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Abstract
Deep learning has enabled network intrusion detection rates as high as 99.9% for 
malicious network packets without requiring feature engineering. Adversarial 
machine learning methods have been used to evade classifiers in the computer vision 
domain; however, existing methods do not translate well into the constrained cyber 
domain as they tend to produce non-functional network packets. This research views 
the payload of network packets as code with many functional units. A meta-heuristic 
based generative model is developed to maximize classification loss of packet pay-
loads with respect to a surrogate model by repeatedly substituting units of code with 
functionally equivalent counterparts. The perturbed packets are then transferred and 
tested against three test network intrusion detection system classifiers with various 
evasion rates that depend on the classifier and malicious packet type. If the test clas-
sifier is of the same architecture as the surrogate model, near-optimal adversarial 
examples penetrate the test model for 69% of packets whereas the raw examples suc-
ceeds for only 5% of packets. This confirms hypotheses that NIDS classifiers are 
vulnerable to adversarial attacks, motivating research in robust learning for cyber.

Keywords Cyber security · Network intrusion detection · Adversarial machine 
learning · Constrained optimization · Meta-heuristic

1 Introduction

Cyber attackers leverage their knowledge of cyber (software, hardware, etc.) vulnerabilities 
to compromise the cyber triad: confidentiality, integrity, and availability of systems [1]. 
Cyber security strategies typically account for a balance of cost, utility, and security but 
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it is often possible for a motivated attacker to defeat hardened networks [1–3]. Evasion 
attacks, for example, are one such avenue used to defeat cyber security systems [4, 5].

Adversarial machine learning (AML) has taken on a spotlight at the intersection of 
machine learning and computer security research as it highlights serious security vulner-
abilities for learned classifiers. Szegedy et al [6] discovered that convolutional neural net-
works are easily fooled when images are strategically perturbed. Such images, intentionally 
perturbed to fool a classifier, are called adversarial examples. Strategies to create adver-
sarial examples of images enjoy the advantage that digital images are an unconstrained 
domain with no disallowed pixel combinations. On the contrary, data in the cyber domain 
is strictly structured according to the internet protocol (IP) suite [7, 8]. Therefore, any 
attempt at generating adversarial examples in the constrained cyber domain must adhere to 
the rigid structure of network traffic packets and retain packet payload functionality.

Network intrusion detection systems (NIDS) are software products that audit logs of 
network traffic to identify malicious packets. Most modern NIDS incorporate machine 
learning classifiers [9]. Many NIDS classify using aggregate features of internet connec-
tions called network flow data. While it is possible to evade network flow NIDS with 
adversarial examples, there is no mature technology to reverse engineer the network flow 
feature vector into a packet capable of end-to-end adversarial attack [7, 10]. Other NIDS 
classify raw traffic data [11–13]. Adversarial attack against raw traffic NIDS requires care-
fully enforced constraints on perturbed packets, and this has not been technologically fea-
sible, until now.

This manuscript makes the following contributions. We reframe the constrained 
adversarial example generation problem and provide a mathematical optimization for-
mulation for optimally perturbing raw network packet payloads without affecting the 
packet function. A biologically inspired meta-heuristic, similar to a genetic algorithm, 
is provided to solve the formulated constrained optimization problem. A designed 
experiment is used to find optimized hyperparameters for the meta-heuristic. Then, 
additional experiments are conducted to compare the evasion rate of adversarial exam-
ples when transferred to three machine learning based NIDS. Just as the discovery of 
adversarial examples in the image domain has led to adversarial training as a robust 
defense, the vulnerabilities we uncover in this research open the door to a new genera-
tion of robust NIDS for the cyber domain.

The remainder of this work is structured as follows. Section 2 provides a review of 
relevant research. Section 3 defines the problem of constrained optimization for adver-
sarial example generation, provides the use case for NIDS, and gives the formulation 
and experiment methodology. Results are presented and analyzed in Sect. 4, and con-
clusions are provided in Sect. 5.

2  Literature review

2.1  Adversarial machine learning

Numerous works have studied ways in which cyber infrastructure is vulnerable to 
threats [1, 14–18]. Evasion is an AML attack tactic that attempts to defeat NIDS 
by modifying, duplicating, or timing packets entering a network [19]. Following 
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the discovery of adversarial examples in the image domain [6], many studies have 
worked towards adversarial evasion attacks in the cyber domain. Of the multi-
ple manuscripts covering NIDS adversarial attacks [4, 5, 20] and others analyzed 
by Rosenberg et al [7], nearly all of them perturb feature vectors such as network 
flow data. Only Kuppa et  al [21] converts features back to actual network pack-
ets, although this is only done for several simple header fields. Kuppa et al attacks 
anomaly detection based NIDS, which are important but less ubiquitous than signa-
ture-based NIDS such as neural network classifiers. Anomaly detection NIDS are 
highly sensitive to the choice of data features [9]. According to analysis by Appru-
zzese et al [10], access to training data, feature set, detector model, oracle, and the 
capability to create actual packets are crucial aspects of attacker power that should 
not be taken for granted. Researchers should avoid overly favorable assumptions on 
attacker power when proposing a realizable end-to-end adversarial attack against 
NIDS.

2.1.1  Insufficient constraints

Most adversarial attacks are constrained in some general manner. Standard 
approaches in the image domain include constraining pixel intensity between [0, 1] 
[6] and by bounding the magnitude of perturbation, d(x, x0) ≤ dmax [22]. Constraints 
in the contested cyber domain become much more complicated for several reasons. 
Naïve perturbations to network traffic data would result in a non-functioning out-
put. Cyber protocols are complex. A packet, for example, must engage in a secure 
two-way IP connection and any modifications to packet header could subvert this 
connection. Spurious modifications to a packet payload could corrupt the malicious 
effect of the packet. For instance, changing a writeFile command to a readFile com-
mand could help a packet evade a NIDS, but the packet may fail to complete its 
attack [7]. Adversarial examples intended to defeat NIDS must be constrained with 
domain specific heuristics. Chernikova et al [20] provides an algorithm that enforces 
domain specific constraints and dependencies but does so with feature vectors and 
utilizes gradient information.

2.1.2  Inefficacy of gradient approaches

The literature is rich with formulations that leverage gradient information to iteratively 
perturb images until they fool classifiers. Contributions such as L-BFGS [6], Fast gra-
dient sign method [23], JSMA [24] and the Carlini & Wagner method [25] have pro-
duced adversarial examples in the cyber domain. These techniques, however, are not a 
natural fit for cyber data because small perturbations are not possible for discrete fea-
tures (such as those in network packet payloads) [7].
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2.1.3  NIDS feature engineering

Effective pre-processing and feature engineering tend to be domain specific and algo-
rithm specific. Imputation, aggregation, augmentation, vectorization, normalization, 
and kernel methods are other examples of pre-processing that, when performed prop-
erly, improve the performance of machine learning models [26]. Raw features in the 
cyber domain are logged from time series data, packet headers, packet payloads, or sta-
tistical metrics of network flow [27]. Feature engineering often relies on the judgement 
and experience of the analyst performing the study [26], and several works analyzed 
feature engineering in the cyber domain [28–31].

Deep learning models, particularly convolutional neural networks (CNN), have the 
capacity to learn features that are more complex than a human can encode. It may still 
be beneficial to perform manual feature engineering with deep models as it motivates 
specific relationships and reduces computational resources for training [26]. Others 
argue that proprietary feature logging software such as Zeek and Security Onion add 
an extra layer of obfuscation which biases learning [11]. De Lucia [11] also notes that 
many cyber features are derived from packet headers and are easily spoofed, albeit only 
an advanced adversary can in theory realize such an attack without corrupting the net-
work packet [7]. To mitigate this risk, Bierbrauer et al [12] removes header informa-
tion from training data and demonstrates raw payload classification with up to 98.95% 
accuracy.

2.2  Cyber data sets

Hindy [9] provides analysis on 85 manuscripts and 30 prominent data sets for NIDS 
research. According to the study, 50.5% of NIDS manuscripts utilized the KDD-99 
data set [9], which was recorded over two decades ago and has well documented flaws 
[32]. Another 17.2% of studies employed the NSL-KDD dataset. Although NSL-KDD 
corrects many statistical flaws of KDD-99, it is still derived from the outmoded KDD-
99 data logs. The CICIDS data set [33] compiles raw packet capture (pcap) data col-
lected on a real network over the course of a week during which time several types 
of attacks were conducted. Bierbrauer at al [12] investigated transfer learning among 
several cyber data sets and machine learning architectures. Bierbrauer at al found that 
models pre-trained with the CICIDS data set were accurate and also generalize well for 
use with other data sets. For these reasons, the CICIDS data set is used in this study.

3  Methodology

3.1  Overall approach

A new approach is necessary to generate adversarial examples in constrained 
domains. This problem type can be referenced as the The Constrained Adversarial 
Example Generation Problem. The motivating use of constrained adversarial exam-
ples is to obtain a packet that evades a NIDS and executes a malicious task inside 
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the target network. This is solved with a meta-heuristic that substitutes functionally 
equivalent elements of the payloads in order to maximum its cross entropy w.r.t. a 
well-trained surrogate model. High cross-entropy implies an inability for the sur-
rogate model to predict the truth label with high confidence. Further increasing the 
cross-entropy results in a high confidence prediction of the incorrect class.

A primary concern for the raw packet perturbation is to maintain the integrity of 
the packet. Accordingly, the proposed meta-heuristic makes substitutions to portions 
of the payload but never changes the effect of the compiled code. This approach 
is reasonable in many programming protocols. Most content in HyperText Markup 
Language (HTML) is case-insensitive [34] and we use HTML for this study.

The corpus matrix for this problem is engineered by a subject matter expert. It 
is dependent on the specific data encoding used. The expert identifies all function-
ally equivalent ASCII characters present in the payload. Since the character “H” and 
the character “h” are functionally equivalent, they are placed into the same column 
of the corpus. Such a column is generated for every character in the raw packet. 
Figure  1 shows that each character position (allele) in the raw packet payload is 
associated with a column of the corpus. This exact methodology could be directly 
adapted to any case-insensitive language such as CSS, BASIC, Fotran, DOS and 
SQL, for example. The general approach could be adapted to many other objects in 
cyberspace. For example, a python command “exit()” and “stop()” perform a practi-
cally equivalent task, so they could share a column in the corpus. Similar to the http 
problem, equivalent python commands could be substituted for optimal evasion of a 
detector. Additional domain constraints could be added if necessary for the use case.

The meta-heuristic applied is a variation of the genetic algorithm. There are, 
however, key decisions in the implementation of the meta-heuristic that enforce 
functional equivalence of the input and output. Each solution in the population is 
called a chromosome. The chromosome is comprised of units, called alleles. In this 
formulation, genes are the choice of code placed in the allele locations. The key 

Fig. 1  Stages of the meta-heuristic are shown from the raw payload through a population of perturbed 
chromosomes
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feature of the meta-heuristic is that feasible genes for each allele are pre-defined in a 
corpus. The five primary steps of the meta-heurisic are: 

1. Initialization: Various combinations of the original code are presented with 
random, feasible, perturbations to alleles.

2. Fitness Function: Binary cross-entropy of example’s truth label w.r.t. the pre-
dicted label from the trained surrogate model.

3. Selection: Probabilisticly favors most fit solutions.
4. Crossover: Cross-point is uniform randomly distributed location in a chromo-

some.
5. Mutation: Random changes to characters are performed probabilisticly; these 

mutations are constrained to changes in character case. No other changes in char-
acters or commands are allowed per the corpus.

We motivate this approach with an instructional example. Figure 1 shows the raw 
payload containing an html command in all capital characters. Below the raw pay-
load is the corpus. The corpus contains all functionally equivalent commands for 
all characters in the raw payload. Next, two payloads are randomly selected from 
an initial population of naïvely perturbed payloads. As each of these payloads are a 
potential solution, we call them chromosomes. Each character position is an allele, 
and the character present in each allele is called the gene. A crossover operation 
combines the left hand side of one chromosome with the right hand side of another 
chromosome. If accepted, the result is placed into the new population of chromo-
somes. Figure 2 presents the ASCII encoding of a real http payload prior to and fol-
lowing perturbation.

3.2  Mathematical formulation

The problem formulation is intended to be solved using the specified meta-heuris-
tic. The fitness, shown in Eq. 2, is the cross-entropy of the example’s truth label 
and the surrogate model’s predicted label. Alleles, set i, specify the location of a 
functional unit of code as shown in Eq. 3. This is the location of an encoded char-
acter in our case study. The gene, set j, is the code element chosen for the allele 
location, shown in Eq.  4. Test examples, or in our case, specific payloads, are 
annotated with set k as shown in Eq. 5. The decision variable is x, which indicates 
a particular gene is activated at a location is shown in Eq. 7. The first constraint, 
shown in Eq. 8, specifies that exactly one gene is activated per allele. The second 
constraint, shown in Eq. 9, uses the corpus matrix C , ( C is defined in Eq. 6) to 
specify which genes are feasible at each location in the code. The third constraint, 
shown in Eq. 10, enforces a binary assignment of genes at alleles.

Fitness Function

(1)H(P,Q) = H(P) + DKL(Q||P)
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Sets

Decision Variables

Constraints

(2)= −�x∼PlogQ(x)

(3)i ≡ allele i ∈ {1, 2, ...n},

(4)j ≡ gene j ∈ {1, 2, ...m},

(5)k ≡ test example k ∈ {1, 2, ...o}

(6)C ≡ Feasibility corpus C comprised of binary entries c
(k)

ij

(7)x
(k)

ij
=

{
= 1 if gene j is selected for allele i on example k

= 0 otherwise

Fig. 2  An http payload is shown prior to and after perturbation



 M. Chalé et al.

1 3

The visual depiction in Fig. 3 presents a list of captured packets using the Wireshark 
packet analysis software. Packet 1, which is selected at the top of the list, follows 
the http protocol. The content of the packet is shown as human readable code in the 
center of the figure. The same code is shown in binary encoding on the bottom left, 
and the ASCII equivalent on the bottom right.

3.3  Adversarial threat model

In terms of the adversarial threat model, this problem formulation supports a grey 
box attack where the attacker has partial knowledge of the target system. The 
attacker does not have the same training data used by the NIDS, but does have 
representative data from a very similar computer network. That is, the attacker’s 
data is roughly from the same distribution as the true NIDS data. There is no 
knowledge of the NIDS feature extractor, only the assumption that the target 

(8)
∑

j∈J

xij = 1 ∀ i ∈ I One gene selected per allele

(9)xij ≤ cij ∀ i, j Allowable genes encoded in C

(10)xij ∈ {0, 1} Assignments are binary

Fig. 3  The Wireshark packet analysis application displays a list of packets, the human readable form, and 
an encoded form of each packet
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NIDS uses raw payload classification. The attacker will generate properly con-
strained adversarial examples that evade the surrogate NIDS and then transfer 
these examples to the target network, completing the evasion attack.

3.4  Evaluation metrics

The most costly event for a NIDS is a malicious packet which evades the NIDS 
and executes its malicious task. For unperturbed cyber data, we report the over-
all classification accuracy as well as the true positive detection rate of malicious 
packets and denote it as recall. Although accuracy can be a biased performance 
metric if there is significant imbalance [35], the test set of unperturbed examples 
in this study is nearly balanced, so accuracy is indeed informative. For the adver-
sarial examples, only the true positive detection rate is reported and it is denoted 
as detection rate. As compared to above, in this case accuracy would not be an 
informative metric because true negatives and false negatives are not possible.

3.5  Data strategy

Much of the literature in NIDS research leverages completely outdated datasets 
such as KDD-CUP and NSL-KDD. These popular datasets reflect 20 year old 
threat vectors with little relevance today [9]. Further, most NIDS datasets only 
contain aggregate features of the packets as they are extracted from software such 
as Snort or Bro. This type of dataset does not lend itself to adversarial attack 
research since the packet itself must be perturbed in order to conduct the attack, 
not just the aggregate features [7]. The approach of De Lucia et  al [11], Bier-
brauer et  al [12] and Ali Farrukh et  al [13] is to train models with pcap data 
collected on a network under cyber attack. Our research utilizes the CICIDS data-
set [33] rather than the UNSW-NB15 dataset [36] used by De Lucia et  al [11]. 
CICIDS is newer and contains more realistic pcap data, ensuring that models 
trained from CICIDS are more generalizable than models trained with UNSW-
NB15 [12]. CICIDS contains examples of seven attack strategies, brute force, 
heartbleed, botnet, denial-of-service, distributed denial-of-service, web attack, 
and infiltration attack. These attack strategies are implemented in a real network 
over the course of five days using a variety of popular tools. This results in many 
diverse combinations of specific attacks. Further, the dataset includes the raw 
packet files captured in the network during the five day attack period.

Therefore, we postulate that the more generalizable surrogate model would yield 
adversarial examples that transfer better to test NIDS models. Other datasets con-
taining packet-level information are also viable. CICIDS packets collected Monday 
through Friday are selected for this research in order to support diversity of both 
attack and benign packets in the training and test sets. Only user datagram proto-
col (UDP) and transmission control protocol (TCP) network packets were retained 
for analysis because alternative communication protocols were either too scarce for 
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supervised learning or otherwise do not contain meaningful attack information in 
the payloads [12]. Data processing for this experiment is greatly simplified by omit-
ting feature engineering; however, there are several important steps taken to decom-
pose raw packet capture data to structures that can be input to machine learning 
models for network intrusion detection.

3.6  Generating adversarial examples

The five primary steps in Fig. 4 outline how the various aspects of the methodology 
fit together. This is additionally represented with pseudocode in Algorithm 1. First, 
minor pre-processing was performed to prepare the CICIDS payloads for machine 
learning. The payloads are initially stored as a file containing bytes for each char-
acter. These bytes were converted to corresponding integer value, between 0 and 
255, per ASCII standards. These integers were then normalized to decimal values 
between 0 and 1 using the minimax method. Payloads were truncated or padded 
with zeros for a standard length of 1500 bytes. Header information is not retained. 
Labels were assigned using the accompanying net flow CICIDS data following the 
strategy of [12]. This produced 331,868 labelled pcap payloads. 45% of these pay-
loads were randomly sampled without replacement for surrogate training and 45% 
for NIDS training. 5% of the payloads were set aside to validate the surrogate model, 
and the remaining 5% to test the NIDS models. Next, a one-dimensional CNN 
was trained as the surrogate model. This CNN architecture was selected due to its 

Fig. 4  The methodology requires data pre-processing, training a surrogate model and three NIDS mod-
els, generating adversarial examples, and testing the adversarial examples on the NIDS
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excellent detection performance in similar studies [11, 12]. It provides the necessary 
feature representation for capturing the sequential nature of the payload data. As the 
most generalizable model considered, it is best suited as the surrogate for adversarial 
example generation. Other models architectures are also viable. Three NIDS archi-
tectures were trained, a CNN, a fully-connected neural network (FNN) and an Ada-
boost classifier. Visual representations of the CNN and FNN are provided in Fig. 5. 
The Adaboost classifier contained 100 weak classifiers and one node per tree. Step 
three used a designed experiment where the meta-heuristic settings are optimized 
for payload size, number of generations, retained population size, initial population 
size, and percent characters mutated when mutation occurs. Next, the fully tuned 
meta-heuristic is used in conjunction with the surrogate model to generate adver-
sarial examples of four attack types including infiltration, slowlorris, hulk, and SSH. 
Finally, the adversarial examples are transferred to the three NIDS and the evasion 
rates were reported for each combination of NIDS and attack type.

4  Results and discussion

The surrogate model and three test NIDS models were trained with the surrogate or 
NIDS training data. All models were then tested with a nearly balanced test set of 
normal and attack classes. Table 1 reports that all four models offer excellent recall 
and accuracy on the test set.

A controlled experiment was conducted to determine the best payload size, 
number of generations, population size, and percent alleles to mutation if mutation 
occurs. The best number of generations was 5000. The best population size was 
large. All other factors were not declared statistically significant.
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Figure 6 plots the loss for the best known solution with a blue line for the first 
1000 generations. Child solutions are only accepted into the population if they are 
strictly better than previous solutions. This strategy guarantees that all new chromo-
somes in the population are unique and we find this diversity enhances convergence. 
In particular, Fig. 6 shows that the parents chosen for each generation range in their 
fitness from nearly zero to over 2.0. Children, shown in blue triangles, are often 
much more fit than either of the parents, represented with green dots. The suprema 
and infima of the threshold loss to fool the surrogate are estimated with grey dotted 

Fig. 5  Architecture of artificial neural network classifiers
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lines. Additional exploratory trials demonstrated that the meta-heuristic tends to 
improve the best known solution well beyond 5000 generations. 5000 generations is 
however a good trade off between resources and performance.

4.1  Resulting evasion rates from adversarial examples

Constrained adversarial examples were generated using the tuned meta-heuristic and 
tested against the surrogate model and three NIDS models. 100 payloads of infiltra-
tion, slowloris, hulk, and SSH attack types were selected for perturbation. The runt-
ime for each of these 400 trials was approximately four minutes; it was not practical 
to increase the number of trials due to computational resource constraints.

Tables 2, 3, 4 and 5 are provided to convey the success of near optimal adver-
sarial examples against each of the NIDS models in comparison to raw payloads, 
and payloads with a naïve, random perturbation. The randomly perturbed payloads 
were relatively inexpensive to generate, so 500 were generated and tested. The sec-
ond column of Tables 2, 3, 4 and 5 report the percent of payloads for which at least 
one randomly perturbed variation fooled the classifier. The evasion rates for raw 
payloads, randomly perturbed payloads, and near optimally perturbed payloads are 
also visually displayed in Fig. 7 where they are color coded by attack type. The ini-
tial hypothesis was that for any combination of attack type and model, the evasion 
rate would increase as we move from raw, to randomly perturbed payloads, to near 
optimally perturbed payloads. The results convey that this hypothesis is the general 
trend, but not the rule.

Only one raw infiltration packet fooled the surrogate model, and that packet 
also fooled the Adaboost NIDS. 6% of slowloris raw packets fooled the CNN sur-
rogate model; however, none of those specific packets fooled the CNN NIDS. 43% 
of raw slowloris packets fooled the FNN classifier. All classifiers appeared accurate 
against raw hulk and slowloris attacks, with no raw payloads fooling any classifier. 
Raw slowloris packets demonstrated, by far, the greatest average loss when tested on 
the surrogate model and raw slowloris packets were misclassified at the highest rate 
against each classifier. This may be due to the great diversity of the ASCII content in 
slowloris payloads. Although slowloris payloads are well represented in the training 
data, the patterns could be more difficult to capture with the chosen model architec-
tures. Packets that fooled the surrogate model did not always fool the NIDS. One 
raw slowloris packet which was misclassified by the CNN surrogate with a loss of 
4.94 surprisingly did not fool the NIDS of the same architecture.

Table 1  Test accuracy and recall 
is measured on the surrogate 
model and NIDS models 
using data sequestered prior to 
training

Test accuracy Test recall

CNN Surrogate 0.995 0.995
CNN NIDS 0.999 0.999
FNN NIDS 0.994 0.992
Adaboost NIDS 0.987 0.992
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Random, naïve, perturbations were generated for 100 payloads of each attack 
type. Figure  7 shows randomly perturbed packets fooled the surrogate and NIDS 
models at a much higher rate than raw packets. Slowloris packets fooled classifier 
more than any other packet type. At least one of the 500 randomly perturbed solu-
tions fooled the surrogate model for 61% of the 100 slowloris packets. 56% of pack-
ets yielded at least one random solution that fooled the CNN NIDS and FNN NIDS 
while 55% of slowloris packets yielded at least one random solution that fooled the 
Adaboost NIDS. Fewer payloads fooled models with random perturbations for infil-
tration attacks and hulk attacks. Zero randomly perturbed payloads of SSH attacks 
fooled any NIDS. Only one randomly perturbed SSH payload fooled the surrogate. 
The high classification accuracy on SSH packets may be because all SSH payloads 
share nearly identical payloads. Classifiers may learn the class manifold precisely 
and, therefore, detect perturbations at a high rate. The Adaboost NIDS was the most 
robust model to random perturbations for all attack types.

Fig. 6  The cross-entropy of chromosomes is shown for the first 1,000 generations of the meta-heuristic 
is it perturbs the payload of a hulk attack. The suprema and infima of threshold cross-entropy to fool the 
surrogate are shown with a grey dotted line

Table 2  Classification 
performance for infiltration 
raw packets, best performing 
randomly perturbed packets, and 
best performing near optimal 
packets against the surrogate 
and NIDS models

Infiltration

Raw Random Near optimal

% Packets Evade Surrogate 1% 4% 81%
Avg Loss Surrogate 3.88E-02 2.57E-01 3.73E+00
% Packets Evade CNN NIDS 0% 6% 11%
% Packets Evade FNN NIDS 0% 6% 2%
% Packets Evade Aboost NIDS 1% 3% 3%
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Near optimal perturbations were generated for 100 payloads of each attack type. 
The top 50 observed solutions, with respect to the surrogate model, were retained for 
each payload and tested against the NIDS models. These evasion rates are reported 
in Tables 2, 3, 4 and 5 and plotted in Fig. 7. The best known near optimal perturba-
tion fooled the surrogate model with 81% of infiltration attacks, 100% of slowloris 
attacks, 100% if hulk attacks, and 37% of SSH attacks. Near optimal examples trans-
ferred to NIDS classifiers with varying degrees of success. Despite slowlowis and 
hulk perturbations fooling the surrogate model in all instances, only 69% and 37% of 

Table 3  Classification performance for slowloris raw packets, best performing randomly perturbed pack-
ets, and best performing near optimal packets against the surrogate and NIDS models

Slowloris

Raw Random Near optimal

% Packets Evade Surrogate 6% 61% 100%
Avg Loss Surrogate 3.03E-01 4.93E+00 1.44E+01
% Packets Evade CNN NIDS 5% 56% 69%
% Packets Evade FNN NIDS 43% 56% 53%
% Packets Evade Aaboost NIDS 12% 55% 52%

Table 4  Classification performance for hulk raw packets, best performing randomly perturbed packets, 
and best performing near optimal packets against the surrogate and NIDS models

Hulk

Raw Random Near optimal

% Packets Evade Surrogate 0% 13% 100%
Avg Loss Surrogate 4.91E-06 3.77E-01 8.34E+00
% Packets Evade CNN NIDS 0% 12% 37%
% Packets Evade FNN NIDS 0% 12% 0%
% Packets Evade Aaboost NIDS 0% 0% 0%

Table 5  Classification performance for SSH raw packets, best performing randomly perturbed packets, 
and best performing near optimal packets against the surrogate and NIDS models

SSH

Raw Random Near optimal

% Packets Evade Surrogate 0% 1% 37%
Avg Loss Surrogate 1.68E-06 3.11E-02 1.38E+00
% Packets Evade CNN NIDS 0% 0% 0%
% Packets Evade FNN NIDS 0% 0% 0%
% Packets Evade Aaboost NIDS 0% 0% 0%
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payloads produced any perturbation that fooled the NIDS of the same CNN architec-
ture, respectively. Fool rates against the FNN and Adaboost NIDS were lower across 
the board. Only payloads of slowloris fooled all three NIDS with a high degree of 
success, with fool rates against CNN, FNN, and Adaboost at 69%, 53%, and 52%. 
All near optimal SSH payloads failed to fool each NIDS. Many adversarial exam-
ples that appeared very fit to the meta-heuristic transferred well against target NIDS 
classifiers. Among the optimally perturbed payloads of slowloris, there is a 63% 
correlation between CNN surrogate loss and the rate at which perturbations of that 
packet fooled the CNN NIDS. The correlation between surrogate loss FNN fool rate 
is 77%, and the correlation between surrogate loss and Adaboost fool rate is 54%. 
There may also be a connection between number of characters in the payload and 
the rate of fooling each NIDS. The correlation is 0.59, 0.77, and 0.32 for the CNN, 
FNN, and Adboost NIDS. Average payload lengths were similar across attack types. 
These findings confirm the results of the experimental design that perturbing larger 
payloads generates stronger constrained adversarial examples.

The initial hypothesis of this work was that near optimally perturbed payloads 
generated from a CNN surrogate would evade any NIDS at a higher rate than ran-
dom perturbations. The empirical results are more nuanced. The advantage of using 
the near optimal perturbations is best seen when the adversarial examples are tested 
against a NIDS of common architecture. It is evident by comparing % packets that 
fool the surrogate in Tables 2, 3, 4 and 5 that near optimal perturbations are the clear 
choice if the target NIDS is known (or highly expected) to be a CNN and the surro-
gate is also a CNN. Random perturbations are effective against some NIDS because 
they are extremely inexpensive to generate and it is only necessary for one example 
to fool the NIDS. We characterize the random perturbations as a brute force strategy 
that provides value to the attacker and sometimes outperforms the near optimal per-
turbations. In particular, we identify at least one randomly perturbed hulk payload 

Fig. 7  Classification performance is presented for raw packets, best performing randomly perturbed 
packets, and best performing near optimal packets against the surrogate and NIDS models
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to fool the FNN NIDS for 12% of payloads, but the near optimal perturbations of 
hulk payloads are not observed to defeat the FNN NIDS. Among other classifiers 
and attack types, the near optimal payload fools at rates that are similar or much bet-
ter than random perturbations. Ocular inspection of the ASCII suggests that slowlo-
ris payloads are too varied to be well learned by any classifier. The meta-heuristic, 
therefore, stands on weak footing to provide a generalized constrained adversarial 
example that is “best" in all settings. Evasion rates of near optimal perturbations 
slightly underperform random perturbations for the highly varied slowloris attacks. 
On the other extreme, there is no variance among the ASCII content of hulk pay-
loads and minimal variance for SSH. While the surrogate model learns the hulk and 
SSH attack patterns with high confidence, so do the NIDS models. Near optimal 
perturbation of hulk attacks worked well against the CNN NIDS, but did not transfer 
with any success to the FNN and Adaboost models. Despite some success against 
the surrogate, no SSH packet fooled any NIDS.

What is responsible for the underwhelming transferability of fooling packets 
from the CNN surrogate to other models? Firstly, the meta-heuristic always accepts 
perturbations that increase loss with respect to the surrogate. This is shown by the 
monotonically increasing best known solution in Fig.  6. It also follows that con-
strained adversarial examples which fool the CNN surrogate would often fool the 
CNN NIDS because they share a common architecture and joint distribution of 
training data. Existing research found that adversarial examples exist in low prob-
ability regions of the feature space and are consistent across model architectures [6, 
23]. In our case, the CNN architecture is superior to the FNN and Adaboost models 
according to all metrics. Only the CNN captures semantic and temporal informa-
tion in the payloads. The pattern of malicious attacks learned by the CNN is pos-
sibly more nuanced than the other models. Perturbations generated with the CNN 
surrogate drive the example off the learned manifold of the CNN models, but not 
the learned manifold of the FNN and Adaboost models. In general, we expect an 
attack derived from any surrogate model would transfer most effectively to a target 
NIDS of the same architecture as the surrogate. The particulars of transferability are 
difficult to understand because the surrogate and each NIDS are black box models 
and because raw packet detection is state of the art [11, 12]. This work represents 
the first known study of optimally constrained perturbations of malicious packets, 
as opposed to net-flow [4, 5]. Extensive efforts in formal methods and controlled 
experimentation could someday uncover the key to transferability of adversarial 
examples in the cyber domain.

5  Conclusion

Adversarial machine learning based attacks have been used to degrade computer 
vision classifiers; however, it is much more difficult to conduct an adversarial eva-
sion attack on cyber systems. This work is the first to formulate and solve the con-
strained optimization problem to generate an end-to-end adversarial attack in the 
cyber domain, specifically network intrusion detection.
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The performance of constrained adversarial examples generated by substituting 
individual letters is promising, albeit imperfect. Many alternative classes of substitu-
tion are possible assuming a corpus of equivalent alternative units is available. The 
choice of substitutable units should be domain specific and may include objects such 
as commands, lines of code, or changing language.

This work exposes a previously unpublished vulnerability of AI-based NIDS; 
however, it also motivates work towards a solution. We propose that meta-learning 
strategies that combine generative modeling with ensembling techniques may be 
fundamental to ensure that next generation NIDS are robust and resilient against 
conventional cyber attacks and adversarial machine learning attacks. Future work 
will investigate out-of-distribution (novelty) detection and generation for NIDS, as 
well as NIDS that adapt to changing environments.
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