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Located in the frontline against the largest population of microbiota, the

intestinal mucosa of mammals has evolved to become an effective immune

system. gd T cells, a unique T cell subpopulation, are rare in circulation blood and

lymphoid tissues, but rich in the intestinal mucosa, particularly in the epithelium.

Via rapid production of cytokines and growth factors, intestinal gd T cells are key

contributors to epithelial homeostasis and immune surveillance of infection.

Intriguingly, recent studies have revealed that the intestinal gd T cells may play

novel exciting functions ranging from epithelial plasticity and remodeling in

response to carbohydrate diets to the recovery of ischemic stroke. In this review

article, we update regulatory molecules newly defined in lymphopoiesis of the

intestinal gd T cells and their novel functions locally in the intestinal mucosa, such

as epithelial remodeling, and distantly in pathological setting, e.g., ischemic brain

injury repair, psychosocial stress responses, and fracture repair. The challenges

and potential revenues in intestinal gd T cell studies are discussed.

KEYWORDS

mucosal immunity, intestinal gd T cells, lymphopoiesis, gd T−epithelial remodeling, and
gut gd T-brain injury repair
Abbreviations: AhR, Aryl hydrocarbon receptor; AKR1B10, Aldo-keto reductase 1B10; BTNL, butyrophilin-

like; cTECs, cortical thymic epithelial cells; DC, dendritic cells; DN, double negative; DSS, dextran sulfate

sodium; GALT, gut-associated lymphoid tissues; gdIELs, intraepithelial gd lymphocytes; IBD, inflammatory

bowel disease; ICZ, indolo[3,2-b] carbazole; IECs, intestinal epithelial cells; IELs, intraepithelial lymphocytes;

ILC3, type 3 innate lymphoid cells; MHC, major histocompatibility complex; MLNs, mesenteric lymph

nodes; PAS, period clock-AhR nuclear transporter (Arnt)-single-minded; PB, peripheral blood; PBMCs,

peripheral blood mononuclear cells; PPs, Peyer’s patches; RUNX3, runt‐related transcription factor 3; TCR,

T-cell receptor; TGF-b, transforming growth factor b; VCAM-1, vascular cell adhesion molecule-1.
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1 Introduction

The gut mucosa composed of the epithelium, basement

membrane, and lamina propria separates a milieu enriched with

various microbes and food antigens from the submucosa clear of

any external pathogens (1). The intestinal epithelium consists of a

single layer of intestinal epithelial cells (IECs), which represents the

largest epithelial barrier of adult mammals, up to 200 ~ 400 square

meters in humans (2); gut commensals are the largest microbiota on

earth, up to 1012 microbes/gram contents in the colon (3).

Therefore, the gut mucosa faces a constant threat of luminal

pathogens, and the intestinal epithelium is an important barrier

for the prevention of harmful substance invasion and a vital

regulator of intestinal immunity (4).

The intestine has the most complex immune system and the

largest repertoire of immune cells in the body, which consists of

mesenteric lymph nodes (MLNs), Peyer’s patches (PPs), diffuse

lymphoid structures (e.g., cryptopatches in lamina propria) and

immune cells (Figure 1) (5, 6). T cells are scattered in lamina

propria, named lamina propria lymphocytes, or reside between

epithelial cells, referred to as intraepithelial lymphocytes (IELs) (7,

8). T cells are divided into ab T and gd T cells based on heterodimer

surface receptors, i.e., T-cell receptor (TCR). TCR of ab T cells

consists of one a chain and one b chain while gd T cells contain a g
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chain and a d chain. Intestinal intraepithelial T cells include ab T

and gd T cells (known as gdIELs) (9, 10). In mouse intestinal

epithelium, Vg5+ gd T (Garman’s System (11)) cells are most

abundant (12), but Vd1 Vg2+ gd T cells are rich in the human

epithelium (13, 14).

Different from the classic and well-known CD4+ helper and

CD8+ cytotoxic ab T cells, gd T cells are unique and MHC-

unrestricted (15, 16). They have a wide range of functional

plasticity through a variety of mechanisms, including the

production of cytokines (e.g., IFN-g, TNF-a, and IL-17) and

chemokines (e.g., IP-10 and lymphokines), release of perforin and

granzymes, and interaction with epithelial cells, monocytes,

dendritic cells (DC), neutrophils, and B cells as well (15, 17–20).

Therefore, gd T cells can function as innate immune cells to serve as

the first line of intestinal defense, but also shape early adaptive

immune responses in anti-infection immunity (21). In the intestine,

gd T cells are the critical component of mucosal immunity,

regulating epithelial homeostasis and immune response and

participating in various physiological and pathological processes,

such as inflammatory bowel disease (IBD) (22, 23).

gd T cells are now a hot topic, and several impressive articles

review the key functional roles of the gd T cells in transplantation

(24), anti-viral infection (25), and responses to the gut microbiota

(26), as well as the gd TCR in diagnosis and prognosis of
FIGURE 1

Mouse intestinal gd T cells. The intestinal epithelium is composed of a single layer of cells that separate microbes in the lumen from the lamina
propria. In response to high risk of pathogen invasion, the most complex immune system evolves in the intestine, including gd and ab intraepithelial
lymphocytes interspersed throughout the epithelium and a plethora of immune cells in the lamina propria, such as gd T cells, ab T cells, dendritic
cells, macrophages and neutrophils. In mice, the gd T cells are classified by different Vg chains, and the Vg5+ gd T cells are most popular intraepithelial
gd T cells in the intestinal epithelium. Most T cells in peripheral blood (PB) are ab T cells, and gd T cells account for about 1-5% (55~120 gd T cells/µL),
but in the intestinal mucosa, specific subsets of gd T cells are enriched as shown.
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hematologic tumors (27). Ribot, et al. reviewed the physiology and

surveillance of gd T cells in secondary lymphoid organs and

peripheral tissues (28), and Rampoldi, et al. nicely discussed the

different talks with gut microbiota of the intestinal gd T cells in three

layers, i.e., intestinal intraepithelial gd T cells, lamina propria gd T

cells and Peyer´s patch gd T cells (29). However, the intestinal gd T
cells may also function in the distant organs (30). This article

discusses the current updates of intestinal gd T cells in terms of their

development and functions inside and outside the intestine with

focus on novel functions of gd T cells in the distant organs.
2 Intestinal homing of gd T cells

Intestinal homing of gd T cells is regulated by several key

factors. In mice, the Vg5+ gd T cells express chemokine receptor

CCR9 and integrin aEb7; the CCR9 receptor binds CCL25, a

chemokine highly expressed by IECs, promoting intestinal

homing of Vg5+ gd T cells (31–34). CCL25 and CCR9 deficient

mice show a specific decrease of gdIELs (33, 34). Integrin aE, also
known as CD103, dimerizes with b7 to form a receptor complex

that binds to E-cadherin expressed on IECs, promoting entry and

residence of gdIELs in the intestinal epithelium (7, 35, 36). Either aE
or b7 deficiency reduces gdIEL number, but a greater decrease

occurs in b7 deficient mice as b7 can also dimerize with integrin a4
to form a lymphocyte homing receptor integrin a4b7 (37–40). The
a4b7 receptor has two natural ligands. One is the mucosal vascular

addressin cell adhesion molecule-1 (MAdCAM-1) specifically

expressed on the endothelium of high endothelial venules in the

gut and gut-associated lymphoid tissues (e.g., Peyer’s patches) (41,

42); the other is vascular cell adhesion molecule-1 (VCAM-1)

expressed on stimulated endothelial cells of blood vessels,

peripheral lymph nodes, and bone marrow (43). The CCL25

enhances the affinity of a4b7 for MAdCAM-1, but reduces the

binding to VCAM-1, whereas CXCL10 works oppositely. These two

chemokines distinctly regulate the active conformation of a4b7 and
selective binding to MAdCAM-1 or VCAM-1 (39). The aE
expression on gdIELs is regulated by the CCL25‐CCR9 axis (44,

45), as well as transforming growth factor b (TGF-b) and runt‐

related transcription factor 3 (RUNX3) (46, 47).

A novel subset of gd T cells that express both gut-homing

integrins CD103 (aE) and a4b7 (CD103+ and a4b7high) has been
identified in gut-draining MLNs and in intestinal epithelial and

lamina propria compartments of mice with T cell-mediated colitis

and spontaneous chronic intestinal inflammation (48). The CD103+

and a4b7high gd T cells are generated in MLNs and then mobilize to

the intestine as they also express the CCR9 receptor with IEC-

expressed CCL25 as a ligand (31). This subset of CD103+a4b7high

gd T cells precede inflammation, and adoptive transfer of the

CD103+a4b7high gd T cells dramatically enhances the

accumulation of Th1 (INFg)/Th17 (IL-17) cells in the intestine

and severity of the disease. The CD103+a4b7high gd T cells are thus

also named inflammatory gd T cells (igd T). In addition,

CD103+a4b7high gd T cells display a distinct transcriptional

profile with a broad expression of cytotoxic mediators and NK

cell receptors, which may endorse their inflammatory ability
Frontiers in Immunology 03
through induction of apoptosis and barrier dysfunction of

intestinal epithelial cells (48).
3 Lymphopoiesis of intestinal gd
T cells

Gut mucosa is a main site of extrathymic lymphopoiesis of T

cells, populating mostly gd T cells (49–52). Interaction between

IECs and mucosal lymphocytes is important in the regulation of

intestinal lymphopoiesis of T cells. In mice, Vg5+ gd T cells expand

and transit to a mature phenotype from immature in the intestinal

epithelium within the first few weeks after implanted (14). Factors

that are critical for the proliferation, survival, and homeostatic

maintenance of gd T cells in the intestine include IL-7, IL-15,

butyrophilin-like molecules, aryl hydrocarbon receptor, and aldo-

keto reductase 1B8 (AKR1B8) (Figure 2). Interestingly, gut

microbiota does not influence the expansion and maturation of

the gd T cells in the intestine, but stimulates their function, such as

granzyme expression (53, 54).
3.1 Butyrophilin and
butyrophilin-like molecules

After homing in the intestine, gd T cells are shaped by

butyrophilin-like (BTNL) molecules that are expressed on the

surface of IECs (14, 55). By definition, butyrophilin-like proteins

are similar to butyrophilin (BTN) which has two members in mice

and six members in humans (56). BTNL family consists of six

members in rodents and five in humans (57, 58). Several BTN/

BTNL molecules are involved in immune regulation (59, 60). For

instance, human BTN3A1 mediates the response of peripheral blood

gd T cells to low-molecular-mass microbial and endogenous

metabolite phosphoantigens (61, 62), while SKINT1, a

butyrophilin-like member expressed specifically by suprabasal

keratinocytes shapes murine dendritic epidermal T cells (DETCs),

i.e., Vg3+ gd T cells (63). In the gut of mice, intestinal Vg5+ gd T cells

expand and mature via regulation of BTNL1 and BTNL6

heterocomplexes expressed on the surface of enterocytes (14). In

this process, the BTNL1 and BTNL6 complex selectively promotes

the phenotypic conversion of immature Vg5+ gd T cells and selective

outgrowth of the mature Vg5+ gd T cells (14, 64). The BTNL1/BTNL6

complexes are expressed by post-mitotic (differentiated) enterocytes

interspersed with IELs, but not by replicating epithelial progenitors,

where no IELs reside. The shaping process of the intestinal Vg5+ gd T
compartment seems unique by BTNL and is not affected by the

thymus, lymph nodes, and Peyer’s patches, or by gut microbiota and

dietary protein antigens (14). In humans, it is that the BTNL3 and

BTNL8 complexes expressed by intestinal epithelial cells shape the

Vd2− Vg4+ gd T cell compartment in an organ-specific manner (14),

whereas BTNL2 is a negative regulator (65). Recently, it has been

reported that BTNL molecules may function through direct binding

to their respective gd TCRs (66, 67). Once established in the intestine,
gd T cells rely on IEC-expressed IL-15 and dietary AhR ligands for

their maintenance and survival (68–70).
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3.2 IL-7 and IL-15 as key cytokines for
lymphopoiesis and functions of gd T cells

In the intestine, IL-7, expressed by IECs and required for gd T

cell lymphopoiesis (71, 72), signals through a heterodimer IL-7

receptor (IL-7R) composed of a unique a chain (IL-7Ra) and a

common g chain (CD132) (73–75). Binding to IL-7R, IL-7 activates

JAK-STAT, PI3K, and Src phosphorylation signaling pathways to

regulate target gene expression, including up-regulation of anti-

apoptotic genes Bcl-2, Bcl-xL and Mcl-1 and down-regulation of

pro-apoptotic genes Bax and Bak. This contributes to the survival

function of IL-7, with so-called trophic effects on lymphoid

progenitors and mature lymphoid cells (76–78).In mice, intestinal

gd T defects induced by IL-7 deficiency are restored by targeted

expression of IL-7 in enterocytes (79). The ectopic expression of IL-

7 in enterocytes does not restore gd T cells defective in other tissues

induced by the IL-7 deficiency, such as the thymus (79). IL-7R is

also found in lymphocytes isolated from lamina propria and

recombinant IL-7 can stimulate their growth (72). Therefore,

locally expressed IL-7 plays a critical role in innate immunity

against infections, such as Citrobacter rodentium, a mouse

extracellular enteric pathogens like the human enteropathogenic

Escherichia coli and enterohemorrhagic Escherichia coli (80).

IL-15 is also essential for the repertoire of intestinal gd T cells.

IL-15 signals through an IL-15 receptor (IL-15R) complex

consisting of an IL-15Ra chain, an IL-2Rb (CD122), and a g
chain. IL-15 could signal through either trans-presentation or cis-

presentation. In the trans-presentation, IL-15 binds to IL-15Ra and

forms an IL-15/IL-15Ra complex, which is then presented to the

IL-15Rbg complex on the membrane of neighboring cells, while IL-

15 assembles a cis quaternary complex with IL-15Ra, IL-2Rb, and g
Frontiers in Immunology 04
on the cells in the cis-presentation (81, 82). The flexibility of IL-15a
allows the interface of IL-15 ligand-receptor to be identical in either

cis or trans (81, 83). Upon binding to its receptors, IL-15 activates

JAK-STAT, PI3K, and MAPK pathways, induces expression of anti-

apoptotic Bcl-2 and proto-oncogenes c-Myc, c-Fos, c-Jun, c-Myc,

and NF-kB, and promotes cell proliferation and maturation (83–

86). IL-15 and IL‐15Ra are expressed by enterocytes and dendritic

cells in lamina propria, forming an IL-15/IL‐15Ra complex trans-

presented to gd T cells (87, 88). IECs are the main source of IL-15 in

the intestine, and IEC-specific IL-15 knockout leads to a decrease in

gd T percentage and absolute number in the intestine and to

impairment of functional maturation, such as the decrease in

granzyme B expression, whereas IL-15 knockout in blood

vascular endothelial cells (BECs) and hematopoietic cells does not

affect intestinal gd T cells (88). IEC-specific knockout of IL-15 also

leads to a decrease of gdT cells in laminate propria, but not in the

thymus. The IL-15 knockout in BECs/hematopoietic cells has no

effects on gdT cells in the thymus ether, indicating the organ

specificity of the expressed IL-15 cytokine. In addition, the

intestinal gd T cells in IEC-specific IL-15 knockout mice exhibit

reduced survival, but increased apoptosis due to reduced Bcl-2 but

increased Fas expression (88). In mice and humans, IL-15 promotes

the proliferation and cytotoxic capacity of gd T cells, enhancing

antitumor activity (89). Human Vd2+ T cells isolated through TCR-

crosslinking or activated by isopentenyl pyrophosphate (IPP)

exhibit strong inhibition on the ab T cell proliferation, and IL-15

can greatly enhance the inhibitory phenotype of Vd2+ T cells (90).

The authors believe that pharmacologic activation and expansion of

Vd2+ T cells through the Vd2 TCR yields potent killer activity and

suppression of ab T cell responses as well. Makkouk, et al. recently

reported that secreted IL-15 can sustain the proliferation and
FIGURE 2

Molecules involved in the lymphopoiesis and functions of gd T cells. IL-7 and IL-15 are critical cytokine signaling pathways that regulate the
proliferation and survival, development and maturation of gd T cells. Aryl hydrocarbon receptor (AhR) modulates gd T cells via the AhR nuclear
translocator (ARNT)-mediated signaling; AKR1B8 (AKR1B10 in humans) may exert regulatory effects on gd T cells through an intestinal epithelial cell-
mediated mechanisms.
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antitumor activity of Vd1+ T cells engineered with GPC-3.CAR

(91). Dendritic cell (DC) vaccine demonstrates therapeutic effects

on acute myeloid leukemia, and IL-15 secreting DC cells yield more

efficacy through activation of the innate cytotoxic capacity of gd T

cells (92). Together IECs act as a IL-15 niche to regulate the

development, function, and homeostasis of the intestinal gd T cells.
3.3 Aryl hydrocarbon receptor and
dietary ligands

Aryl hydrocarbon receptor (AhR) is a ligand-activated cytosolic

transcription factor receptor that uses dioxin or aromatic (aryl)

hydrocarbon and endogenous indole derivative (e.g., kynurenine) as

ligands. Upon binding to ligands, AhR is dissociated with

chaperones, translocated into the nucleus, and dimerized with

AhR nuclear translocator (ARNT) to drive the expression of

target genes. The AhR signaling regulates immunity, stem cells,

and cellular differentiation, involved in developmental and

pathological processes (93–97). In the intestine and skin, AhR

plays a crucial regulator in the survival and maintenance of gd T

cells (70). AhR deficiency or absence of AhR ligands leads to

increased apoptosis and striking loss of over 95% of gd T cells in

the intestine, coupled with subsequent dysbiosis of gut microbiota

and vulnerability to epithelial damage, whereas the gd T cell subset

in lymph nodes, spleen or thymus is not affected; proliferation of gd
T cells is normal, but survival is decreased in AhR deficient

mice (70).

AhR contains two highly conserved, period clock-AhR nuclear

transporter (Arnt)-single-minded (PAS) domains, which are

primarily evolved to sense environmental changes in energy (98).

Therefore, AhR activity can be regulated by dietary components,

such as tryptophan-derived phytochemical I3C in cruciferous

vegetables, which is converted into high-affinity AhR ligands,

indolo[3,2-b] carbazole (ICZ) and 3,3-diindolylmethane (DIM)

(99). Yet it is difficult to determine the exact nature of potential

dietary AhR ligands due to the chemical complexity of diet, but a

study has indeed shown that feeding C57BL/6 mice with a standard

diet (5021-3 Autoclavable Rodent Lab Diet) significantly induces

expression of the AhR target gene, Cyp1a1, compared to a synthetic

purified diet (AIN-76A Purified Rodent Diet); consistently, mice fed

with the synthetic diet exhibit a significant decrease in gd T cells in

the small intestine compared to mice with the standard diet. In

contrast, dietary supplementation of phytochemical I3C in mice fed

with the synthetic diet activates AhR and induces Cyp1a1

expression, coupled with recovery of gd T cells in the small

intestine (70).
3.4 Aldo-keto reductase 1B10/aldo-keto
reductase 1B8

Aldo-keto reductase 1B10 (AKR1B10) is a cytosolic protein that

is specifically expressed in the intestinal epithelial cells, where it

protects host cells from luminal and cellular carbonyl lesions and

promotes fatty acid/lipid synthesis, regulating AKT and ERK
Frontiers in Immunology 05
signaling pathways (100–102). Aldo-keto reductase 1B8

(AKR1B8) is the orthologue in mice of human AKR1B10 (103).

AKR1B10 expression is lost or markedly reduced in ulcerative

colitis and associated colorectal cancer (104); siRNA-mediated

silencing of AKR1B10 inhibits epithelial cell proliferation (105)

and targeted disruption of AKR1B8 locus leads to abnormal self-

renewal of the intestinal epithelium and high susceptibility to

dextran sulfate sodium (DSS)-induced colitis and associated

tumorigenesis (104). More importantly, AKR1B8 deficient mice

in naïve status demonstrate severe abnormalities in gd T cell

development and function, accompanied by abnormal antigen

presentation and effector T cell development (106).
3.5 Other molecules and factors

G protein-coupled receptor GPR18 regulates gd T cell

abundance in the gut and the positioning next to epithelial cells,

rather than to laminate propria (107, 108). In sharp contrast,

GPR55 negatively regulates intestinal gd T cells as GPR55

deficient mice show an increase in the number and migration of

gd T cells, and their crosstalk with epithelial cells as well (109).

Intestinal flora does not have effects on the development and

proliferation of gd T cells (53), but affects their function,

promoting gd T cytotoxicity and antimicrobial function, such as

the expression of regenerating islet-derived protein 3 Gamma

(RegIIIg) (110, 111). RegIIIg (RegIIIa in humans) is an

antimicrobial peptide (AMP) that inhibits Gram-positive

bacteria (112, 113). The intestinal gd T cells thus act as an early

responder that restricts the intestinal bacterial penetration into

mucosa after epithelial injury.
4 TCR ligands and activation of
intestinal gd T cells

The gd TCRs are the main molecules on the surface of gd T cells

involved in the recognition of antigens and pathological conditions,

and the complementarity defining region 3 (CDR3) comprises the

most diversity of the receptors (114). However, in striking contrast

to ab T cells which are activated in an MHC-restricted manner, the

majority of gd T cells are activated in an MHC-independent

mechanism, requiring neither MHC-mediated antigen

presentation, nor co-receptor interaction (114). The antigens

recognized by most gd T cells remain baffling, which may be

derived from the high challenges in the identification of the gd
TCR antigens. As the lack of general restricting molecules, the

antigens could be any molecules present on the cell surface or in the

surrounding extracellular space, such as proteins, carbohydrates,

lipids, and nucleic acids. This extremely increases the complexity of

antigen identification. In addition, the affinity of gd TCRs to their

antigens is low at micromolar levels and thus classical strategies of

protein biochemistry for antigen identification may not be applied

(115). Alternative methods, such as blocking antibodies and genetic

approaches, are tedious and labor-intensive, and usually need prior

knowledge of possible candidates (115–118). Despite these hurdles,
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proceedings of gd TCR antigen identification have been achieved,

and gd TCR antigens identified thus far include MHC-like

molecules, such as MHC-Ib molecule T10/T22 (114, 119), lipid

antigen-presenting molecules CD1-c and CD1-d, cell stress-

induced Annexin A2 and ephrin receptor A2 (EphA2), and

butyrophilin molecules (Figure 3). Please read the review article

(114) for more details on gd TCR antigens.

BTNL1 and BTNL6 heterodimers are involved in the shaping of

Vg5+ gdIELs in the mouse gut, whereas the BTNL3 and BTNL8

complex is involved in the development of human intestinal Vg4+

gdIELs (14). Recent work has revealed the direct binding and

interaction mode of BTNL proteins with their respective gd TCRs

through germline-encoded Vg4 complementarity-determining

region 2 (CDR2) and HV4 loops in variable g-chain (66, 67). The

other CDRs are not involved in BTNL protein binding, but are

available for clonally specific ligand binding, such as CD1-d.
5 Functions of intestinal gd T cells in
the gut and distant organs

The intestinal gd T cells have been a hot topic of intestinal

immunity, and novel functions of this special type of cells, in the gut

and distant organs, have been increasingly revealed.
Frontiers in Immunology 06
5.1 Intestinal gd T cell functions in the gut

Located in the mucosa, the intestinal gd T cells are the first

immune cells to appear in many bacterial infections and shape

adaptive immune response, being a critical component of intestinal

mucosal immunity (Figure 3). Table 1 summarizes the main

functions of the intestinal gd T cells with references.

5.1.1 Homeostasis and barrier function of the
intestinal epithelium

Intestinal gd T cells modulate homeostasis of intestinal

epithelium by expression of keratinocyte growth factor 1 (KGF-

1). KGF-1, also called FGF-7, promotes proliferation, maturation,

and injury repair of IECs and regulates tight junctions and mucosal

permeability (120–122). In mice, Vg5+ gd T cells are necessary and

sufficient for integrity maintenance of the epithelial tight junctions

after enteric infection, such as Salmonella enterica (123). In TCRd
-/- (gd T cell deficiency) and KGF-1 -/- mice, the proliferation and

migration of intestinal epithelial cells are decreased, and the

permeability of intestinal mucosa is increased (121, 123). These

mice are sensitive to colitis induced by DSS with severe epithelial

damage and impaired injury repair (120–122). The intestinal gd T

cells also produce IL-22 (124), which can stimulate the secretion of

antimicrobial peptides (AMP) from IECs and contribute to the
FIGURE 3

Function and development of intestinal gd T cells. After homing in the intestine, butyrophilin and butyrophilin-like molecules participate in
development and homeostatic maintenance of gd T cells; and located in the frontline of the intestinal defense, intestinal gd T cells are the first
immune responders to appear in infection spots, functioning as innate immune effectors and adaptive immune regulators as well. Intraepithelial gd T
cells also secrete KGF-1 and IL-22 for intestinal epithelial homeostasis (IEH) and integrity of the epithelium. Some gd T cells in the lamina propria may
obtain long-lived memory phenotypes.
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repair of injury (125). Therefore, the intestinal gd T cells play an

important role in homeostasis and wound repair of the

intestinal mucosa.

5.1.2 Surveillance of intestinal infections
Intestinal gd T cells are dynamic and constantly migrate within

epithelium via occludin-mediated cell–cell contact to perform

surveillance of epithelium (126, 127). At steady status, gd T cells

distribute in the middle region of intestinal villi, where they reside

between the basement membrane and epithelial layer, but also

migrate to the intercellular space between IECs for short-time

surveillance. An individual gd T cell surveys a large area and

contacts numerous IECs in a short time (54, 127). In response to

the invasion of bacteria or parasites, gd T cells gather in pathogen-

rich areas rapidly and reduce normal surveillance behavior,

accompanied by increase of “flossing” movements into lateral

intercellular space between the IECs (54, 127, 128). The exact

function of gd T cell flossing is unknown yet, but its association

with pathogen invasion suggests a crucial role in infection control

and epithelial repair. MyD88 signaling in IECs is a key regulator in

sensing invasive pathogens and subsequent behavioral changes of

gd T cells; specific blockage of the MyD88 signaling pathway in IECs

rigorously blunts the gd T cell response (54, 110). Gut commensals

have no effects on gd T cell number, but may contribute to their

distribution within villi and to their migratory behavior and

antimicrobial activity (54, 110, 111). In short, gd T cells survey

epithelial integrity, whereas IECs dictate gd T cell behavior and

facilitate adaptation in the intestinal milieu.

Microbial infection constitutes a major challenge that the

intestinal epithelium encounters. Anti-infection immunity of gd T

cells includes innate and adaptive responses, and the anatomical

location of intestinal gd T cells grants them a privilege to isolate and

restrict microbial pathogens from the entrance into the systemic

compartment, building up the frontline of defense. Intestinal gd T

cells can express AMP (e.g., RegIIIg) to control pathogens (110) or

IL-22 to promote AMP expression by IECs (129). gd T cells also

express cytolytic factors, e.g., granzyme A and B and perforin to lyse

infected or transformed intestinal cells (111, 130–132). Activated gd
T cells can also prevent potently against intracellular pathogens

through an interferon-mediated mechanism, including IFNg, type I
(IFNa), and type III interferons (133, 134). Cytotoxic potentials of

gd T cells are regulated by cell surface receptors, e.g., gdTCR and
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NKG2D (natural killer group 2D) (135, 136), and DNAX accessory

molecule-1 (DNAM-1), leukocyte function-associated antigen-1

and co-stimulatory receptor CD27 are involved in the cytotoxicity

of gd T cells (137).

In addition to the innate response, intestinal gd T cells quickly

recruited to the inflammatory sites also shape the early immune

events through secretion of a variety of cytokines to promote

recruitment and activation of dendritic cells, phagocytes,

neutrophils, B cells, and conventional T lymphocytes (19, 138).

Cytokines secreted by intestinal gd T cells include IFNg, TNFa,
TGFb, IL-10, IL-13, IL-17A and prothymosin b4 (7). IFNg, TNFa,
and IL-17A are important pro-inflammatory factors whereas IL-10,

TGFb, KGF-1, and prothymosin b4 are anti-inflammatory

cytokines, promoting healing and integrity of intestinal

epithelium (7, 17, 122, 139–141, 145). Therefore, intestinal gd T

cells play a dual role in microbial infection, i.e., inhibiting microbial

invasion by induction of inflammation in the early stage but

limiting excessive inflammation and tissue damage in the later

stage. In the different stages of colitis, therefore, intestinal gd T cells

seem to play a different role, i.e., a pathogenic role in the early stage,

but a protective role in the later stage (142, 143).

5.1.3 Epithelial cell remodeling responding
to diets

Enzymes and transporters required for carbohydrate digestion and

absorption are induced by high-carbohydrate diets, coupled with

changes in specialized enterocyte subsets (144). Carbohydrate

transcriptional re-programming and epithelial cell remodeling on

demand occur rapidly within 5 days of high carbohydrate feeding in

mice, and intestinal gd T cells play a crucial role in this process through

suppression of IL-22 expression by type 3 innate lymphoid cells

(ILC3s) (144). In response to carbohydrate diets, tissue localization,

transcriptome, and behavior of gd T cells enriched at the barrier surface

of the intestine are changed. In the intestine, the intraepithelial gd T

cells are abundant and closely interact with epithelial cells whereas the

lamina propria gd T cells are a minor population of CD45+

lymphocytes (146). The gd T cells in different tissue compartments

respond differentially to high carbohydrate diets. The lamina propria gd
T cells increase in frequency and number in high-protein feeding, but

intraepithelial gd T cells move more rapidly. RNA-seq analysis

indicates that gd T cells in both the epithelium and lamina propria

compartments demonstrate transcriptional changes, particularly in
TABLE 1 Functions of intestinal gd T cells in the gut and distant organs.

Locations Functions References

In the gut

Homeostasis and barrier function of the intestinal epithelium (114–119)

Surveillance of intestinal infections (49, 104, 105, 120–138)

Epithelial cell remodeling and responding to diets (139, 140)

Development and progression of colorectal cancer (105, 114)

Ischemic brain injury repair (24, 141, 142)

In the distant organs Psychosocial stress responses (143)

Fracture repair (144)
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lamina propria gd T cells that emerge with the greatest differentials of

the transcriptome. Additionally, gd T cells move to the crypt base in

response to high-carbohydrate diets to influence the transcriptome and

remodeling of epithelial cells through interaction with progenitors in

the crypt base (144). This gd T-mediated epithelial remodeling may

represent an important mechanism of intestinal adaption to

environmental changes.

5.1.4 Development and progression of
colorectal cancer

It is well known of the surveillance of the gd T cells in transformed

intestinal cells through the expression of cytolytic factors, but their

temporal contribution to the development and progression of

colorectal cancer is unclear (111). A recent study revealed that most

gd T cells resident in pre-malignant or non-tumor colon tissues host a

cytotoxic signature, while the gd T cells infiltrated in tumor tissues

exhibit a pro-tumorigenic profile; the roles of gd T cell subsets in pro-

and anti-tumor activity are associated with distinct usage of the Vgd
gene of the T cell receptor in both humans and mice (147). This novel

work addresses an important question on the intestinal gd T cells as a

double-edged sword in colorectal cancer.
5.2 Intestinal gd T cell functions in
pathological settings of distant organs

Although located in the intestine, recent studies have revealed

that the intestinal gd T cells are important regulators of pathological

settings in distant organs.

5.2.1 Intestinal gd T cells and ischemic brain
injury repair

A subpopulation of gd T cells develops a long-lasting memory

phenotype and adaptive responses (148). Recent studies indicated

that commensals in the gut may yield an impact on the recovery of

ischemic brain injury in mice through an interleukin-17 (IL-17)

producing memory gd T (named gd17T) mediated mechanism (30).

Intestinal dysbiosis induced by antibiotics leads to changes in

homeostasis of intestinal gd17T and Treg cells and trafficking of

these gut effector T cells to leptomeninges after stroke, thus

influencing the outcome of acute brain injuries. This is a pioneer

study in the special gut-brain axis. Recently, Wang, et al. reported

that electro-acupuncture could regulate the gd T and Treg cells in

the ischemic brain and small intestine and thus exerts protective a

role on ischemic stroke (149). More recently, Piepke and colleagues

reported that IL-10-mediated IL-17 production is a key factor that

limits stroke lesions, and may be a potential target for stroke

management (150).

5.2.2 Intestinal gd T cells and psychosocial
stress responses

Gut microbiota trains the intestinal immune system to facilitate

the maintenance of gut homeostasis; the gut microbiota also

mediates the stress-induced impairment of brain function. A

recent report proposed that the intestinal gd T cells are important
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mediators in the axis of gut microbiota-stress-brain function

impairment (151). A specific Lactobacillus species of gut

microbiota drives the differentiation and meningeal accumulation

of colonic gd17T cells and thus modulates behavioral vulnerability

to chronic social stress through a mechanism mediated by the

dectin-1 signaling pathway.

5.2.3 Intestinal gd T cells and fracture repair
In fracture repair, IL-17 produced locally by gd T cells and Th17

cells drivers the inflammatory phase. Dar, et al. reported recently

that the gut microbiota-mediated expansion and migration to the

callus of intestinal gd T and Th17 cells are involved in fracture

repair (152). The S1P-receptor-1 (S1PR1) signaling pathway

regulates egress and homing to the callus of the Th17 cells; and

deletion of the gd T cells and microbiome (by antibiotics) and

blockade of Th17 cell influx into the callus impair the fracture

repair, suggesting the importance of gd T and Th17 cells activation

and trafficking in fracture repair. It is recently understood that IL-

17A secreted by gd T cells stimulate the proliferation of

mesenchymal progenitor cells and differentiation of osteoblasts to

accelerate bone formation and fracture healing; in IL-17A deficient

mice, the bone fracture repair is impaired (153).
6 Concluding remarks

The intestinal mucosa of mammals has evolved an amazing

immune compartment to protect the host from pathogenic attacks.

The intestinal gd T cells represent a specific population of cells that

function in the maintenance of epithelial homeostasis, barrier

integrity, damage repair, and rapid compartmentalization of

microbial pathogens. In response to infections, intestinal gd T cells

function as innate immune cells to restrict microbial pathogens from

systemic spreading and then shape early adaptive immune responses

through the recruitment of neutrophils and activation of phagocytes

and dendritic cells. Therefore, intestinal gd T cells are key regulators

of mucosal physiology and pathology in disease settings. The

intestinal gd T cells may also deliver effects on distant organs, such

as brain stroke and fracture repair and psychosocial stress responses.

A mysterious question is that gd T cells are activated

independently of MHC and thus antigens of gd TCR, as lack of

restricting molecules, could be different types of molecules on the cell

surface or in surrounding extracellular space. Gut microbiota would

be an exciting area for the exploration of microbially originated

antigens/ligands. IELs regulate both the intestinal immunity and

microbiota and are thus located at top of the hierarchy that guards

intestinal health. How IELs regulate homed gd T cells would then be

another interesting topic. Yet some epithelial-originated molecules,

such as IL-7, IL-15, BTNL, and AhR have been characterized, but

identification of AKR1B10 as a novel molecule that mediates the

development and function of intestinal gd T cells implies a warranty

of further investigation. New technologies developed to date, such as

single-cell RNA-seq (154) and RNAscope® in situ hybridization

combined with immunohistochemistry (155), would add avenues

to understand gd T cells in the frontline of intestinal immunity. The
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gut microbiota, circadian rhythms, sex hormones, and

neurotransmitters are all regulatory factors of intestinal gd T cells

(156); it is challenging but intriguing to boost the beneficial and

protective roles of gd T cells but tame their proinflammatory action.
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