ s

(i)
k = sk}. Without imposing additional restrictions, the matrix Z belongs to

the set

Z+ :=

Z ∈ [0,1]N
+×n :

∑
s∈S(i)

Zi,s = 1,∀i; Zi,s = 0,∀s /∈ S(i)

 .

Without loss of generality, we relax the constraint Zi,s ∈ {0,1} to Zi,s ∈ [0,1] and interpret Zi,s as

the likelihood that individual i gets sequence s.

Since Z is no longer unique, neither is â. A standard imputation technique would select one

Z ∈ Z+ (e.g., by likelihood maximization), compute â = 1
N+Z

>e, and solve (2) for this value of

â. Instead, we consider all the possible values for Z and integrate the uncertainty in Z into our

robust formulation by replacing the uncertainty set in (2) by

Ũa =
{
a : ∃Z ∈Z+ s.t. a∈ Uâ with â= 1

N+Z
>e
}
.

The resulting problem can be formulated as a linear mixed-integer optimization problem similar

to Problem (2) (see Lemma A1 in Appendix A4). Above, we focused our exposition on the condition-

positive individuals and the estimation of a0, but the same logic applies for b0. We will demonstrate

the benefit of this robust imputation technique over maximum-likelihood imputation via numerical

experiments.

4. Data and Implementation

In this section, we introduce our data and describe the application of our methods from §3 in the

context of antibody and antigen testing.

4.1. Data

We apply our methodology to two datasets, provided to us by researchers on the National COVID

Scientific Advisory Panel (NCSAP) in the U.K. and the Charite Berlin hospital in Germany (which

have informed the U.K. governments and the WHOs recommendations on COVID-19 testing,

respectively). The datasets record the results of a head-to-head comparison of the diagnostic accu-

racy of POC tests for COVID-19 antibody and antigen detection, respectively. Note that these

studies use stored samples of COVID-positive and -negative individuals (as most studies in the

field do). As a result, the lack of accuracy of any given test can most likely be attributed to a

limitation in the testing technology rather than the administration of the test.
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Table 1 Individual performance of 9 POC LFIA devices for antibody detection. The 95% confidence intervals

(CI) are obtained using the Wilson score method with continuity correction.

Test (N+,N−) Sensitivity (95% CI) Specificity (95% CI)

1 (33,60) 0.55 (0.47,0.61) 1.00 (0.93,1.00)
2 (38,91) 0.61 (0.53,0.66) 0.99 (0.94,1.00)
3 (33,60) 0.64 (0.55,0.70) 0.97 (0.89,0.98)
4 (38,60) 0.66 (0.58,0.71) 0.98 (0.91,1.00)
5 (31,60) 0.61 (0.52,0.68) 0.97 (0.89,0.98)
6 (31,60) 0.65 (0.55,0.71) 0.98 (0.91,1.00)
7 (33,60) 0.70 (0.6,0.75) 0.95 (0.88,0.97)
8 (32,60) 0.56 (0.48,0.63) 1.00 (0.93,1.00)
9 (40,142) 0.55 (0.48,0.61) 0.97 (0.94,0.98)

Antibody tests: The Wellcome Trust funded a performance review of 9 POC lateral flow

immunoassay (LFIA) devices by the NCSAP (Adams et al. 2020). In particular, their point esti-

mates for the sensitivity (resp. specificity) of LFIA devices range from 0.55 to 0.70 (resp. 0.95−1.00)

versus the benchmark lab test, which led them to conclude that “currently available commercial

LFIA devices do not perform sufficiently well for individual patient applications”. We report the

performance of the individual LFIAs in Table 1. The 95% confidence intervals (CI) are obtained

using the Wilson score method with continuity correction (Newcombe 1998)4. Observe that the

authors could not apply all tests to all samples due to the limited number of LFIA devices made

available to them.

Antigen tests: Corman et al. (2021) compared the performance of 7 antigen tests. They all

target the same viral protein, namely the nucleocapsid protein. Table 2 reports 95% confidence

intervals for the specificity and sensitivity of each test, using the same method. As noted by the

authors, their experimental setting deviates from manufacturers’ instructions (they conduct a pre-

dilution step for condition-positive samples). So, the measured sensitivities might be lower than in

practice. Given the poor sensitivity of Test II (0.09) on 45 positive samples with high viral load,

Corman et al. (2021) decided not to study its sensitivity further and not to apply it on the remaining

samples. To avoid any selection bias in our analysis, we will exclude test II from our study. The

summary statistics on our data, reported in Table 3, motivate two useful observations. First, the

size of both datasets is limited so the estimates for the diagnostic accuracy of the individual tests

are subject to finite-sample estimation error. This motivates our robust formulation which accounts

for such uncertainty (applied in §5.3). Second, both datasets suffer from missing data. Indeed, in

both cases the authors were unable to apply all the tests to all samples due to limited testing kit

availability, limited volume per sample, or experimental failure. A näıve complete case analysis

4 The Wilson score method leads to CIs that are not centered around the empirical mean and uses a biased estimator
instead, which has lower variance and overall lower mean squared error. This is a more appropriate method when the
sample mean is close to the unit interval end points.
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Table 2 Individual performance of 7 antigen tests. The 95% confidence intervals (CI) are obtained using the

Wilson score method with continuity correction.

Test (N+,N−) Sensitivity (95% CI) Specificity (95% CI)

I (105,135) 0.71 (0.68,0.73) 0.99 (0.96,1.00)
II (45,135) 0.09 (0.08,0.16) 1.00 (0.97,1.00)
III (105,135) 0.85 (0.81,0.86) 0.89 (0.86,0.90)
IV (105,135) 0.28 (0.26,0.31) 1.00 (0.97,1.00)
V (105,135) 0.76 (0.73,0.78) 0.95 (0.92,0.96)
VI (105,135) 0.34 (0.33,0.37) 0.99 (0.96,1.00)
VII (115,135) 0.70 (0.67,0.72) 0.99 (0.95,0.99)

would reduce the already limited sample size (and increase the estimation error). This motivates

our robust formulation which additionally accounts for missing data (evaluated in §5.4).

Table 3 Characteristics of the diagnostic testing datasets used in our numerical experiments.

Dataset N+ N− m Complete cases Missing entries

Antibody tests (Adams et al. 2020) 40 142 9 89 41%
Antigen tests (Corman et al. 2021) 138 135 6 207 11%

Table notes: N+ (resp. N−) denotes the number of condition-positive (resp. negative) samples and

m is the number of tests.

Finally, we note that our data contains no precise information on the cost of each of these

different tests. As mentioned earlier, data on test costs is scarce (Xiao and Rathi 2021) and costs

depend on many factors and vary widely. Since each dataset compares tests that are similar to

manufacture and administer (e.g., LFIA devices), in the absence of more precise information, we

will work under the assumption that all tests have comparable (yet unknown) cost. Accordingly,

we can set ck = 1 in the budget constraint defining X and, in our analysis, identify the overall cost

of a combination testing policy with the number of tests involved, K. Nonetheless, as previously

mentioned, combining a few POC tests would remain cheaper than conducting a lab-based test.

4.2. Motivation for Combining COVID-19 Tests

Intuitively, combining tests can be beneficial for systematic or stochastic reasons. First, each test

might use a different underlying technology, hence providing its unique view on the patient’s

condition. Second, a test result can be viewed as a stochastic signal and combination testing as a

denoising procedure. We illustrate these two mechanims on two stylized examples in Appendix A1.

In this section, we provide examples of different underlying technologies or sources of randomness

in the case of COVID-19 detection.

First, consider the systematic mechanism. Technological differences across tests may allow one

test to detect a target protein for a given patient, even if another test does not. Antigen tests detect
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the presence of virus proteins. For COVID-19, tests usually target the nucleocapsid protein or the

spike protein, by mixing the patient’s sample with synthetic antibodies that have high affinity

towards one sub-unit of the protein of interest. Because these proteins might be present in infected

patients at different concentrations, for instance, and because the synthetic antibodies used might

be constructed differently, the tests might give discordant results. For antibody tests, two types

of antibodies are typically used (IgM and IgG) and manufacturers implement different detection

strategies. Combining multiple tests can therefore result in improved accuracy by leveraging the

different testing technologies. Similarly, Blacksell et al. (2011), Veyrenche et al. (2021) consider

detecting current infections using one antigen and one IgM antibody test.

Second, consider the stochastic mechanism. Each test result can be viewed as the realization of

a random variable and conducting multiple tests can reduce the noise associated with each appli-

cation of a test. At the patient level, this stochastic view is supported by the presence of inherent

noise stemming from how the test is administered and analyzed. For example, even applying mul-

tiple tests that rely on the same technology on the same individual might not consistently give the

same result. Combining the results from multiple tests can have higher accuracy because it reduces

noise, in the same way that diversification reduces the risk of a portfolio. In addition, some indi-

vidual characteristics (e.g., viral load, time since infection, presence of symptoms) can impact test

results and accuracy. At a patient level, they are constant, but they contribute to randomness (and

correlation) in test results at the population level because they are unobserved and heterogeneous

across patients.

Our methodology aims to leverage both of the mechanisms described above in a disciplined way

to achieve higher classification accuracy. In an attempt to disentangle and quantify the extent to

which systematic or stochastic mechanisms are prevalent, we compute and report (in Appendix

A6.1) two metrics for each pair of tests, on condition-negative and condition-positive samples

separately. To measure the extent of agreement among tests, we use the probability of pairwise

agreement. To measure stochastic association between tests, we report their pairwise correlations.

These descriptive statistics are included in Appendix A6.1—Tables A1 and A3 describe the anti-

body test data while Tables A2 and A4 describe the antigen test data.

We observe that pairwise correlations are close to 0 on condition-negative individuals, for both

datasets. This suggests that discrepancy in test results is mostly due to independent noise. On

the contrary, for condition-positive samples, agreement probabilities are low, demonstrating that

tests give discordant results more often on condition-positive samples than on condition-negative

samples. Furthermore, correlations are higher as well, suggesting that such discordance in these test

results cannot be solely explained by independent random noise and that there might be underlying

factors (e.g., time since infection for antibody tests or viral load for antigen tests) or systematic

technological differences that correlate test results on condition-positive samples.
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4.3. Application of Methods to COVID-19 Datasets

In our implementation of the robust model of §3.3, we will consider uncertainty sets for a of the

form:

Uâ(Γ) =

{
a≥ 0 : e>a= 1;

∑
s

|as− âs| ≤ Γ;

∣∣∣∣∣ ∑
s:sk=1

as− p̂k

∣∣∣∣∣≤ ρ̂k,∀k
}
,

where p̂k and ρ̂k are set equal to the middle and half-width of the CIs for the sensitivity of test k

(Tables 1 and 2) and Γ≥ 0 is a hyper-parameter which we calibrate using 5-fold cross-validation.

A detailed description of the cross-validation procedure is provided in Appendix A5. We similarly

construct uncertainty sets Ub̂(Γ) for b.

We make two notes about the presentation of our results. First, diagnostic accuracy is generally

reported in terms of sensitivity and specificity. Improvements in one of these metrics (e.g., sensi-

tivity) only make sense if the other (e.g., specificity) is capped at a given threshold. For instance,

we report achievable improvement in sensitivity given varying specificity targets in Section 5.5.

However, setting a relevant value for this threshold will depend on the use case. Accordingly, we

use the area under the ROC curve (AUC) as an accuracy metric in the cross-validation procedure

(Algorithm 2) and present our main results in terms of AUC, for it captures in a single number the

sensitivity/specificity trade-off in a threshold-free manner5. AUC corresponds to the probability

of correctly ranking a condition-positive individual higher than a condition-negative one, which

is especially relevant when screening provides access to a scarce and expensive resource. Still, we

would like to emphasize that our method is agnostic to the metric being used. Other measures

of accuracy can be used, both for cross-validation and reporting of the results, if deemed more

relevant to the application at hand.

Second, when selecting K out of m tests to combine, we solve a knapsack problem –(1) or

(3)– for varying specificity thresholds t0, hence generating a Pareto-dominating ROC curve. Each

point on that curve corresponds to a policy, namely K tests and a rule to combine their results.

Accordingly, the AUC of the Pareto-dominating ROC curve does not correspond to the AUC of

a unique K-test combination (the y variable) but rather captures the overall predictive power of

the available tests when combined, representing the state of technology. For K fixed, among all

the subsets of K tests that lie on this Pareto-dominating ROC curve, we conservatively focus our

attention on the best (i.e., AUC maximizing) one. This allows a fairer comparison with individual

tests and emphasizes an application of our method that is simpler to implement in practice. Our

results for the complete Pareto-dominating ROC curve (for the optimal combinations of K tests

at any specificity threshold) are discussed in Appendix A6.

5 For a single test, the AUC is equal to the arithmetic mean of the sensitivity and specificity.
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5. Results

We demonstrate the benefits of implementing our combination testing policies using data on

COVID-19 antibody and antigen tests, described in §4.1. We first illustrate the dominating ROC

curve for a given subset of tests, in §5.1. We then discuss the improvement in accuracy achievable

by optimally selecting the tests to include in a combination policy in §5.2, and the out-of-sample

performance of our robust formulations that address estimation error and missing data in §5.3

and §5.4, respectively. We then compare the performance of a combination of tests selected using

our methodology with the performance of heuristics previously proposed in the literature, in §5.5.

Finally, we provide an illustration of how a policymaker would apply our methodology to obtain a

specific combination testing policy, in §5.6. In addition, Appendix A7 contains results on synthetic

data, exploring the impact of the sample size and the proportion of missing entries on our results.

5.1. Combining a Given Set of Tests

For illustration, we first restrict our attention to three arbitrarily chosen tests from each dataset.

We obtain all Pareto-optimal combination rules for these tests, plotted as the break-points in the

dashed (orange) ROC frontier in Figure 1, by solving the knapsack problem (1) for different values

of t0. As discussed in §3.1, the frontier can be computed by sorting the 8 possible outcome sequences

by their âs/b̂s values. For now, we consider only complete cases. We observe from Figure 1 that the

dashed ROC frontier dominates, at least weakly, the performance of all the three individual tests,

thus illustrating the benefit from combining tests. We also observe that the standard heuristics

discussed in §2 are not guaranteed to lie on the frontier and that our methodology identifies points

on the ROC frontier that the heuristics cannot (§5.5 and §A6.2 contain a more extensive comparison

with these heuristics).

While Figure 1 demonstrates the performance of our methodology for a given set of tests, a key

part of the practical challenge is to select which tests to combine, especially given the proliferation

of rapid tests. For example, our antibody (resp. antigen) dataset comprises 9 (resp. 6) different

tests, leading to 36 (resp. 15) possible 2-test combinations and 84 (resp. 20) 3-test combinations.

In the following three sections, we efficiently search for the best combination of three antibody

(or antigen) tests by solving our extended formulation with additional binary variables y, and

illustrate how robustness mitigates the issues of overfitting and missing data.

5.2. Selecting a Combination of Tests

We next illustrate the improvement in diagnostic accuracy from optimally selecting the tests to be

included in the combination testing policy. We consider all available tests and solve (3) with Γ = 0

(i.e., obtaining only in-sample estimates of â and b̂) on all the complete cases and construct the

ROC curve for the individual tests, as well as for the Pareto-optimal combinations of 2 and 3 tests.
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Figure 1 The trade-off between specificity and sensitivity (ROC curve) for 3 individual tests and all their potential

combinations.

(a) Antibody test data (b) Antigen test data

Figure 2 displays both the performance of the individual tests (labelled by their index number) as

well as the ROC frontier of combinations of two (the orange dashed line with “×” breakpoints)

and three (the green dashed line with “+” breakpoints) tests. We observe that the ROC frontiers

for either combining two or three tests lies above the convex hull of the index tests.

On the antibody test data, while the best performing test (test 7) has an in-sample AUC of 0.837,

the set of Pareto-optimal 3-test combinations achieves 0.894 AUC (+7%). It also identifies two

3-test combinations – (6,7,8) and (1,6,8) – with AUCs of 0.862 and 0.888 respectively. Similarly,

on the antigen test data, we observe a 5% increase in AUC between the best performing test (test

III, AUC = 0.868) and the Pareto-optimal set of 3-test combinations (AUC = 0.921). Among the

3-test combinations on the Pareto-dominating ROC curve, (I,III,V) is the most accurate one (AUC

= 0.878).

5.3. Robustness to Parameter Estimation

Due to finite-sample estimation error, our optimization model might find combination policies that

improve accuracy on the training data but do not generalize to the entire population.

To illustrate the value of robust optimization in mitigating this concern, we repeatedly split the

data into training and validation datasets using a 70%/30% split (robustness of the results with

respect to the splitting proportion is presented in Appendix A6.2 (Figure A2), using stratified

sampling to keep prevalence constant between the two datasets. For each training dataset, we

apply the following methodology, for each K: we estimate the sensitivity and specificity of each

test and their 95% CIs, construct uncertainty sets of the form Ũâ(Γ) (resp. Ũb̂(Γ)) for a (resp. b),

and compute the Pareto-dominating ROC curve. From this curve, we identify the most accurate

K-test combination on the training data, and evaluate its performance on the validation data. We

repeat this procedure over 50 random splits.
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Figure 2 The trade-off between specificity and sensitivity (ROC curve) for all the individual tests and the optimal

combinations of 2 (orange line) and 3 tests (green line).

(a) Antibody test data (b) Antigen test data

Figure 3 Diagnostic accuracy (AUC) of the best K-test combination as a function of the number of tests

combined (K).

(a) Antibody test data (b) Antigen test data

Figure notes: Error bars (in all figures of the manuscript) correspond to ±1 standard error.

Figure 3 compares three performance curves. First, it reports in- and out-of-sample performance

of the non-robust solution (Γ = 0) with missing data imputed using maximum likelihood (ML)

imputation (Gelman and Hill 2006, Chapter 25). On both datasets, we observe that the out-

of-sample AUC (solid orange line) is significantly lower than its in-sample value (dashed blue

line). This discrepancy is starker on the antibody test data: while in-sample AUC unambiguously

increases as more tests are used, out-of-sample performance deteriorates when using 3 tests or

more. Second, the dash-dotted green line in Figure 3 displays the out-of-sample AUC of a robust

policy where the value of Γ is calibrated using a 5-fold cross-validation procedure (see Appendix

A5 for pseudo-code) on the training dataset and where missing data is imputed adversarially. The

figure illustrates that adding robustness can improve out-of-sample performance. In both cases, the
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robust models exhibit comparable or stronger out-of-sample performance than the näıve approach.

For instance, our method identifies 3-test combinations with an average AUC of 0.802 on the

antibody test data (+4% compared with 0.774 for a single test) and of 0.902 on the antigen test data

(+6%). For moderate values of K (K ≤ 4), which are probably the most relevant values for policy

implications, the benefit from robustness is mild on the antibody test data but stark on the antigen

test data. In the appendix, we report similar yet smaller gains for the entire Pareto-dominating

curve instead of the best K-test combination only, in Figure A3.

The behavior of the method displayed on Figure 3 is notably different on the antibody and

antigen test data. On the antibody test data, the non-robust optimization formulation provides

good solutions for up to 3 tests but its out-of-sample performance deteriorates for larger values

of K. The robust formulation does not significantly improve on the non-robust formulation for

small values of K but stabilizes the out-of-sample AUC for K ≥ 4. On the contrary, on the antigen

test data, the accuracy of the non-robust formulation generally increases with K, and the robust

formulation provides substantial improvement for allK ≥ 2. One explanation could be the difference

in sample sizes. The total number of observations (and of condition-positive samples) in the antigen

data is more than twice (resp. three times) as high as for the antibody data, and there is less

missing data. An alternative explanation could be that among the tests in our data, the antibody

tests might rely on more similar technologies than the antigen tests so combining tests helps mostly

because it reduces noise, not because we gain new information. To support this intuition, we

decompose the results for antigen tests on high- and low-viral load samples separately in Appendix

A6.3. In summary, our (non)-robust combination policies display a similar behavior on the high-

viral load samples to what we observe for the antibody test data. This observation corroborates

the intuition that when various technologies are available and tests are systematically discordant

(as in the low-viral load antigen tests data), our method is able to find particular classification

rules that leverage these different signals, while when technologies are more mature and similar,

combination of tests helps mainly as a denoising procedure.

5.4. Robustness to Missing Data

The robust optimization approach we consider in the previous section differs from the baseline

approach in two ways. First, it imputes the missing values adversarially instead of using maximum

likelihood. Second, it accounts for noisy estimates by considering uncertainty sets around the

empirical values â and b̂ (with Γ cross-validated instead of Γ = 0). Both ingredients provide some

form of robustness and could explain the observed improvement. To isolate the relative benefit of

each of them, Figure 4 compares the out-of-sample performance of two models non-robust to noisy

estimates (Γ = 0): one where missing entries are imputed with their most likely values as in Figure

3 (orange solid line) and another where they are imputed adversarially (orange dash-dotted line).
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Figure 4 Out-of-sample accuracy (AUC) as a function of the imputation method for missing data.

(a) Antibody test data (b) Antigen test data

Figure notes: The orange solid line and the dashed green line in this figure are the same as in Figure 3.

We observe that robust imputation provides a substantial improvement over ML imputation,

especially as K increases. For comparison purposes, we also report the performance of both impu-

tation methods with additional robustness to noisy estimates (Γ CV) in green. In summary, irre-

spective of the value of Γ (0 or CV) adversarial imputation improves out-of-sample predictive

power over ML imputation (dash-dotted vs. solid). Irrespective of the imputation method, adding

robustness (Γ CV) helps (green vs. orange). The robust formulation with adversarial imputation

provides the best performance.

5.5. Comparison with Existing Heuristics

As discussed in §1 and §2, the prior literature has proposed various heuristics for interpreting the

outcomes of multiple tests performed to detect the same condition. In particular, the any (if any

test is positive), all (if all tests are positive), and the majority (if the majority of tests is positive)

heuristics have been proposed.

We first compare the performance of the set of Pareto-optimal 3-test combinations with that

of a single test and of the three aforementioned heuristics applied on the three individually best-

performing tests for each dataset. On the training data, for each specificity target, we select the

best test (or 3-test combination) in terms of sensitivity and compute its out-of-sample sensitivity

on the validation set. We focus on 3-test combinations since Figure 3 demonstrates no additional

benefits from adding more tests to a combination. For four specificity targets, Figure 5 reports the

average out-of-sample sensitivity achievable by a single test, the heuristics, and our method. We

observe that using our methodology to identify the best combination of tests and the appropriate

classification rule to use at each threshold results in a significant improvement in sensitivity, for

almost all specificity thresholds. In particular, if a policymaker requires specificity of at least 0.95,

our methodology results in an 8% and 2% relative improvement in sensitivity for antibody and
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Figure 5 Out-of-sample sensitivity achieved by combining 3 tests for varying specificity thresholds.

(a) Antibody test data - 3 test combinations (b) Antigen test data - 3 test combinations

Figure notes: The performance of the heuristics is obtained by identifying the 3 best performing individual tests for

antibody (antigen) detection and applying the three heuristics.

antigen detection, respectively, compared with the best performing heuristic (majority in these

cases). Over the 8 cases (4 specificity targets × 2 datasets), our methodology significantly (p-value

< 0.1) outperforms the available heuristics in 4 cases. Our method is only dominated (with a p-value

< 0.1) by the any heuristic, on the antibody test data, and for a specificity threshold of 0.8. This

behavior is most likely due to our cross-validation procedure for Γ (see pseudo-code in Appendix

A5, Algorithm 2), which optimizes for the aggregate AUC measure. Optimizing for partial AUC

(or sensitivity conditional on at least 0.80 specificity) would likely lead to improved performance

for our approach. Similarly, our optimal 3-test combination systematically improves over using a

single test, with the comparison being statistically significant in 4 out of the 8 cases.

As previously discussed, our optimization method achieves two concurrent objectives: to identify

a subset of K tests (as encoded by the variable y) and then to find the best classification rule to

aggregate their results (as encoded by the variable x). In contrast, heuristic rules solely address

the issue of classification and not of test selection. We now try to disentangle the respective benefit

of our method on the test selection and classification tasks separately.

In Figure 6, we consider the entire Pareto-optimal set of K-test combinations and count how

many of them correspond to one of the aforementioned heuristics on the subset of tests they

involve6. Obviously, for K ≤ 2 tests, any classification rule can be seen as an any or all rule. As the

number of tests involved, K, increases, the fraction of Pareto-optimal combinations that correspond

to one of the heuristics decreases. However, we observe that our robust optimization formulation

recovers heuristic rules substantially more frequently than the non-robust version does, suggesting

that the heuristics are somewhat robust classification rules and that the optimal selection of tests is

6 Figure A5 in appendix decomposes these numbers for each heuristic rule separately.
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Figure 6 Fraction of the Pareto-optimal K-test combinations corresponding to one of the heuristic rule

(all/any/majority).

(a) Antibody test data (b) Antigen test data

a central added value of our method. Still, for 3 tests, around 25% (resp. 20%) of the Pareto-optimal

combinations are more complex than the heuristics on the antibody (resp. antigen) data.

To further illustrate the benefit of our optimization formulation in optimally selecting which test

to combine, we solve our robust optimization problem (3) with additional constraints that force

the classification rule x to be one of the aforementioned heuristics (see detailed formulation in

Appendix A2). Doing so provides the existing heuristics with a disciplined approach to identify the

most powerful combination of tests while accounting for in-sample estimation error and missing

data. Figure 7 replicates Figure 5 except that tests for the heuristic rules are selected optimally

instead of heuristically. We observe that test selection has a first-order impact on the accuracy of

a combination policy: optimally selecting the tests substantially increases the performance of all

heuristic rules, up to the level of the optimal combination. For example, for a specificity of at least

0.98, the majority rule achieves a sensitivity of 0.56 (resp. 0.69) on the antibody (resp. antigen)

data when tests are optimally selected, compared with 0.40 (resp. 0.50) when the best index tests

are selected and compared with 0.56 (resp. 0.62) for the optimal combination strategy.

5.6. An illustration of a Specific Policy Recommendation

Up to this point, our analysis has been focused on evaluating our methodology for uncovering robust

combination testing policies, hence the emphasis on cross-validation and out-of-sample accuracy.

We now illustrate how a decision maker could apply our methodology in practice.

In the simplest use case, in which the decision maker has an abundance of data, they would apply

our methodology on a training dataset and evaluate out-of-sample performance on a validation

dataset. However, in realistic use cases of our methodology, the decision maker would have access to

a similar dataset to ours, which compares the performance of various POC tests on a set of samples.

Those datasets tend to be smaller in size, so omitting data for training purposes can significantly



Jain, Jónasson, Pauphilet, Ramdas: Robust Combination Testing
27

Figure 7 Out-of-sample sensitivity achieved by optimally combining 3 tests for varying specificity thresholds.

Tests are selected using our robust knapsack formulation. Test results are classified using the any, all,

majority, and optimal rules.

(a) Antibody test data - 3 test combinations (b) Antigen test data - 3 test combinations

affect the solutions obtained and result in a too small validation dataset for a representative out-of-

sample performance estimate. Therefore, for a realistic illustration of our methodology, we propose

the following approach, based on the notion of stability selection, a method widely used for variable

selection in statistics (Meinshausen and Bühlmann 2010).

As a first step, we leverage our dataset to identify the best single test and the best 3-test

combination. We randomly split the data in to training (70%) and testing (30%) fifty times (the

same approach as we use for cross validation). For each training dataset, we use our methodology

to identify the best performing single test and the best performing three test combination—with an

associated decision rule—as measured by their respective in-sample AUC. Using stability selection,

we aggregate the results by counting how frequently each single test and each 3-test combination

has the highest in-sample AUC across all the 50 training sets. As a second step, we evaluate the

best single test and the best 3-test combination—identified using the stability selection approach

described above—by calculating their respective AUC on the whole dataset.

Figure 8 shows the outcome of this process. We make four observations based on these results.

First, for both the antibody and the antigen test datasets, a combination of three tests achieves a

higher AUC than the best single test. For antibody testing (Figure 8(a)), a three test combination

of Tests 2, 8, and 9 achieves an AUC of 0.855 while the best single test (Test 7) achieves an AUC of

0.842, a relative improvement of 1.5%. For antigen testing, (Figure 8(b)), a three test combination

of Tests I, III, and V outperforms the best single test (Test III) by a relative 5% in terms of AUC.

Second, an important benefit of combination testing is that the same set of (e.g., three, for

this illustration) tests gives the decision maker increased flexibility to emphasize either sensitivity

or specificity, by choosing a specific point on the ROC curve to implement. For example, using
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Figure 8 ROC curve for best individual test and the best 3-test combinations (orange line), identified via stability

selection.

(a) Antibody test data (b) Antigen test data

the same three antibody tests, the decision maker can achieve either a sensitivity of 0.73 (with a

corresponding specificity of 0.92) or a sensitivity of 0.70 (with a corresponding specificity of 1.00).

Similarly, for the selected antigen tests, the decision maker can choose between a sensitivity of 0.86

(with a corresponding specificity of 0.84) or a sensitivity of 0.61 (with a corresponding specificity

of 1.00).

Third, this analysis provides an answer to the empirical question of how much sensitivity or

specificity can be improved by combining tests in a specific application context. If the decision

maker is satisfied with the sensitivity of the best performing antibody test (Test 7), specificity

can be improved by 0.03 by combining tests (see the highlighted point in Figure 8(a)). On the

other hand, if the decision maker is satisfied with the specificity of the best antigen test (Test III),

sensitivity can be only modestly improved (by 0.01) by combining three tests (see the highlighted

point in Figure 8(b)).

Fourth, each point on the ROC curve for a three test combination corresponds to a specific

decision rule. If the decision maker wishes to improve antibody specificity by 0.03 (by choosing the

highlighted point in Figure 8(a)) the associated decision rule is to apply the any rule using tests

2 and 8. In other words, even if we allow for up to three tests in the combination, this particular

point on the ROC curve only requires the use of two tests. If the decision maker wishes to improve

the sensitivity of antigen testing by 0.01 (by choosing the highlighted point in Figure 8(b)) they

would classify a sample as positive if Test III returns a positive result or if both tests I and V return

a positive result. The decision rules associated with these two points are illustrated in Figure 9.

Note that such compact representations of a classification rule as a test sequence can be obtained

systematically using optimization, as described in Appendix A3.
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Figure 9 Decision rules associated with the highlighted points in Figure 8.
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6. Conclusion and Implications

Despite advances in COVID-19 treatment and vaccination, the need for cheap, fast, and accurate

testing remains. We contribute to the ongoing debate on the best use of POC devices for testing

against COVID-19. We present a novel methodology, based on robust optimization, to best select

and combine tests, hence providing a structured way for policymakers to quantify the benefit

from combining multiple index tests and potentially break the trade-off between accuracy and

cost in diagnostic testing. Our approach accounts for incomplete or noisy data, two significant

practical considerations when working with limited data on emerging pathogens. We demonstrate

the relevance and effectiveness of our algorithm on datasets, comprised of COVID-19 antibody and

antigen test results, from two medical institutions.

Our results indicate that, by combining multiple POC tests, widespread COVID-19 testing can

be simultaneously accurate, timely and cost-effective – and thus could help curb transmission while

reducing unnecessary isolation. In a single week of June 2021, nearly 4% of British pupils missed

school due to required isolation (U.K. Department of Education 2021). In the U.S., millions of

passengers travel by air daily (Transportation Security Agency 2021). Initial guidelines imposed

a negative RT-PCR result for all passengers at most 72 hours prior to departure, although they

could be exposed and become infectious in the interim. Quick and accurate POC testing in these

and other settings could reduce the costs of both false negatives and false positives.

With combination testing, a policymaker has access to a fine-grained ROC curve and can decide

to emphasize either sensitivity (e.g., for vulnerable populations for which false negatives are costly)

or specificity (e.g., in population-level seroprevalence studies) by selecting the appropriate classifica-

tion rule. Designing combination rules that optimize for both downstream operational performance

and predictive power is another interesting future direction. For example, our knapsack framework
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can incorporate additional operational constraints such as limited availability of healthcare profes-

sionals to oversee or conduct testing. Overall, our method provides a practical and time-efficient

method for policymakers to (re-)assess the benefit from combination testing, as new tests or new

variants emerge.

Future research could apply our methodology to the repeated use of the same test as well. In that

setting, instead of outcome sequences, one would describe test results by the number of positive or

negative outcomes only. However, data on the repeated use of a single test is, to our knowledge,

not commonly published.

In general, treatment policies and decisions based on statistics are ubiquitous. However, the

underlying statistical tools rarely take operational constraints into account. By formulating a foun-

dational result in statistics, the Neyman-Pearson lemma, as an optimization problem, we are able

to account for important practical considerations, such as costs, and noisy or incomplete input

data. Data is scarce in many healthcare applications, so conclusions based on simple statistical

approaches might overfit the data. In our case, a näıve in-sample analysis would always conclude

that adding more tests to a combination would improve diagnostic accuracy. Our robust formula-

tion builds in safeguards against policy decisions based on overfitting to limited data. As such, our

paper illustrates the power of optimization as a tool to integrate statistics and operations.

Beyond the COVID-19 pandemic, our method provides a theoretically-grounded and robust way

to achieve higher diagnostic accuracy from combining cheap and fast predictors, and could be

relevant in other areas of medicine, healthcare operations, manufacturing, or service systems.
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Appendix for
“Robust Combination Testing:

Methods and Application to COVID-19 Detection”

A1. Why combining tests helps: Two stylized examples for intuition

Intuitively, index tests may disagree for distinct reasons. On the one hand, they may not agree

because of the different underlying technology they use (e.g., the target protein or the reagents

applied) and because they have different underlying capability to identify the same target protein.7

In this case test outcomes would have (a potentially negative) non-zero correlation. On the other

hand, they may disagree due to stochastic noise associated with any testing process, in which case

their results might disagree but have zero correlation.

Consequently, our data-driven approach for combining tests can improve diagnostic accuracy

through two mechanisms, corresponding to the two types of potential reasons for disagreement.

First, a systematic mechanism, since our approach leverages systematic differences in the technology

of tests. Second, a stochastic mechanism, since combining tests can reduce the inherent noise

associated with testing. To illustrate these two mechanisms, we consider two extreme situations,

depicted in Figure A1. For illustration, we focus our attention on condition-positive samples. In

both situations, the three index tests (depicted on the X-axis) each have a sensitivity of 2/3. Each

horizontal band in the figure (corresponding to a specific Y value) represents the results on a

particular sample, from the 3 tests. Red indicates a positive and pink a negative test result.

• First consider the case in which there are no systematic or technological differences across

tests, just stochastic noise in the test outcomes. We model the three tests as independent Bernoulli

random variables, each with a sensitivity of 2/3 (panel (a) in Figure A1). Hence, two particular

tests (e.g., tests 1 and 3) provide the same result with probability (1/3)2 + (2/3)2 = 5/9 (> 1/2),

i.e., they agree on more than half the cases, but have zero correlation, by construction.

• Second, consider a case in which there are clear systematic differences across tests. Each test

is completely ineffective on a (different) third of the population and perfectly accurate on the

7 As an example, the specificity of an antibody test depends on its ability to (i) detect the biomarker of interest (i.e.,
an antibody that is developed in the human body in reaction to Sars-COV-2) and (ii) rule out other ‘cross-reactive’
biomarkers (i.e., antibodies developed in the body in reaction to other viruses). In the case of Sars-COV-2 antibody
tests, prior coronavirus infections are the source of some of the potential cross-reactive biomarkers. Antibody tests
operate by using a piece of the virus to detect antibodies in a blood sample. Many tests focus on detecting antibodies
to the spike protein of Sars-COV-2. A recent Lancet article (Petherick 2020) notes that “There is a lot hanging on
the uniqueness of the spike protein. In terms of the specificity of serological tests in which it is used, the more unique
it is, the lower the odds of cross-reactivity with other coronavirusesfalse positives resulting from immunity to other
coronaviruses. [...] the potential for cross-reactivity really depends on whether the new tests select sections of the
spike protein that are particularly distinct across coronaviruses.”
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(a) Uncorrelated tests (b) Systematically discordant tests

Figure A1 Test results for condition-positive patients (red is positive) in two stylized situations.

remaining two thirds (panel (b) in Figure A1).8 In this case, two particular tests (e.g., tests 1 and

3) provide the same results with probability 1/3 (< 1/2) but the results are correlated (pairwise

correlation between any two tests is −1/2).

A combination testing policy requires a) choosing the tests to combine and b) deciding how to

interpret the outcome sequence of the selected tests. For illustration, we assume that we wish to

combine all three tests and that the decision rule we apply is the majority rule.

• For the first case (uncorrelated but noisy test outcomes) applying the majority rule yields

a sensitivity of 20/27 > 2/3. In this situation, each test corresponds to a noisy observation of

the quantity of interest and combining (in the case of the majority rule, ‘averaging’) test results

achieves higher predictive power due to denoising.

• For the second case (technologically different tests) applying the majority rule yields a sensi-

tivity of 1. In this situation, there is no stochasticity in the testing procedure per se but each test

sees only a portion of the full picture. Combining the results helps because it aggregates different

perspective on the same underlying phenomenon.

In summary, in both situations, combining 3 tests with a majority rule strictly improves diagnosic

accuracy, yet through different mechanisms. Although useful for building intuition, the distinction

between these two sources of disagreement is hypothetical. Reality is likely to be a mixture of

the two extreme situations and it might be hard (if not impossible) to identify which factors are

systematic vs. stochastic. Fortunately, doing this is not needed to apply our approach, which takes

the correlation structure observed in the data as its primitive. Our two examples are also simplistic

8 Referring back to the example provided in the prior footnote, consider a population of individuals who each have
cross-reactive antibodies to three prior coronaviruses. A pattern similar to that shown in Figure A1(b) can emerge
on condition negative samples if the Sars-COV-2 protein segment targeted by each of the three tests overlaps with
that in (a different) one of these three prior coronaviruses. For a similar motivation related to antigen testing, please
see Corman et al. [5], Table 3, where the tests examined clearly differ in their ability to rule out cross-reactive
coronaviruses.
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in the sense that, in practice, accuracy is a trade-off between sensitivity and specificity, i.e., per-

formance on both infected and uninfected populations. Furthermore, a systematic methodology is

required to decide which tests to combine and how to interpret their results. The tools developed

in this paper specifically achieve these objectives.

A2. Optimal test selection with heuristic classification rules

As previously discussed, all existing heuristics (the any, all, and majority rules) are classification

rules, i.e., they indicate how to combine results from different tests but not how to select which tests

to combine. On the contrary, our knapsack optimization formulation achieves both objectives. In

particular, the binary variables y ∈ {0,1}m indicate which tests are involved used in the combination

while the binary variables x∈ {0,1}n define the classification rule. Our methodology simultaneously

optimize over y and x. Accordingly, we can adapt our formulation to optimally select the tests

while forcing the aggregation rule x to be one of the existing heuristics. In this section, we derive

additional (linear) constraints that should be added to the definition of the feasible set X to do so.

Consider one outcome sequence s∈ {0,1}m, the number of tests used in the combination y that

return a positive result in this sequence is given by
∑

k∈[m]:sk=1 yk.

Based on this observation, we can prove that the any rule corresponds to vectors (x,y) such

that, for any sequence s∈ {0,1}m,

1

m

∑
k∈[m]:sk=1

yk ≤ xs ≤
∑

k∈[m]:sk=1

yk.

Indeed, if one of the selected test is positive,
∑

k∈[m]:sk=1 yk > 0 and the left-hand side inequality

forces xs > 0 (so xs = 1). Otherwise, the right-hand side imposes xs = 0. Note that, on the left-hand

side inequality, any valid upper-bound on
∑

k∈[m]:sk=1 yk could be used instead of m, e.g., K in

presence of a cardinality constraint
∑

k∈[m] yk ≤K.

Classifying a patient as positive if all tests are positive is equivalent to classifying a patient as

negative is any test is negative. Hence, we can restrict x to correspond to the all rule by imposing

that, for any sequence s∈ {0,1}m,

1

m

∑
k∈[m]:sk=0

yk ≤ 1−xs ≤
∑

k∈[m]:sk=0

yk.

Finally, we verify that the majority rule corresponds to the following set of constraints: For any

sequence s∈ {0,1}m,

1

m

 ∑
k∈[m]:sk=1

yk− 1
2

∑
k∈[m]

yk

≤ xs ≤ 1 +
1

m

 ∑
k∈[m]:sk=1

yk− 1
2

∑
k∈[m]

yk− 1
2

 .
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If
∑

k∈[m]:sk=1 yk >
1
2

∑
k∈[m] yk, the left-hand side inequality forces xs > 0 (so xs = 1). In this

case, observe that the left-hand side is always lower than 1 so xs = 1 is feasible. Moreover,∑
k∈[m]:sk=1 yk ≥

1
2
[
∑

k∈[m] yk+1] so the right-hand side inequality is trivially satisfied. On the other

hand, if
∑

k∈[m]:sk=1 yk ≤
1
2

∑
k∈[m] yk, the right-hand side inequality forces xs = 0.

A3. Converting a classification rule into a sequencing strategy

In this section, we provide an optimization formulation that allows us to convert any classification

rule x into a sequence of tests to apply. We represent a sequencing strategy as a tree: Each

internal node corresponds to applying a test. If the result is positive (resp. negative), we continue

to its left (resp. right) child. A terminal node (or leaf) corresponds to a 0/1 label (classify as

positive/negative). At a high level, xmaps every sequence of s∈ {0,1}m to a binary label xs ∈ {0,1}

and we represent this mapping as a tree. Hence, our formulation is analogous to mixed-integer

formulations for binary classification trees in supervised learning (see, e.g., Günlük et al. 2021,

Bertsimas and Dunn 2017).

For a given depth d, we consider the maximal tree of this depth, which has T = 2(d+ 1)− 1

nodes. We index each node by by an integer t = 1, . . . , T , so that internal nodes are indexed by

t ∈ I := {1, . . . , bT/2c} and leaf nodes by t ∈L := {bT/2c+ 1, . . . , T}. In our case, d is bounded by

the total number of tests involved in the combination K(≤m) so T ≤ 2K + 1.

For each internal node t ∈ I and each test k we introduce a binary variable zt,k that indicates

whether test k is used to split node t. Since we fixed the topology of the tree, we want to allow the

option of not splitting at an internal node. We use an indicator variables dt to indicate whether a

split is applied at node t. If not, we use the convention that all the sequences are propagated to

the left child-node. With this convention, we should impose the constraints:

m∑
k=1

zt,k = dt, ∀t∈ I, (A1)

and a sequence s∈ {0,1}m is assigned to the left child-node if and only if
∑m

k=1 zt,ksk ≤ dt/2.

For each leaf node t ∈ L and each sequence s, we identify the leaf node to which s is assigned

to via the binary variable `s,t. For a leaf node t ∈ L, define Aleft(t) (resp. Aright(t)) as the set of

ancestors of t whose left (resp. right) branch has been followed on the path from the root node to

t. Then, we have the following constraints:

m∑
k=1

zu,ksk ≤ du/2 + (1− `s,t), ∀s, ∀t∈L, ∀u∈Aleft(t),

m∑
k=1

zu,ksk ≥ du/2− (1− `s,t), ∀s, ∀t∈L, ∀u∈Aright(t).
(A2)
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Finally, we want the tree to perfectly describe the rule x so we impose the constraint that

each leaf is composed of sequences classified in the same way. Let us introduce a binary variable

xtreet ∈ {0,1} to encode for the classification of leaf t. We impose

xtreet ≤ xs`s,t + (1− `s,t), ∀s, ∀t∈L,

xtreet ≥ xs`s,t− (1− `s,t), ∀s, ∀t∈L.
(A3)

All in all, we obtain the minimal tree representation of the classification rule via solving the

following binary linear optimization problem

min
dt,zt,k,`s,t,x

tree
t

∑
t∈I

dt s.t. (A1)− (A2)− (A3)

with 2K +K2 +K2K binary variables and K +K22K +K2K constraints.

A4. Proofs and Omitted Results

In this section we include proofs and additional results that were omitted in the main body of the

manuscript. We first provide a proof for Proposition 1, then provide a proof for Lemma 2, before

stating and proving Lemma A1, which is referred to at the end of §3 in the main body of the paper.

Proof of Proposition 1 Decompose Uâ into Uâ = U0 ∩ UΓ with U0 = {a :
∣∣∣∑s:sk=1 as− p̂k

∣∣∣ ≤
ρ̂k,∀k} and UΓ = {a≥ 0 : e>a= 1,

∑
s |as− âs| ≤ Γ}. Then,

P
(
a>0 x≥ min

a∈Uâ
a>x

)
≥ P (a0 ∈ U0 ∩UΓ)≥ 1−P (a0 /∈ U0)−P (a0 /∈ UΓ) ,

from Boole’s inequality. Assumption 1 yields P (a0 /∈ U0)≤mα. Regarding P (a0 /∈ UΓ), Berend and

Kontorovich (2012, Theorem 2) states that, for any r≥
√

n

N+
,

P (‖â−a0‖1 > r)≤ exp

(
−N

+

2

[
r−

√
n

N+

]2
)
.

Setting r= Γ concludes the proof. �

Proof of Lemma 2 As in the proof of Proposition 1, we decompose Uâ into U0∩UΓ. From Ben-

Tal et al. (2015, Lemma 6.4),

min
a∈U0∩UΓ

a>x= max
x0,xΓ:x0+xΓ=x

[
min
a∈U0

a>x0

]
+

[
min
a∈UΓ

a>xΓ

]
,

and we can treat the two uncertainty sets separately. For U0, stong linear duality yields

min
a∈U0

a>x0 = min
a
a>x0 s.t. p̂k− ρ̂k ≤

∑
s:sk=1

as ≤ ρ̂k + p̂k,∀k= 1, . . . ,m,

= max
q1,q2≥0

−(ρ̂− p̂)>q1− (ρ̂+ p̂)>q2 s.t.
∑
k:sk=1

q1
k− q2

k = x0
s,∀s,
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where q1 and q2 are the dual variables associated with the lower and upper bound constraints,

respectively.

For UΓ, Corollary 1 of (Ben-Tal et al. 2013) applied to total absolute deviation states that

min
a∈UΓ

a>xΓ = min
a≥0,e>a=1

a>xΓ s.t.
∑
s

|as− âs| ≤ Γ,

= max
λ≥0,r,v

−r−Γλ+ â>v s.t.


v≤ λ,
v≤xΓ + r,

−λ≤xΓ + r.

Combining the two yields the following formulation:

max
x∈X , x0,xΓ

λ,r,v,q1,q2

â>v− r−Γλ− (ρ̂− p̂)>q1− (ρ̂+ p̂)>q2 s.t. x=x0 +xΓ,

v≤min(λ,xΓ + r),

−λ≤min(xΓ + r,0),

x0
s =

∑
k:sk=1

q1
k− q2

k, ∀s,

b>x≤ 1− t0,

λ≥ 0,q1,q2 ≥ 0.

The above optimization problem is linear, with mixed-integer variables whenever x is binary. �

Lemma A1. The robust problem

max
x∈X

[
min
a∈Ũa

a>x

]
s.t. b>x≤ 1− t0,

is equivalent to the following linear optimization problem

max
x∈X , x0,xΓ

λ,r,v,q1,q2,z

1

N+
e>z− r−Γλ− (ρ̂− p̂)>q1− (ρ̂+ p̂)>q2 s.t. x=x0 +xΓ,

v≤min(λ,xΓ + r),

−λ≤min(xΓ + r,0),

x0
s =

∑
k:sk=1

q1
k− q2

k, ∀s,

zi ≤ vs,∀s∈ Si

b>x≤ 1− t0,

λ≥ 0,q1,q2 ≥ 0.

Proof of Lemma A1 Observe that

min
a∈Ũa

a>x= min
â=

Z>e
N+ ,Z∈Z

min
a∈Uâ

a>x.
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From Lemma 2, we reformulate the inner-minimization problem as a maximization problem in

λ, r,v,q1,q2. Then, strong duality applies to the minimization with respect to â:

min
â=

1
N+ Z>e,Z∈Z

â>v= min
Z∈Z

1
N+e

>Z>v= max
z

1
N+e

>z s.t. zi ≤ vs,∀s∈ Si,

and the result follows. �

A5. Pseudo-code and implementation details

The knapsack formulation (1) (or its robust variant) returns the feasible combination of tests

achieving the best sensitivity subject to having a specificity of at least t0. In other words, such a

classification rule x?(t0) is Pareto-dominating, namely no other classification rule can achieve higher

sensitivity without compromising specificity. By solving the same problem for different values of

t0, as described in Algorithm 1, we obtain the set of all Pareto-dominating classification rules.

Algorithm 1: Computation of the set of Pareto-dominating combination policies

Input: Uncertainty sets Ũâ and Ũb̂
Parameters: Feasible set X (e.g., maximum number of tests to combine K), grid of values

for the minimum required specificity t0

ParetoPolicies← [ ];

for each value of t0 do
Compute x?(t0) the solution of (3) (or (1) in the non-robust case);

Add x?(t0) to ParetoPolicies;
end

return ParetoPolicies

In practice, a robust formulation is needed to mitigate the risk of overfitting and account for

missing data. In particular, in Section 4.3 and in our numerical experiments, we parametrize the

size of the uncertainty sets, Uâ(Γ) and Ub̂(Γ), by an hyper-parameter Γ that controls how much

we allow the true sensitivity and specificity to deviate from their in-sample estimates. The “right”

value of Γ is a priori unknown so we calibrate it using an F -fold cross-validation procedure (we

take F = 5 in our experiments) described in Algorithm 2. Observe that our procedure involves an

accuracy metric accuracy that can be adapted to the specific application at hand. To keep our

exposition as generic as possible, we consider the AUC as our metric of interest but it is not a

requirement imposed by our method. In addition, we need to specify a grid of values for Γ. In our

implementation, we try uniformly spaced values of Γ of the form Γ = λΓ0, where λ ∈ {0, . . . ,10}

and Γ0 is a scaling factor. In particular, we decided to set Γ0 equal to the smallest (positive) value
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for which the set {a≥ 0 : e>a= 1;
∑

s |as− âs| ≤ Γ0;
∣∣∣∑s:sk=1 as− p̂k

∣∣∣= 0,∀k} is nonempty. Note

that, since we are using Wilson CIs,
∑

s:sk=1 âs 6= p̂k and this set is empty for Γ0 = 0. In other

words, our value of Γ0 scales like 1/N+ and captures the distance between the empirical data, â,

and a vector a that recovers exactly the center of the Wilson CIs.

Algorithm 2: Cross-validation loop for the size of the uncertainty sets

Data: Patient-level results on m tests, S± ∈ {0,1,NA}N±×m.

Parameters: Size of the combination K, number of folds F , accuracy metric accuracy

Input: Partition of the data into F folds, grid of values for Γ

for each value of Γ do
for each fold f do

Use the data of the F − 1 remaining folds to construct the sets Ũâ(Γ) and Ũb̂(Γ);

Compute ParetoPolicies(Γ, f), the set of Pareto-dominating combination rules

(Algorithm 1);

Compute accuracy(Γ, f), the accuracy of ParetoPolicies(Γ, f) on the f -th fold;
end

Compute accuracy(Γ) = 1
F

∑
f∈F accuracy(Γ, f);

end

Pick Γ? ∈ arg maxΓ accuracy(Γ) ;

Construct the sets Ũâ(Γ?) and Ũb̂(Γ?) on the entire data;

Compute ParetoPolicies(Γ?) for the entire data (Algorithm 1);

return ParetoPolicies(Γ?)

A6. Supporting evidence on COVID-19 testing data

This section provides additional numerical evidence from the COVID-19 antigen and antibody

detection datasets.

A6.1. Additional summary statistics

Our optimization-based approach takes advantage of potential systematic disagreement of tests on

the same sample and/or lack of correlations between tests, i.e., dependency between the sources of

randomness in the results at a patient and population level.

To measure agreement, we compute, for each pair of tests, the probability that they return

the same result, which we refer to as the probability of pairwise agreement or simply agreement

probabilities. Tables A1 and A2 report the probability of pairwise agreement between tests for the

antibody and antigen test data, respectively. On both data, we observe agreement probabilities
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close to 1 on condition-negative individuals, suggesting that there is more agreement among tests

on samples that are indeed negative. On condition-positive samples, however, agreement probabil-

ities between tests are lower than on condition-negative samples, demonstrating that there is less

agreement on how to classify these patients.

Table A1 Probability of pairwise agreement of the 9 antibody tests

Condition-positive individuals Condition-negative individuals

1 2 3 4 5 6 7 8 9

1 1.0 0.87 0.79 0.76 0.9 0.81 0.85 0.75 0.85
2 1.0 0.81 0.81 0.86 0.83 0.84 0.7 0.97
3 1.0 0.97 0.94 0.84 0.88 0.88 0.82
4 1.0 0.9 0.81 0.85 0.84 0.82
5 1.0 0.9 0.94 0.84 0.9
6 1.0 0.9 0.74 0.87
7 1.0 0.75 0.82
8 1.0 0.72
9 1.0

1 2 3 4 5 6 7 8 9

1 1.0 0.98 0.97 0.98 0.97 0.98 0.95 1.0 0.93
2 1.0 0.95 0.97 0.95 0.97 0.93 0.98 0.95
3 1.0 0.98 0.93 0.95 0.92 0.97 0.9
4 1.0 0.95 0.97 0.93 0.98 0.92
5 1.0 0.95 0.98 0.97 0.93
6 1.0 0.93 0.98 0.95
7 1.0 0.95 0.92
8 1.0 0.93
9 1.0

Table A2 Probability of pairwise agreement of the 6 antigen tests

Condition-positive individuals Condition-negative individuals

I III IV V VI VII

I 1.0 0.79 0.61 0.88 0.68 0.96
III 1.0 0.41 0.85 0.48 0.77
IV 1.0 0.56 0.91 0.59
V 1.0 0.62 0.9
VI 1.0 0.67
VII 1.0

I III IV V VI VII

I 1.0 0.88 0.99 0.94 0.99 0.98
III 1.0 0.89 0.85 0.88 0.89
IV 1.0 0.95 0.99 0.99
V 1.0 0.94 0.93
VI 1.0 0.98
VII 1.0

Regarding correlations, Tables A3 and A4 report the pairwise correlation matrices for the anti-

body and antigen test data respectively, on condition-positive and condition-negative individuals.

For both test types, we observe that the pairwise correlation in test outcomes depends on whether

the sample in question is indeed positive or negative. In particular, on condition-negative indi-

viduals, pairwise correlations are mostly very close to 0 on both the antigen and antibody test

data. Combined with the fact that individual test specificities are high on this sub-population, this

observation suggests that, on condition-negative individual samples, all tests are effective and that

variability in their individual performance is mostly due to random measurement error and noise,

which are independent from one test to another. In contrast, on condition-positive samples, we

observe higher pairwise correlation, especially for the antibody test data.

As we mention at the beginning of this section, our methodology is designed to uncover com-

plementary sets of tests that provide better diagnostic accuracy, either by removing noise by
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Table A3 Pairwise correlation matrices for the 9 antibody tests

Condition-positive individuals Condition-negative individuals

1 2 3 4 5 6 7 8 9

1 1.0 0.73 0.58 0.51 0.79 0.59 0.72 0.49 0.7
2 1.0 0.6 0.6 0.7 0.63 0.66 0.39 0.94
3 1.0 0.93 0.88 0.67 0.74 0.75 0.66
4 1.0 0.8 0.58 0.65 0.69 0.65
5 1.0 0.79 0.88 0.66 0.83
6 1.0 0.8 0.46 0.77
7 1.0 0.5 0.68
8 1.0 0.44
9 1.0

1 2 3 4 5 6 7 8 9

1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 1.0 -0.03 -0.02 -0.03 -0.02 -0.04 0.0 -0.03
3 1.0 0.7 -0.03 -0.02 -0.04 0.0 -0.08
4 1.0 -0.02 -0.02 -0.03 0.0 -0.05
5 1.0 -0.02 0.81 0.0 0.49
6 1.0 -0.03 0.0 0.74
7 1.0 0.0 0.37
8 1.0 0.0
9 1.0

Table A4 Pairwise correlation matrices for the 6 antigen tests

Condition-positive individuals Condition-negative individuals

I III IV V VI VII

I 1.0 0.54 0.46 0.69 0.54 0.9
III 1.0 0.2 0.63 0.25 0.46
IV 1.0 0.41 0.81 0.42
V 1.0 0.48 0.73
VI 1.0 0.52
VII 1.0

I III IV V VI VII

I 1.0 -0.03 0.0 -0.02 -0.01 -0.01
III 1.0 0.0 0.02 -0.03 0.15
IV 1.0 0.0 0.0 0.0
V 1.0 -0.02 -0.03
VI 1.0 -0.01
VII 1.0

aggregating multiple test outcomes or by exploiting the patterns by which individual tests dis-

agree. For illustration, one would expect the noise-reduction mechanism to be the main driver

of improved accuracy in settings where individual tests are independent (i.e., correlation is low)

but agreement is high. In the other extreme, one would expect the ability to exploit patterns in

test disagreement to be the main driver of improved accuracy in settings with high correlation

but low agreement (which would suggest that systematic differences across tests might be driving

disagreement). The summary statistics presented in this section illustrate that for both test types

(antibody and antigen) both mechanisms are likely to be at play (since the level of agreement

and correlation depends on the true condition of the sample, which is not observable in practice).

As a result, it is not obvious which mechanism drives the results we observe, just by looking at

summary statistics. Rather, for each dataset, one must apply our methodology to learn to what

extent combining different tests will improve diagnostic accuracy.

A6.2. Additional results on COVID-19 testing data

First, we assess the robustness of the behavior depicted in Figure 3 to the splitting proportion.

We replicate the experiments from Section 5.3, splitting the data into training and validation, in

proportions p0/1− p0 for p0 ∈ {55%,60%, . . . ,95%}. For a fixed proportion p0, one can represent

AUC as a function of the number of tests combined, as in Figure 3. Figure A2 displays the area

covered by the average AUC when varying p0, for increasing values of K. As in Section 5.3,
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Figure A2 Robustness of the AUC of the best combination of K tests to the training/validation proportion,

as the number of tests K increases, for the non-robust combination policy (in-sample in dash blue,

out-of-sample in solid orange) and the robust policies with cross-validated γ (dash-dot green).

(a) Antibody test data (b) Antigen test data

we observe that the non-robust combinations of tests suffer from overfitting, and that adding

robustness improves out-of-sample AUC significantly.

Second, while Figure 3 displays the AUC of the best K-test combination, it only represents a

fraction of the Pareto-dominating ROC curve. As discussed in Section 4.3, the AUC of the entire

Pareto-dominating curve captures the current state of the technology, i.e., the combined predictive

power of the available tests, and could be of independent interest. Figure A3 compares the AUC

(both in- and out-of-sample) of the entire Pareto-dominating curve with the one for the best K-test

combination only, for the robust formulations. We observe that most of the area covered by the

Pareto-dominating curve is recovered by the best combination, and that the AUC of the entire curve

follows a similar trend to that of the best combination. For instance, combining 3 tests increase

total AUC from 0.797 to 0.818 (+3%) on the antibody test data, and yields a +2% improvement

on the antigen test data (0.895 vs. 0.909)

In Section 5.2 and 5.5, we compared our knapsack formulation to individual test performance

and heuristic rules. Tables A5-A6 report the average sensitivity values (and their standard errors)

displayed on Figure 5. Heuristic rules are heuristic in the way they select which tests to combine and

how the selected tests are combined (majority, any or all rule). For test selection, we decided to

combine the 3 tests that individually achieve the highest individual AUC. In Figure A4, we replicate

the in-sample complete-case analysis of Figure 2 and compare this heuristic test selection rule (in

orange) with a situation where we choose to combine tests that individually lie on the frontier

(tests 1, 6, and 7 for the antibody test data; and I, III, and IV for the antigen test data) in yellow,

and a situtation where we choose the 3-test combination leading the the highest AUC in green. In
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Figure A3 Comparison of the diagnosis accuracy (AUC) of the best combination of K tests and the entire

Pareto-dominating curve as a function of the number of tests K combined.

(a) Antibody test data (b) Antigen test data

Figure notes: Each line corresponds to the estimated AUC as the number of tests K increases. The blue (green)

curves are the in-sample (out-of-sample) estimate of the AUC. Dash lines correspond to the performance of the best

K-test combination while solid lines correspond to the Pareto-dominating ROC curve. Error bars correspond to ± 1

standard error.

Table A5 Out-of-sample sensitivity (and standard errors) achieved by the best single test, heuristic 3-test

combinations, and optimal 3-test combinations on the antibody test data. For the single tests and the heuristics,

we test whether the value is significantly different from the optimal 3-test combination and report p-values of a

paired t-test with unequal variance.

Specificity threshold
0.8 0.9 0.95 0.98

Robust Optimal Combination 63.7% (1.5%) 63.5% (1.5%) 62.6% (1.5%) 56.4% (2.3%)

Best Individual Test
57.4% (1.6%) 57.4% (1.6%) 57.4% (1.6%) 53.1% (1.4%)
< 4.4 · 10−3 < 6.0 · 10−3 < 1.8 · 10−2 < 2.3 · 10−1

Heuristic all 47.3% (1.3%) 47.3% (1.3%) 47.3% (1.3%) 47.3% (1.3%)
< 5.9 · 10−13 < 1.3 · 10−12 < 7.3 · 10−12 < 9.3 · 10−4

Heuristic any 67.8% (1.4%) 66.7% (1.9%) 51.3% (4.3%) 0.0% (0.0%)
< 5.0 · 10−2 < 2.0 · 10−1 < 1.6 · 10−2 < 0.1 · 10−29

Heuristic majority 57.8% (1.4%) 57.8% (1.4%) 57.8% (1.4%) 39.7% (4.2%)
< 4.5 · 10−3 < 6.3 · 10−3 < 2.0 · 10−2 < 8.9 · 10−4

all cases, we observe that these heuristic rules do not systematically lie on the optimal ROC curve

and are (at least weakly) dominated by our optimization-based approach. In addition, although

the optimal selection of 3 tests can be easily computed in this case via exhaustive enumeration, this

brute force approach is sensitive to noise and finite-sample estimation error and fails to account

for missing data, unlike our robust knapsack formulation.

In Section 5.5, we tried to untwine the benefit of our approach coming from the test subset

selection part and the result aggregation part. In Figure A5, we consider the entire robust Pareto-
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Table A6 Out-of-sample sensitivity (and standard errors) achieved by the best single test, heuristic 3-test

combinations, and optimal 3-test combinations on the antigen test data. For the single tests and the heuristics,

we test whether the value is significantly different from the optimal 3-test combination and report p-values of a

paired t-test with unequal variance.

Specificity threshold
0.8 0.9 0.95 0.98

Robust Optimal Combination 84.9% (0.7%) 79.0% (0.9%) 75.0% (0.9%) 62.4% (2.6%)

Best Individual Test 83.9% (0.7%) 76.8% (1.0%) 72.4% (0.8%) 59.5% (2.6%)
< 3.0 · 10−1 < 1.1 · 10−1 < 3.3 · 10−2 < 4.5 · 10−1

Heuristic all 62.7% (1.0%) 62.7% (1.0%) 62.7% (1.0%) 62.7% (1.0%)
<−0.0 · 10−32 < 0.1 · 10−21 < 6.7 · 10−15 < 9.1 · 10−1

Heuristic any 77.0% (3.3%) 19.1% (4.9%) 1.5% (1.5%) 0.0% (0.0%)
< 2.5 · 10−2 < 8.2 · 10−17 < 0.1 · 10−56 < 0.1 · 10−28

Heuristic majority 73.3% (0.9%) 73.3% (0.9%) 73.3% (0.9%) 50.3% (4.8%)
< 3.2 · 10−16 < 3.7 · 10−5 < 2.0 · 10−1 < 3.0 · 10−2

Figure A4 Performance of the majority (diamond), any (circle) and all (star) rules on a subset of 3 tests

selected that achieve highest individual AUC (orange), are cherry-picked to lie on the frontier (yellow),

or achieve the highest AUC when combined (green).

(a) Antibody test data (b) Antigen test data

optimal set of K-test combinations, count how many of them correspond to one of the aforemen-

tioned heuristics on the subset of tests they involve, and report the frequency of occurrence of each

heuristic rule separately.

In a complementary direction, we solve the robust optimization problem (3) with the additional

constrained described in Appendix A2 to constraint the classification rule x to be one of the

aforementioned heuristics. Figure A6 compares the out-of-sample AUC of the three heuristics

compared with the optimal rule, as the number of tests combined, K, increases. We observe that

optimally combining tests substantially increases the performance of the heuristics, with the any
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Figure A5 Fraction of the robust Pareto-optimal K-test combinations that correspond to one of the all, any,

and majority rule (all/any/majority).

(a) Antibody test data (b) Antigen test data

Figure A6 Out-of-sample AUC as the number of tests combined K increases, for three heuristic rules and the

optimal classification rule. For each classification rule, tests are selected using our robust knapsack

formulation.

(a) Antibody test data - 3 test combinations (b) Antigen test data - 3 test combinations

rule achieving comparable AUC than the optimal rule. Note that these results correspond to the

robust optimization formulation (Γ cross-validated) with adversarial imputation of missing data.

A6.3. Antigen test data: Stratified results by viral load

The data presented in Figure 1 of Corman et al. (2021) shows that, on condition-positive samples,

the test result highly depends on the underlying viral load. Here, we stratify our condition-positive

population into two groups corresponding to high and low viral load patients respectively (taking

the median viral load as a threshold) and report the accuracy of our combination testing policy on

each sub-group separately. By restricting our attention to high-viral load patients, we are partially

controlling for viral load. Hence, the remaining sources of randomness in test results are more likely

to be inherent to the chemical process involved in protein detection. We thus expect the results



Jain, Jónasson, Pauphilet, Ramdas: Robust Combination Testing
15

Table A7 Sensitivity of the 6 antigens tests computed on the high and low viral load patients

High-viral load individuals Low-viral load individuals

Test N+ Sensitivity (95% CI)

I 54 93% (85%,95%)
III 48 98% (89%,100%)
IV 48 60% (54%,65%)
V 54 94% (87%,96%)
VI 48 75% (68%,79%)
VII 60 87% (80%,89%)

Test N+ Sensitivity (95% CI)

I 52 50% (45%,55%)
III 57 74% (68%,77%)
IV 57 0% (0%,6%)
V 52 58% (52%,62%)
VI 57 0% (0%,6%)
VII 56 54% (49%,58%)

Table A8 Probability of pairwise agreement of the antigen test results on the high- and low-viral load patients.

High-viral load individuals Low-viral load individuals

I III IV V VI VII

I 1.0 0.94 0.64 0.94 0.79 0.96
III 1.0 0.58 0.97 0.73 0.87
IV 1.0 0.61 0.81 0.62
V 1.0 0.76 0.94
VI 1.0 0.79
VII 1.0

I III IV V VI VII

I 1.0 0.67 0.59 0.81 0.59 0.96
III 1.0 0.26 0.74 0.26 0.67
IV 1.0 0.51 1.0 0.56
V 1.0 0.51 0.85
VI 1.0 0.56
VII 1.0

Table A9 Pairwise correlation of the antigen test results on the high- and low-viral load patients.

High-viral load individuals Low-viral load individuals

I III IV V VI VII

I 1.0 -0.04 0.15 0.55 0.21 0.74
III 1.0 -0.12 -0.02 -0.08 -0.06
IV 1.0 0.0 0.61 0.3
V 1.0 0.0 0.63
VI 1.0 0.47
VII 1.0

I III IV V VI VII

I 1.0 0.48 0.0 0.62 0.0 0.93
III 1.0 0.0 0.58 0.0 0.46
IV 1.0 0.0 0.0 0.0
V 1.0 0.0 0.69
VI 1.0 0.0
VII 1.0

of different tests on the same individual and of the same test on different individuals to be less

correlated.

Table A7 reports the sensitivity for each individual test on each stratum. As expected, high-viral

load patients are easier to detect and sensitivities are noticeably higher on this sub-population. On

below-median viral loads, two tests (namely IV and VI) even have a sensitivity of 0%.

In parallel, Tables A8 and A9 reports pairwise agreement probabilities and correlations of the

tests on each sub-population. As mentioned above, by stratifying, we create more homogeneous

sub-groups and effectively control for latent patient-level characteristics that might simultaneously

impact the results of the tests. Accordingly, we expect and generally observe lower pairwise cor-

relations than for the general population. Overall, the pairwise correlations on the high-viral load

patients only (left panel of Table A9) seem lower than those on the low-viral load patients only

(right panel of Table A9) – excluding tests IV and VI.

By inspecting the individual test performance and pairwise correlation of tests on these two

subgroups of condition positive individuals, determining the impact of combining test results is not
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Figure A7 Diagnostic accuracy (AUC) of the best K-test combination of antigen test, as K increases, for high-

and low- viral load patients respectively.

(a) High viral load (b) Low viral load

straightforward. On one hand, high-viral load patients might benefit more because the tests appear

less correlated. On the other hand, sensitivity for these patients is already high and there is little

room for improvement. Figure A7 replicates Figure 3, while reporting the AUC on the high (left

panel) and low (right panel) viral load patients respectively, the condition-negative samples being

the same in both cases. Quite surprisingly, we observe an improvement for both sub-populations

and of comparable magnitude (+0.05 in AUC by combining 3 tests). Our intuition is that, on the

high-viral load patients, tests are very concordant and combining helps primarly as a denoising

procedure (i.e., the improvements are due to the stochastic mechanism discussed in §4.2). On

the low-viral load samples, a smart combination policy can gain information by aggregating the

results from different technologies (i.e., the improvements are due to the systematic mechanism,

also described in §4.2).

Here, comparing AUC might be confusing because overall AUC also depends on the performance

on the condition-negative population, which is the same for both panels. Accordingly, we also report

in Figure A8 the improvement in sensitivity on each stratum of the condition-positive population,

for different target specificity thresholds.

However, we should emphasize again that, in practice, viral load is not observable and such a

stratification is impossible a priori. So, the actual performance of a test or combinations of test

would be the performance we previously computed on the entire population, provided our study

population is representative of the general population.
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Figure A8 Best achievable sensitivity for a K-test combination of antigen tests, for different target specificity

levels, for high- and low- viral load patients respectively.

(a) High viral load (b) Low viral load

A7. Additional numerical validation on synthetic data

In order to illustrate the behavior of our optimal combination policy as the number of observations

N = N+ + N− and the proportion of missing entries increase, we depart from our COVID-19

datasets and generate synthetic data.

A7.1. Synthetic data generation methodology

We describe here the data generation methodology we used for generating synthetic data of m

correlated tests. We acknowledge the fact that our data generating process is simple and that more

sophisiticated approaches could be implemented (e.g., Cario and Nelson 1997). However, we rely

on this model for data generation only. Our robust combination algorithm, on the other hand, is

non-parametric and can be applied to data with arbitrary correlation structure.

Given a target sample size N and prevalence level p̄, we fix N+ and N−, the total number of

condition-positive and -negative observations respectively, so as to match the target prevalence

level p̄=N+/(N+ +N−).

For condition-positive individuals, we consider an m-dimensional normal random variable x∈Rm

with mean µ+ and covariance matrix Σ+. For each condition-positive observation i, we sample

x(i) ∼N (µ+,Σ+) and set the result of test k equal to I(x(i)
k > 0). Note that since the result of each

test is a discrete version of X, the resulting correlation matrix between test results is not exactly

Σ+. In our numerical experiments, we consider m= 9 test as in the antigen test data from Corman

et al. (2021). We calibrate the components of µ+ so that P(xj ≥ 0) = pk, where pk is the sensitivity

for test k in Corman et al. (2021), and set Σ+ equal to the empirical correlation matrix between

the 9 tests on the condition-positive observations in the data.

We proceed analogously for condition-negative observations.
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A7.2. Impact of the sample size N

First, we evaluate the ability of our algorithm to detect relevant combinations as more data is

available. To do so, we consider training data sets of increasing size, N =N+ +N−, and evaluate

the resulting combination policies on the same test set, 1,000 held-out observations. Figure A9

represents overfitting, defined as the difference between in- and out-of-sample AUC, as K increases,

for varying sample sizes. Due to the combinatorial nature of the problem – with K tests, there

are 2K potential outcome sequences – overfitting increases exponentially with K. On this matter,

adding robustness (right vs. left panel) appears as an effective way to reduce overfitting, both in

terms of dependency on K and magnitude (scale of the y-axis). Robustness is especially valuable

in low-data regimes.

Figure A9 Overfitting (relative difference between in-sample and out-of-sample AUC) as the number of tests K

increases, for the non-robust (left) and robust (right) policy, on synthetic data without any missing

entries, for varying sample size N . Results are averaged over 50 random training sets.

(a) Γ = 0 (b) Γ CV

Intuitively, different values of Γ lead to different aggregation rules, with varying levels of accuracy.

Figure A10 displays the standard deviation of out-of-sample AUC between models with different

values of Γ along the cross-validation grid, as sample size increases. A low standard deviation

means that Γ has little impact and that the different values of Γ lead to very similar models as far

as predictive accuracy is concerned. As depicted, as the number of samples grows, the impact of Γ

on the resulting model and its performance shrinks.

A7.3. Impact of the proportion of missing entries

Second, we compare the relative performance of maximum likelihood vs. robust imputation, when

the proportion of missing entries varies. To do so, we consider a training data set of 200 observations

and randomly create missing entries, varying the proportion of missing entries between 0% and
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Figure A10 Standard deviation (SD) in out-of-sample AUC between models with Γ∈ {0, . . . ,10} as the number

of samples increases, for different values of K. Results are averaged over 50 random training sets.

40%. We then compare the two imputation methods by computing the difference between the out-

of-sample AUC with the robust and maximum likelihood imputation method as reported in Figure

A11. A positive value indicates that the robust method improves over maximum likelihood. Figure

A11 confirms the findings from Section 5.4: Robust imputation provides a significant gain in out-of-

sample AUC, which increases as both the number of tests involved K and the proportion of missing

entries increase. The edge of robust imputation persists when considering robust combinations of

tests, although the magnitude of the improvement is smaller.

Figure A11 Absolute difference in out-of-sample AUC between robust (ROB) and maximum likelihood (ML)

imputation as the proportion of missing entries increases, for the non-robust (left) and robust (right)

policy, on synthetic data with N+ +N− = 200. Results are averaged over 50 random training sets.

(a) Γ = 0 (b) Γ CV
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