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ABSTRACT 

Article History: 
Random forest is one of the most popular ensemble methods and has many advantages. 

However, random forest is a "black-box" model, so the model is difficult to interpret. This study 

discusses the interpretation of random forest with association rules technique using rules 

extracted from each decision tree in the random forest model. This analysis involves simulation 

and empirical data, to determine the factors that affect the poverty status of households in 

Tasikmalaya. The empirical data was sourced from Badan Pusat Statistik (BPS), the National 

Socio-Economic Survey (SUSENAS) data for West Java Province in 2019.  The results obtained 

are based on simulation data, the association rules technique can extract the set of rules that 

characterize the target variable. The application of interpretable random forest to empirical 

data shows that the rules that most distinguish the poverty status of households in Tasikmalaya 

are house wall materials and the main source of drinking water, house wall materials and 

cooking fuel, as well as house wall materials and motorcycle ownership. 
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1. INTRODUCTION 

Random forest is an ensemble method for classification and regression derived from a set of decision 

trees. Each decision tree in a random forest is constructed independently. The final random forest prediction 

for the classification case is based on aggregating predictions with the majority of votes from all decision 

trees [1]. Random forest is one of the most popular ensemble methods because random forests can be applied 

to various prediction problems and produce competitive accuracy. In addition, random forests have 

customizable parameters, are easy to use, and have the ability to handle small sample sizes and high-

dimensional feature spaces [2]. Therefore, the random forest is often used in various applications, such as in 

agricultural production systems [3], random forest for index tracking [4], and the implements a random forest 

classifier for Parkinson's disease [5]. 

Although random forest is good in many areas, it is often criticized for its “black-box” model. This is 

because there is a trade-off between the accuracy and interpretability of the model [6]. The model's accuracy 

tends to increase along with the complexity of the rules built by the model. However, the higher the 

complexity of the model, the more difficult it is for humans to interpret the relationship between the elements 

in the model.  

Interpretability is very important in understanding the relationship among phenomena. It is the 

degree to which a human can understand the cause of a decision [7]. An interpretable model is a model 

that can provide a qualitative understanding of the relationship between the value of the independent 

variable and the resulting response variable [8]. In the case of tree-based classification, the model can be 

interpreted through tree structures, such as features and thresholds used for splitting in the decision tree 

model. The decision tree uses a simple if-then decision rule consisting of conditions and predictions. For 

example, “if it rains today and if it is April (conditions), then tomorrow it will rain (prediction)”. Because 

a random forest consists of a collection of decision trees, a random forest has a set of rule patterns.  

Association rules are the "if-then" statements, a pattern mining technique that aims to get combinations 

of items that often appear within large data sets and can also be used to find association rules among 

combinations of items. In this study, the item set referred to the set of decision rules in the random forest 

model. In [9], a way to get an interpretation in a random forest is proposed. The proposal includes extraction, 

measurement, and processing the rules generated by a set of decision trees in a random forest. Several studies 

have used the inTrees framework for tree ensemble interpretation, such as Jimenez et al. [10] using inTrees 

to explain artificial intelligence in the case of drug discovery and Narayanan et al. [11] using inTrees to 

understand the characteristics of SSD failures in production datacenters. 

The purpose of this study is to enrich the discussion presented by [9] by using different scenarios of 

simulation data, especially in solving the problem of interpretation in random forests for classification problems. In 

addition, we also propose an alternative approach in selecting meaningful rules. The interpretable random forest is 

applied to solve practical problems and determine the factors that affect the poverty status of households in 

Tasikmalaya. 

 

 

2. RESEARCH METHODS 

2.1 Data and Variables 

The data used in this study consisted of simulation data and empirical data. The data simulation design 

aims to prove the correctness of the association rules method in finding patterns of interest between items. 

The simulation data is designed in such a way that 𝑌 = 1 is characterized by conditions (𝑋1 = 1, 𝑋2 = 1), 

(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 1), and (𝑋1 = 1, 𝑋2 = 1 𝑋3 = 2). While 𝑌 = 0 is characterized by conditions (𝑋1 =
2, 𝑋2 = 2), (𝑋1 = 2, 𝑋2 = 2, 𝑋3 = 1), and (𝑋1 = 2, 𝑋2 = 2, 𝑋3 = 2).  

Simulation data is generated with the following conditions: 

1. Generate three independent variables, with each having two categories so that there are eight 

combinations of rules formed, as shown in Table 1. 

2. Select two combinations of rules that characterize the response 𝑦 = 1 and two other 

combinations of rules that characterize the response 𝑦 = 0. 

3. Generate 100 observations based on each combination of rules with the following conditions: 
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• probability of response Y = 1 for two combinations is 0.9, 

• probability of response 𝑌 = 1 for the other two combinations is 0.1, 

• probability of response 𝑌 = 1 for the remaining four combinations is 0.5. 

 
Table 1. The combination of rules formed 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑷(𝒀 = 𝟏) 

1 1 1 0.9 

1 1 2 0.9 

1 2 1 0.5 

1 2 2 0.5 

2 1 1 0.5 

2 1 2 0.5 

2 2 1 0.1 

2 2 2 0.1 

 

The response variable (𝑦) follows a Bernoulli distribution with the following probability function: 

(𝑦) = 𝑝𝑦(1 − 𝑝)1−𝑦 (1) 

with the random variable 𝑦 = {0, 1} and 𝑝 is the probability of success in one trial. 

The empirical case used is to identify household characteristics affecting poverty in Tasikmalaya in 

2019. The data used is collected by the Badan Pusat Statistik (BPS), namely, the National Socio-Economic 

Survey (SUSENAS) data for West Java Province in 2019. The variables used are consisted of one dependent 

variable and 22 independent variables with categorical data types, as described in Table 2. 

Table 2. Empirical Data Variables 

Code Variables Categories 

𝑌 Poor household status 1: Yes; 0: No 

𝑋1 House ownership status 1: Own; 0: others 

𝑋2 House floor area (𝑚2) 
1: Floor area ≤ 35; 2: 35 < floor area ≤ 48; 3: 48 < floor 

area ≤ 72; 4: floor area > 72 

𝑋3 House roof material 1: Roof tile; 0: others 

𝑋4 House wall material 1: Brick wall; 0: others 

𝑋5 House floor type 1: Ceramic; 0: others 

𝑋6 Ownership of a place to defecate 1: Own; 2: General; 3: None 

𝑋7 The main source of drinking water 1: Bottled water or refill; 2: Well; 3: Springs; 4: Others 

𝑋8 The main source of water for cooking and bathing 1: Bottled water or refill; 2: Well; 3: Springs; 4: Others 

𝑋9 The main source of lighting 
1: PLN electricity with a meter; 2: PLN electricity 

without a meter; 3: Non-PLN Electricity 

𝑋10 Cooking fuel 1: LPG 3 KG; 0: others 

𝑋11 Receive people's business credit  1: Yes; 0: No 

𝑋12 Have a gas cylinder of 5.5 kg or more 1: Yes; 0: No 

𝑋13 Ownership of refrigerators 1: Yes; 0: No  

𝑋14 Ownership of computers or laptops 1: Yes; 0: No 

𝑋15 Ownership of gold jewellery (min 10gr) 1: Yes; 0: No 

𝑋16 Ownership of motorcycles 1: Yes; 0: No 

𝑋17 Ownership of cars 1: Yes; 0: No 

𝑋18 Ownership of flat-screen TVs (min 30 inches) 1: Yes; 0: No 

𝑋19 Ownership of land 1: Yes; 0: No 

𝑋20 Receiving poor rice 1: Yes; 0: No 
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Code Variables Categories 

𝑋21 Receive non-cash food assistance 1: Yes; 0: No 

𝑋22 The number of household members 
1: household members ≤ 4; 2: 5 ≤ household members 

≤ 7; 3: household members > 7 

 

2.2 Model 

The model used is a random forest model with 100 decision trees. The random forest as one of the “black box” 

models causes a lack of model transparency so that the model is difficult to interpret. Although the internal structure of 

the model is hidden, conceptually, the random forest modeling in this study using the method can be illustrated in Figure 

1. This study enriches the discussion presented by [9], especially in solving the problem of interpretation in the random 

forest for classification problems using association rules.  
 

 
Figure 1. Illustration of the classification process in a random forest 

where, 

𝑿 : the predictor variables (𝑿𝟏, 𝑿𝟐, … . , 𝑿𝟐𝟐), 

𝒀     : the target variable, household poverty status, 

𝒄 : categories of 𝒀, poor or non-poor household. 

𝝋𝒎       : the 𝒎-th classification tree for 𝒎-th bootstrap sampling, with 𝒎 = 𝟏, 𝟐, … , 𝟏𝟎𝟎 

𝑷𝝋𝒎
(𝒀 = 𝒄|𝑿 = 𝒙) : the prediction probability of 𝒀 = 𝒄 on a certain value of 𝑿 which is obtained from   the 

𝒎-th classification tree, with 𝒎 = 𝟏, 𝟐, … , 𝟏𝟎𝟎, 

𝚺 : final prediction using the majority votes. 

 

2.3 Association Rule 

Association rule is a technique in pattern mining aimed to obtain repeated relationships in certain data 

sets so that interesting associations can be obtained between items in the data sets. Association rules are 

ideally used to explain patterns in data from seemingly independent information repositories, such as 

relational databases and transactional databases. There are measures of interest to describe the association of 

the item set in pattern mining [12]. An objective measure for association rules of the form 𝑋 ⇒ Y is rule 

support, representing the percentage of transactions from a transaction database that the given rule satisfies. 

Another objective measure for association rules is confidence, which assesses the degree of certainty of 

detected association. This is considered a conditional probability 𝑃(𝑌|𝑋), that is, the probability that a 

transaction containing 𝑋 also contains 𝑌. More formally, support and confidence are defined as: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(X ⇒ Y) = 𝑃(𝑋 ∪ 𝑌), (2) 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(X ⇒ Y) = 𝑃(𝑌|𝑋). (3) 
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2.4 Extracting Rules of Decision Tree 

According to the definition in [13], the item set in a decision tree is a rule that is built along the path 

from the root node to the final node in the decision tree. Below is an example of extracting a branch rule 

(𝐵𝑅) from a decision tree. 

 

 
Figure 2. An example of a decision tree structure 

Figure 2 provides an example of a tree structure. According to the example, the first rule is: 

𝑟𝑢𝑙𝑒1 =  〈([𝑟] = [𝑣𝑟1]) ([𝑖𝑛1] = [𝑣11]) ([𝑖𝑛2] = [𝑣21])([𝑙1])〉 

where [𝑟] is the root node of the decision tree, [𝑖𝑛𝑝] is the p-intermediate node on the related branch, [𝑙] is 

the final node (class), and [𝑣] is the value of the intermediate node on the related branch (the value that 

connects the related node to the next node). Each node and its value pair ([𝑖𝑛1] = [𝑣11]) are called a branch. 

In the decision tree in Figure 1, the combination of branch rules formed is as follows: 

𝑟𝑢𝑙𝑒1 =  〈([𝐴𝑔𝑒] = [≤ 35]) ([𝐺𝑒𝑛𝑑𝑒𝑟] = [𝑀]) ([𝑆𝑎𝑙𝑎𝑟𝑦] = [≥ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒])([𝐶ℎ𝑢𝑟𝑛])〉 

𝑟𝑢𝑙𝑒2 =  〈([𝐴𝑔𝑒] = [≤ 35]) ([𝐺𝑒𝑛𝑑𝑒𝑟] = [𝑀]) ([𝑆𝑎𝑙𝑎𝑟𝑦] = [< 𝐴𝑣𝑒𝑟𝑎𝑔𝑒])([𝑁𝑜𝑡 𝐶ℎ𝑢𝑟𝑛])〉 

𝑟𝑢𝑙𝑒3 =  〈([𝐴𝑔𝑒] = [≤ 35]) ([𝐺𝑒𝑛𝑑𝑒𝑟] = [𝐹])([𝐶ℎ𝑢𝑟𝑛])〉 

𝑟𝑢𝑙𝑒4 =  〈([𝐴𝑔𝑒] = [> 35]) ([𝐺𝑒𝑛𝑑𝑒𝑟] = [𝐹])([𝐶ℎ𝑢𝑟𝑛])〉 

𝑟𝑢𝑙𝑒5 =  〈([𝐴𝑔𝑒] = [> 35]) ([𝐺𝑒𝑛𝑑𝑒𝑟] = [𝑀])([𝑁𝑜𝑡 𝐶ℎ𝑢𝑟𝑛])〉 
 

2.5 Data Analysis Procedures 

Figure 3 demonstrates the procedures of data analysis used in this paper. 

 
Figure 3. Process Analysis 
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As shown in Figure 3, the generated data was first modeled using a random forest, then the rules were 

extracted from the random forest and calculated the measure of the rule interest. Meanwhile, for empirical 

data, the data is preprocessed first, such as discretization, splitting data, and balancing data. 

This research uses software R version 4.1.3. The RRF package was used to build a random forest 

model, and the inTrees package [14] extracted the rule tree and calculated the measure of the rule interest. 

The inTrees package has been used to derive knowledge from tree ensembles such as in [15], [16], and [17]. 

 

 

3. RESULTS AND DISCUSSION 

3.1. The Simulation Results 

Metrics of Rules 

The simulation data consists of three independent variables and one response variable with two 

categories. Each possible combination of independent variables has been generated 100 times, so the data 

consisted of 800 rows. The resulted random forest model consisted of 100 decision trees.  

Table 3 shows the top 10 rules formed based on the smallest error value. Based on [9], there are three 

measures of rules’ quality, namely length, frequency, and error. Length is the number of an itemset in each 

condition. Frequency is a measure of the popularity of the rule, which is the proportion of the number of data 

rows that meet the condition compared to the total number of data rows. The error is the proportion of the 

number of rows that meet the conditions but have a response variable value which is different from the 

prediction for the classification problem. For example, for a condition 𝑋1 = 1 & 𝑋2 = 1, it has a frequency 

of 0.25 and an error of 0.11. It means that there are 200 rows out of a total of 800 rows of data with conditions 

𝑋1 = 1 & 𝑋2 = 1. There are 11% data with conditions 𝑋1 = 1 & 𝑋2 = 1  and 𝑌 ≠ 1. This follows the data 

generation that has been carried out, following the Bernoulli distribution, with the probability 𝑌 = 1 of 0.9 

under these conditions (see Table 1). The conclusion obtained from Table 3 is the six rules with the smallest 

error are six rules designed to describe the characteristics of the conditions 𝑌 = 1 and 𝑌 = 0.  

 
Table 3. Top 10 Rules based on Error Value 

Length Frequency Error Condition/ Rule  Prediction 

3 0.125 0.100 X1=1, X2=1. and X3=1 1 

2 0.250 0.110 X1=1 and X2=1 1 

3 0.125 0.110 X1=2, X2=2 and X3=1 0 

2 0.250 0.115 X1=2 and X2=2 0 

3 0.125 0.120 X1=2, X2=2 and X3=2 0 

3 0.125 0.120 X1=1 X2=1 and X3=2 1 

2 0.250 0.275 X2=1 and X3=2 1 

1 0.500 0.290 X2=1 1 

2 0.250 0.290 X1=1 and X3=1 1 

1 0.500 0.295 X1=1 1 

 
The Most Frequent Variable Interactions from Rules  

As explained in subsection 2.3, the most frequent rules can be seen by two measures of interest, namely, 

the value of support and the value of confidence. The support value is the probability of a condition from all 

rules that are formed. The confidence value is a conditional probability, the probability that if a condition 

occurs, then a particular predictive result occurs. Simulation data generation, random forest modeling, and 

branch rule extraction were repeated 100 times. After de-duping the same rules, there are 26 unique rule 

conditions for each iteration. Table 4 shows the statistical value of the set of rule conditions based on the 

value of support, confidence, and prediction results with 100 repetitions. 

Rules in bold are rules that are set with a probability of 0.9 for each prediction. As shown in Table 1, 

the simulation data with 𝑌 = 1 characterized by combinations of independent variables i.e. 𝑋1 = 1 and 𝑋2 =
1, or 𝑋1 = 1, 𝑋2 = 1 and 𝑋3 = 1, or 𝑋1 = 1, 𝑋2 = 1 and 𝑋3 = 1. On the other hand, the simulation data 
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with 𝑌 = 0 characterized by combinations of independent variables i.e. 𝑋1 = 2 and 𝑋2 = 2, or 𝑋1 = 2, 𝑋2 =
2 and 𝑋3 = 1, or 𝑋1 = 2, 𝑋2 = 2 and 𝑋3 = 1. For example, in Table 4, the model predicts the probability 

that if the conditions are 𝑋1 = 1 , 𝑋2 = 1 and  𝑋3 = 1 then the probability of 𝑌 = 1 is 100% (confidence). 

From the 100 iterations of the model, the prediction result of 𝑌 = 1 in this condition also occurs 100 times 

(no error). A support value of 5% means the same conditions and predictions are 5% of the total rules formed. 

The conclusion obtained from Table 4 is that the six rules that describe the characteristics of 𝑌 = 1  and 𝑌 =
0 have an average confidence value of 1.00 with a standard deviation of 0.00. The six rules also predict 𝑌 

correctly (no errors in 100 iterations). This proves that the association rule technique can extract the rules that 

characterize the target variable (𝑌) correctly. 

 
Table 4. The Most Frequent Rules based on Measure of Interest 

Condition/rules 

Support Confidence Number of 

Predictions 

(Y=1) Average 
Standard 

Deviation 
Average 

Standard 

Deviation 

X1=1 0.31 0.05 0.81 0.13 100 

X1=1 and X2=1 0.14 0.01 1.00 0.00 100 

X1=1, X2=1 and X3=1 0.05 0.01 1.00 0.00 100 

X1=1, X2=1 and X3=2 0.05 0.01 1.00 0.00 100 

X1=1 and X3=1 0.11 0.03 0.80 0.19 100 

X1=1 and X3=2 0.11 0.03 0.81 0.19 100 

X2=1 0.30 0.05 0.81 0.13 100 

X2=1 and X3=1 0.11 0.03 0.81 0.19 100 

X2=1 and X3=2 0.11 0.03 0.80 0.19 100 

X1=1, X2=2 and X3=2 0.05 0.01 1.00 0.00 49 

X1=2 and X2=1 0.11 0.03 0.81 0.19 49 

X1=2, X2=1 and X3=1 0.05 0.01 1.00 0.00 49 

X1=2, X2=1 and X3=2 0.05 0.01 1.00 0.00 47 

X3=1 0.23 0.03 0.61 0.07 47 

X3=2 0.22 0.03 0.59 0.07 47 

X1=1 and X2=2 0.11 0.03 0.79 0.19 46 

X1=1, X2=2 and X3=1 0.05 0.01 1.00 0.00 45 

X1=2 0.31 0.05 0.82 0.14 0 

X1=2 and X2=2 0.14 0.01 1.00 0.00 0 

X1=2, X2=2 and X3=1 0.05 0.01 1.00 0.00 0 

X1=2, X2=2 and X3=2 0.05 0.01 1.00 0.00 0 

X1=2 and X3=1 0.11 0.03 0.81 0.19 0 

X1=2 and X3=2 0.12 0.03 0.83 0.19 0 

X2=2 0.31 0.05 0.82 0.13 0 

X2=2 and X3=1 0.11 0.03 0.83 0.19 0 

X2=2 and X3=2 0.11 0.03 0.81 0.20 0 
 

3.2. Modeling the Empirical Data 

The empirical data consist of 918 observations with 22 explanatory variables and one response 

variable, the poverty status of households. Table 5 shows the proportion of poor and non-poor households. 

Approximately one out of ten households belong to the poor category. Since this is an imbalance condition 

in the data then a balancing process using the SMOTE (Synthetic Minority Over-sampling) technique needs 

to be applied to the train data. SMOTE is an oversampling approach by creating a "synthetic" sample. The 

synthetic sample is created by interpolation between several minority class instances that are within a defined 

neighborhood [18]. 
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Table 5. The Proportion of Poor Household Status in Tasikmalaya  

Poor Household Status Proportion 

Yes 0.099 

No 0.901 

 

The random Forest algorithm in this study was conducted on the default hyperparameter, that was, 

𝑚𝑡𝑟𝑦 = √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 = 5 and 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 = 100. The value of 𝑚𝑡𝑟𝑦 defined the 

number of predictors involved in the best splitting [1]. Table 6 shows the performance measures of the 

resulting random forest. The modeling of household poverty status using random forest is quite good with an 

accuracy value of 73.37%. 
 

Table 6. The Performance Measures of the Model 

Goodness of Fit Value 

Accuracy 0.7337 

Sensitivity 0.7554 

Specificity 0.4667 

AUC 0.6111 

 

Variables Importance based on Random Forest 

Variable importance shows how much a predictor contributes to predicting the response. The measure 

that can be used to see the importance of a variable in a random forest is the mean decrease in Gini [19]. The 

higher the value of the mean decrease Gini score, the higher the importance of the variable in the model.  

 

 
Figure 4. Variables Importance based on Mean Decrease Gini 

 

Figure 4 shows the importance of the variables based on the mean decrease in Gini. The variable house 

floor area (𝑋2) is the most important variable in predicting the poverty status of households in Tasikmalaya. 

The next most important variables are the main source of drinking water (𝑋7), ownership of 

motorcycles (𝑋16), house wall material (𝑋4), and cooking fuel (𝑋10). 

 

The Most Frequent Variable Interactions from Rules based on Measure of Interest 

After de-duping the same rules, there are 189 unique rule conditions out of a total of 1275 rules 

conditions with 2 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 6 were extracted from the RRF by the condition extraction method in the 

inTrees package [9]. Of the 189 rules, there are 72 rules with predictions of poor households, the others 117 

rules with predictions of non-poor households. Figure 5 shows the distribution of the measure of interest for 

the 189 unique patterns formed in each class of target. 
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Figure 5. Support and Confidence Value Distribution 

As shown in Figure 5, the distribution of support values for the two classes of poor and non-poor 

household status is not significantly different; the median support for the two classes is almost the same. The 

support values of rules with predictions of poor household status ranged from 0.01 to 0.04, with an average 

of 0.016. For non-poor household status, the support value for the set of rules ranged from 0.01 to 0.05, with 

an average of 0.017. Contrariwise, the distribution of confidence values for the two household poverty 

statuses is slightly different. The confidence value of the set of rules for the poor household ranges from 0.5 

to 0.84 with an average of 0.66. Meanwhile, for non-poor households, the confidence value ranges from 0.5 

to 1, with an average of 0.73. 

Table 7 shows the top rules based on the highest confidence value for the status of non-poor and poor 

households. For non-poor households, the top three rules have a confidence value of 1.00, but the top rules 

for poor households only have the highest confidence, respectively, 0.841, 0.828, 0.818, and 0.812. Based on 

the results in Table 7, the rules that most distinguish the poverty status of households in Tasikmalaya are the 

house wall material and the main source of drinking water. Non-poor households are characterized by house 

wall material in the 'brick' category and the main source of drinking water in the 'bottled water or refill', 

'springs', or other categories (X4=1 and X7= (1,3,4)). Otherwise, poor households are characterized by house 

wall material in the 'others' category and the main source of drinking water in the 'well' category (X4=0 and 

X7=2). 

Table 7. The Top Rules based on the Highest Confidence Value 

Length Support Confidence Condition Prediction 

2 0.013 1 X4=1 and X7= (1,3,4) Non-poor household 

2 0.011 1 X10=1 and X7=1 Non-poor household 

2 0.01 1 X15=1 and X4=1 Non-poor household 

2 0.013 0.841 X10= 0 and X8= (1,2,4) Poor household 

2 0.018 0.828 X10=0 and X19=0 Poor household 

2 0.028 0.818 X4=0 and X5=1 Poor household 

2 0.023 0.812 X4=0 and X7=2 Poor household 

 

Association rule analysis can be used to obtain a set of association rules with minimum support and 

confidence [9]. There are no specific rules to determine the best minimum support and minimum confidence 

values. Therefore, to select the top rules, first, we separate the rules by target class. Then, we filter the rules 

based on the multiplication value of the highest support and confidence. Table 8 shows the top 5 rules in 

each target class based on the highest support and confidence multiplication value. Based on the results shown 

in Table 8, it can be claimed that the most distinguishing rule characteristics in predicting household poverty 

status are:   

• If a household owns a motorcycle and the wall material of their house is brick, the household is a 

non-poor household (𝑋16 = 1 𝑎𝑛𝑑 𝑋4 = 1 ⇒ Y = 0). Otherwise, if a household does not own a 

motorcycle and the wall material of their house is not brick, the household is a poor (𝑋16 =
0 𝑎𝑛𝑑 𝑋4 = 0 ⇒ Y = 1). 

• If a household uses 3 KG LPG for cooking fuel and the wall material for their house is brick, it is a 

non-poor household (𝑋10 = 1 𝑎𝑛𝑑 𝑋4 = 1 ⇒ Y = 0). Otherwise, if a household uses cooking fuel 

instead of 3 KG LPG and the wall material of their house is not brick, the household is poor (𝑋10 =
0 𝑎𝑛𝑑 𝑋4 = 0 ⇒ Y = 1). 
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Table 8. Top 5 Rules for Each Target Class based on The Highest (𝑺𝒖𝒑𝒑𝒐𝒓𝒕 ×  𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆) 

Length Support Confidence Condition 𝑺𝒖𝒑𝒑𝒐𝒓𝒕 × 𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 Prediction 

2 0.055 0.854 X16=1 and X4=1 0.047 Non-poor household 

2 0.054 0.866 X10=1 and X16=1 0.047 Non-poor household 

2 0.047 0.877 X10=1 and X4=1 0.041 Non-poor household 

2 0.033 0.814 X10=1 and X15=0 0.027 Non-poor household 

2 0.038 0.697 X15=0 and X4=1 0.026 Non-poor household 

2 0.046 0.781 X10=0 and X4=0 0.036 Poor household 

2 0.028 0.818 X4=0 and X5=1 0.023 Poor household 

2 0.027 0.78 X4=0 and X9=1 0.021 Poor household 

2 0.023 0.812 X4=0 and X7=2 0.019 Poor household 

2 0.026 0.704 X16=0 and X4=0 0.018 Poor household 

 

 

4. CONCLUSIONS 

In this paper, we expand the discussion of the paper [9] by using different scenarios of simulation data, 

especially on classification problems. This research shows that rules extracted and processed from decision 

trees in random forests provide results in accordance with the prior expectation. Other alternatives to obtain 

the best rules by multiplying the support and confidence values are also discussed. The application of 

interpretable random forest to empirical data shows that the rules that most distinguish the poverty status of 

households in Tasikmalaya are house wall materials and the main source of drinking water, house wall 

materials, and cooking fuel, as well as house wall materials and motorcycle ownership. 
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