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One of human brain’s remarkable traits lies in its capacity to dynamically coordinate 
the activities of multiple brain regions or networks, adapting to an externally 
changing environment. Studying the dynamic functional brain networks (DFNs) 
and their role in perception, assessment, and action can significantly advance our 
comprehension of how the brain responds to patterns of sensory input. Movies 
provide a valuable tool for studying DFNs, as they offer a naturalistic paradigm 
that can evoke complex cognitive and emotional experiences through rich 
multimodal and dynamic stimuli. However, most previous research on DFNs have 
predominantly concentrated on the resting-state paradigm, investigating the 
topological structure of temporal dynamic brain networks generated via chosen 
templates. The dynamic spatial configurations of the functional networks elicited 
by naturalistic stimuli demand further exploration. In this study, we  employed 
an unsupervised dictionary learning and sparse coding method combing with 
a sliding window strategy to map and quantify the dynamic spatial patterns of 
functional brain networks (FBNs) present in naturalistic functional magnetic 
resonance imaging (NfMRI) data, and further evaluated whether the temporal 
dynamics of distinct FBNs are aligned to the sensory, cognitive, and affective 
processes involved in the subjective perception of the movie. The results revealed 
that movie viewing can evoke complex FBNs, and these FBNs were time-varying 
with the movie storylines and were correlated with the movie annotations and the 
subjective ratings of viewing experience. The reliability of DFNs was also validated 
by assessing the Intra-class coefficient (ICC) among two scanning sessions under 
the same naturalistic paradigm with a three-month interval. Our findings offer 
novel insight into comprehending the dynamic properties of FBNs in response 
to naturalistic stimuli, which could potentially deepen our understanding of the 
neural mechanisms underlying the brain’s dynamic changes during the processing 
of visual and auditory stimuli.
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1. Introduction

The study of functional brain networks (FBNs) can reveal the 
mechanisms and properties of brain functions, which is significant for 
elucidating the cognitive, sensory, and emotional functions of the 
brain (Rubinov and Sporns, 2010; Barrett and Satpute, 2013). The key 
characteristic of FBNs is their dynamic change across time for 
adapting to the continuously complex external environment 
(Hutchison et al., 2013; Calhoun et al., 2014; Ma et al., 2014; Lurie 
et al., 2020). Research on dynamic functional networks (DFNs) using 
functional magnetic resonance imaging (fMRI) have largely advanced 
our understanding of dynamic brain activity in responding to external 
sensory information (Tononi et  al., 1996; Park and Friston, 2013; 
Calhoun et al., 2014).

Current studies on dynamic FBNs mainly rely on the resting-state 
paradigm (Hutchison et al., 2013; Allen et al., 2014; Liegeois et al., 
2017; Savva et al., 2019). However, the resting-state is challenging to 
use when investigating specific cognitive processes due to its 
unrestrained nature and undesired behavioral disturbances, such as 
head movements and microsleep (Van Dijk et al., 2012; Buckner et al., 
2013; Tagliazucchi and Laufs, 2014). In addition, electrophysiological 
and neuroimaging studies suggest that neural responses under the 
resting-state paradigm show general reliability and reproducibility 
(Belitski et al., 2008; Wang et al., 2017).

Naturalistic paradigms have been found to be more reliable and 
effective than the resting-state paradigm in exploring FBNs by 
providing cognitive constraints and high reliability (Sonkusare et al., 
2019). These paradigms involve rich multimodal dynamic stimuli that 
reflect our everyday experience, resulting in more intricate patterns of 
functional brain activity and more diverse FBNs. Movies, as a typical 
representative of the passive viewing naturalistic paradigm, provide 
continuous audiovisual experiences that elicit stronger emotions than 
brief and isolated emotion-inducing events (Hasson et al., 2004; Meer 
et al., 2020; Saarimaki, 2021). Hence, using movies as stimuli in fMRI 
studies can better induce higher-order and complex FBNs related to 
cognition and emotion, thus leading to a more comprehensive 
understanding of DFNs and their relationship with cognition, 
sensation, and emotion.

However, most of the current research on DFNs focuses on the 
topology of time-varying connectivity, which limits the regions or 
nodes of the network to the selected template or the region of interest 
(ROI) (Hutchison et al., 2013; Calhoun et al., 2014). Less attention has 
been paid to the dynamic spatial patterns of the large-scale complex 
FBNs themselves induced by natural stimuli. To fully understand 
FBNs derived from fMRI data, it is necessary to investigate the spatio-
temporal dynamics of these FBNs (Ge et al., 2020). In addition, while 
recent studies have analyzed the test–retest reliability of dynamic 
functional connectivity constrained by selected brain parcellation 
under the naturalistic paradigm (Tian et al., 2021; Zhang et al., 2021), 
the reliability of large-scale dynamic spatial patterns of FBNs remains 
unclear. Therefore, further research is required to explore the dynamic 
spatial patterns of FBNs and their relationship with cognition and 
perception, as well as their reliability during naturalistic conditions.

Inspired by the effectiveness of dictionary learning and sparse 
coding (DLSC) method in detecting static and dynamic FBNs (Lv, 
2013; Ren et al., 2017a; Ge et al., 2020), we developed a data-driven 
method that combines group-wise DLSC approach with sliding 
window strategy, to identify and quantify the dynamic spatial patterns 

of time-varying FBNs from naturalistic fMRI data (NfMRI). Our 
method successfully identified several higher-order and complex 
FBNs, such as cerebellum-related networks, and revealed the 
significant correlations between movie annotations and detected 
DFNs. Additionally, we observed that specific individual DFNs were 
correlated with individuals’ subjective emotional perceptions to the 
movie. Furthermore, we validated the reliability of DFNs derived from 
two scanning sessions with 3 months intervals by evaluating their 
ICCs. In general, our study provides novel insights into the dynamic 
characteristics of FBNs under naturalistic stimuli.

2. Results

2.1. Group-wise static FBNs

We first identified seven consistent and representative group-wise 
static FBNs for both session A and session B via the DLSC approach. 
Figure 1 shows the representative FBNs of session A. These networks 
include either typically activated simple networks or complex 
networks. The simple networks involve the visual network (Figure 1A) 
and the auditory network (Figure 1B). The complex networks consist 
of multiple co-activated brain networks/regions, including auditory 
and cerebellar network (AC) (Figure  1C), the audiovisual and 
sensorimotor network (VAS) (Figure 1D), the partial default mode 
network (DMN), the salience and cerebellar network (pDSC) 
(Figure 1E), the DMN and cerebellar network (DC) (Figure 1F), and 
the dorsal attention network (DAN) (Figure 1G). Specifically, the AC 
network is primarily composed of auditory, cerebellar posterior crus 
1,2 and vermis (Figure 1C). The VAS network is composed of visual, 
auditory, and sensorimotor cortex (Figure  1D). The pDSC 
encompasses the posterior cingulate cortex, medial prefrontal cortex, 
angular gyrus, anterior insula, dorsal anterior cingulate cortex, 
cerebellar posterior crus1,2, cerebellums 9 and vermis. Notably, the 
pDSC network excludes the precuneus (Figure 1E). The DC network 
mainly consists posterior cingulate cortex, medial prefrontal cortex 
angular gyrus, precuneus, cerebellar posterior crus1, 2, cerebellums 9 
and vermis (Figure  1F). The DAN network includes intraparietal 
sulcus and the frontal eye fields (Figure 1G). A comparison between 
these identified FBNs and well-established resting-state templates or 
networks from previous studies conducted under natural stimulation 
is presented in Supplementary Figure S8.

The FBNs derived from session B showed a high degree of spatial 
consistency with those observed in session A 
(Supplementary Figure S1), as demonstrated by the relatively high 
overlap rate and Pearson correlation coefficient (PCC) values between 
the two sets of FBNs (Table 1). Specifically, the mean overlapping rate 
and the mean PCC of the seven FBNs were 0.44 ± 0.11 
[Mean ± standard deviation (SD)] and 0.82 ± 0.18 (Mean ± SD), 
respectively, suggesting the consistency and stability of the DLSC 
framework in detecting FBNs across two scanning sessions.

2.2. Dynamic spatial patterns of FBNs

We applied the sliding time window method with a window 
length of 60 repetition time (TR) units and step size of 1TR, resulting 
in 470 available windows. Correspondingly, 470 FBNs were obtained 
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by applying the DLSC method, which could reflect the dynamics of 
time-varying large-scale networks. To provide representative 
visualization of these FBNs, we selected and displayed the FBNs from 
the first window among every 50 windows. For example, the first brain 
activation map in Figure 2 represents the visual network obtained 
during the first window (1TR to 60TR), corresponding to a time 
period of 1 s to 132 s.

To quantitatively explore the dynamic spatial patterns of FBNs, 
we  assessed the dynamic temporal changes of the number of 
activated voxels (NAV) (Figure 2) and the intensity of activated 
voxels (IAV) (Figure 3) for the seven FBNs. Our results revealed 
that for each network, both NAV and IAV exhibited temporal 
variations, with relatively consistent trends between the two 
metrics. The IAV showed less variability compared to NAV due to 
the calculation method of averaging activation intensities of all 
voxels exceeding a predefined threshold, resulting in a relatively 
narrow range of variation in the overall activation strength of the 
whole network. The peaks of NAV and IAV curves corresponded to 

the FBNs that displayed more pronounced and widespread patterns 
of activation, whereas the troughs of these curves responded to 
FBNs with diminished or even absent activation patterns. These 
findings highlight that FBNs were dynamic and evolved temporally 
in response to the unfolding plot of the movie, which is also 
consistent with the underlying neural basis of complex perception 
and behavior (Calhoun et al., 2014). Additionally, the lower-order 
perceptual networks, including visual network, auditory network, 
and VAS network, exhibited relatively stable level of activation over 
time, whereas the higher-order networks, such as pDSC, DC, and 
DAN networks, showed greater fluctuations in activation curves. 
The AC network, specifically, comprising both lower-order network 
(i.e., auditory network) and higher-order networks (i.e., cerebellar 
network), also displayed substantial fluctuations in its activation 
curves (Figures  2, 3). These results suggest that different FBNs 
exhibit distinct temporal dynamics in response to external stimuli, 
which may reflect their respective roles in higher-level cognitive 
and attentional processes.

FIGURE 1

Group-wise static functional brain networks (FBNs) of session A, including (A) visual network, (B) auditory network, (C) auditory and cerebellar network 
(AC), (D) audiovisual and sensorimotor network (VAS), (E) partial default mode network (DMN), salience, and cerebellar network (pDSC), (F) DMN and 
cerebellar network (DC), (G) dorsal attention network (DAN).

TABLE 1 Overlapping rate and Pearson correlation coefficient (PCC) across two sessions for seven representative brain functional networks (FBNs).

Visual Auditory AC VAS pDSC DC DAN Mean ± SD

Overlap 0.34 0.58 0.5 0.52 0.27 0.5 0.39 0.44 ± 0.11

PCC 0.9 0.95 0.97 0.93 0.47 0.87 0.68 0.82 ± 0.18
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The results of session B were generally consistent with those of 
session A, as evidenced by the visual comparison of the results 
depicted in Supplementary Figures S2, S3. Moreover, the PCC values 
for both NAV and IAV curves across session A and session B were 
relatively high for most FBNs (Supplementary Table S1), suggesting 
that the identified dynamic spatial patterns of FBNs induced by the 
movie viewing are reproducible and consistent across two 
scanning sessions.

2.3. Correlation between DFNs and movie 
annotations

To investigate the relationship between DFNs and the unfolding 
of the movie, we assessed the spearman correlation between dynamic 
changes of NAV/IAV and movie annotations, which include language 
use, changepoints, the presence of positive valence of scenes 
(scenes_p), the presence of negative valence of scenes (scenes_n), the 
presence of faces with positive (face_p), and presence of faces with 
negative (face_n). The results showed that two DMN-related networks, 

i.e., the DC and pDSC networks, were significantly correlated with 
movie annotations. Specifically, both NVA and IVA metrics of the DC 
network showed statistically significant correlations with the 
appearance of positive facial expressions based on permutation-based 
testing (p < 0.05) (see Methods) (Tables 2, 3). Notably, the value of p 
for the IAV metric was less than 0.01 (Table  3). Additionally, the 
changes in INV of the pDSC network were significantly and positively 
correlated with the appearance of the changepoint in the movie scenes 
(permutation 5,000 times, p < 0.05) (Table 3).

2.4. Dynamic inter-subject correlation 
analyses

The neural response evoked by the naturalistic stimuli exhibit not 
only high consistency across individuals, but also inter-subject 
variability and uniqueness reflecting personal experiences and 
intrinsically-driven processes under natural viewing condition, which 
varies across different brain regions/networks (Golland et al., 2007; 
Ren et al., 2017b). Hence, to quantify these group consistency and 

FIGURE 2

Dynamic evolution of the number of activated voxels (NAV) of seven brain function networks (FBNs) (session A). The corresponding FBNs of the first 
window among every 50 windows are displayed at the bottom.
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individual variations in defined DFNs, we adopted their corresponding 
group-wise static FBNs as templates to calculate the dynamic inter-
subject correlation (ISC) (see Methods). Accordingly, the group-level 
dynamic ISC can represent the degree of temporal consistency across 
subjects in different FBNs (the thick blue line in Figure 4). The average 
values of group-level dynamic ISC during the entire period for seven 
FNBs (including visual, auditory, AC, VAS, pDSC, DC, and DAN 
networks) were 0.33 ± 0.12, 0.51 ± 0.13, 0.58 ± 0.12, 0.39 ± 0.12, 

0.25 ± 0.10, 0.31 ± 0.08, and 0.34 ± 0.08 (Mean ± SD), respectively. 
While relatively high ISC values were observed in networks 
encompassing lower-level perceptual regions, especially those related 
to auditory processing, such as auditory and AC networks, the higher-
order networks demonstrated lower ISC values that can indicate the 
occurrence of intrinsically-driven processes during individual movie 
viewing, including pDSC and DC networks, consistent with previous 
research (Ren et al., 2017b). Moreover, individual-level dynamic ISC 

FIGURE 3

Dynamic evolution of the intensity of activated voxels (IAV) of seven FBNs (session A). The corresponding FBNs of the first window among every 50 
windows are displayed at the bottom.

TABLE 2 The Spearman correlation between the changes in the number of active voxels (NAV) and movie annotations.

Visual Auditory AC VAS pDSC DC DAN

language −0.03 0.00 −0.09 −0.12 −0.17 −0.11 −0.14

changepoint −0.15 −0.10 −0.04 0.11 0.02 0.14 0.06

scenes_p 0.00 −0.11 0.07 0.03 −0.05 0.08 −0.11

scenes_n −0.10 0.01 −0.09 −0.19 −0.08 0.02 −0.12

face_p −0.07 −0.11 0.08 0.00 −0.02 0.16* −0.09

face_n −0.05 0.02 −0.08 −0.28 −0.07 −0.01 −0.20

Bold font indicates significant correlation (*p < 0.05). Permutation test with 5,000 iterations.
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also showed inter-subject variations especially in those higher-order 
networks under movie stimuli (colorful thin lines in Figure 4).

The dynamic ISC of session B were largely consistent with session 
A (Supplementary Figure S4). Quantitatively, the PCC values for seven 
FBNs across two sessions were relatively high (Table  4), with an 
average PCC value of 0.82 ± 0.18 (Mean ± SD), thereby reaffirming the 
consistency of DFNs identified by our DLSC framework across 
two sessions.

2.5. Correlations between movie ratings 
and individual differences in dynamic ISC 
of DFNs

In the preceding section, there was relatively lower consistency in 
individual neural responses observed in higher-order brain networks, 
such as the pDSC and DC networks. This variability may be indicative 
of individual differences and unique experiences during natural 
viewing conditions. To investigate this assumption further, that is, 
exploring the potential relationship between subjective movie viewing 
experiences and the dynamics of DFNs, we examined whether the 
individual dynamic ISCs were correlated with their personal ratings 
of the movie. We applied an inter-subject representational similarity 

analysis (IS-RSA) (see Methods) to explore whether participants with 
similar subjective ratings also exhibited similar dynamic neural 
response patterns. Specifically, we  employed a multidimensional 
scaling approach (MDS) (Carroll and Arabie, 1998) to characterize the 
answers to the post-movie questionnaire. Our result revealed that 
participants had varying experiences while watching the movie, with 
some reporting high engagement characterized by low boredom, high 
enjoyment, high emotion, and high audio quality, while others had 
low engagement (Figure 5A). The distances between movie ratings 
were measured by the Euclidean distance matrix of questionnaire 
answers across all individuals (Figure 5B). We computed Pearson 
distance to represent the inter-subject distances of dynamic ISC values 
for seven representative FBNs, respectively (Supplementary Figure S5). 
By evaluating the correlation between the movie rating distances and 
the inter-subject distances of the dynamic ISC, we found significant 
positive correlations (permutation 5,000 times, p < 0.05) in three 
cerebellum-related networks, that is, AC, pDSC, and DC networks. 
The distance matrices of dynamic ISC for these three networks are 
presented in Figure 5C, and their simple linear regressions are shown 
in Figure 5D. However, the other DFNs did not show statistically 
significant associations (p > 0.05) (Table 5). We did not repeat this 
experiment in session B as it involved a repeated viewing of the same 
movie, and the post-viewing questionnaire was not conducted.

TABLE 3 The Spearman correlation between the changes in the intensity of active voxels (IAV) and movie annotations.

Visual Auditory AC VAS pDSC DC DAN

language −0.14 0.03 −0.12 0.00 −0.17 −0.08 −0.08

changepoint −0.18 −0.14 0.02 0.01 0.15* 0.12 −0.01

scenes_p −0.18 −0.04 0.03 −0.10 0.04 0.13 −0.07

scenes_n −0.01 0.07 −0.08 −0.06 −0.15 −0.01 −0.07

face_p −0.06 −0.01 −0.02 −0.09 0.05 0.19** −0.07

face_n −0.12 0.04 −0.07 −0.19 −0.19 −0.06 −0.11

Bold font indicates significant correlation (*p < 0.05, **p < 0.01). Permutation test with 5,000 iterations.

FIGURE 4

Dynamic inter-subject correlation (ISC) (session A): group-wise and individual dynamic ISC. The thick blue line represents the group-wise dynamic ISC, 
and the thin colorful lines depict the dynamic ISC of 16 different individuals.
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2.6. Test–retest reliability of DFNs

It was assumed that similar sensory experiences would lead to the 
emergence of DFNs in a consistent and reliable manner. Therefore, 
we assessed the level of reliability of the DFNs that develop in response 
to the movie storyline across two sessions. Specifically, we  first 
calculated the scan-wise intra-group correlation coefficient (ICC) 
values for seven static FBNs. The results showed that the visual, AC, 

and VAS networks exhibited excellent reliability, the auditory and 
DAN networks possessed good reliability levels, and the pDSC and 
DC networks had moderate reliability, indicating that the networks 
associated with primary perceptual processes were relatively more 
reliable, while the higher-level networks showed less reliability, 
consistent with previous studies (Choe et al., 2017) (Figure 6B).

We further analyzed the reliability of the DFNs (see Methods). 
The reliability of the auditory, AC, VAS, and DC networks, triggered 

TABLE 4 The PCC of group-wise dynamic inter-subject correlation (ISC) across two sessions.

Visual Auditory AC VAS pDSC DC DAN Mean ± SD

PCC 0.89 0.63 0.87 0.79 0.76 0.86 0.83 0.81 ± 0.09

FIGURE 5

Correlation between the movie ratings and difference of individual dynamic ISC. (A) The inter-subject distances of the movie ratings were mapped 
onto a two-dimensional plane, with movie ratings shown in the inset and coded accordingly. The arrangement of movie ratings from left to right 
signifies participants’ engagement with the movie, as those who were more engaged reported higher levels of enjoyment, emotion, and audio quality 
and lower levels of boredom. The top-to-bottom scale reflects the participants’ ratings of evoked emotions. (B) Inter-subject distance matrix of the 
movie ratings. (C) Distance matrices of dynamic ISC for AC, pDSC, and DC networks. (D) The correlation between the movie rating distances and the 
inter-subject distances of dynamic ISC.
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by this touching movie, gradually increased during the mid to late 
period (about 300–390 window, corresponding to 600–1,000 s time 
period), and reached its peak in the near-end period. This is consistent 
with the narrative structure of the movie (Supplementary Table S2), 
wherein the plot also reaches its climax near the end (at around 17 min 
or 1,020 s) (Nguyen et  al., 2017). The findings suggest that as the 
storyline develops, individuals may experience greater behavioral 
constraints and engagements, leading to an increase in the test–retest 
reliability of brain activities.

3. Discussion

Brain is a complex and dynamic system, composed of different 
brain regions forming functional brain networks that perform 
different cognitive functions (Raichle, 2006; Allen et al., 2014; Monti 
et  al., 2014; Shine et  al., 2016). This study explored the dynamic 
functional brain networks (DFNs) involved in higher-order cognitive 
processes, sensory perception, and emotional responses to naturalistic 
stimuli. Utilizing the proposed method, the study revealed rich and 
complex higher-order FBNs, including cerebellum-related networks, 
which are challenging to detect by conventional resting-state 
paradigm. The spatial patterns of these FBNs were time-varying with 
the movie storylines, and were correlated with the movie annotations 
and the subjective experience of the participants.

Specifically, our findings showed that two cerebellum-related 
networks, the DC network, and the pDSC network, were significantly 

connected to movie annotations. The DC network, which involves the 
cerebellum, posterior cingulate cortex, and precuneus region, was 
significantly and positively correlated with the appearance of positive 
facial expression during movie viewing. This finding is consistent with 
previous studies, which have shown that the cerebellum and posterior 
cingulate cortex are involved in facial emotion recognition, and that 
the precuneus is activated during the appearance of happy faces 
(Pelletier-Baldelli et al., 2015). The pDSC network, including partial 
DMN, salience network, and cerebellum, showed a significant positive 
correlation with the appearance of changepoints in movie scenes. This 
finding is also in line with previous studies, which have demonstrated 
that the changepoints in movie scenes are related to bottom-up 
attention, and that the salience network (SN) provides effective control 
of DMN activity when external event stimuli require an attentional 
response (Kelly et al., 2008; Menon and Uddin, 2010; Jilka et al., 2014). 
In addition, the cerebellum also plays a part in bottom-up attention 
(Gottwald et al., 2003; Kellermann et al., 2012). Overall, our results 
add weight to the notion that cerebellum-related DFNs are involved 
in higher-order cognitive and emotional processes.

Furthermore, the dynamic ISC analyses demonstrate relatively 
low consistency in the neural responses of higher-order brain 
networks across individuals. This variability suggests individual 
differences and unique experiences during natural viewing conditions, 
as evidenced by the strong correlations between the subjective ratings 
of the movie and dynamic ISC distances of DC and pDSC networks 
revealed by IS-RSA analyses. Exceptionally, the AC network exhibited 
relatively high temporal consistency across subjects but also existed a 

TABLE 5 The Spearman correlation between movie rating distances and inter-subject distances of dynamic ISC for seven representative FBNs.

Visual Auditory AC VAS pDSC DC DAN

Correlation −0.02 0.07 0.15* 0.13 0.20* 0.17* 0.05

Bold font indicates significant correlation (*p < 0.05). Permutation test with 5,000 iterations.

FIGURE 6

Intra-group correlation coefficient (ICC) for seven representative FBNs. (A) Dynamic ICC. The red line represents the group-wise dynamic ICC. 
(B) Static ICC.
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significant correlation with individuals’ subjective movie ratings, 
where the high ISC values were probably caused by the involvement 
of large auditory regions in the AC network. This could also explain 
the relatively weaker correlation between the AC network and movie 
ratings in comparison to that of the DC and pDSC networks (Figure 5 
and Table 5). Intriguingly, all these three networks involve cerebellar 
posterior crus1,2 and vermis regions. Previous functional connectivity 
studies have confirmed that there are strong links between the 
posterior cerebellum and the temporal lobes, suggesting these regions 
share neural similarities and are involved in sensory integration and 
emotional processing (Yeo et al., 2011; Chan et al., 2019; Heleven et al., 
2019; Van Overwalle et  al., 2020b). In addition, several positron 
emission tomography (PET) studies suggest that the posterior 
cerebellum is involved in various emotional responses, such as fear, 
sadness, and happiness (Schwartz and Davidson, 1997; Turner et al., 
2007; Verger et al., 2020). Additionally, Nguyen et al. (2017) have 
shown that the crus1,2 areas in the posterior cerebellum exhibit peak 
activities during important moments embedded in the movie, and 
Van Overwalle et al. (2020a) have shown that the cerebellar posterior 
crus 2 is specialized for mentalizing appraisal processes. Our study 
extends these previous findings by demonstrating that the dynamic 
nature of cerebellum-related FBNs is significantly correlated with 
individual-specific emotional responses.

Finally, our results also demonstrated that the DFNs elicited by 
ecologically valid sensory experiences were reproducible and reliable. 
Seven representative FBNs identified by our method were consistent 
across two scanning sessions with relatively-long interval (Figure 2, 
Supplementary Figure S1, and Table 1), and the changes in NVA and 
IVA for DFNs also showed high PCC values across two sessions, 
suggesting substantial consistency (Figures  2, 3, 
Supplementary Figures S2, S3, and Table 2). These results indicate that 
DFNs are reproducible during repeated movie viewing, further 
demonstrating that the naturalistic paradigm provides reliable 
experimental conditions for measuring DFNs. Furthermore, our 
results suggest that DFNs show good test–retest reliability, and the 
development of the movie plot enhances the test–retest reliability of 
the auditory, AC, VAS, and DC networks. This may reflect an increase 
in cognitive engagement as the storyline progresses, where the positive 
influences of cognitive participation on reliability appear to exceed the 
negative effect of familiarity from potential repeated viewings (Wang 
et al., 2017).

Overall, our study of time-varying spatial patterns of FBNs in the 
context of naturalistic paradigm improves our understanding of 
human perception, emotion, and subjective cognition. The results 
highlight the reliable correlations between cerebellum-related DFNs 
and sensory, cognitive, emotional, and subjective senses, which could 
motivate further research on the neural mechanisms underlying 
ecologically valid sensory experiences. Thus, our study provides 
valuable insights into the dynamic nature of brain networks and their 
role in higher-order cognitive and emotional processes, with potential 
applications in both basic and clinical neuroscience.

4. Limitations and future directions

Linking neural activity to higher cognitive and emotional 
functions in a dynamic and complex natural environment remains 
a challenge. In this work, we selected a relatively long time window 

of 60TRs to capture the accumulation of higher-order complex 
emotions and to improve the reproducibility of the FBNs (Savva 
et al., 2019). However, the relatively slow temporal resolution of 
fMRI with a large window size hinders the assessment of the 
responses of the brain to the perception of transient movie features. 
In the future, we  expect to address this limitation by using 
electroencephalography (EEG) or magnetoencephalogram (MEG) 
with higher temporal resolution.

While the dataset used in this study is relatively small, all 
individuals watched a complete movie (20 min), which has been 
shown to strongly stimulate higher-order cognitions and emotions 
(Jaaskelainen et al., 2021). To increase the accuracy and reliability 
of our results, we performed a second acquisition after 3 months, 
despite the considerable expenses incurred for the acquisition of the 
complete movie. Nevertheless, we acknowledge that an abundance 
of subjects would further strengthen our findings, and we plan to 
apply our model to NfMRI datasets with a larger sample size in 
future studies.

5. Materials and methods

5.1. Experimental paradigm

The experiment consisted of two scanning sessions. Following a 
first session (session A) conducted 3 months earlier, participants 
underwent a second scanning session (session B) employing the same 
experimental paradigm. In each session, participants freely watched 
the 20-min short film “Butterfly Circus.” In addition, all participants 
completed a questionnaire immediately after session A.

The short film, “Butterfly Circus,” depicts a touching story of a 
limbless man who is encouraged by the showman of a renowned 
circus to discover his true potential. The narrative architecture of the 
film follows three distinctive drama acts that feature significant 
developments, complications, and turning points 
(Supplementary Table S2). Additionally, basic movie annotations were 
provided, including: the use of language, changepoints, the presence 
of positive valence of scenes, the presence of negative valence of 
scenes, the presence of faces with positive, and the presence of faces 
with negative (Supplementary Figure S6). Further details regarding 
the participants can be found in the Supplementary material (1.2).

5.2. Data acquisition and preprocessing

Sixteen right-handed (ages 27 ± 2.7) healthy participated in this 
study. FMRI images were acquired from a whole-body 3 T Siemens 
Trio MRI scanner with the following scanning parameters: repetition 
time (TR) 2,200 ms, echo time (TE) 30 ms, flip angle (FA) 79°, the field 
of view (FOV) 192 × 192 mm, pixel bandwidth 2,003 Hz, a 64 × 64 
acquisition matrix, 44 axial slices, and 3 × 3 × 3 mm 3 voxel resolution. 
Functional images were preprocessed using FMRI Expert Analysis 
Tool (FEAT) from FMRIB’s Software Library (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki), which involved motion correction, slice timing 
correction, spatial smoothing with 6-mm full width at half maximum 
Gaussian kernel, band pass filtering (0.0085 ± 0.15 Hz), linear 
registration to the standard Montreal Neurological Institute space 
(2 mm MNI152 standard template), and masking.
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5.3. Dynamic sparse representation

To discover and characterize DFNs, we proposed a computational 
framework comprised of two stages: (A) using group-wise dictionary 
learning and sparse coding (DLSC) to represent static FBNs 
(Figure  7A), (B) sliding-window method applying for the 
representation of dynamic spatial patterns of FBNs (Figure 7B).

In stage A, first, the whole-brain fMRI signals of each subject were 

extracted and stacked into a 2D matrix S Si i ∈( )×t n) , followed by 

spatial concatenation of the individual matrix Si  into a group-wise 
matrix 𝑺 ( t p nSi∈  × ×( )

)  (top panel in Figure 7A), where t represents 
the time length of fMRI signals, n refers to the number of the individual 
brain voxels, p stands for the number of subjects. Second, we applied 
the dictionary learning algorithm to the group-wise matrix 𝑺 to learn 
a meaningful group-wise dictionary 𝑫 (

t KD∈  ×
) . This dictionary 

𝑫 consists of K atoms that can well represent the temporal features 
embedded in naturalistic fMRI data and are commonly shared by all 
the subjects (Ren et al., 2017a; Ge et al., 2020). Hence the group-wise 
dictionary 𝑫 can be used to sparsely represent individual fMRI signals 
Si, resulting in the individual spatial patterns α αi i ∈( )×K n  (K < <n) 
that exhibit correspondences across subjects (middle panel in 
Figure 7A). Notably, we used the online dictionary learning and sparse 
coding algorithm, which is an effective method for extracting 
instinctive information from the original signal and is suitable for 

group-level data operations (Ponce and Sapiro, 2010; Lv, 2013). Third, 
to obtain the group-wise static FBNs, we performed one-sample t-test 
on each element of individual loading coefficient matrix αi  (middle 
panel of Figure  7A). Specifically, for all the subjects together, 
we hypothesized that each element in the loading coefficient matrix αi  
is group-wisely null. To evaluate this assumption, we  conducted 
one-sample t-test on the corresponding element in the loading 
coefficient matrix αi  for different subjects, in order to test whether this 
hypothesis was accepted or rejected (Ren et al., 2017a). The resulting 
t-value was then transformed into a z-score, forming a group-wise 
loading coefficient matrix A composed of z-scores (Friston et al., 1994). 
Since each individual coefficient matrix αi  is sparse, the t-test result 
of the group-wise loading coefficient matrix A is also sparse. 
Afterwards, each row of matrix A can be mapped back to brain volume 
with z-scores, referred to as z-score maps. Consequently, the z-score 
map obtained from this analysis can depict spatially consistent 
activation across all subjects, thus representing the static group-wise 
FBNs (bottom panel of Figure 1A).

In stage B, in order to obtain a series of dynamic spatial patterns that 
evolve over time for each subject, we slid the same time window on the 
individual signal matrix Si and group-wise dictionary 𝑫 simultaneously. 
This approach not only allows us to establish correspondence of 
individual-level FBNs among individuals, but also generates the 
corresponding dynamic FBNs. Consequently, we obtained individual 
signal matrices 1 2, , , , ,i i ij iw… …S S S S , which represent the 

FIGURE 7

The overview of the proposed framework. (A) Using group-wise dictionary learning and sparse coding to represent static FBNs. (B) Sliding-window 
method applying for the representation of dynamic individual FBNs. p, the subject number; n, the number of voxels in the brain; K, the number of 
atoms in the dictionary; t, the time points; L, the length of each window; w, the total number of windows generated by the sliding-window method.
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individual’s signal for each window, as well as group-wise dictionaries 
1 2, , , , ,j w… …D D D D , which represent the group-wise dictionary for 

each window (top two panels in Figure 7B). The chosen window length, 
denoted as L (in our study, L = 60 TRs with a step size of 1 TR), resulted 
in a total of w = 470 windows. Consequently, the individual signal matrix 
Si and group-wise dictionary 𝑫 were divided into multistage signal 
matrices Sij and dictionaries D j  (j∈1, 2, …, w) (top two panels in 
Figure 7B). Next, based on Sij  and D j of each window, we leveraged 
sparse representation algorithms to extract a sequence of coefficient 
matrices ±ij to represent individual dynamic spatial patterns of FBNs 
(bottom panel in Figure 7B). The above experiments were performed on 
each subject in session A and session B.

To identify the matching FBNs across two sessions, we manually 
selected representative FBNs from session A and match them with 
responding FBNs in session B based on their highest Pearson 
Correlation Coefficient (PCC) values and the maximum number of 
overlapping voxels (overlapping rate) (Benesty et al., 2009; Lv et al., 
2015a). A detailed pipeline for selection of representative FBNs can 
be found in the Supplementary material (1.4). The PCC was defined 
as the correlation between the representative FBNs of session A and 
session B, and the overlapping rate of the FBNs in session A and 
session B was defined quantitatively as:

 
R X,Y

Y
( ) = ∩| |

| |

X Y

 
(1)

where 𝑿 is the representative FBN of session A, and Y refers to 
responding FBN of session B.

The DLSC algorithms rely on two key parameters: the number of 
dictionary atoms (K) and the sparsity penalty parameter (λ). However, 
there is no golden standard for determining the optimal values of these 
parameters. Based on previous studies that used DLSC algorithms for 
FBNs recognition, K was experimentally and empirically set to 400, 
and λ was set to a range of 0.1–0.5 (Lv et al., 2015b; Zhang et al., 2017; 
Ge et  al., 2018). Therefore, in this study, we  set K = 400, while 
systematically tested the setting of λ (0.1, 0.5). Through our 
experiments, we  found that the largest number of networks could 
be identified with manual inspection when utilizing the parameters 
K = 400 and λ = 0.5. Consequently, we chose this set of parameters.

The window size is a crucial parameter that can determine the 
tradeoff between time resolution and estimation results. Previous related 
studies have empirically converged to window size values between 30 and 
240 s (Hutchison et al., 2013; Preti et al., 2017). Additionally, Savva et al. 
(2019) suggested window size of at least 120 s to ensure the reproducibility 
of the result. Hence, we selected a window width of 60TRs (132 s).

5.4. Association between dynamic 
functional network and movie annotations

To quantify the dynamic changes of spatial patterns of FBNs, 
we  employed two methods including calculating the number of 
activated voxels (NAV) and the intensity of activated voxels (IAV) of 
each FBN across all windows, respectively. Specifically, NAV was 
derived by counting the number of all voxels exceeding the threshold 
value (z = 1.65), while IAV was obtained by averaging the intensities of 
all voxels above this threshold. The group-wise NAV/IAV was derived 
by computing the average value of the NAV/IAV across all individuals.

The sliding window method produced 470 DFNs with a window 
length of 60 TRs and a step size of 1. Correspondingly, the duration of 
the scan was 530 TRs, with each TR corresponding to an annotation, 
resulting in 530 movie annotations in total. To establish correspondence 
between the DFNs and movie annotations, we  selected the movie 
annotations occurring at the center point of each temporal window to 
correspond to each DFN based on previous studies (Simony et al., 
2016; Tzachor and Hoshen, 2022). Specifically, we  focused on a 
segment of movie annotations spanning from 31 to 500 TRs and 
examined their correlations with corresponding 470 dynamic FBNs.

The Spearman correlation coefficient between group-wise NAV/
IAV and annotation vectors was computed to explore the association 
between group-wise dynamic changes in spatial patterns of FBNs and 
movie annotations, which were constructed for Language, 
Changepoint, Positive Scenes, Negative Scenes Positive Faces, and 
Negative Faces. Movie annotations were converted to vectors of 0 and 
1 based on their onset and offset times (Supplementary Figure S6). To 
establish the statistical significance of the observed correlations, the 
correlation between the group-wise NAV/IAV and annotation vector 
was re-calculated 5,000 times by shuffling the vectors in each iteration. 
The observed correlation was compared with a null distribution of 
correlation generated by 5,000 permutations. If the observed 
correlation falls in the extreme tails of the distribution (i.e., the value 
of p is less than 0.05), we can conclude that there is a significant 
difference in group-wise NAV/IAV and movie annotation.

5.5. Dynamic inter-subject correlation

Inter-subject correlation (ISC) analysis measures the inter-subject 
consistency for temporal responses across participants (Hasson et al., 
2004; Di and Biswal, 2020). To evaluate the ISC of dynamic FBNs, we first 
used the group-wise static FBNs as masks to extract the time-series signals 
of the corresponding FBN for each participant. Next, we averaged all the 
time-series signals within FBN, resulting in the FBN-level time-series 
signals for each FBN. Subsequently, we also applied the sliding window 
strategy and calculated the ISC of the FBN-level time-series signals in 
each time window for each subject, where the time window size was set 
to the same value as that in the “Dynamic sparse representation” section 
(i.e., 60TRs). Consequently, we derived the dynamic ISC metric for each 
subject for each representative FBN. To calculate the dynamic group-wise 
ISC metric, we performed Fisher z-transformation on the ISC values of 
all subjects for each window and subsequently averaged the ISC value 
across all individuals for each window.

5.6. Movie rating representation

The study employed a post-movie questionnaire to collect 
participants’ subjective appraisals of the movie, which consisted of eight 
questions. However, the RSA analysis excluded four questions because 
there was insufficient variability among participants 
(Supplementary Data). The remaining four questions are more focused 
on evaluating the movie subjectively, that is, how participants rated their 
feeling during the first movie session, including boredom, enjoyment, 
feeling happy or sad, and audio quality. Regarding question 4, specifically, 
the audio quality does not vary while recording, and each participant said 
they all had a comparable understanding of the movie’s plot. The 
participants’ level of engagement may have influenced how they rated the 
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scale. All questions in the survey utilized a 1 to 5 rating scale. To represent 
participant differences in movie ratings, we employed a multidimensional 
scaling method to map responses to the questionnaire onto a 
two-dimensional representation.

5.7. The link between movie ratings and 
dynamic ISC

Inter-subject representational similarity analysis (IS-RSA) is a 
promising approach for examining the potential relationship between 
inter-subject variability in brain dynamics and individual differences 
in behavioral disposition (Kriegeskorte et al., 2008; Finn et al., 2020; 
Meer et  al., 2020). Thus, we  conducted the IS-RSA to assess the 
correlation between post-hoc behavioral movie ratings and dynamic 
ISC distances across all subjects.

We constructed inter-subject distance matrices to represent movie 
impressions and dynamic ISC. Specifically, inter-subject distances for 
movie impressions were calculated by measuring the Euclidean 
distance of questionnaire ratings between each possible pair of 
participants, resulting in 16 (number of participants) × 15 matrices. To 
examine the dynamics ISC distance, we  calculated the Pearson 
distance between the dynamics ISC matrices for every possible pair of 
participants, producing a dynamic ISC distance matrix of size 16 × 15.

To assess the strength of associations between the movie ratings 
and dynamic ISC, we calculated the Spearman correlation between the 
lower triangular parts of the above two distance matrices. To assess 
the statistical significance of the results, we performed permutation 
testing 5,000 times. For each iteration, we squeezed the two matrices, 
dynamics ISC distance and movie rating distance, into row vectors, 
and randomly selected a new starting point for each row vector. This 
procedure allowed us to generate a null distribution of correlations 
and determine whether the observed correlation was significant.

5.8. Test–retest reliability of DFNs

To assess the level of reliability of dynamic FBNs during the natural 
viewing conditions, we  calculated the test–retest reliability of the 
matching dynamic FBNs across two sessions. Specifically, we measured 
the intra-group correlation coefficient (ICC) for each window to 
determine the level of consistency in the FBNs across time (Shrout and 
Fleiss, 1979; McGraw and Wong, 1996). For comparison, we  also 
calculated the static test–retest reliability of FBNs by calculating ICC 
over the entire period. ICC can be defined by the following equation:

 
ICC

MS MS

MS d MS
=

−
+ −( )
p e

p e1  
(2)

Here, d refers to the number of observations, which in our study was 
equal to 2. MSp represents the mean square variation between subjects, 
while MSe represents the mean square variation within subjects. The 
test–retest reliability was divided into five levels: excellent (ICC > 0.8), 
good (ICC 0.6–0.79), moderate (ICC 0.4–0.59), fair (ICC 0.2–0.39), and 
poor (ICC < 0.2). The test–retest reliability was assessed at the scan-wise 
level, and the methodology for this process was carried out in accordance 
with the previous study (Guo et al., 2012; Wang et al., 2017).
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