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Background: Evidence suggests that there is a robust relationship between

altered neuroanatomy and autistic symptoms in individuals with autism spectrum

disorder (ASD). Social visual preference, which is regulated by specific brain

regions, is also related to symptom severity. However, there were a few studies

explored the potential relationships among brain structure, symptom severity, and

social visual preference.

Methods: The current study investigated relationships among brain structure,

social visual preference, and symptom severity in 43 children with ASD and 26

typically developing (TD) children (aged 2–6 years).

Results: Significant differences were found in social visual preference and cortical

morphometry between the two groups. Decreased percentage of fixation time in

digital social images (%DSI) was negatively related to not only the thickness of the

left fusiform gyrus (FG) and right insula, but also the Calibrated Severity Scores

for the Autism Diagnostic Observation Schedule-Social Affect (ADOS-SA-CSS).

Mediation analysis showed that %DSI partially mediated the relationship between

neuroanatomical alterations (specifically, thickness of the left FG and right insula)

and symptom severity.

Conclusion: These findings offer initial evidence that atypical neuroanatomical

alterations may not only result in direct effects on symptom severity but also

lead to indirect effects on symptom severity through social visual preference.

This finding enhances our understanding of the multiple neural mechanisms

implicated in ASD.

KEYWORDS

autism spectrum disorder, social visual preference, symptom severity, neuroanatomy,
mediation
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by persistent deficits in social interaction
and the presence of restricted interest or stereotyped behaviors
(1). The prevalence of ASD has increased sharply from 4/1,000 to
1/36 children in the past decade (2). The core symptoms of ASD
typically manifest around the age of 2 years and are accompanied
by developmental variations in brain structure, function, and
connectivity that impact behavior throughout the lifespan (3). As a
highly heritable disorder, the cause of ASD is complex and involved
genetic and environmental factors, thereby presenting a significant
challenge to understanding the pathology of this disorder (4).
Notably, abnormalities in brain could represent a node resulting
from these diverse contributing factors leading to the manifestation
of ASD. Despite being recognized as a brain-based disorder and
having undergone numerous neuroimaging studies, the underlying
neural mechanisms of ASD remain incompletely understood.

Numerous neuroimaging studies have consistently identified
a robust relationship between neuroanatomical alteration and
autistic symptoms in individuals with ASD. For example, a study by
Bedford et al. (5) reported greater cortical thickness in widespread
brain regions in ASD aged 2–65 years, with this greater cortical
thickness being positively correlated with calibrated severity scores
(CSS) of the Autism Diagnostic Observation Schedule Version
2 (ADOS-2). Similarly, a large-scale analysis of structural MRI
found that individuals with ASD aged 6–65 years exhibited
significant positive correlations between ADOS scores and volumes
of both gray and white matter, in addition to cortical surface
area (6). Moreover, a comprehensive review of neuroanatomy
in ASD suggested that there exists a robust association between
the neuroanatomical foundations of ASD and the functional
impairments that are typical of the clinical ASD phenotype (7).
Recent study found morphological connectivity abnormalities in
cortico-striatum-thalamic-cortical network can predict the severity
of social communication deficits in young children with ASD
aged 2–8 years (8). Functionally, brain regions that are related to
symptom severity serve as neural network hubs and play crucial
roles in social cognition and behavior (3). Although the link
between brain structure and symptom severity in ASD has been
widely established, the mechanisms underlying this relationship
have yet to be fully elucidated.

Over the past decades, the characteristic visual preference
in ASD has received increased attention from researchers. Most
studies examining visual preference via eye-tracking have reported
that individuals with ASD show reduced attention to social
stimuli (e.g., human face and biological motion) and attention
bias to non-social stimuli (e.g., geometric patterns and wheel)
(9–11). This characteristic visual preference is defined as social
visual engagement difficulties and is considered a potential
early biomarker of ASD (12–15). This innate mechanism (i.e.,
social visual engagement) ensures that typically developing
infants exhibit attention bias for social information (16), but it is
pathognomonically impaired in children with ASD (17). Owing
to dysfunction of this mechanism, individuals with ASD present
a general lack of attention to the social environment, which may
relate to the deficits of social-communicative functional circuits
and altered brain structure (15, 18). For instance, a previous

neuroimaging study found neural functional disconnection
between the visual and attention networks and social brain
networks in ASD subtypes with pronounced social visual
engagement difficulties, while increased hypoconnectivity of the
default mode network-occipito-temporal cotex was related to
increased symptom severity (19). Consistent with this, structural
neuroimaging studies in typically developing populations have
demonstrated that neuroanatomical alterations in specific
brain regions, such as the amygdala, fusiform gyrus (FG), and
superior temporal gyrus, are correlated with social attention (20).
Furthermore, the abnormal neuroanatomy and activation of these
brain regions, which are key components of social functioning,
have been suggested as being linked to symptoms of ASD (21,
22). Previous studies have also reported that toddlers with ASD
who strongly preferred geometric images demonstrated decreased
intellectual development levels, social skills, and more severe
symptoms (23, 24). Taken together, these findings suggest the
possibility of interactions among visual preference, brain structure,
and clinical symptoms in ASD.

To our knowledge, prior research has not yet explored the
relationship among these three factors. Nevertheless, based on
a synthesis of previous research, we infer that there may be a
mediating relationship among the three factors. Firstly, a well-
established brain-symptom relationship exists where specific brain
regions mediate core symptoms of ASD, especially social brain (25).
Secondly, as previously noted, social visual engagement difficulties
was mediated by specific brain regions, such as the amygdala
(26), the temporal-parietal junction (27), the insula (28), and
the FG (29). Thirdly, social attention deficits appear before core
symptoms emerge during infancy. These early deficits may have
a cascading effect on the development of social communication
skills. For example, a longitudinal study for ASD children found
the preference for biological motion at the age of 3 strongly
predicted a reduction in severity scores on the ASD-G 1 year
later (30). Similarly, the pattern of visual preference measured
by the Geopref Test in individuals with ASD aged 1–3 years
predicted ADOS total scores at school age (31). Jones and Klin (17)
reported that infants who were later diagnosed with ASD exhibited
typical eye gaze behavior (preferential attention to others’ eyes)
at 2 months of age, but showed a significant decline from 2 to
24 months of age, in contrast to typically developing infants. The
authors postulated that while reflexive social visual engagement is
intact at birth for infants with ASD, the emergence of experience-
dependent, cortically-mediated, spontaneous attention underlies
the decreased social visual engagement observed in this population
(17). Given the evidence of the independent impact of both brain
development and symptom severity on visual attention in ASD,
we propose social visual preference is a potential mediator of the
brain–symptom relationship.

In the current study, we measured characteristic visual
preference using the GeoPerf Test and social symptom severity,
as assessed by the Autism Diagnostic Observation Schedule-
Generic (ADOS-G) in children with ASD. Then, we used structural
magnetic resonance imaging (sMRI) to determine structural
differences between ASD and typical developing (TD) peers.
Finally, we performed mediation analysis to explore whether
social visual preference mediates the association between brain
structure and symptom severity. Our hypotheses were as follows:
(1) individuals with ASD would spend more fixation time on
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digital geometric images (DGI) than digital social images (DSI); (2)
compared to TD, ASD participants would exhibit atypical cortical
morphometry in specific regions, particularly social brain regions;
(3) fixation percentage of DSI/DGI would be related to altered brain
structure and symptom severity; and (4) social visual preference
would mediate the relationship between brain structure and social
symptom severity.

Materials and methods

Participants

Forty-six children with ASD and 28 TD children were recruited.
All participants with ASD were selected according to the following
criteria: (1) aged between 2 and 6 years; (2) diagnosed by
experienced child psychiatrists, meeting Diagnostic and Statistical
Manual of Mental Disorders (DSM-5) diagnostic criteria; and (3)
having no history of seizures, neurological issues, head injury,
or loss of consciousness. Inclusion criteria for TD participants
included not having a history of developmental or neuropsychiatric
disorder, either now or in the past, as well as having a gender and
chronological age matching those of the ASD group. Individuals
with a family history of any neuropsychiatric disorder, including
ASD, learning disabilities, affective disorders, schizophrenia or
epilepsy, were excluded from the study. Written informed consent
was obtained from the parents of all children who participated in
this study. Demographic features of the participants are provided
in Table 1. There was no community involvement in the reported
study.

Clinical evaluation

Autism spectrum disorder participants received both Gesell
Developmental Diagnosis Schedules (GDDS) and ADOS-G
administered by a trained and experienced clinician.

The GDDS is used to assess the developmental level of
children with ASD aged between 0 and 72 months; it is more
applicable to toddlers and children with neurodevelopmental
disorders than other scales (32). The results are expressed
in terms of developmental quotients, with scores 86 or
above being typical development, 75–85 indicating borderline
development, 55–74 indicating mildly developmental delay, 40–54
indicating moderately developmental delay, 25–39 indicating
severely developmental delay, ≤24 indicating extremely severely
developmental delay.

The ADOS-G is a semi-structured, standardized assessment
tool for individuals with suspected ASD across a wider
developmental and age range (33). Based on the age and language
of the participants, ADOS-G consists of four modules. In the
present study, 33 ASD children received Module 1, 8 ASD children
received Module 2, and 2 children received Module 3. This is
a standardized instrument used to assess the communication
and social interaction abilities of individuals with ASD. In the
present study, we obtained scores for social interaction (ADOS-SI),
communication (ADOS-C), and social affect (ADOS-SA). ADOS-
SA is the sum of ADOS-C and ADOS-SI. To enable statistical

TABLE 1 Demographic and clinical characteristics of ASD and
TD participants.

ASD TD p

Number 43 26

Gender (male: female) 34:9 19:7 0.5676

Age 4.12 ± 1.28 4.23 ± 1.31 0.7327

ADOS-C 6.60 ± 1.54

ADOS-SI 9.18 ± 1.87

ADOS-SA 15.78 ± 2.95

ADOS-CSS-SA 8.19 ± 1.48

Fixation Time
in DGI (ms)

1996.75 ± 1016.75 1459.63 ± 431.76 0.046

Fixation DGI (%) 40.76 ± 19.14 32.90 ± 11.44 <0.001

Fixation Time
in DSI (ms)

1412.48 ± 912.70 2377.25 ± 849.53 <0.001

Fixation DSI (%) 28.68 ± 17.80 45.20 ± 15.77 <0.001

GDDS-Gross motor 61.51 ± 12.86

GDDS-Fine motor 54.05 ± 16.23

GDDS-Adaptive 49.91 ± 15.19

GDDS-Language 39.51 ± 14.79

GDDS-Social 46.15 ± 13.51

Data are presented as mean ± SD. ADOS, autism diagnostic observation scale; ADOS-SI,
social interaction score of autism diagnostic observation scale; ADOS-C, communication
score of autism diagnostic observation scale; ADOS-SA, social affect score of autism
diagnostic observation scale; ADOS-SA-CSS, Calibrated Severity Scores for the Autism
Diagnostic Observation Schedule-Social Affect; DGI, dynamic geometric images; DSI,
dynamic social images; GDDS, Gesell Developmental Diagnosis Schedules; % DGI,
percentage of fixation time in digital geometric images; % DSI percentage of fixation time
in digital social images.

pooling of ADOS scores across modules, raw ADOS scores for
social affect (ADOS-SA) were converted into ASD severity scores
calibrated to ADOS (ADOS-SA-CSS). These scores range from
1 to 10 and reflect the overall severity of ASD-related behavioral
characteristics across the social interaction and communication
domains (34).

Eye-tracking paradigm

We produced an eye-tracking paradigm with reference to the
Society GeoPref test (19, 35, 36). The paradigm consisted of DGI
and DSI placed side-by-side in the scene changing simultaneously,
without audio information. The video includes six individual
scenes with a total of 60 s (each scenes displayed for 10 s)
for the DGI and DSI (left/right) with random scene assignment
across subject and diagnosis (Supplementary Figure 1). In this
study, we employed the SMI RED250 portable eye-tracking system.
The screen resolution was set to 1,024 × 768 pixels, with a
spatial resolution of 0.03 degrees and a sampling frequency of
250 Hz. Children were seated in a dark, soundproof room with
their parents, facing a 15-inch widescreen LCD monitor. The
center of their gaze was aligned with the monitor’s center, and
the distance between the eyes and the monitor was kept at
65 cm. Prior to the presentation of the short video stimulus, eye
position correction was performed by instructing participants to
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focus on a dynamic pink rabbit. Eye-tracking data were collected
while participants viewed these videos with two-eye tracking and
five-point calibration at 250 Hz sampling rate. Gaze patterns
were recorded using the BeGaze data analysis software system.
GeoPref test includes three areas of interest (AOIs)—DGI, DSI,
and background (Supplementary Figure 2). To determine the
percentage of time spent on each AOI (i.e., “% DGI” and “% DSI”),
the sum of fixation time for each AOI was divided by the total sum
of fixation time for all three AOIs.

Acquisition of MRI data

High-resolution anatomical images were obtained using a
Siemens Prisma 3.0T (Siemens Medical Solutions, Erlangen,
Germany) with a Siemens 12-channel receive-only head coil
and a T1-weighted inversion recovery fast spoiled gradient-echo
sequence. Foam padding was used to minimize head movement
for all participants. Prior to the child entering the MRI scanner,
a parent or legal guardian signed a consent form and remained
present in an adjacent waiting room during the entirety of the
scanning procedure. During scanning, the imaging data of TD
children were collected during natural sleep at night, and Children
with ASD were given sedation using 50 mg/kg of chloral hydrate
(CH) in accordance with a strict clinical protocol established by
the Radiology Sedation Committee of the hospital. It has been
reported that mild to moderate doses of CH do not necessarily
affect neural responses, and a maximum dosage of 75 mg/kg is set
to minimize unwanted side effects while ensuring an appropriate
level of sedation (37, 38). Therefore, CH may not disturb these
findings in current study. High-resolution magnetic resonance

(MR) images were acquired using a 3D T1 sequence with the
following parameters: echo time of 3.30 ms, repetition time of
10 ms, flip angle of 15◦, acquisition of 180 slices, and a voxel
size of 1 mm × 1 mm in-plane. Two authors (JC and CX)
manually inspected each raw MRI data for motion artifacts. After
visual assessment of the MRI data and FreeSurfer output, three
participants with ASD and two TD participants were excluded due
to insufficient quality. Therefore, the final analysis included data
from 43 participants with ASD and 26 participants with TD.

Processing of MRI data

T1-weighted images were processed using FreeSurfer image
analysis suite version 6.0.0.1 Eighty-three regions of interest,
comprising forty-one areas in each hemisphere and an additional
region in the brainstem, were defined using the Desikan–Killiany
Atlas (39). The technical details of these procedures have been well
documented in prior publications (40, 41). After the 3D surface was
constructed, the cortical thickness was measured as the shortest
distance from the white surface to the pial surface at each surface
vertex. Cortical volume was measured by the volume of gray
matter located between the white and pial surfaces. The surface
area was measured by assigning an area to each vertex equal to
the average of its surrounding triangles on the white surface. The
cortical thickness, volume, and surface area were smoothed using
a 10 mm full width at half maximum (FWHM) two-dimensional
Gaussian kernel.

1 http://surfer.nmr.mgh.harvard.edu/

FIGURE 1

Results from whole-brain analysis of cortical metrics between ASD and TD peers, controlling for age and gender (corrected for multiple comparisons
using Monte Carlo stimulations p < 0.005). Clusters surviving multiple comparison corrections are shown by red (ASD > TD) and blue (TD > ASD).
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Statistical analyses

Considering that numerous studies have provided evidence that
neuroanatomical abnormalities in ASD are highly age- and gender-
dependent, age and gender are suitable to be used as covariates
in subsequent analyses (42, 43). Total cortical volume was also
included as a covariate in subsequent analysis. A two-step general
linear model (GLM) was employed to estimate differences in
cortical thickness, volume, and surface area between individuals
diagnosed with ASD and TD. To minimize false-positive results,
a stringent criterion was applied, setting all analyses at p < 0.005
after correction for multiple comparisons using Monte Carlo
simulations (44). The clusters that showed group differences in
thickness, area, and volume after correction were selected as regions
of interest (ROI). ROI values were then extracted for the follow-up
analyses. A Fisher transformation was performed to enhance the
normality of the correlation coefficient (45). Based on the extracted
values of the ROI (i.e., mean, standard deviations, and numbers of
participant), we used formulas provided by Lipsey and Wilson (46)
to calculate the effect sizes and confidence intervals between the two
groups (46).

Further analyses were performed using SPSS version 20 (IBM
Corp., Armonk, NY, USA). Differences between % DSI and %
DGI in the ASD group were assessed using a paired t-test.
An independent t-test was performed to compare % DSI or %
DGI between the two groups. Partial correlation analyses were
conducted to explore the relationships among visual preference
(% DSI or % DGI), brain structure, and symptom severity, while
age and gender were used as covariates in the ASD group.
A false discovery rate (FDR) correction for partial correlation was
applied, and FDR-corrected p-values of < 0.05 were considered
statistically significant. The % DSI related to the values of ROI
and score of the ADOS-CSS-SA was then used to test the
hypothesis that the relationship between altered brain structure
and symptom severity is mediated by atypical visual preference.
The present study used a script written by Hayes (47) to conduct
mediation analysis using SPSS. The analysis was performed using
the bootstrapping technique, which involves resampling to obtain
confidence intervals for the mediator’s indirect effect. We obtained
bias-corrected bootstrap 95% confidence intervals by generating
5,000 bootstrapped samples. Model four of PROCESS macro was
selected. In the mediation model, % DSI was set as the mediator
(M), ADOS-CSS-SA was set as the outcome (Y), the values of
ROI were set as the predictor (X), and age and gender were set
as covariates. All reported probabilities (p-values) were two-tailed,
and values < 0.05 were considered statistically significant.

Results

As detailed in Table 1, DGI attracted significantly more fixation
time than DSI (t = 2.826, p = 0.006, Cohen’s d = 0.6095) in
individuals with ASD. Compared to TD children, children with
ASD spent more time fixating on DGI (t = 2.040, p = 0.046, Cohen’s
d = 0.4713) and less time fixating on DSI (t = –3.695, p = 0.001,
Cohen’s d = –0.9677). According to the result of GDDS, on average,
children with ASD had mildly delayed development in gross motor T
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FIGURE 2

(A) Cortical thickness of left FG (red oval) and right insula (blue oval) exhibiting significant differences between TD and ASD. (B,C) Comparison of
thickness in left FG and right insula between two groups. (D) Scatterplot of the correction between %DSI and ADOS-SA-CSS. (E,F) Scatterplot of the
correction between thickness and %DSI. ADOS-SA-CSS, calibrated severity scores for the autism diagnostic observation schedule-social affect;
%DSI, percentage of fixation time in digital social images. ∗∗∗p < 0.005.

skills, and moderately delayed development in language, adaptive,
fine motor skills, adaptive functions, and social functions (Table 1).

Figure 1 and Table 2 depict results from the whole-brain
analyses comparing cortical thickness and surface area between the
ASD and TD groups, after controlling for age and gender. There
was no significant difference in volume between the two groups.
Clusters surviving multiple comparison corrections are shown in
red (ASD > TD) and blue (TD > ASD) in Figure 1. Children with
ASD exhibited increased cortical thickness and smaller cortical area
when compared to TD peers.

As shown in Figure 2 and Table 3, the partial correction
analyses revealed that ADOS-SA-CSS correlated with % DSI (r = –
0.512, p = 0.014), left FG thickness (r = –0.393, p = 0.046), right
insula thickness (r = –0.505, p = 0.014), and right rostral middle
frontal thickness (r = –0.417, p = 0.041). We also observed that

% DSI was correlated with % DGI (r = –0.462, p = 0.024), left
FG thickness (r = –0.496, p = 0.014), and right insula thickness
(r = –0.442, p = 0.030). The p-values of the partial correction were
corrected by FDR. Because % DSI was related to brain structure and
symptom severity, we selected it as the mediating variable.

We tested our mediation hypothesis using a mediation model,
in which % DSI was postulated to mediate the relationship
between brain structure (thickness of the left FG and right insula)
and symptom severity (as measured by ADOS-SA-CSS) after
controlling for gender and age (Figure 3). Figure 3A presents the
mediation analysis showing the total effect of left FG thickness
and ADOS-SA-CSS [B = 2.9130, SE = 0.9830, CI = (0.9248,
4.9013)]. Figure 3B shows that left FG thickness and ADOS-SA-
CSS had a direct effect [B = 2.1882, SE = 0.9997, CI = (0.1644,
4.2120)]. The model showed a significant indirect effect of % DSI
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TABLE 3 Partial correlation among ADOS total score, fixation time, and
cortical metrics in ASD.

ADOS-
SA-CSS

Fixation
DSI (%)

Fixation
DGI (%)

Fixation DSI (%) –0.512* – –

Fixation DGI (%) 0.158 –0.462* –

Left Fusiform
Thickness

0.393* –0.496* 0.130

Right Insula Thickness 0.505* –0.442* 0.228

Left Rostral Anterior
Cingulate

0.166 –0.361 0.76

Right Lateral Occipital
Thickness

0.291 –0.224 0.369

Right Rostral Middle
Frontal Thickness

0.417* –0.358 0.256

Right Lingual
Thickness

0.299 –0.257 0.006

Left Paracentral Area –0.049 0.142 –0.143

Right Rostral Middle
Frontal Area

0.030 –0.024 0.07

Presented as partial correlation coefficient, control for age and gender; *p < 0.05, corrected
for multiple comparisons using FDR. ADOS-SA-CSS, Calibrated Severity Scores for the
Autism Diagnostic Observation Schedule-Social Affect; DSI, dynamic social images; DGI,
digital geometric images; % DGI, percentage of fixation time in digital geometric images;
% DSI, percentage of fixation time in digital social images.

on left FG thickness and ADOS-SA-CSS [B = 0.7248, SE = 0.5675,
CI = (0.0583, 2.2243)]. Figure 3C presents the mediation analysis
showing the total effect of right insula thickness and ADOS-SA-CSS
[B = 3.5873, SE = 1.1321, CI = (1.2933, 5.8813)]. Figure 3D shows
that right insula thickness and ADOS-SA-CSS had a direct effect
[B = 2.5745, SE = 1.1909, CI = (0.1593, 4.9898)]. The model showed
a significant indirect effect of % DSI on right insula thickness and
ADOS-SA-CSS [B = 1.0128, SE = 0.6513, CI = (0.0629, 2.5650)].

Discussion

To our knowledge, this is the first study to explore a possible
association between brain structures, visual preference, and clinical
symptoms in children with ASD. First, we found that children
with ASD presented more visual attention bias to non-social
stimuli compared to TD children. Second, there were significant
differences in cortical morphometry in children with ASD when
compared to TD peers, including increased thickness and decreased
area. Third, % DSI was negatively related to not only the thickness
of the left FG and right insula, but also to ADOS-SA-CSS.
Finally, a mediation analysis showed that % DSI partially mediated
the relationship between neuroanatomical alternation (i.e., the
thickness of the left FG and right insula) and symptom severity.
These findings provide initial evidence that this brain-symptoms
association occurs through mechanisms partially shared with social
visual preference.

In the current study, children with ASD spent significantly
more time viewing DGI than DSI. This is in congruence with
a number of previous studies, in which individuals with ASD
tended to show reduced attentional preference for social stimuli

combined with a strong preference for and attention toward non-
social stimuli (35, 48). The effect sizes were medium for visual
preference between two groups. Similar to a spectrum, the pattern
of visual preference in ASD would likely range from extreme
preference for non-social stimuli to extreme preference for social
stimuli (35). Based on this feature, recent studies have classified
ASD participants into different subtypes according to the degree
of visual preference. Specifically, these studies have found that
preference for non-social subtypes predicts worse prognosis (19,
24). In addition, a significant negative association between ADOS-
SA-CSS scores and % DSI was observed in children with ASD.
Our results consistent with previous studies showing that visual
preference in early childhood as a potential biomarker may predict
symptom severity of ASD (23, 24). The findings from present
study offer additional evidence for the distinctive visual preference
observed in children with ASD that is linked to symptoms severity.

In the current study, we found differences in cortical
morphometry between the ASD and TD groups. In line with
prior research, we revealed that children with ASD exhibited a
significantly thicker cortex in the frontal and temporal regions
when compared to TD children (5, 49). Notably, these significantly
different brain regions play an important role in cognitive and
emotional processes (18, 50). In addition, Our findings partially
align with previous research that reported decreased surface
area in the frontal regions in individuals with ASD when
compared with TD (51, 52). The current findings regarding
brain volume corroborated earlier studies by showing no group
differences in volume between ASD and TD at preschool age
(49). Atypical thickness and surface area contribute to complex
brain development trajectories of ASD in early life, which may
be potential biomarkers and related to clinical symptoms (53,
54). Although the cause for cortical abnormalities in ASD is
currently unknown, recent research suggests a strong correlation
between transcriptionally downregulated genes associated with
these abnormalities (55).

Increased cortical thickness in specific regions showed
correlation with visual preference and symptom severity. Here,
we found the right rostral middle frontal gyrus (rRMFG) related
to ADOS-SA-CSS. The RMFG, a region implicated in phonology
and semantic processing, contributes to the impairment of social
communication (56). More importantly, the thickness of the left
FG and right insula was related to symptom severity and %
DSI, respectively. The FG is believed to be responsible for the
ability to process facial features, making it a critical component
for appropriate social interaction (57). However, in individuals
with ASD, previous studies have shown abnormalities in FG
structure and activation during face processing (58, 59). Previous
studies have also demonstrated atypical activation of the insula in
ASD during socioemotional processing tasks (60). Furthermore,
dysfunction of the insula may be related to dysfunction of the
broader salient network in individuals with ASD who do not
find social stimuli salient and meaningful (61, 62). In line with
previous study, Doyle-Thomas et al. (63) demonstrated that
atypical morphometry in the FG and insula may be related to
poorer social ability scores and greater social impairment. Although
there was no significant correlation observed in the current study
between visual preference and symptoms severity in other ROIs, we
speculated other brain regions are involved in other dysfunctions
and/or characteristics of ASD. Therefore, our findings further
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FIGURE 3

Mediation analysis showing total effect of cortical thickness on symptom severity (A,C) and indirect effect of %DSI (B,D), control for age and gender.
*p < 0.05. B, unstandardized regression coefficient; SE, standard error; CI, confidence interval; β, standardized regression coefficient; ADOS-SA-CSS,
calibrated severity scores for the autism diagnostic observation schedule-social affect; %DSI, percentage of fixation time in digital social images.

suggest that atypical morphometry in the FG and insula, which
are the crucial neurological foundations of social information
processing, appeared to be related to more severe symptoms and
less social attention in children with ASD.

In addition, it is important to note that the FG and
insula are especially critical for visual preference and symptom
severity, and not the homologs or bilateral differences. One

potential explanation is the altered structural brain asymmetry
and lateralization observed in ASD. Dougherty et al. (59) showed
atypical leftward asymmetry in FG structure, which is related to
symptom severity in ASD. Functionally, the left and right FG
are considered to perform distinct functions. The right FG is
believed to be involved in conscious processing of faces, while
the left FG engages more broadly in visual perception and object
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recognition (64, 65). Previous studies have shown that altered
anterior insular asymmetry of ASD related to the scores of ADOS
[(66, 67)]. Atypical insular asymmetry in ASD may contribute to
the development of networks with a diminished salience signal
to human faces and voices, and may lead to more learned
passive avoidant responses to such stimuli (66). Our study adds
evidence to support that atypical lateralization of special regions
is related to symptom severity in ASD. As we know, there is little
research to explore the relationship between visual preference and
lateralization. Our findings at least lend support to the idea that
structural asymmetries in the FG and insula are related to social
visual preference and symptom severity in ASD.

Importantly, we have revealed social visual preference partially
mediates the relationship between altered brain structure (the
left FG and right insula) and symptom severity. Consistent with
previous findings, abnormal thickening of gray matter in core
brain regions can reduce visual preference for social stimuli
(19, 27) and increase the severity of symptoms (68). Meanwhile,
reduced visual preference for social stimuli can further exacerbate
symptoms (69). These findings suggest the existence of a brain-
trait (social attention)–symptoms pathway, which contributes to
our understanding of one of the multiple neural mechanisms
involved in ASD. Notably, our results also provide some clues for
interventions. Our research findings support that social attention is
influenced by core brain regions and also affects the manifestation
of symptoms. We infer that social attention may be a promising
intervention target for improving symptom severity by mitigating
not only its direct effect but also the indirect impact of altered brain
structure. To date, there have been no specific interventions for
social visual preference. However, some special interventions have
been developed based on the characteristic visual preferences of
ASD, such as Lego R© Therapy (70) and The Transporter (71). These
interventions created autism-friendly contexts mixed with social
elements, which can not only attract the interest of children with
ASD but also promote their spontaneous cognitive processing and
learning. Moreover, Jones et al. (72) found early parent-mediated
intervention has the potential to increase attention to social stimuli
in infants at familial risk for ASD (72). Future research could
develop interventions based on the characteristic visual preferences
of ASD to increase interest and motivation for a better intervention
effect.

Some limitations should be considered when interpreting
our results. First, our study did not match the sample
sizes of the ASD (n = 45) and TD groups (n = 26). Our
future studies will recruit more TD children who meet
these criteria. Moreover, there are close and interdependent
relationship between brain structure and function. Our study
revealed structural abnormalities in specific brain regions that
appeared to be linked to functional abnormalities. However,
sMRI does not adequately capture the temporal dynamics
of brain function. Future studies could employ functional
neuroimaging techniques, such as fMRI or functional near-
infrared imaging technology, to explore related functional
abnormalities. Furthermore, based on the findings of our present
study, IFG and insula may serve as hubs for further functional
analysis, which could help elucidate mediating mechanisms more
enrichment and depth.

Conclusion

In conclusion, this study demonstrated that social visual
preference partially mediates the relationship between altered
brain structure (in the left FG and right insula, specifically)
and symptom severity. These findings offer initial evidence that
atypical neuroanatomical alterations may not only result in direct
effects on symptom severity but also lead to indirect effects on
symptom severity through social visual preference. This finding
enhances our understanding of the multiple neural mechanisms
implicated in ASD.
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