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Abstract

The main objective of this work is to develop a neural-network-based Reactive
Control (RC) system for wave energy converters. The ability to maximize the power
output of WEC while maintaining operation constraints, which can be physical or
thermal, is crucial to the development of deployable control strategies. Having a control
method that is robust, which means it handles uncertainty and noise very well, is one of
the main performance criteria in evaluating the method. Therefore, this work starts by
deriving an averaged WEC model to be simulated in MATLAB/Simulink. Additionally,
the concepts of resistive loading control and reactive control (approximate conjugate
control) are discussed. A solution to sea state estimation is developed and explained
which poses a contribution the current WEC research. This novel technique uses
recurrent neural networks (RNNSs) with time-series data input to estimate the sea state in
real-time. The technique fills the gap of estimating forces based on peak frequencies and
also the problem of calculating sea states based on periodical averaged statistical
analysis. To complete the methodology, an optimization technique using feed forward
neural networks is improved to perform optimization that is proposed to optimize the
power output with respect to the sea states. This is done by using the neural network as a
cost function while using the physical limitations of the system as a constraint. The
neural networks in this work are developed, trained and tested using MATLAB’s Deep
Network Designer and Deep Learning Toolbox then imported as a Simulink block to
complete the simulation. The results are evaluated for each of the section. First, initial
logging of the performance metrics, such as mean power, is done prior to the addition of
any neural networks. The accuracy and robustness of the sea state estimation RNN is
then discussed. Finally, a comparison between traditional reactive Control optimized and
reactive Control is conducted. To summarize the outcome, after experimenting with
different datasets and architectures, the RNN is able to estimate sea states in real-time

under different initial conditions.

Keywords: Neural network, recurrent neural networks, reactive control, wave energy
converters, deep learning, approximate conjugate control, sea state estimation.
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Chapter 1: Introduction

1.1 Importance of Harvesting Wave Energy
1.1.1 Fossil Fuel Consumption

As humanity progresses forward, having renewable resources of energy is crucial
to the future of civilization since conventional energy generation methods will deplete the
natural resources eventually. Since the start of the Industrial Revolution, the consumption
of fossil fuels as a source of electricity globally has been increasing exponentially. As seen
in Figure 1, the consumption went from 0 TWh in 1800 to more than 120,000 TWh in
2019 cumulatively (Coal, Gas and Oil) [1]. The data in the chart is a combination of
statistics from [1] and data published in [2]. Currently, fossil fuel is the major source of
energy use, responsible for 82% of global energy consumption. However, this is slowly
changing since it was responsible for 85% of consumption five years ago. Needless to say,
this high usage of fossil fuel is responsible for carbon emissions which contribute directly
to environmental and health problems. According to the Intergovernmental Panel on
Climate Change (IPCC), fossil fuel emissions are mainly responsible for global warming
with 89% of the global CO, emissions. It is definitely a wise decision to diversify
electricity generation sources since different studies predict the depletion of fossil fuel
within the current century. The UAE has taken steps towards this diversification under the
name of "UAE Energy Strategy 2050" [3].

Global fossil fuel consumption

Global primary energy consum ption by fossil fuel source, measured in terawatt-hours (TWh).

120,000 TwWh

Gas

100,000 TWh

80,000 TWwh

60,000 TWh

40,000 TWwWh

20,000 TWh Coal

O TWh «

1800 1850 1900 1950 2019

Source: Vaclav Smil (2017). Energy Transitions: Global and National Perspective & BP Statistical Review of World Energy
OurWorldIinData.org/fossil-fuels/ « CC BY

Figure 1: Global Fossil Fuel Consumption [4]



1.1.2 Renewable Energy & Wave Energy

According to the Center for Climate and Energy Solutions (C2ES), renewable
energy has grown by 42% between the years 2010 and 2022, and 90% between the years
2000 and 2020 in the United States. This makes renewable energy the fastest growing
energy resource in the United States [5]. More statistics from the C2ES highlight the role
of hydro-power when contributing to the statistics regarding renewable energy. For
example, in 2020, hydro power was responsible was responsible for 7.3% of electricity
generation in the United States and 16.8% globally. That implies a huge room for
improvement since the U.S. Energy Information Administration (EIA) has estimated the
potential energy of waves in the United States to be around 2.64 trillion kWH, which
covers 64% utility scale electricity generation. Even though wave energy has the potential
of producing up to 2.1 TW globally. That can cover the global consumption of electricity.
However, only a 25% of that is being harvested due to difficulties in harnessing that

potential [6].

1.2 Characteristics of Waves & Wave Resource

Wave energy harvesting requires proper understanding of the characteristics that
describe the energy content in the wave. This convention is used in ocean engineering
based on statistical metrics. First of all, the source of energy content at the sea is fully
dependent on the winds responsible for creating waves. While the winds have their own
characteristics, the waves created also possess characteristics that describe the wave and
its energy content. The first one of these characteristics is the significant height of the
wave H, measured in m, which represents, for a regular or monochromatic wave, the
distance between trough to crest of the wave. For irregular or poly-chromatic waves, this

represents the average height of one third of the waves denoted as H,/; [7]. The other
characteristic is the wave peak period T, or peak frequency w,. This described the

propagation speed of the wave [10]. The equations for the wave transport J, measured in
kW/m for both kinds of waves respectively is related to both of the characteristics [8][9].

This is described as:

= gan Lo (1.1)



where p is the water density (kg/m3), g is gravitational acceleration (m/s?):

2 o0
g P [TE5W)
2 /n w (1.2)

Where S(w) is the energy spectrum. This signifies the importance of knowing these

characteristics in terms of energy output.

To clearly define the difference between mono-chromatic and poly-chromatic
waves, mono-chromatic (regular) waves consist of one wave component of the T, and H,.
On the other hand, poly-chromatic waves are waves consisting of more than one
component where they interfere, either destructively or constructively, to form a new wave

of its own significant height and peak period.

Direction of travel A B

Wave length

Wave height s s c——

Calm sea level

—_—— e — —

Crest Trough

Wave Frequency Wave Period
The number of wave crests The time required for the wave
passing point A each second crest at point A to reach point B

Figure 2: Wave Trough & Crest [10]

1.3 Wave Energy Converters

Similar to solar panels that capture solar energy, or wind turbines that capture wind
energy, wave energy is harvested using devices called Wave Energy Converters (WECs).
Generally, all WECs use the movement of waves to drive a generator. However, key
differences in location, degree of freedom of motion, power take-off (PTO) mechanism
and point of reaction classify them into different types [6]. For example, the type of wave
energy converter discussed in this work, based on degree of freedom and PTO mechanism,
is a heaving direct-drive point absorber WEC. In this type of WEC, the floating body
usually referred to as the buoy is directly tethered to a Permanent Magnet Linear Generator

(PMLG) which induces current whenever the waves cause the buoy to move.



In order to achieve maximum power absorption, resonance is required between the
waves and the movement of the device. Therefore, Reactive Control (RC) can be used to
achieve that objective, which by definition is the change in control signals in reaction to
the system dynamics. In this case, this would be the change in control signal based on the
velocity and displacement of the buoy. More details on these techniques are discussed in
Chapter 2. The specific force that uses the RC model is the electromagnetic force, which
is dependent on the damping and stiffness coefficients of the restoring springs of the

system.

1.4 Artificial Intelligence, neural networks and deep learning

Acrtificial intelligence (Al) is a vast field that includes a lot of subsets that cover
topics such as logic, probability, perception, learning and much more [11]. To put it
simply, any attempt to mimic a human aspect of thinking by using machines can be
referred to as artificial intelligence whether it is through hard coding statement or even
complex algorithms. The origins of artificial intelligence can go back to 384 BCE when
Avristotle formulated a precise set of laws governing the rational part of the mind. That was
developed through the times by Ramon Llul’s "The Great Art", Da Vinci’s first
mechanical calculator, Wilhelm Schickard’s and more scientists/inventors [11]. Machine
learning is a subset of artificial intelligence and in turn, deep learning is a subset of
machine learning. That is depicted by Figure 3.



ARTIFICIAL INTELLIGENCE VS
MACHINE LEARNING VS DEEP LEARNING

0 Artificial Intelligence

Development of smart systems and machines that can carry
out tasks that typically require human intelligence

© Deep Learning

Uses an artificial neural
network to reach accurate
conclusions without human

intervention

Figure 3: Artificial Intelligence, Machine Learning & Deep Learning [12]

A good starting point to trace back deep learning and specifically neural network is
the McCulloch Pitts description of a neuron in their paper "A Logical Calculus Of The
Ideas Immanent In Nervous Activity" [13]. This paper mathematically described neural
events. Today, neural networks can be generally classified into three main classes based
on inputs, outputs and applications. Feed forward neural networks or artificial neural
networks (ANN), convolutional neural networks (CNN) and recurrent neural networks
(RNN). The types used in this work are ANN and RNN. The vast increase in research in
all of these types can be directly resorted to three main factors. The availability of datasets
contributed directly to the progression of this field. Databases like Kaggle [14]. for
example offer a variety of datasets that researchers can use to train their models.
Furthermore, a class of neural networks called Generative Adversarial Networks (GAN)
can be used to generate data [15]. The second reason is more computing power which

allows models to be trained faster. An example for that is GPU accelerated training.

5
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1.5 Literature Review

Research and Development of methods that optimize power absorption of wave
energy converters is expanding. Traditional reactive control depends heavily on the power
take off force which depends on knowledge of the current sea state. Artificial neural
networks were used with an exploration based minimization algorithm to find optimal
damping and stiffness coefficients while remaining within operation constraints of the

wave energy converters [16].

However, this paper assumes a real time measurement of the current sea state. Other
research used reinforcement learning, which is based on reward and penalty, for resistive
and reactive control [17][18]. This type of work suffers from fluctuations in the prediction
output of the neural network model. Non neural network based methods that were
published recently use optimization to maximize power absorption while constraining the
power flow in the positive direction, meaning the device never operates as a motor [19].
As mentioned earlier, most methods require information on the sea state, and that area has
been explored by researchers. One paper was able to use artificial neural networks to
predict displacement based on the most recent 60 seconds of observed data in H, and T,
[20]. Another paper used an electrical extended kalman filter to estimate displacement
values and calculate excitation force based on current measurements, which eliminates the
need for mechanical sensors and exchanges it with the less expensive, more durable

current transducers [21].

The biggest point of improvement that can be added to these methods is real-time,
shorter period sea state estimation. More improvements can be explored in long term
deployment, where degradation of performance due to rust or growth of marine life on the
device can affect the performance. Finally, all these methods assume the statistical
definition of significant height and wave frequency rather than dealing with waves on a

peak to crest basis.

1.6 Research Problem & Objectives

To enhance power absorption in wave energy converters, machine resonance with the
sea state must be achieved. This is directly related to careful choice of damping and

stiffness coefficients of the restoring springs of the system. Therefore, optimized reactive
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control should be used to maximize power absorbing while remaining in the operational
constraints of the machine. The final piece that makes all the mentioned aspects possible

is knowledge of the current sea state. Based on the previous statement, this thesis aims to:

e Use state of the art research to improve reactive control power harvesting using
neural networks.

e Estimate the current sea state in real-time over shorter periods.

e Build a neural network based controller that utilizes sea state info and optimal

coefficients for reactive control.

The following objectives are implemented on a heaving point absorber WEC that
consists of a single body seabed reacting wave energy converters. The main components
of this WEC are a permanent magnet linear generator (PMLG), tether and buoy. The heave
movement of the buoy directly moves the permanent magnet to induce electricity. The

structure of this WEC can be shown in Figure 4.
The scope of this work is mainly focused on:

e Machine side, therefore implementation of bi-directional power control is not
considered.

e This work is non-experimental. All the acquired results are simulation based.

e It is assumed that a measurement of displacement is available, therefore methods

for estimating or measuring displacement are not developed.
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Figure 4: Heaving WEC structure [22]

1.7 Structure of the Thesis

This work is divided into 4 main chapters. Chapter 2 is the methodology section
describing all the equations, derivation, models and implementation of the WEC control
technique, analysis and neural networks. Chapter 3 goes over the results and the testing
criteria for evaluation. Additionally, it discusses the logic and/or intuition behind these
results. Finally, Chapter 4 summarizes the results and findings of this work while

discussing future work and recommendations of the author.



Chapter 2: Methodology

In this chapter, all the equations, formulas, state-space models are explained in the
first section. These equations and derivations are used with MATLAB & Simulink to
simulate the operation of the WEC under different pre-generated sea state conditions. The
second section will discuss the improvement of power absorption by including copper
losses in the control blocks of the model [23]. The third section will go into the use of
ANNs to optimize power absorption of the system while maintaining the operational
constraints [16]. Finally, the fourth section will detail the novel real-time sea state

estimation techniques developed by the use of RNNs.

2.1 WEC Model

The model described in this section is simulated in MATLAB & Simulink using
time domain models of the forces affecting the WEC [22]. According to Newton’s second
law, all the forces affecting the system consisting of the buoy and PMLG translator can be

described as follows:

fex@®) + £, () = f,(8) — frs(8) — fa(®) — fos () — f5 () — £ () = ma(t) (2.1)

These forces are listed respectively and the modeling of each one of these forces will

be discussed:

e Excitation force.

e Hydrostatic buoyancy force.
e Restoring force.

e Drag force.

e End-stop force.

e Friction force.

e Radiation force.

e Electromagnetic force which is also referred to as the control force.



2.1.1 Excitation Force

The excitation force is the sum of hydrodynamic pressure applied to the buoy by
the incident waves [22][24]. The excitation force in time domain can be represented by
the following integral [22]:

feu(t) = ./OO kex(T —t)n(T)dT (2.2)

where k., (t) is the excitation impulse response function and n(t) is the undistributed
wave elevation. The fourier transform of the excitation force can be written as [22]:

o (2.3)
Fo(iw) = F(for () = [ e/t £, (D) dt

and to find the frequency domain equation of the excitation force, Fourier transform can
be applied to Equation 2.2 [22]:

Fex(ito) = Kex(ico)H(ic) (2.4)

where H (iw) is the Fourier transform of the wave elevation and K, is the excitation force
coefficient in the frequency domain. For a cylindrical buoy, semi-submerged, with a radius
of 2.5 m and a draft of 1.5 m, WAMIT was used to obtain magnitude and phase values of
wave elevation and excitation coefficient in frequency domain for a range of frequencies.
WAMIT sets the wave elevation Fourier transform to 1 which makes the excitation force

in frequency domain equal to the excitation coefficient. This data is plotted in Figure 5.
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Figure 5: Kex Magnitude and Phase

However, the excitation force is non-causal [8]. Therefore, a small time delay is

introduced, and the causal counterpart is [26]:

R, (iw) = K,, (iw)e™ T (2.5)

K., (iw) is causal and t is the introduced small time delay. A frequency based
technique is used to utilize the WAMIT generated data and approximate a transfer function

[25] as follows:

. N(iw)  bm(iw)™ + b1 (i)™ 4+ .+ by
D(iw) ap (iw)™ + ap—q (i)~ + ..+ ag (26)

This is a polynomial where the numerator is of the m-th order and the denominator

is of the n-th order. To express this in LaPlace domain, we simply replace im by s:

]V(S) —~ bm,(s).m + bm—] (S)mil + ..+ b()

I(e;,;(b') ~ D(.S ~ (ln(S)n + (173_1(5)'n71 + ...+ ap (27)
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The order n has to be found using iterative methods to ensure that K, (s) is strictly
proper [27]. This order n is dependent on the hydrodynamics of the cylindrical body which
also depends in its geometry. MATLAB is used with the function "invfregs"” to compute
the coefficients [22]. This is called the Least-squares based method. Unstable poles were
produced as a result of this method, however they were simply reflected to the left hand
side to stabilize them [27]. This is due to the stability property of linear time invariant
systems where all the poles (roots of denominator) need to have a negative real part. The
approximated K, (s) is:

0.3711s'0 4+ 0.82165% + 3.5495% 4 5.935s7
510+ 1.046s° + 7.279s% + 6.233s7 + 18.81s°

Ke::;(h‘) ~ 1 x 103
(2.8)

+11.8250 4+ 14.85°% 4 16.245* + 14.658% + 7.71252 + 4.537s
+12.455 4+ 20.21s1 4 9.093s3 + 7.56652 4 1.631s + 0.1271

and the pole-zero map for this function is shown in Figure 6 where it can be observed

clearly that it is stable:

Pole-Zero Map
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Figure 6: Pole-zero map for the excitation impulse response function of the cylindrical
buoy
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The numerator and denominator coefficients can be used as input to the function "tf2ss"
to find the state space matrices of the excitation force which will be used in the Simulink

model to represent the excitation force.

As mentioned in [8], the system is able to absorb the maximum power when the
excitation force is in phase with the heave velocity which is referred to as "resonance".
Resonance is achieved when the natural frequency of the system is equal to the dominant
frequency of the wave causing motion [28]. The natural frequency is the frequency that
the body will be oscillating at if excited and left to heave freely with no driving force [29].
Since the dynamics of the system is dominated by its intrinsic impedance when heaving

freely, the reference velocity of maximum power absorption is [22]:

* __ fu(t)
a QR-,j,,y_(LL«')

v

cos(d)

(2.9)

where £, is the reference/estimated excitation force, R;,;(w)is the intrinsic resistance
and ¢ is the phase difference between the actual velocity and estimated excitation force.
However, a short coming of this expression is the noncausality of the excitation force and
the need for a real time wave frequency determination. A solution for the second drawback

will be discussed later on in this work.

2.1.2 Hydrostatic Buoyancy Force

Hydrostatic Buoyancy Force f,(t) is the force generated due to the variation of
hydro-static pressure whenever the floating body moves [22]. The mathematical
representation of this force stems from the difference between the weight of the moving
buoy and the weight of displaced water, the water that is displaced by the movement of
the body. This is due to the fact that in equilibrium these two terms are equal, but they are

mismatched when the body is in motion [8][22]:

fb (t) =mg — ngwater (210)
where m is the mass of the buoy, g is gravitational acceleration, p is density of water
and V,, 4 1S Water volume that has been displaced. Hydro-static buoyancy force is

proportional to the current displacement of the body from equilibrium. However, it is

opposite to it in direction:
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fo(8) = —Cy(t) 2.11)

where C, is the buoyancy stiffness coefficient expressed as:

2.12
Cp = pgAiy (2.12)

A,, is the water plan area of the floating body. In other words, it is the area of a
cross section of the floating the body that is in line with the water surface. For a cylindrical

body, this can be measured as:

4, = mr? (2.13)
where r is the radius of the buoy. In the context of this thesis, the radius is 2.5 m. This is
easily modeled in Simulink by substituting the radius in the equations to find the

coefficient and modeling the force as mentioned in Equation 2.11.

2.1.3 Restoring Force

The restoring force f,(t) is the force resulting from the springs between the linear

translator of the PMLG and the seabed [30]. The springs serve two main functions:

e Support gravity in bringing down the buoy to equilibrium after upward motion
(wave crest).
o Pull the slack out of the tether, ensuring its always stretched. This eliminates the

effects accompanied by a loose tether [31].

The mathematical representation of the restoring force is very similar to the hydro-
static buoyancy force. In this case the coefficient multiplied by the displacement is the

restoring spring coefficient:

frs = =Sr2(0) (2.14)

Once again, this is easily modeled in Simulink based on prior knowledge of the

restoring spring coefficient S, = 6 x 10*

14



2.1.4 Drag Force

Drag force f,;(t)is a result of the force applied by sea waves to the buoy in the
direction of their travel. Morison’s equation has always been used to describe these
phenomena [32][33]. The full expression consists of two terms. However, only the drag

term is considered in this thesis:

fa(®) = 0.5pA,, Crv()|v(D)] (2.15)

Where the drag coefficient C;, can be determined experimentally based on flow conditions

and Reynolds number [34].

2.1.5 End-stop Force

In addition to the bottom springs responsible the restoring force, another set of
springs are placed at the upper side of the PMLG enclosure to prevent it from hitting the
enclosure aggressively as it experiments fast wave periods or large significant heights.
This makes them active at the top of the wave crest where the translator is maximally

displaced [35]. This force is not modeled in this work.

2.1.6 Friction Force

Friction force is a result of three main sources of friction. Coulomb friction, which
results from the friction of the moving parts in the WEC assembly. In this case this is the
friction between the linear translator and its supporting structure. The second source is
viscous friction which is a result of the friction due to the air gap between the stator
windings and the translator. Finally, the Stribeck effect is considered which results from

the force needed to move a resting body. The equation representing this force is [22]:

fr () = acsign(v(®)) + a, (1) + (a5 — a)e” O sign(v (1)) (2.16)

2.1.7 Radiation Force

Whenever the buoy moves linearly vertical to the water surface, waves are induced
and generated away from it. Forces are applied to the submerged part of the buoy as a

result and this force is referred to as radiation force f,.(t) [36]. The approach to modeling
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the radiation force is similar to the modeling of the excitation force. The time domain
equation for the radiation force is [37]:
ot

fr(t) = —mooal(t) — /{) k. (t —T)v(T)dr 217)

where m,, is the body added mass at infinite frequency [22], and a(t) is the heave
acceleration. The integration part of the equation represents the energy dissipated by the
radiated waves and the inertial energy of the water around the submerged surface of the
buoy. It is clear that this term would only exist while the buoy is moving, therefore
convolution of the radiation impulse response function and the buoy velocity is present in

the equation.

The radiation frequency impulse response function K,.(t) can be related to the
radiation resistance or damping in the frequency domain, as well as to the radiation added
mass. The radiation resistance or damping R,.(w), from its name, is the energy dissipation
term. While the radiation added mass is associated with the body physical mass of the

buoy as an added inertia term [22][27]:

R (w) = /oo K, (t)cos(wt)dt, (2.18)
0
M, (w) = Moo — é /-00 K, (t)sin(wt)dt (2.19)
Jo

The inverse Fourier transform and R,.(w) are used to end up with the expression

shown below:
ko) =2 [ Ritw)eostunyd
r(t) = — - (w)cos(wt)dw
7™ Jo (2.20)
where by using Euler’s formula and equations 2.18 and 2.19 we end up with:
K, (iw) = R () + iw[M, (w) — My, (2.21)

By performing Fourier transform on equation 2.17 and using 2.21 in that expression

we get the expression for the radiation force:

E.(iw) = —[R(w) + ioM()]V (iw) (2.22)
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V (iw) is the Fourier transform of velocity. Similar to the excitation force, WAMIT

is used to generate radiation resistance and added mass data shown in Figure 7.

<10%

Radiation added mass, [kg]

w , [rad/s]

Radiation resistance, [N.s\m]

1.5 2

0.5 1

w , [rad/s]

Figure 7: WAMIT generated data for the radiation resistance and radiation added mass in
frequency domain

“invfreqs” is used to find a Laplace transfer function. The unstable poles are also
mirrored to ensure stability and the order of n is found by experiment (iterative methods).
The approximated K,.(s) is:

1.4755% + 5.2025% + 4.115s

K, (s)=1x10*
() = A s 3015 1 7.04652 + 7.707s + 4.227 (2.23)

It can be observed from Figure 8 that the poles are stable, Figure 9 shows how close

the approximation fits the data:
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Figure 9: The magnitude and phase angle of the radiation frequency response function

for the cylindrical buoy

Finally, and similar to the excitation force, "tf2ss" was used to find the state space
representation of the radiation force to be used in Simulink.
2.1.8 Electromagnetic force

The part of the machine responsible for converting the mechanical force into
another form of energy, in this case electrical, is called the Power Take-off (PTO)

mechanism. In this context, the PMLG is the electrical direct drive PTO mechanism direct

18



drive means that the linear translator is driven directly by the motion of the buoy with the
waves. Maximum power absorption is achieved if the device is moving in resonance with

the sea waves.

Figure 10: Direct drive principle [22]

Proper control of this mechanism can lead to increase in the efficiency of the PTO

mechanism, increasing power absorption [38].

The PTO mechanism consists of all the forces that affect the motion of the floating
buoy. Therefore, that consists of the electromagnetic/control force, restoring force, friction

force and end-stop force:

foto = fut+ frs + 5 + fos (2.24)

where f,, is the power take-off force. forces other than the control force are discussed

later.

Similar to synchronous rotary machines, the linear translator of the PMLG induces
electromotive force in the stator windings based on Faraday’s Law [22][39]. Current
flowing in the stator windings results in an opposite magnetic flux to that generated by the
permanent magnet which is referred to as the armature reaction. Therefore, varying the

voltage at the stators means that the armature reaction can be controlled, hence, calling the
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electromagnetic force the control force. Varying the voltage at the stators can be done
using power converters [22][40].
The control force, which is proportional to the stator current can be
expressed as:
37

fu — —)\')m.is(
2p, O (2.25)

where p,, is the machine pole pitch, A,,, is the permanent magnet flux, and iy, is the

quadrature component of the machine stator current.

It is also important to note that slower speeds lead to maintaining higher forces
which works well for heaving WECs [41][22].

The simple and passive control technique that was initially used to simulate the
model is called Resistive Loading (RL). in RL, the aim is to produce a linearly proportional
control force compared to the heave velocity [22][23]. The reference control force in this

method is simply, yet sub-optimally, represented as [22]:

fu = =R () (1) (2.26)

where R, is a frequency dependent resistance that can be determine using the magnitude

of the system intrinsic impedance:

Re@) = Zne @)1 = (R (@) + (X (@)’ (227)

R+ (w) and X;,.(w) are the resistive and reactive components of the system

intrinsic impedance. The resistive component is equal to the radiation resistance:
Rint (@) = R, () (2.28)

where the reactive component is:

(Ch + S‘r)

KXint(w) = w(m + moeo + My (w)) — w (2.29)
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This representation of R.(t) causes it to be large, which means the buoy motion is
conservative. In addition to that, Resistive loading assumes uni-directional power flow, as
in both the excitation force and heave velocity are in phase due to the absence of a reactive
component [22]. However, this leads to better utilization of the PTO resource due to low
(better) peak-to-average ratios [42][36]. As mentioned earlier, requirement of a real-time
knowledge of the wave frequency makes this solution sub-optimal since it will be tuned

to a single frequency (dominant wave frequency).

Reactive Control (RC) or Approximate Complex Conjugate control is an active
control strategy that enables bidirectional power flow by considering the damping and

stiffness coefficients of the springs. In [23] the reference control force is represented as:

fu = —Rpiov(®) = Kproz(t) (2.30)

where Ry, is the spring damping coefficient, K., is the spring stiffness coefficient and

v(t), z(t) are the velocity and displacement of the buoy respectively. By including copper

losses in the control strategy, the spring damping coefficient can be expressed as:

Ry (w) + 20[R}(w) + X7, (w)] (2.31)

R’),(} —
v 7(w)

0 and y(w) are auxiliary variables that include the effect of copper losses and can

be expressed as:

2p2 (2.32)

= ——>—Ry
3Tz,

where R, is the stator resistance and 1, is the flux linkage amplitude of the translator’s

permanent magnets. y(®) is expressed as:

Y(w) = 46%[RY(w) + X7y (w)] + 46M, (w) + 1 (2.33)
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The intrinsic reactance is expressed as:

- Cb + Sr

Xint(w) = wlm + My (w)) » (2.34)

whereas the stiffness spring coefficient is expressed as:

wX-inr
7(w) (2.35)

K pto —

The presence of the reactive component of the intrinsic impedance implies the bi-
directional power flow. The polynomial coefficients of the radiation resistance and

radiation added mass were found as mentioned in section 2.1.6.

Finally, [23] assumes the use of peak frequencies in all the equations above.

2.1.9 Section Summary

To summarize, the methodology discussed in this section was used to model each one
of the forces into Simulink, excluding friction force and end-stop force. Resistive loading
was used as an initial method of simulating the operation of the wave energy converters,
but Reactive control (Approximate Conjugate Control) is used as a basis for the upcoming

improvements. The workflow can be summarized in the following points:

e Buoy parameters, state-space models and function estimations are done in
MATLAB.

e Relevant parameters are saved in the MATLAB workspace.

e Simulink uses the relevant parameters in the workspace to perform the simulation.

The Simulink implementations of the WEC model, resistive loading & reactive control

can be seen in Figure 23, Figure 24 & Figure 25.

2.2 Machine Side Converter Controller & PMLG System

The Machine Side Converter Controller (MSCC) block described in this section is
simulated in MATLAB & Simulink with the purpose of:

e Ensure that the control force is tracking the reference control force.

e Calculate the d-q reference frame voltages of the stator windings.
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2.2.1 Machine Side Converter Controller

Based on Equation 2.25, the reference stator quadrature current can be calculated.

To ensure proper tracking, a Pl controller is implemented.

Implementation of a Pl controller is based on the following equation for the direct
current of the stator [43][39]:

di sd

’l,‘sd(f) = [fsfad(f) + LSW

— we Lyigg(t) (2.36)

with we equal to [22]:

e (2.37)

According to [43], an auxiliary control variable was introduced and can be

represented as:

disd _ 1 s ! T
ke E?Sd(t) + p— Usa(t) (238)

where tilde means the reference auxiliary variable. By rearranging the equation, we end
up with:

disd 1 .
W + T—Uzs,j(f) (239)

&Hd (t) = TgTe

The transfer function between the reference voltage and the current is:

\[}5([(3) - s+ % s+a (240)

where the PI controller parameters:

. 20w, —a 2w, —a
I r.i — . d — .
STy T T T (2.41)
These can be found based on parameters proposed by the book:

1
095" (2.42)

b=

1
LS: L_‘SC _0-707-'-*-77: -

Where the real value of the variable is found using the PI controller as:
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s = KY(03a(0) = i0a(0) + =% [ (02t) = ira(®)r
0

(2.43)

By looking at equations 2.36 & 2.39, we can notice the relationship between the

direct voltage of the stator and the auxiliary variable where:

m
Usrf-(t) - _Lh‘im — Usd t)
P (

(2.44)
This fulfills part of the second goal of the MSCC. To fulfill the goal entirely the

same procedure is repeated to find the quadrature stator current where:

disr{

Vsq(t) = Ralsq(t) + Ls—* — weLisisa(t) + wetlpm (2.45)

and repeating the previous steps. The Simulink block representing the controller is shown

in Figure 11:
O—
Vel
PI(2)
Isd_ref
Isd
J..\ >+ Pl(z
>t ()=
@
Isq

Figure 11: Simulink block for the MSCC

The direct current value is set to zero to minimize copper losses [44]. The values
of direct and quadrature components of the stator current will be acquired from the PMLG

System Block.
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2.2.2 PMLG System
By rearranging equation 2.36 [39]:

d"vr. Vsalt Rs , :
vod _ _Zed\l) d ) - f“d(t) + ws’iﬁq(t)?;(f)

dt L, (2.46)
where the definition of the differentiation term can be expressed as follows:
disd _ l\d(t) - isd(t - ])
dt T (2.47)

Ts 1s the sampling time which can also be referred to as At. Rearranging once again

will result in the following expression:

ved®) _ Ry 6) + weieg(t)(®))

'L.Hd(t) — 'l:.-,-d(t - ]-)Ts(_ LH- Lq (2 48)

Therefore, acquiring the real values of the direct stator current that is used in the
MSCC Block. This procedure is repeated for the quadrature current using equation 2.45.
Finally, white gaussian noise is added to the signal. The Simulink block representing the

controller is shown in Figure 12:

x2k_1
Vel
—b@ x5k_1 x5_k > AWGN »(1)
3 Isd
10
fen
7] k1
Vsd 1
-1 I T
"‘ Z uZk: 1 x6_k N AWGN »(2D
Vsq 8 Isq
R

fk_1

Figure 12: Simulink block for the PMLG System
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where the values of the direct and quadrature components of the stator voltage are acquired
from the MSCC Block. The function block handles the mathematical operations needed

in this part and Paramts block provides the constants needed.

2.3 Analysis Block

The Analysis block model described in this section is simulated in MATLAB &
Simulink with the purpose of:

e Calculate the real value of the control force.

e Calculate the average electrical & electromagnetic power generated of the system.
e Calculate the electrical and & electromagnetic energy generated by the system.

e Find the efficiency of the PMLG.

The real value of the control force can be found through equation 2.25 by using the
real value of the stator quadrature current found in the previous section. However, this
power is to be saturated due to the limitations of the machine. The maximum value of the
control force is set to 1.5MN. Similarly, the reference control force has to be saturated as

well.
The instantaneous mechanical power generated by the system is obtained by:
Pm= fu(t)V(t) (249)

The running mean is calculated to find the average power during the simulation.

The electromagnetic energy by definition is the integration of the instantaneous power:

m = 4 w(T)v(T)dT
E ) fu(T)u(7)a (2.50)
The instantaneous electrical power can be obtained by:
P, = g[?’sd(t)iﬁ,;(i) + ?_.‘W(t).i,.,‘,(i)] (251)

Similarly, the running mean of the electrical instantaneous power is calculated as

well as the electrical energy:

b | o

F, = j; ‘—[z!_,ﬁ,l(r)igd(v') + Vg (T )isg(T)]dT (2 52)
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Finally, the efficiency of the PMLG is calculated as the ratio between the electrical

energy and the electromagnetic energy.

Hpmig E_m (2.53)

2.4 Sea state estimation using Recurrent Neural Networks

This section discusses a novel method of predicting sea states in real time. Most of
the equations and/or control techniques require a real time measurement of wave
frequency. In addition, wave significant height can be useful in reactive control techniques

that use look up tables with Hhw & Thw as entries.

Current techniques of predicting the sea state require collecting measurements for
a period of time from a separate buoy, then applying the statistical definition of wave
height and wave period to find the dominant sea state. That might not be ideal since it does
not deal with wave components on a crest to trough basis for irregular waves. The
proposed method theorizes that if each crest or trough can be dealt with separately and
controlled in real time, then optimal control can be applied on individual crest/trough basis
rather than a statistical average. Therefore, for irregular waves, peaks that do not occur as
usual compared to the dominant wave height can be controlled for optimal power
absorption individually. The statistical definition is mentioned in Section 1.2. However,

the proposed definition can be seen in Figure 13.
Height (m)

Half wave height (Hy,,) o

_— = -

Time (s)

_________

Figure 13: Half-Wave Height described in irregular waves
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As seen in Figure 13, half-wave is defined as the positive or negative slope leading
to a peak or a trough after crossing calm sea level. In the case of wave period, for a half-
wave the period is defined as the period of the regular wave representation of this half-
wave. Meaning that if this wave form was regular, then the wave period would be between

two crests or two troughs.

This leads to the need of estimation or prediction techniques to make use of the
half-wave data leading to Hnw Or Thw. Using a Kalman filter can predict one time step ahead
using previous data, meaning it might be able to predict the next point on the slope rather
than the end peak[45]. However, Recurrent Neural Networks (RNN) are a class of neural
networks capable of predicting an output based on time series data where that can or can
not be the next time step. The capabilities of RNNs in time series forecasting and
performance comparisons between RNNs and Kalman filters have been highlighted in

research [46][47]. Therefore, this technique was chosen to handle the task at hand.

2.4.1 Data Collection

Data is one of the main determinants of neural network performance. In order to make
sure a neural network is able to output correct predictions, the data set needs to include
enough features and variance for the neural network to be able to generalize the solution.
Hence, understanding the non-linear relationship between inputs and outputs. Iterative trial
and error were used to reach the optimal data set in this work. Different inputs define

different datasets and based on that they can be split as described below:

e The sea state is varied by 1 m in half wave height and 1 s in half wave period. Data
is collected from regular waves.

e The number of sea states is either 9 or 25.

e Sampling time varied between 0.2 s or 1 s. In either case, 4 samples are collected
as time-series input to the recurrent neural network.

e The output is half wave height, half wave period, and both. The final choice is
discussed in the architecture section.

e Inputs are:
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of the Data Collection Simulink block is shown in Figure 14.

Figure 14: Data Collection Block for datasets including maximum buoy displacement as

output

o Buoy displacement.
o Buoy velocity.
o Buoy acceleration.

o Damping coefficient Rpto.

o Stiffness coefficient Ko, combinations are applied similar to the damping

coefficient.

o Control force.

Combinations of these parameters have been experimented with as inputs.A sample
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After trials, sampling time was chosen to be 0.2 s. This means that collecting 4 data
samples would take 0.8 s to output a prediction. Simulation time is 200 s, meaning that
data for Hnw and Trhw was collected from a simulation of regular sea states for 200 s. The
data is only collected after 100 seconds of simulation due to initial transients. The main
data set chosen for comparison consists of the absolute value of buoy displacement and
absolute value of buoy velocity. The output of this stage is the Hnw and Thw. 80% of the
data is used for training, the rest is used for validation. These datasets are collected in 9

sea states.

e Hnw varying between 1-3 m.

e Thw Vvarying between 8-10 s.

Time series data is collected from regular waves (training data) using the optimized look
up table approach described in the next section, and 5% of the data is used a testing set.
Batch size is set to 128 due to the size of the data set while the network is trained for 10000
epochs. The trained model will be deployed in both regular and irregular sea states for
evaluation. The main idea is that learning the sea state of regular waves can lead to learning

half-wave states in irregular waves.

2.4.2 Recurrent Neural Network Architecture

The input layer of the RNN is chosen based on input size, additionally the inputs
are normalized by their mean and standard deviation (zscore). Similarly, the output layer
is chosen based on the outputs. It consists of a regression layer preceded by a fully
connected layer. In the case of one output, the fully connected layer would have one
output, and in the case of two outputs it would have two. However, careful choice of the
hidden layers is necessary to ensure learning. The more features or unique inputs are
expected, the more the number of hidden neurons [48]. This does not correspond to
increasing the number of hidden neurons infinitely, since that will also lead to higher
computational times and cause over-fitting [49]. Therefore, a Long Short Term Memory
(LSTM) layer based neural network was chose. The proposed architecture can be seen in
Figure 26. The output of this neural network is then rounded to the nearest integer to use

as an input for the look up tables mentioned in the next section. Additionally, GRU layers
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were also experimented with using the same number of hidden neurons. In all cases, Adam

optimizer was chosen by default for all cases [50].

LSTM was proposed in 1997 to solve the issue of storing information over periods
of time. Specifically, the long computation times due to insufficient error backflow [51].
Therefore, LSTM was proposed to have a short term memory that can work for longer
periods of time. Hence, calling it LSTM. The advantages that LSTM carries are the
insensitivity to the gap between steps and dealing with the issue of vanishing gradient [51].

This makes it ideal for the current application since the time step is 0.2 s.

The main difference between GRU & LSTM is the forward step calculation. That
is dependent on the operation of neurons. The neuron is described in Figure 15.

<t>

y

softmax

<t—-1>

\4

<t>

5
% —>
> % « -
Fll..llﬁ

f<t> i<t> =<t>

Forget Gate Update Gate tanh Output Gate

% % %

e

[a<t—1>, x<t>]

Figure 15: 1/O diagram of LSTM Neuron [52]

x<* is the current time step of the input, which makes x<"1> the previous time step
of the input. The memory cell output is c<*>. a<*> is the activation output of the current
cell, and c™<* is the candidate memory cell output. Finally y=*is the prediction at this time
step. However, the output mode of the LSTM layer is set to "last" to only get the prediction

of the final cell. The equations governing the operation of the cell are:
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E<t> = tanh(W,[a<t"">, x<t>] + b,)
L, = oW, [a%"%, ] + b,)
[]'c — U(Wf[a<t_1>,x<t>] bf)
I, = o(W,[a<t"1>,x<*>] + b,)
e T c<t—1>

a<t> =T * tanh(c<t>)

+
+
+ (2.54)

where W, is the hyperparameter matrix. This longer version of the simplified notation is:

We=[Wea Wel
W, [a<t"1> x<t>] = [W., W.,] [a<t_1>] (2.55)

x<t>

Finally, b is the bias parameter that is usually set to O or 1. This notation is used

similarly for all of the hyperparameter matrices.

The intuition here is that by having both an update and a forget gate in the cell
output, there is the option of keeping the old value and adding to it or forgetting it. This is

due to the forget gate and update gate outputs being 1 or 0 most of the time [53][52][51].

Gated Recurrent Units (GRU) were first proposed in 2014 in comparison with RNN
Encoder-Decoder methods [54]. Similar to LSTM, the GRU is capable of handling the
vanishing gradient issue. An application of GRU is being able to provide context in a
sentence. In longer sentences where the subject (singular or plural) is early, GRU can
determine whether to use a singular or plural verb [55]. By intuition, this type of neural
network should be able to assist in predicting Half-wave height while keeping the earlier

time steps in consideration. The GRU neuron is described in Figure 16.
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Figure 16: 1/0O diagram of GRU Neuron [55]

The same notation used in LSTM is used here. The main difference is the presence
of one gate (update gate) to determine presence (or lack of) context from previous memory

cells. The equations governing the operation of a GRU neuron are:

> tanh(Wc [c<t‘1>,x<t>] + bc) (256)
1—;1 — O'(M/u [C<t—1>,x<t>] + bu)
c<t> = T, * &<t> 4 (1 — Fu) x c<t—1>

After training is complete, the model is imported into Simulink using the predict
block which outputs a prediction at every time steps. Therefore, data was arranged similar
to the training set before feeding into the network. This is done using Function and Delay
blocks. The block is shown in Figure 17. Remark that this architecture only requires the
displacement and velocity as input, which solves any issues with algebraic loops caused

by other inputs.
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Figure 17: Simulink block of RNN deployment

2.5 Reactive Control using Neural Networks

The work in this section aims to improve the power absorption using reactive
control adopted from the International Journal of Marine Energy [16]. This method uses
feed forward neural networks (a.k.a artificial neural networks (ANN)) as a cost function
in conjunction with a global optimization algorithm. A The proposed neural network

architecture consists of the inputs.

e Half Wave Height Hnw.
e Half Wave Period Thw.
e Damping Coefficient Rpto

e Stiffness Coefficient Kpto

The inputs are chosen based on the dataset collected for the RNNs in the previous
section. These inputs are fed to two hidden layers of 10 neurons each to construct two
identical single output feed forward NNs. The hidden layers use a tanh activation function

while the output uses a regression layer. The outputs are the average electrical power
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generated by the device and maximum displacement experienced by the buoy. This

architecture is shown in Figure 18.
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Figure 18: Feed forward NN architecture for the optimization algorithm as described by

the original paper [16]

Hy,, ——
Pprea , Average Power
Thy =——>
T — |Zpreq|, Max Displacement
hw
—

Figure 19: Implementation used in this work of the network in Figure 18 [16]

The original paper used one neural network for both outputs. However, for ease of

implementation in the cost function, these networks were split into two. Inputs are
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normalized by mean and standard deviation and training is done using batch mode rather
than a single example at a time. Since the network will be later on used to generate look
up tables to be used by the estimation networks. Finally, the neural networks use typical
forward and backward propagation as described in [49]. The authors of this method
proposed using a MultiStart optimization algorithm [56] for a minimization problem. This

is done using "fmincon" (minimization) in MATLAB with a 100 random starting points.

71—);”]’%”(1' |3pr'mi| < ZMax
cost =
+]-s |’2[H'(’(i'| > ZMazx

Where Ppred and zpreq are the predicted average power and predicted displacement

The cost function is.

(2.57)

by the ANN. The main idea is to explore different choices of coefficients that might
possibly increase power absorption as long as they maintain the physical constraints. The
constraints are also enforced by having the damping and stiffness coefficients limited in a

range. The data collection and training loop can be seen in Figure 20.
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Figure 20: Flow chart of the ANN training and data collection
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The flow is as follows:

1. Sea state is chosen.
2. Update the iteration count N for the sea state.
3. If the sea state has been visited less than 40 times, the damping and stiffness

coefficients are chosen randomly within a search space.

Rpto = Rpto,opt + ARpto

ARpto = (r—0.5) % range(Rpto) % 0.9N—40 (258)

Where ARyt is @ randomization window that minimally changes the
output of the optimization to allow for exploration around the optimal
value. The last term causes the exploration window to decrease as more

iterations go by. The same is applied to Kpto.

4. The simulation is run for 1000 seconds, since this is the time required to ensure the
average power reading is almost constant.

5. Input and output vectors are collected. The network is trained every 20 iterations
on the accumulated collected data.

6. Once the number of iterations passes 41, the optimal coefficients are found and the
loop exits. The reason only 41 iterations are considered is to save on computational
time. In the original paper, any iterations after that are for exploration around the

optimal coefficients for online continuous learning.

Finally, the optimal values of the coefficients are used to create a look up table, which
is used for training the RNNSs, in Simulink as shown in Figure 21.
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Figure 21: Simulink Block of reactive control using look up tables

Additionally, the final control method consists of a combination of the prediction

network and the look up tables, which can be seen in Figure 22.

1z v

b

RNN

H hw | Th,w

Round

b

Look-up
tables

Rpto,Opt l l Kpto,O'pt

‘fu(t) = Rpeov(t) + Kproz(t) ‘

Figure 22: Fully neural network based controller

39



|apow DI 8U1 J0J %9010 YulNWIS :€Z 8nbi

| o

1 U3 Ndequls

-z
SLM

SNl

n4g

|

[3POI uonelpey

g + ") ="
ng + “xy = T+ix

12

ng +xp ="
::m.*:% = T+uy

40



SuIpeOT 9ATISISIY 10J O0[q JUITNWIS :§7 dINSI]

¢b

7 <]

1 |N<<ebawo

£=(d)o
(md

43

18+4D

L9s

aAISSed jol n4 < P

.n' ° + -
9l :
- €e X}«
1 4
€l <
[ e =
ze
¢l .
—1 10dAy
Ll

oipAy <

;

1 Y<<ebawo

L

¥=(d)o
(md

l¢-

< o]

-

di

ol

41



[01U0D) ALY JOJ JO0[q NUI[NWIS G AINSI]

1 N<<ebawo
Xle
e=(o |,
md
ge
LOAISSBd Jai n4 AM_ 1 Yy<<ebawo
#=(d)o g
ge ) B
« Ziuejsuod
ep

_‘ *k [xf—
= le Ljuejsuod

<« 10" eyep _Olmu_w_u

-

42



ndinQ 3)8uIs

19Ae7 IndinQ uoissalday

@
Pparouuo) Ajng

(1)
Ppawauuo)) Ajjnyg

g Jaheq

3

1

QINOANIYIIY NN U9Soy) :97 9In31,]

nding
9|8uIs —sdajsawn ¢

, (P9 WIST &

@ WLIST %

(DWLST ™

G Jaheq

¥9)

: @
paauuo) Afng

\ (§Y)
parpauuo) Ajng

t 19heq

/ pawauuo) Ajng %

]

"

indino
9|8uis —sdaysawn ¢

, (P NLST #
(@) WLST %
(D WLST ~

€ 19Ae7

ndinQ 3|8uis

(952)
/ pawauuo) Ajnyg

. @
parauuo) Afng

\ 0)
Pparauuo)) Ajng

7 J19heq

indino
9|8uis —sdajsawn ¢

, (8T WIST «

@ WLST *
(DWLST *
1 19Ae7

sdaysawn ¢

JaAeq Induj aduanbag

43



NUINWIS-IO[[0JIUOD Paseq JI0MIoU [eInau A[[n, :£ 7 Ing1

SHieu k

n
wy ZN
: ElENEST =
in =

(n)L a-
]

uoy N:
¢ n A Q‘ﬂ _ z __n

[n

n
(n)L o.W: _ b __n

=]
()

[

j

LAAISSBd Ja1 ng
an,

44



Chapter 3: Results and Discussion

This chapter will discuss the results of the previous sections mentioned in the
methodology section. Initially the simulation environment is described based on the
initiation parameters. After that, the performance of the Sea State Estimations RNNs is
evaluated. Finally, a comparison between the fully neural network based Reactive Control

is conducted against traditional Reactive Control and Resistive Control.

3.1 Simulation Environment

The simulation for all the previous section has been set up and are shown in Table

1 and the run times for the simulation of each section is shown in Table 2.

Table 1: Simulation Parameters

Parameter Value
Gy 1.9737
S, 6 x 10*
Cyq 0
Apm 20 Wb
Pw 0.045m
R, 20
Lg 25 X 1073H
Yom 19.8 Wb
draft 1.5m
Maximum E, 1.5N
Range Ry, Oto4
Range Kpro Oto—2
Maximum displacement 2m
Natural frequency 0.75 rad/s
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Table 2: Simulation Runtimes

Section Time per iteration
Sea State Estimation (training & results) 200s
RC using ANN (training ) 1000 s
RC using ANN (Results) 500s
Wave Sequence 1000 s

Force modelling, equations and state space representations are found by using
MATLAB to implement the methodology section. The Simulink simulation runs after.

The Sea states used for training and testing are summarized in Table 3.

Table 3: Sea States

# 1to3 4-6 7-9 10
Hyy(m) 1 2 7-9 2
Thw(s) 8tol0 8tol1l0 8to10 8

State  Regular Regular Regular Irregular

The first 9 states are used to train the neural network models in both cases which
are sea state estimation and control optimization. The final sea state, which is irregular, is

used to evaluate the performance in irregular sea states.
3.2 Simulation Results

3.2.1 Reactive control using neural networks

The optimization algorithm was run multiple times to optimize the damping and

stiffness coefficients, These coefficients are listed in Tables 4 and 5.
Table 4: Optimized damping coefficients x 10°

1 2 3 4 5
8 1.96 3.1 3.8622 3.6631 0.5635
9 23306 3.3930 3.9865 3.7575 3.3989
10 2.8693 3.2309 3.6816 3.7575 1.0192
11 4 3.6608 3.6094 0.1983 1.4044
12 4 3.2404 3.7575 3.3989 0.1983
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Table 5: Optimized stiffness coefficients x —10°

1 2 3 4 5
8 2 1.55 0.005103 0.8837 1.8104
9 2 1.712 1.0093 0.0087167 1.9278
10 1.8133 1.6798 1.1321 0.0087167 1.0825
11 1.1488 1.5729 0.4204 1.4620 1.5021
12 1.8103 1.1332 0.0872 1.9278 1.4620

All the values lie within the maximum and minimum range of damping (0 to 4x10°)

and stiffness (—2x10° to 0) set in the algorithm settings. In order to evaluate the

performance, the average electrical power and maximum displacement are placed in

comparison to traditional reactive control. This is to ensure that the algorithm is

maximizing power while maintaining the constraints. This comparison is illustrated in

Table 6. Traditional reactive control is as described in equations 2.29 to 2.34:

Table 6: Traditional vs Optimized Reactive Control Outputs. Power x 10* (W),

Displacement (m)

th ’ Thw

1,8
1,9
1,10
2,8
2,9
2,10
3,8
3,9
3,10

Optimized max z

1.3580
1.3489
1.2295
1.9142
1.9394
2.0570
2.0255
2.3300
2.5238

1.6977
1.6618
1.5851
2.7015
2.7280
2.6746
3.6617
3.7151
3.6728

Traditional max z

Optimized Power

3.4224
2.9225
2.6272
8.2588
6.8684
5.9530
13.492
13.303
9.8697

Traditional Power

2.0755
2.055
1.9878
3.3576
3.9509
4.4386
4.4703
6.0265
7.5196

It can be observed that the power output has improved in all cases, however for the

last two cases the displacement constraint has been violated. This can be resorted to poor

neural network prediction on edge cases, or simply because of the behavior of the device

during sea states significantly higher than the device size. By intuition, larger displacement

should lead to higher power absorption. However, displacement does not solely contribute

to the control force as mentioned in Equation 2.29. A better metric is to measure the

mechanical power, electrical power and the efficiency as described in Equation 2.49,
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Equation 2.51 and Equation 2.52. The power generation and efficiency were compared

between both types of control for a regular sea state of Hw=3m & Thw=10s:

43.4| " 54.25| "
Ee Ee
—» 37.6 PMLG Efficiency > 49.35 PMLG Efficiency
0.8663 0.9096
(a) Traditional reactive control (b) Optimized reactive control

Figure 28: Mechanical power, electrical power and efficiency for a regular sea state of
Hmw=3 m & Thw=10 s. @) Traditional reactive control b) Optimized reactive control

In the case of optimized control, the output mechanical and electrical power are
improved as well as the efficiency. The conclusion here is that the optimization improves
the power output and efficiency during all sea states. However, the displacement constraint

IS not maintained in all sea states.

3.2.2 Sea state estimation using recurrent neural networks

The RNNSs developed are evaluated based on training time and Root Mean Square
Error (RMSE). Networks that have a lower RMSE are considered higher in performance.

Training time is important for online applications where quicker training is required.

However, the case in this work is done offline, but it matters to portray the
capability of certain architectures to learn the non-linear relationships between input and
output faster. The training graphs exported from MATLAB for both GRU and LSTM are
shown in Figure 29 and Figure 30. For both cases, the batch size was chosen 128. Training
time is similar in both cases however the RMSE for LSTM is lower. This is a clear
indicator that the main network used for estimation should be the LSTM network. Another
outcome to be deduced is that LSTM is better at handling time series data for this
application, as in its more suitable in solving the vanishing gradient problem. Intuitively,
GRU should take less time to complete the training. mainly resorted to the presence of less

gates which means less processing time. This is confirmed in [57]. However, this was not
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the case in this application. Additionally, the performance of the LSTM network might be
better since the extra processing per memory cell is better at handling this specific

problem.

Following the choice of LSTM, the network had to be tested under different
Hp,, and Ty, to check the capability of homing into the correct sea state eventually. To
do that, the output of the RNN is collected after being connected in the complete controller.
The performance for multiple regular sea states is shown in Figure 31 and Figure 32.
Overall, the prediction stabilizes after 50 seconds of simulation, this is due to the dynamics
stabilizing after this period. The model performs well in sea states with higher periods,
whereas the prediction fluctuates in lower periods. This can be resorted to the algorithm

not being fast enough for the lower wave periods.

Additionally, the model was used with the optimized look up tables to control the
irregular sea state from Table 3, this is then compared with the performance in traditional
reactive control. This is shown in Figure 33. It is easy to observe that the NN based reactive
control maintained the displacement constraints in the irregular wave and also yields
higher power output. Finally, the model is tested in a sequence of regular waves. This
consisted of 5 waves each lasting 200 s. The sequence in half wave height and period
respectively is (1-9), (1-10), (2-9), (2-10) and (3-9). The results are shown in Figure 34.
As observed from the Figure, the neural network model is working as intended with the
exception of the 50-60 s required for the dynamics to settle between waves. However,
quick fluctuations in the third sea state can be observed. A solution to this problem can be

increasing the model’s accuracy. This is further discussed in the recommendations section.
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Chapter 4: Conclusion

In this Master’s thesis, a neural network based reactive control technique is
proposed for wave energy converters. The power take-off forces and electromagnetic force
are the main contributor to maximizing the power output in reactive control. An average
model of the WEC is simulated as a basis for assessment of the neural network algorithms.
The main objectives are improving reactive control using existing neural network research,
estimating the sea state in real time and creating a controller that is fully based on these

networks.

4.1 Research Findings & Summary

The main findings and contributions are highlighted below:

e Optimizing the power output of reactive control using feed forward neural networks
and global optimization to improve the power output. This is done through
exploration of random damping and stiffness coefficients within a defined search
space and training neural networks as the cost functions of the minimization
algorithm. All this is done while maintaining the displacement constraints of the
WEC. The optimized coefficients are used to create look up tables.

e Proposed a method of estimating sea states in real time. This is done through the
creating recurrent neural network architectures, evaluating them and deploying to
give real time measurements of the sea state.

e Creating a controller that is based on sea state output from the RNNSs feeding into
the look up tables to find the optimal damping and stiffness coefficients.

Consequently, this leads to outputting the reference control force needed.

4.2 Limitations

The limitations of the current work are:

e Training of the neural networks was done on a limited number of sea states and
intervals.
e Evaluation of performance in irregular waves was only measured by average

power. There is not a method yet to evaluate individual peaks/troughs.

56



e The current RNN RMSE needs improvement, and real-time fluctuations need to be
dealt with better.

e Faster waves experience more fluctuations in prediction.

4.3 Future Work

The areas of improvement that can add to the contribution of this thesis are:

e Experimenting with more datasets. Identifying inputs that can help the RNN learn
the non-linear relationship between inputs and outputs can be very crucial to its
performance.

e Making the RNN capable of making faster predictions. By using shorter time steps
in the time series data, the network should be able to perform better in lower wave
periods.

¢ Identifying performance decay parameters in long term deployment of the WEC.
This can lead to the implementation of a continuous learning pipeline that can adapt
to the changes the WEC faces in real life due to corrosion and marine life growth.

e Implementing methods of measuring displacement and velocity. Currently, the
assumption of the presence of these measurements is made. However, by finding a
solution to this problem a standalone system can be deployed without the need for
expensive measuring instruments.

e Applying the developed technique to hardware experiments.

e Creating a more efficient architecture for the RNN. A more efficient (deeper or
wider) architecture should be capable of learning more features which leads to

lower RMSE. This can also mean the possibility of handling bigger datasets.
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This work discusses the development of neural network based reactive control
system for wave energy converters. It introduces a novel sea state estimation
technique using recurrent neural networks for regular and irregular wave sea state
estimation. The sea state estimation technique is used in addition to state of the art
neural network based reactive control techniques to optimize the power absorption
of point absorber wave energy converters.
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