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ABSTRACT 

Article History: 
Panel data is a combination of cross-sectional and time series data. Spatial panel analysis is 

an analysis to obtain information based on observations affected by the space or location 

effects. The effect of location effects on spatial analysis is presented in the form of weighting. 

The use of panel data in spatial regression provides a number of advantages. However, the 

spatial dependence test and parameter estimators generated in the spatial regression of the 

data panel will be inaccurate when applied to areas with a small number of spatial units. 

One method to overcome the problem of small spatial unit sizes is the bootstrap method. This 

study used the fast double bootstrap (FDB) method by modeling the poverty rate in the Flores 

Islands. The data used in the study was sourced from the BPS NTT Province website. The 

results of the Hausman test show that the right model is a Random effect. The spatial 

dependence test concludes that there is a spatial dependence, and the poverty modeling in 

the Flores Islands tends to use the SAR model. SAR random effect model R2 shows a value of 

77.38 percent, and it does not meet the assumption of normality. The Spatial Autoregressive 

Random effect model with the Fast Double Bootstrap approach is able to explain the diversity 

of poverty rate in Flores Island by 99.83 percent and fulfilling the assumption of residual 

normality. The results of the analysis using the FDB approach on the spatial panel show 

better results than the common spatial panel.  
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1. INTRODUCTION 

Panel data is a combination of cross-sectional and time series data. Time series data is the result of 

observations of one or more variables over a period of time. Cross-sectional data is the result of observations 

of one or more variables taken from sample units or subjects at the same period. In panel data, the same 

individual units are observed from time to time [1]. Spatial regression analysis was first introduced by Jean 

Paelinck in 1970 and was later developed by Anselin [2]. Spatial panel analysis is an analysis affected by the 

space or location effects. The effect or location effect on spatial analysis is presented in the form of weighting. 

The measure of proximity depends on the information on the size and shape of observation units, as illustrated 

on the map [3].  

In spatial regression, spatial dependency is an absolute requirement for this analysis. Methods for 

testing the spatial dependency include: Moran's I test, Lagrange Multiplier (LM), Likelihood Ratio (LR), and 

Rao's Score. Moran's I test is the commonly used test since this test does not assume an alternative hypothesis, 

but it is able to test the spatial lag dependence and the spatial error dependence [4]. 

In 1979, Efron introduced the computer-based bootstrap method as an alternative empirical problem 

solving. This method is more accurate than the asymptotic method under conditions of small samples and 

unknown parameter distribution [5]. In 1988, Beran developed the double bootstrap method with better 

performance than the common bootstrap method. The basic principle of the double bootstrap method is that 

from the first stage of the B1 bootstrap data set, resampling is carried out as much as B2 replication in the 

second stage [6]. The weakness of double bootstrap method is its longer calculation time because to obtain 

the test statistic value, it has to calculate resampling as many as used in the first stage, and then it is added 

with resampling in the second stage. Then, the test statistics of the bootstrap data set in the first stage and the 

second stage are treated as independent, so each bootstrap data set in the first stage is replicated one time in 

the second stage bootstrap. This method produces the same level of accuracy as the double bootstrap method 

but requires a much shorter processing time. This method is called fast double bootstrap (FDB) [7]. 

A spatial bootstrap test based on Ordinary Least Square (OLS) according to Moran's I statistics is used 

to test the spatial correlation of the model. The fast double bootstrap method results in better Moran's I 

statistical test value and better asymptotic assumption test value, with a research focus, namely Boostrap 

Moran's I [4]. The study used the bootstrap method for LM tests (including LM-lag tests and LM-error tests) 

and for spatial dependence in panel data models with fixed effects. The consistency of LM testing and 

bootstrap versions is proven, and there are some asymptotic improvements of bootstrap LM testing [8].  

The bootstrap method has advantages in that the bootstrap does not require assumptions about data 

distribution or does not need to assume independent errors and normally distributed terms [4]. The use of 

spatial panel data with the fast Double Bootstrap approach cannot be directly applied to the residuals; it needs 

a cluster approach. The cluster approach used in panel data is a cluster based on time and a cluster based on 

series. The bootstrap cluster method is often used in panel data research, where the bootstrap cluster method 

works very well in practice on panel data [9]. 

Different bootstrap methods have been developed for different types of regression. Such as residuals 

bootstrap, block bootstrap [5], wild bootstrap, wild cluster bootstrap [10]. The block bootstrap is used in time 

series models. The wild bootstrap is used to deal with panel data models and heteroscedasticity [11]. The 

pairs bootstrap is used for to dynamic model or the heteroscedastic model in which the error term is unknown 

distributed. The sub-cluster wild bootstrap is a family of new methods that includes the ordinary wild 

bootstrap as a limiting instance. The latter technique can perform very effectively in pure treatment models, 

where all observations within clusters are either treated or not. The most important criterion. 

Research on spatial data panels focused on only Moran's I bootstrap and Bootstrap LM test [4][12]. 

This study uses the Fast double bootstrap method approach with faster work, namely each set of the first stage 

bootstrap data is enough to do one replication on the second stage bootstrap. 

This study used a spatial autoregressive panel data model with the fast double bootstrap (FDB) 

approach to the poverty rate data in the Flores Islands. Poverty modeling in the Flores Islands has too small 

a sample unit. In addition, the use of panel data with the time series of 2018 – 2020 has also not been able to 

produce a large number of observations. This condition will bring problems in testing the spatial dependence 

because of small samples and residuals that are not normally distributed. In general, statistical inference is 

based on the assumption of an asymptotic normal distribution with reference to the Law of Large Numbers 

and the Central Limit Theorem. In small samples, the accuracy of the estimator resulted from the maximum 
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likelihood estimator (MLE) method and the Ordinary least square (OLS) method is not good [13]. If the 

sample size is not large, the asymptotic behavior of the statistics leads to a poor estimate of the actual. By 

using the bootstrap method, under some regularity conditions, it is possible to obtain a more accurate 

estimator distribution than the common statistical distribution. To overcome this problem, the fast double 

bootstrap (FDB) method is utilized. By using the double bootstrap (FDB) method, under some regularity 

conditions, it is possible to obtain a more accurate estimator distribution than the common statistical 

distribution [12].  

According to Hounkannounon if the sample size is not large enough, the asymptotic behavior of such 

statistics leads to poor estimates of the real ones. Using the bootstrap method, under some conditions of 

regularity, it is possible to obtain a more accurate estimator spread than the usual statistical distribution [14]. 

Double bootstrap is a procedure to calculate the bootstrap p-value value, which is much more computationally 

efficient than the bootstrap itself.  In many cases, it can provide more accurate results than the usual 

bootstrapping approach [15]. 

 

 

2. RESEARCH METHODS 

The data used in this study were data from the Central Statistics Body (BPS) of the East Nusa Tenggara 

Province for the 2020-2022 period. The areas used in this study were all districts in the Flores Islands. The 

dependent variable was poverty, the independent variable was expected years of schooling (HLS), GRDP, 

life expectancy (AHH), district minimum wage (UMK), and unemployment rate (TPT).  The data were tested 

using a spatial autoregressive model (SAR) with a fast double bootstrap (FDB) approach. The steps of the 

analysis were first, determining the spatial weighting matrix based on Rook contiguity and normalizing the 

rows to get the matrix (W). Then, choose the right model between Fixed effect and Random effect using the 

Hausman test.  

Next, conducting spatial dependency tests, which was Morans'I and LM tests with initial data and the 

residual approach of pooled effect of model Morans'I test with residual approach [4]. 

I0=
ε̂

'
WnTε̂

ε̂
'
ε̂

         (1) 

  

WnT = 𝐈T ⊗ 𝐖. W is a fixed spatial weighting matrix and �̂� is a set of residuals resulted from the pooled 

effect regression. 

Statistical tests were conducted to determine the spatial dependence and autoregressive in the model 

by using the Lagrange Multiplier (LM) and Robust Lagrange Multiplier tests.  

Lagrange Multiplier test lag model [16].  

𝐿𝑀𝛿 =
[𝜺′(𝑰𝑇⊗𝑾)𝒚/�̂�2]

2

𝐽
         (2) 

𝑟𝑜𝑏𝑢𝑠𝑡𝐿𝑀𝛿 =
(�̂�′(𝑰𝑇⊗𝑾)𝒚/�̂�2−̂′(𝑰𝑇⊗𝑾)�̂�/�̂�2)

2

𝐽−𝑇𝑇𝑤
     (3) 

 

2.1 Panel Data Autoregressive Spatial Model 

Estimation of the spatial regression parameters of this panel data assumed that the W matrix was 

constant over time and the data used waws balanced panel data [17] [2]. The models that can be formed were 

the spatial autoregressive fixed effect model and the spatial autoregressive random effect model.  

   Spatial autoregressive fixed effect model [17] 

𝒚 = [𝑰𝑛𝑇 − �̂�(𝑰𝑇 ⊗ 𝑾)]−1(𝑿�̂� + (𝑰𝑇 ⊗ 𝝁) + �̂�)    (4)  

Spatial autoregressive random effect model 

𝒚 = 𝜌(𝑰𝑇 ⊗ 𝑾𝑛𝑇)𝒚 + 𝑿𝜷 + �̂�       (5)  

𝜺 = (𝚤𝑇 ⊗ 𝑰𝑁)𝜙 + 𝑣 
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2.2 Spatial Panel Using Fast Double bootstrap approach 

2.2.1 Morans’I Fast double bootstrap 

Calculation of Moran's I value used Equation (1) with the residual of the resampling results. 

Ib
∗∗ =

ε̂b
∗∗′WnTε̂b

∗∗

ε̂b
∗∗′ε̂b

∗∗          (6)  

where 𝑏 = 1, 2, …, 𝐵. WnT = (IT⨂W) is fixed spatial weighting matrix over time. �̂�b
∗∗ is a set of residuals 

resulted from the second stage of resampling of the residuals from the pooled data panel regression results 

(ε̂) 

I∗∗ =
1

B
∑ Ib

∗∗B
b=1         (7) 

p-value of Moran’s I fast double bootstrap  

�̂�𝐼
∗∗ =

𝑎𝑚𝑜𝑢𝑛𝑡(𝐼𝑏
∗∗≥𝑄∗∗(1−�̂�𝐼

∗))

𝐵
       (8) 

with �̂�𝐼
∗ is p-value of Moran’s I on the bootstrap of the first stage  

�̂�𝐼
∗ =

𝑎𝑚𝑜𝑢𝑛𝑡(𝐼𝑏
∗≥𝐼0)

𝐵
       (9) 

2.2.2 Fast Double Bootstrap LM lag  

The Lagrange Multiplier lag test can be used to test the spatial dependence between regions on the 

dependent variable. The Lagrange Multiplier lag test using the fast double bootstrap (FDB) approach was 

developed from the LM lag test statistics. Fast Double Bootstrap LM lag value is stated in Equation (10). 

𝐿𝑀𝑙𝑎𝑔𝑓𝑑𝑏 = 𝐿𝑀𝜌
∗∗ =

1

𝐵
∑ 𝐿𝑀𝜌𝑏

∗∗

𝐵

𝑏=1

 

LM𝜌𝑏
∗∗ = (

̂𝑏
∗∗(𝑰𝑇⊗𝑾)𝒚𝒃

∗∗/�̂�2

𝐽𝑏
∗∗ )

2

       (10) 

where 
**

bLM   is the LM lag value for each replication. �̂�𝑏
∗∗ is a set of residuals resulted from the second stage 

of resampling of panel data regression(�̂�). 

𝑦𝑏
∗∗ = 𝑿�̂� + �̂�𝑏

∗∗         (11) 

(�̂�𝑏
∗∗)2 =

�̂�𝑏
∗∗′�̂�𝑏

∗∗

𝑛𝑇
         (12) 

1** 1 **2ˆ ˆ ˆ(( ) )(I ( ) )((I ) )
**2

ˆ
J I TTT nT T Wb b

b




−
 =  −  + 

 
W X X X X WXβ Xβ    (13) 

( )T traceW
= +WW W W    

p-value of Lagrange Multiplier (LM) lag using the Fast double Bootstrap approach was obtained by the 

equation: 

�̂�𝐿𝑀𝜌
∗∗ =

𝑎𝑚𝑜𝑢𝑛𝑡(𝐿𝑀𝜌𝑏
∗∗ ≥𝑄∗∗(1−�̂�𝐿𝑀𝜌

∗ ))

𝐵
     (14) 

�̂�𝐿𝑀𝜌
∗ =

𝑎𝑚𝑜𝑢𝑛𝑡(𝐿𝑀𝜌𝑏
∗ ≥𝐿𝑀𝜌)

𝐵
      (15) 

𝐿𝑀𝜌𝑏
∗ = (

̂𝑏
∗ (𝑰𝑇⊗𝑾)𝒚𝒃

∗ /�̂�∗2

𝐽𝑏
∗∗ )

2

      (16) 

𝐿𝑀𝜌𝑏 = (
̂′(𝑰𝑇⊗𝑾𝒏𝑻)𝒚/�̂�2

𝐽
)

2

      (17) 

 

where 𝑏 = 1,2, …, 𝐵. 𝐿𝑀𝜌𝑏 is the LM lag value of the original data. 

The hypotheses used were: 

H0 :  𝜌 = 0 (no spatial lag dependence in the model)  

H1 :  𝜌  0 (there is spatial lag dependence in the model) 

If p-value of Lagrange Multiplier (LM) lag of the fast double bootstrap approach is less than the significance 

level α, then H0 is rejected. 
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2.3 Fast Double Bootstrap SAR Model 

Spatial autoregressive model (SAR) with fixed effect and random effect methods produced a residual 

data set ( ̂ ). The residual data set bootstrap was carried out in two stages to obtain fast double bootstrap 

replication ( ˆ**
b ). The residual bootstrap data set in the second stage was used to estimate the model. The 

residual bootstrap data set in the second stage was used to estimate 
**

by  for spatial Fixed effect as presented 

in the Equation (18). 

𝒚𝒃
∗∗ = [𝑰𝑛𝑇 − �̂�(𝑰𝑇 ⊗ 𝑾)]−1(𝑿�̂� + (𝑰𝑇 ⊗ 𝝁) + �̂�𝒃

∗∗)    (18)  

For the equation of spatial random effect, the residual bootstrap data set in the second stage was used to 

estimate 
**

by  as presented in the Equation (19) below: 

𝒚𝒃
∗∗ = 𝜌(𝑰𝑇 ⊗ 𝑾𝑛𝑇)𝒚 + 𝑿𝜷 + 𝜺𝑏

∗∗      (19) 

𝜺𝑏
∗∗ = (𝚤𝑇 ⊗ 𝑰𝑁)𝜙 + 𝑣 

𝒚𝒃
∗∗ obtained in each replication data set was modeled with the SAR model to obtain parameter estimators for 

each replication data set. 

Estimated value of model parameters using the fast double bootstrap approach (FDB):  

�̂�∗∗ =
1

𝐵
∑ �̂�𝑏

∗∗𝐵
𝑏=1        (20) 

for 𝑏 = 1,2,…, 𝐵. Standard error �̂�∗∗  can be obtained using the equation: 
1/2

1** ** ** 2ˆ ˆ ˆ( ) ( )
1(B 1)

B
se

bb
  = −

=−

 
 
 

      (21)  

The estimator coefficient value of the spatial lag autocorrelation using the fast double bootstrap (FDB) 

approach was obtained through an iteration process for each replication. 

�̂�∗∗ =
1

𝐵
∑ �̂�𝑏

∗∗𝐵
𝑏=1        (22) 

where 𝑏 = 1,2,…, 𝐵.  

 

 

3. RESULTS AND DISCUSSION 

Data exploration is carried out to provide an overview and useful information from the data without 

drawing conclusion in general. 



950 Ngabu, et. al.     CLUSTER FAST DOUBLE BOOTSTRAP APPROACH WITH RANDOM…  

 

 
Figure 1. Thematic Map of Poverty Rate in Flores Islands 2020-2022 

 

Figure 1 shows the distribution pattern of poverty in 8 districts in the Flores Islands used in this study. Among 

the districts in the Flores Islands, East Manggarai district, Ende was the district with the highest poverty 

percentage across all timescales. 

The weighting matrix used was Rook Contiguity, followed by the Hausman test to obtain the selected 

model. 
Table 1. Hausman Test 

Test Chi-square P-value 

Hausman SAR 3.2458 0.6223 

Hausman SEM 0.5321 0.8324 

 

Table 1 shows that the Hausman tests for SAR and SEM obtained p-value > α (0.05), and therefore, H0 is 

accepted, and it can be concluded that the random effect model is better than the fixed effect model in 

modeling the poverty rate in the Flores Islands. 

After the model was selected, the next step was to test the spatial dependence with Moran's I test and 

the Lagrange Multiplier test. In testing the spatial effect with Moran's I test, it was found that there was a 

spatial effect among locations with Moran's I value (0.3493) > I0 (- 0.1428). It shows a spatial dependence or 

spatial effect on the percentage of poverty rates between districts in the Flores Islands. In the Lagrange 

Multiplier (LM) test, the results are as follows: 

 
Table 2. Lagrange Multiplier test value with Spatial Regression Model 

Test Statistics Value P-value 

LM lag 14.713 6.725e-04 

Robust LM lag 11.360 0.0004236 

 

Based on Table 2, the LM lag test resulted in a p-value of 6.725e-04. This indicates that there is a spatial 

dependence in the spatial lag model of panel data. Robust LM lag test obtained p-value of 0.000423. This 

shows that the spatial panel model of the poverty rates in the Flores Islands tends to be the Spatial 

Autoregressive model (SAR).  
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Then, the spatial autoregressive random effect test was carried out. The coefficient of determination (𝑅2) 

generated was 0.7338, with the assumption that the residual normality of the random effect spatial model was 

not met.  

The next step was spatial panel testing with the cluster fast double bootstrap (FDB) approach. Spatial 

dependence test with fast double bootstrap (FDB) approach obtained:  

Table 3. Statistical value of spatial dependence using cluster Fast Double Bootstrap 

Test Statistics Value P-value 

Moran’s I 0.0458 0.00147 

LM lag 4.7356 0.00238 

Robust LM lag 3.1217 0.02145 

 

Based on Table 3, the results of spatial dependence testing using the fast double bootstrap (FDB) approach, 

Moran's I FDB test statistics, and LM lag were 0.00147 and 0.00238 smaller than 𝛼 = 0.05. This indicates 

a spatial dependence of the percentage of poor people among districts in the Flores Islands. FDB robust LM 

lag test obtained a p-value of 0.02145. This show that the spatial panel model of poverty rates in the Flores 

Islands tends to be the Spatial Autoregressive (SAR) model with the FDB approach. 

The next step was testing the spatial autoregressive random effect model with the FDB approach. The 

spatial value of the autoregression model with the FDB approach was: 

Table 4. SAR random effect regression coefficient value with cluster FDB approach 

Parameter Coefficient Std. Error P-value  

HLS 0.3625 1.1064 0.4190 R-Square = 

0.9893 GRDP -0.0471 0.5941 0.0020 

AHH 4.4302 0.0987 0.0378 𝜙 = 0.0365 

UMK 0.2472 0.0457 0.0028 𝜌 = - 0.1134 

TPT -0.4658 2.1949 0.4217  

 

According to Table 6 and based on the coefficient of determination (R2) obtained that 98.93 percent of the 

poverty rates in the Flores Islands can be explained by the five independent variables using the spatial 

autoregressive random effect with the FDB approach. The variables which significantly affected the 

dependent variable in the SAR random effect model used 𝛼 = 5%, included GRDP, life expectancy (AHH), 

and district minimum wage (UMK). This was indicated by the p-value < 𝛼 = 5%.  

SAR random effect model using the FDB obtained was: 

ŷit = −0.1134 ∑ wijyjt

n

i=1

− 0.0471 X2t + 4.4302 X3t + 0.2472 X4t + 0.365 

Next, the assumption of residual normality is met at a fairly small observation size by using the FDB 

SAR random effect approach. The test results with the cluster fast double bootstrap (FDB) approach show 

better results and there is an improvement in the normality assumption test. 

 The prediction results of the cluster Fast Double Bootstrap approach can be seen in Figure 2. 



952 Ngabu, et. al.     CLUSTER FAST DOUBLE BOOTSTRAP APPROACH WITH RANDOM…  

 

 
Figure 2. Prediction Map with Cluster FDB Approach 

 

Figure 2 shows the prediction of poverty in the Flores archipelago has decreased from the first figure it shows 

areas that have a high percentage of poor people including the Ngada district. In the figure, the two regions 

that have a high percentage of Poverty include the districts of Ngada and Sikka. The third figure shows change 

into areas that have a high percentage of Poverty, including the districts of West Manggarai, Sikka, and East 

Flores. The prediction results show a decrease in the poverty rate for every region in the Flores Islands. 

 Plot normality of SAR random effect parameters with Cluster Fast Double Bootstrap approach 

presented in Figure 2. 

 

 

 

Figure 3. Histogram normality parameter FDB SAR random effect 

Iteration Iteration Iteration 

Iteration Iteration Iteration 
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Based on Figure 2, the estimated value of parameters obtained by the Fast Double Bootstrap Spatial 

Autoregressive random effect approach with looping 1000 times meets the normal distribution (limiting 

normal distribution). 

 

 

4. CONCLUSIONS 

The autoregressive spatial random effect model using the Cluster Fast Double Bootstrap approach 

results in a higher R-square value, 98.93 percent of the initial spatial autoregressive random effect model 

data. Spatial testing using the FDB approach shows better results and there is an improvement in assumptions 

of the small samples. 

For future research, it is necessary to develop a statistical test of spatial dependence with the FDB 

approach that considers outlier data. 
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