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ABSTRACT

Ebola Virus Disease (EVD) is an infectious disease with a high mortality rate caused by the
virus from the family of Filoviridae, the genus of Ebolavirus. Therefore, this research works on
the developing model of Ebola disease spread with SLSHWVEQIHR type. The purpose of this study
is to analyze the spread of Ebola disease with the treatments, which are quarantine and
vaccination. Then determine the equilibrium point and basic reproduction number (R,). There
are two equilibrium points, the disease-free equilibrium point and the endemic equilibrium
point. The analysis results in the model show that if Ry < 1 then the disease free equilibrium
point is locally asymptotically stable. If R, > 1 then the endemic equilibrium point is locally
assymptotically stable. Numerical simulations are performed to show the population dynamics
when Ry < 1land R, > 1.
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1. INTRODUCTION

Ebola Virus Disease (EVD) is a viral infection caused by a virus from the family Filoviridae, the genus
Ebolavirus, that derived from fruit bats, the family Pteropodidae [1]. EVD is a deadly infectious disease that
was first discovered in the Democratic Republic of Congo (DRC) near the Ebola River in 1976 [2][3]. The
last case of EVD reappeared in 2014 on March 23, with deaths reaching 11,315 out of 28,637 cases occurring
in 6 countries until January 2016 [4]. EVD is spread through direct contact with infected body fluids in the
mouth, nose, eyes or through a break in the skin [5][6]. The virus is not transmitted through the air, by water,
or in general, by food [6].

Individuals suffering from EVD do not infect others during the incubation period, which can survive
between two days and three weeks. The recovery from EVD relies heavily on the immune response of infected
individuals and support for good clinical care. Individuals who have recovered cannot spread the ebola virus.
However, Ebola virus can stay in body fluids such as semen and breast milk for some time after recovery

[6][7].

For years, researchers have been trying to develop a model for the spread of EVD since Ebola's disease
became a deadly infectious disease. The mathematical model of EVD spread aims to analyze the
characteristics of the spread of the disease [8][9]. Imran et al. [10] developed a model of the spread of ebola
disease with S| SHEIHR type by providing treatment in the hospital for infected individuals. The treatment
aims to provide recovery to an infected individual or reduce the rate of death caused by EVD.

According to WHO in 2021 [7], the recombinant Vesicular Virus-Ebola Virus Virus vaccine (rVSV-—
ZEBOV) is effective in reducing the risk of infected populations. So Wintachai and Prathom [11] use the
SEIR model equipped with the effectiveness of vaccination to forecast the COVID-19 situation when a
vaccine comes out and Muhammad et al. [12] modified the S_ SHEIHR type of disease model to S| SHVEIHR
type by adding treatment in the form of vaccine against susceptible individuals to reduce the risk of infection
and the S .SHEQIHR by adding quarantine treatment to prevent transmission of the disease from infected
individuals.

2. RESEARCH METHODS

This research modified the S| SLEIHR type of disease model to S, SHVEQIHR type by adding treatment
in the form of vaccine against susceptible individuals to reduce the risk of infection and adding quarantine
treatment to prevent transmission of the disease from infected individuals. The total population at any time
instant t, denoted by N (t), is the sum of individual populations in each compartment that includes low risk
susceptible individuals S (t), high risk susceptible individuals Sy (t), vaccinated individuals V (t), exposed
individuals E (t), quarantined individuals Q(t), and infected individuals I(t), Hospitalized individuals H (t),
and Recovered individuals R(t), such that, N(t) = S, (t) + Sy (t) + V() + E(t) + Q(t) + I(t) + H(t) +
R(t). The flow diagram of Ebola model is shown in Figure 1.

Based on the diagram in Figure 1, we can obtain a system of ordinary differential equations as follows:
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dR

where A = @

According to system of Equation (1) we have

S =N—-uN—6,H -0l

All parameters are non-negative constants.
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Figure 1. Diagram depicting the dynamics of the Ebola virus

3. RESULTS AND DISCUSSION

In this section, we will determine the equilibrium point, the basic reproduction number, and the stability
analysis.

3.1. The Equilibrium Point

The disease-free equilibrium of the system of Equation (1) is given by
T°(S,,S4.V,E,Q,1,H,R)=(S% 5%,V °,00000),

where

0 _ I@-p) o _ TIlp 0 _ (I@-p)r. | Mpry
S. = yitu ! Sk T onu v _(ﬂ(7|_+ﬂ) ﬂ(7H+ﬂ))’

and the endemic equilibrium of the system (1) is given by

T°(S.,S,.V,E,Q1,H,R)=(S;,S;,,V",E",Q",1",H",R")

where
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3.2.  The Basic Reproduction Number

The basic reproduction number, denoted (R, ) is the expected number of secondary cases produced, in

a completely susceptible population, by a typical infective individual. We calculate the basic reproduction
number by using the next generation operator approach by van den Driessche and Watmough [13][14]. The
next generation matrix at the disease-free equilibrium T is given by:

0 0 pQ pnQ
0O O

0
0 O 0
0 O 0

0
F =
0
0

where
Q= (toke y yume g p0ph o))

YLTH YHtH yL+u YU
and
K, 0 0 O
- k 0 O
V= c
- 0 k; O
0 -7z, -7 Kk,
where
ki =¢+a+u, kK;=¢+a+
K, =74 + 4, k, =6, +5, + L
The basic reproduction number R,is dominant eigenvalue of G = FV ™, thus we get
R, = Ol | RELRE +R],

where

1 _ akyKy ) 2 ( anik, ) 3 _ (’7er|<3 )
RO _m(k1k2k3k4 4 RO _m kikoksky /! and RO _m Kikoksky

3.3.  The Stability Analysis

The stability of system of Equation (1) is dependent on the basic reproduction number R,. The
stability analysis of both equilibrium T°and 7" will be provided through the following theorems:

Theorem 1. The disease-free equilibrium T° for system of Equation (1) is locally asymptotically
stable if R, <1.

Proof. The Jacobian matrix at T° for system of Equation (1) is given by
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The eigenvalue was determined for the disease-free equibrium T° by using the equation ‘JTO —il‘ =0, s0
we get the characteristic equation as follow:
(I~ D)3y — Ay — (e — (A +a, A +a,4” +a,4+a,) =0 )
where
a, =k, +k, +k; +k,,
a, =kk, +k,k, +k Kk, +Kk,k, +k.k, +(L—Rg)K,Ks,
a, =k K,k (1—R?) +k,k;k, (1—RZ) +k.k,k,(1—R>) +k,k .k, 1—Ry),
a, =kk,k;k, (1-R,).
According to Equation (2), we obtain eight eigenvalues with four of them are negative:
Ay =3y = _(?’L +,U),
Ay =2 :_(?’H "‘ﬂ)’
Whereas the others are getting by solving the equation below:
(A +a A’ +a,2’ +a,4+4a,) =0 ©)

Ay =Jg =44,
Ay = Jgg = —p.

According to Routh-Hurwitz criterion [15][16], Equation (3) on disease-free equilibrium T° is stable if the
following stability criterion satisfied:

a,>0,a,>0,a,>0,a,>0, aa, >a,, and a,a,a, > (a +a’a,) (4)
Based on Equation (4), since all parameters K, k,, k;, and k, are positive, then a, is positive.
Furthermore, R, <1 then the coefficient a,will be positive. Further, for coefficient a, and a, will be
positive if Ry <land R; <1and RS <1.Since R, <1, then R <1,RZ <1, and RS <1. Afterward to

proof a,a, >a, and a,a,a, >(a’ +a’a,), we need the parameter value at condition R, <1. So for
R, <1 the (4) condition is satisfied. Thus, proved that disease-free equilibrium T° for system of Equation
(1) is locally asymptotically stable if R, <1.[
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Theorem 2. If R, >1 then the endemic equilibrium T~ is locally asymptotically stable.

Proof. According to Castillo-Chaves and Song [17], let ¢ = £ be the bifurcation parameter. According to
condition R, =1 we have

— = kikoksky
=0 = Qlakoky+ank, +nérgks ) *

Disease-free equilibrium T° has one zero eigenvalue and seven negative eigenvalues if R, =1or ¢ = Q.
The zero eigenvalue has right eigenvector (u,, U,, U, U,, Ug, U, U, Uy )and left eigenvector (v,,
Vy, Vg, Vy, Vs, Vg, Vy, VB). As indicated previously that u, is arbitrary positive, then
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Since v,, Ug, U, >0and u,, U,, u, <0, then a<0and b>0.
Consequently, when ¢ changes from @ <@ (R, <L)to @ > (R, >1), the disease-free equilibrium T°
stability changes from stable and becomes unstable, while endemic equilibrium T* coordinates changes from

negative becomes positive and thus becomes local asymptotically stable. As a consequence, the endemic
equilibrium T7is locally asymptotically stable if R, >1.[1

3.4. Numerical Simulations

The numerical simulations were performed to visualize stability properties of the equilibrium points of
both T? and T* based on the Theorem 1 and Theorem 2. The initial values used are S, (0) = 25, S, (0) =
25,V(0) =10, E(0) =10,Q(0) =10,1(0) =5, H(0) = 5,and R(0) = 10. The parameter values used in
this simulation are shown in Table 1. For the disease free equilibrium we have Ry = 0.17786 < 1 and the
disease free equilibrium T7°(1.571,0.371,104.976,0, 0,0, 0,0 ). The population dynamics at condition R, <
1 is shown in Figure 2. For the endemic equilibrium we have R, = 1.93725 > 1 and the endemic
equilibrium T*(S, = 4.078,Sy = 1.145,V = 15.580,F = 15.580,F = 1.418,Q = 1.392,/ = 0.150,H =
1.555,R = 20.507). The population dynamics at condition R, > 1 is shown in Figure 3.

Figure 2 supports Theorem 1 and Figure 3 supports Theorem 2. This simulation shows that the
system will be stable at around disease-free equilibrium when R, < 1 and the system will be stable at around
endemic equilibrium when R, > 1.
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Figure 2. The population dynamics at condition Ry < 1
(a) Low risk and high risk susceptible population, (b) Vaccinated population, (c) Exposed and quarantined
population, (d) Infected and hospitalized population, (e) Recovered population
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Table 1. Parameter values

Parameter Value Value

I 1.70 in[10] 1.70 in [10]
p 0.20in [10] 0.20in [10]
Yy 1.20in [10] 1.20in [10]
B 0.39 in [10] 0.39 in [10]
7 1.50 in [10] 1.50 in [10]
a 0.10in [10] 0.10in [10]

T 0.16in [10] 0.16in [10]
o, 0.10in [10] 0.10in [10]
Oy 0.20in [10] 0.20in [10]
6, 0.67 in [17] 0.67 in[17]
Sy 0.58 in [17] 0.58 in[17]
u 0.0159 in [10] 0.0159 in [10]
YL 0.65 [assumed] 0.25 [assumed]
Yy 0.60[assumed] 0.20[assumed]
€ 0.75[assumed] 0.25 [assumed]
& 0.35 [assumed] 0.85 [assumed]
Tg 0.40 [assumed] 0.85 [assumed]
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Figure 3. The population dynamics at condition Ry > 1
(a) Low risk and high risk susceptible population, (b) Vaccinated population, (c) Exposed and quarantined
population, (d) Infected and hospitalized population, (e) Recovered population
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4. CONCLUSION

This study modified mathematical model of Ebola outbreak to consider quarantine and vaccination.
The results of the model analysis obtained two equilibrium points, namely, disease-free equilibrium and
endemic equilibrium. The basic reproduction number (R,)was determined. The disease-free equilibrium is

locally asymptotically stable on condition R, <1, whereas the endemic equilibrium is locally asymptotically
stable on condition R, >1. The numerical simulation of population dynamics showed similar patterns as
expected.
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