Mathematica Militaris

Volume 27 Issue 2 2023 Special Issue: Undergraduate Research Projects

Article 7

June 2023

Prioritizing Ports and Waterways Safety Assessments (PAWSAs)

Matalynn Clark United States Coast Guard Academy, matalynn.M.clark@uscg.mil

Peyton Phillips United States Coast Guard Academy, peyton.r.phillips@uscg.mil

Claire Portigue United States Coast Guard Academy, ccport23@gmail.com

Justin Canovas United States Coast Guard Academy, justin.canovas@uscg.mil

Eric Johnson United States Coast Guard Academy, eric.c.johnson@uscga.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.usmalibrary.org/mathematica_militaris

Part of the Operational Research Commons, Physical Sciences and Mathematics Commons, and the Risk Analysis Commons

Recommended Citation

Clark, Matalynn; Phillips, Peyton; Portigue, Claire; Canovas, Justin; Johnson, Eric; and Zuckerman, Andrew (2023) "Prioritizing Ports and Waterways Safety Assessments (PAWSAs)," *Mathematica Militaris*: Vol. 27: Iss. 2, Article 7.

Available at: https://digitalcommons.usmalibrary.org/mathematica_militaris/vol27/iss2/7

This Article is brought to you for free and open access by the Department of Mathematical Sciences at USMA Digital Commons. It has been accepted for inclusion in Mathematica Militaris by an authorized editor of USMA Digital Commons. For more information, please contact dcadmin@usmalibrary.org.

Prioritizing Ports and Waterways Safety Assessments (PAWSAs)

Authors

Matalynn Clark, Peyton Phillips, Claire Portigue, Justin Canovas, Eric Johnson, and Andrew Zuckerman

Prioritizing Ports and Waterways Safety Assessments (PAWSAs) – Spring 2023

16 Baseline Risk Factors

Vessels	Traffic	Navigation	Waterway
Deep Draft Vessel Quality	Volume of Commercial Traffic	Winds	Dimensions
Shallow Draft Vessel Quality	Volume of Small Craft Traffic	Currents/Tides	Obstructions
Commercial Fishing Vessel Quality	Traffic Mix	Visibility Restrictions	Visibility Impediments
Recreational Vessel Quality	Congestion	Bottom Type	Configuration

A PAWSA is a USCG NAVCEN-facilitated discussion among port stakeholders who provide feedback on the above 16 baseline risk factors that contribute to risk mitigation strategies.

Ideally, NAVCEN would conduct PAWSAs in every port and waterway, but due to man-hour constraints this is not feasible. This capstone project investigated how the above seven ports could be prioritized for PAWSA workshops based on vessel traffic and characteristics of the waterways. The goal was to construct a framework to compare waterways and determine which is most in need of a PAWSA workshop.

In this project, not all 16 of the baseline risk factors were addressed. Instead, three factors, one each related to vessel characteristics, traffic, navigation, and waterway considered make the used to final and were recommendation. Following the framework and procedure established by this project, additional baseline risk factors can be incorporated in the future.

Methodology

Rank the ports along each of the following three factors, then combine each port's disparate rankings by multiplying the user's weighting of each factor's relative importance (1,2, or 3) by the port's ranking (1 to n; n = number of ports being compared) for that factor to obtain a port's overall rank. The final rank sum determines which port is in most need of a PAWSA.

Factor 1: Relative Vessel Congestion The approximate surface area vessels in a port occupy compared to the area of water in that port, found by using AIS data and the erase feature in ArcGIS Pro.

Port/Waterway	Average Relative Congestion	Rank
Seattle/Tacoma	3.445%	7
New London	1.701%	6
Brownsville	1.047%	5
LA/LB	0.772%	4
New Orleans	0.440%	3
Boston	0.225%	2
Cape Canaveral	0.121%	1

Factor 2: Bottom Type Using the *Coast Pilot* and nautical charts, ports were ranked from most to least dangerous bottom type.

Port/Waterway	Bottom Type	Rank
Boston	Rock	7
LA/LB	Rock	6
New Orleans	Mud, Clay, Shell	5
Brownsville	Mud	4
New London	Mud	3
Seattle/Tacoma	Mud	2
Cape Canaveral	Sand	1

Factor 3: ATON Availability Rate Using the Availability Rate formula, the ports were ranked from least to largest percentage of time their aids were on station.

Cumulative Hours of Nonfunctional Aids Availability Rate = 1 -Cumulative Total Hours of All Aids

Port/Waterway	Size (mi²)	Number of Aids	Availability Rate	Rank
New Orleans	14390	955	92.52%	7
Brownsville	1840	198	94.45%	6
Cape Canaveral	2690	310	94.33%	5
Seattle/Tacoma	1000	75	98.00%	4
Boston	952	417	98.69%	3
LA/LB	4531	134	99.02%	2
New London	98	95	99.76%	1

Calculation

Laiculations						
	Weight = 3	Weight = 2	Weight = 1			
Port/Waterway	Relative Congestion	Bottom Type	ATON Availability	Row Sum		
New London	Rank = 6 6 x <mark>3</mark> = 18	Rank = 3 3 x <mark>2</mark> = 6	Rank = 1 1 x <mark>1</mark> = 1	18 + 6 + 1 = 25		

Final Rankir	ngs				
Port/Waterway	Relative Congestion	Bottom Type	ATON Availability	Row Sum	Final Rank
Seattle/Tacoma	21	4	4	29	7
Brownsville	15	8	6	29	6
LA/LB	12	12	2	26	5
New Orleans	9	10	7	26	4
New London	18	6	1	25	3
Boston	6	14	3	23	2
Cape Canaveral	3	2	5	10	1
Boston Cape Canaveral Based on th	6 3 e examp	14 2 le weights	3 5 s used fo	23 10 r each	2 1 fact

Seattle/Tacoma first.

Rank Factors	_	_		\times	
Relative Congestio	n: 3				I
Bottom Type:	2				
ATON Availability R	ate: 1				
	Submit				
		Ø	Final R	esults:	
		Po	rt in hia	hest ne	ec

A GUI was created in *Python* to enable decision makers at **NAVCEN to prioritize PAWSAs based on their own weighting** of the level of importance of the three factors.

Sponsors: LT Sydney E Wagner Ms. Thea S Petzling **USCG NAVCEN**

Advisors: Dr. Eric C Johnson CDR Andrew H Zuckerman

Group Members: 1/c Justin Canovas 1/c Matalynn Clark 1/c Peyton Phillips 1/c Claire Portigue

 \square