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Introduction: To date, most mammography-related AI models have been trained
using either film or digital mammogram datasets with little overlap. We
investigated whether or not combining film and digital mammography during
training will help or hinder modern models designed for use on digital
mammograms.
Methods: To this end, a total of six binary classifiers were trained for comparison.
The first three classifiers were trained using images only from Emory Breast
Imaging Dataset (EMBED) using ResNet50, ResNet101, and ResNet152
architectures. The next three classifiers were trained using images from EMBED,
Curated Breast Imaging Subset of Digital Database for Screening Mammography
(CBIS-DDSM), and Digital Database for Screening Mammography (DDSM)
datasets. All six models were tested only on digital mammograms from EMBED.
Results: The results showed that performance degradation to the customized
ResNet models was statistically significant overall when EMBED dataset was
augmented with CBIS-DDSM/DDSM. While the performance degradation was
observed in all racial subgroups, some races are subject to more severe
performance drop as compared to other races.
Discussion: The degradation may potentially be due to (1) a mismatch in features
between film-based and digital mammograms (2) a mismatch in pathologic and
radiological information. In conclusion, use of both film and digital
mammography during training may hinder modern models designed for breast
cancer screening. Caution is required when combining film-based and digital
mammograms or when utilizing pathologic and radiological information
simultaneously.
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1. Introduction

Breast cancer is the most common cancer in women, with 1/8 of

women developing breast cancer over their lifespans (1, 2). Screening

mammography is a cost-effective and non-invasive method of breast

cancer detection. Population-wide mammography screening allows

for earlier detection and increased patients’ survival rates (3, 4).

However, the workload of the radiologist is high, and the

performance of screening mammography is dependent upon the

experience of the reader and is prone to high false positives and

false negatives (5–7). Because of this, artificial intelligence (AI)

models have been developed for breast cancer detection over the

past several years with the goal of improving breast cancer

screening performance (8–11).

To facilitate model development, many publicly available

datasets have been created and released annotated breast cancer

images. Digital Database for Screening Mammography (DDSM)

is one of the earliest datasets used in computer-aided medical

diagnosis systems (CADx) in the 1990s (12). The Curated Breast

Imaging Subset of Digital Database for Screening Mammography

(CBIS-DDSM) is an enhanced version of DDSM in which lesion

specific segmentations were added, and images were converted to

more modern formats. CBIS-DDSM has been extensively used to

develop numerous AI-powered breast cancer segmentation and

classification models (13–18). However, CBIS-DDSM and DDSM

contain film-scanned mammography images from the late 1990s,

whereas modern mammography is digital. This distinction is

important, as digital mammograms have been shown to be

superior to film mammograms, offering numerous advantages

(19, 20). Recently, more digital mammography datasets have

been made publicly available, including the Emory Breast

Imaging Dataset (EMBED)—a digital breast mammography

dataset with 3.4M mammogram images (21).

To date, most mammography-related AI models have been

trained using either film or digital mammogram datasets with

little overlap. While many AI models require massive amounts of

data before they begin to perform reasonably, there are only a

few datasets publicly available—most of them contain film-based

images. This has left a gap in knowledge as to the effect of

combining these two data types for training, namely whether or

not combining film and digital mammography during training

will help or hinder modern models designed for use on digital

mammograms.

In this paper, we explore the performance of a binary

abnormality classification model for screening digital mammograms

when trained solely on digital mammograms (EMBED) vs.
TABLE 1 Mammogram dataset information.

Dataset Size Format ROI

CBIS-
DDSM/
DDSM

5,881
images

Scanned analog
film

Lesion
segmentations

File location, series d

EMBED 676,008
images

Digital
mammograms

Lesion bounding
boxes

Date that the exam
classification, mamm
pathological result, p
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combined digital and film mammograms (EMBED+DDSM/CBIS-

DDSM). To this end, we implemented state-of-the-art binary

abnormality classification models trained on different compositions

of datasets using full-view screening mammograms. We

emphasized the experiment’s reproducibility by providing easy-to-

access and annotated source code encompassing the full workflow

from research.
2. Materials and methods

2.1. Dataset descriptions

In this study, three publicly available datasets—CBIS-DDSM,

DDSM “Normal” labelled images and EMBED—were utilized for

model training and validation with EMBED dataset for solely

testing. CBIS-DDSM contains 3103 full mammogram images

with lesions annotated as benign or malignant. Normal labelled

DDSM mammograms provide 2,778 film mammography images.

The publicly released version of EMBED contains 676,008 2D

and Digital Breast Tomosynthesis (DBT) screening and

diagnostic mammograms for 23,264 patients with a racially

balanced data composition. It also contains lesion level imaging

descriptors, pathologic outcomes, regions of interest, and patient

demographic information. Information for all three datasets is

summarized in Table 1.
2.1.1. CBIS-DDSM and DDSM
The DDSM dataset contains mammogram examinations on

2,620 patients collected from multiple imaging sites—

Massachusetts General Hospital, Wake Forest University School

of Medicine, Sacred Heart Hospital, and School of Medicine at

Washington University in St. Louis. Images were provided in

Lossless Joint Photographic Experts Group image (LJPEG)

format with inclusion of both craniocaudal (CC) and

mediolateral oblique (MLO) views. However, the LJPEG format

has since been deprecated and become difficult for researchers to

use (13). CBIS-DDSM was created in 2017 as an augmentation

subset of DDSM with images converted to the Digital Imaging

and Communications in Medicine (DICOM) format. In addition,

specific lesions were segmented and provided in separate files as

a mask along with malignant and benign labels. Additional

metadata include patient age, tissue density, scanner used to

digitize, image resolution, abnormality type (mass or

calcification), and performance assessment metrics of CADx

methods for mass and classifications. For our study, we obtained
Selected metadata Release
year

Resolution

escription, pathological result 1993 3256 × 1531 –

7111 × 5431

was signed, DICOM file path, BIRADS
ogram study description, laterality of
atient identification number, image laterality

2023 2294 × 1914 –

4096 × 3328
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negative mammograms from DDSM and abnormal mammographs

from CBIS-DDSM. Figure 1 depicts a sample mammogram from

the CBIS-DDSM dataset.
2.1.2. EMBED
The publicly released subset of EMBED contains digital

mammograms for 23,264 patients who underwent

mammography at Emory University between 2013 and 2020 and

includes 364,791 full-field digital mammography (FFDM) images.

Whereas other datasets contain patients mostly from a single

race, EMBED contains approximately equal numbers of Black

(42%) and White (39%) patients. EMBED also contains lesion

level bounding boxes for ROIs labeled with imaging descriptors,

Breast Imaging-Reporting and Data System (BIRADS) scores,

and pathologic outcomes. Figure 1 depicts a sample

mammogram from the EMBED dataset.
TABLE 2 Train, validation, and test dataset configuration.

Dataset Total
images
used

Train Validation Test Note

EMBED 2,414 1,441 480 493 Publicly available
EMBED dataset
with cohorts 1 and
2

EMBED +
CBIS-DDSM/
DDSM

8,295 4,969 1,656 493 Test set from
EMBED dataset
only
2.2. Data preprocessing and methods

Since the DDSM mammograms are in LJPEG formats, the

Stanford PVRG JPEG codec v1.1 was employed to read DDSM

images and convert them into 16-bit grayscale PNG images (13).

CBIS-DDSM and EMBED images are in DICOM format and

were converted into 16-bit grayscale PNG files (22–25). All

images were rescaled to 800 × 600 with bicubic interpolation and

anti-aliasing to make them fit into 8 GB memory Graphic

Processing Units (GPUs) for improved reproducibility. Pixel

values were normalized with 16-bit grayscale (26). Images from

EMBED were divided into a 60:20:20 ratio for training,
FIGURE 1

Example of the mediolateral oblique (MLO) view mammograms from the DDS
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validation, and test sets while ensuring that there was no patient

leakage between the sets, Table 2 (27–29).

In CBIS-DDSM, ROIs for 3,565 lesions were identified with

labels according to their pathology outcomes—benign or

malignant. Because all these images contained an abnormality,

they were labeled as abnormal (positive class). CBIS-DDSM is a

subset of DDSM excluding normal mammograms. Normal

mammograms as well as those classified as benign without

biopsy (benign-without-callback) were acquired from DDSM and

labeled as negatives. From EMBED, screening exams with an

original Breast Imaging—Reporting and Data System (BIRADS)

score of 0 (i.e., additional evaluation required) were relabeled

with the subsequent diagnostic exam BIRADS score. For

example, if a patient received a BIRADS 0 on screening

mammography followed by a diagnostic exam with BIRADS 4,

the final score for the screening study would be BIRADS

4. Conversely, if a patient received a BIRADS 0 on screening

mammography followed by a diagnostic mammogram with

BIRADS 2, their final score would be BIRADS 2. In this manner,

all screening studies with initial or final BIRADS scores of 1 or 2
M (left) and EMBED (right) datasets.
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FIGURE 2

EMBED dataset preparation workflow. Image metadata was joined with image findings to exploit clinical information for each mammogram.
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were labeled as negative, and those with final BIRADS scores of 4,

5, and 6 were labeled as positive. This effectively classified ‘false

positive’ BIRADS 0 screening studies without any subsequent

abnormality detected in the negative class. BIRADS 3 screening

studies were not included in this evaluation as they represent a

rare case that is followed more often is subject to a radiologist

and institution specific variability. Figure 2 provides an overview

of the data preparation procedures employed for the EMBED

dataset.
2.3. Experimental design and mammogram
classifier architecture

Residual Neural Network (ResNet) architectures were chosen

for this task as they contain skip connections in convolution

layers which minimize residuals between layers, thereby reducing

loss rates for classification and allowing the model to learn

features at various scale (30–32). It is well documented that
Frontiers in Radiology 04
ResNet-based models have demonstrated the state-of-the-art

performances in breast cancer classification and other cancer

classification models (27, 28, 33, 34).

Three pretrained ResNet variants—ResNet50, ResNet101, and

ResNet152 were selected as feature extractors by freezing some of

the weights of the model as semi-trainable layers. The additional

six fully connected layers of 2048, 1024, 512, 128, 32, and 1 were

added as fully trainable layers followed by the pretrained

convolution backbone, Figure 3.

• Input Layer: The input layer has three channels of 800 × 600

pixels to examine signal strengths of cancer. ResNet models

take regular three channel RGB colors as inputs. All three

channel values in image data are identical because

mammogram images consist of grayscale images.

• Activation Function: Rectified Linear Function (ReLu) was

selected by the knowledge of previous works and placed in

hidden layers. The selected activation function is commonly

used in medical image classification tasks as well as general

image recognition (35–39).
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FIGURE 3

Overview of ResNet-based architecture for abnormality classification. A shortcut connection is shown above as an arrow, Reading input values before
layers. Element wise- addition was to minimize residuals produced from each layer to the output values.
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• Network Configuration: ImageNet pretrained ResNet variations

are utilized as semi-trainable base models followed by the

additional six fully connected layers, consisting of 2048, 1024,

512, 128, 32, and 1 neuron as a fully trainable layer.

• Avg-Pooling: Average pooling reduces feature map sizes built

from convolution layers by dropping the number of

parameters and reduces computation overhead (40–42).

• Output Layer: A sigmoid function was selected for the binary

classification purpose in the endpoint layer. This function is

commonly used in general binary classification and medical

image analysis (43–45).

In total, six binary classifiers were trained for comparison. The

first three classifiers were trained using images only from EMBED

using ResNet50, ResNet101, and ResNet152 architectures. The next

three classifiers were trained using images from EMBED, CBIS-

DDSM, and DDSM datasets. All six models were tested only on

mammograms from EMBED.

In each experiment, the best model was selected based on

performance during 50 epochs of training. The selected gradient

descent process was the first-order gradient-based optimization of

stochastic objective functions (ADAM), guided by previous

relevant work in deep learning-powered medical image
TABLE 3 Performance comparisons on different ResNet models before and a

Dataset AUC A
BIRADS 12 vs. 456
(ResNet50 with EMBED)

0.918 (0.915–0.921) 0.918

BIRADS 12 vs. 456
(ResNet50 with EMBED
and CBIS-DDSM/DDSM)

0.776 (0.772–0.780) 0.776

BIRADS 12 vs. 456
(ResNet101 with EMBED)

0.870 (0.867–0.873) 0.869

BIRADS 12 vs. 456
(ResNet101 with EMBED and CBIS-DDSM/DDSM)

0.860 (0.858–0.864) 0.861

BIRADS 12 vs. 456
(ResNet152 with EMBED)

0.904 (0.901–0.907) 0.904

BIRADS 12 vs. 456
(ResNet152 with EMBED and CBIS-DDSM/DDSM)

0.873 (0.870–0.876) 0.874

The numbers in paratheses represent 95% confidence interval calculated using bootstra

phase.

*P-value was calculated using McNemar’s Test.
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classifications (46–48). Binary crossentropy was employed for the

loss function which has frequently been utilized in medical image

analysis (48–50). A range of learning rates was explored with the

Bayesian optimization scheme to find the optimal hyperparameters

(51–55). All codes used in the experiment are available at https://

github.com/minjaewoo/EMBED_Screening_Model.
3. Results

The best performing model for EMBED dataset was the

customized ResNet50 model, which was trained, validated, and

tested using digital mammograms only. The customized

ResNet50 model achieved an Area-Under-Curve (AUC) [95%

confidence interval] of 0.918 [0.915–0.921], accuracy of 0.918

[0.915–0.921], the precision of 0.907 [0.903–0.911], and recall of

0.929 [0.925–0.933], as summarized in Table 3. To ensure the

model performance consistency, bootstrapping over the entire

2,414 images from EMBED was performed by randomly

sampling 200 images at a time for 200 times in the testing phase.

The best performing model for EMBED mixed with CBIS-

DDSM/DDSM was the customized ResNet152 which was trained
fter multi-source data augmentation.

ccuracy Precision Recall P-value*
(0.915–0.921) 0.907 (0.903–0.911) 0.929 (0.925–0.933) <0.001

(0.772–0.780) 0.812 (0.807–0.818) 0.717 (0.712–0.723)

(0.867–0.873) 0.908 (0.903–0.912) 0.823 (0.818–0.828) <0.001

(0.858–0.864) 0.880 (0.876–0.884) 0.834 (0.829–0.839)

(0.901–0.906) 0.879 (0.875–0.883) 0.934 (0.930–0.937) <0.001

(0.871–0.877) 0.899 (0.895–0.903) 0.841 (0.836–0.845)

pping based on random sampling 200 images at a time for 200 times in the testing
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and validated with EMBED and CBIS-DDSM/DDSM datasets. This

customized ResNet152 model attained an Area-Under-Curve

(AUC) [95% confidence interval] of 0.873 [0.870–0.876], the

accuracy of 0.874 [0.871–0.877], the precision of 0.899 [0.895–

0.903], and recall of 0.841 [0.836–0.845] as depicted in Table 3.

Bootstrapping over all 2,414 images from EMEBD was performed

by randomly sampling 200 images at a time for 200 times in the

testing stage.

The customized ResNet101 did not achieve noteworthy

performance in both EMBED and EMBED mixed with CBIS-

DDSM/DDSM. In all experiments, performance degradation to

the customized ResNet models was statistically significant overall
FIGURE 4

Overview of classification performance stratified by racial subgroups.
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when EMBED dataset was augmented with CBIS-DDSM/DDSM,

Table 3. McNemar’s test was deployed for calculating the

corresponding statistical significance.

The classification performance was further investigated by

stratifying the results by racial subgroups, Figure 4. The

performance degradation with EMBED dataset augmented with

CBIS-DDSM/DDSM was observed in all settings regardless of the

racial subgroup. However, it is noteworthy that some races are

subject to more severe performance drops as compared to other

races. For example, the performance drop presented in AUC

ranged from 0.06 to 0.11 in Asian subgroup while the same

metric ranged from 0.02 to 0.08 in the White subgroup.
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Regardless of the degradation effect, the model tended to perform

the best in White subgroup. While the ResNet101 did not achieve

noteworthy performance throughout the study, it presented the

most consistent performance minimally affected by different

racial subgroups with the AUC gap smaller than 0.05.
4. Discussion

This is the first study, to our knowledge, to evaluate the effect

combined film and digital mammography datasets for the

development of models to perform abnormality classification in

screening mammography. The results indicate that the use of

heterogeneous datasets may aggravate the classification

performance despite the increase in the size of the training

dataset, as compared to the classification model built solely on

homogenous datasets.

Specifically, the classification models trained on the

heterogeneous dataset with 4,895 film-based and digital

mammography images achieved performances ranging from 85%

to 87% AUC depending on the choice of the pre-trained weights

and structures. Classification models trained on a homogenous

dataset with 2,414 digital mammography images achieved

performance ranging from 85% to 90% AUC depending on the

choice of the pre-trained weights and structures. The

degradation of performance was statistically significant when

assessed by a non-parametric test for paired nominal data.

Furthermore, it was observed that some racial subgroups are

subject to more severe performance degradation as compared to

other racial subgroups.

Performance degradation when including film-based

mammograms can be explained by two factors. First, film-based

mammography images may contain different imaging features

than digital mammography that, while easily interpretable by a

human, appear different from computer vision models. Second,

combining mammograms from two datasets can lead to

inconsistent labeling which deteriorates the performance of

learning algorithms. The commonly used labels for the DDSM

are normal, benign, and malignant classes verified by the

corresponding pathological information (12, 13). In this study, all

biopsied lesions were classified as abnormal regardless of

pathology outcome, whereas negative cases were defined as

negative screening studies. There was no mechanism in CBIS-

DDSM or DDSM to identify cases classified as BIRADS 0 on

screening that were subsequently classified as negative.

Conversely, the labels for the EMBED were based on radiological

information in BIRADS categories; the negatives were defined as

BIRADS 1 and 2 on screening or subsequent diagnostic exam,

and positives were defined as BIRADS 4, 5, and 6 on the

subsequent diagnostic exam within 180 days. It is well

documented that there can be a discrepancy between pathologic

and radiological findings (56–58). Given that a great number of

screening models have been developed using film-based

mammograms with pathologic information, our finding poses a

serious question on whether those screening models can

adequately be adopted in contemporary clinical settings.
Frontiers in Radiology 07
The results of this study should be interpreted in consideration

of its limitations. First, the composition of the datasets used

throughout the study was balanced with respect to the numbers

of positive and negative cases. In real-world clinical settings, the

number of negative cases far outweighs the number of positive

cases in breast cancer screening. The study was designed with an

emphasis on its internal validity highlighting the cause-and-effect

relationship between multi-source data augmentation and

performance degradation. In return, its generalizability to the

real-world setting with class imbalanced datasets may be limited.

Secondly, the study does not account for the primary source of

performance degradation during the multi-source augmentation

process. Future studies are warranted to investigate the respective

impact of multi-source image features and multi-source label

discrepancy on performance degradation. Lastly, some limitations

may arise from the specific multi-institutional setting in this

study, which involved a film-based mammogram dataset from a

single institution and a digital mammogram dataset from a

different single institution.

In conclusion, use of both film and digital mammography

during training may hinder modern models designed for breast

cancer screening. Caution is required when combining film-based

and digital mammograms or when utilizing pathologic and

radiological information simultaneously.
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