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Abstract 

The Microelectrode Array (MEA) is a collection of parallel electrodes that may 

measure the extracellular potential of nearby neurons. It is a crucial tool in neuroscience 

for researching the structure, operation, and behavior of neural networks. Using 

sophisticated signal processing techniques and architectural templates, the task of 

processing and evaluating the data streams obtained from MEAs is a computationally 

demanding one that needs time and parallel processing.  

This thesis proposes enhancing the capability of MEA signal processing systems 

by using approximate computing-based algorithms. These algorithms can be 

implemented in systems that process parallel MEA channels using the Field 

Programmable Gate Arrays (FPGAs). In order to develop approximate signal processing 

algorithms, three different types of approximate adders are investigated in various 

configurations. The objective is to maximize performance improvements in terms of 

area, power consumption, and latency associated with real-time processing while 

accepting lower output accuracy within certain bounds.  

On FPGAs, the methods are utilized to construct approximate processing systems, 

which are then contrasted with the precise system. Real biological signals are used to 

evaluate both precise and approximative systems, and the findings reveal notable 

improvements, especially in terms of speed and area. Processing speed enhancements 

reach up to 37.6%, and area enhancements reach 14.3% in some approximate system 

modes without sacrificing accuracy. Additional cases demonstrate how accuracy, area, 

and processing speed may be traded off. 

Using approximate computing algorithms allows for the design of real-time MEA 

processing systems with higher speeds and more parallel channels. The application of 

approximate computing algorithms to process biological signals on FPGAs in this thesis 

is a novel idea that has not been explored before. 

 

Keywords: Approximate Computing, Digital Systems, e-health, FPGA, Micro-electrode 

Arrays. 
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Title and Abstract (in Arabic) 

 FPGAالمعالجة التقريبية في تحليل بيانات مصفوفات الأقطاب الكهربائية الدقيقة باستخدام 

 ص الملخ  

مصفوفات الأقطاب الكهربائية الدقيقة هي الجهاز الاساسي في مجال علم الأعصاب لدراسة السلوك  

هربائية المتوازية التي تعمل من والتنظيم ومبادئ العمل للشبكات العصبية. تتكون المصفوفة الكاملة من الأقطاب الك

خلال استشعار الجهد الكهربائي خارج الخلية للخلايا العصبية الموجودة بالقرب منها. معالجة وتحليل البيانات  

المتدفقة من تلك الاجهزة هي مهمة حسابية مكثفة تتطلب التوازي يتم تنفيذها باستخدام خوارزميات معالجة الإشارات  

 الهيكلية.المعقدة والقوالب  

في هذا البحث قمنا بتطوير خوارزميات حوسبة تقريبية لمعالجة الإشارات البيولوجية المتدفقة من 

لتوفير مكاسب الأداء المثلى في الحجم واستهلاك الطاقة    FPGAمصفوفات الاقطاب الكهربائية عالية الكثافة على 

الناتج ضمن حدود معينة. ثلاثة أنواع من  وتقليل تعقيد الحساب والبطء المرتبط بالمعالجة، على حساب انخفاض دقة

المجمعات التقريبية استخدمت في أوضاع وتراكيب مختلفة لتطوير خوارزميات معالجة البيانات وقد تم استخدام هذه  

 ومقارنتها بالأنظمة الدقيقة.   FPGAالخوارزميات في أنظمة المعالجة وتحديد النبضات باستخدام  

المطورة على إشارات حيوية حقيقية وبينت النتائج زيادة في سرعة المعالجة تصل الى  تم اختبار الأنظمة 

% بدون أي خسارة في دقة تحديد النبضات. في أوضاع أخرى  14.3% وتقليل في حجم النظام يصل الى 37.6

البحث الفرص لتصميم  للنظام المطور أظهرت النتائج تنازلا في الدقة في مقابل الزيادة في السرعة والحجم. يفتح هذا  

نظم معالجة اشارات مصفوفات الأقطاب الكهربائية الدقيقة الآنية التي تعمل بسرعة معالجة اعلى وعدد أكبر من  

القنوات المتوازية اذ أن استخدام أنظمة الحسابات التقريبية في هذه الأنظمة هو فكرة جديدة في هذا المجال ولم  

 . تستخدم من قبل

، مصفوفات الأقطاب  FPGAالحساب التقريبي، الأنظمة الرقمية، الصحة الاليكترونية،  :يسيةمفاهيم البحث الرئ 

 .الكهربائية الدقيقة
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Chapter 1: Introduction 

1.1 Overview 

Neuroscience studies the nervous system development, structure, and functions 

(Shi & Fang, 2018). It is the study of the neurological system from a scientific 

standpoint. Neuroscience studies not just how the nervous system works normally but 

also how the nervous system responds to neurological, psychiatric, or 

neurodevelopmental disorders (Özcan et al., 2021). Person's quality of life is affected by 

nervous system disorders, which are also the most challenging to cure of all the organ 

systems in the body. The majority of these issues are brought on by a decline in localized 

sensory or motor function (Slepova & Berkhova, 2019). By connecting electrodes to the 

residual limb's peripheral nerves, neuroprosthetics holds a lot of promise for helping 

people restore their sensation of touch (Ades et al., 2022). Restoring lost neural function 

can be done by capturing signals from active neurons and then selectively electrically 

stimulating a population of neurons’ functions (Bavishi et al., 2019). 

Neurons or neural cells are the essential building blocks of the neural system. Most 

neural proteins are made in the cell body (soma), which houses the nucleus. The axon 

passes messages from the cell body to other neurons through nerve impulses, and it is 

covered by a semipermeable plasma membrane (Varier et al., 2022). 

A resting neuron has a voltage across its membrane known as the resting 

potential, which has a value of about -70 mV. High levels of positively charged sodium 

ions outside the cell, large levels of negatively charged chloride ions, and a lesser level 

of positively charged potassium inside the cell all contribute to this polarized condition. 

The slightly negative internal charge compared to the extracellular fluid causes this 

potential. 

An action potential or nerve impulse is formed when neurons are triggered by the 

neighboring cell or externally by chemical, electrical, or optical stimulators. The 

stimulation of the neuron causes channel-shaped protein molecules in the cell membrane 

to partially open. Positive sodium ions enter through the partially opened channels and 

the action potential starts to form when that membrane region becomes less negative. 

The action potential, which lasts for a few milliseconds, is generated when the channels 
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fully open at the threshold potential of roughly -55 mV and the cell gets an injection of 

positive sodium ions. Depolarization also opens sodium channels in nearby membrane 

regions when the threshold value is exceeded, causing the impulse to travel through the 

axon (Betts et al., 2013). 

Microelectrode Arrays (MEA) are arrays of up to thousands of metal contacts that 

are used to detect potentials in the extracellular environment and transform them into 

electrical potentials (Doliwa et al., 2022). Therefore, MEAs are fundamental equipment 

in neuroscience for studying neural network behavior, organization, and working 

principle (Huang et al., 2023).  

In a closed loop MEA system, stimulating electrodes can be integrated into the 

same MEA with the recording electrodes, or they can be connected to an external 

stimulator which can be optical or electrical. This setup enables the study of neural 

system response by analyzing the spike activity caused by stimulating the neurons and 

drawing the map of bioelectrical signals with great details and resolution (Tanskanen et 

al., 2020). Open loop systems in these studies can be used to analyze the activity of 

neurons in addition to history-dependent neural network states without external effects 

(Kim et al., 2018). The success of neuroscience studies relies on the fabrication of MEA 

electrodes in contact with the neural tissue and the associated electronic processing 

system to obtain consistent and real-time recording signals from small groups of neurons 

with the highest resolution (Wang et al., 2021). 

Huge technological advancements have happened in the field of neuroscience in 

the last decade. MEAs consisting of thousands of sensing electrodes are available that 

can instantly record and monitor the activity of many neural cells with high resolution 

(Bhaskara et al., 2022).  

1.2 Statement of the Problem 

The analysis of neural activity is a difficult and computationally demanding 

operation. One challenge is reducing the latency associated with processing the raw 

signals received from the MEA devices to improve the stimulation response. To produce 

feedback stimuli with the lowest delay, the system must be capable of gathering data and 

processing it within the shortest amount of time. This challenge is difficult to overcome 
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since the processing system must filter the received raw signals and detect neural spiking 

events which last for a few milliseconds. Furthermore, reconfigurability is required quite 

frequently to run multiple setups and trials. The overall processing system should also 

have a high degree of parallelism to process the data received from various MEA 

channels in parallel. The circuit area of the processing system is also an important 

parameter since the system consists of parallel processing sets and programmable 

devices such as microcontrollers and Field Programmable Gate Array (FPGA) have 

limited resources that should be utilized efficiently. Hence, more processing sets can be 

built on the same chip and handle the data channels in parallel if the set circuit area is 

smaller. Less power consumption by each processing unit will also enhance the 

portability and decrease the overall power consumption of the system. 

Recent approaches, e.g., (Lee et al., 2020), tried to overcome the previous 

challenges with adaptive electrode selection technique that scans the electrode arrays and 

record from selected electrodes where the neural spikes are detected to monitor larger 

number of electrodes. Other approaches, e.g., (Doliwa et al., 2022), proposed the 

filtering process of received signals outside the FPGA with analog electronics and 

utilized the chip resources for data acquisition, transmission, and other processing tasks. 

1.3 Research Objectives 

This research aims to enhance the capability and overcome the mentioned 

challenges by applying approximate computing-based algorithms in a system that 

processes parallel MEA channels on FPGA. The proposed processing system uses 

approximate computing to provide optimal performance gains by reducing the 

computation complexity and latency associated with real-time processing. Approximate 

computing (Wang et al., 2022) is a computation technique that compromises the 

accuracy of the result while improving the area, power, and delay to meet the 

requirement of high-performance computing in error tolerant applications. Applications 

for signal processing, image processing, recognition, and data mining have all made 

extensive use of it.  

Primary contributions of this research include: 
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1. Development of neural signal processing systems on FPGA using 

approximate computing and compare them with the precise system to 

assess the advantages and disadvantages. In this context, three types of 

approximate adders were utilized, i.e., GeAr (Raghuram & Shashank, 

2022), AA2 (Gorantla & Deepa, 2020), and CPredA (Sato et al., 2019), in 

multiple configurations. 

2. Testing the proposed approximate system using real biological signals. The 

results show significant enhancements, mainly in speed and area. 

Processing speed enhancement reaches up to 37.6%, and area reduction of 

14.3% in some approximate systems compared to the accurate one without 

a loss in accuracy. The trade-off between processing speed, precision, and 

area is demonstrated by other approximation systems. 

1.4 Relevant Literature 

Neural interfaces were first used as basic scientific research instruments to 

investigate how the brain works (Kozai, 2018). Implantable microwires were used in 

1958 (Strumwasser, 1958) to prove that recording neuron discharges is possible for a 

week or more in unrestrained animals. In that work, Felix Strumwasser implanted four to 

six stainless steel microwires with 80 µm diameter into the skull of a squirrel. He 

observed the patterns at periods once the squirrel was dozing off, waking up, and awake. 

The earliest article outlining a multielectrode array used in monitoring grown 

cells was authored by Thomas et al. in 1972 (Pine, 2006). The test array was constructed 

with two rows of 15 electrodes separated by 100 µm (Thomas et al., 1972).  

Five years later, in 1977, Gross introduced the idea of a multielectrode array 

similar to that of Thomas, unaware of the prior work. (Gross et al., 1977). A 

thermosetting polymer insulated the 36 gold electrodes in the array, which had a 

diameter of around 10 µm. They were positioned 100 or 200 µm apart and de-insulated 

using UV laser pulses. 

The number of electrodes has recently increased as a result of MEA technological 

advancements. So, the prospect of constructing neural networks with a particular and 

well-defined topology is implied by the concept of having one neuron plated across the 
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surface of each electrode (Massobrio et al., 2015). A neuroelectronic connection 

connects neurons and micro-transducers in proximity. Long-term, noninvasive 

recordings of the electrical activity of extracellular neurons are made. 

Spatial resolution is one of the main benefits of MEAs, allowing the accurate 

collection of neural signals. Modern MEAs consist of thousands of electrodes that send 

acquired biological signals simultaneously. Recent MEA devices use Complementary 

Metal Oxide Semiconductor (CMOS) technology to allow for high-speed, high-

resolution imaging of electrical activity. They may have a culture- or slice-chamber to 

hold the sample while also allowing the use of a microscope. They also contain in a tiny 

chip thousands of sensing electrodes in addition to integrated stimulation circuits 

(Dragas et al., 2017). 

1.4.1 MEA Signal Processing Systems 

Different multichannel recording and stimulation systems have been introduced, 

including commercially available systems. Despite being well-designed, those systems 

are not specifically intended for each experiment's requirements, such as closed-loop 

setups, where processing time is critical to trigger a specific stimulus. Furthermore, due 

to the costs, researchers created subsystems for their unique experiments and provided 

cost-optimized open-source systems (Tanskanen et al., 2020). 

Several works in the literature implemented systems to process the signals 

acquired by MEA devices and transmitted through their channels. Those systems mainly 

use Personal Computers (PC) with integrated and analog electronics or programmable 

devices such as microcontrollers and FPGAs. 

1.4.1.1 Processing Systems Using PCs 

A PC-based processing system is introduced by Venkatraman et al. (2009). An 

analog circuit was built to interface a PC with 16-electrodes MEA and filter the neural 

signals. The neural signals are acquired from MEA while its electrodes are implanted in 

an awake rat's barrel cortex and then sent to a custom software on the PC to extract the 

features and detect the spikes. The software was also used to trigger micro-stimulation 

based on the movement of the restrained rat. It processed the signals and generated 

stimulation within 15 ms.  
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Another work used a Mathworks Simulink-based application on PC to 

demonstrate real-time analysis of complicated high-bandwidth which is more than 10 

MBit/s (Zrenner et al., 2010). The system recorded neural data while simultaneously 

generating specific complex electrical stimulation feedback with deterministically 

scheduled responses at a sub-millisecond resolution. The system was used to control an 

MEA with 60 electrodes and tested with predefined waveforms and stimulating 

electrodes. It could send stimulus signals in less than 1 ms, but changing the stimulating 

electrodes and waveforms took around 10 ms.  

Wallach et al. (2011) used the previous system to introduce the Neuronal 

Response Clamp. A closed-loop technique enables control over the instantaneous 

response probability of the neuron.  

The work by Newman et al. (2013) presented the NeuroRighter desktop 

application, which simplifies the design of sophisticated real-time experiments for 

multichannel interfacing experiments. The minimum latency achieved with this system 

when targeting a 64-channel MEA was around seven milliseconds. 

A 320-channel active probe for high-spatial-resolution neuromonitoring and 

responsive neurostimulation was reported by Shulyzki et al. (2015). The work used the 

presented bidirectional integrated neural interface IC and a seizure-predicting 

application. An Integrated Circuit (IC) cell array was attached to the reverse side of a 

pitch-matched Microelectrode Array in the probe. The IC supported 256 neural 

recording sites and 64 neural stimulation sites. A PC application is used to control and 

predict seizures in a rat epilepsy model with online closed loop neurostimulation.  

Liu et al. (2020) proposed a system based on memristor. The system uses the 

inherent memristor conductance modulation to extract the energy and variation 

information of the input neural signals. After the input signals are processed on the 

memristor array, the conductance of all the memristor devices can be read out by a PC 

workstation for further analysis, such as spike detection, feature extraction, and 

classification. The results were verified by demonstrating seizure prediction with high 

accuracy and improved power dissipation. 
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The work of Zhang et al. (2021) presented a fully integrated 64-channel neural 

recording system for local field and action potential. An analog system implemented on 

a 4x4 mm2 chip die using the SMIC 0.18 µm CMOS standard process. The chip was 

composed of 88 pins for input and output and several other parts including signal 

conditioning circuitry, a Successive-Approximation Register (SAR) ADC, a bandgap 

reference and bias circuitry, a digital logic unit for clock and control, and a 

unidirectional Serial Peripheral Interface (SPI). The work proposed the two-stage 

amplifier with high gain and the clock logic that can be used to align the switching clock 

as two novel ideas. The system was connected to PC software and tested on raw neural 

data downloaded from the internet. It recorded successfully and simultaneously multiple 

LFP and AP signals. 

1.4.1.2 Processing Systems Using Programmable Devices 

Programmable devices-based systems have been used to implement real-time 

processing systems of neural signals mainly because of their well-known gains in 

computational performance compared to PC-based systems.  

Biffi et al. (2010) targeted an FPGA device to develop and validate a spike 

detection and classification algorithm. The algorithm was developed in the MATLAB 

environment and made up of an amplitude-threshold spikes detector based on noise level 

estimation and a hierarchical classifier to classify the spikes. The hardware design of the 

work was presented using FPGA and 60 electrodes MEA. Filtering, amplifying, and 

digitizing the acquired signal are assumed to be outside the FPGA, which was dedicated 

only to spike detection and classification. 

The work of Muller et al. (2013) is an implementation of a closed-loop spike 

detection and stimuli generation system using FPGA. It processed data from 126 

channels in parallel while generating stimuli on 42 different output channels in less than 

1 ms. 

An ASIC based processing system was presented by Zoladz et al. (2013). In that 

system, the 256 channels' amplification, filtering, and electrical stimulation are the 

ASICs' exclusive responsibility, which receives the signals at a sample rate of 14 kS/s 

and a resolution of 12 bits. The resultant byte stream is sent through a Universal Serial 
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Bus (USB) to a PC with an application for measurement, data presentation, and storage. 

The proposed system successfully interfaced the selected MEA and sent its signals to the 

PC for display and measurement. 

A prototype bi-directional neural interface system with closed-loop and embedded 

DSP capabilities is presented by Cong et al. (2014). The system included 32-electrode 

stimulation capability, eight multiplexed low-noise, low-power bio-potential sensing 

channels with an on-chip digital FFT, and a Cortex M3-based microcontroller for 

implementing closed-loop algorithms. 

A wireless portable 16-channel microcontroller system was provided in another 

work enabling two-way communication with the central nervous system (Angotzi et al., 

2014). Eight of the sixteen available electrodes were used to stimulate the brain and 

connected directly to the stimulating unit on a rat backpack. The remaining eight 

electrodes were used to record the neural activity. The system architecture consisted of a 

remote unit, a home unit, and an optional control software running on a PC for offline 

processing. Detection-to-stimulation latency was 3 ms in the microcontroller closed loop 

for this system and 2.6 ms in the PC closed loop. 

Liu et al. (2017) suggested a completely programmable, bidirectional neural 

device interfaced with 16-channel MEA. A general-purpose microcontroller was 

connected to a custom SoC that conducted noise-sensitive neural signal recording, neural 

stimulation, computation-intensive neural feature extraction, and on-chip closed-loop 

operation. The prototype system in that work interfaced the general-purpose 

microcontroller with a desktop PC through the universal wireless protocol (Bluetooth) 

for further processing and control. 

Another FPGA implementation, presented by Park et al. (2017), was shown to do 

spike detection and sorting of 128 input channels simultaneously. However, no latency 

time was reported in this work. The paper focused on the hardware implementation of 

the 128-channel FPGA-based bidirectional neural interface system, including two 64-

channel analog front-end boards. Filtering of signals was done on the analog front-end 

boards, while spike detection and sorting were done on the FPGA board. 
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An FPGA-based system was introduced to interface an MEA with 4K input 

channels and a sampling frequency of 18 kHz (Seu et al., 2018). The latency time of the 

system was less than 2 ms. The system proposed in that work was implemented entirely 

on an FPGA board, including spike detection and filtering of signals by digital filters. 

The work by Lee et al. (2020) presented a multichannel neural recording device 

that records brain signals from many MEA electrodes using fewer recording channels. 

The system used an adaptive electrode selection technique to automatically scan the 

electrode arrays and record from chosen electrodes where brain spikes are identified. The 

grouped signals are connected to a microcontroller unit to determine the relative 

occurrence rate of neural spikes between scan groups and decide adaptive electrode 

selection. Results from experiments using pre-recorded brain data show that the 

proposed system can separate, amplify, and count neural spikes in real-time. 

In the work of Chowdhury et al. (2020), the authors used an FPGA to prototype a 

low-power multichannel neuron activity extraction unit appropriate for a wireless neural 

interface. A neural signal extraction algorithm was proposed to achieve the low power 

requirement by reducing the data transmission rate. The algorithm is based on 

transmitting a particular channel that is recording a high-frequency signal above a 

specific voltage. The work results showed a reduction in the data transmission rate by up 

to 6000 times, which in turn consumes only 3 mW of the FPGA dynamic power. 

The work of Doliwa et al. (2022) presented an analog front-end for brain 

computer interfaces. The system consisted of analog interface circuit to amplify the 

signals acquired from MEA electrodes with low noise amplifiers. The Common Average 

Referencing (CAR) algorithm is used in the interface circuit in order to generate an 

average reference signal of all electrodes that will be subtracted from the signal of each 

recording channel. The algorithm was used to replace the use of differential amplifier 

between the recording and reference electrodes and produce low noise neural signals. 

Signals are then digitized and forwarded to FPGA through the serial peripheral interface 

which transmits them to a host computer for spike detection and processing. A neural 

signal simulator with four channels was used to verify the processing system which 

achieved a signal to noise ratio of 38 dB with spike amplitudes of 100 uV. 
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Finally, Saggese & Strollo (2022) proposed an energy-efficient spike detector 

ASIC that utilizes a hybrid version of Absolute Differential Operator (ADO) and 

Amplitude Slope Operator (ASO). This design employs nonlinear energy operators to 

differentiate neural spikes from background noise, striking a balance between hardware 

requirements and accuracy. By amplifying the differentiation between spikes and noise, 

signal to noise ratio is improved. Initially developed in MATLAB, the algorithms were 

later synthesized using VHDL modules to target TSMC 28 nm Complementary Metal-

Oxide Semiconductor (CMOS) technology. The proposed system was implemented in a 

compact digital CMOS integrated circuit, featuring a multichannel architecture with the 

ability to process 1024 channels. The results of the work demonstrated high detection 

performance, moderate power consumption, and area efficiency, making it a suitable 

candidate for multichannel implantable neural data acquisition systems. 

To the best of our knowledge, approximate computing has never been used in this 

context before. We believe that applying approximate computing in processing neural 

signals can bring significant speed enhancement and reduction in system circuit area 

without comprising much accuracy. With this motivation, in this research, we propose 

approximate computing-based algorithms for MEA signal processing, along with their 

FPGA implementations, and evaluate their usefulness in the medical fields of 

neuroscience, where MEAs are frequently used to analyze the behavior of neural 

networks. 

Table 1 presents a benchmarking of this work with state of the art MEA 

processing systems implemented in recent years along with the main contributions. 

Table 1: Benchmarking of this work with recent state of the art MEA processing systems 

Reference Hardware 
Processing 

Tasks 

Sampling 

Freq. 
Latency 

Input 

Cannels 
Contribution 

(Shulyzki 

et al., 2015) 

Analog IC 

+ PC 

Filtering + 

Seizure 

prediction 

10 kHz N/A 320 

Predict the 

seizures with 

online closed 

loop 

stimulations. 
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Table 1: Benchmarking of this work with recent state of the art MEA processing systems 

(continued) 

Reference Hardware 
Processing 

Tasks 

Sampling 

Freq. 
Latency 

Input 

Cannels 
Contribution 

(Liu et al., 

2017) 

SoC + 

Microcontr

oller 

Digital 

Filtering + 

Spike 

Detection + 

Feature 

extraction 

7 kHz N/A 16 

Implementation 

of a custom SoC 

that conducts 

recording, 

stimulation, 

feature 

extraction, and 

closed-loop 

operations. 

(Park et al., 

2017) 
FPGA 

Digital 

Filtering + 

Spike 

Detection + 

Spike 

Sorting 

32.5 kHz N/A 128 

Implementation 

of online spike 

sorting and 

classification 

algorithm using 

FPGA device. 

(Seu et al., 

2018) 
FPGA 

Digital 

Filtering + 

Spike 

Detection 

18 kHz < 2 ms 4096 

Implementation 

of real time HD-

MEA interface 

and data 

acquisition 

using FPGA. 

(Liu et al., 

2020)  

Memristors 

+ PC 

Spike 

Detection + 

Seizure 

prediction 

10 kHz N/A 16 

Using 

memristor 

devices to read 

MEA signals 

and predict 

seizure with 

improved power 

efficiency.  

(Lee et al., 

2020) 

Microcontr

oller 

Adaptive 

electrode 

selection + 

Spike 

Detection 

12.8 kHz N/A 32 

Implementation 

of adaptive 

electrode 

selection 

technique to 

record signals 

from MEA 

electrodes with 

fewer channels. 

(Chowdhur

y et al., 

2020) 

FPGA 

Digital 

filtering + 

Channel 

selection + 

spike 

detection 

10 kHz N/A 64 

Implementation 

of neural signal 

extraction 

algorithm to 

achieve the low 

power 

requirement by 

reducing the 

data 

transmission 

rate. 
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Table 1: Benchmarking of this work with recent state of the art MEA processing systems 

(continued) 

Reference Hardware 
Processing 

Tasks 

Sampling 

Freq. 
Latency 

Input 

Cannels 
Contribution 

(Zhang et 

al., 2021) 

Analog IC 

+ PC 

Filtering + 

Spike 

Detection 

19.2 kHz N/A 64 

Implementation 

of full neural 

interfacing 

system that uses 

two-stage 

amplifier and 

clock logic to 

synchronize the 

channel 

switching with 

the ADC 

sampling clock. 

(Doliwa et 

al., 2022) 

Analog IC 

+ FPGA + 

PC 

Filtering + 

Spike 

Detection 

12.8 kHz N/A 4 

Implementation 

of analog front-

end interface 

that uses 

common 

average 

referencing 

algorithm to 

enhance the 

signal to noise 

ratio. 

(Saggese & 

Strollo, 

2022) 

ASIC 

Digital 

Filtering + 

Spike 

Detection 

10 kHz N/A 1024 

Implementation 

of low-power 

spike detection 

ASIC that uses 

nonlinear 

energy operators 

to distinguish 

neural spikes 

from 

background 

noise.  

This Work, 

2023 
FPGA 

Digital 

Filtering + 

Spike 

Detection 

7 KHz 

4.815 ns – 

7.665 ns 

Per 

channel 

N/A 

Implementation 

of MEA 

processing 

systems based 

on approximate 

computing 

algorithms to 

reduce the 

processing 

latency and 

system area. 
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Chapter 2: Methods 

This chapter presents the research design of the developed real-time processing 

system based on approximate computing. 

2.1 Research Design 

Figure 1 depicts the design steps of this research.  

 

Figure 1: Research Design  

The first step is to review the literature and study the different designs of neural 

signal processing systems since the following steps need to understand the processing 

system and its various parts. 

Approximate computing approaches and circuits are also reviewed. Different 

approximate adders are reviewed and tested to pick and use the most appropriate adders 
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during the rest of this work. The selection has been primarily based upon the parallelism, 

flexibility, and area of the approximate adder circuit to take advantage of the FPGA 

device used. 

The next step is to build an accurate processing system and test it on real 

biological signals. The outcomes of this step are used later as a reference for 

comparisons. The accurate system is built entirely using Verilog hardware description 

language and implemented on FPGA, as will be discussed later in the implementations 

chapter. 

The approximate adders selected in the second step are used in building different 

versions of the approximate processing system, where each version is based on one of 

the approximate adders. 

All parts of the approximate system are built identically to the accurate one except 

for using approximate computing circuits in their calculations. The last point is 

considered to maintain scientific and fair comparisons through the research. 

Multiple approximation algorithms are developed, refined, and applied to the 

approximate system versions. Then both systems, accurate and approximate, are 

compared to check the validity and usefulness of the newly built approximate system. 

Finally, the comparison data are collected in tables and illustrated visually in 

separate graphs to summarize the results of this research and extract the conclusions. 

2.2 System Overview 

The basic block diagram for the targeted system used to process neural signals is 

shown in Figure 2. It consists of MEA acquisition unit, signal processing unit, and an 

offline processing and storage unit.  
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Figure 2: General block diagram for the neural processing system 

The acquisition unit can be any commercial CMOS-MEA device that acquires the 

neural signal and outputs amplified and digitized raw neural data at a certain resolution, 

12-bit for example. 

CMOS technology is used in recent MEA devices to integrate active electronic 

components on the same substrate of the electrodes. This technology allows the transfer 

of data from a high number of electrodes and adds more functions to the MEA device 

such as amplifying the signal, analog to digital conversion, chip identification, and 

closed loop capabilities (Obien et al., 2017). 

The output neural data from MEA is continuously sent to the real-time processing 

unit through multiple channels. The system's heart is the real-time processing unit that 

can be implemented on a programmable device, as mentioned before in the literature 

review.  

The processing unit consists of multiple sets of filtering and spike detection 

modules. All sets work in parallel, where each set processes one MEA channel. 

Processing starts with the filtering of the amplified and digitized raw neural signal 

received from the MEA device in the filtering module, then the filtered signal is 

forwarded to the spike detection module. The spike detection module detects and counts 

spikes in the signal at the point where it satisfies a particular criterion depending on the 

detection method. A spike is detected for instance when the signal sample is below a 

certain negative threshold (Rey et al., 2015). It then pulls the spike detection output to a 

high level for a certain period to alert for spike detection. Estimating the correct 
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threshold value is essential since a low threshold value leads to false detections while a 

high value leads to an increased number of missed spikes. 

An offline processing unit, such as a PC workstation, can be used to visualize and 

analyze the processed neural signal and spikes.  

In this work, two types of systems are developed and compared: the accurate 

system, which uses precise calculations in all processes, and the new proposed 

approximate system, which employs various approximate adders in processing the 

acquired signals. The implementation of all processing systems is described in detail in 

Chapter 3. 

2.3 Proposed Approximate Processing System 

This research aims to enhance the neural signals processing system by enhancing 

each filtering and spike detection set in terms of time, area, and power. Less circuit area 

will allow the processing system to contain more parallel filtering and spike detection 

sets to handle more MEA channels in parallel. In contrast, less processing delay will 

enhance the overall delay of the system and allow it to filter the neural signal and detect 

the spike with minimum latency. 

Multiple design points have been considered and applied in the design of the 

proposed approximate system, such as: 

1. Using FPGA for implementation. 

2. Enhancing the filtering process. 

3. Applying approximate computing algorithms. 

4. The following sections describe each of the previous points in detail. 

2.3.1 Using FPGA for Implementation 

Processing the biological signals acquired from MEA devices requires a high 

number of input channels, parallelization, speed, and reliability. The processing device 

should also be energy efficient and small in size. Other design factors are the flexibility 

in programming the device and reconfigurability options. 
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The Field Programmable Gate Array (FPGA) is the best programmable device 

that can satisfy the previous requirements. The FPGA is an integrated semiconductor 

device that may be programmed any time after production. It is made up of a matrix of 

Configurable Logic Blocks (CLB) that are linked together according to a program. 

Languages like VHDL and Verilog are employed to produce the higher language code 

for FPGA programming. Code flashing is relatively simple and similar to PROM 

flashing (Andina et al., 2020). The conceptual structure of FPGA is shown in Figure 3. It 

consists of a programmable collection of logic cells, interconnections, switches, and I/O 

blocks. Logic cells consist of lock-up tables and D-flip flops, as shown in Figure 4. 

Interconnect fabric surrounds these logic cells. 

 

Figure 3: Conceptual Structure of FPGA (Andina et al., 2020) 

 

Figure 4: Logic cell Conceptual Structure (Andina et al., 2020) 
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FPGA device is selected for implementation in this research since it provides the 

advantages of better performance in terms of speed and power consumption, 

programmability, and a more straightforward design cycle. The design tools take care of 

the significant functions by themselves, including placement, routing, and timing in 

reference to the specifications. Parallel task performance is a significant advantage of 

FPGAs, where they can be designed to include multiple blocks which process data in 

parallel. Also, because of their highly efficient processing architecture, FPGAs are ideal 

for time-critical systems. They can process more data in a shorter duration of time than 

other choices on the market, making them ideal for real-time applications (Perepelitsyn 

& Kulanov, 2022).  

The board used as a target board to implement the processing unit is the ZedBoard 

development board for the Xilinx Zynq-7000, shown in Figure 5. 

 

Figure 5: ZedBoard Development Board  
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ZedBoard is a comprehensive development kit for exploring designs using the 

Xilinx Zynq-7000 All Programmable SoC. The board is equipped with all the essential 

interfaces and functionality to support a wide range of applications. It features an 

XC7Z020-CLG484-1 Xilinx chip, 512 MB DDR3 and 256 Mb Quad-SPI Flash 

memories, eight user switches, and seven user push buttons, among other high 

specifications and connection options (ZedBoard, 2023). 

The proposed processing system is programmed with Verilog hardware 

description language using Xilinx Vivado Design Suite. The suite offers synthesis and 

implementation of Hardware Description Language (HDL) designs, which replaces 

Xilinx ISE and adds functionality for the system on chip development and high-level 

synthesis. It also supports simulation and debugging of the hardware program modules 

(O'Loughlin et al., 2014). Figure 6 shows the Vivado Design Suite interface with the 

RTL project selected. 

 

Figure 6: Vivado Design Suite interface 

2.3.2 Enhancing the Filtering Process 

Choosing the specifications of the filters is a critical factor in enhancing the 

processing system's performance. The processing unit acquires the digitized signals from 

the MEA with 12-bit resolution. It feeds them to low-pass filters to isolate typical 

frequency components of neural spikes. 
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The recorded spiking activity contains biological noise produced by neurons 

adjacent to the recording electrode called population spikes, in addition to the thermal 

and high noise power coming from the analog front end. The noise and the weak 

capacitive coupling between the nearby neurons and the sensor limit the signal to noise 

ratio of the electrodes to 3 - 6 dB (Saggese et al., 2021). 

To preserve the spiking activity in the neural signal while removing high 

frequency noises, each filter implements a Finite-Impulse Response (FIR) low pass filter, 

designed with a cut-off frequency of 1 kHz. The cut-off frequency of the filter can be 

configured by setting the FIR filter coefficients to support various signal types. 

This work uses the FIR filter for its many advantages over the IIR filter. The 

impulse response (or reaction to any input of limited length) of this filter has a finite 

duration since it settles to zero in a finite amount of time. This response differs from 

Infinite Impulse Response (IIR) filters, which can have internal feedback and respond 

forever (usually decaying) (Pal, 2017). FIR filter is a digitally implemented filter 

structure that may implement practically any frequency response. It is also the most 

popular type of filter implemented in software. These filters are typically built using a 

series of delays, multipliers, and adders to construct the filter's output. 

Linear phase is another advantage of the FIR filters. As all frequencies are shifted 

in time by the same amount, no phase distortion is introduced into the signal to be 

filtered, preserving their respective harmonic connections (i.e., constant group and phase 

delay). Maintaining the phase is not valid for IIR filters, which have a non-linear phase 

characteristic. FIRs also have no feedback and can never become unstable for any form 

of an input signal, giving them an advantage over IIR filters which is stability (Ye et al., 

2022). 

The output of the FIR filter with order N is a convolution of input signal x[n] and 

coefficients h[n]. It is a sequence of values where each value is the weighted sum of the 

most recent input values, as shown in Equation 2.1. 
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 𝑦[𝑛] = ∑ ℎ𝑖  . 𝑥[𝑛 − 𝑖]

𝑁

𝑖=0

 (2.1) 

x[n - i] in each input sample belongs to the sliding window of the last N received 

samples. Each sample is weighted by coefficient hi and then added together to obtain the 

output sample y[n]. 

2.3.2.1 Filter Order 

The order of the filter is another critical parameter that must be considered during 

the filter design. Higher filter order provides better low pass selectivity but will require 

higher resources and longer processing time. This work aims to design a real-time 

processing system with minimal latency and resource usage. Thus, we designed FIR 

filters with different orders of 4, 8, 12, 16, and 24, then tested them with the accurate 

system on real biological signals with around 106,000 samples to precisely detect all 

spikes. Eventually, we decided to use the FIR with the order of N=8, as it is the 

minimum order required to detect precisely all spikes in the accurate system. This filter 

uses the last nine samples to produce the new filtered sample. The filter order selection 

will be described more in chapter 3. 

2.3.2.2 Filter Symmetry 

Equation 2.1 shows that the FIR filter needs many additions and multiplication 

operations. Therefore, symmetric coefficients are used to reduce the number of 

calculations. Using symmetric coefficients minimizes the number of operations by 

almost 50%. Every two opposite samples are added, then the addition result is multiplied 

by the coefficient and then accumulated. Since the filter features linear phase response 

characteristics, distortion of the original signal is avoided, and the shape of the spike is 

kept. 

2.3.2.3 Parallelization 

The required FIR filter is built on FPGA using Verilog hardware description 

language targeting Xilinx Zynq-7000 All Programmable SoC ZedBoard development 

board.  
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Parallelization is one of the most significant advantages of FPGAs (Matyukha et 

al., 2022). Therefore, the FIR filter circuit is broken into separate blocks that run in 

parallel. Parallelization is also considered when programming each particular block, 

where non-blocking assignments are used whenever possible. The non-blocking 

assignment allows assignments to be scheduled without blocking the execution of the 

following statements and is specified by a <= symbol. 

Figure 7 shows the schematic diagram of the FIR filter used in this work's 

accurate and approximate processing systems. 

 

Figure 7: Symmetric FIR filter with order 8 

2.3.3 Applying Approximate Computing Algorithms 

The mathematical model of the FIR filter in Equation 2.1 shows that addition is 

the most frequent operation compared to multiplication. The number of additions 

required depends on the order of the filter N. Other essential factors affecting the 

workload value are the sampling frequency and the number of channels, which are some 
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of the MEA device specifications. Every two opposite samples in a symmetric FIR filter 

are added together, and the result is multiplied by a coefficient and then accumulated 

with other multiplication results. The addition operation is used more intensively in FIR 

filters, and its workload can be described by Equation 2.2, Where N is the order of the 

filter and fs is the sampling frequency in Hz. 

 𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛 𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑓𝑠  . 𝑁 (2.2) 

For our symmetric FIR filter of order 8 in this work and a sampling frequency of 

7 kHz for the sampled signals, the number of addition operations is 56,000 per second 

for each MEA channel. Therefore, reducing the time required to process the addition 

operations can significantly improve the overall system's performance. 

We chose to focus on approximating the addition operation to prove the concept 

of this research since it is more extensively used in the FIR filter than multiplication 

operation. More enhancements in the system parameters can be expected when 

approximating the multiplication operation too, but on the other hand, more approximate 

operations will impose the use of error correction techniques which will require more 

processing time, power and circuit area. 

Approximate computing algorithms can achieve high performance by tolerating 

some quality loss (Huang et al., 2021). In this context, we applied approximate 

computing in the most computationally intensive system parts using three different types 

of adders in different modes. We tested the implementations with real biological signals 

to compare the results with the accurate system in terms of delay time, area, and power. 

The adder is one of the primary circuits used in fault-tolerant applications. It is 

essential to evaluate how quickly and how much power a Digital Signal Processing 

(DSP) system uses. The development of approximation adders has been aided by the 

requirement for high speed and power efficiency and the fault tolerance aspect of 

applications (Bhargav & Huynh, 2021). Relaxing the constraints of exact computation 

opens new possibilities with potential performance, area, and power gains of orders of 

magnitude (Bosio et al., 2017). 
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Many approximation approaches have been offered by lowering the accurate 

adder's critical route and hardware complexity. In general, approximate approaches can 

be classified into two categories (Priyadharshni & Kumaravel, 2019). 

2.3.3.1 Gate Level Approximation 

In this approach, the accurate n-bit ripple carry adder is designed for varied bit 

widths and various levels of approximation. The approximate full adders calculate the 

carry and sum of the Less Significant Bits (LSB) using simpler circuits and gates. Carry 

Prediction Adder (CPredA) (Sato et al., 2019), and Approximate Adder 2 (AA2) 

(Gorantla & Deepa, 2020) are examples of approximate full adders.  

Gracefully Degrading Adder (GDA) (Ye et al., 2013) and Almost Correct Adder 

(ACA) (Verma et al., 2008) are other examples of this approach. GDA and ACA utilize 

the hierarchical carry look-ahead structure for the carry prediction, which makes their 

circuits large and power-consuming. 

Generic Accuracy Configurable Adder (GeAr) (Raghuram & Shashank, 2022) 

uses this approach to split an n-bit ripple carry adder into multiple smaller sub-adders. 

These sub-adders run in parallel with fixed carry inputs. Therefore, the carry propagation 

chain is truncated into shorter segments, reducing the delay in calculations. 

2.3.3.2 Transistor Level Approximation 

Construction of approximate adder cells is done at the transistor level in this 

approach. This approach reduces the conventional ripple carry adder circuit complexity 

at the transistor level to enable a shorter critical path and voltage scaling. Approximate 

XOR-based Adder 1 (AXA1) and Approximate XNOR-based Adder 2 (AXA2) (Yang et 

al., 2013) are examples of transistor level approximation. The number of transistors is 

reduced from 10 in the accurate full adder to 8 in AXA1 and 6 in AXA2. 

Many approximate adders are available in the literature. Transistor level 

approximation is not applicable in this research. Therefore, the proposed approximate 

processing system uses three adders with gate level approximation approach: CPredA, 

AA2, and GeAr.  
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The selection of the adders has been primarily based upon the parallelism in 

producing the result, the flexibility of combining the adder with accurate adders to 

control the precision, and the area of the adder circuit to utilize the advantages of FPGA 

and reduce the system size.  

CPredA adder is chosen as an example of the adders which approximate the 

output carry in their algorithms. At the same time, AA2 is chosen as an example of the 

adders which approximate the output sum in their algorithms. GeAr is an example of the 

adders which use segmentation in their algorithms. 

Chapter 3 includes more details about the selected approximate adders, their 

designs, and their implementations. 
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Chapter 3: Implementation 

Two types of processing systems are implemented and compared in this work: the 

accurate system, which uses precise full adders in all processes, and the new proposed 

approximate system, which uses different types of approximate adders at various levels 

of approximation. Three versions of the approximate system are implemented based on 

each of the approximate adders selected (CPredA, GeAr, and AA2). 

The implementation of the proposed approximate processing system starts with 

creating the basic blocks of the selected approximate adders. These basic blocks are then 

used to build higher-order adders with widths of 8, 12, 24, and 32-bits. They are then 

tested at different approximation levels to investigate and benchmark their performance 

against the full adder. 

12 and 24-bit approximate adders are used to evaluate the filtering process before 

building the complete system. The error in the produced filtered signal at different 

approximation levels is calculated with reference to the accurate one. For benchmarking 

with the accurate system and conclusion, the approximate system is run and tested in all 

three versions on real biological signals. 

3.1 Implementation of Approximate Adders 

Three approximate adders are selected and implemented in this work as 

mentioned in chapter 2: 

• Carry Prediction Full Adders (CpredA) 

• Approximate Adder (AA2) 

• Generic Accuracy Configurable Adder (GeAr) 

CPredA is an example of the adders which approximate the output carry in their 

algorithms. AA2 is an example of the adders with approximated sum. At the same time, 

GeAr is an example of the adders which use segmentation in their algorithms. 

The three adders also have the advantage of producing their results parallelly, 

reducing the time consumed in calculations and utilizing the FPGA device. The adders 
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are also serving other research purposes by reducing the system area since their circuits 

are smaller than the full adder circuit and consume less or similar power. 

3.1.1 Carry Prediction Full Adder (CPredA) 

Figure 8 shows the circuit diagram of CPredA. Sum (S) and Carry (Cout) are 

produced as shown in Equations 3.1 and 3.2: 

 𝑆 = 𝐶𝑖𝑛  ⊕ ( 𝐴. 𝐵 ) .  ( 𝐴 + 𝐵 ) (3.1) 

 Cout = A. B (3.2) 

 

Figure 8: Carry-Prediction Full Adder (CPredA) 

 

 

 

 

Table 2 compares the output of Full Adder (FA) and CpredA in prediction state. 

CpredA always generates the correct S and two incorrect Cout values when Cin is 1.  
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Table 2: Truth Table of FA and CpredA 

Cin A B FA CPreadA 

Cout S Cout S 

0 0 0 0 0 0 0 

0 0 1 0 1 0 1 

0 1 0 0 1 0 1 

0 1 1 1 0 1 0 

1 0 0 0 1 0 1 

1 0 1 1 0 0 0 

1 1 0 1 0 0 0 

1 1 1 1 1 1 1 

 

The architecture of the CPredA adder shows that Cout values are predicted almost 

correctly depending only on the current values of A and B without using the carry chain. 

The last point is critical when using this adder in FPGA-based systems, where 

parallelism is one of its main advantages. Flexibility is another significant feature of 

CPredA. Higher order adders can be built by combining CPredA with accurate full 

adders in any configuration, controlling the accuracy to the required level. CPredA also 
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reduces the circuit area required by implementing more straightforward logic to produce 

its results. 

The logical circuit of CPredA is programmed on the Vivado tool using the 

Verilog language code in Figure 9. 

 

Figure 9: CPredA logical circuit code 

Several instances of the previous basic block are cascaded according to the width 

and approximation level required to build higher order adders of 8, 12, 24, and 32-bit. 

For example, eight instances are cascaded to build an 8-bit CPredA that fully predicts the 

result, as illustrated in Figure 10. 

 

Figure 10: 8-bit CPredA in full prediction configuration 
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The previous 8-bit CPredA adder in Figure 10 is created using the Verilog code in 

Figure 11. 

 

Figure 11: Verilog code for 8-bit CPredA in full prediction configuration 

The approximation level is controlled by combining CPredA instances with full 

adders. For the same previous 8-bit adder, if the required approximation level is half the 

result, then four CPredA instances can be combined with four full adder instances. Thus, 

the lower nibble of the result will be predicted by CPredA, while full adders will 

calculate the upper nibble. Figure 12 illustrates the 8-bit CPredA adder in half prediction 

configuration. 

 

Figure 12: 8-bit CPredA in half prediction configuration 
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The 8-bit CPredA in half prediction configuration is expressed in Verilog with the 

code in Figure 13. 

 

Figure 13: Verilog code for 8-bit CPredA in half prediction configuration 

3.1.2 Approximate Adder (AA2) 

Figure 14 shows the circuit diagram of the AA2 adder. The design approach of 

AA2 is approximated on the Sum (S) alone.  

The Sum (S) and the Carry (Cout) can be calculated using Equations 3.3 and 3.4 

as follows: 

 𝐶𝑜𝑢𝑡 = (𝐴. 𝐵) + (𝐴. 𝐶𝑖𝑛) + (𝐵. 𝐶𝑖𝑛) (3.3) 

 S =  Cout  (3.4) 
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Figure 14: Approximate Adder (AA2) 

The Sum is precise in 6 out of 8 cases, and Cout is precise in all cases in AA2, as 

shown in Table 3. 

Table 3: Truth Table of FA and AA2 

Cin A B FA AA2 

Cout S Cout S 

0 0 0 0 0 0 1 

0 0 1 0 1 0 1 

0 1 0 0 1 0 1 

0 1 1 1 0 1 0 

1 0 0 0 1 0 1 

1 0 1 1 0 1 0 

1 1 0 1 0 1 0 

1 1 1 1 1 1 0 
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The advantage of AA2 is that the sum is easily produced by inverting the value of 

the carry signal, which reduces the logic complexity of the adder and the area needed. 

Flexibility is also another advantage. Like previous adders, accuracy can be controlled 

by combining it with accurate adders. 

The logical circuit of AA2 is expressed using Verilog language with the code in 

Figure 15. 

 

Figure 15: Verilog code for AA2 logical circuit 

Several instances of AA2 basic block are cascaded according to the width and 

approximation level required. Figure 16 illustrates an 8-bit AA2 adder that fully predicts 

the addition result. Eight instances of AA2 are cascaded to build this adder. 

 

Figure 16: 8-bit AA2 in full prediction configuration 



34 

 

 

The previous 8-bit AA2 adder is created using the Verilog code in Figure 17. 

 

Figure 17: Verilog code for 8-bit AA2 in full prediction configuration 

The accuracy of calculations is also controlled by combining AA2 instances with 

full adders according to the required level. For half prediction accuracy in the previous 

8-bit adder, four AA2 instances will predict the lower nibble of the result, while four full 

adders will predict the upper half. Figure 18 shows the 8-bit AA2 adder in half 

prediction configuration. 
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Figure 18: 8-bit AA2 in half prediction configuration 

The Verilog code in Figure 19 expresses the AA2 adder in half prediction 

configuration. 

 

Figure 19: Verilog code for 8-bit AA2 adder in half prediction configuration 
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3.1.3 Generic Accuracy Configurable Adder (GeAr) 

GeAr adder breaks the carry chain of the full adder by using K L-bit sub-adders to 

perform the approximate addition of N-bit length operands. The length of each sub-adder 

(L) is less than or equal to the size of each operand (N). Each sub-adder produces an R-

bit result depending on the number of previous bits (P) used for the carry prediction 

except the first sub-adder, which produces an L-bit result where L=R+P. The number of 

required sub-adders K can be calculated using Equation 3.5: 

 K = ((N – L) / R) + 1 (3.5) 

The result of the first sub-adder can be calculated using Equation 3.6: 

 Sum[L - 1:0] = A[L - 1:0] + B[L - 1:0] (3.6) 

The result of the ith sub-adder can be calculated using Equation 3.7: 

 
Sum[(R × i) + P – 1: R × (I – 1) + P] = A[(R × i) + P – 1: R 

× (I – 1)] + B[(R × i) + P – 1: R × (I – 1)] 

(3.7) 

Figure 20Error! Reference source not found. shows the 12-bit GeAr adder in 

the R2-P2 and full prediction configurations, where SR is the sub-result of each sub-

adder. 

 

Figure 20: 12-bit GeAr adder in R2-P2 and full prediction configurations 
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In this configuration: 

• The adder length (N) = 12 bits. 

• The length of each sub-adder (L) = 4 bits. 

• The first sub-adder contributes to the final sum’s first four bits. 

• Each sub-adder, except the first one, produce 2 bits of the final result 

depending on the last 2 bits. Therefore, R = 2 and P = 2. 

• The number of required sub-adders (K) is ((12 – 4) / 2) + 1 = 5 sub-adders. 

• The final sum can be formed as: 

Sum = [ SR5 [3:2], SR4 [3:2], SR3 [3:2], SR2 [3:2], SR1 [3:0] ]. 

All sub-results in GeAr are produced in parallel and combined to create the final 

sum. Compared to an N-bit full adder, the delay is reduced by breaking the carry chain 

into smaller segments. Thus, the carry propagation will only be limited to the length of 

the segment represented by L.  

GeAr R2-P2 configuration described before is used to build the adders in different 

widths since it offers a high degree of flexibility in controlling the adder accuracy and 

low latency due to the small sub-adder length. 

The Verilog code in Figure 21 is used to implement the 12-bit GeAr R2-P2 adder 

in full prediction configuration. 
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Figure 21: Verilog code for 12-bit GeAr R2-P2 adder in full prediction mode 

The full adder is broken into five segments, where each segment performs the 

addition of 4 bits of the operands. The sum bits are assigned as illustrated in Error! 

Reference source not found. to obtain the approximated result.  

Controlling the result accuracy in GeAr can be done by combining it with longer 

segments of the accurate adder. If the upper six bits of the result are required to be 

calculated accurately in the previous 12-bit adder, then two 4-bit sub-adders can be 

combined with a 6-bit full adder, as illustrated in Figure 22. 

 

Figure 22: 12-bit GeAr in half prediction of the result  
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GeAr in half prediction is expressed with Verilog by the code in Figure 23. 

 

Figure 23: Verilog code for GeAr R2P2 in half prediction configuration 

3.2 Implementation of Processing Systems 

The primary function of the processing system is to receive the digitized raw 

neural signals sent by the MEA device to filter them and detect the spikes. The system 

consists of parallel processing sets. Each processing set is dedicated to one MEA channel 

to perform the filtering and spike detection of the signals received through that channel. 

This research aims to enhance the processing system by reducing each set's processing 

time and circuit area. This will allow the system to perform faster and include more 

processing sets to handle more MEA channels in parallel. 

Two types of processing systems are implemented on the FPGA device in this 

research, the accurate and approximate processing systems. The accurate system uses 

full adders, while the approximate system uses approximate adders in its calculations. 

Both systems are identical in their specifications and implementations except for 

the type of adders used in calculations. The last point is considered to maintain 

consistent results and scientific benchmarking. 
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As illustrated in Figure 24, the processing system receives the system clock and 

reset signals generated by the FPGA device for synchronization. It also receives the 

amplified and digitized 12-bit raw neural signal generated by the MEA device and 

forwards it to the filtering module. The output filtered signal is then forwarded to the 

spike detection module, which will detect the spike and generate a pulse when the 

sample value received is below the threshold specified. 

 

Figure 24: Detailed real-time processing system  

The system outputs the processed neural signal along with the spike detection 

pulses and counts at its output terminal for further offline processing. It also outputs the 

system clock and reset signals needed for the offline device. 

The following sections describe the implementation of the processing system's 

FIR and spike detection modules. 

3.2.1 Implementation of FIR Module 

As mentioned before in chapter 2, the FIR filter is designed with the following 

specifications: 

• Low-pass equiripple FIR filter with a cutoff frequency of 1 kHz. 

• Symmetric coefficients. 

• Parallel execution of processes. 

Different filters are created with orders of 4, 8, 12, 16, and 24 to select the 

minimum FIR order. The MATLAB Filter Design & Analysis tool is used to find the 

optimal set of coefficients. The coefficients are then enlarged and rounded to integer 
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values to be used in the Verilog programming code of the filter’s implementation on 

FPGA. 

We tested the implemented filters with different orders in the accurate processing 

system using real biological signals downloaded from 3Brain (3Brain, 2023), containing 

more than 106,000 samples. The samples are fed into the system to detect all spikes 

precisely. The accuracy of spike detection is then calculated based on the number of 

spikes detected by BrainWave X, the official software from 3Brain. Table 4 shows the 

accuracy results for different FIR orders. 

Table 4: Spike Detection Accuracy with Different FIR Orders 

Filter order Accuracy 

4 87.5% 

8 100% 

12 100% 

16 100% 

24 100% 

 

Figure 25 shows a sample of the test done with different filter orders. It shows the 

misdetection of the spikes when using the FIR filter with order 4, while all higher order 

filters detect precisely all spikes. 
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Figure 25: Misdetection of some spikes in FIR with order 4 

This research aims to reduce the time and area required by the processing system. 

Therefore, we decided to implement the FIR filter with a minimum order of 8 in both 

accurate and approximate systems. 

We implemented the FIR filter in Verilog by dividing it into four blocks which 

work in parallel at each positive edge of the clock, as illustrated in Figure 26. 
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Figure 26: Implemented FIR filter 

The first block acquires the new sample and assigns it to the first tab. At each 

clock cycle, it also shifts the old samples to adjacent tabs since it uses non-blocking 

assignments in its Verilog code. The Verilog code in Figure 27 is used to create the first 

block. 
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Figure 27: FIR filter Block 1 Verilog code 

The second block of the FIR filter uses 12-bit adders to add every two opposite 

samples. It stores the results in the first level addition temporary registers at each 

positive edge of the clock. The 12-bit adders are either full adders in the case of the 

accurate processing system or approximate adders in the approximate system. The 

Verilog code in Figure 28 expresses this block in the precise system that uses full adders. 
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Figure 28: FIR filter Block 2 Verilog code 

The first four lines of the previous code are changed when implementing the 

block in the approximate system. For instance, if the approximate system uses CPredA 

adder, the code in Figure 29 is used. 

 

Figure 29: Verilog code when the approximate system uses CPredA adder 
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The third block multiplies the addition registers produced by the second block 

with the corresponding coefficient at each clock cycle. It also stores the multiplication 

results in separate registers using the code in Figure 30. 

 

Figure 30: FIR filter Block 3 Verilog code 

The last block adds the results of the multiplication of the third block at each 

clock cycle using 24-bit adders. It also crops and preserves the sign of the final result to 

keep the output signal in its 12-bit format. 

The adders in this block are selected according to the type of the system. In the 

accurate design, full adders are selected as illustrated in Figure 31. 
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Figure 31: Verilog code for the full adders in Block 3 

The first four lines of the last code specify the 24-bit full adders as target adders. 

These lines are changed in the approximate system. For instance, if the approximate 

system uses the CPredA adder, the code in Figure 32 is used. 

 

Figure 32: Verilog code when CPredA adders are selected 

3.2.2 Implementation of Spike Detection Module 

As illustrated in Figure 33, the spike detection module receives the 12-bit filtered 

sample produced by the FIR filter at each positive edge of the system clock. It uses the 

method of comparing the sample value with a negative threshold and detects the signal's 
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spike below that threshold. At that point, it pulls the spike output to a high level for a 

certain period to alert for spike detection and increment the count of the spikes. 

Estimating the correct threshold value is essential since a low threshold value leads to 

false detections while a high value leads to a high number of missed spikes. The 

threshold value is estimated in the accurate system to detect precisely all spikes and kept 

unchanged in all approximate system versions. 

 

Figure 33: Spike detection module 

The previous spike detection method is used due to its simple hardware 

implementation to prove the concept of this research. Other algorithms are also available 

in the literature. The algorithm proposed by Liu et al. (2018) detects the spikes in 

extracellular recordings by extracting the minimum distance between the through and 

peak in a slice of recorded signal. The absolute distance value is then incorporated into 

the differential operator applied to the rectified signal to analyze the difference between 

spikes and noise. The signal is then passed through a convolution filter to suppress the 

noise. Spikes are finally detected when the sample value exceeds a preset threshold 

proportional to the mean value of the filtered signal. An adaptive spike detection 

algorithm is presented by Zhang & Constandinou (2021). The algorithm first removes 

the local field potentials from the recorded signal by mean subtraction and using a 

moving average filter. The signal-to-noise ratio is then enhanced by using an amplitude 

slope operator and finally spikes are detected by comparing the samples with an adaptive 

threshold considering the local signal statistics. Strollo (2021) proposed a low-power 
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spike detector using latch-based RAM. The threshold in this algorithm is estimated by 

dynamically calculating the standard deviation of noise in the new samples and updating 

the old value. Saggese et al. (2021) investigated a multiple spike detection algorithms for 

Multi-Transistors Arrays (MTA) based on some variants of the Smoothed Non-linear 

Energy Operator (SNEO). The latter work has shown that the performance of the spike 

detector benefits from the correlation of the signals detected by the MTA pixels but 

degrades when a high firing rate of neurons occurs. 

The output of the implemented spike detection module is the spike pulse which 

can be high if a spike is detected, and the 32-bit spike counter that counts the number of 

spikes detected.  This module is expressed in Verilog with the code in Figure 34. 
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Figure 34: Verilog code for the spike detection module 

3.3 System Design Summary 

Two processing systems are implemented: the accurate system, which uses 12 and 

24-bit full adders, and the approximate system, which uses 12 and 24-bit approximate 

adders. Three versions of the approximate system are built, where each version uses one 

of the three approximate adders selected previously (CPredA, GeAr, and AA2). All 

system specifications, such as clock, I/O widths, and settings of the FIR filter and spike 

detection modules, are identical in all systems to maintain fair decisions. 
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Figure 35 shows the common schematic diagram of all processing systems 

implemented in this research. 

 

Figure 35: Common schematic diagram for All Systems 

The outer wrapper module manages filtering and spike detection modules to 

synchronize inputs and outputs, clocking, and dataflow. This module is connected to the 

FPGA device's clock and reset signals. It receives the raw 12-bit neural sample generated 

by the MEA device at each clock cycle and forwards it to the FIR filter module for 

filtering. It also triggers the spike detection module to acquire the filtered sample from 

the FIR filter and compare it against the threshold value. 

One filtered sample is produced at the output port of the wrapper module at each 

clock cycle, along with the spike information and count.  

All modules are implemented using the Verilog hardware description language 

and Xilinx Vivado Design Suite with ZedBoard development board for the Xilinx Zynq -

7000 specified as the target board.  

The FIR module receives three signals: the system clock signal, the system reset 

signal and the digitized 12-bit raw neural data. The FIR filter is a low-pass equiripple 

filter of order 8 with symmetric coefficients, which uses the last nine samples to produce 

the new filtered sample. The sample sliding window is shifted at each positive edge of 

the clock to include a new sample and discard the oldest sample in the window. Every 

two opposite samples are added using 12-bit adders, multiplied by the coefficient, and 
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then accumulated using 24-bit adders. The output of this module is a 12-bit filtered 

neural signal sent to the spike detection module.  

The spike detector also receives three input signals, including the system clock 

signal used for synchronization, the system reset signal and the filtered neural data 

generated by the FIR filter. It compares the received sample at each positive edge of the 

clock with the negative threshold value and outputs a spike detection signal if the sample 

value is below the threshold. It also counts the number of spikes detected. 
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Chapter 4: Results and Discussion 

4.1 Evaluation of Approximate adders 

The three selected approximate adders (CPredA, GeAr, and AA2) are used to 

build higher order adders with widths of 8, 12, 24, and 32 bits, then test them in two 

configurations: Half Prediction (HP) and Full Prediction (FP). In the Half Prediction 

configuration, the addition result is produced by predicting the result of the lower half 

bits using an approximate adder, while the upper half bits are added precisely using the 

full adder. For instance, to test an 8-bit adder in the Half Prediction configuration, the 

lower four bits of the operands are added using CPredA adders, while the upper four bits 

are added using full adders. In the Full Prediction configuration, the addition result is 

entirely produced using only approximate adders.  

All adders are expressed using the Verilog language and implemented on the 

Xilinx Vivado Design Tool with ZedBoard development board for the Xilinx Zynq -

7000 specified as the target board.  

The design delay time is not reported directly in the Vivado software. Therefore, 

we measured it by using a wrapper module and giving successively tighter timing 

constraints until the design fails the implementation step. The design delay time is 

determined by the last timing constraint that succeeded. Power and area are also obtained 

using the total on-chip power and chip utilization values in the implementation reports. 

Normalized Mean Error Distance (NMED) (Masadeh et al., 2018) is used to evaluate 

accuracy by testing the adders with various widths on 10,000 randomly generated 

samples. The Error Distance (ED) is defined as the difference between the accurate sum 

(S) and approximate sum (S’), as shown in Equation 4.1: 

 ED = | S – S’| (4.1) 

Mean Error Distance (MED) is then calculated as the average of ED as shown in 

Equation 4.2: 

 MED = ED / Number of Samples (4.2) 
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NMED is finally calculated as the ratio between MED and the maximum exact 

result of tested addition operations, as shown in Equation 4.3: 

 NMED = MED / Max. Result (4.3) 

All characteristics are finally compared to the full adder as a reference. Table 5 

and  

 

 

 

Table 6 summarize the characteristics of the three approximate adders in Half 

Prediction and Full Prediction configurations. The tables show the delay time for each 

approximate adder in different widths along with the delay time of the full adder for 

comparison. They also show the reduction in time, area, and power normalized to the full 

adder. 

Table 5: Testing Results in half prediction configuration 

Module bits 

Total 

Dela

y (ns) 

Reductio

n in time 

(%) 

Reductio

n in area 

(%) 

Reduction 

in power 

(%) 

NMED 

Full 

Adder 

8 2.292         

12 2.906       

24 4.983       

32 5.957         

CpredA 

8 1.578 31.2% 18.2% 0.0% 0.0511307 

12 2.083 28.3% 33.3% 0.9% 0.0143707 

24 2.885 42.1% 14.6% 0.8% 0.0003206 

32 3.570 40.1% 17.2% 1.6% 0.0000077 

AA2 

8 2.110 7.9% 0.0% 0.9% 0.0281827 

12 2.650 8.8% 9.5% 1.8% 0.0071528 

24 4.503 9.6% 2.4% 2.5% 0.0001146 

32 5.330 10.5% 10.3% 3.9% 0.0000071 

GeAr 

8 1.551 32.3% 9.1% 0.0% 0.1076535 

12 1.777 38.9% 23.8% 0.9% 0.0295809 

24 2.817 43.5% 7.3% 0.8% 0.0004443 

32 3.270 45.1% 3.4% 0.0% 0.0000153 
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Table 6: Testing Results in full prediction configuration 

Module bits 
Delay 

(ns) 

Reduction 

in time 

(%) 

Reduction 

in area 

(%) 

Reduction 

in power 

(%) 

NMED 

Full 

Adder 

8 2.292         

12 2.906       

24 4.983       

32 5.957         

CpredA 

8 1.519 33.7% 27.3% 0.0% 0.3141 

12 1.567 46.1% 42.9% 0.9% 0.3203 

24 1.581 68.3% 41.5% 1.6% 0.3155 

32 1.485 75.1% 44.8% 2.3% 0.3193 

AA2 

8 2.136 6.8% 9.1% 1.8% 0.3860 

12 2.640 9.2% 23.8% 2.7% 0.3844 

24 4.450 10.7% 22.0% 5.7% 0.3810 

32 5.250 11.9% 24.1% 3.9% 0.3823 

GeAr 

(R2-P2) 

8 1.626 29.1% 0.0% 0.0% 0.0904 

12 1.702 41.4% 19.0% 0.0% 0.0975 

24 1.843 63.0% 14.6% 0.8% 0.1070 

32 1.760 70.5% 19.0% 0.8% 0.0985 

 

4.1.1 Delay Time 

Figure 36Error! Reference source not found.-37 show the delay time for all 

adders, including the full adder for reference. 
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Figure 36: Adders delay time in half prediction configuration 

 

Figure 37: Adders delay time in full prediction configuration 
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In both configurations, CPredA and GeAr significantly reduce the delay time due 

to the parallelism in their architecture. CPredA predicts the carry using the values of A 

and B only. While GeAr breaks the carry chain into smaller chunks. The delay of AA2 is 

higher than CPredA and GeAr but still less than the full adder since this adder simplifies 

the production of outputs without breaking the carry chain. 

4.1.2 Area 

Figure 38Error! Reference source not found.-39 show the resource utilization, 

which measures the adder area by reporting the usage of chip resources.  

 

Figure 38: Adders area in half prediction configuration 
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Figure 39: Adders area in full prediction configuration 

GeAr is formed by dividing the original full adder into smaller segments. 

Therefore, the closest adder area to the full adder is the GeAr. CPredA and AA2 have 

smaller areas because their logical circuits are more straightforward than the regular full 

adder circuit. 

4.1.3 Power Estimation 

Figure 40-41 show the power estimation for all approximate and full adders.  
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Figure 40: Power estimation of adders in half prediction configuration 

 

Figure 41: Power estimation of adders in full prediction configuration 
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All adders consume the same amount or slightly less power than the full adder. As 

expected, GeAr is showing the closest values to the full adder since it is multiple 

segments of it. AA2 shows less power consumption due to its simplified circuit where 

the sum is an inverted version of the output carry. 

4.1.4 Accuracy 

Figure 42-43 show the normalized mean error distance, which measures the adder 

accuracy. The vertical axis in the graphs uses a logarithmic scale and shows -10/log 

(NMED) to enhance the readability of the small values. The original values are shown in 

Table 5 and  

 

 

 

Table 6. 
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Figure 42: NMED of adders in half prediction configuration 

 

Figure 43: NMED of adders in full prediction configuration 

In the Half Prediction configuration, the lower half of the final result is 

approximated while the upper half is accurate. In this configuration, all adders show 

relatively small NMED, which decreases as the operand size increases. When the 

operand size increases, the error value becomes only a small portion of the accurate 

result. In Full prediction configuration, NMED is constant for all adder widths, with 

GeAr having the most negligible value. GeAr shows the lowest error measure among 

other adders since each sub-adder result is calculated accurately using some last bits, 4-

bits in the case of GeAr R2 P2. 

4.2 Evaluation of Filtering Errors 

The previous step evaluated the approximate adders to explore their potential in 

serving the research purpose of enhancing the MEA signals processing system. An 

essential effort before building the system is to check if using these adders in the first 
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processing stage, which is the filtering process, will produce an acceptable filtered signal 

that can then be forwarded to the spike detection module. It is also essential to predict 

the implication of using approximate adders on the accuracy of the whole processing 

system. 

Figure 44 illustrates that the FIR filter in the proposed processing system uses two 

adder widths, 12 and 24-bit. Every two opposite samples of the signal in the FIR are 

added together using the 12-bit adders. The results of the previous additions are 

multiplied with corresponding coefficients and then added using the 24-bit adders.   

 

Figure 44: FIR Filter in Proposed Processing System 

The FIR filter is tested in this step with the approximate adders CPredA, AA2, 

and GeAr at different approximation levels, as shown in Table 7. The tests are conducted 

on a real neural signal downloaded from 3Brain.com (3Brain, 2023), containing 35,276 

samples. The filtered output signal is then compared with the filtered signal obtained 
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using FIR with accurate adders. NMED is used to evaluate the error value in the FIR 

output signal with each type of adder at different approximation levels. 

Table 7: Approximation Levels and Adders’ Configurations Used in Filtering Tests 

 Adder Configuration 

Level 12-bit Adder 24-bit Adder 

1 Half prediction 
No prediction 

(accurate adder) 

2 Full prediction 
No prediction 

(accurate adder) 

3 

No prediction 

(accurate 

adder) 

Half prediction 

4 

No prediction 

(accurate 

adder) 

Full prediction 

5 Half prediction Half prediction 

6 Full prediction Half prediction 

7 Half prediction Full prediction 

8 Full prediction Full prediction 

 

We began at level 1 by approximating the 12-bit adders used in the second FIR 

block to half prediction configuration while using accurate 24-bit adders in the fourth 

FIR block. The level of approximation was then increased until we reached full 

prediction in both 12 and 24-bit adders. 

When the 12-bit adders are in half prediction configuration, they predict the six 

lower bits of the sum while they predict twelve bits of the sum in full prediction 

configuration. Similarly, the 24-bit adders predict twelve lower bits of the sum in half 

prediction while fully predicting the twenty-four bits of the sum in full prediction 

configuration. Figure 45 shows a sample of the filtering process output at level 1. 



64 

 

 

Figure 45: Sample of the filtering process output at approximation level 1 

The input neural signal is applied to the input of the filter. Then the output signal 

is obtained and compared to the signal obtained using accurate adders. NMED for each 

adder-based FIR is then calculated at each level of approximation. 

Table 8 presents the results of these tests. It shows the approximation level and 

adder configuration for the 12-bit adders used in block 2 and the 24-bit adders used in 

block 4 of the FIR filter. NMED is also presented with three adder types (CPredA, AA2, 

and GeAr). 
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Table 8: Approximation Levels and Filters’ NMED 

 Adder Configuration 
NMED of the Filter for Each 

Adder Used 

Level 12-bit Adder 24-bit Adder CPredA AA2 GeAr 

1 
Half 

prediction 

No prediction 

(accurate 

adder) 

0.0095232 0.00783 0.018379 

2 
Full 

prediction 

No prediction 

(accurate 

adder) 

0.0698913 0.10507 0.101823 

3 

No prediction 

(accurate 

adder) 

Half 

prediction 
0.025617 0.01108 0.052142 

4 

No prediction 

(accurate 

adder) 

Full 

prediction 
0.0893383 0.12505 0.12394 

5 
Half 

prediction 

Half 

prediction 
0.0348504 0.01362 0.070972 

6 
Full 

prediction 

Half 

prediction 
0.078738 0.11564 0.106501 

7 
Half 

prediction 

Full 

prediction 
0.0921594 0.12907 0.120065 

8 
Full 

prediction 

Full 

prediction 
0.1270446 0.14362 0.128553 

 

Figure 46-48 illustrate NMED values in the filter output for every adder at each 

approximation level. 
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Figure 46: NMED for the FIR filter using CPredA adder 

 

Figure 47: NMED for the FIR filter using AA2 adder 
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Figure 48: NMED for the FIR filter using GeAr adder 

The previous three figures show that when we increase the approximation level of 

the 12 or 24-bit adders, the accumulated error in the output signal of the filter rises.  

All filter versions started with very low error rates at levels 1 and 2. Therefore, we 

expect high detection of spikes by the processing system when we set its filter at this 

level 1. In contrast, the error becomes more significant when the 12-bit adders are all 

configured to predict their results entirely at level 2. Hence, lower detection of spikes is 

expected at this level. 

At level 3, accurate 12-bit adders are used with 24-bit adders set to half prediction 

configuration. Then, the approximation level of the 24-bit adders is increased full 

prediction at level 4. The error in the filter output is still low at level 3, but more than at 

level 1 since the 24-bit adders are predicting twelve bits of their results instead of six in 

the 12-bit adders. The accuracy of the processing system is expected to be high at level 3 

and worse at level 4 than at level 2. 

At levels 5, 6, 7, and 8, the half prediction and full prediction configurations are 

combined to investigate each combination’s effect on the filter output. The filtering error 
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started low at level 5 when both 12 and 24-bit adders were set to the half prediction 

configuration. Hence, high accuracy is expected for the whole processing system. The 

error increased significantly at levels 6, 7, and 8 as the approximation level increased. In 

other words, the number became greater than any previous level, indicating that the 

accuracy of the entire system will be very low at these three levels. 

4.3 Evaluation of the Approximate Processing System 

This section presents the results of applying approximate computing to neural 

signal processing. 

The proposed processing system consists of identical parallel sets of filtering and 

spike detection modules. Each set filters the signals acquired from a single MEA channel 

with its FIR filter that uses 12 and 24-bit approximate adders in its calculations. The 

filtered sample is forwarded to the spike detector, which compares it with a threshold 

value. A spike is detected when the sample value is below the threshold. Spike output is 

pulled high to indicate the presence of a spike, and the spike counter is incremented.  

This research proposes to use the approximate computing paradigm to minimize 

the time required by each set to process the signal received from its channel. Similarly, 

this research aims to reduce or maintain the power consumption of the processing set and 

minimize the circuit area expressed by the utilization of FPGA resources. Reducing the 

area of each set will allow the system to handle more MEA channels with more 

programmed sets. On the other hand, a faster processing set will enhance the whole 

system’s performance since all processing sets run in parallel. 

Two systems, accurate and approximate, are built identically with the Verilog 

language and implemented on the Xilinx Vivado Design Tool with ZedBoard for the 

Xilinx Zynq-7000 specified as the target board. Accurate full adders are used in the 

accurate system, while approximate adders are used in the three approximate system 

versions. Each version is built based on one of the approximate adders CPredA, GeAr, 

and AA2 then tested in different approximation modes. 

Different approximation levels are available to study the proposed system 

performance in terms of accuracy, latency, area, and power. As shown in section 4.2, 
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some approximation levels produce insignificant errors while others produce higher 

rates. As a result, system accuracy tests are initially conducted in order to select the most 

valuable levels and then use them for further research. 

The accuracy of detecting spikes in all approximate system versions is measured 

at the same filtering and threshold setting as the accurate system. Other parameters such 

as delay time, area, and power are measured after the implementation step of each 

proposed system version, which includes placing and routing, then compared with the 

accurate system parameters.  

All tests are done on real neural data signals downloaded from the 3Brain website 

(3Brain, 2023). Data signals used involve around 106,000 samples fed into accurate and 

approximate systems. The number of samples is sufficient to overcome any 

abnormalities in some samples and obtain consistent results. 

4.3.1 Testing System Accuracy 

As a first step, the data samples are processed offline using the official 

BrainWave X software from 3Brain to determine the number of spikes measured and 

then used as a reference in testing the implemented accurate and approximate systems. 

The implemented accurate system is then set to detect the number of spikes detected 

offline. All system settings such as the threshold value and filter specifications are kept 

unchanged while testing the proposed approximate system in all its versions and 

approximation levels.  

All approximation levels are applied to select the useful ones which can be used 

to study the proposed system performance in the next stage. The first accuracy test of the 

approximate systems is conducted when the 12-bit adders are in the half prediction 

configuration, and 24-bit accurate adders are used. The approximation level is then 

increased, and the accuracy of the system in detecting spikes is measured, as presented in 

Table 9. 
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Table 9: System Accuracy Results at Different Approximation Levels 

 Adder Configuration System Accuracy 

Level 12-bit Adder 24-bit Adder CPredA AA2 GeAr 

1 Half prediction 
No prediction 

(accurate adder) 
100.00% 100.00% 100.00% 

2 Full prediction 
No prediction 

(accurate adder) 
83.00% 25.32% 57.03% 

3 
No prediction 

(accurate adder) 
Half prediction 100.00% 100.00% 100.00% 

4 
No prediction 

(accurate adder) 
Full prediction 0.00% 0.00% 0.00% 

5 Half prediction Half prediction 100.00% 100.00% 100.00% 

6 Full prediction Half prediction 69.30% 23.61% 54.00% 

7 Half prediction Full prediction 0.00% 0.00% 0.00% 

8 Full prediction Full prediction 0.00% 0.00% 0.00% 

 

Test results demonstrate that the proposed system accuracy is very significant at 

levels 1, 3, and 5. They show that the maximum system accuracy is achieved if the 

approximation level does not exceed the half prediction in the 12 and 24-bit adders. 

These three levels produce the lowest error in the filtering process, as shown in Table 8 

in the previous section. 

Levels 2 and 6 show that the system accuracy drops to lower values when the 

approximation level of the 12-bit adders is set to full prediction while keeping the 24-bit 

adders approximation level at half prediction and below. As a result, at these 

approximation levels, the filter output signals are more prone to errors, causing the 

spikes to be undetected or incorrectly detected by the system. 

Levels 4, 7, and 8 produce the worst accuracy results when applied to the system. 

Fully approximating the 24-bit adders of the system, which work as filters’ 

accumulators, will result in a highly disturbed signal even if the 12-bit adders are not 

approximated. The filters’ output signals have the highest error rates at these levels, as 

shown in Table 8 before. These three levels are excluded from future tests. 
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It is also noticeable from Table 8 that the accuracy decreases when the 

approximation level of the 12-bit adders is changed from half prediction to full 

prediction while keeping the 24-bit adders in half prediction configuration. Thus, two 

more levels between levels 5 and 6 are added to study further the behavior and 

performance of the system in this area. Eight bits of the 12-bit adders are predicted in the 

first extra level, and ten bits are predicted in the second extra level. 

4.3.2 Testing System Performance 

Useful levels, such as 1, 2, 3, 5, 6, and the two extra levels, are used to study 

approximate system versions in seven different modes, as shown in Error! Reference 

source not found..  

Table 10: Approximate System Modes 

  Adders Configurations 

Mode 12-bit Adder 24-bit Adder 

1 Half prediction 
No prediction 

(accurate adder) 

2 Full prediction 
No prediction 

(accurate adder) 

3 
No prediction 

(accurate adder) 
Half prediction 

4 Half prediction Half prediction 

5 8 bits predicted Half prediction 

6 10 bits predicted Half prediction 

7 Full prediction Half prediction 

 

The neural signals are applied to each system version in these modes. 

Performance parameters, such as accuracy, delay, area, and power, are measured after 

synthesizing and then implementing the system on Xilinx Vivado software, including 

placing and routing steps. 
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The design delay time is not reported directly in Vivado tool. Hence, we 

measured it by using a wrapper module and giving successively tighter timing 

constraints until the design fails the implementation step. The last timing constraint that 

succeeded is picked as the design delay time. The system area is obtained from the chip 

utilization report after the implementation step which includes placing and routing. All 

parameters are then compared with the accurate system. The following sections present 

the performance measurements and analysis of the proposed approximate system in all 

approximation modes. 

4.3.2.1 Mode 1 

In this mode, three approximate systems are developed using half prediction 12-

bit CPredA, AA2, or GeAr adders while the 24-bit adders remain accurate.  

Figure 49-51 show the test results of accuracy, delay time, and area for the three 

approximate system versions and accurate system results for comparison. 

 

Figure 49: Accuracy test results for processing systems in Mode 1 

 



73 

 

 

Figure 50: Delay test results of processing systems in Mode 1 

 

Figure 51: Area test results of processing systems in Mode 1 

The results of this mode show that some enhancement in system speed can be 

achieved at a low level of approximation without losing the system’s accuracy. The error 
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produced in the filter output signal at this approximation level is insignificant as 

discussed in section 4.2 which does not affect the spike detection accuracy of the system. 

The highest reduction achieved in the system delay is 8% at this level when using 

CPredA adder, with no significant reduction in the system area. Six bits of the 12-bit 

adder result are produced in parallel in CPredA system. The CPredA circuit architecture 

produces the sum and the carry outputs in parallel without creating a carry chain, 

reducing the time required for calculations. The AA adder circuit does not break the 

carry chain, instead it calculates the output carry depending on the input operands bits 

and the previous carry. It then inverts the output carry bit to produce the sum bit value. 

This architecture forces the AA adder to produce its sum and carry bits sequentially 

which causes more delay. GeAr in half prediction mode divides the 12-bit result into 

three segments (6 + 2 + 4) bits which are produced in parallel using ordinary full adders. 

The results of the three segments are then combined to form the full 12-bit result. This 

brings the delay of the GeAr closer to the full adder system. 

4.3.2.2 Mode 2 

The approximation level in the 12-bit adders is increased in this mode All three 

versions of the approximate systems developed by fully predicting the outputs of the 12-

bit adders and precisely calculating the 24-bit adders’ outputs.  

Figure 52-54 show the test results of this mode. 
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Figure 52: Accuracy test results for processing systems in Mode 2 

 

Figure 53: Delay test results of processing systems in Mode 2 
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Figure 54: Area test results of processing systems in Mode 2 

Accuracy drops in this mode due to the high approximation level of the 12-bit 

adders. The results of these adders are fully predicted, producing significant error rates 

even if the 24-bit adders are accurate. The approximate system can achieve the highest 

accuracy in this mode by using the CPredA circuit which predicts the output carry only 

within its architecture. The CPredA system in this mode shows the highest accuracy 

among others since the errors produced in the filter output when using CPredA are the 

minimum compared to AA2 and GeAr adders, as shown in section 4.2. GeAr system 

accuracy is also better than AA system since its addition result is a combined version of 

the accurate one through segmentation. 

Generally, the delay and area enhancements in this mode are low in comparison 

with the accuracy losses. 

4.3.2.3 Mode 3 

No approximation is applied to the 12-bit adders in this mode. In contrast, the 24-

bit adders are set to predict half of their outputs. 

Figure 55-57 show the accuracy, delay, and area tests’ results in this mode. 
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Figure 55: Accuracy test results for processing systems in Mode 3 

 

Figure 56: Delay test results of processing systems in Mode 3 
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Figure 57: Area test results of processing systems in Mode 3 

The accuracy of the three system versions is very high due to the low error rates 

produced at this level, and better system enhancements have been achieved compared to 

the previous modes. The system delay is reduced by 23% when using the GeAr adder, 

and the system area is also reduced by 11% when the CPredA adder is implemented. The 

AA system still shows the highest delay due to its circuit architecture where the carry 

output production is delayed due to the carry chain, then inverted to produce the sum. 

4.3.2.4 Mode 4 

Both 12 and 24-bit adders are set to half prediction configuration in this mode. In 

half prediction configuration the lower half of the result is predicted, and the upper half 

is calculated accurately. Figure 58 shows a sample of the system output in this mode. It 

shows the original and filtered signals and the spikes detected through accurate and 

approximate systems. Both filtering and detection are almost identical in the accurate 

and approximate systems. 
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Figure 58: Sample test of signal filtering and spike detection in Mode 4 

Figure 59-61 show the test results of accuracy, delay, and area for the three 

approximate systems and accurate system results for comparison. 
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Figure 59: Accuracy test results of processing systems in Mode 4 

 

Figure 60: Delay time test results of processing systems in Mode 4 
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Figure 61: Area test results of processing systems in Mode 4 

The error rates are very low even when all adders are predicting half of their 

results; hence the accuracy is very high in all system versions. On the other hand, the 

system delay has reduced significantly in the approximate implementations, where we 

can achieve around 37.6% reduction in time by using GeAr and a 29.6% when using 

CPredA which are producing half of their results in parallel in this mode. The area of the 

system is reduced from 0.35% in the accurate system to 0.30% in the CPredA system, 

therefore, 14.3% reduction in area is achieved since it has a simple circuit compared to 

the full adder. AA system still has a higher delay than other approximate systems due to 

the carry chain delay and its way in producing the sum after producing the carry. 

All parameters have been enhanced significantly without losing the spike 

detection accuracy. 

4.3.2.5 Mode 5 

The approximation level is slightly increased in the 12-bit adders. In this mode, 8 

bits of the 12-bit adder results are predicted while the 24-bit adder results are kept half-

predicted. Figure 62-64 show the testing results of this mode. 
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Figure 62: Accuracy test results of processing systems in Mode 5 

 

Figure 63: Delay time test results of processing systems in Mode 5 
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Figure 64: Area test results of processing systems in Mode 5 

In mode 5, more system enhancement is obtained with satisfactory accuracy that 

is still high and acceptable. It reaches 98.7% in all approximate systems. The system 

delay is reduced further in this mode compared to the previous modes. It is reduced by 

38% in the case of the GeAr system and 36.3% in the case of CPredA. However, the area 

of the systems is almost the same as the previous mode. 

4.3.2.6 Mode 6 

In this mode, 10 bits of the 12-bit adder results are predicted while 24-bit adder 

results are kept half-predicted. Figure 65-67 show the test results of this mode. 
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Figure 65: Accuracy test results of processing systems in Mode 6 

 

Figure 66: Delay time test results of processing systems in Mode 6 
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Figure 67: Area test results of processing systems in Mode 6 

GeAr is not applicable in this mode since only the last two bits of the result will 

be left to be accurately calculated, which are less than the 4 bits required for prediction 

in each segment. In this mode, the accuracy has dropped to 75% in the CPredA system 

and more to 60% in AA2 systems. System speed has been enhanced more in the CPredA 

system to reach 37.6%, while the enhancement in area is less than in the previous modes 

since more chip resources are required to reach the low delay time.  

4.3.2.7 Mode 7 

In this mode, 12-bit adder results are fully predicted, while the 24-bit adders are 

kept in half prediction mode. Figure 68-70 display the results of the tests. 
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Figure 68: Accuracy test results of processing systems in Mode 7 

 

Figure 69: Delay time test results of processing systems in Mode 7 
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Figure 70: Area test results of processing systems in Mode 7 

The maximum improvement in speed is gained in this mode by trading off the 

accuracy. The system speed enhancement reaches 38.6% in the GeAr system and 37.7% 

in the CPredA system compared to the full accuracy system. In contrast, accuracy has 

dropped to almost 70% in the CPredA system and to lower values in the GeAr and AA2 

systems.  

Table 11 summarizes the evaluation results for accurate and approximate systems 

in all testing modes. The power measurements of all approximate system versions in all 

modes are either slightly less or the same as the accurate system. Therefore, at the same 

power consumption or less, more improvements in speed and area are gained as the level 

of approximation increases with trading off the accuracy.  
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Table 11: Evaluation results for all systems 

Mode 

Adder 

Used 

Accura

cy % 

Delay 

(ns) 

Reduction 

in Time 

% 

Area 

% 

Reduction 

in Area 

% 

Power 

(mW) 

              

Full 

Adder 
100.00 7.844   0.35   0.127 

             

Mode 1 AA 100.00 7.595 3.17 0.35 0.00 0.126 

HP + 

Acc 
CPredA 100.00 7.212 8.06 0.35 0.00 0.127 

  GeAr 100.00 7.665 2.28 0.35 0.00 0.127 

Mode 2 AA 25.32 7.267 7.36 0.34 2.86 0.126 

FP + Acc CPredA 83.00 6.757 13.86 0.32 8.57 0.127 

  GeAr 57.03 7.257 7.48 0.33 5.71 0.127 

Mode 3 AA 100.00 6.865 12.48 0.34 2.86 0.126 

Acc + 

HP 
CPredA 100.00 6.307 19.59 0.31 11.43 0.127 

  GeAr 100.00 6.050 22.87 0.33 5.71 0.127 

Mode 4:  AA 100.00 6.694 14.66 0.34 2.86 0.126 

HP + HP CPredA 100.00 5.520 29.63 0.30 14.29 0.127 

  GeAr 100.00 4.895 37.60 0.33 5.71 0.127 

Mode 5:  AA 98.72 6.790 13.44 0.34 2.86 0.126 

8/12 + 

HP 
CPredA 98.72 4.998 36.28 0.30 14.29 0.127 

  GeAr 98.72 4.867 37.95 0.34 2.86 0.127 

Mode 6:  AA 60.25 6.809 13.19 0.34 2.86 0.127 

10/12 + 

HP 
CPredA 74.79 4.896 37.58 0.31 11.43 0.127 

  GeAr N/A N/A N/A N/A N/A N/A 

Mode 7:  AA 23.61 6.810 13.18 0.34 2.86 0.127 

FP + HP CPredA 69.30 4.885 37.72 0.31 11.43 0.127 

  GeAr 54.00 4.815 38.62 0.33 5.71 0.127 

 

Table 12 shows the statistical analysis of all modes. The table shows that the 

Average (AVG) and the Standard Deviation (STD) of the output samples in the modes 

which have high detection accuracy are close to the values of the accurate system which 

uses the full adder in its calculations. On the other hand, the average and standard 

deviation values differ significantly as the detection accuracy goes lower in modes 2, 6, 

and 7. 
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Table 12: Statistical analysis of all modes 

  

  

Accurate 

System 

Approximate Systems Modes 

Mode

1 
Mode2 

Mode

3 

Mode

4 

Mode

5 

Mode

6 

Mode

7 

CPredA 

Accuracy 

% - 100 83 100 100 98.72 74.79 69.30 

STD 88.26 88.54 101.46 88.93 89.21 93.31 102.85 101.92 

AVG -12.34 -13.71 -50.15 -14.91 -15.48 -24.11 -65.94 -65.74 

  

AA2 

Accuracy 

% - 100 25.32 100 100 98.72 60.25 23.61 

STD 88.26 88.58 56.19 88.84 89.05 93.61 222.87 57.57 

AVG -12.34 -13.39 -4.81 -10.88 -13.13 -14.35 -32.46 -4.29 

  

GeAr 

Accuracy 

% - 100 57.03 100 100 98.72 NA 54.00 

STD 88.26 88.96 128.25 89.15 90.09 99.12 NA 128.51 

AVG -12.34 -13.72 -65.94 -14.35 -14.83 -18.53 NA -96.76 

 

Processing biological signals with approximate computing shows practical 

improvements in processing time and circuit area. This depends on the type of adder and 

the level of approximation. Approximate adders with simplified circuits which break the 

carry chains and produce all outputs in parallel, like the CPredA adder, deliver generally 

significant enhancements in terms of reduced system delay and circuit area. In contrast, 

adders that use segmentation, such as GeAr, can improve delay, but not the circuit area. 

In this type of approximate adders, the full adder is divided into smaller segments that 

produce sub results in parallel. However, the total area of these segments is almost the 

same as the original full adder. Approximate adders with simplified circuits which does 

not break the carry chain, like AA adder, provide the minimum enhancements in delay 

and circuit area due to the time required to produce the results through the carry chain. 

Half approximation of either 12 or 24-bit adders brings some improvements in the 

system performance, as shown in modes 1 and 2. Furthermore, fully approximating the 

adders will cause a significant disturbance in the processed signal, leading to many 

missed or false detections. 
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 Mode 4 significantly enhances the speed and area without losing the system’s 

accuracy. This mode can be used in scenarios where speed, area, and accuracy are all 

required. In this mode, all adders are configured to half approximation, i.e., the low 

significant bits of the result are approximated while the important high bits are calculated 

accurately. Therefore, the samples processed by the FIR and fed to the spike detector 

contain some errors, but they are still above the threshold required for spike detection.  

More-speed requiring scenarios can use Mode 5 by sacrificing some of the system 

accuracy within acceptable margins.  

Modes 6 and 7 can provide even higher speed for applications with low accuracy 

and area enhancement requirements. They do not provide reliable accuracy but they 

provide higher processing speed for those speed-demanding applications with low 

accuracy requirement. For instance, they can be used in a system that detects the 

existence of spikes in a neural signal but not their exact number. The accuracy of these 

modes can be enhanced if required by changing the threshold value, decreasing the 

approximation level of the 24-bit adders, or using different type of approximate adders 

with lower error distance. 

To prove the concept of this work within the time constraints, a limited number of 

approximate adders are tested. Different approximate adders and multipliers may be 

tested in future works, and the proposed system may be connected to physical MEA 

devices for further investigations and testing. 

This research can be further improved with the following steps: 

1. Apply more approximate computing algorithms to implement more 

versions of the approximate system and benchmark them with the existing 

ones. 

2. Apply the approximate computing algorithms to the system multipliers. 

3. Improve the accuracy of the system at high levels of approximation by 

integrating error correction units in the approximate systems. 

Furthermore, the proposed system can be applied to process different biological 

signals online and offline such as Electroencephalography (EEG), Electrocorticography 
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(ECoG), Local Field Potential (LFP), and Electromyography (EMG) by changing the 

type of the FIR filters. FIR filter can act as a low pass filter, high pass filter, or band pass 

filter by changing the values of its coefficients. Cutoff frequencies can be changed also 

in the same way according to the targeted biological signal. 
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Chapter 5: Conclusion 

Due to the significant advances in technology in the field of neuroscience, MEAs 

with thousands of electrodes are now available. These MEAs can instantly monitor and 

record the activity of thousands of neurons in parallel, requiring processing systems with 

low latency, reduced circuit area, and low power consumption. In neuroscience studies, 

the processing time of the MEA system is a critical factor, as the system must acquire 

data, process it, and generate feedback stimuli with the lowest possible latency. 

Additionally, the circuit area of the processing system is also an important consideration, 

as the system is composed of parallel processing sets. 

Programmable devices, such as microcontrollers and FPGAs, have limited 

resources, so their usage must be optimized efficiently. Reducing the circuit area of the 

processing sets allows for building more sets on the same chip and handling the data 

channels in parallel. Furthermore, reducing the power consumption of the processing 

units enhances the portability of the system and decreases its overall power consumption. 

In this thesis, a novel neural processing and spike detection system is proposed 

that reduces processing latency, circuit area, and power consumption by using the 

approximate computing paradigm in its calculations. The most computationally intensive 

parts of the system use approximate adders to achieve the minimum possible latency in 

processing signals and detecting spikes. The design of the FIR filters also considers 

additional enhancements, such as the minimum required filter order, parallelism, and 

symmetry. 

Three versions of the approximate processing systems were implemented and 

tested at different approximation levels. They were based on three approximate adders: 

CPredA, GeAr, and AA2. All systems were built using Verilog hardware description 

language and implemented on an FPGA using the Xilinx Zynq-7000 All Programmable 

SoC on the ZedBoard as the target platform. 

The results of using approximate computing in processing biological signals show 

effective enhancements in processing time and circuit area, depending on the type of 

adder and the level of approximation used. For example, CPredA, which has a simplified 
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circuit area and carry calculation, offers a reduction of up to 29.6% in processing time 

and 14.3% in circuit area without sacrificing system accuracy or increasing power 

consumption, even at half approximation mode. On the other hand, GeAr, which 

produces results through parallel segments, can offer a processing speed enhancement of 

37.6% at half approximation. The research also presents different levels of 

approximation that can be used in neural processing systems to meet various demands 

for speed, accuracy, and area requirements. Further improvements in speed and area can 

be achieved by trading off spike detection accuracy and running the system in high 

approximation modes, where most adder results are predicted. These modes can be used 

in applications where the existence of spikes is important, but not their exact number. 

As future work related to this thesis, different approximate adders and multipliers 

may be tested, and the proposed system may be connected to physical MEA devices for 

further testing and conclusions. 
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