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Abstract—We propose to investigate a mathematical model
for combustion in a rod made of periodically alternating thin
layers of two combustible materials such as those occurring in
gun propellants. We apply the homogenization theory to resolve
the fast oscillations of the model’s coefficients across adjacent
layers, and set up numerical simulations to better understand
the reactions occurring in such media.

I. MOTIVATION

This project is motivated by Army and Navy research
interest in the improvement of gun performance through the
integration of layered propellants composed of new energetic
materials. We study a mathematical model of combustion
within an inhomogeneous rod made of thin, periodically
alternating layers of two combustible materials. Direct nu-
merical simulations through the usual finite difference/element
methods face challenges due to the highly oscillatory nature of
the material properties within adjacent layers. To address this
issue, we turn to the mathematical theory of homogenization
[3, 6] to resolve the high oscillations within the mathematical
model before passing the result to computational algorithms.
We conduct numerical simulations based on the mathemat-
ically homogenized model of layered combustible media in
order to better understand the nature of the reaction occurring
in such media.

II. MODELING COMBUSTION IN A PERIODICALLY
LAYERED ROD

Our research focuses on modeling combustion in a period-
ically stratified rod consisting of two alternating combustible
materials, repeating with a small period ε that make up the
layers, as shown in Figure 1.

Fig. 1. Schematic of a layered rod.

The thicknesses of the layers are small compared to the
length of the rod, and the two materials that make up the

layers, denoted as species A and B, satisfy the following
assumptions [3, 7]:

• The two species are self-contained combustibles that can
ignite independently and there is no chemical reaction
between them.

• There is no mass diffusion and the only mechanism that
propagates the combustion is the heat conduction.

The combustion process is initiated by boundary heat ad-
dition at the left end of the rod. We study a one-dimensional
model of the process, described by a system of differential
equations in the following unknowns:

• A(x, t): mass fraction of unreacted material A at location
x along the rod at time t;

• B(x, t): mass fraction of unreacted material B at location
x along the rod at time t;

• T (x, t): temperature at location x along the rod at time
t.

We assume that the ignition temperature of the material
A is TA and that once it ignites, it begins releasing heat at
a temperature-dependent rate rA(T ), and we denote by qA
the energy content per unit mass of A, that is, the amount
of heat released when a unit mass of A is burned com-
pletely. Similarly, we define TB , rB(T ), and qB for material
B. Furthermore, we denote by σε(x) the specific heat per
unit volume and by κϵ(x) the heat conduction coefficient at
location x along the rod and note that these are ε-periodic
functions. We assume that the outer surface of the rod is
insulated, so any heat generated by combustion within the
rod diffuses in the axial direction. The following system
of differential equations describes the combustion process,
assuming a single-step chemical reaction [3, 7]:

∂A

∂t
= −rA(T )A, (1a)

∂B

∂t
= −rB(T )B, (1b)

σϵ
∂T

∂t
=

∂

∂x

(
κϵ

∂T

∂x

)
− χϵqA

∂A

∂t
− (1− χϵ)qB

∂B

∂t
, (1c)

with 0 < x < L, t > 0, and where L is the length of the
rod and χϵ(x) is the characteristic function of the union of
the intervals occupied by the material A. At time t = 0, none
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of the material has reacted and the temperature of the rod is
known, thus we have the initial conditions:

A(x, 0) = χϵ(x), 0 ≤ x ≤ L,

B(x, 0) = 1− χϵ(x), 0 ≤ x ≤ L,

T (x, 0) = Tin(x), 0 < x < L,

(2)

and, assuming the right end is insulated, the boundary condi-
tions:

∂T

∂x
(0, t) = f(t),

∂T

∂x
(L, t) = 0, t > 0. (3)

The main difficulty in obtaining an accurate numerical
solution of the initial boundary value problem (1)–(3) is due
to the highly oscillatory nature of the coefficients σϵ and κϵ

which make a solution through classical numerical methods
impractical. We turn to the mathematical theory of homoge-
nization [4, 8] to replace the rapidly oscillating coefficients
by theoretically derived averages, resulting in “homogenized”
equations that we then solve using the finite difference method.

A. Homogenization of the combustion system

The combustible material under consideration consists of
alternating layers of self-contained chemicals A and B which
repeat periodically with a period ε. Each ε-layer consists of a
sublayer of A of thickness δε and a sublayer B of thickness
(1− δ)ε, 0 < δ < 1. Let σ, κ, and χ be 1-periodic functions
such that σε(x) = σ(x/ε), κε(x) = κ(x/ε), and χε(x) =
χ(x/ε).

As is standard in homogenization theory, we consider the
following expansions for the temperature T for small ε:

Tε(t, x) =

∞∑
k=0

εkTk(t, x, y), (4)

where y = x/ε and Tk are 1-periodic functions in y.
Following [7], we approximate rA(T ) ≈ rA(T0) and

rB(T ) ≈ rB(T0), and by substituting (4) into (1c) we obtain
a sequence of equations when we collect like powers of ε.
The first three equations, who are sufficient to obtain the
homogenized equations, are shown here:

ε−2 :
∂

∂y

(
κ(y)

∂T0

∂y

)
= 0

ε−1 :
∂

∂x

(
κ(y)

∂T0

∂y

)
+

∂

∂y

[
κ(y)

(
∂T0

∂x
+

∂T1

∂y

)]
= 0

ε0 : σ(y)
∂T0

∂t
=

∂

∂x

[
κ(y)

(
∂T0

∂x
+

∂T1

∂y

)]
+

∂

∂y

[
κ(y)

(
∂T1

∂x
+

∂T2

∂y

)]
+ χ(y)qArA(T0)A

+ (1− χ(y))qBrB(T0)B.

(5)

Using these equations, it can be shown that T0 is independent
of y and satisfies a heat equation with constant coefficients. We
introduce the notation T̄ = T0 and also introduce the smooth

functions Ā and B̄ that approximate the mass fractions A and
B in the limit ε = 0 and note that the homogenized system is

∂Ā

∂t
= −rA(T̄ )Ā,

∂B̄

∂t
= −rB(T̄ )B̄,

σ̄
∂T̄

∂t
= κ̄

∂2T̄

∂x2
+ γArA(T̄ )Ā+ γBrb(T̄ )B̄,

0 <x < L, t > 0,

(6)

where σ̄ =
∫ 1

0
σ(y) dy, κ̄ = 1/

∫ 1

0
1/κ(y) dy, γA =

qAδ, γB = qB(1− δ).
We solve the system numerically with the initial conditions

T̄ (x, 0) = T̄0(x), Ā(x, 0) = 1, B̄(x, 0) = 1, 0 < x < L,

and the boundary conditions

−κ̄T̄ (0, t) = F (t), −κ̄T̄ (L, t) = 0,

where F (t) is the flux of heat supply that initiates the ignition.
In practical applications, the heat is supplied only briefly as

in F (t) =

{
H/τ, 0 ≤ t ≤ τ
0, τ < t

, where [0, τ ] is a small

time interval and H is the total thermal energy supplied. By
varying H, we obtained cases where

• Ignition does not initiate at all (insufficient heat supply);
• The ignition initiates, but dies out without propagating

far into the rod (insufficient heat supply);
• The combustion completely burns one material, but leaves

the other intact (moderate heat supply);
• The combustion completely burns both materials (full

heat supply).
In all cases, the temperature of the rod stabilizes to a constant
value since the heat flux is 0 at the right end point of the rod.

III. NUMERICAL EXPERIMENTS

We used the homogenized model to conduct numerical
experiments to understand how varying material properties,
heat supply, and thickness of the layers affects the combustion
process. We present here the results of several simulations in
which we varied H to explore the relationship between the
material properties and the heat supply. We take the reaction
rates to be step functions

rA(T ) =

{
0, 0 ≤ T < TA

RA, T ≥ TA
,

and

rB(T ) =

{
0, 0 ≤ T < TB

RB , T ≥ TB
.

A. Example 1

To validate our expectations that if the rod does not reach
the ignition temperature of material B, then the material B will
not combust, we conducted the following experiment. We set
σ̄ = 1, κ̄ = 1, γA = 1.5, γB = 2, the initial temperature in
the rod T̄0 = 3, and take Ta = 4, TB = 8, RA = 1, RB = 2.
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Figure 2 shows the results obtained with H = 20. As
expected, the boundary heat addition results in a sharp tem-
perature increase at the left side of the rod and subsequently
the rod attains a uniform steady state temperature of approxi-
mately 5.5. The mass fraction of B remains 1 and material A
is entirely burned.
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(a) Mass fraction of A. (b) Mass fraction of B.

(c) Temperature for 0 ≤ t ≤ 1. (d) Temperature for 0 ≤ t ≤ 20.

Fig. 2. Mass Fraction and Temperature for Example 1.

B. Example 2

In this example we examine conditions in which A and B
would both burn completely. We take σ̄ = 1, κ̄ = 1, γA = 1.5,
γB = 2, TA = 4, and TB = 6. We took RA = 1, RB = 2,
the initial temperature across the rod T̄0 = 3, and H = 30.

(a) Mass fraction of A. (b) Mass fraction of B.

(c) Temperature for 0 ≤ t ≤ 1. (d) Temperature for 0 ≤ t ≤ 20.

Fig. 3. Mass Fraction and Temperature for Example 2.

In Figure 3 we see that the temperature of the rod increases
to a uniform steady state temperature of approximately 8 and
A and B are both completely burned.

C. Example 3

The final case we considered was one in which H is at
an intermediate intensity so that both materials partially burn

(a) Mass fraction of A. (b) Mass fraction of B.

(c) Temperature for 0 ≤ t ≤ 1. (d) Temperature for 0 ≤ t ≤ 20.

Fig. 4. Mass Fraction and Temperature for Example 3.

because the temperature of the rod falls beneath the ignition
temperatures of materials A and B after combustion initiates.
We take σ̄ = 1, κ̄ = 1, γA = 1.5, γB = 2, T̄0 = 3, TA = 4,
TB = 6, rA = 1, rB = 2, the initial temperature across the
rod T0 = 3, and H = 15. In Figure 4 we see that initially
the temperature of the rod reaches the ignition temperatures
of materials A and B, initiating combustion of both materials.
Subsequently, the rod’s temperature falls below the requisite
ignition temperatures and the rod stops burning, ultimately
attaining a uniform steady state temperature of approximately
3.88.

IV. FUTURE WORK

Future work on the topics covered in this project includes
more numerical simulations of the homogenized combustion
model of the periodically layered rod to more extensively
determine how the various material properties, geometry,
and heat source affect combustion. Another avenue would
be expanding the scope of the work to three-dimensional
media while assuming radial symmetry in order to keep the
computational complexities manageable and at the same time
realistic.
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