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Background: Pancreatic adenocarcinoma (PAAD) is among the most devastating
of all cancers with a poor survival rate. Therefore, we established a zinc finger
(ZNF) protein-based prognostic prediction model for PAAD patients.

Methods: The RNA–seq data for PAAD were downloaded from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.
Differentially expressed ZNF protein genes (DE-ZNFs) in PAAD and normal
control tissues were screened using the “lemma” package in R. An optimal risk
model and an independent prognostic value were established by univariate and
multivariate Cox regression analyses. Survival analyses were performed to assess
the prognostic ability of the model.

Results:We constructed a ZNF family genes-related risk scoremodel that is based
on the 10 DE-ZNFs (ZNF185, PRKCI, RTP4, SERTAD2, DEF8, ZMAT1, SP110,
U2AF1L4, CXXC1, and RMND5B). The risk score was found to be a significant
independent prognostic factor for PAAD patients. Seven significantly differentially
expressed immune cells were identified between the high- and low-risk patients.
Then, based on the prognostic genes, we constructed a ceRNA regulatory
network that includes 5 prognostic genes, 7 miRNAs and 35 lncRNAs.
Expression analysis showed ZNF185, PRKCI and RTP4 were significantly
upregulated, while ZMAT1 and CXXC1 were significantly downregulated in the
PAAD samples in all TCGA - PAAD, GSE28735 and GSE15471 datasets. Moreover,
the upregulation of RTP4, SERTAD2, and SP110 were verified by the cell
experiments.

Conclusion: We established and validated a novel, Zinc finger protein family -
related prognostic risk model for patients with PAAD, that has the potential to
inform patient management.
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1 Introduction

Pancreatic adenocarcinoma (PAAD) is a devastating
malignancy with a very low 5-year survival rate (Kuninty et al.,
2019). The onset of PAAD is insidious, and most patients are
admitted to the hospital with clinical symptoms such as
“jaundice and abdominal pain”. Nearly 80% of patients have no
chance of surgical resection (Mizrahi et al., 2020). Currently, the
main diagnostic option for PAAD is imaging. Compared with other
mainstream targeted therapies for malignant tumors, PAAD lacks
effective target diagnosis and precise treatment options (Grossberg
et al., 2020). The pathogenesis of PAAD is regulated by multiple
factors, multiple genes and microenvironments. Therefore, the use
of massively parallel sequencing technologies to mine PAAD
datasets, and utilization of bioinformatics methods to accurately
analyze interaction targets, can provide new ideas for precise
treatment of PAAD.

The ZNF domain is present in about 5% of human proteins and
is associated with pathogenesis of many solid tumors. Precisely,
ZNF259 activates ERK/GSK3β by activating the ERK/GSK3β/Snail
signaling pathway to promote breast cancer cell invasion and
migration (Xiao et al., 2014; Liu et al., 2018). Due to
multifunctional binding abilities of zinc finger proteins, ZNF
plays an important role in cell differentiation, cell metabolism,
autophagy, apoptosis, and stemness maintenance. There is a need
to elucidate on the significance of zinc finger proteins in tumor
pathogenesis. Through bioinformatics analyses, Sun et al. (2021)
found that the zinc finger protein 2 gene (ZIC2) is positively
correlated with immune infiltrating cells in hepatocellular
carcinoma (HCC) patients, and elevated ZIC2 mRNA expressions
in CD4+ T cells are associated with the 5-year survival rate of HCC
patients. These findings, imply that the ZIC2 gene can be used as a
marker for liver cancer immune responses, and to predict HCC
prognosis. In pancreatic ductal adenocarcinoma, ZNF185 and
SERTAD2 are tumor immune targets, providing new ideas for
treatment of tumor immune invasion (Chen et al., 2021; Zhang
et al., 2022).

In summary, PAAD pathogenesis is regulated by multiple factors,
multiple genes and microenvironments. The ZNF gene may be
involved in cancer occurrence and progression as an oncogene.
Therefore, the use of massively parallel sequencing technologies to
mine PAAD datasets, and utilization of bioinformatics methods to
accurately analyze interaction targets, can provide new ideas for
precise treatment of PAAD. We mined TCGA, GEO, ICGC, as
well as Uniprot databases, and used GSE as the training set to
construct a PAAD-related risk score model via COX regression
analysis. The constructed risk model is of great significance for
further studies on the roles of ZNF in pancreatic cancer pathogenesis.

2 Methods

2.1 Data sources

The RNA-seq data and corresponding clinical data for TCGA-
PAAD patients were downloaded from-the Genomic Data
Commons (GDC) database (GDC Data Portal, RRID:SCR_

014514) (https://portal.gdc.cancer.gov), which included
178 PAAD cases and 4 control samples. The RNA-seq data of
167 and eight healthy pancreatic tissues samples were obtained from
the GTEx and ANTE databases, respectively. The RNA-seq data and
survival information for PAAD patients from two countries (PACA-
AU: 455 cases; PACA-CA: 455 cases) were downloaded from the
International Cancer Genome Consortium (ICGC) database (ICGC
Data Portal, RRID:SCR_021722) (https://dcc.icgc.org/). Three
PAAD-related datasets (GSE62452, GSE15471, and GSE28735)
were downloaded from the Gene Expression Omnibus (GEO)
database- (GEO, RRID:SCR_005012) (https://www.ncbi.nlm.nih.
gov/geo/). The ICGC and GSE62452 datasets were used as
external validation datasets for the prognostic model, and the
GSE15471, GSE28735 datasets, as well as the ANTE-normal
cohorts, were used to validate the expression levels of the
prognostic model genes. The 1986 zinc finger protein family
genes were extracted from the universal Protein Resource
UniProt database (universal Protein Resource, RRID:SCR_
002380) UniProt database (https://www.uniprot.org/) (The
UniProt Consortium, 2017).

2.2 Analysis of differentially expressed ZNF
protein family genes in PAAD

According to the previous literature, the differential analysis was
performed between 178 PAAD samples from the TCGA database
and 171 normal samples from the GTEx and TCGA databases using
the “limma”package (limma, RRID:SCR_010943) (http://bioinf.
wehi.edu.au/limma/) in R (Ritchie et al., 2015; Wen et al., 2020).
The principal component analysis (PCA) plot in the TCGA-PAAD
and GTEx-normal cohorts between the case and normal samples
were displayed in Supplementary Figure S1, indicating an excellent
distinction. In which, genes with adjusted p-value (adj. p) < 0.
05 and-|log2 (fold change)|>1 were considered significantly
expressed (Wang et al., 2022). Intersections of differentially
expressed genes in PAAD and 1936 PAAD-related ZNF family
genes in the UniProt database were used as differentially expressed
ZNF family genes (DE-ZNFs). Results were visualized using a
heatmap and a volcano plot.

2.3 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed on the DE-
ZNFs using clusterProfiler (ClusterProfiler, RRID:SCR_016884)
(http://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) (Yu et al., 2012). The GO system consists of
three components: biological process (BP), molecular functions
(MF) and cellular components (CC). KEGG (KEGG, RRID:SCR_
012773) (https://www.kegg.jp) (http://www.genome.jp/kegg/-) is a
biological systems database that integrates genomic, chemical and
systemic functional information (Kanehisa et al., 2008). The
enrichment results were visualized by withusing the “ggplot2”
package (ggplot2, RRID:SCR_014601) (https://cran.r-project.org/
web/packages/ggplot2/index.html).
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2.4 Construction of the prognostic signature

Using TCGA as the training set, univariate Cox proportional
hazards regression analysis was performed on DE-ZNFs to screen
for the genes that were significantly associated with overall survival
(OS) outcomes in the TCGA-PAAD training set (p < 0.01). Then,
patients were divided into high and low expression groups according
to expressions of DE-ZNFs from univariate Cox analysis for KM
survival analysis to obtain the DE-ZNF with significant different
survival rate between the 2 expression groups (p < 0.01). These DE-
ZNFs were subjected to multivariate Cox regression analyses to
identify suitable ZNF - related genes to construct the model. Model
genes were screened to calculate the risk scores. A prognostic risk
score was calculated for each patient using the formula: risk score =
β1 X1 + β2 X2 + . . .. . . + βn Xn, whereby β represents the coefficient,
X represents prognostic gene expressions and n represents the
number of genes. The median risk score was used as the cut-off
value to divide the TCGA-PAAD patients into the high and low-risk
group. Then, the K-M survival curve was constructed after which,
the log-rank test was used to assess survival differences between the
risk groups. Sensitivity and specificity of the prognostic model were
assessed by ROC analysis and AUC values indicated discrimination.
Effectiveness of the prognostic model was validated using the ICGC
and GSE63452 datasets.

2.5 Survival and risk score analyses

Stratified analysis was performed to establish the correlations
between high and low risk groups and survival outcomes in patients
with different clinico-pathological characteristics (age >65, age ≤ 65,
female, male, M0, T3-T4, stage I-stage II, stage III-stage IⅤ; G1/G2,
G3/G4; race-white). To establish the correlations between clinico-
pathological characteristics and risk score, the 82 samples with
clinical information (stage, age, gender, grade, race and TMN) in
the in TCGA-PAAD training set were extracted and compared
between subgroups in each clinico-pathological characteristics.
The Wilcoxon test was used for comparisons between groups
while the Kruskal-Wallis test was used for comparisons among
groups.

2.6 Assessment of independent prognostic
value

Univariate and multivariate Cox regression analyses were
conducted to establish whether the ZNF-related risk score can be
used as an independent predictor of OS for PAAD patients. Stage,
age, gender, grade, race, T stage, M stage, N stage and risk score were
used as the covariates. Clinical factors with p < 0.05 after the two cox
analyses were considered to be independent prognostic factors that
were used to establish the prognostic model. A prognostic
nomogram for assessing the 1-, 3- or 5- year survival probability
for PAAD patients was established using the “rms” package (RMS,
RRID:SCR_007415) (http://www.rms.org.uk/) (Kandimalla et al.,
2020). The C-index and calibration curves of the nomogram
were used to calculate the discrimination and calibration between
the nomogram predicted value and the true survival.

2.7 Analysis of the ZNF gene family signature

To investigate the biological processes that are relevant to the
ZNF gene family, first, we determined the correlations between all
ZNF family genes and risk scores (Pearson |R| > 0.4). The “corrr”
package was used for correlation network construction of the
obtained genes, while the “clusterProfiler” package was used for
GO and KEGG function enrichment analyses of the correlation
genes. To establish the differences in immune cell infiltrations, the
proportions of 22 immune cell types in the high- and low-risk
groups were calculated using the CIBERSORT algorithm (Chen
et al., 2018). The “ggplot2” package was used to draw violin diagrams
to present the comparison results. To establish the risk score-
associated inflammatory activities, the “correlogram” package was
used to investigate the correlations between 7 metagenic clusters
(HCK, IgG, Interferon, LCK,MHC-I, MHC-II, and STAT1) and risk
scores. Relationships between ZNF-related prognostic genes and
immunotherapeutic responses were determined by calculating the
differences in tumor mutational load (TMB), neoantigen number,
clonal neoantigen number and subclonal neoantigen number
between the high and low-risk groups.

2.8 Regulatory mechanisms of the
prognostic genes

Correlation coefficients between prognostic factor expression
levels and their methylation levels were determined using the
Pearson’s correlations method. Differential analysis was
performed on 178 PAAD samples and 4 normal samples using
the “limma” package to obtain differentially expressed miRNAs and
lncRNAs. Combined with expression trends of prognostic genes, the
competing endogenous RNA (ceRNA) regulatory network was
constructed based on the lncRNA-miRNA-mRNA regulatory
mechanism.

2.9 Validation of prognostic gene expression

In order to verify the expression of the prognostic genes, the
TCGA-PAAD cohorts were analyzed and compared with the
normal individuals both in the GTEx (with the normalization
tool of RLE from DESeq2 R package to obtain normalized count
data) and ANTE datasets by the wilcox. test as well as GSE28735 and
GSE15471. Immunohistochemical results of prognostic genes in
PAAD tissues were searched using Human Protein Atlas
(HPA,RRID:SCR_006710) (HPA: https://www.proteinatlas.org/).

2.10 Cell RT-qPCR validation

Four strains of pancreatic cancer cells were cultured to establish
a group of normal pancreatic epithelial cells as the control group for
cytological verification of model genes. Cells were cultured in 10%
FBS complete medium to enter the log phase. Then, RNA extraction
was performed using a kit (Tiangen, cat#DP430). cDNA synthesis
from the extracted RNA was performed using the iScript™ cDNA
Synthesis Kit (BIO-RAD, cat#1708891). Cell RT-qPCR validation
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amplification was performed in a 10 ul system using the iTaq™
universal SYBR® Green SupermixRNA (BIO-RAD, cat#1725121).
The experiments were conducted in triplicates, and p < 0.05 was set
as the threshold for statistical significance (Supplementary Figure
S2). The PANC-1, RRID: KCB 200809YJ, BxPC-3, RRID: KCB
200428YJ, SW 1990, RRID: KCB 2012113YJ cells, were acquired
from the Kunming Institute of Zoology, Chinese Academy of
Sciences. The ASPC-1, RRID: TCHu 8, cells were procured from
the cell bank of the Chinese Academy of Sciences while. HPDE6-C7,
RRID: BFN60807571 cells were obtained from, Qingqi (Shanghai)
Biotechnology Development Co. Ltd.

3 Results

3.1 Identification of DE-ZNFs and functional
analysis in PAAD

The workflow for this study is shown in Figure 1. A total of
407 DE-ZNFs (150 were upregulated and 257 were downregulated)
were identified between the PAAD and normal control tissue
samples (Figures 2A, B). The 407 DE-ZNFs were found to be
enriched in 226 BPs, 10 CCs, 61 MFs, and 18 KEGG signaling
pathways. These included biological processes such as protein
autoubiquitination, intracellular receptor signaling pathway,
protein polyubiquitination (Figure 2C), and signaling pathways
such as herpes simplex virus 1 infection, Th17 cell
differentiation, and NF-kappa signaling pathway (Figure 2D).

3.2 Construction of the prognostic model
for PAAD

Univariate Cox regression analysis revealed 36 DE-ZNFs
that were significantly associated with OS (Supplementary Figure
S3). The significantly expressed genes were subjected to multivariate
Cox regression analysis to construct the prognostic model. The

forest map was used for visualization (Figure 3A). The prognostic
model exhibited the best performance when 10 DE-ZNFs were
included. The risk score for each sample was calculated based on
expression levels of the 10 prognostic genes. Risk score = ZNF185*
0.340812 + DEF8 * −0.91561 + ZMAT1 *-0.77978 + PRKCI * 0.6138
+ SP110* 0.70712+U2AF1L4 * −0.57379 + RTP4 * 0.351366 +
CXXC1 *1.352264 + RMND5B * −0.96994 + SERTAD2 *
0.373257. Based on the median risk score, PAAD samples were
divided into high and low-risk groups. The Kaplan–Meier curve
revealed that samples in the high-risk group exhibited worse
OS outcomes than those in the low-risk group (Figure 3B).
The risk curve and scatter plot were generated to show the
risk score and survival status for each PAAD sample. The risk
coefficient and mortality in the high-risk group were higher
than those in the low-risk group (Figure 3C). A heat map of
the 10 prognostic gene expression profiles in PAAD samples
revealed that DEF8, RMND5B, CXXC1, ZMAT1, and
U2AF1L4 were highly expressed in the low-risk group, while
RTP4, ZNF185, PRKCI, SERTAD2 and SP110 were highly
expressed in the high-risk group (Figure 3D). The ROC curves
were plotted at time nodes of 1, 3, and 5 years. The AUCs of the ROC
curves were all greater than 0.7, indicating a good efficacy of
the prognostic model (Figure 3E). Validation of the prognostic
model was performed using the GSE62452 and ICGC datasets,
and the results were comparable to those of the training set
(Supplementary Figure S4).

3.3 Risk score performance

After stratifying the clinical characteristics, there were
significant differences in risk scores between the high and low
risk groups in Age>65, Age<=65, female, male; M0, T3-T4, stage
I-stage II, stage III-stage IV, G1/G2, G3/G4 and race-white
(Figure 4A). Correlation analysis of clinico-pathological factors
such as stage, age, gender, grade, race, and TMN with prognostic
models for the 82 TCGA - PAAD samples revealed significant

FIGURE 1
Workflow diagram of this paper.
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differences in risk scores only in grade Figure 4B; Supplementary
Figure S5.

3.4 Independent prognostic factors in PAAD

Clinico-pathological factors, such as stage, age, gender, grade,
race, TMN, and risk score were subjected to univariate and
multivariate Cox regression analyses to establish the independent
prognostic factors for PAAD. The risk score was found to be a
significant prognostic factor in both Cox analyses (p ≤ 0.05),
suggesting that the risk score was is an independent prognostic
factor for PAAD patients (Figures 5A, B).

3.5 Construction of the nomogram

The independent prognostic factors were used to establish a
nomogram for prediction of 1-, 3- and 5-year OS outcomes in
TCGA - PAAD cohorts. Ten prognostic genes, including DEF8,
RMND5B, CXXC1, ZMAT1, U2AF1L4, RTP4, ZNF185, PRKCI,
SERTAD2 and SP110 were included in the model (Figure 6A). The
points of the factors indicate their corresponding contribution to the
survival probability. The actual OS and nomogram-predicted OS
outcomes at 1 and 3 years matched well, as shown by the calibration
curves (Only 1 patient survived for 5 years, thus, the calibration
curve for 5 years was not shown.) (Figure 6B). The AUCs at 1-, 3-
and 5- years time nodes were 0.796, 0.725 and 0.826, respectively,

FIGURE 2
Identification and functional analysis of DE-ZNFs. (A). Volcano plot of differentially expressed genes in PAAD-vs-Normal comparison group (B). Heat
map of differentially expressed genes, 150 upregulated, 257 downregulated, |log2 (fold change)|>1 and p < 0.05 (C). Top 5 GOBP, CC, andMF enrichment
results of DE-ZNFs (D). Top 10 enriched KEGG pathways of DE-ZNFs.
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revealing that the predictive ability of the nomogram was accurate
(Figure 6C).

3.6 Biological processes of ZNF family gene
signatures

The 115 ZNF family signatures that were closely associated with
risk scores were identified by correlation analyses (Figure 7A). There
were positive correlations between most of the ZNF family
signatures and the risk scores (Figure 7B). The 115 ZNF family
signatures were enriched in 56 BP, 28 CC, 16 MF, and 8 KEGG
signaling pathways, which were significantly associated with
epidermis development, protein processing, keratinocyte
proliferation biological functions and protein digestion and

absorption, insulin secretion, as well as ECM-receptor interaction
signaling pathways (Figures 7C, D).

3.7 Immune cell infiltration landscape

The proportions of 7 immune cells (naïve B cells, memory B cells,
plasma cells, resting NK cells, monocytes, activated dendritic cells
and neutrophils) differed between the risk groups (p < 0.05; Figures
8A, B). These results reveal a dysregulated tumor immune
microenvironment. Correlation analysis of seven meta genic
clusters (HCK, IgG, interferons, LCK, MHC-I, MHC-II, and
STAT1) with risk scores showed that the risk score was negatively
correlated with IgG and LCK and weakly positively correlated with
HCK, interferons, MHC-I, MHC-II, and STAT1 (Figure 8C).

FIGURE 3
Evaluation and validation of the prognostic risk models. (A). Cox regression analysis forest plot shows that 10 DE-ZNFs were used as parameters to
construct the best prognosticis model (B). OS survival curves showing thes survival probabilities of high and low risk groups (C). The scatter plot of the risk
score and survival time as well as heatmap of gene expression for each PAAD sample in high and low risk groups, which were sorted from left to right
according to the risk score (D). ROC curves of the prognostic model at the 1-, 3-, and 5-year time nodes.
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3.8 Relationships between immunotherapy
and ZNF family gene signatures

Relationships between ZNF family signatures and
immunotherapeutic responses were analyzed. The number of
TMB was significantly high in the low risk group, compared to
the high risk groups (p < 0.05; Figure 9A). Exclusion and PD-L1
were significantly differentially expressed between the high and low
risk groups (p < 0.05), while TIDE was not significantly differentially
expressed between the groups (Figure 9B).

3.9 Regulatory mechanisms of prognostic
genes

Analysis of correlations between prognostic genes and their
methylation levels arevealed significant negative correlations

between RTP4 and SP110 and their methylation levels (Figures
10A, B; Supplementary Figure S6). There were 66 differentially
expressed miRNAs between the 178 PAAD samples and
4 normal samples, of which 14 were upregulated while, 52 were
downregulated (Figure 10C). Moreover, there were; and
199 differentially expressed lncRNAs, of which 49 were
upregulated while 150 were downregulated (Figure 10D). Among
the 10 prognostic genes, ZNF185, PRKCI, RTP4, and
SERTAD2 were upregulated while DEF8, ZMAT1, SP110,
U2AF1L4, CXXC1, and RMND5B were downregulated. We
sequentially extracted three expression matrices from mRNA/
miRNA/lncRNA. The expression data for 10 prognostic genes
(up-4, down-6), differentially expressed miRNAs (up-14, down-
52) and differentially expressed lncRNA (up-49, down-150) were
extracted. Finally, based on potential regulatory relationships in
mRNA/miRNA/lncRNA, we constructed a ceRNA network
consisting of 5 prognostic, 7 miRNAs and 35 lncRNAs (Figure 10E).

FIGURE 4
Stratified survival analysis of risk scores and correlation analysis of clinicopathological characteristics. (A). K-M curves of PAAD patients in high and
low risk groups of Age > 65, Age <= 65, female, male, M0, T2, T3-T4, stageI-stage II, stage III-stageIⅤ, Race white, G1/G2, and G3/G4 (B). Correlations
between stages of grade and risk models.
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3.10 Expressions of the prognostic genes

The expression levels of ten prognostic genes (ZNF185, PRKCI,
RTP4, SERTAD2, DEF8, ZMAT1, SP110, U2AF1L4, CXXC1, and
RMND5B) were examined in the datasets TCGA, GSE28735, and
GSE15471. The results between the TCGA-PAAD and GTEx-
normal data after normalization exhibited that among these
genes expression was significantly different between the two
groups (Figure 11A). Similarly, the expressions of eight risk genes
between TCGA-PAAD and ANTE-normal cohorts had apparent
differences except for DEF8 and RMND5B (Figure 11B). However, it
was noticed that the expression trends of SERTAD2 and
U2AF1L4 were opposite in two cohorts above. For the two GEO
datasets, it was showed that the expression patterns of various
prognostic genes were similar to those in the TCGA cohort
except for SERTAD2 and U2AF1L4 as well. Furthermore, it was
noteworthy that the SP110 expression was upregulated in PAAD
samples compared to controls, while it expressed higher in GTEx-
normal and ANTE-normal samples (Figures 11C, D).

Analysis of protein levels of prognostic genes in PAAD and
normal tissues in the HPA database further revealed that SERTAD2

(in Cytoplasmic, membranous) proteins were expressed at
significantly higher levels in tumor tissues than in normal
controls, confirming the expression results in (Figures 11A, D
rather than that in (Figures 11B,C; While the expression of
U2AF1L4 proteins (in Nuclear) was not significantly different
(Figure 12), and no immunohistochemical result was available for
SP110 protein in the HPA database, indicating that the expression
patterns of U2AF1L4 and SP110 remained to be further studied.
Besides the expression levels of PRKCI (in Cytoplasmic,
membranous), ZMAT1 (in Cytoplasmic, membranous), CXXC1
(in Nuclear), DEF8 (in Cytoplasmic, membranous), RTP4 (in
Cytoplasmic, membranous), RMND5B (in Nuclear), and
ZNF185 were confirmed and in accordance with the results of
public datasets.

3.11 PADD cell validation

The HPDE6-C7 cell line was used as the control group, and
pancreatic carcinoma in situ and metastatic cancer cell lines were
used as the experimental group to investigated the expression of

FIGURE 5
Univariate andmultivariate independent prognostic analysis. (A). Univariate Cox independent prognostic analysis of stage, age, gender, grade, race, T
stage, M stage, N stage, and riskScore (B). Multivariate Cox independent prognostic analysis of stage, age, gender, grade, race, T stage, M stage, N stage,
and riskScore.
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10 risk model genes, where the expression levels in the control group
were basically the same. It could be seen that RTP4, SERTAD2, and
SP110 were all highly expressed in the four pancreatic cancer cell
lines, which were in concordance with publicly available GEO data,
suggesting that they are closely related to the occurrence and
metastasis of the pancreas at the cellular level. The expression of
DEF8, RRKCI, U2AF1L4 were distinctly higher in PANC-1, BXPC-
3 and Aspc-1 metastatic cell lines. Moreover, the expression levels of
the ZNF185, CXXC1, RMND5B, and ZMAT1 genes changed
significantly with different cell lines (Figure 13).

4 Discussions

Pancreatic cancer is a highly invasive malignant tumor, that
invades many organs, including the stomach, common bile duct,
duodenum, superior mesenteric vein, and celiac artery in the terminal
stages. Extensive lymphatic metastasis is often accompanied by nerve

sheath metastasis, which results in extremely high fatality rates.
Pancreatic cancer development involves complex biological
processes. It is closely associated with cell phenotypes that are
related to autophagy, histone methylation, hypoxia tolerance, and
apoptosis among others and is crucial to improve the treatment plans
and prognostic outcomes of PAAD (Gupta et al., 2021; Liu et al., 2021;
Wang Y. et al., 2021). Studies on correlations of biological targets for
early pancreatic cancer diagnosis are still in early stages. In this study,
survival and RNA-seq data for PAAD patients from TCGA and GSE
databases were downloaded, and the differentially expressed genes
and ZNF data obtained and analyzed to construct a prognostic risk
model. The prognostic risk model including 10 independent risk
factors, such as ZMAT1, PRKCI, ZNF185, SERTAD2, CXCC1,
U2AF1L4, RTP4, SP110, and DEF8, was established and validated
in GEO and ANTE datasets. The q-PCR analysis showed that the
Panc-1 cell line, derived from human ductal cell carcinoma and the
pancreatic adenocarcinoma Bxpc-3 basically showed a higher
expression level, while the expression in the metastatic carcinoma

FIGURE 6
Construction and validation of the nomogram. (A). The nomogram based on the 10 prognostic genes of the risk score (B). Calibration curve of the
nomogram.The diagonal dotted line slope is 1. (C) ROC curves of the nomogram.
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cells of pancreatic cancer was different. It was found that RTP4,
SERTAD2, and SP110 were significantly expressed in all pancreatic
cancer cells, including those of pancreatic ductal carcinoma,
pancreatic adenocarcinoma and metastatic carcinoma, providing a
reliable basis for subsequent elucidation of pancreatic cancer
pathogenesis.

It has been reported that ZMAT1 induces p21 expressions via
the SIRT3-p53 signaling pathway to inhibit pancreatic cancer cell
proliferation and induce S/G2 cell cycle arrest (Ma et al., 2022).
PRKCI-mediated ablation of pancreatic acinar cells resulted in
p62 aggregation and loss of autophagic vesicles. Pancreatic
PRKCI knockdown significantly increased pancreatic immune
cell infiltrations acinar cell DNA damage, apoptosis, and
promoted KrasG12D mediated pancreatic intraepithelial
neoplasia, promoting tumor growth (Inman et al., 2022).
Pancreatic cancer chemotherapy tolerance is associated with poor
survival and prognostic outcomes of patients. Pancreatic cancer
HEAT repeat-containing protein 1 (HEATR1) deficiency can affect
pancreatic cancer chemotherapy sensitization via the upregulation
of ZNF185 (Fang Y. et al., 2020). In the prognostic risk model of this
study, ZMAT1 is a low-risk gene for pancreatic cancer, while PRKCI
and ZNF185 are high-risk genes for pancreatic cancer.

A part from the above three genes, the other independent risk
factors have not been reported to be pancreatic cancer-related.

However, basic experiments and high-throughput data analysis of
other solid tumors confirmed that the other risk model genes are
involved in tumor pathogenesis. This evidence provides the author
with more reliable information and enthusiasm for exploration.
Elucidation of the importance of zinc finger proteins in pancreatic
cancer mayinform on novel approaches for identification of
treatment targets and overcoming chemotherapeutic resistance
among others. As transcriptional regulators of the largest
mammalian system, zinc finger proteins are involved in
regulation of tumor mechanisms via multiple pathways. The
central member of the family of TLS polymerases (REV1)
upregulates SERTAD2 expressions in a Rad18-dependent
manner, thereby enhancing lung cancer development (Chen
et al., 2022). Wei Wang et al. performed whole-genome
sequencing of invasive and in situ patients with cutaneous
squamous cell carcinoma and found that DEF8 was highly
enriched in invasive cutaneous squamous cell carcinoma (Wang
et al., 2018). Through bioinformatics and meta-analysis, Shenying
Fang et al. identified 3 melanoma risk-related genes, including
DEF8, among 330 unique melanoma genes (Fang S. et al., 2020).
In bioinformatics studies of other related tumors, it was found that
U2AF1L4 a prognostic factor for renal cancer, especially renal clear
cell carcinoma (Wang B. et al., 2021). Kuo-Wei Chang et al.
performed whole-exome sequencing of a p53-deficient murine

FIGURE 7
Biological processes involved in ZNF family gene signaling. (A). Heatmap of 115 genes that were closely related to the risk score (B). Correlation
network of 115 genes that were closely related to the risk score (C). GO enrichment analysis results of 115 genes that were closely related to the risk score,
top 10 BP, CC and MF enriched terms (D). Eight enriched KEGG pathways in which the115 genes that were closely related to risk score were enriched.
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oral cancer cell line and found that SP110 exhibited comparable
mutations to those in chemical carcinogenesis-related tongue cancer
cell lines in the human TCGA database (Chang et al., 2020).

We intersected the PAAD-related differentially expressed genes
in the TCGA database with DE-ZNF to obtain 407 ZNF-related
functional genes. The GO and KEGG enrichment analysis revealed
that the functional genes were enriched in 226 BP, 10 CC, 61 MF and
18 KEGG signaling pathways. The main enriched related biological
signals and pathways were: protein autoubiquitination, intracellular
receptor signaling pathway, Th17 cell differentiation,
HSV1 infection, and NF-κB signaling pathway. These results
show that the functional genes are involved in tumor
proliferation, apoptosis, cycle, metastasis, and tumor immunity.
Correlation analysis of the ZNF gene family and PAAD showed
that the DE-ZNF functional gene risk score was significantly
correlation from various tumor immune infiltrating cells and
inflammatory cells. In the high-risk group, NK cells, dendritic
cells, neutrophils, STAT family, MHC-I, and MHC-II were
positively correlated with PAAD pathogenesis, and the
immunotherapy target PDL-1 was also significantly different. The
α-Enolase (ENO1) specific Th17 cells have specific anticancer effects
in PAAD patients, and compared with healthy mucosa, the
abundance of Th17 in peripheral blood of tumor patients is low,
while the proportion of FOXP3+Tregs is high. The FOXP3+RORγt
+ Tregs secrete both Th17 and Th2-related pro-inflammatory
cytokines, corresponding to elevated Th17- and Th2-mediated

immune responses in PDAC patients (Amedei et al., 2013;
Chellappa et al., 2016). In solid malignant tumors, such as
pancreatic cancer, NF-κB is the main regulatory signaling
pathway that promotes malignancy and chemoresistance.
Expressions of GPR87 are significantly upregulated in pancreatic
cancer and clinical tissues, and activation of the NF-κB signaling
pathway promotes pancreatic cancer metastasis (Wang et al., 2017).
In enrichment analysis, herpes simplex virus type 1 (HSV-1)
infection was specifically proposed. In vivo and in vitro studies
confirmed that pancreatic cancer cells are highly sensitive to
HSV1 virus replication, which can be evaluated as an effective
treatment scheme. A study on oral squamous cell carcinoma
showed that the co-expression gene of zinc finger protein 71
(ZNF71) was mainly enriched in the HSV1 infection pathway
(Gayral et al., 2015; Jiang et al., 2022). 1-Methyl-D-tryptophan
(1-MT) has been shown to significantly reduces the activities of
cancer stem cells. A high abundance of CD133 + and PDL-1
expressions in the tumor immune microenvironment, suppresses
NF-κβ and Wnt/β-catenin signaling pathways in tumors, and
decreases the abundance of intra-tumor Treg cells (Alahdal et al.,
2018). Partially mature dendritic cells in peripheral blood of PAAD
patients, significantly enhanced the expressions of CD83, CD40,
B7H3, PDL-1, CCR6 and CCR7, decreased the expressions of ICOSL
and DCIR, and improved the survival and prognostic outcomes of
patients (Tjomsland et al., 2010). The 10 risk models that we
analyzed have so far not been reported to be related to tumor

FIGURE 8
Correlation analysis of ZNF family gene signaling with cellular immunity and inflammation. (A). Heat map of the proportions of 22 immune cells in
high and low risk groups (B). Violin plot of the infiltration abundance of 22 immune cells in the high and low risk groups (C). Correlation plot of the risk
score and seven metagene clusters.
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FIGURE 9
Correlation analysis of ZNF family gene risk signals and immunotherapy. (A). Differences in abundance of TMB, neoantigens, cloned neoantigens and
subcloned neoantigens between high and low risk groups (B). Expressions of TIDE, Dysfunction, Exclusion and PD-L1 in high and low risk groups.

FIGURE 10
Regulatory mechanisms of risk model genes. (A). Scatter plot of the correlation between risk model genes RTP4 and their methylation levels (B).
Scatter plot of the correlation between riskmodel genes SP110 and their methylation levels. (C). Volcano plot of differentially expressedmiRNAs in PAAD-
vs-Normal comparison group (D). Volcano plot of differentially expressed lncRNAs in PAAD-vs- Normal comparison group (E). The ceRNA regulatory
network with 5 risk model genes, 7 miRNAs and 35 lncRNAs. The green circles represent the risk model genes, the pink hexagons represent miRNAs,
and the orange diamonds represent lncRNAs.
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immunity and NF-κB signaling pathway, which will provide new
insights into studies on pancreatic cancer cells and tissue variations
as well as functions. In summary, studies on pancreatic cancer tumor
immunity and other related biological activities that are important
in development of optimal immunotherapeutic approaches are in
the initial stage.

Tumor epigenetics is regulated by protein methylation. Studies
on tumor epigenetics are key in gene mutation research and targeted
therapy. Uncontrolled methylation leads to changes in chromatin
structure, and increased protein synthesis mediates infinite
pancreatic cancer progression (Wang S. S. et al., 2021). Mishra
NK et al. performed differential expression analyses on PAAD tissue
data and normal samples from the TCGA database, and found that
most differential CpG island (CpG) sites were hypermethylated in
PAAD, and promoter methylation as well as 5′UTR were associated
with gene expressions, and most of them were negatively correlated,
while gene body and 3′UTR-related methylation were positively
correlated (Mishra and Guda, 2017). The Ras-mediated cancers
utilize the METTL13-eEF1AK55me2 dimethylation axis to increase
the translational output, and enhance protein synthesis to promote
pancreatic cancer progression. Human Arginine Methyltransferase
1 (PRMT1) overexpression enhances HSP70 binding and
BCL2 mRNA stability via elements of the 3′UTR. Increased HSP
arginine methylation of HSP70 regulates cell malignancy and is
involved in pancreatic cancer drug resistance (Liu et al., 2019; Wang

et al., 2020). These findings are in tandem with ours. Knockout of
CXCC1, also known as CxxC Finger Protein-1 (Cfp1), affects
cytosine methylation and regulation of histone H3K4 on
chromatin structure and function. A DNA methyltransferase
(DNMT) inhibitor disrupted the DNMT1/CFP1 complex and
enhanced mouse glioma chemosensitivity (Cheray et al., 2014).
We also found that RPT4 is closely associated with methylation.
In previous studies, RTP4 was shown to regulates prostate cancer via
methylation and is regarded as a precise target, whose expression
levels can be used to independently predict the prognosis of
HER2(+) breast cancer (Laurin et al., 2013; Xu et al., 2019).

The carboxy terminus of LisH (CTLH) complex representing
RMND5B can promote tumor maintenance and rapid proliferation
under extreme conditions and is associated with EMT and, wnt/β-
catenin pathway. Overexpressed RMND5B has been shown to
inhibit NKX3.1 factor in prostate cancer to suppress its
ubiquitination and nuclear levels so as to promote tumor
proliferation (Huffman et al., 2019). In eukaryotic cells, including
tumor cells, protein degradation is mainly achieved via the
ubiquitin-protease degradation system, and ubiquitin ligase E3 is
the key dominant factor in this degradation system. During tumor
progression, ubiquitin ligase E3inhibits gene induction, suppresses
the expression regulation function of the star tumor suppressor gene
pP53, and then mediates tumor occurrence and development
through the cell cycle or apoptosis. RMND5B has E3 ligase

FIGURE 11
Validation of expressions of risk model genes in TCGA and GEO datasets. (A). The expressions of 10 risk genes between PAAD TCGA-PAAD and
normal samples GTEx-normal cohorts in TCGA (B). The expressions of 10 risk genes between TCGA-PAAD and ANTE-normal cohorts. The expressions of
10 risk genes in GSE28735 (C). and GSE15471 (D) datasets.
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FIGURE 12
Expression levels of 9 risk model genes were validated in HPA database.

FIGURE 13
Validation of expression levels of 10 risk model genes in pancreatic cancer cells by Cell RT-qPCR validation * represents p < 0.05, **, represents p <
0.01, *** represents p < 0.001, and **** represents p < 0.0001.
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activities and its overexpression in tumors is critical for cancer cell
therapy resistance (Tjomsland et al., 2010). In this study, RMND5B
was found to be low risk in the risk model, and Cell RT-qPCR
validation revealed that its levels were suppressed in multiple
pancreatic cancer cells, implying that it may exist as a tumor
suppressor gene in pancreatic cancer, which contradicts the
findings from other studies. However, the specific regulatory
factors have yet to be determined. Abnormalities of the
ubiquitin-proteasome system are key in PAAD pathogenesis, and
the ubiquitin-proteasome UCHL5 can promote tumor progression
and dry expression depending on involvement of the ELK3 protein
(Yang et al., 2022). These findings are in tandem with our
enrichment analysis results.

Due to its early metastasis, difficult operation and low survival
characteristics, pancreatic cancer is a “lethal” cancer. In this study,
we identified the PAAD-related DE-ZNF functional genes, and
conducted an in-depth analysis of the possible mechanisms of
PAAD. We identified ten risk model genes that can be used as
independent prognostic factors for PAAD. Epigenetic modifications
include methylation, ubiquitination, tumor immune
microenvironment, and ceRNA gene regulatory networks. Our
findings provide a novel basis for in-depth assessment of
immunotherapy and clinical diagnosis of pancreatic cancer.

Finally, it is worth noting that there are differences in gene
expression among SERTAD2, U2AF1L4, SP110, etc., in the four
online datasets, cell validation, and immunohistochemistry results.
A search of relevant literature in the past decade found that
SP110 is a special transcription factor of tumor involved in the
carcinogenic regulation of breast cancer and ovarian cancer
(Korakiti et al., 2020; Rooda et al., 2020). U2AF1L4 was
reported to be involved in renal clear cell carcinoma, but there
is a lack of corresponding mechanism research (Wang B. et al.,
2021). SERTAD2 has been reported as an oncogene in pancreatic
cancer (Zhang et al., 2022). This result is consistent with our cell
verification, and believes that cell experiments are more reliable.
The mechanism exploration of pancreatic cancer is a huge
challenge for clinical research. The relevant data from the
database provides research direction, but it still needs long-term
exploration and large sample size research support to obtain
accurate basic data.
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