

University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange

Masters Theses

Graduate School

3-1972

Petiole nutrient concentrations of upland cotton, Gossypium hirsutum L

Marshall Clayton Smith

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

Recommended Citation

Smith, Marshall Clayton, "Petiole nutrient concentrations of upland cotton, Gossypium hirsutum L. " Master's Thesis, University of Tennessee, 1972. https://trace.tennessee.edu/utk_gradthes/8244

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by Marshall Clayton Smith entitled "Petiole nutrient concentrations of upland cotton, Gossypium hirsutum L." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Agronomy.

G. M. Lessman, Major Professor

We have read this thesis and recommend its acceptance:

L. N. Skold, David L. Coffey

Accepted for the Council: Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Marshall Clayton Smith entitled "Petiole Nutrient Concentrations of Upland Cotton, Gossypium Hirsutum L.". I recommend that it be accepted for nine quarter hours of credit in partial fulfillment of the requirements for the degree of Master of Science, with a major in Agronomy.

Hann Lessman Major Professor

400

We have read this thesis and recommend its acceptance:

L. N. Skold David L. Coffey

Accepted for the Council:

A. Smith

Vice Chancellor for Graduate Studies and Research

PETIOLE NUTRIENT CONCENTRATIONS OF UPLAND

COTTON, GOSSYPIUM HIRSUTUM L.

A Thesis

Presented to

the Graduate Council of

The University of Tennessee

In Partial Fulfillment of the Requirements for the Degree

Master of Science

Ъу

Marshall Clayton Smith

March 1972

ACKNOWLEDGMENTS

To the following I wish to express my gratitude and appreciation:

Dr. G. M. Lessman, my major professor, who planned and directed this experiment;

Mr. L. N. Skold for serving on my committee and for a critical reading of this manuscript;

Dr. D. L. Coffey for serving on my committee;

Dr. W. L. Parks for his assistance and maintenance of the Technicon AutoAnalyzer;

Mr. P. E. Hoskinson for directing, planting, and harvesting of the cotton cultivar trials;

Mr. J. R. Overton for the detailed soil survey of the experimental plots;

Mr. Cooper Skelton, Mr. Carnell Lee, Mr. Virgil Coleman, Mr. Clifford Sweat, Mr. Clyde Weatherly, Mr. Herman Patterson, Mr. William Powell on whose farms these experiments were conducted.

I also wish to thank the Tennessee Farm Bureau for their financial contribution to this research.

11

ABSTRACT

Experiments were conducted at seven locations in 1969 and 1970 to determine the effects of growth stage, location differences, and cultivars on the Ca, Mg, K, and P concentrations of cotton petioles.

In general, nutrient content of cotton petioles was affected more by growth stage and location than by cultivar difference.

Calcium and K concentration usually decreased as the cotton plants approached maturity while Mg and P varied with location.

Acala 1517D was generally higher in Ca and P concentrations than were any of the other nine cultivars tested. Coker 417 was high in Mg while the Stoneville cultivars were high in K. The high yielding Stoneville 213 was consistently low in Ca and Mg. Acala 1517D was the lowest yielding of all cultivars tested. When using plant analysis to diagnose nutrient levels in cotton, particular consideration should be given to the cultivars sampled. In this experiment more differences were found among cultivars at mid bloom than at any other physiological growth stage investigated.

iii

TABLE OF CONTENTS

CHAPT	ER PA	GE
I.	INTRODUCTION	1
II.	REVIEW OF LITERATURE	2
III.	MATERIALS AND METHODS	10
	Field Plot Design	14
	Fertility Levels	14
	Cultural Practices	16
	Collection of Field Data	16
	Laboratory Analysis	19
	Statistical Methods	19
IV.	RESULTS	22
	Soil Test Results	22
	Climatic Factors	27
	Tissue Calcium Concentrations	27
	Tissue Magnesium Concentrations	45
	Tissue Potassium Concentration	58
	Tissue Phosphorus Concentrations	70
	Soil and Tissue Correlations	82
	Comparison of Elements	84
	Yields	84
V.	DISCUSSION	90
	Soil Test Values	90
	Soil Types	91

CHAPTER	PAGE
Yields	91
Cultivars	92
Petiole Nutrient Concentrations	94
Interactions	95
Analysis of Covariance	96
VI. SUMMARY	98
LITERATURE CITED	100
APPENDIXES	106
Appendix A	107
Appendix B	108
Appendix C	110
Appendix D	119
VITA	120

v

LIST OF TABLES

TABL	E	PAGE
1.	Locations and Soil Types	12
2.	Cotton Cultivars Tested for Nutrient Composition	13
3.	Nutrients Applied Annually at Each Location	15
4.	Planting Dates in 1969 and 1970 at Each Location	17
5.	Tissue Sampling Dates at Each Location	18
6.	Cotton Harvest Dates at Each Location	20
7.	Plot Frequency and pH of Soils at Seven Locations	23
8.	Mean Calcium Concentrations of Ten Cotton Cultivars at	
	Selected Growth Stages at Seven Locations in 1969 and	
	1970	34
9.	Calcium Concentrations of Ten Cotton Cultivars at	
	Selected Growth Stages and Locations in 1969 and	
	1970 Adjusted for Soil Calcium Content	39
10.	Tissue Calcium Concentrations of Ten Cotton Cultivars	
	from Combined Analysis of Six Locations and First	
	Two Growth Stages	40
11.	Mean Calcium Concentrations in Cotton Petioles for	
	Different Growth Stages at Seven Locations	44
12.	Mean Magnesium Concentrations of Ten Cotton Cultivars	
	at Selected Growth Stages at Seven Locations in	
	1969 and 1970	46

TABLE

13.	Magnesium Concentrations of Ten Cotton Cultivars at	
	Selected Growth Stages and Locations in 1969 and	
	1970 Adjusted for Soil Calcium Content	51
14.	Tissue Magnesium Concentrations of Ten Cotton Cultivars	
	from Combined Analysis of Six Locations and the First	
	Two Growth Stages	53
15.	Mean Concentrations of Magnesium for Different Growth	
	Stages at Seven Locations	57
16.	Mean Potassium Concentrations of Ten Cotton Cultivars	
	at Selected Growth Stages at Seven Locations in	
	1969 and 1970	59
17.	Potassium Concentrations of Ten Cotton Cultivars at	
	Selected Growth Stages and Locations in 1969 and 1970	
	Adjusted for Soil Potassium Content	64
18.	Tissue Potassium Concentrations of Ten Cotton Cultivars	
	from Combined Analysis of Six Locations and the First	
	Two Growth Stages	66
19.	Mean Potassium Concentrations of Ten Cotton Cultivars	
	at Selected Growth Stages and Locations in 1969 and	
	1970	69
20.	Mean Phosphorus Concentrations of Ten Cotton Cultivars	
	at Selected Growth Stages at Seven Locations in 1969	
	and 1970	72
21.	Phosphorus Concentrations of Ten Cotton Cultivars at	
	Selected Growth Stages and Locations in 1969 and 1970	
	Adjusted for Soil Phosphorus Content	77

PAGE

PAGE TABLE 22. Tissue Phosphorus Concentrations of Ten Cotton Cultivars from Combined Analysis of Six Locations and First Two 78 23. Mean Concentrations of Phosphorus for Different Growth 81 Correlation Values Between Soil and Tissue Nutrients of 24. 83 Four Elements at Various Growth Stages in 1969 and 1970 . 25. Mean Lint Yield of Ten Cotton Cultivars at Seven 85 26. Lint Yields from Combined Locations and Years of Ten 88 Lint Yield of Ten Cotton Cultivars at Seven Locations 27. 89 28. Levels of Statistical Difference among Cultivar Means and Adjusted Means where Analyses of Variance, Regression and Covariance were Calculated for Calcium, Magnesium, Potassium and Phosphorus at Different Growth 110 Levels of Statistical Difference and Mean Squares of 29. Calcium, Magnesium, Potassium and Phosphorus Concentrations from the Combined Analyses of Variance. 112 for each Year Separately 30. Levels of Statistical Difference and Mean Squares of Calcium, Magnesium, Potassium and Phosphorus Concentrations from the Combined Analyses of Variance for 1969 and 114

viii

TABLE

.

31.	1969 and 1970 Analyses of Variance Levels of Statistical	
	Difference among Growth Stages, Locations and	
	Interactions for each Cultivar Calculated Separately	
	for the Four Nutrient Concentrations	116
32.	Levels of Statistical Difference and Mean Squares of	
	Yields from the Combined Analyses of Variance for	
	1969 and 1970 Combined	118

PAGE

LIST OF FIGURES

FIGU	RE	PAGE
1.	Location of Seven Cotton Cultivar Trials in Tennessee	11
2.	Mean Soil Calcium Concentrations at Seven Locations	
	in 1969 and 1970	24
3.	Mean Soil Magnesium Concentrations at Seven Locations	
	in 1969 and 1970	25
4.	Mean Soil Phosphorus Concentrations in Soils at Seven	
	Locations	26
5.	Mean Potassium Concentrations in Soil at Seven Locations .	28
6.	Rainfall (mm) at Six Locations in the 1969 Cotton	
	Growing Season	29
7.	Rainfall (mm) at Seven Locations in the 1970 Cotton	
	Growing Season	30
8.	Average Monthly Temperature (Celcius) at Six Locations	
	in the 1969 Cotton Growing Season	31
9.	Average Monthly Temperature (Celcius) at Seven Locations	
	in the 1970 Cotton Growing Season	32
10.	Mean Concentrations of Calcium in Cotton Petioles Sampled	
	at First (Early Bloom) and Second Growth Stages (Mid	
	Bloom) at Six Locations in 1969	42
11.	Mean Concentrations of Calcium in Cotton Petioles Sampled	
	at First (Early Bloom), Second (Mid Bloom) and Third	
	Growth Stages (Late Bloom) at Seven Locations in 1970	43

FIGURE

12.	Mean Concentrations of Magnesium in Cotton Petioles Sampled	
	at First (Early Bloom) and Second Growth Stages (Mid Bloom)	
	at Six Locations in 1969	55
13.	Mean Concentrations of Magnesium in Cotton Petioles Sampled	
	at First (Early Bloom), Second (Mid Bloom) and Third	
	Growth Stages (Late Bloom) at Seven Locations in 1970	56
14.	Mean Concentrations of Potassium in Cotton Petioles Sampled	
	at First (Early Bloom) and Second Growth Stages (Mid	
	Bloom) at Six Locations in 1969	67
15.	Mean Concentrations of Potassium in Cotton Petioles Sampled	
	at First (Early Bloom), Second (Mid Bloom) and Third	
	Growth Stages (Late Bloom) at Seven Locations in 1970	68
16.	Mean Concentrations of Phosphorus in Cotton Petioles	
	Sampled at First (Early Bloom), Second (Mid Bloom)	
	and Third Growth Stages (Late Bloom) at Six Locations	
	in 1969	79
17:	Mean Concentrations of Phosphorus in Cotton Petioles	
	Sampled at First (Early Bloom), Second (Mid Bloom)	
	and Third Growth Stages (Late Bloom) at Seven Locations	
	in 1970	80

xi

PAGE

CHAPTER I

INTRODUCTION

While previous studies have shown that genotype influences nutrient concentrations in other crops, there is only limited evedence which relates genetics with nutrient concentrations in cotton.

The objective of this experiment was to determine what effect year, location, and sampling date had on cotton petiole nutrient (Ca, Mg, K, and P) concentrations of several cultivars and the relationship of these concentrations to yield.

CHAPTER II

REVIEW OF LITERATURE

During the last ten yeard, many cotton growers, particularly those in the arid Southwest, have used plant analysis to diagnose the nutrient level of cotton plants and to adjust the fertility status of soils on which cotton is grown. During the 1966 season, approximately 6,000 hectares of cotton soils in the Imperial Valley of California were checked for nitrogen level by plant analysis. However, plant analysis has been used less frequently to investigate the level of Ca, K, Mg, and P in coton soils.

There are numerous reports of research in which many different plant parts were analyzed more frequently than were stems, roots, bolls, blades plus petioles, or the upper, middle, and lower one-third of the plant. A few researchers such as Olson and Bledsoe (40) analyzed the entire above-ground portion of the plant. Such an approach presents many problems because all of the above-ground material must be harvested, dried, and ground. If the field were sampled more than once, the plant population stedily decreased with each consecutive sampling.

Using the solution culture technique, Joham (27) conducted an experiment to find which part of the plant would be most suitable for sampling. He analyzed lower, middle, and upper stems as well as petioles and leaves. He found highly significant positive correlations between the nutrient concentration in petioles and the nutrient levels in the substrate. He also found that the petiole from the most

recently matured leaf most nearly reflected the nutrient status of the entire plant. This petiole was found at the third or fourth node from the apex. Never-the-less some researchers have continued to analyze leaf blades.

Fullmer and Stromberg (19) conducted an experiment in California in which they applied various rates of K fertilizer to cotton. Their results indicated that sandy soils could be considered deficient in K when the extractable K of the top 30 centimeters was below 60 ppm, and that the critical level for fine-textured soils was 100 ppm. Whenever the K level in petioles of 130 day old plants was less than 2.0 percent, a yield response was obtained from added K the following season. Potassium deficiency symptoms did not occur, however, unless the K content of petioles was below 1.5 percent 130 days after planting. Stromberg (49) obtained a high positive correlation between the concentration of K in the petiole and extractable K from the soil. He further stated that petioles at early bloom, approximately 75 days after planting, should contain at least 4.5 percent K and 130 days after planting the petioles should contain at least 1.0 percent K. This was somwhat less than the 1.5 percent proposed by Fullmer and Stromberg (19). Stromberg (49) suggested that the soil must contain 60 ppm of K for optimum cotton procuction.

In a two-year California cotton experiment, Bennett <u>et al</u>. (7)analyzed many different plant parts for K. They applied K to the soil in rates ranging from 70 to 560 kilograms of K per hectare. The K concentration of all of the plant parts increased progressively as the application rates increased. The K concentration of more mature

leaves and petioles was affected to a greater extent by K applications than any other plant part and therefore was considered to be the best indicator of the K status of the cotton plant. In 1960 maximum yields were produced at the 560 kilogram application rate. However, in 1961 the maximum yield was produced at only the 280 kilogram rate. In both years maximum yield produced was 5600 kilograms of seed cotton per hectare. Plant height and boll size also increased with greater application rates. The results of a four-year experiment conducted by Overton and Parks (41) in Tennessee indicated that 112 kilograms of N, 47 kilograms of P_2O_5 , and 93 kilograms of K₂O per hectare produced maximum yields of cotton on soils which were low in these three elements.

Because of the scarcity of experimental data, critical levels of P in cotton leaves and petioles have yet to be determined. Fuller (17) found that the total P concentration of cotton leaves and petioles was significantly increased by P applications to the soil. However, seed cotton yields were not increased by P applications. Conflicting results were found by Fuller <u>et al.</u> (18). Neither yields nor petiole concentrations were increased by P applications to the soil. The soil P level was not reported in either experiment. Fuller (17), Fuller <u>et al</u>. (18), and Abott, McGeorge, and Breazeale (1) reported fluctuations of P concentrations at different stages of growth. This was observed in both leaves and petioles.

Lancaster (18), and Longnecker, Thaxton, and Lyerly (32) reported that a close relationship existed between the Mg concentration in the leaves and exchangeable Mg in the soil. Fluctuations in the Mg content of the petioles during the growing season made petioles unreliable as indicators of the Mg status of cotton plants. Therefore, Gheesling and

Perkins (22) suggested that leaves should be used. This conflicted with data presented by Fullmer and Stromberg (19) which indicated that Mg concentration of the petioles varied only slightly during the season. Page and Bingham (42) proposed that when the Mg concentration of the petiole is below 0.1 to 0.2 percent, a Mg deficiency is possible.

Olson and Bledsoe (40) found that the above ground portion of the cotton plants contained an average of 105 kilograms of Ca per hectare. Most of the Ca was found to be concentrated in the leaves. Mehlick and Reed (39) reported that the total uptake of Ca increased as the percent Ca saturation in the soil increased. Because of the rarity of Ca dificient soils, there were no reports of critical Ca levels.

Olson and Bledsoe (40) reported N, Ca, and K to be present in quantities much greater than the amounts of P and Mg. This fact has been confirmed by many other experiments. Many reports indicated that cotton plants grew and produced some lint under wide variations of Ca, K, Mg, and P concentration. Abbott, <u>et al</u>. (1) failed to show any correlation between fiber yield and tissue concentrations of P, K, Ca, or Mg on fertile irrigated Arizona soils. Therefore, no attempt has been made to determine optimum tissue concentrations of Ca, Mg, P, and K.

Mehlich and Reed (39) and Lunt and Nelson (35) found that Ca and Mg in the cotton plants decreased with increasing levels of K applications to the soil. Mehlich and Reed (39) also reported that increasing degrees of Ca saturation antogonized K when the soil K

exceeded .08 milliequivalents and Ca exceeded 50 percent base saturation. Joham (27) observed negative correlations between petiole Ca and Mg and substrate K. Page, <u>et al</u>. (44) and Page and Bingham (42) reported that Mg levels in the plant decreased with increased soil applications of K. Helmy, <u>et al</u>. (25) reported a strong reciprocal or negative correlation between Ca and Mg and a weak negative correlation between Mg and K. K antagonized the uptake of Ca and Mg, and Ca and Mg also antagonized K uptake.

Lundegardh (34) stated that for the antagonistic reaction of $K \ddagger Ca$ the transition point occurred near equivalence. Thus, if the ratio K/Ca was greater than one, the K uptake was only slightly influenced by variations in Ca concentrations while Ca uptake was reduced by K additions. When the K/Ca ratio was less than one, Ca dominated and restricted K uptake while variations in K concentration had little effect on Ca uptake.

Because of ion antagonism, Mehlich and Reed (39) used the Ca/K ratio to explain ion relationships. Stanford, <u>et al</u>. (48) reported, and Carmona (11) confirmed, that Ca + Mg/K ratios of 3.5 or less were found in corn plants whose growth appeared normal while ratios of 5.0 or above were found in plants showing marked symptoms of K deficiency. Freeman (16), Gallaher (20), Larson and Pierre (30), and Lucas and Sarseth (33) reported that corn yields increased as the Ca + Mg/K ratio decreased.

From a two year cotton experiment in Arizona, Abbott, <u>et al</u>., (1) reported the Ca/Mg ratio in the leaves to be about six during the early stages of growth but four at a more mature stage. The ratio

was slightly less in the stalks. The concentration of both elements was also lower in the stalks than in the blades. Helmy, <u>et al.</u>, (25) reported the Ca + Mg/K ratio to be fairly constant at both the 45 and 85-day samplings.

Using a formula proposed by Bray (9), Mehlich (38) was able to point out a reasonable correlation between soil and cotton tissue analysis. Bray's formula:

Calcium in the plant =
$$\frac{Ca}{Ca (Cca) + Mg (Cmg) + K (CK)} E$$

where the values of Ca, Mg, and K are the milliequivalents of exchangeable ions in the soil, Cca, Cmg, and Cx are coefficients of absorption by plants and E is the amount of cations found in the plant.

Bassett, <u>et al</u>., (4) found that dry matter production in cotton followed a sigmoid growth curve. Only 2 to 4 percent of the total dry matter had been accumulated at first square and 7 to 10 percent at first flower, two-thirds of the total seasonal dry matter was produced during a six-week period in late July and early August.

Many reports have indicated that K concentration in the petiole decreases with age of the plant. Although there were minor fluctuations, Fullmer and Stromberg (19) found Ca and Mg concentration in the petioles remained fairly constant as the plant matured. Abbott, <u>et al.</u>, (1) in an experiment with irrigated cotton in Arizona, reported an increase in the blade Ca content as the plants matured but a decrease in the stalk Ca content. Magnesium concentration in the leaf blades was higher at the 90-day sampling than at either the 60

of 135-day sampling. However, the Mg concentration in the stalks decreased as the plants matured. Joham (27) reported fluctuations in the petiole P concentration as the plant matured.

Many reports have linked genotype and nutrient composition for various crops. Pandita and Andrew (45) reported that late maturing cultivars of tomatoes had higher P concentration than early maturing cultivars. After analyzing corn tissue, Freeman (16), Ashburn (3), and Gallaher (20) found significantly different concentrations Ca, K, Mg, P, and N among genotypes. Gorsline, et al., (23) reported significant differences among genotypes of corn for Sr, Ca, Zn, K, Mg, Mn, Bo, and Fe concentrations but not for Al, Cu, and P concentrations. Whitfield and Smika (50) reported that nutrient concentrations of Cu, Mn, and P differed widely among wheat cultivars. Apparently each cultivar has an optimum temperature for maximum nutrient uptake just as cultivars have optimum temperatures for growth. Mack (36) reported that Ca, Mg, K, and P concentrations of snap bean varied significantly among genotypes. Shea, Gabelman, and Gerloff (47) concluded that the gene responsible for K uptake in snap beans was recessive.

MacKenzie, <u>et al</u>., (37) analyzed cotton petioles of several cultivars for nitrate-nitrogen. He obtained significant differences among them. Acala 4-42 petioles contained less N than Deltapine or the experimental cross R-15. However, the cultivar differences were small when compared to the differences which resulted from different application rates. Foy, et al., (15) experimenting with many cultivars, concluded that Pima S-2, Acala 4-42, and Acala 44-10 were more tolerant

to exchangeable Al than such Eastern cultivars as Deltapine Smooth Leaf and Coker 100A. Gregg and Paymaster 101A were moderately tolerant while Acala 1517D was the least tolerant. They could not explain why some western cultivars, developed on high pH soils which were low in exchangeable Al, were more tolerant to exchangeable Al than Eastern cultivars.

Page, <u>et al</u>., (44) compared the K concentration of Acala 4-42 and Acala-Strain 11 petioles and found no significant difference between them. Using a nutrient cultivar technique, Helmy, <u>et al</u>., (25) found that the leaf blades of Egyptian cotton contained less Mg than those of American Upland.

In Puerto Rico Samuels, <u>et al</u>., (46) conducted an experiment with five cultivars of long staple cotton. The cultivars contained different amounts of N, P, and K in the leaf blades. However, the cultivars which contained the highest amounts of nutrients were often the lowest yielding. The P content of leaf blades of 73-day-old cotton ranged from 0.29 to 0.45 percent while the K content ranged from 2.70 to 16.9 percent. Yields were reported only in relative values.

CHAPTER III

MATERIALS AND METHODS

The University of Tennessee Agricultural Experiment Station conducted cotton cultivar trials in 24 cotton producing counties in Middle and West Tennessee. The objectives of the trials were to test commercially important cultivars for yield, fiber quality, and disease resistance under a number of different soil and climatic conditions. A cultivar nutrient experiment was incorporated into these trials to obtain additional information without the added cost of planting and harvesting additional plot areas. Six of the locations in West Tennessee and one in Middle Tennessee were selected to test cultivars for differences in nutrient content grown under soil and management conditions. These locations are shown in Figure 1 and their corresponding soils are listed in Table 1.

2

These locations were selected because of soil uniformity, absence of disease the previous year, and high degree of interest of the cooperating farmers.

The experiments occupied the same area each year except for the Fayette and Hardeman County experiments which were moved to nearby locations in 1970. The Fayette County 1970 experiment was moved because of early flooding while the 1970 Hardeman County experiment was moved because of excessive growth of johnsongrass in 1969.

Ten cultivars shown in Table 2 were included at every location and were sampled for the research reported here. Because the Stoneville

- 1. Henry
- 2. Carroll
- 3. Henderson
- 4. Lauderdale
- 5. Fayette
- 6. Hardeman
- 7. Lawrence

Figure 1. Location of seven cotton cultivar trials in Tennessee.

TABLE 1

LOCATIONS AND SOIL TYPES

Location Soil Types	
Carroll	Memphis silt loam
Fayette	Collins silt loam Falaya silt loam
Hardeman	Memphis silt loam
Henderson	Lexington silt loam
Henry	Memphis silt loam
Lauderdale	Morganfield silt loam Robinsonville silt loam Adler silt loam
Lawrence	Crider silt loam Pembroke silt loam

Cultivars	Abbreviations
Stoneville 213	ST 213
Deltapine 45A	DPL 45A
Dixie King 11	DK 11
Deltapine 16	DPL 16
Auburn M	Aub M
Coker 417	Coker 417
Acala 1517D	AC 1517D
Rex Smooth Leaf 66	Rex SL
Hancock	Hancock
Stoneville 508 (1969 only)	ST 508
Stoneville 603 (1970 only)	ST 603

TABLE 2

COTTON CULTIVARS TESTED FOR NUTRIENT COMPOSITION

Pedigree Seed Company removed Stoneville 508 from the market after the 1969 season, it was replaced by Stoneville 603 at all locations in 1970.

Field Plot Design

A randomized complete block design consisting of six replications was used at each location. The field at Carroll County contained two distinct soil types; Memphis and Henry, which are quite different in their chemical and physical properties. Therefore the two replications on the Henry soil were not sampled in this experiment. In 1969 at Henderson County, one replication was excluded because of a sampling error.

Row width was 96.5 centimeters everywhere except at Lauderdale and Henry Counties where it was 101.6 centimeters. All plots were four rows wide and most were 18.3 meters long. Because of limited space at Hardeman County in 1970 the plots were only 13.7 meters long.

Fertility Levels

Fertilizer was broadcast uniformly over the experimental area before planting at recommended rates. The amounts applied at each location are shown in Table 3. Extra nitrogen was sidedressed at three locations in 1969.

In the spring of 1969 soil samples were taken randomly at each experiment site. From the results of the pH test from these soil samples, the soils were limited to raise the pH to 6.5. In 1970 the new Hardeman and Fayette sites were limed before planting time.

		Plant Nutrient	
Location	N	P	K
	ا چه خو که این این که این این	Кд/На	
Carroll	95	90	45
Fayette	85	70	35
Hardeman	60	50	25
Henderson	65	65	35
Henry	85	70	35
Lauderdale	25*	75	40
Lawrence	85	65	35

NUTRIENTS APPLIED ANNUALLY AT EACH LOCATION

TABLE 3

*In 1969 an additional 20 Kg/Ha of N as $NaNO_3$ was sidedressed.

Cultural Practices

Acid-delinted seed were planted at rates of approximately 148,000 seed per hectare using a modified two-row corn planter. Table 4 lists the planting dates. After seedling emergence, skips were replanted.

Recommended rates of the herbicide tifluralin were incorporated into the soil before planting at all locations except Lawrence County where nitralin was used instead. The preemergence herbicide fluometron was applied in a 35.6 centimeter band over the row immediately after planting at all locations each year except at Fayette County where it was broadcast in 1969. All other locations were cultivated three times and hand-hoed when necessary to insure adequate weed control.

Collection of Field Data

The 1969 crop was sampled twice during the growing season, approximately at early and mid bloom. In 1970, cotton was sampled at early, mid, and late bloom in order to provide a clearer picture of nutrient composition of various cultivars and their differences.

For tissue samples, at least 20 petioles were taken randomly from the middle two rows of each plot. Petioles were taken from the most recently matured leaf which was usually found at the third of fourth node from the apex. Tissue sampling dates are listed in Table 5.

The soil of each plot was sampled with a soil probe to a depth of 15 centimeters. Ten probes were taken along the length of each plot from the middle of the two center rows.

TA	BLE	-4

PLANTING DATES IN 1969 AND 1970 AT EACH LOCATION

Location	Planting Date	
or County	1969	1970
Carroll	5/2	5/7
Fayette	4/24	5/7
Hardeman	4/2	5/9
Henderson	5/1	5/5
Henry	4/29	5/5
Lauderdale	4/23	5/6
Lawrence	-	5/7

TABLE	5
-------	---

TISSUE SAMPLING DATES AT EACH LOCATION

	19	1969 Second
Locations	First	
Lauderdale	7/9	7/26
Henderson	7/10	7/28
Fayette	7/10	7/29
Carroll	7/11	7/28
Henry	7/11	7/30
Hardeman	7/12	7/29

1970			
Second	Third		
7/29	8/11		
7/31	8/12		
7/31	8/12		
7/13	8/13		
7/30	8/14		
7/30	8/14		
8/1	8/14		
	1970 Second 7/29 7/31 7/31 7/13 7/13 7/30 7/30 8/1		

The two middle rows of each plot were harvested with a one row cotton picker. The seed cotton from each plot was weighed and a sample taken for ginning. The gin sample was weighed before and after ginning to get the percent gin turnout which in turn was used to calculate lint yield. Cotton was harvested on dates listed in Table 6.

Laboratory Analysis

Tissue samples were dried overnight at 65°C, ground in a Wiley mill, and stored in plastic bags. The wet oxidation procedure developed by Gieseking, Snider, and Getz (22) was modified and used to digest tissue samples. The modification is further described in Appendixes A and B. Potassium, Ca, Mg, and P were determined by the Technician Autoanalyzer.

Soil samples were air dried and ground. A 1:1 soil to water ratio was used to determine pH on a Fisher model 210 pH meter.

Plant nutrients were extracted by the North Carolina double acid method which is further described in Appendix D. The extract was analyzed by the Technician Autoanalyzer for Ca, K, Mg, and P.

Statistical Methods

Lint yields per hectare as well as the Ca, K, Mg, and P concentrations in both tissue and soil were analyzed by the computer using the statistical Analysis System (new SAS) developed by Barr and Goodnight (5).

Analyses of variance were computed on an individual experiment basis to determine differences in concentrations of each of the four

Location Harvest	1969		1970	
	First	Second	First	Second
Carroll	9/18	10/21	10/23	11/16
Henderson	9/25	11/10	9/22	11/6
Lauderdale	9/27	11/14	9/14	11/13
Fayette	10/3	11/24	11/14	-
Hardeman	10/9	11/24	11/4	-
Lawrence	10/13	11/14	10/28	11/20
Henry	10/17	11/21	10/23	11/17

TABLE 6

.

COTTON HARVEST DATES AT EACH LOCATION

elements among cultivars and growth stages. Combined analyses of variance were computed for each year to determine the effect of location. A combined analysis of variance was computed for both years to determine the differences between years as well as the effect of stages, locations, cultivars, and the more important interactions. Combining all locations and growth stages, analyses of variance were computed for each cultivar separately to determine if there were differences between location, stages, and interactions for each cultivar.

Because three growth stages were sampled in 1970 and only two in 1969, only the first two were included in the combined analysis. Only four replications and six locations were included in the combined analysis.

Because of the high amount of variation in nutrient concentrations of soils among plots at each location, analyses of coveriance were calculated at each location for each growth stage both in 1969 and 1970 where the regression coefficient was significant. When a significant difference was found among cultivars, the formula suggested by Finney (14) was used to obtain the standard error of the mean and Duncan's Multiple Range Test was used for all means separation.

All analyses of variance and coveriance were calculated as suggested by Goulden (24) and LeClerg, Leonard, and Clark (31).

CHAPTER IV

RESULTS

Soil Test Results

Soil samples were taken from each plot (each replication of each cultivar) at all locations and analyzed for pH level and the concentrations of various nutrients. Table 7 shows a frequency distribution of the number of plots at each location falling into various pH ranges. In 1969 more plots in Fayette and Henry Counties had high pH values than at other locations, and in 1970 more plots at Hardeman and Henry Counties were high. During both years the plots at the Henderson and Lauderdale locations were the most acid. In those counties where the plots were in the same field both years, the pH values were lower the second year.

Although the pH values covered a rather wide range from location to location, the soil test Ca concentrations were all in the high or very high categories. Average values for each location are shown in Figure 2. Where locations were the same both years, Ca concentrations were lower in 1970 than in 1969.

The available Mg concentrations (Figure 3) were very high at all locations except Lawrence County where they tested high. As with Ca, Mg concentrations tended to decrease from 1969 to 1970. At Henry they increased only slightly.

Figure 4 shows the average P concentration in soils at each location. There was more variation among locations in P concentration than with any of the other elements tested. The P concentration at
LOCATIONS
SEVEN
AT
SOILS
OF
Hd
AND
FREQUENCY
PLOT

÷2...

Figure 4. Mean soil phosphorus concentrations in soils at seven locations.

Lauderdale County was very high both years whereas at Hardeman County it was low both years. The soil at Henderson was low in 1969 but medium in 1970.

Figure 5 shows the levels of K at seven locations. The soil at Lawrence County was very high. Other locations tested medium or high both years except for Fayette County which was medium in 1969 and high in 1970.

Climatic Factors

Figures 6 and 7 show total monthly precipitation at the various locations. During July of 1969, rainfall at Carroll, Henderson, and Lauderdale remained rather low while Henry and Hardeman had higher amounts. During July of 1970, rainfall at Carroll, Henderson, and Lauderdale was greater than in July of 1969, while July rainfall at Fayette, Hardeman, and Henry was higher in 1969 than in 1970.

Average monthly temperatures are shown in Figures 8 and 9. Comparing locations and years, there was more variation among locations in May than any other month. During May of 1969, Henry and Henderson Counties had rather low average monthly temperatures. In May of 1970, Lawrence, Henry, and Carroll were colder than other locations.

Tissue Calcium Concentrations

Calcium concentrations differed significantly^{*} among cultivars at different growth stages at some locations. Table 28, Appendix C

[&]quot;Unless otherwise specified, "significant" will refer to differences among means at the 0.05 level of probability, "highly significant" will refer to differences at the 0.01 level of probability.

lists the growth stages and locations for each year and indicates where significant differences among cultivars occurred. More differences among cultivars occurred at the first growth stage. There were seven differences at the growth stage and only four at the second in the two years. In 1970 there were only two differences among cultivars at the second or third growth stage compared to four at the first.

Results from analyses of covariance show that significant regression ($P \le 0.10$) occurred at eight of 33 tests. A greater number of positive regression tests were noted at the first growth stage than at the others. There were differences among cultivars in 13 of the 33 tests as indicated by analysis of variance, but the analysis of covariance revealed that cultivar adjusted mean values were significantly different in two additional tests. This brought the total to 15 tests which had differences among cultivars.

Table 8 shows that while Stoneville 213 was generally low in Ca concentration, Acala 1517D was usually high. This was also true for the adjusted means shown in Table 9.

Analysis of each location separately revealed that only Carroll County in 1969 and Lawrence County in 1970 had significant growth stages x cultivar interactions.

Results of combined analysis of the first two growth stages, six locations and two years are shown in Table 10. Acala 1517D possessed the highest Ca concentration and Stoneville 213 the lowest.

Table 29, Appendix C shows combined analyses for each year separately. There were differences among locations, cultivars, growth stages, and the location x growth stage interaction.

Stage	2 1	Stage	2	Stage	2 3
Cultivars	% Cal	Cultivars	% Cal	Cultivars	% Cal
		1969 Fayett	e County		
Coker 417	1.97	AC 1517D	2.15		
DK 11	1.88	Coker 417	2.10		
Rex SL	1.73	Aub M	1.94		
DPL 45A	1.72	DPL 45A	1.93		
AC 1517D	1.69	DPL 16	1.93		
ST 508	1.67	ST 508	1.88		
Hancock	1.67	Hancock	1.85		
DPL 16	1.66	Rex SL	1.76		
Aub M	1.65	ST 213	1.63		
ST 213	1.43	DK 11	1.58		
Mean	1.71		1.88		
		1970 Fayett	e County		
Coker 417	2.34	AC 1517D	2.09	AC 1517D	1.90
AC 1517D	2.27	Coker 417	2.07	Rex SL	1.88
DK 11	2.22	Rex SL	1.99	Coker 417	1.87
Rex SL	2.15	Hancock	1.91	Aub M	1 84
DPL 45A	2.10	ST 603	1.91	ST 603	1.78
Aub M	1.92	DK 11	1.86	Hancock	1 76
ST 603	1.86	ST 213	1.76	DPL 454	1 70
DPI, 16	1.84	DPT. 454	1 72	קרים דות 16	1 70
ST 213	1.84	DPI 16	1 60	11 YO	1.60
Hancock	1.66	Aub M	1.60	ST 213	1.69
Mean	2.02		1.86		1.78
	•	1969 Henry	County		
AC 1517D	2.59 ^a ,	Aub M	1.86		
Rex SL	2.55 ^{ab}	Rex SL	1.83		
DK 11	2.54 ab	AC 1517D	1.81		
ST 508	2.49 ^{abc}	DK 11	1.69		
Coker 417	2.41 abcd	ST 508	1.69		
Aub M	2.39abcd	Hancock	1.65		
DPL 454	2 38 abcd	Coker /17	1.65		
Hancock	2 32bcd	DDI 14	1.60		
DPT 16	2 26 cd	DIL LO	1 57		
CT 212	2.20d	DFL 4DA	1.57		
51 213	2.10	ST 213	1.23		
Mean	2.41		1.69		

MEAN CALCIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AT SEVEN LOCATIONS IN 1969 AND 1970

Stage	e 1	Stage	2	Stage 3	
Cultivars	% Cal	Cultivars	% Cal	Cultivars	% Cal
		1970 Henry	County		
Aub M ST 603 Hancock Coker 417 Rex SL DPL 16 AC 1517D ST 213 DK 11 DPL 45A Mean	2.58 ^a 2.45 ^{ab} 2.44 ^{ab} 2.39 ^{abc} 2.33 ^{abc} 2.29 ^{abc} 2.14 ^{bc} 2.12 ^{bc} 2.12 ^{bc} 2.12 ^{bc} 2.08 ^c 2.29	AC 1517D Aub M Hancock Coker 417 ST 603 Rex SL DPL 16 ST 213 DK 11 DPL 45A	2.31 2.23 2.20 2.16 2.12 2.12 2.08 1.97 1.97 1.95 2.11	AC 1517D Coker 417 ST 603 Rex SL ST 213 Aub M Hancock DPL 45A DK 11 DPL 16	2.46 2.28 2.23 2.13 2.08 2.08 2.08 2.06 1.98 1.92 1.90 2.11
		1969 Hardema	n County		
AC 1517D Aub M Coker 417 ST 508 Rex SL Hancock DPL 16 DK 11 DPL 45A ST 213 Mean	1.41 1.38 1.38 1.35 1.34 1.33 1.29 1.29 1.29 1.26 1.24 1.31	DPL 16 Aub M ST 508 DPL 45A AC 1517D DK 11 Hancock Coker 417 ST 213 Rex SL	1.61 1.55 1.47 1.47 1.42 1.33 1.32 1.32 1.32		
		1970 Hardema	n County		
AC 1517D ST 603 Aub M Coker 417 DK 11 DPL 45A Hancock DPL 16 Rex SL ST 213	2.10 1.89 1.82 1.75 1.69 1.67 1.64 1.61 1.58 1.55	Coker 417 Rex SL Hancock ST 603 DPL 16 DPL 45A DK 11 Aub M AC 1517D ST 213	1.98 1.97 1.82 1.73 1.68 1.58 1.58 1.58 1.52 1.48 1.38	AC 1517D DK 11 Aub M ST 603 Coker 417 Hancock ST 213 DPL 45A Rex SL DPL 16	1.75 1.72 1.72 1.70 1.70 1.50 1.47 1.40 1.40 1.32
Mean	1.73		1.67		1.57

TABLE 8 (continued)

Stage	. 1	Stage	2	Stage	3
Cultivars	% Cal	Cultivars	% Cal	Cultivars	% Cal
		1969 Henders	on County		
AC 1517D ST 508 Hancock Rex SL Coker 417 Aub M DPL 16 DPL 45A DK 11 ST 213 Mean	1.75 1.72 1.66 1.66 1.63 1.59 1.58 1.56 1.45 1.63	AC 1517D Aub M Rex SL ST 508 Coker 417 Hancock DK 11 DPL 16 DPL 45A ST 213	1.82 ^a 1.76 ^{ab} 1.71 ^{ab} 1.71 ^{ab} 1.71 ^{ab} 1.67 ^{ab} 1.64 ^{abc} 1.58 ^{bc} 1.57 ^{bc} 1.44 ^c 1.66		
		1970 Henders	on County		
Aub M DK 11 AC 1517D Hancock Rex SL DPL 16 Coker 417 ST 603 DPL 45A ST 213 Mean	2.57 ^a 2.49 ^a 2.47 ^a 2.45 ^a 2.38 ^{ab} 2.25 ^{abc} 2.37 ^{abc} 2.31 ^{abc} 2.16 ^{bc} 2.14 ^c 2.36	ST 603 Aub M Rex SL Coker 417 ST 603 ST 213 DPL 16 Hancock DK 11 DPL 45A	1.90 1.89 1.87 1.85 1.84 1.79 1.76 1.75 1.68 1.65 1.80	Aub M Rex SL ST 603 Coker 417 DPL 16 AC 1517D Hancock DK 11 DPL 45A ST 213	1.83 ^a 1.74 ^{ab} 1.67 ^{abc} 1.66 ^{abc} 1.63 ^{bc} 1.61 ^{bc} 1.61 ^{bc} 1.59 ^{bc} 1.55 ^{bc} 1.55 ^c 1.64
		1969 Carrol	1 County		
Rex SL DK 11 ST 508 Coker 417 DPL 45A DPL 16 AC 1517D Hancock Aub M ST 213	1.85 ^a 1.84 ^a 1.77 ^{ab} 1.69 ^{abc} 1.67 ^{abcd} 1.67 ^{bcd} 1.62 ^{bcd} 1.61 ^{cd} 1.51 ^{cd} 1.48	Hancock AC 1517D ST 508 Aub M Rex SL DPL 45A DPL 16 DK 11 Coker 417 ST 213	1.65 ^a 1.63 ^a 1.62 ^{ab} 1.60 ^{ab} 1.57 ^{ab} 1.55 ^{ab} 1.54 ^{abc} 1.51 ^{abc} 1.48 ^{bc} 1.38 ^c		
Mean	1.67		1.55		

TABLE 8 (continued)

Stage	1	Stage	Stage 2		Stage 3	
Cultivars	% Cal	Cultivars	% Cal	Cultivars	% Cal	
		1970 Carrol	1 County			
Rex SL Coker 417 DPL 16 AC 1517D DPL 45A Aub M DK 11 ST 603 Hancock ST 213	2.70 ^a 2.50 ab 2.42 abc 2.32 abcd 2.30 abcd 2.30 abcd 2.27 abcd 2.27 abcd 2.10 bcd 1.92 cd 1.90 d	Rex SL Coker 417 DPL 16 AC 1517D DPL 45A ST 603 Hancock DK 11 Aub M ST 213	2.03 ^a 1.97 ^a 1.94 ^{ab} 1.86 ^{abc} 1.69 ^{bc} 1.66 ^c 1.66 ^c 1.66 ^c 1.62 ^c 1.61 ^c	Rex SL Aub M ST 603 DPL 45A DPL 16 Coker 417 DK 11 Hancock AC 1517D ST 213	1.63 1.60 1.59 1.54 1.48 1.47 1.43 1.40 1.37 1.28	
Mean	2.27		1.78		1.48	
		1969 Lauderda	le County			
Aub M AC 1517D Rex SL Hancock DK 11 DPL 16 DPL 45A ST 508 Coker 417 ST 213	1.85 ^a 1.84 ^a 1.84 ^a 1.76 ^{bc} 1.67 ^{bc} 1.66 ^{bc} 1.66 ^{bc} 1.62 ^{bc} 1.54 ^c	AC 1517D Rex SL DK 11 DPL 16 Aub M Coker 417 Hancock ST 213 ST 508 DPL 45A	1.73 1.68 1.59 1.57 1.57 1.54 1.53 1.53 1.50 1.47			
Mean	1.73		1.57			
		1970 Lauderd	ale County			
Rex SL Aub M AC 1517D Coker 417 Hancock ST 603 DK 11 DPL 16 DPL 45A ST 213	2.02 1.96 1.96 1.86 1.84 1.82 1.76 1.75 1.68 1.60	Coker 417 Aub M ST 603 AC 1517D Rex SL DPL 16 Hancock DK 11 ST 213 DPL 45A	1.87 1.86 1.86 1.83 1.76 1.68 1.63 1.59 1.55	ST 603 Rex SL DK 11 DPL 45A ST 213 Aub M DPL 16 AC 1517D Coker 417 Hancock	2.21 1.99 1.98 1.94 1.92 1.86 1.85 1.85 1.83 1.77	
Mean	1.82		1.75		1.92	

TABLE 8 (continued)

Stage 1		Stage	2	Stage	3
Cultivars	% Cal	Cultivars	% Cal	Cultivars	% Cal
		1970 Lawrenc	e County		
AC 1517D Aub M Coker 417 DPL 16 Res SL DK 11 Hancock ST 603 DPL 45A ST 213	2.03 ^a 2.00 ^{ab} 2.00 ^{ab} 1.92 ^{abc} 1.89 ^{bc} 1.89 ^{bcd} 1.82 ^{cd} 1.82 ^{cd} 1.81 ^{cd} 1.76 ^d	Coker 417 Aub M DPL 16 AC 1517D ST 603 Rex SL ST 213 Hancock DPL 45A DK 11	1.98 1.98 1.88 1.87 1.80 1.77 1.76 1.69 1.67 1.65	Aub M Rex SL ST 603 AC 1517D DPL 16 DK 11 Hancock ST 213 Coker 417 DPL 45A	2.00 ^a 1.74 ^b 1.70 ^{bc} 1.67 ^{bc} 1.63 ^{bc} 1.62 ^{bc} 1.55 ^c 1.55 ^c 1.55 ^c 1.53 ^c
Mean	1.89		1.81		1.66

TABLE 8 (continued)

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

1969		1970		
Stag	e 2	Stage	a 2	
Cultivar	% Ca ^l	Cultivar	% Cal	
	Henry	County		
AC 1517D Rex SL Aub M DK 11 Coker 417 Hancock ST 508 DPL 16 DPL 45A ST 213	1.84 ^a 1.83 ^a 1.80 ^{ab} 1.70 ^{ab} 1.69 ^{ab} 1.65 ^{ab} 1.63 ^{ab} 1.63 ^{ab} 1.63 ^{ab} 1.63 ^{ab}	Aub M AC 1517D Hancock Rex SL Coker 417 ST 603 DPL 16 DK 11 ST 213 DPL 45A	2.27 ^a 2.26 ^a 2.23 ^{ab} 2.17 ^{ab} 2.16 ^{ab} 2.08 ^{ab} 2.06 ^{ab} 1.98 ^{ab} 1.97 ^{ab} 1.91 ^b	

CALCIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AND LOCATIONS IN 1969 AND 1970 ADJUSTED FOR SOIL CALCIUM CONTENT

TABLE 9

Carroll County

Stage	1	Stage	2 1
Cultivar	% Ca	Cultivar	% Ca
Rex SL DK 11 ST 508 Coker 417 DPL 45A AC 1517D Hancock DPL 16 Aub M ST 213	1.86 ^a 1.78 ^a 1.74 ^a 1.69 ^a 1.69 ^a 1.65 ^{ab} 1.65 ^{ab} 1.64 ^{ab} 1.62 ^{ab} 1.56 ^b	Rex SL Coker 417 DPL 16 DK 11 Aub M AC 1517D ST 603 DPL 45A Hancock ST 213	2.72 ^a 2.50 ab 2.49 ab 2.32 ab 2.31 ab 2.30 bc 2.20 bc 2.12 bc 2.01 bc 1.77 ^c

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

$% Ca^2$ Cultivars 1.91^a AC 1517D 1.90^a Rex SL 1.90^a DPL 16 1.89^{ab} Coker 417 1.87^{ab} Aub M ³ST 508 1.86^{ab} 1.77^b DK 11 1.77^{bc} Hancock 1.74^c DPL 45A 1.62^d ST 213

TISSUE CALCIUM CONCENTRATIONS OF TEN COTTON CULTIVARS FROM COMBINED ANALYSIS OF SIX LOCATIONS1 AND FIRST TWO GROWTH STAGES

¹Does not include Lawrence County.

²Superscripts indicate level of significance on Duncan's. Multiple Range calculated at 0.05 level.

 3 ST 603 replaced ST 508 in 1970 and both were analyzed as the same cultivar.

When both years were included in the same combined analysis in Table 30, Appendix C, a difference was found between years. Additional differences were found among location x year and growth stage x year interactions.

Results of the combined analysis of variance of Ca concentrations for each cultivar calculated separately (Table 31, Appendix C) indicate that in 1969 there was a difference between growth stages for only five cultivars. Every cultivar had a significant growth stage x location interaction in one or both of the years.

Figures 10 and 11 and Table 11 show that Ca concentrations for each location, year, and growth stage as an average of all cultivars. Figures 10 and 11 show significant differences among growth stages while Table 11 shows statistical differences among locations.

Significant differences were found among growth stages at all locations except Henderson County in 1969 and Hardeman County in 1970. In 1969 the first growth stage was higher in Ca concentration than the second at only three locations. However, in 1970 the first growth stage was higher than the second at all locations. The third growth stage was never higher than the first but was higher than the second at Lauderdale County.

Cotton plants at the first growth stage had the highest Ca concentrations at Henry County in 1969 and at Henderson County in 1970. Fayette in 1969 and Henry in 1970 had the highest concentration at the second. At the third growth stage Henry County had the highest Ca concentrations. Average Ca concentrations were higher in 1970 than in 1969.

T	ABLE	5]	1

MEAN¹ CALCIUM CONCENTRATIONS IN COTTON PETIOLES FOR DIFFERENT GROWTH STAGES AT SEVEN LOCATIONS

Stage 1		Stage	Stage 2		Stage 3	
Locations	% Ca2	Locations	% Ca ²	Locations	% Ca ²	
1969 Henry Lauderdale Fayette Carroll Henderson Hardeman	2.41 ^a 1.73 ^b 1.71 ^b 1.67 ^{bc} 1.63 ^{bc} 1.31 ^c	Fayette Henry Henderson Lauderdale Carroll Hardeman	1.88 ^a 1.69 ^{ab} 1.66 ^{ab} 1.57 ^{ab} 1.53 ^b 1.43 ^b			
Mean	1.75		1.63			
1970 Henderson Henry Carroll Fayette Lawrence Lauderdale Hardeman	2.36 ^a 2.29 ^{ab} 2.27 ^{abc} 2.02 ^{abcd} 1.89 ^{bcd} 1.82 ^{cd} 1.73 ^d	Henry Fayette Lawrence Henderson Carroll Lauderdale Hardeman	2.11 ^a 1.86 _{ab} 1.81 ^{ab} 1.80 ^{ab} 1.78 ^{ab} 1.75 ^b 1.67 ^d	Henry Lauderdale Fayette Lawrence Henderson Hardeman Carroll	2.11 ^a 1.92 ^{ab} 1.78 ^{abc} 1.66 ^{bc} 1.64 ^{bc} 1.57 ^{bc} 1.48 ^c	
Mean	2.07		1.83		1.75	

¹Average of 10 cultivars.

²Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

Tissue Magnesium Concentrations

Magnesium concentrations differed significantly among cultivars at different growth stages at some locations. Table 28, Appendix C, lists the growth stages and locations for each year and indicates where significant differences among cultivars occurred. More differences among cultivars occurred at the second growth stage than any other stage. In three instances differences existed at the first growth stage and six at the second in the two years. In 1970 four differences existed among cultivars at the third growth stage.

Results from analyses of covariance show that significant regression ($P \le 0.10$) occurred at 13 of 33 tests. There was a greater number of positive regression tests at the first growth stage than at the others.

There were 11 of 33 tests which had differences among cultivars indicated by analysis of variance but analysis of covariance revealed that cultivar adjusted mean values were significantly different in three additional tests which brought the total to 14.

Table 12 shows that while Stoneville 213 was generally low in Mg concentration, Coker 417 was usually high. This was also the same for the adjusted means shown in Table 13.

Analysis of each location separately revealed that of all locations in both years only Hardeman and Lawrence Counties in 1970 had significant growth stage x cultivar interactions.

Results of combined analysis of two growth stages, six locations, and two years indicates that Coker 417 contained the highest concentration of Mg while Stoneville 213 had the lowest (Table 14).

MEAN MAGNESIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AT SEVEN LOCATIONS IN 1969 AND 1970

Stage	1	Stage	2	Stage 3	
Cultivars	% Mgl	Cultivars	% Mg ^I	Cultivars	% Mgl
		1969 Fayett	e County		
DK 11 Res SL Coker 417 Hancock ST 508 DPL 16 Aub M AC 1517D DPL 45A ST 213	.86 ^a .83 ^{ab} .81 ^{ab} .76 ^{abc} .74 ^{abc} .73 ^{abc} .67 ^c .65 ^c .62 ^c .62 ^c	Hancock Rex SL Coker 417 ST 508 DK 11 DPL 45A AC 1517D DPL 16 Aub M ST 213	1.10 ^a 1.04 ^{ab} 1.02 ^{ab} 1.00 ^{abc} .98 ^{abc} .97 ^{abc} .95 ^{abc} .94 ^{bc} .88 ^{bc} .85 ^c		
nean	./3		.90		
		1970 Fayett	e County		
DK 11 Coker 417 DPL 45A Rex SL AC 1517D Aub M DPL 16 Hancock ST 603 ST 213	.96 .95 .89 .87 .87 .83 .80 .79 .78 .75	Coker 417 DK 11 Rex SL AC 1517D Hancock ST 213 ST 603 DPL 45A Aub M DPL 16	.74 ^a .72 ^a .70 ^a .66 ^{ab} .63 ^{ab} .63 ^{ab} .57 ^{bc} .55 ^{bc} .50 ^{bc} .48 ^c	DK 11 Aub M Rex SL ST 213 Coker 417 AC 1517D Hancock DPL 45A ST 603 DPL 16	.64 ^a .63 ^a .60 ^a .59 ^a .58 ^a .57 ^a .57 ^a .47 ^b
Mean	.85		.62		.59
		1969 Henry	County		
Coker 417 ST 508 DK 11 DPL 45A Rex SL Hancock AC 1517D Aub M ST 213 DPL 16	.81 .81 .81 .81 .81 .80 .78 .75 .72 .66	Coker 417 AC 1517D DK 11 Rex SL Hancock ST 508 DPL 45A DPL 16 ST 213 ST 213	.80 .77 .74 .73 .73 .72 .71 .68 .60 .60		
Mean	.78		.72		

Stage	1	Stage	2	Stage 3	
Cultivars	% Mg ¹	Cultivars	% Mg ¹	Cultivars	% Mg ¹
		1970 Henry	County		
ST 603	. 79	Aub M	.82	Aub M	.82
Hancock	.74	Coker 417	.78	Coker 417	.77
Aub M	.74	DK 11	.75	DK 11	.76
Coker 417	.73	Rex SL	.73	Rex SL	.75
Rex SL	.70	AC 1517D	.72	AC 1517D	.73
DK 11	.70	ST 603	.72	ST 603	.71
DPL 16	.67	DPL 16	.71	Hancock	.71
ST 213	.64	Hancock	.69	DPL 16	.68
DPL 45A	.56	DPL 45A	.66	DPL 45A	.68
AC 1517D	.54	ST 213	.64	ST 213	.65
Mean	.68		.72		.73
		1969 Hardema	n County		
0.1	70				
Coker 41/	.70	ST 508	.88		
ST 508	.68	DK II	.86		
DK II	.65	DPL 45A	.80		
DPL 45A	• 64	DPL 16	.//		
DPL 10	.62	AC 1517D	./6		
Kex SL	. 59	Rex SL	.68		
Hancock	.58	Hancock	.65		
AC 1517D	.57	Aub M	.64		
Aub M	. 56	Coker 417	.63		
ST 213	.49	ST 213	.52		
Mean	.61		.72		
		1970 Hardema	n County		
Hancock	.95	DPL 45A	1.17	Aub M	1.00
DPL 45A	.90	Hancock	1.05	Coker 417	.93
Aub M	.90	DPL 16	1.04	Hancock	.80
Coker 417	.89	Rex SL	1.01	AC 1517D	.79
AC 1517D	.87	AC 1517D	1.01	DK 11	.76
ST 603	.82	DK 11	.99	ST 603	.75
DK 11	. 80	Aub M	.99	ST 213	.72
DPL 16	.79	ST 603	.96	Rev ST.	.71
Hancock	.79	Coker 417	.95	DPI. 16	.70
ST 213	.77	ST 213	.88	DPL 45A	.69
Mean	.85		1.00		.79

TABLE 12 (continued)

Stage 1		Stage	2	Stage	3
Cultivars	% Mg ¹	Cultivars	% Mg⊥	Cultivars	% Mg ¹
		1969 Henders	on County		
ST 508	1.12	ST 508	1.29		
Coker 417	1.01	Coker 417	1.25 ab		
Hancock	.98	DK 11	1.21 ^{ab}		
DK 11	.94	Hancock	1.14 ^{bc}		
Aub M	.92	Rex SL	1.12 ^{bc}		
DPL 45A	.90	Aub M	1.07 ^{cd}		
DPL 45A	.89	AC 1517D	1.05 ^{cd}		
DPL 16	.89	AC 1517D	1.05 ^{cd}		
Rex SL	.86	DPL 16	1.05 ^{cd}		
AC 1517D	.84	DPT. 454	1 02cd		
ST 213	.82	ST 213	1.02d		
Mean	.93	51 213	1.12		
			1.12		
-		1970 Henders	on County		0
Rex SL	.97	DPL 45A	1.01	Coker 417	.93
Coker 417	.97	Coker 417	.99	Rex SL	.87ªD
AC 1517D	.96	Hancock	.95	Hancock	.86 ^{ab}
Hancock	.93	Rex SL	.92	DPL 45A	.81 abc
DK 11	.91	ST 213	.90	DK 11	.79 ^{abc}
Aub M	.90	DPL 16	.86	Aub M	.78 ^{abc}
DPL 45A	.86	DK 11	.86	DPL 16	.75.abc
ST 213	.86	Aub M	.82	AC 1517D	.74 ^{bc}
ST 603	.83	ST 603	.81	ST 603	.71 ^C
DPL 16	.81	AC 1517D	.81	ST 213	.67 ^C
Mean	.90		.89		.79
		1969 Carrol	1 County		
Coker 417	.88 ^ª	Coker 417	95 ^a		
Rex SL	83 ^{ab}	DPL 45A	anab		
ST 508	78abc	ST 508	87abc		
DK 11	77abc	AC 1517D	abc		
DPL 454	75bc	Hencock	abc		
DPI. 454	75bc	DE 11	.ojbc		
Hencock	"72bcd	DA II Dav CI	bc		
AC 1517D	., cd	DDI 16	·orbc		
AU 19170 CT 919	cicd	DET TO	. ou cd		
or STO	°°4d	AUD M	./od		
AUD M	.03	ST 213	.65		
Mean	.74		.82		

TABLE 12 (continued)

Stage 1		Stage 2		Stage 3	
Cultivars	% Mgl	Cultivars	% Mgl	Cultivars	% Mg ¹
		<u>1970 Carrol</u>	1 County		
Rex SL	.99	DK 11	.88 ^a	DK 11	.88 ^a
DPL 16	.95	Coker 417	.86 ^a	Coker 417	.81 ^{ab}
Coker 417	.92	Rex SL	.86 ^a	DPL 45A	.78 ^{ab}
DK 11	.89	DPL 45A	.83 ^{ab}	Aub M	78 ^{ab}
DPL 45A	.82	Hancock	.82 ^{ab}	Rex SL	78ab
Aub M	.81	DPL 16	.81 ^{ab}	DPL 16	74abc
AC 1517D	.77	AC 1517D	.70 ^{ab}	Hancock	⁷ ₇ abc
Hancock	.72	ST 213	69 ^{ab}	ST 603	6 bc
ST 603	. 69	Aub M	68ab	ST 213	.00 50C
ST 213	. 69	ST 603	.63 ^b	AC 1517D	.59°
Mean	.83		.78		.74
		1969 Lauderda	le County		
		1909 Lauderda	re councy		
ST 508	1.11	ST 508	1.01		
DK 11	1.07	DK 11	.95		
Hancock	1.06	Hancock	.94		
Rex SL	1.01	AC 1517D	.91		
AC 1517D	.99	Coker 417	.91		
Coker 417	.98	Rex SL	.89		
DPL 45A	.97	DPL 45A	.85		
Aub M	.90	ST 213	.81		
DPL 16	.90	DPL 16	.77		
ST 213	. 89	Aub M	.75		
Mean	.99		.88		
		1970 Lauderda	le County		
AC 1517D	.65	DPL 45A	.74	Rex SL	.72
DPL 16	.64	DPL 16	.68	ST 603	.72
ST 213	.62	DK 11	.67	DPL 45A	.70
Hancock	.61	Coker 417	.66	Aub M	.68
DPL 45A	.60	Rex SL	.64	DK 11	.68
Aub M	.60	Aub M	.63	Hancock	.67
Coker 417	.58	ST 603	.62	AC 1517D	.67
DK 11	.55	AC 1517D	.62	ST 213	.65
ST 603	.54	Hancock	.60	Coker 417	64
Rex SL	.49	ST 213	.55	DPL 16	.63
Mean	.59		.64		.68

TABLE 12 (continued)

Stage 1		Stage 2		Stage 3	
Cultivars	% Mgl	Cultivars	% MgI	Cultivars	% Mgl
		1970 Lawrence	e County		
Coker 417	. 59	Coker 417	.58	Aub M	.56 ^a
DK 11	. 59	DK 11	.56	DK 11	.53 ^a
AC 1517D	.54	Aub M	.56	Rex SL	.52 ^a
Aub M	.54	AC 1517D	.53	ST 603	.46 ^D
ST 603	.50	DPL 16	.52	DPL 16	. 46 ^D
DPL 16	.50	ST 603	.48	Coker 417	.46 ^D
Rex SL	.50	Hancock	.48	Hancock	.43,00
Hancock	. 49	ST 213	.46	DPL 45A	.43,00
DPL 45A	.46	DPL 45A	.46	AC 1517D	.4100
ST 213	.43	Rex SL	.46	ST 213	.39 ^c
Mean	.51		.51		.47

TABLE 12 (continued)

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

MAGNESIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AND LOCATIONS IN 1969 AND 1970 ADJUSTED FOR SOIL CALCIUM CONTENT

Stage 1		Stage	- 2	Stage	3
Cultivars	~ % Mgl	Cultivars	% Mgl	Cultivars	% Mgl
		1969 Carrol	1 County		
Coker 417 Rex SL ST 508 DK 11 DPL 16 DPL 45A Hancock AC 1517D Aub M ST 213	.83 ^a .82 ^{ab} .80 ^{ab} .77 ^{ab} .75 ^{abc} .74 ^{abc} .74 ^{abc} .70 ^{bc} .64 ^c	ST 508 Coker 417 DPL 45A AC 1517D DK 11 Hancock DPL 16 Rex SL Aub M ST 213	.91 ^a .89 ^a .85 ^a .85 ^a .85 ^a .83 ^a .83 ^a .83 ^a .81 ^a .74 ^b c .74 ^b c		
		1970 Carrol.	1 County		
Rex SL DPL 16 Coker 417 DK 11 Aub M DPL 45A AC 1517D Hancock ST 603 ST 213	1.00 ^a .95 ^a .93 ^{ab} .88 ^{ab} .83 ^{ab} .82 ^{ab} .78 ^{ab} .72 ^{ab} .70 ^b .66 ^b			DK 11 DPL 45A Coker 417 Aub M Rex SL Hancock DPL 16 ST 603 ST 213 AC 1517D	.87 ^a .82 ^a .81 ^{ab} .79 ^{ab} .76 ^{ab} .72 ^{ab} .71 ^{ab} .65 ^b .62 ^b .60 ^b
		1969 Hardeman	n County		
ST 508 Coker 417 DK 11 DPL 45A DPL 16 Rex SL Hancock AC 1517D Aub M ST 213	.69 ^a .68 ^{ab} .64 ^{abc} .64 ^{abc} .61 ^{abcd} .59 ^{abcd} .58 ^{abcd} .57 ^{bcd} .57 ^{cd} .53 ^d	ST 508 DK 11 DPL 45A AC 1517D DPL 16 Rex SL Hancock Aub M Coker 417 ST 213	.86 ^a .86ab .81abc .81abc .76abc .67abc .66abc .65abc .60bc .57 ^c		

Stage	1	Stage	2	Stage	3
Cultivars	% Mgl	Cultivars	% Mgl	Cultivars	% Mgl
о, ,		1969 Lauderdal	e County		
ST 508 DK 11 Hancock Rex SL DPL 45A AC 1517D Coker 417 Aub M DPL 16 ST 213	1.10 ^a 1.07ab 1.04ab 1.02ab .99abc .98abc .98abc .93abc .91bc .86 ^c				
		1969 Henderson	n County		
ST 508 Coker 417 Hancock DPL 45A Aub M DPL 16 DK 11 Rex SL AC 1517D ST 213	1.09 ^a 1.02 ^{ab} .96 ^{ab} .95 ^{ab} .92 ^{ab} .91 ^{ab} .88 ^b .85 ^b .81 ^b				

TABLE 13 (continued)

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

TISSUE MAGNESIUM CONCENTRATIONS OF TEN COTTON CULTIVARS FROM COMBINED ANALYSIS OF SIX LOCATIONS¹ AND THE FIRST TWO GROWTH STAGES

Cultivars	% Mg ²
Coker 417	.86 ^a
DK 11	.85 ^a
ST 508	.84 ^a
Rex SL	.84 ^{ab}
DPL 45A	.82 ^{ab}
Hancock	.82 ^b
Aub M	.78 ^b
AC 1517D	.78 ^b
DPL 16	.77 ^{bc}
ST 213	.70 [°]

¹Does not include Lawrence County.

²Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

 3 ST 603 replaced ST 508 in 1970 and both were analyzed as the same cultivar.

Data in Table 29, Appendix C, showing the combined analysis for each year separately, indicates that highly significant differences were found between locations, cultivars, stages, and location x growth stage interactions. In 1970 there were also differences among location x cultivar interactions.

When both years were included in the same combined analysis (Table 30, Appendix C), additional significant differences were found between years and among several of the interactions involving years.

When locations and stages were combined in separate analyses for each cultivar, some cultivars (Table 31, Appendix C) had differences among growth stages and interactions while others did not. Rex Smooth Leaf and Auburn M were the only cultivars which did not have differences among growth stages in either year.

Figures 12 and 13 and Table 15 show the Mg concentrations for each location, year, and growth stage as an average of all cultivars. Figures 12 and 13 show significant differences among growth stages while Table 15 shows statistical differences among locations.

Significant differences were found among growth stages at all locations in both of the two years. In 1969 the growth stage was higher in Mg concentration than the second at only two locations. In 1970 the first growth stage was higher than the second at three locations. The third growth stage was higher than the first and second at two locations.

Cotton plants at the first growth stage had the highest Mg concentrations at Lauderdale County in 1969 and at Henderson County in 1970. Henderson in 1969 and Hardeman in 1970 had the highest

91315.00

TA	BI	E	1	5

MEAN CONCENTRATIONS OF MAGNESIUM FOR DIFFERENT GROWTH STAGES AT SEVEN LOCATIONS

Stage 1	L	Stage	2 .	Stage	3
Locations	% Mg ¹	Locations	% Mg ¹	Locations	% Mgl
<u>1969</u> Lauderdale Henderson Henry Carroll Fayette Hardeman	.99 ^a .93 ^{ab} .78 ^{bc} .74 ^{bc} .73 ^c .61 ^c	Henderson Fayette Lauderdale Carroll Hardeman Henry	1.12 ^a .98 ^{ab} .88 ^{bc} .82 ^{bc} .72 ^c .72 ^c		
Mean	. 80		.87		
1970 Henderson Hardeman Fayette Carroll Henry Lauderdale Lawrence	.90 ^a .85 ^{ab} .85 ^{ab} .83 ^{ab} .83 ^c .68 ^c .59 ^c .51 ^c	Hardeman Henderson Carroll Henry Lauderdale Fayette Lawrence	1.00^{a} .89 ab .78 abc .72 bc .72 cd .64 cd .62 cd .51 d	Henderson Hardeman Carroll Henry Lauderdale Fayette Lawrence	.79 ^a .79 ^a .74 ^{ab} .73 ^{ab} .68 ^{ab} .59 ^{bc} .47 ^c
Mean	.74		.74		.68

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

concentration at the second. Henderson and Hardeman Counties had the highest Mg concentration at the third growth stage. On the average Mg concentrations were higher in 1969 than in 1970.

Tissue Potassium Concentration

Potassium concentrations differed significantly among cultivars at different growth stages at some locations. Table 28, Appendix C, lists the growth stages and locations for each year and indicates where significant differences among cultivars occurred. More differences occurred among cultivars at the second growth stage than any others. There were four differences at the second growth stage while only one in the first stage in both years. In 1970 there were two differences among cultivars for the third growth stage compared to three at the second and none in the first.

Results from analyses of covariance show that significant regression ($P \leq 0.10$) occurred at 22 of the 33 tests. There was a greater number of positive regression tests at the first growth stage than at the others.

There were seven of 33 tests which had differences among cultivars as indicated by analysis of variance, but use of the analysis of covariance revealed that cultivar adjusted mean values were different in three additional tests. This brought the total to 11 tests which had differences among cultivars.

Table 16 shows that while Deltapine 45A was generally low in K concentration, Stoneville 508 and 603 were usually high. This was also the same for the adjusted means shown in Table 17.
Stage	e 1	Stage	2	Stage 2		
Cultivars	% K ¹	Cultivars	% K ¹	Cultivars	% Kl	
		1969 Fayett	e County			
ST 508	2.63	DK 11	1.81			
Coker 417	1.37	AC 1517D	1.67			
DK 11	2.35	ST 213	1.37			
Hancock	2.28	Coker 417	1.37			
AC 1517D	2.24	ST 508	1.31			
DPL 16	2.20	Aub M	1.28			
ST 213	2.16	Hancock	1.26			
Aub M	2.14	DPL16	1.25			
DPL 45A	2.09	Rex SL	.98			
Rex SL	2.08	DPL 45A	.95			
Mean	2.25		1.33			
		1970 Fayett	e County			
ST 603	4.40	ST 603	3.06	ST 603	2.72	
Aub M	4.08	ST 213	3.03	Coker 417	2.46	
Rex SL	3.79	Rex SL	3.00	Rex SL	2.42	
Coker 417	3.73	DK 11	2.95	ST 213	2.41	
ST 213	3.70	Coker 417	2.90	DPL 45A	2.37	
AC 1517D	3.66	AC 1517D	2.78	AC 1517D	2 37	
DPI. 454	3.66	Aub M	2.70	DPI 16	2.07	
DPI 16	3 61	DPI 454	1 60	Aub M	2.21	
	3.40		2 69	Hancach	2.20	
Uspecel:	2 27	DFL 10	2.00	DV 11	2.10	
hancock	5.57	Hancock	2.05	DK II	2.08	
Mean	3.74		2.85		2.34	
		1969 Henry	County			
DPL 16	5.21	ST 508	3.04			
ST 508	5.01	Aub M	2.96			
ST 213	4.90	ST 213	2.83			
Rex SL	4.80	Coker 417	2.75			
Coker 417	4.77	DK 11	2.70			
Hancock	4.75	Hancock	2.61			
AC 1517D	4.48	DPL 16	2.56			
Aub M	4.45	Rex SL	2.46			
DK 11	4.43	AC 1517D	2.29			
DPL 45A	4.03	DPL 45A	1.99			
Maan			2 60			
mean	4.08		2.62			

MEAN POTASSIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AT SEVEN LOCATIONS IN 1969 AND 1970

Stage	e 1	Stage	Stage 2 Stage 3		Stage 2		e 3
Cultivars	% K ¹	Cultivars	% KT	Cultivars	% K1		
		1970 Henry	County				
Coker 417 ST 603 ST 213 DPL 45A DK 11 Hancock	4.42 4.12 3.89 3.88 3.74 2.65	Coker 417 AC 1517D ST 603 DK 11 Hancock ST 213	2.89 2.81 2.80 2.79 2.75 2.75	Coker 417 ST 603 Hancock AC 1517D DPL 45A DK 11	2.33 2.30 2.27 2.24 2.02 1.92		
DPL 16 Aub M AC 1517D Rex SL	3.52 3.40 3.24 3.17	DPL 45A Rex SL DPL 16 Aub M	2.57 2.33 2.31 2.30	ST 213 Rex SL Aub M DPL 16	1.91 1.89 1.80 1.75		
nean	5.70	1969 Hardema	2.05		2.04		
Rex SL ST 213 Hancock AC 1517D ST 508 DK 11 DPL 45A Aub M DPL 16 Coker 417 Mean	4.60 4.40 4.37 4.14 4.09 4.03 3.94 3.87 3.85 3.73 4.10	DK 11 Coker 417 Hancock DPL 16 Rex SL ST 213 ST 508 DPL 45A AC 1517D Aub M	3.89 3.31 3.20 3.18 3.16 3.14 3.03 3.00 2.94 2.93 3.08				
		1970 Hardema	n County				
ST 203 ST 213 DK 11 Coker 417 AC 1517D DPL 16 Aub M Rex SL DPL 45A Hancock	3.95 3.28 3.15 3.02 3.00 2.95 2.92 2.91 2.87 2.84	Coker 417 DPL 45A Rex SL ST 213 Hancock DPL 16 DK 11 AC 1517D Aub M ST 603	2.17 1.75 1.58 1.51 1.43 1.42 1.26 1.16 1.12 1.11	ST 603 Hancock AC 1517D DK 11 ST 213 Aub M Coker 417 Rex SL DPL 45A DPL 16	2.42 2.41 2.39 2.33 2.27 2.17 2.07 1.96 1.88 1.73		
Mean	3.09		1.45		2.16		

Stage	1	Stage	2	Stage	3
Cultivars	% K ¹	Cultivars	% K ¹	Cultivars	% Kl
		1969 Henderso	on County		
Hancock Aub M Rex SL AC 1517D ST 213 DK 11 DPL 45A ST 508 Coker 417 DPL 16	4.09 ^a 4.01ab 4.00ab 3.92abc 3.84bcd 3.80cd 3.79cd 3.79cd 3.73d 3.54 ^e	Hancock ST 213 Rex SL Aub M Coker 417 DPL 45A AC 1517D DK 11 ST 508 DPL 16	2.75 ^a 2.65 ^{ab} 2.64 ^{ab} 2.58 ^{ab} 2.40 ^{ab} 2.38 ^{abc} 2.29 ^{abc} 2.28 ^{abc} 2.18 ^{bc} 1.94 ^c		
Mean	3.85		2.41		
		1970 Henderso	on County		
DPL 16 Hancock ST 603 Coker 417 DK 11 ST 213 Aub M DPL 45A AC 1517D Rex SL	4.11 4.00 3.87 3.86 3.76 3.74 3.64 3.48 3.37 3.00	ST 603 AC 1517D ST 213 Coker 417 DK 11 Aub M DPL 16 Hancock DPL 45A Rex SL	3.19 ^a 2.59 ^b 2.57 ^b 2.33 ^b 2.30 ^b 2.28 ^b 2.27 ^b 2.26 ^b 2.26 ^b 2.19 ^b 2.18 ^b	ST 603 Aub M AC 1517D ST 213 Coker 417 DK 11 DPL 45A DPL 16 Hancock Rex SL	2.56 ^a 2.32 ^{ab} 2.29 ^{ab} 2.15 ^b 2.15 ^b 2.12 ^b 2.12 ^b 2.12 ^b 2.08 ^b 2.05 ^b 2.04 ^b
Mean	3.68		2.41		2.19
		1969 Carroll	County		
ST 508 ST 213 Rex SL DK 11 AC 1517D DPL 45A Aub M Coker 417 DPL 16 Hancock	4.80 4.70 4.58 4.48 4.25 4.04 4.02 4.01 3.71 3.60 4.22	ST 213 Hancock Aub M DPL 45A Rex SL DK 11 AC 1517D ST 508 Coker 417 DPL 16	3.45 3.17 3.06 3.01 2.96 2.94 2.91 2.89 2.82 2.76 3.00		
mean	4.22		3.00		

TABLE 16 (continued)

Stage	- 1	Stage	2	Stage	3
Cultivars	% K ¹	Cultivars	% K1	Cultivars	% K ¹
		1970 Carrol	1 County		
ST 603	5.09	ST 603	3.53	ST 603	3.37
ST 213	4.75	AC 1517D	3.25	Rex SL	3.27
Aub M	4.67	Hancock	3.24	Aub M	2.85
Hancock	4.55	Aub M	3.14	Hancock	2.85
DPL 16	4.11	ST 213	3.14	ST 213	2.77
Coker 417	4.06	Coker 417	3.13	Coker 417	2.72
Rex-SL	3.92	Rex SL	3.06	DK 11	2.51
DK 11	3.89	DPL 45A	2.93	DPL 16	2.47
AC 1517D	3.60	DK 11	2.88	DPL 45A	2.43
DPL 45A	3.29	DPL 16	2.59	AC 1517D	2.25
Mean	4.20		3.09		2.75
		1969 Lauderda	le County		
AC 1517D	3.71	DK 11	2.86		
DK 11	3.66	ST 508	2.76		
Rex SL	3.65	Coker 417	2.69		
ST 508	3.51	Aub M	2.63		
Hancock	3.43	Rex SL	2.56		
Coker 417	3.35	ST 213	2.49		
Aub M	3.33	DPL 45A	2.47		
ST 213	3.28	Hancock	2.35		
DPL 16	3.24	DPL 16	2.33		
DPL 45A	3.11	AC 1517D	2.27		
Mean	3.43		2.54		
		1970 Lauderda	le County		
ST 603	3.35	ST 603	3.06 ^a	11 אמ	3 00
DK 11	3.07	ST 213	2 64 ab	DR II	2 01
Aub M	3.06	DK 11	2.56ab	DEL IO	2.02
AC 1517D	3.03	Rev SI	2 55ab	Coker 417	2.90
ST 213	3.01	Aub M	2.40 ab	Rey CI	2.07
DPL 45A	3.01	Hancock	2.38 ^b	ST 213	2.07
Rex SL	2.98	Coker 417	2.37 ^b	Aub M	2.72
Hancock	2.91	DPL 16	2.22 ^b	DPL 454	2.76
DPL 16	2.90	AC 1517D	2.16 ^b	Hancock	2 62
Coker 417	2.72	DPL 45A	1.99 ^b	AC 1517D	2.61
Mean	3.00		2.44		2.84

TABLE 16 (continued)

Stage	1	Stage	2	Stage	3
Cultivars	% K ¹	Cultivars	% K1	Cultivars	% K1
		1970 Lawrenc	e County		
DK 11 Coker 417 Hancock ST 213 Rex SL DPL 45A DPL 16 AC 1517D ST 603 Aub M	4.63 4.44 4.37 4.36 4.34 4.32 4.16 4.14 3.91 3.68	Coker 417 ST 603 ST 213 Hancock Aub M DPL 45A DPL 16 Rex SL DK 11 AC 1517D	4.36 ^a 3.91 ^{ab} 3.82 ^{ab} 3.63 ^{bc} 3.63 ^{bc} 3.61 ^{bc} 3.61 ^{bc} 3.75 ^{bc} 3.51 ^{bc} 3.51 ^{bc} 3.42 ^{bc} 3.10 ^c	DK 11 Rex SL ST 603 ST 213 AC 1517D Coker 417 DPL 45A Hancock DPL 16 Aub M	3.75 ^a 3.67 ^a 3.59 ^{ab} 3.56 ^{ab} 3.46 ^{ab} 3.38 ^{ab} 3.34 ^{abc} 3.34 ^{abc} 3.17 ^{bc} 2.90 ^c
Mean	4.23		3.66		3.42

TABLE 16 (continued)

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

POTASSIUM CONC	ENTRATIO	ONS (OF TEN	COTTO	DN (CULTI	VARS	AT	SELECTED
GROWTH	STAGES	AND	LOCAT	IONS I	N .	1969	AND	1970	
A	DJUSTED	FOR	SOIL I	POTASS	IU	M CON	TENT		

Stage 1		Stage	2	Stage 3		
Cultivars	% Kl	Cultivars	% K1	Cultivars	% Kl	
			Henderson	County		
		1969 Rex SL Hancock ST 213 ST 213 Aub M Coker 417 AC 1517D ST 508 DPL 45A DK 11 DPL 16	2.73 ^a 2.71 ^a 2.65 ^a 2.65 ^a 2.55 ^{ab} 2.41 ^{ab} 2.33 ^{ab} 2.26 ^{ab} 2.24 ^{ab} 2.22 ^{ab} 1.98 ^b	1970 ST 603 ST 603 Aub M AC 1517D DPL 45A ST 213 Coker 417 DK 11 Hancock Rex SL DPL 16	2.60 ^a 2.60 ^{ab} 2.22 ^{ab} 2.22 ^{ab} 2.19 ^{ab} 2.18 ^b 2.15 ^b 2.09 ^b 2.08 ^b 2.07 ^b 2.07 ^b 2.05 ^b	
1970 Hardeman	County	1969 Henry	y County			
ST 603 ST 213 DK 11 AC 1517D Rex SL DPL 16 Coker 417 Hancock DPL 45A Aub M	3.85 ^a 3.30 ^{ab} 3.10 ^{ab} 3.09 ^{ab} 3.01 ^b 3.01 ^b 2.95 ^b 2.89 ^b 2.89 ^b 2.85 ^b 2.85 ^b 2.85 ^b	Coker 417 ST 508 DPL 16 ST 213 DK 11 Aub M AC 1517D Hancock Rex SL DPL 45A	3.21 ^a 2.81 ^b 2.73 ^{bc} 2.63 ^c 2.63 ^c 2.63 ^c 2.52 ^{cd} 2.38 ^d 2.36 ^d 2.27 ^d			
1970 Carroll	County	1970 Laudero	lale County			
ST 603 ST 213 Aub M Hancock DPL 16 Rex SL Coker 417 DK 11 AC 1517D DPL 45A	5.18 ^a 4.99 ^a 4.29 ^{ab} 4.21 ^{ab} 4.21 ^{ab} 4.18 ^{ab} 4.04 ^{ab} 3.99 ^b 3.35 ^b 3.33 ^b	ST 603 ST 213 DK 11 Rex SL Aub M Hancock Coker 417 DPL 16 DPL 45A AC 1517D	2.82 ^a 2.66 ^{ab} 2.65 ^{ab} 2.54 ^{ab} 2.53 ^{ab} 2.47 ^{ab} 2.34 ^{ab} 2.20 ^{ab} 2.17 ^{ab} 2.03 ^b			

l Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level. Analysis of each location separately revealed that in 1969 Hardeman County and in 1970 Fayette County were the only locations where there was a significant stage x cultivar interaction.

Results of the combined analysis of two growth stages, six locations and both years (Table 18) indicated that Stoneville 508 and Stoneville 603 contained the highest concentration of K while Deltapine Smooth Leaf contained the lowest.

Table 29, Appendix C, with combined analyses for 1969 and 1970 separately indicates that highly significant differences were found between locations, growth stages, and location x stage interactions in both years.

When both years were included in the same combined analysis in Table 30, Appendix C, a significant difference was found between years. The location x year interaction was also significant.

Table 31, Appendix C, reveals that differences among growth stages and locations were highly significant for all cultivars when locations and growth stages were combined in separate analyses for each cultivar. All cultivars except Rex Smooth Leaf 66, Hancock and Deltapine 45A had significant location x stage interactions in either one or two years.

Figures 14 and 15 and Table 19 show the K concentrations for each location, year, and growth stage as an average of all cultivars. Figures 14 and 15 show significant differences among growth stages while Table 19 shows statistical differences among locations.

Significant differences were found among growth stages at all locations in both years. The first growth stage had a higher K

TISSUE POTASSIUM CONCENTRATIONS OF TEN COTTON CULTIVARS FROM COMBINED ANALYSIS OF SIX LOCATIONS AND THE FIRST TWO GROWTH STAGES

Cultivars	% K ¹
² ST 508	3.47 ^ª
ST 213	3.26 ^{ab}
Rex SL	3.14 ^b
Aub M	3.10 ^b
Coker 417	3.09 ^{bc}
Hancock	3.08 ^{bc}
AC 1517D	3.03 ^{bc}
DK 11	3.02 ^c
DPL 16	2.97 ^c
DPL 45A	2.87 ^c

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

 2 ST 603 replaced ST 508 in 1970. The two cultivars are analyzed as one in combined analysis.

MEAN POTASSIUM CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AND LOCATIONS IN 1969 AND 1970

Stage	1	Stage	2	Stage	Stage 3		
Location	% K1	Location	% Kl	Location	% Kl		
1969 Henry Carroll Hardeman Henderson Lauderdale Fayette	4.68 ^a 4.22 ^{ab} 4.10 ^{ab} 3.85 ^{ab} 3.43 ^b 2.25 ^c	Hardeman Carroll Henry Lauderdale Henderson Fayette	3.08 ^a 3.00 ^a 2.62 ^a 2.54 ^a 2.41 ^a 1.33 ^b				
Mean	3.75		2.50				
1970 Lawrence Carroll Fayette Henry Henderson Hardeman Lauderdale Mean	4.23 ^a 4.20 ^a 3.74 ^{ab} 3.70 ^{ab} 3.68 ^{ab} 3.09 ^b 3.00 ^b 3.66	Lawrence Carroll Fayette Henry Lauderdale Henderson Hardeman	3.66 ^a 3.09 ^b 2.85 ^b 2.63 ^b 2.44 ^b 2.41 ^c 1.45 ^c 2.65	Lawrence Lauderdale Carroll Fayette Henderson Hardeman Henry	3.42 ^a 2.84 ^{ab} 2.75 ^{abc} 2.34 ^{bc} 2.19 ^{bc} 2.16 ^c 2.04 ^c 2.54		

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

concentration than the second at all locations in both 1969 and 1970. The third growth stage was higher than the second at Hardeman and Lauderdale Counties.

Cotton plants at the first growth stage had the highest K concentration at Henry County in 1969 and at Lawrence County in 1970. Hardeman in 1969 and Lawrence in 1970 had the highest concentration at the second. Lawrence County had the highest K concentration at the third growth stage.

On the average, K concentrations at the first growth stage were higher in 1969 than in 1970. However, at the second growth stage, 1970 was higher than 1969.

Tissue Phosphorus Concentrations

Phosphorus concentrations differed significantly among cultivars at different growth stages at some locations. Table 28, Appendix C, lists the growth stages and locations for each year and indicates where significant differences among cultivars occurred. More differences among cultivars occurred in the second growth stage than any other stage. There were three differences at the first growth stage and four at the second in the two years. In 1970 there were three differences at the third stage.

Results from analyses of coveriance show that significant regression ($P \le 0.10$) occurred at ten of 33 tests.

There were ten of 33 tests which had significant differences among cultivars as indicated by analysis of variance, but the analysis of covariance revealed that cultivar adjusted mean values were different in one additional test. This brought the total to 11 tests which had significant differences among cultivars.

Table 20 shows that while Deltapine 45A was generally low in P, Acala 1517D was usually high. This was also the same for the adjusted means shown in Table 21.

Analysis of each location separately revealed that in 1969 and 1970 no growth stage x cultivar interactions were significant.

Results of combined analysis of two growth stages, six locations, and both years, shown in Table 22, indicate that Acala 1517D had the highest concentration of P and Deltapine Smooth Leaf the lowest.

Table 29, Appendix C, with a combined analysis for each year separately indicates that there were significant differences between locations, cultivars, growth stages, and locations x growth stages in both years. In 1970 the cultivar x growth stage interaction was significant. Additional significant interactions (Table 30, Appendix C) were locations x years, growth stages x years, and cultivars x years.

Table 31, Appendix C, reveals that locations were significant for all cultivars when locations and growth stages were combined in separate analyses for each cultivar. In 1969 all cultivars had differences between growth stages but not in 1970. Those cultivars which had significant growth stage x location interactions in 1969 did not in 1970.

Figures 16 and 17 and Table 23 show the P concentrations for each location, year, and growth stage as an average of all cultivars. Figures 16 and 17 show significant differences among growth stages while Table 23 shows statistical differences among locations.

Stage 1		Stage 2		Stage 3		
Cultivars	% PL	Cultivars	% Pl	Cultivars	% Pl	
		1969 Fayett	e County			
ST 508	.14	AC 1517D	.11 ^a .			
AC 1517D	.13	Hancock	.10 ^{ab}			
DK 11	.13	Rex SL	.09 ^{abc}			
Coker 417	.12	DPL 16	.09 ^{abc}			
Aub M	.12	ST 508	.09 ^{abc}			
Rex SL	.12	DK 11	.09 ^{abc}			
Hancock	.11	ST 213	.08.abc			
ST 213	.11	Aub M	.08 ^{bc}			
DPL 45A	.11	DPL 45A	.08 ^C			
DPL 16	. 10	Coker 417	.08 ^C			
Mean	.12		.09			
		1970 Fayette	e County			
Aub M	.16 ^a	ST 603	.18 ^a	AC 1517D	.23	
ST 603	.15 ^{ab}	AC 1517D	.17 ^a	ST 603	21	
Rex SL	.15 ^{abc}	Rex SL	.17 ^a	Aub M	.21	
AC 1517D	.15 ^{abc} .	DK 11	.17 ^{ab}	Rex SI.	21	
DK 11	.14 abcd	Hancock	.16 ^{abc}	ST 213	20	
ST 213	.13 ^{bcde}	ST 213	15abcd	DPI. 454	20	
Hancock	13 ^{cde}	Coker 417	15abcd	Coker 417	10	
Coker 417	.13 ^{de}	Aub M	14 ^{bcd}	Hancock	18	
DPL 16	.13 ^{de}	DPL 45A	13cd	NANCOCK	12	
DPL 45A	.12 ^{de}	DPL 16	.12 ^d	DPL 16	.17	
Mean	.14		.15	511 10	. 20	
		10/0 **			.20	
Cm 212	01	1969 Henry	County			
DI ZIJ	. 21	AUD M	.12			
DFL 10	• 21	AC 1517D	.12			
AC 1517D	.19	Kex SL	• 土土			
AU IDI/D	.19	DK II	•11			
DK TT	.18	ST 508	.10			
21 200	· 1/	ST 213	.10			
AUD M	.1/	DPL 45A	.10			
DPL 45A	. 16	Hancock	.10			
Coker 417	.16	Coker 417	.09			
Hancock	.15	DPL 16	.09			
Mean	.18		.10			

MEAN PHOSPHORUS CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED GROWTH STAGES AT SEVEN LOCATIONS IN 1969 AND 1970

Stage	1	Stage	.2	Stage 3		
Cultivars	% Pl	Cultivars	% PL	Cultivars	% Pl	
		1970 Henry	County			
Coker 417	.14	ST 213	.14	AC 1517D	.16 ^a .	
Aub M	.14	Rex SL	.13	ST 603	.16 ^{ab}	
ST 213	.14	Aub M	.13	Rex SL	.15 ^{abc}	
Rex SL	.13	ST 603	.13	DK 11	.15 abco	
DPL 45A	.13	Coker 417	.13	Coker 417	.15.abco	
Hancock	.13	ST 213	.12	Hancock	.14bcd	
AC 1517D	.13	DK 11	.12	Aub M	14bcd	
ST 603	.12	Hancock	.12	ST 213	14bcd	
DK 11	.11	DPL 16	.11	DPI. 45A	14cd	
DPL 16	.11	DPL 45A	.11	DPL 16	.13 ^d	
Mean	.13		.13		.15	
		1969 Hardema	n County			
AC 1517D	16	AC 1517D	08			
DK 11	.10	AC IJI/D	.00			
Aub M	16	DK II Amb M	.00			
ST 213	15	AUD M	.00			
Roy SI	15	DI JUO	.00			
Hencook	.15	DFL 10 CT 212	.00			
ST 508	14	DI ZIJ	.07			
DI 500	• 1 4	DEL 45A	.07			
16 IG	12	Kex SL	.07			
Coker 417	° 13 12	Hancock Color /17	.07			
COREL 417	. 12	COREL 411	.00			
Mean	.15	1	.07			
		1970 Hardeman	n County			
DK 11	.14	Coker 417	.11	ST 213	.13	
Rex SL	.13	Rex SL	.11	Aub M	.13	
DPL 16	.13	DPL 45A	.10	AC 1517D	.13	
ST 603	.13	Hancock	.10	Rex SL	.12	
Aub M	.12	Aub M	.10	DK 11	.12	
ST 213	.12	DK 11	.09	ST 603	.12	
AC 1517D	.12	AC 1517D	.09	Coker 417	.10	
Hancock	.12	ST 603	.09	DPL 16	.10	
DPL 45A	.11	DPL 16	.09	Hancock	.09	
Coker 417	.11	ST 213	.07	DPL 45A	.08	
Mean	.12		.10		.11	

TABLE 20 (continued)

Stage 1		Stage	2	Stage 3		
Cultivars	% Pl	Cultivars	% Pl	Cultivars	% Pl	
		1969 Henders	on County			
AC 1517D	.16	AC 1517D	.07			
Aub M	.16	Aub M	.07			
Rex SL	.15	Rex SL	.06			
ST 213	.14	ST 213	.06			
DK 11	.14	DK 11	.06			
DPL 16	.14	DPL 16	.06			
Coker 417	.13	Coker 417	.06			
DPL 45A	.13	DPL 45A	.06			
Hancock	.12	Hancock	.06			
ST 508	.12	ST 508	.06			
Mean	.14		.06			
		1970 Henders	on County			
DK 11	.17	AC 1517D	14 ^a	AC 1517D	128	
Hancock	.15	ST 603	148	Aub M	11 ab	
DPL 16	.14	11 את	12ab	ST 603	'11ab	
ST 213	.14	Rev SL	12ab	Jancook	11 ab	
Rev SL.	13	Aub M	12ab	nancock	11 abc	
Aub M	.13	Hancock	11 ab	DA II Pov SI	10abc	
ST 603	.13	ST 213	11 ^b	CT 212	10bc	
DPL 45A	.13	DPI. 454	100		10bc	
Coker 417	.12	Coker 417	100	Cokor 417	10bc	
AC 1517D	.12	DPL 16	.10 ^b	DPL 16	.10	
Mean	.14		.12		.11	
		1969 Carrol	County			
		1707 Gallol.	County			
Aub M	.19	DK 11	.09			
AC 1517D	.19	Rex SL	.09			
DK 11	.19	ST 508	•07 ·			
ST 508	.18	Hancock	.07			
Hancock	.17	AC 1517D	.07			
Rex SL	.16	Coker 417	.07			
Coker 417	.16	DPL 16	.07			
DPL 16	.15	Aub M	.07			
ST 213	.15	ST 213	.07			
DPL 45A	.15	DPL 45A	.07			
Mean	.17		.07			

TABLE 20 (continued)

Stage 1		Stage 2		Stage	Stage 3	
Cultivars	% PL	Cultivars	% Pl	Cultivars	% Pl	
		1970 Carrol.	1 County			
ST 603 Rex SL Aub M DK 11 AC 1517D Coker 417 Hancock ST 213 DPL 16 DPL 45A Mean	.12 ^a .12ab .11ab .11abc .10abcd .10bcd .10cd .10d .10d .09d .09d .09	Rex SL AC 1517D Hancock ST 603 Coker 417 DPL 45A Aub M ST 213 DK 11 DPL 16	.12 .12 .11 .11 .10 .10 .10 .10 .09 .11	Rex SL ST 213 DPL 16 Coker 417 DK 11 DPL 45A AC 1517D Hancock ST 603 Aub M	.14 .11 .11 .10 .10 .10 .09 .09 .08 .10	
		1969 Lauderdal	le County			
AC 1517D Rex SL Aub M Coker 417 DPL 16 DK 11 Hancock DPL 45A ST 213 ST 508	.24 ^a .21b .20bc .19bc .19bc .19bc .19bc .19bc .18bc .18bc .18c	AC 1517D DK 11 Rex SL Aub M DPL 45A Coker 417 ST 508 DPL 16 Hancock ST 213	.19 ^a .15 ^b .14 ^b c .14 ^b c .14 ^b c .14 ^b c .14 ^b c .13 ^b c .12 ^b c .12 ^b c .12 ^b c			
Mean	.19		.14			
		1970 Lauderdal	Le County			
Aub M ST 603 ST 213 DPL 45A Rex SL Hancock Coker 417 AC 1517D DPL 16 DK 11	.16 .15 .15 .14 .14 .14 .13 .12 .12	Coker 417 Hancock Rex SL DPL 45A DPL 16 ST 603 ST 213 AC 1517D Aub M DK 11	.15 .15 .14 .13 .13 .13 .12 .12 .11 .10	AC 1517D ST 213 ST 603 Rex SL Coker 417 DPL 16 Hancock DK 11 Aub M DPL 45A	.17 .17 .16 .14 .14 .13 .13 .12 .12	
Mean	.14		.13		.15	

TABLE 20 (continued)

Stage 1		Stage 2		Stage 3	
Cultivars % P1 Cu		Cultivars	% Pl	Cultivars	% pl
		1970 Lawrence	e County		
AC 1517D	.11	AC 1517D	.10	AC 1517D	.16 ^a .
Aub M	.11	Aub M	.08	Aub M	.14 ^{ab}
DPL 45A	.11	Coker 417	.08	DK 11	.14.ab
ST 603	.11	ST 603	.08	ST 213	.14 ^{bc}
Hancock	.10	Hancock	.08	ST 603	.13 ^{bc}
DK 11	.10	DK 11	.08	Rex SL	.13.bc
ST 213	.10	ST 213	.08	Hancock	.13 ^{bc}
Rex SL	.10	Rex SL	.08	Coker 417	.13 ^{bc}
Coker 417	.09	DPL 45A	.07	DPL 45A	.12 ^c
DPL 16	.08	DPL 16	.07	DPL 16	.12 ^c
Mean	. 10	, ,	.08		.13

TABLE 20 (continued)

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

PHOSPHORUS	CONCENTRATIONS OF TEN COTTON CULTIVARS AT SELECTED
GROWTH	STAGES AND LOCATIONS IN 1969 AND 1970 ADJUSTED
	FOR SOIL PHOSPHORUS CONTENT

Stage 1		Stage 2		Stage 3	
Cultivars	% Pl	Cultivars	% Pl	Cultivars	% Pl
		Henry Con	unty		
		1969 AC 1517D Aub M DK 11 Rex SL DPL 45A Coker 417 DPL 16 ST 213 Hancock ST 518,	.13 ^a .11 ^{ab} .11 ^{ab} .11 ^{ab} .10 ^b .10 ^b .10 ^b .10 ^b .10 ^b .10 ^b	1970 AC 1517D ST 603 Rex SL DK 11 ST 213 Aub M Coker 417 Hancock DPL 16 DPL 45A	.16 ab .16 ab .15 abc .15 abc .14 abc .14 bc .14 bc .14 c .14 c .14 c
		Henderson (County		
				1970 AC 1517D Aub M Hancock ST 603 Rex SL DK 11 Coker 417 DPL 45A ST 213 DPL 16	.13 ^a .11abc .11abc .11abc .11abc .11abc .11abc .10abc .10bc .09bc .09 ^c
		Fayette Co	ounty		
1970 Aub M Rex SL ST 603 AC 1517D DK 11 Coker 417 DPL 16 ST 213 Hancock DPL 45A	.16 ^a .15abc .15abc .14abc .14abc .13abc .13abc .13bc .13bc .13bc .13bc	1969 AC 1517D Hancock Rex SL DK 11 DPL 16 ST 508 ST 213 Aub M DPL 45A Coker 417	.10 ^a .10 ^{ab} .09 ^{ab} .09 ^{ab} .09 ^{ab} .09 ^{ab} .08 ^b .08 ^b .08 ^b		

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

TISSUE	PHOSPHORUS CONCENTR	ATIONS OF TEN COTTON CULTIVARS
	FROM COMBINED ANAL	YSIS OF SIX LOCATIONS ¹
	AND FIRST T	WO GROWTH STAGES

Cultivars	% P ²
AC 1517D	.136 ^a
Rex SL	.133 ^{ab}
DK 11	.129 ^{abc}
Aub M	.128 ^{abc}
3 _{ST 508}	.126 ^{abc}
ST 213	.122 ^{bc}
Hancock	.122 ^{bc}
Coker 417	.122 ^{bc}
DPL 16	.116 ^c
DPL 45A	.116 ^c

¹Fayette, Henry, Hardeman, Henderson, Carroll, and Lauderdale Counties.

²Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

³ST 603 replaced ST 508 in 1970. Both cultivars were analyzed as one.

bloom), second (mid bloom) and third growth stages (late bloom) at seven locations in 1970.

MEAN CONCENTRATIONS OF PHOSPHORUS FOR DIFFERENT GROWTH STAGES AT SEVEN LOCATIONS

Stage 1		Stage 2		Stage	Stage 3	
Locations	% PI	Locations	% Pl	Locations	% Pl	
1969 Lauderdale Henry Carroll Hardeman Henderson Fayette	.19 ^a .18 ^{ab} .17 ^{ab} .15 ^{bc} .14 ^{bc} .12 ^c	Lauderdale Henry Fayette Hardeman Carroll Henderson	.14 ^a .10 ^b .09 ^b c .09 ^c .07 ^c .06 ^c			
Mean	.16		.09			
1970 Lauderdale Fayette Henderson Henry Hardeman Carroll Lawrence	.14 ^a .14a .14ab .13ab .12ab .12ab .11ab .10 ^b	Fayette Lauderdale Henry Henderson Carroll Hardeman Lawrence	.15 ^a .13 ^{ab} .13 ^b .12 ^b .11 ^{bc} .10 ^{bc} .08 ^c	Fayette Henry Lauderdale Lawrence Hardeman Henderson Carroll	.20 ^a .15 ^b .15 ^b .13 ^b .11 ^b .11 ^b .10 ^b	
Mean	.13		.12		.14	

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

Significant differences were found among growth stages at all locations except Lauderdale County in 1970. In 1969 the first growth stage was higher in P concentration than the second at all locations. However, in 1970 the first growth stage was higher than the second at only four locations. The third growth stage was higher than the first and second at four locations.

Cotton plants at the first growth stage had the highest P concentrations at Lauderdale County in 1969 and 1970. Lauderdale in 1969 and Fayette in 1970 had the highest concentration at the second. Fayette County at the third growth stage had the highest P concentration.

On the average P concentrations at the first growth stage were higher in 1969 than in 1970. At the second growth stage 1970 was higher than 1969.

Soil and Tissue Correlations

Table 24 shows correlation values between soil nutrient test levels and cotton petiole concentrations of four elements at the various growth stages in 1969 and 1970. Potassium had the highest degree of correlation at all growth stages in both years. Phosphorus also had highly significant positive correlations at all growth stages but the values were somewhat lower than for K. Soil Ca and Mg did not correlate as well with petiole concentrations as did K and P. Although the Ca correlation was highly significant in 1970 at the first growth stage, the value was negative. In 1969 Ca had highly significant correlations in both growth stages but there was little correlation in 1970. For Mg there was significant correlation in 1970 at all growth stages but not in 1969.

CORRELATION	VALUES BETWEEN SOIL AND TISSUE NUTRIENTS				
OF FOUR	ELEMENTS AT VARIOUS GROWTH STAGES IN				
1969 AND 1970					

Stages	Са	K	Mg	Р
		<u>1</u>	969	
Stage 1	.38	.62	.27	.35
	**	**	**	**
Stage 2	.30	.70	.01	.55
	**	**	NS	**
		19	970	
Stage 1	15	. 42	.12	.22
	**	**	*	**
Stage 2	.07	.57	.28	. 20
	NS	**	**	**
Stage 3	.18	. 59	.25	25
0	**	**	**	**

÷

Considering K, the third growth stage gave the highest correlation, followed by the second. In 1969 P correlation values were highest in the second growth stage. In 1970 there was no appreciable difference among growth stages.

Comparison of Elements

Results of this experiment indicate that Ca and K concentrations in cotton petioles were almost always above 1 while P and Mg concentrations were below 1.0 percent. Potassium concentrations were higher than Ca concentrations in 87 percent of the samples while Mg concentrations were always higher than P.

Yields

Table 25 shows cotton cultivar yields of lint produced at seven locations. Stoneville 213 was a consistent high yielding entry at all locations in 1969 and 1970 while Acala 1517D produced the lowest. The combined analysis of all locations and two years (Table 26) revealed similar results.

Table 32, Appendix C, shows the combined analysis of yields from six locations in 1969 and 1970. Differences in locations, cultivars, and years were highly significant.

Yields produced at different locations are shown in Table 27. Henry County produced the highest yields in 1969 and Henderson County in 1970. Yields produced at Hardeman County were rather consistent from year to year while yields at Carroll County showed wide variation. Generally yields were higher in 1970 than in 1969.

196	59	197	70
Cultivere	Yield Kg/Hg ²	Cultivore	Yield
	Kg/na		Kg/Ha-
	Fayett	e County	
ST 508 Hancock DPL 16 DK 11 ST 213 DPL 45A Aub M Coker 417 AC 1517D Rex SL	756 ^a 738 ^a 724 ^a 709 ^a 686 ^{ab} 640 ^{ab} 636 ^{ab} 626 ^b 573 ^b 569 ^b	ST 213 ST 603 DPL 45A Aub M DPL 16 Hancock Coker 417 DK 11 Rex SL AC 1517D	1011 ^a 1004 ^a 991 ^{ab} 900 ^{ab} 885 ^{ab} c 873 ^b c 873 ^b c 846 ^c 831 ^c 787 ^{cd} 696 ^d
Mean	666		883
	Henry	County	
Hancock ST 213 DK 11 DPL 16 Coker 417 Rex SL DPL 45A Aub M AC 1517D ST 508	1188 ^a 1163 ^a 1151 ^a 1136 ^a 1112 ^a 975 ^{ab} 968 ^b 968 ^b 955 ^b 904 ^b	ST 213 DPL 45A Coker 417 Rex SL DPL 16 DK 11 ST 603 Aub M Hancock AC 1517D	1121 ^a 1047ab 995ab 966ab 947ab 934b 934b 924b 921b 918b 754 ^c
Mean	1052		953
	Hardem	an County	
ST 213 Rex SL Aub M DK 11 Hancock DPL 45A DPL 16 Coker 417 ST 508 AC 1517D	1028 ^a 967 ^{ab} 942 ^{abc} 927 ^{abc} 925 ^{abc} 924 ^{abc} 882 ^{bcd} 875 ^{cd} 825 ^{cd} 825 ^{cd} 761 ^d	ST 603 Hancock DK 11 Coker 417 DPL 16 ST 213 Rex SL DPL 45A Aub M AC 1517D	1056 ^a 1007 ^a 987 ^a 983 ^a 945 ^{ab} 940 ^{ab} 924 ^{ab} 898 ^{ab} 811 ^b 517 ^c
Mean	906		907

MEAN LINT YIELD¹ OF TEN COTTON CULTIVARS AT SEVEN LOCATIONS IN 1969 AND 1970

196	9	197	/0
Cultivars	Yield Kg/Ha ²	Cultivars	Yield Kg/Ha ²
	Henders	on County	
ST 213 DPL 16 DPL 45A Aub M ST 508 Hancock DK 11 Coker 417 AC 1517D Rex SL	815 ^a 736 ^{ab} 731 ^{ab} 691 ^{bc} 690 ^{bc} 681 ^{bcd} 681 ^{bcd} 672 ^{bcd} 662 ^{cd} 601 ^d 599 ^d	ST 213 ST 603 Coker 417 DK 11 DPL 45A Hancock Aub M DPL 16 Rex SL AC 1517D	1277 ^a 1196 ^{ab} 1156 ^{abc} 1141 ^{abcd} 1120 ^{bcd} 1119 ^{bcd} 1079 ^{bcde} 1055 ^{cde} 1018 ^{de} 982 ^e
Mean	688		1114
	Carrol	1 County	
ST 213 DPL 45A DPL 16 Aub M Hancock Coker 417 ST 508 DK 11 AC 1517D Rex SL	799 ^a 741 ^{ab} 718 ^{ab} 641 ^{abc} 638 ^{bc} 624 ^{bc} 620 ^{bc} 598 ^{cd} 505 ^{cd} 466 ^d	ST 213 DPL 16 Aub M ST 603 DPL 45A Hancock DK 11 Coker 417 Rex SL AC 1517D	1151 ^a 1129 ^a 1127 ^a 1096 ^a 1078 ^a 1068 ^a 1055 ^a 864 ^b 831 ^b
Mean	635		1048
	Lauderd	ale County	
ST 213 DPL 45A ST 508 Coker 417 DPL 16 Hancock Rex SL DK 11 AC 1517D Aub M	764 ^a 757 ^a 751 ^a 750 ^a 718 ^a 708 ^a 702 ^a 553 ^b 525 ^b	DK 11 ST 213 DPL 16 DPL 45A Hancock Coker 417 Rex SL ST 603 Aub M AC 1517D	970 ^a 917 ^{ab} 865 ^{ab} 833 ^{ab} 809 ^b 776 ^b 776 ^b 760 ^b 752 ^b 624 ^c
Mean	698		808

..

.

TABLE 25 (continued)

196	9	197	0
Cultivars	Yield Kg/Ha ²	Cultivars	Yield Kg/Ha ²
	Lawrenc	e County	
Mean		ST 603 Coker 417 Hancock Aub M Rex SL DK 11 ST 213 DPL 16 DPL 45A AC 1517D	869 ^a 861 ^a 859 ^a 836 ^a 808 ^{ab} 791 ^b 717 ^b 713 ^b 600 ^b 791

TABLE 25 (continued)

¹Yield in lint per hectare.

²Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

LINT YIELDS FROM COMBINED LOCATIONS AND YEARS OF TEN COTTON CULTIVARS

Cultivars	Yield ¹ Kg/Ha
ST 213	983 ^a
ST 508	910 ^{ab}
DPL 45A	910 ^{ab}
DPL 16	908 ^{ab}
Hancock	907 ^{ab}
DK 11	888 ^{abc}
Coker 417	883 ^{bc}
Aub M	857 ^{bc}
Rex SL	816 ^C
AC 1517D	708 ^d

¹Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

LINT YIELD¹ OF TEN COTTON CULTIVARS AT SEVEN LOCATIONS FOR EACH YEAR SEPARATELY

1969		1970	
Locations	Yield Kg/Ha ²	Locations	Yield Kg/Ha ²
Henry	1052 ^a	Henderson	1114 ^a
Hardeman	906 ^a	Carroll	1048 ^{ab}
Lauderdale	698 ^b	Henry	953 ^{abc}
Henderson	688 ^b	Hardeman	907 ^{bc}
Fayette	666 ^b	Fayette	883 ^{bc}
Carroll	635 ^b	Lauderdale	808 ^C

¹Total yield lint per Hectare.

²Superscripts indicate level of significance on Duncan's Multiple Range calculated at 0.05 level.

89

:

CHAPTER V

DISCUSSION

Soil Test Values

Calcium, Mg, and pH values (Figure 2, page 24, Figure 3, page 25, and Table 7, page 23) were slightly lower in 1970 than in 1969 where plots remained in the same field in both years of the experiment. This could be attributed to leaching of the basic cations, Ca and Mg, because all plots were limed as needed in the spring of 1968. The Ca, Mg, and pH values at Hardeman County were higher in 1970 than in 1969, whereas at Fayette they were only slightly lower. At these two locations the 1970 plots were moved to new fields which were limed just prior to planting the 1970 corp. Phosphorus and K, unlike lime, were applied each year and soil test values varied only slightly between years except at Hardeman and Fayette Counties. There was more variation from 1969 to 1970 in P and K at Fayette County than at Hardeman.

Comparing locations, there was a greater variation with P levels than with the other elements. The P level (Figure 4, page 26) at Lauderdale was very high. Relatively high annual applications of P fertilizer coupled with the nutrients added by the flooding Mississippi River, low P leaching and crop removal losses might explain the unusually high available soil P level. The P values at Henderson County were low in 1969. The pH values were also low at this location and this may have caused the P to be less available.

The low soil test values of P at Hardeman County both years were the result of inadequate fertilizer application (Table 3, page 15).

Lauderdale County was especially high in soil P and Mg and was also high in K. However, all locations except Fayette in 1969 were high in soil K.

Where the farmer applied small amounts of P, small amounts of N and K were also applied and this resulted in a rather even balance, nutrientwise.

Soil Types

There were two major groups of soils, upland and bottom. Robersonville, Morganfield, Alder, Collins, and Falaya are bottom soils, whereas Memphis, Lexington, Pembroke, and Crider are upland soils. Alder and Falaya were the only soils with drainage problems but there were only a few plots on these soils. All of these soils are commonly used for cotton production.

All soils were classed as silt loams. Memphis, Collins, and Robersonville are deeper and have greater water holding capacity than do the other soils and were expected to produce greater yields.

Yields

Stoneville 213, irrespective of location or year, was one of the highest yielders while Acala 1517D was consistently one of the lowest. Location influenced yield as much as did cultivar. These cultivars which were high at all other locations. This is further demonstrated from the data in Table 32, Appendix C, which show cultivar x location and cultivar x year interactions to be non-significant. Evidently environment had little effect on determining the rank of cultivar yeilds in this experiment. A positive relationship was found between average July rainfall and yields at each location. For example, Henry County in 1969 had rather high amounts of July rainfall and produced high yields. Carroll County, in 1969, had low amounts of July rainfall and produced low yields. At most locations in 1970, total precipitation during the growing season was greater than in 1969. This is demonstrated by the yield increases from 1969 to 1970.

Another important factor affecting yield was weed control. At most locations weeds were controlled rather well except at Hardeman County where johnsongrass in both years caused yield reductions. Cockleburs at Fayette County and nutsedge at Lauderdale reduced yields of some plots but not others.

Cotton yields on bottom soils should have been higher than on the upland soils. Where prepipitation was low at both locations the bottom soil did produce higher yields. For example, in 1969, Carroll and Lauderdale Counties had equal amounts of July rainfall (Figure 6, page 29) and the bottom soils at Lauderdale produced higher yields (Table 27, page 89) than the upland soil at Carroll. However, this did not occur in 1970 because although the July rainfall was about equal, the June and August rainfall at Carroll County was greater than at Lauderdale.

Cultivars

Highly significant differences in nutrient concentrations were found among various cultivars. Most cultivars tested in this experiment

were developed in the southeastern United States and are genetically related. However, Acala 1517D was developed under the climatic and soil conditions of California and has a different genetic background from the others. It produced the most vegetative growth of any cultivar in this experiment and was the latest in maturity. Acala 1517D is better adapted to the hot irrigated regions of the West where the growing season is longer than in Tennessee. Under western conditions Acala 1517D while generally producing higher yields also has a higher quality fiber. In this experiment, Acala 1517D not only had the highest Ca and P concentrations but also produced the highest amount of dry matter, giving it the highest total Ca and P uptake.

Because Acala 1517D is a later maturing cultivar, there were no flowers at the first sampling date and very few at the second. Therefore, the nutrient concentration would be expected to be higher than in the other cultivars since nutrient concentration decreases as the cotton plant matures. Acala 1517D had high concentrations of Ca and P but was relatively low in Mg and K. Potassium shows the greatest dilution effect. If high concentrations of Ca and P were due to the earlier sampling, Acala also should have had a high concentration of K, but this was not the case.

Just the opposite situation occurred with Stoneville 213: K was high while Ca and P were relatively low. Other cultivars ranged between the extremes of Acala 1517D and Stoneville 213.

The Stoneville and Deltapine cultivars had similar P and K concentrations. This might be due to genetic similarity as they were all developed by the same plant breeders in the southeastern United

States. Their Ca and Mg concentrations, however, were not similar in spite of their close genetic relationship.

Petiole Nutrient Concentrations

In this experiment petiole concentrations of K at most locations were lower at the first sampling date (early bloom) than the 4.5 percent. Stromberg (49) proposed as an ideal concentration for cotton at early bloom in California. He suggested that cotton petioles at 130 days after planting should contain 1.0 percent K. In this experiment at late bloom (approximately 110 days after planting), the petioles contained over 2.0 percent K in 1970. In 1969 Fayette County (Table 19, page 69) had a very low concentration of K at mid bloom. It is possible that a K deficiency was present, but no symptoms were observed.

Magnesium concentrations were always above the 0.1 to 0.2 percent critical level set by Page and Bingham (42). Although Ca and P critical levels for cotton have yet to be determined, the concentrations in this experiment were equal to those reported in the literature by Joham (27) and are not believed to be below the critical level. No deficiency symptoms of these elements were observed in the field.

The dilution effect was found at all locations for K but there were many instances where Ca, Mg, and P concentrations increased rather than decreased as the plant matured. Similar results have been reported by other researchers (1), (4), (12). Obviously the plants accumulated these nutrients later in the growing season, whereas most of the K was taken up early.
If available soil moisture was limited early in the growing season, then less nutrient uptake occurred and less dry matter was produced. Greater amounts of available soil moisture usually resulted in higher nutrient concentrations overcoming even the dilution effect. Lauderdale County, which had the highest soil test values of P, also produced the highest petiole P concentrations of any location during both years. The Mg soil test was also highest at Lauderdale and the concentrations in the petioles were high in 1969. But in 1970 the petiole concentrations were about equal to those at other locations. Henderson County in 1970 had the highest Mg petiole concentrations, perhaps due to the favorable high July rainfall.

There were highly significant differences of nutrient concentrations among locations as shown by the combined analyses (Table 29, Appendix C). Henry County had the highest tissue concentrations of Ca and K of any location at the first growth stage in 1969. Soil Ca and K levels at Henry were also high which combined with high amounts of available soil moisture to produce the high concentrations. More significant differences among cultivar Mg, K, and P concentrations were found in the second growth stage than in any other. But for Ca, more differences were found in the first growth stage. If petiole analysis is to be used to determine nutrient deficiencies, it is necessary to know which cultivar is being analyzed especially if the plants are sampled in mid bloom.

Interactions

While some cultivars consistently contained high concentrations of Ca, Mg, K, and P at all locations, other cultivars had low

concentrations of these elements. However, in the 1970 combined analysis, Mg location x cultivar interactions were significant.

Growth stage x cultivar interactions in the combined analyses indicated that while some cultivars were high in nutrients at all growth stages other cultivars were consistently low.

Year x cultivar interactions (Table 30, Appendix C) in the combined analyses indicated that cultivars reacted the same in both years for Ca and K but not for Mg and P.

Location x growth stage interactions were highly significant for Ca, Mg, K, and P. In 1969 the first growth stage had higher concentrations than the second at all locations for K and P again because of the dilution effect.

Analysis of Covariance

Analysis of variance revealed significant differences among cultivars at some locations and at some growth stages but not at others. Perhaps this was due to lack of nutrient uniformity within locations. Analysis of covariance was used therefore to analyze and adjust the nutrient composition of cultivars for differences in soil mutrient content which existed at each location. Analysis of covariance tended to equalize the plot nutrient levels within each location. Not all locations had wide nutrient variation among plots. Thus, a regression test was first calculated at each location to determine if the variation within plots was great enough to use the analysis of covariance. When this analysis was used, nine additional differences (Table 28, Appendix C) were found among cultivars. More additional differences were found for Mg and P than for Ca and P. This was due not only to the greater variation within locations for soil Mg and K levels but also because K had a greater correlation between soil levels and concentrations in the petioles.

Generally the cultivar adjusted mean tended to rank in the same order as the unadjusted means. By calculating the analysis of covariance additional information was discovered which otherwise would have been lost.

CHAPTER VI

SUMMARY

During the 1969 and 1970 growing seasons, cotton cultivar performance experiments were conducted at seven Tennessee locations.

Petioles from the most recently matured leaf were collected at two stages of growth in 1969 and at three in 1970. The samples were digested by the wet ash nitric-perchloric method and analyzed with the Technicon AutoAnalyzer for Ca, Mg, K, and P.

Available Ca, Mg, K, and P were extracted from soil samples with a double acid solution (North Carolina method) and analyzed with the AutoAnalyzer. Soil pH values were also determined.

Cultivar nutrient concentrations were analyzed statistically using the analysis of variance and covariance. Significant differences were found among cultivars, growth stages, locations, and between years. Significant differences were found among location x growth stage, location x years, and growth stage x year interactions.

Generally, the greatest number of differences in nutrient concentration among cultivars occurred at the second sampling stage or at mid bloom. Therefore, cotton should be sampled for tissue analysis at this stage of maturity.

Generally Acala 1517D was higher in Ca and P concentrations than any of the nine other cotton cultivars. Coker 417 was generally higher in Mg while Stoneville 213 was consistently low in Ca and Mg.

Stoneville 213, Stoneville 508 and Stoneville 603 had high K concentrations. These cultivars had similar P concentrations.

Deltapine 16 and Deltapine 45A had low K and P concentrations.

Those cultivars which produced high yields often had low nutrient concentrations.

Wide differences occurred throughout the experiment in the nutrient concentration of these cultivars, although no nutrient deficiencies were known to be manifest. This suggests the need to know the cultivar being sampled if an accurate diagnosis of the nutrient status of the cotton plant is desired.

Rainfall and cultivar differences were more important in influencing yield levels than were soil pH, soil type, soil nutrient level, or tissue nutrient concentration in this experiment. LITERATURE CITED

LITERATURE CITED

- Abbott, J. L., W. T. McGeorge, and E. L. Breazeale. 1955. Nutrient requirements of Arizona cotton. Arizona Agr. Exp. Sta. Bul. 117.
- Adams, F., F. T. Veihmeyer, and L. N. Brown. 1942. Cotton irrigation investigations in San Joaquin Valley, California, 1926 to 1935. California Agr. Exp. Sta. Bul. 668.
- 3. Ashburn, E. L. 1970. The yield and uptake of nutrients by selected corn genotypes as influenced by nitrogen fertilization. Doctoral dissertation, The University of Tennessee at Knoxville.
- Bassett, D. M., W. D. Anderson, and C. H. E. Werkhoven. 1970. Dry matter production and nutrient uptake in irrigated cotton (<u>Gossypium hirsutum</u> L.). Agron. Jour. 62:299-303.
- 5. Barr, A. J., and J. H. Goodnight. 1970. Statistical analysis system (SAS). North Carolina State University, Raleigh.
- Bartholomew, R. P., and George Janssen. 1929. Luxury consumption of potassium by plants and its significance. Agron. Jour. 21:751-765.
- Bennett, O. L., R. D. Rouse, D. A. Ashley, and B. D. Doss. 1965. Yield, fiber, quality and potassium content of irrigated cotton plants as affected by rates of potassium. Agron. Jour. 57:296-299.
- Bower, C. A., and W. H. Pierre. 1944. Potassium response of various crops on a high-lime soil in relation to their contents of potassium, calcium, magnesium, and sodium. Agron. Jour. 36:608-614.
- 9. Bray, R. H. 1942. Ionic competition in base exchange reactions. Jour. Am. Chem. Soc. 64:954-963.
- Brown, D. A., G. A. Place, and J. V. Pettiet. 1960. The effect of soil moisture upon cation exchange in soils and nutrient uptake by plants. 7th Int. Cong. Soil Sci. 3:443-449.
- 11. Carmona, R. G. 1963. Potassium uptake and distribution in corn plant as influenced by rates of potassium and nitrogen fertilizer. Unpublished Master's thesis. The University of Tennessee at Knoxville.

- Eaton, F. M., and D. R. Ergle. 1956. Mineral nutrition of the cotton plant. Plant Physiology 32:169-175.
- 13. Elliot, F. C., Marvin Hoover, and W. K. Porter, Jr. 1968. <u>Advances in Production and Utilization of Quality Cotton:</u> <u>Principles and Practices</u>. Iowa State University Press, <u>Ames</u>, Iowa.
- 14. Finney, D. J. Stratification, balance and covariance. Biometrics, 13:373-386.
- 15. Foy, C. D., W. H. Armiger, A. L. Fleming, and C. F. Lewis. 1967. Differential tolerance of cotton varieties to an acid soil high in exchangeable aluminum. Agron. Jour. 59: 415-417.
- 16. Freeman, C. E. 1965. The effect of potassium fertility levels on the uptake and utilization of potassium, calcium, and magnesium by corn inbreds and hybrids. Unpublished Master's thesis, The University of Tennessee at Knoxville.
- 17. Fuller, W. H. 1953. Effect of kind of phosphate fertilizer and method of placement on phosphorus absorption by crops grown in Arizona calcareous soils. Arizona Agr. Exp. Sta. Tech. Bul. 128.
- 18. Fuller, W. H., T. C. Tucker, E. W. Carpenter, and J. L. Abbott. 1963. Absorption of phosphorus by cotton from fertilizers of different phosphorus water sobulities as related to stage of plant growth at the time of application. Soil Sci. Soc. Am. Proc. 27:397-403.
- 19. Fullmer, F. S. and L. K. Stromberg. 1962. The use of plant and soil analyses as a guide to potassium needs for cotton in California. <u>Plant Analysis and Fertilizer Problems</u>. Proc. Fourth Collog. 120-129.
- 20. Gallaher, R. N. 1969. The uptake and utilization of potassium by corn inbreeds and hybrids. Unpublished Master's thesis, The University of Tennessee at Knoxville.
- Cheesling, R. H., and H. F. Perkins. 1970. Critical levels of manganese and magnesium in cotton at different stages of growth. Agron. Jour. 62:29-32.
- 22. Gieseking, J. E., H. J. Snider, and C. A. Getz. 1935. Destruction of organic matter in plant material by the use of nitric and perchloric acids. Ind. and Eng. Chem. Anal. Ed. 7:185-186.
- 23. Gorsline, G. W., D. E. Baker, and W. I. Thomas. 1965. Accumulation of eleven elements by field corn (Zea mays L.). Pennsylvania Agri. Exp. Sta. Bul. 725.

- 24. Goulden, C. H. 1952. <u>Methods of Statistical Analysis</u>. John Wiley and Sons, Inc., New York.
- 25. Helmy, H., H. E. Joham, and W. C. Hall. 1960. Magnesium nutrition of American upland and Egyptian cotton. Texas Agr. Exp. Sta. M. P. 411.
- 26. Hoskinson, P. E. 1970. Tennessee Farm Bureau and University of Tennessee Cotton Emphasis Program: A Report on Varietal Studies 1968-1970. Tennessee Agri. Exp. Sta. (Mimeographed.)
- 27. Joham, H. E. 1951. The nutritional status of the cotton plant as indicated by tissue test. Plant Physiology 26:76-89.
- 28. Lancaster, J. D. 1958. Magnesium status of blackland soils of Northeast Mississippi for cotton production. Mississippi Agr. Exp. Sta. Bul. 560.
- 29. Lance, J. C., and R. W. Pearson. 1969. Effect of low concentrations of aluminum on growth and water and nutrient uptake by cotton roots. Soil Sci. Soc. Am. Proc. 33:95-98.
- Larson, W. E., and W. H. Pierre. 1953. Interaction of sodium and potassium on yield and cation composition of selected crops. Soil Science 76:51-64.
- 31. LeClerg, E. L., W. H. Leonard, and A. G. Clark. 1962. <u>Field</u> <u>Plot Technique</u>. Burgess Publishing Company, Minneapolis, Minnesota.
- 32. Longenecker, D. E., E. L. Thaxton, and P. J. Lyerly. 1964. Nutri-content and nutrient ratios of irrigated cotton on fertile soils as affected by irrigation frequency, water quality, and other factors. Texas Agr. Exp. Sta. M. P. 728.
- Lucas, R. E., and G. D. Scarseth. 1947. Potassium, calcium, and magnesium balance in plants. Agron. Jour. 39:887-896.
- 34. Lundegardh, H. 1943. Leaf Analysis as a Guide to Soil Fertility, Nature (London) 151:320.
- 35. Lunt, O. R., and W. L. Nelson. 1950. Studies on the value of sodium in the mineral nutrition of cotton. Soil Sci. Soc. Am. Proc. 15:195-200.
- 36. Mack, J. H. 1969. High populations boost snap bean and sweet corn yields. Better Crops with Plant Food No. 1, 53:31-32.
- 37. Mackenzie, A. J., W. F. Spender, K. R. Stockinger, and B. A. Krantz. 1963. Seasons nitrate-nitrogen content of cotton petioles as affected by nitrogen application and its relationship to yield. Agron. Jour. 55:55-59.

- 38. Mehlich, Adolf. 1946. Soil properties affecting the proportionate amounts of calcium, magnesium, and potassium in plants and in HCl extracts. Soil Science 62:393-407.
- 39. Mehlich, A., and J. F. Reed. 1946. The influence of degree of saturation, potassium level, and calcium additions on removal of calcium, magnesium, and potassium. Soil Sci. Soc. Am. Proc. 10:87-93.
- 40. Olson, L. C., and R. P. Bledsoe. 1942. The chemical composition of the cotton plant and the uptake of nutrients at different growth stages. Georgia Agri. Exp. Sta. Bul. 222.
- 41. Overton, J. R., and W. L. Parks. 1969. Fertilizer rate and placement for cotton. Better crops with plant food No. 2:4-7.
- 42. Page, A. L., and F. T. Bingham. 1965. Potassium-Magnesium inter-relationships in cotton. California Agr. 19(11):6-7.
- 43. Page, A. L., F. T. Bingham, T. J. Genje, and M. J. Garber. 1963. Availability and fixation of added potassium in two California soils when cropped to cotton. Soil Sci. Soc. Am. Proc. 27:323-325.
- 44. Page, A. L., F. T. Bingham, and T. J. Genje. 1963. High Potassium needs of San Joaquin Valley cotton soils related to fixation problem. California Agr. 17(6):4-5.
- 45. Pandita, M. L., and W. T. Andrew. 1969. A correlation between phosphorus content of leaf tissue and days to maturity in tomato and letuce. Proc. Am. Soc. Hort. Sci. 91:544-549.
- 46. Samuels, G., J. P. Rodriguez, P. Landrau, Jr. 1959. The response of cotton to fertilizers in Puerto Rico. Jour. Univ. Puerto Rico 43:89-102.
- 47. Shea, P. F., W. H. Gabelman, and G. C. Gerloff. 1967. The inheritance of efficiency in potassium utilization in snap beans (<u>Phaseolus valgaris L.</u>). Proc. Am. Soc. Hort. Sci. 91:286-293.
- 48. Stanford, G., J. B. Kelly, and W. H. Pierre. 1941. Cation balance in corn grown on high-lime soils in relation to potassium deficiency. Soil Sci. Soc. Am. Proc. 6:335-341.
- 49. Stromberg, L. K. 1960. Need for potassium fertilizer on cotton determined by leaf and soil analyses. California Agr. 14(4): 4-5.
- 50. Whitfield, C. J., and D. E. Smika. 1971. Soil temperature and pesidue effects on growth components and nutrient uptake of four wheat varieties. Agron. Jour. 63:297-300.

51. Wishart, J., and H. G. Sanders. 1935. Empire Cotton Growing Corporation Principles and Practices of Field Experimentation. London. 1935. APPENDIXES

μ

-1

APPENDIX A

Procedure for the aluminum heating block method of wet ashing of plant tissue for Ca, Mg, K, and P analysis:

Weight 0.5000 gm of each oven dry, ground sample into a
 50 ml tube containing two small glass beads.

2. Add three ml of concentrated nitric acid to each sample, and place a small glass funnel in the mouth of each tube to act as a condenser. Allow the samples to pre-digest at room temperature overnight in the aluminum heating block.

3. Place the heating block on hotplate, heat to 150° C, and digest at this temperature for one hour. Allow samples to cool to room temperature.

4. Add two ml of 60 to 70 percent perchloric acid to each tube through the funnel, and digest at 235° C for two hours or until the liquid in each sample is clear. Remove funnels and allow to cool to room temperature.

5. Add one ml of hydrochloric acid, and digest at 150° C for 15 to 20 minutes.

6. Transfer the cooled samples to 100 ml volumetric flasks and bring to volume with distilled water.

7. Shake flasks to mix contents, and let stand overnight before analysis on the AutoAnalyzer.

APPENDIX B

I. Simultaneous determination of Ca, K, Mg, and P concentrations by Autoanalysis.

A. The instrumentation for the Technicon AutoAnalyzer employed consisted of 14 separate modules as follows: small automatic sampler equipped with a liquid wash system; meters equipped with continuous tubular flow cells; and dual-channel flame photometer; two two-pen recorders; two voltage stabilizers; one time-delay coil; and two range expanders.

B. Calcium and potassium determinations were made by using the Technicon III dual-channel flame photometer. Lithium nitrate (.525 g in one liter of water) is used as an internal standard and lanthanum chloride (five gm in one liter of water) is used to increase the calcium flame response. The proportioning-pump manifold designed to supply the correct volume of sample, LiNO₃ and LaCl₃ to the dualchannel flame photometer is used.

C. Magnesium concentrations were determined in a colorimeter by a modified lake procedure in which $Mg(OH)_2$ is precipitated in an alkaline solution and Magnesium Blue dye (.02 percent) is adsorbed on the $Mg(OH)_2$ in the presence of a detergent (.05 percent Brij 35 in water) and a suspending material (two gm EGTA and two gm polyvinyl alcohol in one liter H_2O). The proportioning-pump manifold designed to supply the correct volumes of sample, PVA-EGTA, Magnesium Blue, and NaOH (2<u>N</u>) to the flow cell of the colorimeter is used. The colorimeter

used in this procedure was equipped with a 630 mµ filter.

D. Phosphorus determinations were made using a colorimeter. The sample is first diluted with $.05\underline{N}$ HCl. The diluted sample stream is then joined by a stream of ammonium vanadate (25 gm ammonium molybdate in 400 ml of H_20 mixed with an equal volume of a solution of 1.25 gm ammonium metavanadate in 300 ml of water with a few drops of concentrated NH₄OH and 250 ml of concentrated HNO₃). The stream then passes through the colorimeter, equipped with a 420 mµ filter, where phosphorus is determined as PO_4^{-3} . The proportioning-pump manifold designed to supply the correct volumes of sample, HCl, and ammonium vanadate to the colorimeter is used. APPENDIX C

TABLE 28

LEVELS OF STATISTICAL DIFFERENCE AMONG CULTIVAR MEANS AND ADJUSTED MEANS WHERE ANALYSES OF VARIANCE, REGRESSION AND COVARIANCE WERE CALCULATED FOR CALCIUM, MAGNESIUM, POTASSIUM AND PHOSPHORUS AT DIFFERENT GROWTH STAGES IN 1969 AND 1970.

T o noted and	S I	tage 1			Stage	2		Stage 1		01	tage :	0	0.1	tage 3	
LUCALIOUS	COVA	Keg	Var	COVI	Reg	Var	Covt	Reg	Var	Covl	Reg	Var	Covt	Reg	Var
			Calciu	m 1969						Cal	cium]	970			
Fayette		SN	NS	ł	NS	SN		SN	NS		SN	NSN		*	MC
Henry	ł	SN	**	*	*	NS	1	NS	*	1	*	SN		NC	NC
Hardeman	SN	Sig	SN	1	SN	NS	1	NS	NS		SN	SN	;	SN	NIC
Henderson	NS	Sig	NS	ł	SN	*	ł	NS	**	ł	SN	SN		NC	
Carroll	**	Sig	**	ł	NS	*	*	**	*		NC	**		SIL OIL	
Lauderdale		SN	**		NC	NC	+	44	- CAL		211		l	CN	NN
					CNI	CN	ĸ	**	NS	ł	NS	**	1	NS	SN
PANTEIICE								NS	**	ł	NS	NS	I	NS	**
		M	agnesit	и 196	•					Maon	mutae	1070			
Fayette	1	NS	*	1	NS	*	1	NS	NS		SN	**		NC	•
Henry	1	NS	SN	1	NS	NS	NS	*	NS	NS) -{c	SN	SN	*	NC
Hardeman	**	**	**	**	*	**	1	NS	NS		SN	SN		NC	SIN .
Henderson	**	**	NS	1	NS	**	NS	*	NS		NS	SN	ł	SN	**
Carroll	**	*	**	*	*	**	*	**	NS		NS	*	*) *	*
Lauderdale	**	**	SN	NS	**	SN	l	NS	NS		NS	SN	ł	NS	NS
Lawrence								SN	NS	ł	NS	NS		NS	*

	S	tage 1		2	tage	2	S	tage 1		S	tage 2		01	tage 3	
Locations	Covt	Reg	Var	Cov	Reg	Var	Cov	Reg	Var	COVL	Reg	Var	COVI	Reg	Var
4 7	1	А	otassi	um 1969						Pota	un ssium	1970			
Fayette	NS	*	NS	1	NS	NS		NS	NS		NS	NS		NS	NS
Henry	NS	**	SN	*	**	NS	NS	**	NS	NS	**	NS	NS	**	NS
Hardeman	SN	*	SN	I	SN	NS	*	**	SN	ł	NS	NS		NS	NS
Henderson	ł	SN	*	*	Sig	*	NS	*	SN	ł	NS	**	**	**	*
Carroll	NS	**	SN	NS	**	SN	*	**	NS	NS	**	NS	NS	*	NS
Lauderdale	NS	**	SN	NS	**	NS	NS	**	NS	*	**	*	NS	**	NS
Lawrence							NS	Sig	NS	ł	NS	*		SN	**
		Ъ	hosphoi	cus 196	6			•		Phoe	phorus	1970			
Fayette	SN	S18	NS	**	Sig	*	**	Sig	**	1	NS	**	**	SN	NS
Henry	ł	SN	SN	**	**	SN	ł	NS	NS	NS	S1g	SN	**	**	*
Hardeman	ł	SN	SN	ł	SN	SN	NS	**	NS	1	NS	NS	I	NS	SN
Henderson	T	SN	SN	ł	NS	NS	NS	S18	NS	ł	NS	*	**	*	*
Carroll	1	SN	SN	ł	NS	NS	1	NS	**	ł	NS	NS	ł	NS	SN
Lauderdale	1	SN	**	1	SN	**	1	NS	SN	NS	Sig	NS	I	NS	SN
Lawrence							ł	SN	SN	ł	NS	SN	I	NS	**
¹ If re,	gressio	n was	not si	gnifica	nt and	alyses	of cov	arianc	e was	not ca	lculat	ed.			

Cov = Analyses of covariance; Reg = Regression test; Var = Analyses of variance; NS = Not significant at 0.05 level; * = Significant at 0.05 level; ** = Significant at 0.01 level; Sig = Significant regression coefficient at 0.10 level.

TABLE 28 (continued)

TABLE 29

LEVELS OF STATISTICAL DIFFERENCE AND MEAN SQUARES OF CALCIUM, MAGNESIUM, POTASSIUM AND PHOSPHORUS CONCENTRATIONS FROM THE COMBINED ANALYSES OF VARIANCE FOR EACH YEAR SEPARATELY

Source	Significance Level	Mean Square	Significance Level	Mean Square
	Calcium :	1969 ¹	Calcium :	1970 ²
Locations	**	5.910	**	4 520
Cultivars	**	0.370	**	0 920
Stages	**	2.360	**	0.920
Location x Stage	**	3,120	**	1 490
Locations x Cultivars	NS		NS	1.490
Cultivars x Stages Location x Cultivars	NS		NS	
x Stages	NS		NS	
	Magnesium	1969	Magnesium	1970
Locations	**	1 880	**	2 220
Cultivars	**	0.250	**	3.220
Stages	**	0.880	**	0.140
Locations x Stages	**	0.570	sk sk	0.400
Locations x Cultivars	NS	0.570	NC	0.330
Cultivars x Stages	NS		NS	
Locations x Cultivars			ND	
x Stages	NS		NS	
	Potassium	1969	Potassium	1970
Locations	**	58,760	**	41 540
Cultivars	NS	201700	**	2 640
Stages	**	261.000	**	152 000
Locations x Stages	**	5.880	**	6 500
Locations x Cultivars	NS	5.000	NS	0.,00
Cultivars x Stages	NS		NS	
Locations x Cultivars			21.5	
x Stages	NS		NS	

Source	Significance Level	Mean Square	Significance Level	Mean Square
	Phosphorus	1969	Phosphorus	19 70
Locations	**	0.073	**	0.080
Cultivars	**	0.005	**	0.006
Stages	**	0.698	**	0.045
Locations x Stages	**	0.014	**	0.016
Locations x Cultivars	NS		NS	
Cultivars x Stages Locations x Cultivars	NS		*	0.001
x Stages	NS		NS	

TABLE 29 (continued)

¹Analyses included two growth stages in 1969 and three in 1970.

²Analyses included Fayette, Henry, Hardeman, Henderson, Carroll, Lauderdale and Lawrence Counties in 1970. Lawrence was not included in 1969.

NS = Nonsignificant at 0.05 level.
* = Significant at 0.05 level.
** = Significant at 0.01 level.

TABLE 30

LEVELS OF STATISTICAL DIFFERENCE AND MEAN SQUARES OF CALCIUM, MAGNESIUM, POTASSIUM AND PHOSPHORUS CONCENTRATIONS FROM THE COMBINED ANALYSES OF VARIANCE FOR 1969 AND 1970 COMBINED

Source	Significance Level	Mean Square
	<u>Calcium 1969 and 1970¹</u>	
Cultivars	**	0.810
Stages	**	6,130
Locations	**	5,510
Years	**	11.580
Locations x Cultivars	*	221500
Locations x Stages	**	1.790
Locations x Years	**	1.470
Stages x Years	*	0.400
Cultivars x Years	NS	00100
Cultivars x Stages	NS	
Cultivars x Stages x Locations	NS	
Cultivars x Stages x Years	NS	
Cultivars x Years x Locations	NS	
Cultivars x Stages x Years		
x Locations	NS	*

	Magnesium 1969 and 1970	
Cultivars	**	0.220
Stages	**	0.326
Locations	**	1.098
Years	**	0.757
Locations x Stages	**	0.168
Locations x Years	**	1.518
Locations x Cultivars	**	0.034
Stages x Years	**	0.330
Cultivars x Years	**	0.083
Cultivars x Stages	NS	0.000
Cultivars x Stages x Locations	NS	
Cultivars x Stages x Years	NS	
Cultivars x Years x Locations	NS	
Cultivars x Stages x Locations		
x Years	NS	

Source	Significance Level	Mean Square
	Potassium 1969 and 1970	
Cultivars	**	2.590
Stages	**	334.000
Locations	**	23.380
Years	**	8.850
Locations x Stages	**	3.000
Locations x Years	**	31.090
Locations x Cultivars	NS	
Stages x Years	NS	
Cultivars x Years	NS	
Cultivars x Stages	NS	
Cultivars x Stages x Locations	NS	
Cultivars x Stages x Years	NS	
Cultivars x Years x Locations	NS	
Cultivars x Stages x Locations		
x Years	NS	
	Phosphorus 1969 and 1970	
Cultivars	**	0.004
Stages	**	0.338
Locations	**	0.041
Years	NS	
Locations x Stages	**	0.010
Locations x Years	**	0.028
Locations x Cultivars	NS	
Stages x Years	**	0.192
Cultivars x Years	*	0.002
Cultivars x Stages	*	0.002
Cultivars x Stages x Locations	NS	
Cultivars x Stages x Years	NS	
Cultivars x Years x Locations	NS	
Cultivars x Stages x Locations		
x Years	NS	

TABLE 30 (continued)

¹Analysis included Fayette, Henry, Hardeman, Henderson, Carroll, and Lauderdale Counties with the first two growth stages.

NS = Nonsignificant at 0.05 level.

* = Significant at 0.05 level.

** = Significant at 0.01 level.

TABLE 31

1969 AND 1970 ANALYSES OF VARIANCE LEVELS OF STATISTICAL DIFFERENCE AMONG GROWTH STAGES, LOCATIONS AND INTERACTIONS FOR EACH CULTIVAR CALCULATED SEPARATELY FOR THE FOUR NUTRIENT CONCENTRATIONS

Cultivar	Stages	Locations ¹	Stage x Locations ²	Stages	Locations	Stage x Locations
		Calcium 196	9		Calcium 19	70
AC 1517D	NS	**	**	*	**	**
Coker 508	*	**	NS	**	**	**
ST 508	NS	**	**			
ST 603		بر ا		NS	**	*
DPL 16	NS	**	**	**	**	*
Hancock	**	**	**	**	**	*
DK 11	**	**	**	**	**	**
Aub M	NS	**	**	**	**	NS
ST 213	NS	**	**	NS	**	*
DPL 45A	*	**	**	**	**	NS
Rex SL	**	**	**	*	**	**
		Magnesium 19	69		Magnesium 1	.970
AC 1517D	*	**	*	*	**	*
ST 508	*	**	**			
ST 603				NS	**	**
DPL 16	NS	**	*	**	**	**
Hancock	**	**	**	NS	**	NS
DK 11	*	**	*	NS	**	**
Aub M	NS	**	**	NS	**	NS
ST 213	NS	**	NS	*	**	NS
DPL 45A	*	**	**	*	**	**
Rex SL	NS	**	**	NS	**	**
Coker 417	NS	**	*	**	**	NS
		Potassium 19	69		Potassium 1	.970
AC 1517D	**	**	NS	**	**	*
Coker 417	**	**	NS	**	**	**
ST 508	**	**	*			
ST 603			1.20	**	**	**
DPL 16	**	**	*	**	**	**
Hancock	**	**	NS	**	**	NS
DK 11	**	**	NS	**	**	**
Aub M	**	**	NS	**	**	**
ST 213	**	**	NS	**	**	**
DPL 45A	**	**	NS	**	**	NS
Rex SL	**	**	NS	**	**	NS

Cultivar	Stages	Locations ¹	Stage x 2 Locations ²	Stages	Locations	Stage x Locations
		Phosphorus 1	969		Phosphorus	1970
AC 1517D	*	**	*	**	**	*
Coker 417	**	**	NS	NS	**	*
ST 508	**	*	NS			
ST 603				NS	**	-
DPL 16	**	**	**	**	**	**
Hancock	**	**	*	NS	**	4
DK 11	**	**	NS	*	**	**
Aub M	**	**	**	**	**	**
ST 213	**	**	**	**	**	
DPL 45A	**	**	NS	NC	**	
Rex SL	**	**	*	NS	**	NS

TABLE 31 (continued)

¹Analyses included two growth stages in 1969 and three in 1970.

² Analyses included Fayette, Henry, Hardeman, Henderson, Carroll and Lauderdale Counties in 1969. In 1970 Lawrence County was included.

NS = Nonsignificant at 0,05 level.

* = Significant at 0.05 level.

** = Significant at 0.01 level.

TAE	LE	32

LEVELS OF STATISTICAL DIFFERENCE AND MEAN SQUARES OF YIELDS FROM THE COMBINED ANALYSES OF VARIANCE FOR 1969 AND 1970 COMBINED

Source	Significance Level	Mean Square
Locations	**	583,074
Cultivars	**	256,265
Years	**	4,275,492
Locations x Cultivars	NS	
Locations x Years	**	955,671
Cultivars x Years	NS	

NS = Not significant at 0.05 level.

****** = Significant at 0.01 level.

APPENDIX D

I. Preparation of extracting reagent $(0.05N \text{ HCl and } 0.02N \text{ H}_2SO_4)$ for "North Carolina" extraction method.

A. Add separately 73 ml of concentrated HCl and 12 ml of concentrated H_2SO_4 to approximately ten liters of distilled water.

B. Dilute to 18 liters with distilled water, and mix. thoroughly.

II. Extraction of exchangeable ions by "North Carolina" method.

A. Weigh 5.0 g of soil into a container, and add 20 ml of the above extracting solution.

B. Shake the soil extracting solution mixture (1:4 soilsolution ratio) in a mechanical shaker for five minutes, and filter immediately through retentive filter paper into an appropriate container.

Marshall Clayton Smith was born June 3, 1943, in Memphis, Tennessee. He lived on a farm and attended Grand Junction High School where he graduated in May 1962.

He attended The University of Tennessee at Martin, completing his Bachelor of Science degree in General Agriculture in 1968. He then attended The University of Tennessee at Knoxville, and worked as an Assistant in Agronomy, receiving his Master's degree in Agronomy in March 1972.