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ABSTRACT 

WEIGH-IN-MOTION DATA-DRIVEN PAVEMENT PERFORMANCE 
PREDICTION MODELS  

 

Mohhammad Afsar Sujon 

The effective functioning of pavements as a critical component of the transportation system 
necessitates the implementation of ongoing maintenance programs to safeguard this significant 
and valuable infrastructure and guarantee its optimal performance. The maintenance, 
rehabilitation, and reconstruction (MRR) program of the pavement structure is dependent on a 
multidimensional decision-making process, which considers the existing pavement structural 
condition and the anticipated future performance. Pavement Performance Prediction Models 
(PPPMs) have become indispensable tools for the efficient implementation of the MRR program 
and the minimization of associated costs by providing precise predictions of distress and roughness 
based on inventory and monitoring data concerning the pavement structure's state, traffic load, and 
climatic conditions. The integration of PPPMs has become a vital component of Pavement 
Management Systems (PMSs), facilitating the optimization, prioritization, scheduling, and 
selection of maintenance strategies. Researchers have developed several PPPMs with differing 
objectives, and each PPPM has demonstrated distinct strengths and weaknesses regarding its 
applicability, implementation process, and data requirements for development. Traditional 
statistical models, such as linear regression, are inadequate in handling complex nonlinear 
relationships between variables and often generate less precise results.  

Machine Learning (ML)-based models have become increasingly popular due to their 
ability to manage vast amounts of data and identify meaningful relationships between them to 
generate informative insights for better predictions. To create ML models for pavement 
performance prediction, it is necessary to gather a significant amount of historical data on 
pavement and traffic loading conditions. The Long-Term Pavement Performance Program (LTPP) 
initiated by the Federal Highway Administration (FHWA) offers a comprehensive repository of 
data on the environment, traffic, inventory, monitoring, maintenance, and rehabilitation works that 
can be utilized to develop PPPMs. The LTPP also includes Weigh-In-Motion (WIM) data that 
provides information on traffic, such as truck traffic, total traffic, directional distribution, and the 
number of different axle types of vehicles. High-quality traffic loading data can play an essential 
role in improving the performance of PPPMs, as the Mechanistic-Empirical Pavement Design 
Guide (MEPDG) considers vehicle types and axle load characteristics to be critical inputs for 
pavement design. 

The collection of high-quality traffic loading data has been a challenge in developing 
Pavement Performance Prediction Models (PPPMs). The Weigh-In-Motion (WIM) system, which 
comprises WIM scales, has emerged as an innovative solution to address this issue. By leveraging 
computer vision and machine learning techniques, WIM systems can collect accurate data on 
vehicle type and axle load characteristics, which are critical factors affecting the performance of 



 

flexible pavements. Excessive dynamic loading caused by heavy vehicles can result in the early 
disintegration of the pavement structure. The Long-Term Pavement Performance Program (LTPP) 
provides an extensive repository of WIM data that can be utilized to develop accurate PPPMs for 
predicting pavement future behavior and tolerance. The incorporation of comprehensive WIM data 
collected from LTPP has the potential to significantly improve the accuracy and effectiveness of 
PPPMs. 

To develop artificial neural network (ANN) based pavement performance prediction 
models (PPPMs) for seven distinct performance indicators, including IRI, longitudinal crack, 
transverse crack, fatigue crack, potholes, polished aggregate, and patch failure, a total of 300 
pavement sections with WIM data were selected from the United States of America. Data 
collection spanned 20 years, from 2001 to 2020, and included information on pavement age, 
material properties, climatic properties, structural properties, and traffic-related characteristics. 
The primary dataset was then divided into two distinct subsets: one which included WIM-
generated traffic data and another which excluded WIM-generated traffic data. Data cleaning and 
normalization were meticulously performed using the Z-score normalization method. Each subset 
was further divided into two separate groups: the first containing 15 years of data for model 
training and the latter containing 5 years of data for testing purposes. Principal Component 
Analysis (PCA) was then employed to reduce the number of input variables for the model. Based 
on a cumulative Proportion of Variation (PoV) of 96%, 12 input variables were selected. 
Subsequently, a single hidden layer ANN model with 12 neurons was generated for each 
performance indicator.  

The study's results indicate that incorporating Weigh-In-Motion (WIM)-generated traffic 
loading data can significantly enhance the accuracy and efficacy of pavement performance 
prediction models (PPPMs). This improvement further supports the suitability of optimized 
pavement maintenance scheduling with minimal costs, while also ensuring timely repairs to 
promote acceptable serviceability and structural stability of the pavement. The contributions of 
this research are twofold: first, it provides an enhanced understanding of the positive impacts that 
high-quality traffic loading data has on pavement conditions; and second, it explores potential 
applications of WIM data within the Pavement Management System (PMS). 
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1. Chapter 1. Introduction 

1.1 Motivation 

The structural stability of the pavement is generally affected by factors such as traffic 

volume, environmental conditions, material properties, and design considerations, with traffic 

loads playing a major role in pavement deterioration resulting from overweight vehicles on the 

road (Salama et al. 2006). An adequate pavement management system is recommended by 

transportation agencies to effectively allot their insufficient resources to optimally preferred 

projects at optimal times and to the most cost-effective maintenance treatments. Predicting the 

future pavement condition accounting for the ambiguity inherently associated with pavement 

condition data while incorporating the positive and negative effects of relevant influential factors 

should facilitate the development of an efficient pavement management system. 

Pavement Performance Prediction Models (PPPMs) are regarded as an essential tool to 

provide an optimal allocation of resources in maintenance activities (Mahmood 2015). These 

models are generated using inventory and monitoring data regarding the state of pavement 

structure, traffic load, and climate conditions. PPPMs can be classified based on their type of 

formulation, conceptual format, application level, and type of variables (Justo-Silva et al. 2021).  

The main advantage of using ML algorithms is the inherent ability to ‘learn’ from historical data-

oriented information fed to it by using computational methods.  

ANN models are artificial intelligence-based ML models suited for solving complex 

problems and can adapt to dynamic environments in real-time. So, ANN provides an excellent tool 

for dealing with the complexity of pavement structures and the inherent non-linearity of the 

measured data (Justo-Silva et al. 2021). In the context of data,  most researchers used only annual 

average daily traffic (AADT) data as traffic input while Mechanistic-Empirical Pavement Design 
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Guide (MEPDG) requires an extensive amount of traffic inputs for design/analysis of pavement 

systems such as vehicle characteristics and axle characteristics (AASHTO 1993; ARA 2004). As 

MEPDG uses analysis software (Pavement-ME) to predict pavement life under different traffic 

loading scenarios. Different traffic distribution patterns considering the overweight and non-

overweight traffic in terms of truck classes and axle load had shown a significant difference in 

pavement performance (Wang et al. 2015). Traffic loading on pavements is generally represented 

by a collection of specific types of vehicles with variations in load magnitude, number of axles, 

and axle configuration considered as an important factor in determining the performance of the 

pavement (Tran and Hall 2007). So, high-quality traffic load data can have a significant impact on 

the accuracy of PPPMs which can produce better predictions about future pavement conditions. 

Weight enforcement plays a significant role in regulating overweight vehicles on the road. 

There is a great concern that overweight vehicles can cause damage to the roadway system and 

significantly reduce the performance and service life of the pavement. Trucks circulating 

excessively overloaded on some roads in Colombia resulted in accelerated deterioration of the 

pavement structures in terms of fatigue, cracks, and ruts (Fuentes et al. 2012). Moreover, 

overloaded trucks can result in more traffic accidents and loss of properties and lives (Zhang et al. 

2020). Typically, weigh stations are operated to impose weight enforcement. However, overweight 

trucks around these stations frequently seek to avert weigh stations due to loss of trucking time, 

possible hassles, and fines (Taylor et al. 2000).  WIM can serve as a weight measurement device 

for vehicles moving at high speeds and reduce needless stops and delays implanted with a stronger 

invasive type of control enforcement. Further, WIM can cooperate in the process of generating 

innovative programs to deal with pavement management issues with high-quality data collection 

(Khalili et al. 2022).  
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Little work assessed the importance of high-quality traffic load data for developing PPPMs, 

due to the unavailability of detailed traffic load data and the complexities in collecting high-quality 

traffic data on highways. This research hypothesized that high-quality traffic load data collected 

through WIM has an immense potential to understand the detailed traffic loading process. Prudent 

analysis of the collected high-quality traffic load data can support the development of a 

sophisticated pavement performance prediction process. Therefore, this research proposed 

developing PPPMs to better predict the pavement’s condition. For this purpose, a set of novel 

PPPMs were developed utilizing a dataset developed by combining WIM data along with other 

types of data from LTPP. After cleaning and processing the data, supervised ANN-based PPPMs 

will be developed utilizing these data for better prediction of specific performance indicators. 

1.2 Research Objectives 

To achieve the goal of developing WIM data-focused PPPMs, this research work aimed to 

explore the applicability of machine learning techniques using WIM-generated high-quality traffic 

load data with other required data collected from the Long-Term Pavement Performance Program 

(LTPP) for developing PPPMs. Leveraging the application of the data collected from the WIM 

systems in the United States of America and utilizing traffic characteristics information such as 

vehicle type to understand the impacts on the improvement of the performance of the PPPMs. The 

development of PPPMs is aimed to predict the condition of the pavement in terms of the 

International Roughness Index (IRI), cracking, rutting, potholes, and patch failure utilizing 

machine learning techniques so that model-generated information can be exploited for further 

research. The overarching goal of the current research is to develop pavement performance models 

that support enhanced pavement management systems assisting accurate prediction of pavement 
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conditions and effectively allocating the limited resources of highway agencies to maintain 

pavements in the desired condition.  

1.3 Research Overview 

The general framework for the two research objectives of the current research is shown in 

Figure 1.1. First, the distress types of the flexible pavement and factors affecting the condition of 

the pavement were investigated through a literature study to understand the significance of 

pavement condition and find the limitations of current available PPPMs. After identifying the 

limitations, the potential of WIM for collecting high-quality traffic load data was investigated by 

understanding the technologies and techniques associated with the development and data 

generation process of WIM. Later, to understand the need for better prediction of the pavement 

condition, available pavement evaluation models and techniques that are most suitable for the 

selection of appropriate pavement performance prediction models based on the effects of traffic, 

climate, and other factors were analyzed.  

After analysis, machine learning algorithm-based Artificial Neural Network (ANN) 

models were developed to build pavement performance prediction models based on collected and 

processed LTPP data. The development of PPPMs was implemented into an executable computer 

program using standard Python programming language. The results of the developed PPPMs were 

evaluated against the real pavement condition of the LTPP sections for understanding their 

performance.  
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 Figure 1.1: Overall framework of the research 

 

1.4  Organization of Dissertation 

In Chapter 1, the motivation, the overall objective, the specific objectives, and the research 

overview has been discussed.  

In Chapter 2, the current state of pavement performance prediction models has been 

assessed to understand their limitations. In addition, the key aspects of WIM systems were 

Weigh-In-Motion Data-Driven Pavement Performance Prediction Models  

 

Development of pavement performance prediction models 

ANN based prediction model

Data collection and processing

LTPP data collection Processing data

Selection of pavement performance prediction models

Investigate pavement evaluation models ANN based models selection

Literature study

Pavement performance and prediction 
models Potential of WIM generated traffic data
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evaluated to leverage the potential applications of high-quality traffic load data generated from 

these systems.    

In Chapter 3, the overall methodology of the development of PPPMs with the process of 

data collection and processing to make them appropriate to be utilized for predicting pavement 

conditions was discussed. 

In Chapter 4, the detailed development process of ANN-based PPPMs utilizing the LTPP 

data with analysis of results was presented to discuss their performance in the prediction of 

pavement conditions.  

In Chapter 5, a general discussion based on the findings of the study and recommendations 

has been provided. Limitations, future extensions, conclusions, and key contributions of the study 

are also discussed in this chapter. 
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2. Chapter 2. Background Study 

2.1 Flexible Pavement Condition and Distresses 

Pavement systems are constructed to facilitate vehicles’ smooth movement over the surface 

and provide safe passage under diverse climates with adequate serviceability performance. There 

are three general types of pavement are constructed and they are classified based on their 

construction materials or surface types specifically flexible or Asphalt, rigid (Portland Cement 

Concrete, PCC), and composite (Asphalt and PCC). The basic components of the typical flexible 

pavement system are presented in Figure 2.1. 

 

Figure 2.1: Flexible pavement system’s basic component (Christopher et al. 2006) 

Flexible pavements are constructed using asphalt concrete that is placed over base layers 

and subgrade layers. High-quality hot mix asphalt (HMA) is used for the construction of the 

asphaltic surface layer, otherwise, the strength and stiffness of the layer will be lower. The stability 

and rigidity of the flexible pavements heavily rely on the strength of underlying unbound layers 

that supplement the load-carrying capability of the asphaltic surface layer. Rigid pavements 

usually consist of a Portland cement concrete layer that spread over the subgrade layer with or 

without the existence of an intermediate base layer. Composite pavements are the outcomes of the 
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pavement reconstruction process where the damaged asphalt concrete layer is restored by Portland 

concrete and vice versa. For flexible pavements, the uniform stresses and nonuniform deflections 

transfer through the flexible layer whereas, for rigid pavements, this process is carried by the rigid 

layer. For the improvement of resistance to environmental factors, sometimes seal coats are 

applied.  

Based on the ‘Distress Identification Manual for the Long-Term Pavement Performance 

Program (Fifth Revised Edition)’ (S. Miller and Y. Bellinger 2014), common distress in flexible 

pavements are categorized into five groups: 1) cracking, 2) patching, and potholes, 3) surface 

deformation, 4) surface defects, and 5) miscellaneous distresses. Cracking is subcategorized as 

fatigue (alligator) cracking, block cracking, edge cracking, longitudinal cracking, and transverse 

cracking. Surface deformation is also divided into rutting and shoving. Surface defects are 

subcategorized as bleeding, polished aggregate, and raveling. The data collected for distress 

conditions are categorized into three severity levels: low, medium, and high. Moreover, the 

severity level of the crack is a function of the crack opening, which is susceptible to the pavement 

temperature at the time of data collection. Thus, the crack opening can be considered as “high 

severity” in one year and “medium severity” in the next year, and vice versa (Baladi et al. 2017). 

Table 2.1 showed the distress types in the flexible pavement.  
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Table 2.1: Flexible pavement distress types (S. Miller and Y. Bellinger 2014) 

Distress 

Area of distress/measurement area 
Define 

severity levels 
Category Type 

Cracking 

Fatigue (alligator) 

cracking 
Square meters Yes 

Block cracking Square meters Yes 

Edge cracking Meters Yes 

Longitudinal 

cracking 
Meters Yes 

Transverse 

cracking 
Number, meters Yes 

Patching and 

Potholes 

Patch/patch 

deterioration 
Number, square meters Yes 

Potholes Number, square meters Yes 

Surface 

Deformation 

Rutting Millimeters No 

Shoving Number, square meters No 

Surface Defects 

Bleeding Square meters No 

Polished aggregate Square meters No 

Raveling Square meters No 
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The descriptions of the major flexible pavement distress types are presented as follows (S. 

Miller and Y. Bellinger 2014): 

1) Fatigue (alligator) Cracking:  This type of cracking commonly appears in specific areas that 

experience repeated traffic loadings, and the crack can form an interconnected series at the 

initial stages of development. Cracks can be expanded into many-sided, sharp-angled pieces 

that are typically less than 0.3 meters on the longest side, and alligators' skin or chicken wire 

appear in later stages. For this, fatigue crack is also referred to as alligator cracking. 

 

Figure 2.2: Fatigue (Alligator) Cracking in flexible pavements (Shatnawi 2008) 

2) Block Cracking: This type of cracking shows a pattern of cracks dividing the pavement into 

rectangular pieces. The size of the rectangular block ranges from 0.1-meter square to 11-meter 

square.  

 

Figure 2.3: Block Cracking in flexible pavements (Shatnawi 2008) 
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3) Edge Cracking: This type of cracking builds up in the shape of crescents. Edge Cracking is 

typically located within 0.6 meters of the pavement edge that borders the unpaved shoulder. 

There are longitudinal cracks outside of the wheel path and within 0.6 meters of the pavement 

edge in this type of cracking. 

 

Figure 2.4: Edge Cracking in flexible pavements (Shatnawi 2008) 

4) Longitudinal Cracking: This type of cracking is developed parallel to the pavement centerline 

and mostly takes place within the lane (both wheel path and non-wheel path). The level of the 

crack in width: low ≤ 6 mm, moderate > 6 mm and ≤ 19 mm, and high > 19 mm.  

 

Figure 2.5: Longitudinal Cracking in flexible pavements (Shatnawi 2008) 
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5) Transverse Cracking: This type of crack is formed perpendicular to the pavement centerline. 

The level is the same as the longitudinal crack. Transverse cracking is formed typically for 

thermal stress on the pavement.  

 

Figure 2.6: Transverse Cracking in flexible pavements (Shatnawi 2008) 

6) Patch/patch deterioration: This type of distress appeared when the portion of the pavement 

surface greater than or equal to 0.1 m2 is removed and replaced or additional material is applied 

after the original construction of the pavement. The levels of severity are classified as low < 6 

mm, moderate 6 to 12 mm, and high > 12 mm. Patch failure occurs due to heavy traffic and 

low-quality construction. Distresses that take place in the patched area affect the severity level 

of the patch. 

 

Figure 2.7: Patch Failure in flexible pavements (Shatnawi 2008) 
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7) Potholes: Distress type appeared as bowl-shaped holes formed in assorted sizes on the 

pavement surface. The dimension for the minimum plan is 150 mm as circular potholes should 

have a minimum diameter of 150 mm. The level of severity is defined as < 25 mm deep for 

low, 25 to 50 mm deep for moderate, and > 50 mm deep for high. 

 

Figure 2.8: Potholes in flexible pavements (Shatnawi 2008) 

8) Rutting: The longitudinal surface depression that develops in the wheel paths of flexible 

pavement is a result of this type of deformation. It may have had an associated transverse 

displacement. 

 

Figure 2.9: Rutting in flexible pavements (Shatnawi 2008) 
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9) Shoving: There is a longitudinal displacement of the pavement surface defying this type of 

deformation. It can be caused by braking or speeding vehicles and is usually located on hills 

or curves. It is possible that it also has vertical displacement.  

 

Figure 2.10: Shoving in flexible pavements (Shatnawi 2008) 

10) Bleeding: Excess bituminous binder on the pavement surface caused this type of surface defect. 

It is possible to create a shiny, glass-like reflective surface that is tacky to the touch. It's usually 

found in the wheel paths. 

 

Figure 2.11:  Bleeding in flexible pavements (Shatnawi 2008) 

11)  Polished Aggregate: This distress is formed by wearing away the surface binder exposing the 

coarse aggregate of the pavement. The degree of polishing may be reflected in a reduction of 
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surface friction. Polished aggregates are not rated on the test sections that have received a 

preventive maintenance treatment that has covered the original pavement surface. 

 

Figure 2.12: Polished Aggregate in flexible pavements (Shatnawi 2008) 

12) Raveling: Distress type produced by disintegration of the pavement surface resulting from 

aggregate particles displacing and asphalt binder loss. The range of raveling is calculated based 

on fine aggregate to some coarse aggregate loss and eventually forms an extremely rough and 

pitted surface produced by the loss of aggregates. 

 

Figure 2.13: Raveling in flexible pavements (Shatnawi 2008) 

In addition to these distress types, pavement condition is also evaluated based on pavement 

roughness or riding quality. Pavement roughness is a measurement of pavement distortion of 
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longitudinal profile negatively affecting the comfort level of the vehicle’s user. Pavement 

roughness, as defined by ASTM Standard E867, is ‘‘the deviations of a pavement surface from a 

true surface with characteristic dimensions that affect vehicle dynamics, ride quality, dynamic 

loads, and drainage’’(Yeganeh et al. 2019). It is an extremely important indicator of pavement 

condition as it affects not only the quality of the ride but also causes extra fuel consumption, delay 

cost, and additional vehicle maintenance cost (Gong et al. 2018). The International Roughness 

Index (IRI) is used to indicate pavement roughness using the average rectified slope (accumulated 

suspension motion to distance traveled), as derived from a mathematical model of a standard 

quarter car passing over a measured profile at a speed of 50 mph (Ozbay and Laub 2001). 

Predicting the progression of roughness during pavement life is important for PMS decision-

making.  

The degradation of pavements and their concomitant failures constitute a vital concern for 

the management of transportation infrastructure, with a myriad of factors being known to 

contribute to this process. These factors can be broadly classified as either intrinsic or extrinsic, 

and their effect on the pace of pavement deterioration can be considerable. Intrinsic factors pertain 

to the inherent characteristics of the natural constituents contained within the pavement materials 

utilized during the construction stage, and these may manifest in a diversity of forms, including 

plastic deformation, cracking, fatigue, or the structural configuration of the pavement. For 

instance, the thickness of individual layers can exert a significant influence on the performance of 

the pavement structure, and it can also impact stress distribution, thereby resulting in pavement 

failure (Park and Kim 2019). 

Numerous antecedent investigations have delineated a range of factors that impinge upon 

the degradation of pavement performance. These studies have scrutinized the impact of individual 
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factors and have ascertained that pavement age constitutes the most statistically significant 

variable for prognosticating pavement performance. Age-related factors, such as environmental 

exposure, traffic load, and maintenance history, can lead to the deterioration of pavement structure 

over time. Moreover, the interplay between intrinsic and extrinsic factors can engender intricate 

pavement behavior, thereby impeding precise forecasts of pavement performance. Therefore, a 

comprehensive grasp of the fundamental factors that contribute to pavement deterioration is 

indispensable for the effective management and upkeep of pavements (Abaza 2004; Kim and Kim 

2006; Rajagopal 2006). Ahmed et al. (2016) used traffic loading and climate conditions to predict 

pavement deterioration. Subgrade resilient modulus (Abaza 2004; Hong and Somo 2001), 

pavement treatment expenditure (Montgomery et al. 2018), and construction quality (Rose et al. 

2018) are variables that were used to predict pavement performance. Figure 2.14 presents common 

factors affecting pavement conditions (Plati 2019). 

 

Figure 2.14: Common factors affecting pavement condition (Plati 2019) 
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2.2 Pavement Performance Prediction Models 

To competently manage pavement structures, encompassing project planning, design, 

construction, maintenance, and rehabilitation, transportation agencies must adopt a methodical 

approach. Because of the constraints on maintenance budgets and the escalating number of 

infrastructure elements concluding their design life, cost-effective maintenance strategies are 

gaining traction for infrastructure asset management. This includes preserving the condition of 

pavement at a satisfactory level that is commensurate with the demands of traffic while 

concurrently mitigating environmental pollution throughout its service life (Babashamsi et al. 

2016). Pavement management systems (PMS) assume a vital function in adopting cost-effective 

strategies after comprehending the extant conditions of pavement structures. As expounded upon 

in the preceding segment, the conditions of pavement structures are typified by surface 

deformation, roughness/riding quality, cracking, surface friction (skid resistance), or faulting. 

Owing to the constraints of extant pavement condition prognostication practices, prognosticating 

distresses based on continually amassed traffic and climatic data via sensors can serve as a cost-

effective technique for data collection that can explicate the deterioration process of pavements. 

Acknowledging its significance as an integral component of PMSs can support dynamic and 

economical management. To predict pavement conditions, pavement performance prediction 

models (PPPMs) can constitute an approach for developing cost-effective strategies in PMS. 

Discerning the potential of PPPMs, these models are employed for the subsequent objectives 

(Kargah-Ostadi et al. 2019): 

 The utilization of pavement performance prediction models (PPPMs) can enable the 

prediction of both the present and future conditions of pavements. The resultant data is then 

used to plan, prioritize, schedule, optimize, and select appropriate maintenance treatments. 
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  Subsequently, the impacts of planned maintenance treatments are analyzed by 

prognosticating the pavement's future condition. Additionally, the cost associated with the 

pavement's life cycle under different maintenance scenarios can be estimated. 

 The assessment of pavement structure conditions utilizing data generated from sensors 

constitutes a pivotal aspect of the pavement management system. In this context, pavement 

performance prediction models (PPPMs) are regarded as mathematical functions that are 

commonly employed to predict the performance of pavements by establishing a correlation 

between pavement conditions (such as cracking and rutting) and a set of explanatory variables 

(including traffic loadings, age, environmental factors, and pavement design characteristics). By 

leveraging these models, transportation agencies can anticipate potential pavement distresses, 

thereby facilitating the implementation of appropriate maintenance strategies cost-effectively. This 

underscores the importance of PPPMs as a key component in the overall pavement management 

system. Details of the classification are presented in Figure 2.15 according to  (Marcelino et al. 

2021): 

 

Figure 2.15: Classification of Pavement Performance Prediction Models (Marcelino et al. 2021) 
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Although machine learning (ML) and statistics employ similar methods, they differ in their 

underlying objectives. While statistics are primarily concerned with concluding data that has 

already been collected, machine learning seeks to develop algorithms and models that can be 

applied to new, previously unseen datasets to make accurate predictions. Therefore, the 

fundamental goals of these two fields are distinct, despite their methodological similarities 

(Damirchilo et al. 2021). Machine learning (ML) algorithms utilize computational techniques to 

learn from historical data or prior experiences, and their performance improves as more training 

data is incorporated. Through the analysis of large datasets, these algorithms can detect underlying 

patterns and use this knowledge to make accurate predictions. Machine learning models can be 

classified into three primary categories:  

 Supervised learning—can be used for project-level or network-level pavement 

management. 

• Unsupervised learning—can be used for exploratory and clustering analysis. 

• Reinforcement learning—can be used to help decision-makers for both project- and 

network-level pavement management. 

According to Justo-Silva et al. (2021), a summary of the machine-learning algorithms is 

presented in Figure 2.16.  

 

Figure 2.16: Summary of machine learning algorithms (Justo-Silva et al. 2021) 
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 Supervised learning is a type of machine learning that involves the use of input and output 

data to build a model capable of making predictions. In the context of project management where 

the goal is to predict a continuous output or target variable, regression machine learning techniques 

are employed. Linear regression, neural networks, decision trees, and adaptive neural-fuzzy 

learning are some of the most used regression models. Linear regression models express the 

relationship between the response variable and one or more predictor variables in a linear fashion, 

which makes them easy to understand and train. As a result, they are often used as the initial model 

for new datasets. Nonlinear regression is a statistical method used to model relationships in data, 

with "nonlinear" referring to the fact that the fitness function is nonlinear concerning the 

parameters. Nonlinear regression is best suited for datasets with strong nonlinear trends that cannot 

be easily transformed into a linear space. Gaussian process regression models are used to predict 

the value of a continuous response variable and are frequently used in spatial analysis when 

uncertainty is present. Support vector machine (SVM) regression is a variant of SVM classification 

that is adapted to predict a continuous response variable. Instead of finding a hyperplane that 

separates the data, SVM regression models identify a model that deviates from the observed data 

by no more than a predetermined amount, with parameter values that are as small as possible 

(Justo-Silva et al. 2021). 

 In machine learning, classification algorithms are utilized when the objective is to predict 

a categorical or discrete output. Common classification algorithms include Logistic Regression, 

Decision Trees (bagged and boosted), Support Vector Machine (SVM), K-Nearest Neighbor 

(KNN), Neural Networks, Naïve Bayes, and Discriminant Analysis. Logistic Regression is a 

simple algorithm that predicts the probability of a response belonging to one class or another and 

is often used for binary classification problems. K-Nearest Neighbor (KNN) assigns categories to 
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objects based on the classes of their nearest neighbors in the data set. SVM finds the linear decision 

boundary that separates all data points of one class from those of the other class. The optimal 

hyperplane is the one with the largest margin between the two classes when the data is linearly 

separable. If the data is not linearly separable, a loss function is used to penalize points on the 

hyperplane's wrong side. Neural Networks consist of interconnected networks of neurons and 

iteratively adjust the strengths of the connections to map inputs to the correct response. This 

algorithm is best used for updating the model regularly when data is available, and model 

interpretability is not a key concern. Naïve Bayes assumes that the presence of a particular feature 

in a class is independent of the presence of any other feature. Discriminant Analysis is employed 

to identify features by assuming that different classes generate data. The decision tree algorithm 

predicts responses by following the tree's decisions from root to leaf, and the values of weights 

and the number of branches are determined during the training process (Justo-Silva et al. 2021). 

 Unsupervised learning is a potent methodology for discovering patterns and extracting 

insights from data, especially for exploratory data analysis and clustering. Various learning 

techniques are available, including Hierarchical clustering, K-means and k-medoids, Hidden 

Markov models, and Fuzzy c-means. Clustering methods group data points based on a distance 

metric, and can be useful for hypothesis development, modeling smaller subsets of data, data 

reduction, and identifying outliers, even when the goal is supervised learning. Clustering 

algorithms can be categorized as either hard clustering, in which each data point belongs to a single 

cluster, or soft clustering, in which each data point may belong to multiple clusters. K-Means is a 

hard clustering algorithm that divides data into a pre-determined number of mutually exclusive 

clusters based on the distance of each data point to the center of its assigned cluster. K-Medoids 

are comparable to K-Means but necessitate that the cluster centers correspond to actual data points, 
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making it suitable for quick clustering of categorical data and scaling large data sets. Hierarchical 

Clustering generates nested clusters by analyzing similarities between pairs of data points and 

grouping them into a binary, hierarchical tree. This method is particularly useful when the number 

of clusters in the data is unknown in advance, and when visualization is needed to guide selection. 

Finally, Fuzzy c-Means is a soft clustering algorithm that enables data points to belong to more 

than one cluster, making it a valuable tool when clusters overlap, and the number of clusters is 

known. Gaussian Mixture Model is used when data points originate from different normal 

distributions with varying probabilities (Justo-Silva et al. 2021). 

 Reinforcement learning is a data-driven approach that focuses on dynamic environments, 

where the objective is to identify the optimal sequence of actions that will maximize long-term 

rewards. This involves the agent or algorithm learning from the environment to develop the best 

policy. Reinforcement learning can be classified into two main categories: Model-based and 

Model-free reinforcement learning, both of which offer distinct advantages and disadvantages. 

Model-based reinforcement learning employs a model of the environment, which is used to 

simulate the outcomes of different actions, whereas Model-free reinforcement learning does not 

use a model and instead relies on direct experience with the environment. 

2.3 Previous Work on Pavement Performance Prediction Models 

 Data mining techniques are gaining popularity because of their ability to overcome the 

drawbacks of traditional methods because they can yield more reliable and satisfying results in 

pavement engineering (Ashtiani et al. 2018; Bianchini and Bandini 2010; Kaur and Datta 2007; 

Nemati and Dave 2018; Nitsche et al. 2014). Data mining can show hidden relationships between 

input and output variables through the methods of randomizations, clustering, resampling, 

recursion, visualization, and visualization. Solatifar and Lavasani (2020) and Nian et al. (2022) 
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demonstrated that neural networks can be used to calculate the contribution of material and 

construction variables to pavement performance.  

Numerous investigations have been undertaken in the domain of pavement performance 

modeling, encompassing a range of factors that impinge upon pavement durability. However, the 

majority of extant models have encountered formidable obstacles, such as the intricacies of 

handling numerous input variables, limitations in the accessibility of certain variables, and 

interdependence between the variables themselves (Kargah-Ostadi and Stoffels 2015). Recently, 

ANN models have been widely used to simulate the biological nervous systems in the human brain. 

The biological nervous system contains billions of neuron cells, and each neuron receives inputs 

from other neurons, processes them by a transfer function, and sends its output to the next layer 

(Mehta et al. 2008). 

ANN models use data to build prediction models. An ANN can be defined as, “A 

computational mechanism with an ability to acquire, represent, and compute mapping from one 

multivariate space of information to another, given a set of data representing that mapping” (Rafiq 

et al. 2001). ANN techniques can solve complex problems because of the capability of 

interconnecting neurons between layers to achieve the computation of large data volumes (Basheer 

and Hajmeer 2000). Engineers often are faced with incomplete or noisy data, so ANN models may 

be the most appropriate models for recognizing meaningful relationships from data patterns to 

solve a particular problem (Rafiq et al. 2001).  Zhang et al. (1998) reported that ANN models can 

predict nonlinear relationships between variables as well as traditional models that are usually used 

to predict these relationships. 

ANN models have been widely used in different civil engineering areas with good results 

because they are accurate and convenient (Karlaftis and Vlahogianni 2011). Adeli (2001) 
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conducted a review of the neural network model literature from 1989 to 2000, with a focus on 

structural engineering, construction engineering, and management, and reported that ANN models 

are suitable for modeling complex problems. ANN models can be employed for evaluating current 

and predicting future pavement conditions as well as for assessing maintenance needs and selecting 

maintenance strategies (Yamany et al. 2020). 

Other, more recent studies have shown the robustness of ANN models compared to 

regression models. For example, the comparison between ANN and autoregressive time series 

models for forecasting freeway speeds showed that neural networks provide more accurate 

predictions than classical statistical approaches (Vlahogianni and Karlaftis 2013). Golshani et al. 

(2018) compared the prediction capabilities of traditional statistical models and neural network 

models for modeling two critical trip-related decisions related to travel mode and departure time 

Their results show that the neural network models offered better performance with an easier and 

faster implementation process. Felker et al. (2004) reported that the ANN models provided a high 

R2 in predicting roughness for jointed Portland cement concrete pavements with R2 = 0.90, while 

the statistical analysis approach yielded R2 = 0.73 (2004). In Kargah-Ostadi et al. (2010), the ANN 

model also performed successfully in predicting IRI values using complex input variables. ANN 

models also have been used to predict the cracking index for Florida’s highways and were found 

to be more accurate than an autoregressive model (Lou et al. 2001). 

Further, Attoh-Okine (1994) reported two benefits of using ANN over more traditional 

statistical prediction models: ANN models can handle unseen data and generalize results and they 

can solve complex problems because of their massive parallelism and strong interconnectivity. 

The literature indicates that researchers have used ANN models to predict pavement performance 

since at least the 1990s and that ANN pavement performance models are powerful modeling tools. 
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However, most of the existing studies in predicting pavement performance have focused on a 

specific pavement type at the project management level. Further, many models have not included 

all the parameters that might impact pavement performance because of a lack of data, and many 

previous studies do not quantify the impact of input variables such as weather conditions on the 

ANN model predictions. Table 2.2 presents some of the existing machine learning-based pavement 

performance prediction models. 

Table 2.2: Machine Learning-based Pavement Performance Prediction Models 

Study identification Models used Pavement type Data source 

(Abdelaziz et al. 

2020) 
ANN, LR Flexible LTPP 

(Bayrak et al. 2004) ANN Rigid LTPP 

(Chandra et al. 2013) ANN, NLR Flexible Field Data (India) 

(Choi and Do 2020) ANN, MLR Flexible LTPP 

(El-Hakim and El-

Badawy 2013) 
ANN, MEPDG Rigid LTPP 

(Georgiou et al. 2018) ANN, SVM NA Field Data (Greece) 

(Gong et al. 2018) RF, RR Flexible LTPP 

(Hossain et al. 2020) ANN Rigid LTPP 

(Kargah-Ostadi and 

Stoffels 2015) 
ANN, SVM Flexible LTPP 

(Lin et al. 2003) ANN Flexible Field Data (Taiwan) 

(Marcelino et al. 

2021) 
RF NA LTPP 
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(Marcelino et al. 

2020) 
RF Flexible 

LTPP and Portuguese 

Road Administration 

Database 

(Mazari and 

Rodriguez 2016) 
ANN Flexible LTPP 

(Ozbay and Laub 

2001) 
ANN Flexible LTPP 

(Sollazzo et al. 2017) ANN, LR Flexible LTPP 

(Yamany et al. 2020) ANN, LR, RPR Flexible LTPP 

(Zeiada et al. 2020) 
ANN, SVM, LR, 

QLR, PLSR 
Flexible LTPP 

(Ziari et al. 2016) SVM Flexible LTPP 

(Ziari et al. 2016b) ANN Flexible LTPP 

Note: ANN = artificial neural network; LR = logistic regression; MLR = multiple linear 

regression; RF = random forest; RR = ridge regression; RPR = random parameter regression; 

QLR = quadratic linear regression; PLSR = partial least square regression; SVM = support 

vector machine; SM = sigmoid model; NA = not available; LTPP = Long term pavement 

performance 

 

ANN has also been implemented in probabilistic performance modeling. Abdelaziz et al. 

(2020) used ANN models to estimate the probability that a given level of roughness will occur in 

the future in bituminous pavements. The models are based on historical pavement condition data 

and specific data on structural, traffic, and climatic conditions. The output variables are binary; 

one if the pavement exists within a given roughness level and zero if the pavement is in any other 

distress level. The success of ANN is contrasted against traditional multiple regression techniques. 
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However, the binary nature of the response variable creates difficulty for regression analysis that 

gives the comparison little relevance. 

Some advantages of using ANN in pavement performance prediction can be listed as 

follows (You et al. 2020): 

 There is no requirement for the prior specification of the model form as in the regression 

techniques. 

 Many explanatory input variables are dependent on each other, which will result in a 

combinatorial explosion in regression techniques; however, ANN can manage these 

complex interactions and nonlinear patterns within the data.  

 It has been proven in previous studies (Ghasemi et al. 2018) that ANN can accommodate 

noisy field data by filtering out the noise and extracting useful information for pattern 

recognition. 

 Once successfully trained, ANN is simple and fast to use. 

The following limitations are also noteworthy (You et al. 2020): 

 The ANN training process can be computationally intensive, and the use of traditional 

Backpropagation can cause premature convergence. Therefore, either repeated training 

with different seed values should be conducted, or other training methods should be 

implemented. 

 Similar to regression equations, ANN performance predictions are only valid within the 

range of the data used for training, and extrapolation is not recommended. 

 Unlike regression equations, the ANN pavement performance model is not amenable to 

 the physical interpretation of cause-and-effect relationships. In other words, variability in 

input parameters would not directly explain any parts of the variability in the output. 
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2.4 Architecture of Artificial Neural Network 

  Artificial neural networks are a subcategory of mostly applied machine learning 

techniques while others include support vector machines (SVM), Bayesian networks, inductive 

logic programming, decision trees, and radial basis functions (RBF) among others. Computational 

intelligence techniques include machine learning techniques primarily used for getting definitive 

information from large sets of data. Machine learning techniques can be used for pattern 

recognition, classification, regression, and prediction (Marcelino et al. 2021). ANN, SVM, and 

Kohonen self-organizing networks are popular machine-learning techniques for classification 

problems (Yuan et al. 2010). Recurrent Neural networks, association rule learning, and logic 

programming are some of the methods used for prediction. For regression purposes which are more 

broadly function regression such as function approximation applications, radial basis function 

networks, support vector machines, Bayesian networks, feed-forward and cascade-forward neural 

networks, and decision trees are the most often used ML techniques. 

 Artificial neural networks are similar to biological neural networks and consist of a large 

number of simple processors with many interconnections. ANN models try to use organizational 

principles that are believed to be used in the human brain and it is necessary to face challenging 

problems such as pattern recognition, function approximation, prediction, control, etc. 

(Yegnanarayana 2009). According to (Da Silva et al. 2017), an ANN is similar to the brain in two 

ways: 1) the network acquires knowledge through a learning process, and 2) synaptic weights are 

used to store knowledge. Artificial neurons are the basic processing elements of neural networks. 
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Figure 2.17: Mammalian neuron (Abraham 2005) 

A mathematical framework exists that simplifies the complexity of neuronal behavior, 

whereby synapses' impact on input signals is expressed through connection weights, and a transfer 

function encapsulates the characteristic shown by neurons. The transformation of the weighted 

sum of input signals into a neuron impulse is achieved via the transfer function. An artificial 

neuron's ability to learn can be realized by adjusting the connection weights to optimize the transfer 

function. This mathematical abstraction has supplied a foundation for the development of neural 

networks that are capable of learning and performing a wide range of tasks. A typical artificial 

neuron and the modeling of a multilayered neural network are illustrated in Figure 2.18. Referring 

to Figure 2.18, the signal flow from inputs 𝑋 , . . ., 𝑋  is unidirectional, which is shown by arrows, 

as is a neuron’s output signal flow (O). The neuron output signal O is given by the following 

relationship: 

0 = 𝑓(𝑛𝑒𝑡) = 𝑓 ∑ 𝜔 𝑥                                                   (2.1) 

where 𝑤  is the weight vector, and the function f(net) is referred to as an activation (transfer) 

function. The variable net is defined as a scalar product of the weight and input vectors, 

𝑛𝑒𝑡 =  𝜔 𝑥 =  𝜔 𝑥 + …. + 𝜔 𝑥     (2.2) 
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where T is the transpose of a matrix, and, in the simplest case, the output value O is computed as  

0 =  𝑓(𝑥) =
1, 𝑖𝑓 𝜔 𝑥 ≥  𝜃
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (2.3) 

where θ is called the threshold level; and this type of node is called a linear threshold unit. 

The fundamental architecture of an artificial neural network (ANN) typically consists of 

three types of neuron layers, namely the input, hidden, and output layers. Data flows from the input 

layer to the output layer in a unidirectional feed-forward manner, where feedback connections do 

not exist between units. Recurrent networks incorporate feedback connections, making the 

dynamic properties of the network more essential than feed-forward networks. The activation 

values of the units can undergo a relaxation process, leading to a stable state with unchanging 

activations. In other applications, the changes in the output neuron's activation values can be 

significant, making the dynamical behavior the network's output (Ghosh et al. 2020). 

To cater to the requirements and properties of diverse applications, there are various neural 

network architectures such as Elman networks, adaptive resonance theory maps, and competitive 

networks, among others. To ensure that an ANN produces the desired outputs for a given set of 

inputs, the network must be configured suitably. There are several methods for setting the 

connection weights, including setting them explicitly based on prior knowledge or training the 

network by feeding it teaching patterns and allowing it to change its weights (Maind and Wankar 

2014). There are three distinct learning paradigms that neural networks can engage in, namely 

supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, 

the network is presented with a set of input and desired output pairs, and the output layer includes 

one node per response. Following a forward pass through the network, discrepancies between the 

actual and desired output are evaluated. Based on a prescribed learning rule, these discrepancies 

are used to determine appropriate weight changes in the network (Abraham 2005). 



32 
 

 

(a) Artificial neuron 

 

Figure 2.18: The architecture of (a) An Artificial Neuron and  

(b) Multilayered Artificial Neural Networks (Maind and Wankar 2014) 

 The perceptron rule, delta rule, and backpropagation algorithm represent exemplary 

implementations of the supervised learning approach. Self-organization is a mechanism wherein 

an output unit is taught to respond to patterns that form clusters within the input data. This process 

involves the identification of statistically noteworthy features of the input population without a 

pre-established set of categories. The reinforcement learning approach revolves around developing 

the ability to map situations to actions that optimize a numerical reward signal. Unlike most 

machine learning paradigms, the learner is not informed of which actions to take but instead 

discovers which actions lead to the highest reward by trial and error. This approach is particularly 
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challenging when actions influence both the immediate reward and the next situation. Crucial 

aspects of reinforcement learning include trial and error search and delayed reward (Van Gerven 

and Bohte 2017). 

One of the most used networks is the backpropagation artificial neural network. They can 

be learned to copy from one data space to another using a representative set of examples (Duddu 

et al. 2020). There are two external layers (input and output) and one or more hidden layers in a 

backpropagation neural network. The network gets data in neurons from the input layer. The 

network's result is given by the network's output layer (Amin 2020). The hidden layers look at the 

interdependencies in the model and process the information. Before learning, it is necessary to 

define the input and output variables and collect the data that will be used to apply the 

backpropagation algorithm (Roberts and Attoh‐Okine 1998). The backpropagation program uses 

supervised learning to give the network examples of inputs and outputs (Domitrović et al. 2018).  

In the training phase of artificial neural networks, information is exchanged in both a 

forward and backward pass. The initial step involves assigning random weights to the input values, 

which are then propagated through the network to calculate the output in the forward pass. Next, 

the calculated output is compared to the desired output, and the difference between the two is 

computed in the backward pass. The weights are then adjusted to reduce the error. The scaling of 

the local error and the corresponding increase or decrease in weight are computed for each layer, 

starting with the layer closest to the output layer and moving back to the first hidden layer. This 

process is repeated numerous times until the error reaches a previously specified minimum value 

(Amin 2020). At this point, learning is stopped, and the weights are fixed for the testing phase 

based on the values obtained in the learning phase. During the testing phase, new input data are 

presented to the network, which has not been part of the learning process. The network's output is 
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compared to the desired output, and the error is calculated. Based on the size of the calculated 

error, an assessment is made of the potential application of the artificial neural network 

(Domitrović et al. 2018). Figure 2.19 presents the architecture of backpropagation ANN.  

 

Figure 2.19: Architecture of backpropagation ANN (Domitrović et al. 2018) 

In the feedforward back-propagation neural network, the processing follows three distinct 

steps. Firstly, the signals are transmitted in a forward direction through the neurons until the output 

layer is reached. Secondly, a comparison between the actual output and the expected output is 

made to determine the error value. Finally, the error is propagated backward through the network, 

and weights are adjusted accordingly until the error stops improving. However, the traditional 

backpropagation algorithm can lead to either overfitting or underfitting issues if it converges 

slowly. Overfitting occurs when the model captures noise and details from the training data, 

resulting in deficient performance. The model remembers all the information from the training 

data instead of learning from it, leading to a poor generalization of testing data. In contrast, 

underfitting arises when the model fails to perform well on the training data and does not generalize 

to the testing data (Amin 2020). Figure 2.20 illustrates overfitting and underfitting. 
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Figure 2.20: Illustration of Overfitting and Underfitting (Kargah-Ostadi et al. 2019) 

The noise and overfitting problems in ANN models can be reduced with regularization 

techniques. In the ANN training process, regularization techniques are used to get a smaller error 

(Saini 2008). In the realm of regularization, there are three techniques available: the Levenberg-

Marquardt method, the conjugate-gradient method, and Bayesian regularization. The Levenberg-

Marquardt method is widely accepted and considered the standard in nonlinear optimization. It is 

known for its superior performance, especially for problems of medium size, and is sometimes 

referred to as the damped least-squares method. In contrast, the conjugate-gradient method is less 

commonly used in comparison to the Levenberg-Marquardt method (Roweis 1996). This method 

is an iterative process that locates the local minimum of a multivariate function that is expressed 

as the sum of squares of several non-linear relationships (Lourakis 2005). The conjugate gradient 

method generally produces faster convergence compared to the basic backpropagation algorithm 

while preserving the error minimization achieved in all the previous steps (Sharma and 

Venugopalan 2014). The purpose of the Bayesian regularization method is to minimize a 

combination of squared errors and weights. Bayesian regularization for neural networks is based 

on probabilistic interpretation to choose optimal sets of weights to minimize estimation error and 

efficiently avoid overfitting (Kayri 2016). The major advantage of using Bayesian regularization 
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is that it does not require that the test dataset be separated from the training data set. This difference 

can be noticed when there is little data (Ticknor 2013). 

For ANN, the user can get the outputs from the inputs through the many neurons that work 

in correspondence with weights and bias (Jain et al. 1996). In artificial neural networks, the output 

values of the neurons can take any value within the range of [−Inf, +Inf] in the absence of activation 

functions. However, without activation functions, the output values of each layer in the network 

will be a linear function of the inputs. This means that even in multi-layer networks, the outputs 

will be a linear combination of the inputs, which can limit the model's ability to learn complex 

patterns in the data (Golshani et al. 2018). To introduce non-linearity into the output of the neurons, 

an activation function is used. The activation function decides whether a neuron should be 

activated or not by calculating a weighted sum of the inputs and adding a bias term. The output of 

the activation function is then transformed to a value within a specific range, such as [0,1] or 

[−1,1], which can be interpreted as the probability that the neuron should be activated. The 

activation function is also referred to as the transfer function since it transfers the input signal to 

the output signal with non-linear transformations. The activation function can also be applied 

between two neural networks, which is called a transfer function network (Holmgren et al. 2019). 

To ensure that the neural network produces accurate outputs, the weights and biases of the 

neurons need to be updated during the training process. This process is known as backpropagation, 

which involves calculating the gradient of the error concerning the weights and biases and using 

this information to adjust the weights and biases in the opposite direction of the gradient to 

minimize the error (LeCun et al. 1989). Activation functions make it possible since the gradients 

are supplied along with the error to update the weights and biases.  
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The activation function is a crucial component in ANNs as it introduces non-linearity to 

the model, allowing it to solve more complex problems. For an ANN model to learn and represent 

non-linear problems, the activation function transforms the input signal into an output signal that 

can be passed on to the next layer of neurons. There are several common types of activation 

functions, including the logistic, hyperbolic tangent, and linear functions. The logistic activation 

function generates output values that fall between 0 and 1 in an S-shaped curve, also known as the 

sigmoid curve. This function is commonly used in the output layer of a binary classification 

problem, where the model needs to predict the probability of an event occurring (Yamany et al. 

2020). 

The hyperbolic tangent activation function, on the other hand, generates output values 

between -1 and 1 in a similar S-shaped curve. This function is often used in hidden layers of the 

ANN model as it introduces non-linear transformations to the input, allowing the model to learn 

more complex relationships between the input and output. The linear activation function, as its 

name suggests, generates output values that are linearly proportional to the input. This activation 

function is commonly used in regression problems where the output is a continuous variable. 

However, the linear activation function is less frequently used in deep learning models as it can 

result in vanishing or exploding gradients, which can make it difficult for the model to converge 

during training (Maind and Wankar 2014). 

In summary, the choice of activation function can have a significant impact on the 

performance of an ANN model. The logistic and hyperbolic tangent functions are commonly used 

due to their ability to introduce non-linearity, while the linear function is typically used for 

regression problems. The logistic activation function is defined by equation 2.4. The hyperbolic 

tangent activation function generates all the values between -1 and 1 in an S-shaped curve with 
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Equation 2.5. The sigmoid curve is remarkably similar to the curve of the hyperbolic tangent 

function, but it is a little sharper due to the range of outputs. The linear-activation function 

generates the same values as the input values. Equation 2.6 can identify it.  

       (2.4)                              

     (2.5) 

      (2.6) 

 

Figure 2.21: Logistic activation function (left), hyperbolic tangent activation function (center), 

and linear activation function (right). In the x-axis, the x is the incoming value or hidden neuron 

input. 

2.5 Weigh-In-Motion  

According to the American Society for Testing and Materials (ASTM), Weigh-In-Motion 

is defined as the process of determining a moving vehicle’s gross weight and the allocation of that 

weight that is transmitted by each wheel, axle, or a combination thereof, by measurement and 

analysis of dynamic vehicle tire forces. As per the American Society for Testing and Materials 
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(ASTM) standards, a Weigh-In-Motion (WIM) system refers to an assemblage of sensors and 

ancillary equipment designed to measure the motion of a vehicle and the dynamic forces exerted 

by its tires at fixed locations over time. The WIM system can estimate critical vehicle parameters, 

such as tire loads, speed, axle spacing, and vehicle class based on axle configuration, and it stores, 

processes, and displays this information. The system serves to provide accurate and reliable data 

on vehicle weight and other vital statistics while minimizing the impact of weighing operations on 

the flow of traffic. In summary, ASTM defines a WIM system as a sophisticated infrastructure that 

utilizes state-of-the-art sensing technology to gather and process crucial data related to vehicle 

dynamics, thereby enhancing transportation infrastructure management and maintenance (Katz 

and Rakha 2002).   

2.5.1 Weigh-In-Motion System 

A WIM system typically consists of different sensors inserted in the pavement surface to 

identify, weigh, and classify vehicles (Qin et al. 2018). Such a system also incorporates software 

and electronics installed to regulate the WIM system sensors and collect, analyze, and save the 

sensor measurements. Communication hardware is also used to transmit vehicle measurements 

offsite. The electronics and communications devices are situated in a roadside cabinet adjacent to 

the WIM site. The entire system is powered by either a direct AC power connection or by batteries 

commonly charged by a solar panel array. WIM utilizes weight sensors and they are the most 

fundamental and critical component of the system (Yannis and Antoniou 2005). Weight sensors 

directly measure the force applied by the vehicles passing over the sensors. Piezoelectric, bending 

plate, and load cell sensors are the most prevailing sensors for use in this weight-measuring 

purpose. A piezoelectric WIM system consists of at least one sensor and two inductive loops 

embedded in a road cut or portable (Burnos et al. 2007). When a mechanical force is applied to a 
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piezoelectric sensor, it generates a voltage that is proportional to the force or weight of the vehicle. 

As a vehicle passes over the piezoelectric sensor, the system records the electrical charge generated 

by the sensor and calculates the dynamic load. Piezoceramic sensors, piezopolymer sensors, and 

piezo quartz sensors are the three major types of piezoelectric sensors available for WIM 

applications (Jiang et al. 2009). These sensors involve a negligible temperature effect that 

facilitates protection against age or fatigue issues with accuracy and cost within the load cell range. 

This system is not suitable for portable WIM applications and is comparatively more expensive 

than other piezoceramic technologies (Refai 2013). Figure 2.22 represents a typical piezoelectric 

WIM system layout (Zhang et al. 2007). 

 

Figure 2.22: A typical piezoelectric WIM system layout 

A typical bending plate WIM system consists of two steel platforms for each wheel path 

of the traffic lane, equipped with two inductive loops (Gaspareto and Gomes 2019). The function 

of the inductive loop is the same as that of the piezoelectric sensors. Bending plate scales can be 

portable or installed permanently with excavation into the road structure. When a vehicle passes 

over the bending plates, the strain gauge on each plate measures the amount of strain, and the WIM 

system measures the dynamic load that causes it. This sensor is designed for traffic load data 

collection and weight assessment. Also, it has high accuracy (more than piezoelectric systems) and 

low cost (lower than load cell systems). It involves minimal maintenance with required 
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refurbishing after four to five years. It is less accurate than load cells and more expressive than 

piezoceramic sensors (Refai 2013). Figure 2.23 illustrates a typical bending plate WIM system 

layout (Zhang et al. 2007). 

 

Figure 2.23: A typical bending plate WIM system layout 

An ordinary load cell WIM system consists of a single load cell that includes two in-line 

scales, at least one inductive loop, and one axle sensor. Like the bending plate, the load cell is in 

the travel lane perpendicular to the travel direction. The purpose of the inductive loop situated 

upstream of the load cell is to distinguish approaching vehicles and notify the system (Beshears et 

al. 1998). Load cell WIM employs a single load cell with two scales to identify and weigh the right 

and left sides of an axle together. As the cell is subject to load, the wire under the strain gauge is 

compressed slightly and modified. The change in the wire results in a resistance difference from 

the present. Then, the system measures the variance in the present and determines the weight 

calculated scale, and then sums them to obtain the axle weight (Cheng et al. 2007). It is the most 

accurate sensor and can be implemented for traffic load data collection and weight assessment. 

But it is also the most expensive sensor with the highest maintenance cost and involves restoration 

after five years of deployment (Refai 2013). Figure 2.24 presents a typical load cell-based WIM 

system layout (Zhang et al. 2007). 



42 
 

 

Figure 2.24: A typical load cell-based WIM system layout 

The sensor placement affects the performance of the system. Studies indicated that it is 

feasible to measure the axle weight with embedded strain sensors (Zhang et al. 2008). Optimization 

of WIM systems based on embedded sensors was performed and the optimization framework 

established the relationship between the sensor signal and the measurement dynamic range (Xue 

et al. 2016). Research demonstrated that the depth of sensors embedded, and the road material 

should be analyzed to increase the capability of dynamic response sensing in the design of a WIM 

system. The sensors placed in the middle layer of the asphalt concrete layer have better sensing 

ability for the dynamic response of the pavement, which fits a Gaussian distribution centered at 

the wheel position (Qin et al. 2018). Most WIM systems are also capable of gathering data 

applicable to vehicle classification (Sun and Ban 2013). Vehicle classification data are important 

for pavement and bridge design, and rehabilitation as well as for traffic analysis (Xue et al. 2012). 

Vehicle classification can be obtained from the data measurements reported by the weight sensors 

or by applying a combination of the measurements from the weight sensors and a dedicated axle 

detector also installed in the pavement.  

2.5.2 WIM Data Collection Process 

The process of collecting data in the Weigh-In-Motion (WIM) system is conducted during 

the dynamic state of a vehicle, which often leads to inaccuracies in the data. To mitigate the impact 



43 
 

of these inaccuracies, it is crucial to establish reference values for calibration purposes and devise 

a technique for accurately measuring the WIM system's performance (De Wet 2010). The precision 

of data obtained through Weigh-In-Motion (WIM) technology is contingent upon its specific 

purpose, be it for enforcement, data collection, or a combination of both (Papagiannakis et al. 

2008). WIM calibration pertains to the evaluation of the computed weight, axle spacing, speed 

values, and overall vehicle length generated by the WIM system. This evaluation involves 

comparing the WIM system's output against known fixed weights and manually measured 

parameters such as axle spacing, vehicle length, and speed. Based on the results of this assessment, 

adjustments to the operating parameters of the WIM system are made to rectify any errors (Dahlin 

1992).  The primary purpose of implementing the initial calibration in WIM systems is to ensure 

that the accuracy level of the system aligns with the contract specifications post-installation of the 

site (Prozzi and Hong 2007; Ramachandran et al. 2011). Regular WIM calibration processes are 

conducted periodically to ensure that the data accuracy is consistent and maintained within the 

desired performance specifications (Baker 2019). After suitable calibration, the measurement bias 

or mean error in WIM measurements for all measured parameters should be reduced to the extent 

practically possible to achieve an accuracy level as close to zero as possible (Rys 2019).  

In general, the calibration of a WIM system is conducted by a qualified technician in 

accordance with the manufacturer's specifications and guidelines. The primary objective of 

calibration is to establish parameters that will be utilized in subsequent calculations of the WIM 

system to establish a correlation between the recorded vehicle speed and tire force signals and the 

corresponding tire load, axle spacing, and wheelbase values for the stationary vehicle. Calibration 

is crucial for reducing the impact of various factors such as speed, temperature, truck type (if 

multiple test trucks are employed), and environmental changes in the supporting pavement 
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structure on the WIM system's accuracy in assessing each measured lane (Hashemi Vaziri et al. 

2013). The recommended calibration methods are the ASTM E1318-09 method and LTPP (Long-

Term Pavement Performance) method described in LTPP Field Operations Guide for SPS WIM 

Sites (Haider and Masud 2020). In both techniques, comparable procedures are employed, albeit 

with slightly different criteria for assessing the calibration outcomes. Once WIM is initially 

installed and calibrated, it may experience measurement drift in weight and axle detection. Re-

calibration is necessary, and there are two primary approaches: (a) on-site calibration, which 

involves running trucks of known weight over WIM scales, and (b) auto-calibration methods, 

which involve comparisons to assumed reference weights (Gupta et al. 2018). Auto-calibration 

can be more cost and time effective than on-site calibration (Durandal and Zhang 2019). The 

calibration process is uniform for all WIM sensor types, but sensors with lower precision, such as 

piezo-polymer sensors, may require more truck runs to establish a definitive error measure to 

determine new equipment compensation factors. Less precise sensors may also necessitate more 

frequent calibrations to account for seasonal temperature changes. Additionally, special calibration 

measures may be necessary for piezo-polymer sensor sites experiencing rapid temperature 

fluctuations between day and night (Selezneva and Wolf 2017). 

In the process of collecting WIM data, the collected data is sampled and then converted 

into a suitable format for subsequent analysis. A computer program is used to analyze the 

converted data, which involves the calculation of the load spectra of the different four-axle groups, 

such as steering, single, tandem, and tridem, for distinct types of trucks. Furthermore, information 

regarding the time, location, and traffic volume distribution can be extracted from this data. By 

analyzing this data, trends in truck traffic growth, differences in side-wheel loads, and distributions 
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of truck speeds can also be evaluated (Lu et al. 2002). BullPiezo, TrafLoad, Prep-ME, DARWin-

ME, and LTPP PLUG have commonly known software to analyze the data (Li et al. 2018). 

In the WIM system, there are three distinct software packages, namely, the on-site 

software, communication software, and in-house software. The on-site software is responsible for 

analyzing the signals generated by the WIM scale and creating on-site files containing information 

such as site identification, lane number, vehicle speed and classification, time and date of passage, 

vehicle sequence number, the weight of all axles or axle groups, ESAL value, code for invalid 

measurement, optional graphic confirmation, and other relevant details. The communication 

software offers a range of options for adjusting the on-site software setup, including calibration 

factors from the in-house computer. The in-house software is responsible for generating hard-copy 

reports and ASCII files. This software provides the means to develop reports on the collected raw 

vehicle record files. The communication and in-house software offers features such as real-time 

vehicle viewing selectable by lane, error report generation and viewing including time down, auto-

calibration, system access, improperly completed records, transfer of selected raw data files, report 

generation from the site system to the office host computer, and other related functions (McCall 

and Vodrazka Jr 1997). 

WIM system implementation can considerably result in a higher quality of traffic data 

collection that leads to better decision-making and design of transportation systems (Zhang et al. 

2007). The benefits of a WIM system implementation include: 

 Present a traffic database that can help to analyze the requirements of a local or state’s 

weight enforcement program (Chan et al. 2005), 
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 Present better-quality traffic data for research programs, such as the LTPP program 

(Walker and Cebon 2012), 

 Enhance the productivity of prescreening overweight/illegal trucks and therefore reduce 

travel time and lessen delay cost (Zhao and Tabatabai 2012), 

 Enhance data utilization for pavement management systems (Wang et al. 2015), 

 Enhance safety by effectively reducing overweight trucks on highways (Karim et al. 2014). 

To understand the impact of the overweight truck, Figure 2.25 presents the impact of 

excessive axle loads on damaging roads based on data from Santero et al. (2005) in 10 locations. 

WIM can be remarkably effective for regulating excessive axle loads to avoid damage to the 

pavement. 

 

Figure 2.25: Road Damage for Excessive Axle Loads in 10 locations data (Santero et al. 2005) 
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2.6 Potential of WIM-Generated Traffic load data  

Traffic data generated from WIM can be extremely significant for asset design and 

management, weight enforcement, and freight organization. Most DOTs collected WIM data with 

a wide variety of sensor types and used them in a variety of applications. Many agencies used 

WIM data to assist in pavement design, although most were not currently using a Pavement 

Mechanistic-Empirical Design application. WIM for bridge and asset management purposes was 

used much less often (Hazlett et al. 2020). In the Twin Cities metropolitan area in Minnesota, truck 

GPS data were validated with data from WIM sensors and loop detectors to develop reliable freight 

performance measures that present potential opportunities for freight planners and managers (Liao 

2014). In addition, Minnesota DOT used WIM data for traffic forecasting, weight enforcement, 

and pavement design. Oregon DOT applied WIM data to determine the truck volume as well as 

axle weight and spacing for input into the state-of-the-art pavement design program (Elkins and 

Higgins 2008). Extensive WIM data collected on the French main road network were applied to 

better understand truck loading, overloads, and truck aggressiveness on infrastructure that may 

lead to policy optimization (Schmidt et al. 2016). 

WIM has the potential to cut down the amount of extremely overweight and related costs 

for pavement resurfacing work and bridge infrastructure repairs (Nassif et al. 2018). Continuous 

reporting based on WIM data can serve to determine the quantity of pavement damage associated 

with the weight excess of the vehicles. Excess weight can lead to brake system defects and the 

truck could become troublesome to maneuver and control. The enhanced productivity of weight 

management will reduce the costs for weight enforcement resources and operations. Eventually, 

WIM data will reduce costs related to infrastructure damage (e.g. tunnel, bridge), road and tunnel 

closures, resurfacing works, and repairs of infrastructure (Haugen et al. 2016). Transportation 
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engineers have access to precise valuable traffic data for transport planning, highway design, 

construction, and maintenance strategies (Bergan et al. 1998). WIM data in the future can be 

applied in management systems that may consist of new applications specially derived for traffic 

management centers such as heavy traffic flow information, real-time traffic data collection, tunnel 

traffic safety, dangerous good tracking, traffic/congestion monitoring, and diagnosis. Correct, 

reliable, and up-to-date information about vehicle weight, heavy traffic, and classification are 

convenient for the management of lane occupancy, traffic volume, and speed (Wang and Nihan 

2004). Radar interferometry techniques with the integration of WIM data have been employed for 

advanced structural health monitoring. 

The availability of enriched data collected from this developed WIM system makes it 

possible and promising to develop an accurate PPPM. Traffic is a key factor influencing the 

performance of flexible pavements. The new MEPDG uses each axle load distribution to describe 

traffic loads, while classification and count data are also required to represent load repetitions. 

There is a direct and rational approach to the analysis and design of pavement structures provided 

by these load distributions to estimate the effects of traffic on pavement response. Axle load 

distribution data are also used to calculate hourly and monthly traffic volumes, vehicle class 

distributions, and growth factors. MEPDG software commonly used for pavement analysis and 

future pavement performance prediction demonstrated the effects of different traffic level loading 

characteristics in terms of repetition on pavement performance. The traffic inputs for the MEPDG 

are presented in Table 2.4 (Jiang et al. 2010). 
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Table 2.3: MEPDG traffic loading input (Jiang et al. 2010) 

 

 

Haider and Harichandran (2009) demonstrated the relation between axle load (kN) with 

alligator cracking, total surface rutting, and roughness (IRI). Figure 2.26 presents the relations 

between specific pavement distress and axle loads. R2 is the proportion of the variance of the 

dependent variables explained by the MEPDG model.  

Category Design Input 

All traffic Average annual daily truck traffic 

Truck traffic 

Truck volume monthly adjustment factors 

Truck volume lane distribution factors 

Truck volume directional distribution factors 

Truck volume class distributions 

Traffic volume hourly distribution factors 

Axle load distribution 

Single-axle load distributions 

Tandem-axle load distributions 

Tridem-axle load distributions 

Quad-axle load distributions 

All-axle load distributions 

Axle characteristics 

Average axle weight (kips) and average axle spacing (inches) 

(Note: 1.0 kip = 1,000 pounds) 

Average number of axle types 
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(a) Relation between alligator cracking and axle load 

 

(b) Relation between total surface rutting and axle load 



51 
 

 

(c) Relation between roughness (IRI) and axle load 

Figure 2.26: Relation between axle load and (a) alligator cracking, (b) total surface rutting, (c) 
roughness (IRI) (Haider and Harichandran 2009) 

Analysis done by Salama et al. (2006) showed performance data from in-service pavements 

in the state of Michigan, the effect of heavy multiple-axle trucks on flexible pavement damage can 

be summarized as trucks with single and tandem axles appear to affect pavement cracking Distress 

Index (DI) more than those with multiple axles (tridem and higher). Conversely, heavier trucks 

with multiple axles tend to have more effect on rutting than those with single and tandem axles.  

In recent years, several research studies have been conducted to evaluate the sensitivity of 

the MEPDG to these traffic inputs. It was determined that the vehicle class distribution has a 

significant influence on the design of pavement structures (El-Badawy et al. 2012; Papagiannakis 

et al. 2006; Romanoschi et al. 2011; Swan et al. 2008; Tran and Hall 2007). Therefore, there is a 

need to accurately represent the vehicle class distribution at the proposed pavement location to 

ensure proper pavement design. A study done by Abbas et al. (2014) found that the vehicle class 
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distribution cannot be accurately estimated from functional classification because of large 

variations in the percentage of each vehicle class. 

 2.7 Long-Term Pavement Performance Program 

The Long-Term Pavement Performance (LTPP) program was initiated as a part of the 

Strategic Highway Research Project (SHRP) in 1987 under the coordination of the Federal 

Highway Administration. The LTPP information management system is a pavement database 

documenting historical performance data for over 2,500 in-service and monitored test sections in 

North America. Diverse types of information are stored within the database in the form of seven 

modules: inventory, maintenance, monitoring, rehabilitation, material testing, traffic, and climate 

data. Collected data at the 2,500 sites is stored in an electronic warehouse called InfoPave. LTPP 

InfoPave includes creative tools for data viewing, identification, and selection that help users 

create their own personalized data sets, summary reports, queries, and much more. Over 650 

research projects have already been conducted around the world analyzing the collected data to 

further pavement research. The LTPP program is the world’s largest pavement performance 

monitoring study. 

The LTPP program was envisioned as a comprehensive program to satisfy a wide range of 

pavement information needs. As sufficient data become available, analysis is conducted to provide 

better performance prediction models for use in pavement design and management; a better 

understanding of the effects of many variables on pavement performance; and new techniques for 

pavement design, construction, and rehabilitation. The strategy behind the LTPP program 

represents a significant shift in the traditional research approach. Figure 2.27 presents an overall 

view of the LTPP InfoPave website [https://infopave.fhwa.dot.gov/].  
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Figure 2.27: View of the LTPP InfoPave website [https://infopave.fhwa.dot.gov/] 

Traditionally, pavement performance research was divided into specific topics of limited 

scope and duration, which started with data collection and ended with recommendations based on 

analysis of the collected data (Elkins et al. 2003). To overcome some of the challenges posed by 

the study of pavement behavior in short-term efforts, the LTPP program was established as a long-

term national effort. Under the LTPP paradigm, data collection is conducted in advance of the 

development of many specific data analysis objectives. Since individuals not involved in data 

collection operations conduct many of the important data analyses, the LTPP program has invested 

in the development of publicly accessible databases and database use tools. Figure 2.28 illustrates 

the process of data collection for LTPP. Details traffic characteristics data collected through 

dynamic load response systems and WIM is the dynamic load response system.  
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Figure 2.28: Process of the LTPP data collection [https://www.iengineering.com/ltpp-infopave-
story/] 

2.8 Data Processing 

To build performance predictive models, it is important to understand the type of data under 

analysis. The main data types found in datasets are Numerical data, Categorical data, and Ordinal 

data. Numerical data represent data/information that is measurable, which can be divided into two 

subcategories: Discrete integer-based data (e.g., M&R actions, number of pavement sections); and 

Continuous decimal-based data (e.g., pavement structural capacity, traffic, pavement condition). 

Categorical data are qualitative data that are used to classify data by categories (e.g., crack 

initiation = true or false). Ordinal data that represent discretely and ordered data/information (e.g., 

rank position = 1st, 2nd, 3rd; rutting level = low, medium, high). After collecting the data, it is 

important to make an exploratory analysis and, if necessary, perform some data preparation. Their 

goals in data exploration are to fully understand the characteristics of each variable in data and 

discover any data quality issues. The most common data quality issues are Missing values and 

Outliers. Missing values where features have missing values, it is necessary to understand why 

they are missing. For example, road agencies usually do not make pavement inspections every 
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year, but rather every two, three, or four years. Outliers are the values that lie far away from the 

central tendency and can represent valid or invalid data. There are valid outliers that are vastly 

different from the rest of the values and should not be removed from the analysis. Noise in the data 

resulting from invalid outliers must be removed. 

Missing values are a widespread problem in many datasets. Missing values can occur for 

assorted reasons, including human error during data entry or the absence of certain data. Dealing 

with missing values is an essential step in data preprocessing, as models cannot manage missing 

data. Missing values can cause models to be biased, inaccurate, or unreliable. Therefore, it is 

necessary to address missing values before modeling. The first step in handling missing values is 

to identify the missing data in the dataset. One way to identify missing values is to use summary 

statistics, such as mean, median, mode, or count. These statistics can identify missing values, as 

they will be represented by a blank, null, or NaN value. Once the missing data has been identified, 

the next step is to determine the appropriate method to manage the missing values. One common 

method for handling missing values is to remove them. Removing missing values is a simple 

method but can be problematic as it reduces the size of the dataset and may result in the loss of 

valuable information. Removing missing values is most effective when the number of missing 

values is insignificant compared to the size of the dataset. In cases where a significant portion of 

the data is missing, removing missing values may not be a viable option (Dastres and Soori 2021). 

Another method for handling missing values is to impute or fill in the missing values. 

Imputation methods involve estimating the missing values based on other values in the dataset. 

There are several imputation methods available, including mean imputation, median imputation, 

mode imputation, and regression imputation. Mean imputation involves replacing the missing 

values with the mean value of the column. Mean imputation assumes that the missing values are 
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missing at random and are not correlated with other variables in the dataset. Mean imputation can 

be problematic if the distribution of the data is not normal, as the mean may not be representative 

of the data. Median imputation involves replacing the missing values with the median value of the 

column. Median imputation is like mean imputation, but it is less sensitive to outliers and works 

well for non-normal data distributions. Mode imputation involves replacing the missing values 

with the mode value of the column. Mode imputation is most effective for categorical data, as it 

replaces missing values with the most frequent value in the column (Choudhury and Pal 2019). 

Regression imputation involves predicting the missing values using a regression model. 

Regression imputation works by creating a regression model based on the non-missing values in 

the dataset and then using this model to predict the missing values. Regression imputation is more 

complex than the other imputation methods but can produce accurate estimates of missing values. 

After selecting an appropriate imputation method, the next step is to apply it to the missing values 

in the dataset. Once the missing values have been imputed, it is important to verify the imputation 

process and ensure that it has not introduced errors or biases into the data. One way to verify the 

imputation process is to compare the imputed data to the original data and ensure that they are 

consistent (Lin et al. 2022). 

Outliers in a dataset can cause significant problems in data analysis and modeling, and it 

is essential to preprocess them before proceeding with further analysis. Outliers are data points 

that are significantly different from the rest of the data points in a dataset. These data points may 

be due to measurement errors or represent rare occurrences, but they can skew the data distribution 

and lead to biased results (Zhao et al. 2019). Therefore, it is essential to identify and preprocess 

outliers before proceeding with further analysis. 
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The first step in preprocessing outliers is to identify them in the dataset. Outliers can be 

identified by plotting the data or by using statistical methods such as the Z-score or the Interquartile 

Range (IQR). The Z-score measures the number of standard deviations a data point is away from 

the mean. Any data point with a Z-score greater than a specified threshold (e.g., 3 or 4) is 

considered an outlier. The IQR is the range between the 25th and 75th percentile of the data. Any 

data point outside of the IQR multiplied by a specified threshold (e.g., 1.5 or 3) is considered an 

outlier. After identifying outliers in the dataset, the next step is to decide on the treatment strategy. 

There are several ways to manage outliers, including removing them, transforming the data, or 

imputing them. The decision on the treatment strategy should be based on the nature of the data, 

the research question, and the type of analysis to be performed (Nnamoko and Korkontzelos 2020). 

The most straightforward treatment strategy for outliers is to remove them from the dataset. 

Removing outliers can be done by either deleting the data point or imputing the value with a 

missing value. However, removing outliers can result in a loss of information, especially if the 

number of outliers is significant (Nowak-Brzezińska and Łazarz 2021). Therefore, this treatment 

strategy should be used cautiously, and the impact of the removed data points on the results should 

be carefully considered. Another way to manage outliers is to transform the data to reduce the 

impact of outliers. Data transformation involves applying a mathematical function to the data to 

change the data distribution. The most used data transformations include log transformation, 

square root transformation, and Box-Cox transformation. Data transformation can reduce the 

impact of outliers by compressing the data range or by spreading the data range (Wang et al. 2019). 

Imputing outliers involves replacing the outlier value with a more reasonable value. 

Imputing outliers can be done by using statistical methods such as mean imputation, median 

imputation, or regression imputation. Mean imputation involves replacing the outlier value with 
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the mean value of the non-outlier data points. Median imputation involves replacing the outlier 

value with the median value of the non-outlier data points. Regression imputation involves using 

regression analysis to predict the missing value based on the other variables in the dataset (Wada 

2020). After preprocessing outliers, it is important to assess the data for normality. Normality 

testing is used to determine whether the data follows a normal distribution. Normality testing can 

be done by using statistical tests such as the Kolmogorov-Smirnov test or the Shapiro-Wilk test. 

If the data is not normally distributed, additional data transformation may be required to normalize 

the data distribution (Mishra et al. 2019). After preprocessing outliers, it is important to verify the 

results. Verifying the results involves re-analyzing the data and comparing the results to the 

original analysis. The verification process should include comparing the statistical results, the 

model fit, and the validity of the research question. In conclusion, outliers can significantly affect 

the results of data analysis and modeling (Hasan et al. 2021). 

The goal of the ANN modeling was to relate the physical causes of stresses in pavement 

structures and calibrate them with observed pavement performance. An ANN model has no critical 

rule to determine the optimal number of training data points. The data organization takes outliers 

out of the dataset otherwise the model's accuracy decreases when there are more outliers in the 

training data points (Sollazzo et al. 2017). There are significant effects on the quality of an ANN 

model from outliers. A neural network can receive enough learning if there are a lot of data points 

to tolerate a substantial number of outliers using the ANN feature of fault tolerance. The model 

can operate at the fault of its input data if it has fault tolerance. However, when the data points are 

not sufficient, the neural network won't be able to learn enough, and the model will become more 

sensitive to outliers (Arimie et al. 2020). 
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After organizing the data, the normalization of the data is initiated as it is one of the most 

common data processing techniques. It reduces the adverse impacts of outliers on model 

development in cases of outliers that can't be detected or reasoned (Vlahogianni and Karlaftis 

2013). It's important increasing the error of prediction results, decrease the bias between 

independent variables, and increase the speed of convergence with the help of the normalization 

process for training data (Baghirli 2015). When the raw data are directly considered to train the 

ANN model, it will converge slowly and provide prediction results with large errors. Many 

normalization techniques scale the data in the same range of values for input and output data 

values. Among these normalization techniques, ANN models typically use Z-score normalizations 

and min-max methods. Z-score normalization uses the mean and standard deviation of each 

feature, and a series of learning data was used to normalize the features included in the input data. 

The mean and standard deviation are calculated for each feature. The equality used in the method 

is as below where 𝑥  indicates normalized data, xi input variable, μi arithmetic mean of the input 

variable and σi standard deviation of the input variable. 

𝑥 =
 

           (2.7)  

The procedure sets the mean and standard deviation of each feature. As part of the 

procedure, the features in the data set are normalized. The mean and standard deviation are 

calculated for each feature over the training data, and it is used as a weight in the final system 

design. Preliminary processing within the artificial neural network structure is what this procedure 

is all about. 

 The Min-Max technique is used as an alternative to Z-score Method. This method rescales 

the features or the outputs in any range into a new range. Usually, the features are scaled between 
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0-1 or (-1)-1. The equality used in the method is as below where xmn indicates the minimum value, 

xm maximum value, xi input value and 𝑥  normalized data: 

𝑥 =
 

 
        (2.8) 

Each feature in the new range stays the same when the min-max method is applied. The 

method keeps all the data's properties. Notably, the min-max normalization technique may limit 

the normalization of forthcoming data values that exceed the predetermined range. Alternatively, 

the Z-score normalization method involves calculating the mean and standard deviation of the data 

values within a given dataset. As a result, the Z-score methodology is well-suited for circumstances 

where a dataset can be expanded to include additional data points, and where the minimum and 

maximum values of the data are unknown, and there may be outliers present within the data (Han 

et al. 2012). Additionally, the Z-score normalization method is beneficial in removing the necessity 

to assess the uniformity of scales among distinct variables. Such a factor is crucial in the selection 

of the covariance or correlation matrix in PCA. The normalization of data values by the Z-score 

approach enables the covariance of normalized data values to be equivalent to the correlation of 

unprocessed data values. Hence, it allows for the utilization of the correlation matrix in PCA 

without the need for scale matching. 

2.9 Data Dimensionality Reduction using Principle Component Analysis (PCA) 

 Principle Component Analysis (PCA) is a widely used statistical technique in machine-

correlated variables into a set of uncorrelated variables, which are called principle components 

(Liu and Yoon 2019). The goal of PCA is to reduce the number of dimensions while preserving 

the essential information in the data. PCA is executed on either the covariance or correlation 

matrix, with attention to the mathematical constructs that underlie these matrices which are very 
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similar to each other (Kherif and Latypova 2020). Equation (2.9) and Equation (2.10) represent 

covariance and correlation matrix assuming a set of n observed values, the variables xi and yi denote 

the paired values of a random variable (X, Y), where i ranges from 1 to n. The variables X̅ and Y̅ 

denote the respective means of the random variables X and Y, while sX and sY represent their 

corresponding standard deviations. PCA is intrinsically influenced by the magnitude of variables 

in an unprocessed dataset, with a greater emphasis placed on variables that exhibit higher variances 

(Jolliffe and Cadima 2016). 

𝐶𝑜𝑣 (𝑋, 𝑌) =
∑ (  )( ) 

                                              (2.9) 

𝐶𝑜𝑟𝑟 (𝑋, 𝑌) =
 ( , )

                                                    (2.10) 

The procedure of PCA involves several steps. Firstly, the data should be standardized to 

ensure that each variable has zero mean and unit variance. Standardization is crucial because 

variables with larger scales would dominate the analysis otherwise. Secondly, the covariance 

matrix of the standardized data is computed, which represents the relationships between variables. 

Thirdly, the eigenvectors and eigenvalues of the covariance matrix are calculated. The 

eigenvectors describe the directions in which the data varies the most, and the eigenvalues 

represent the variance explained by each eigenvector. Fourthly, the principle components are 

selected based on their corresponding eigenvalues. The greater the amount of variance explained 

by an eigenvector, the more important it is in representing the data. Finally, the data is projected 

onto the selected principle components, creating a new set of variables that are uncorrelated and 

ordered by importance (Omuya et al. 2021). 

PCA can be applied to diverse types of data, such as numerical, categorical, and mixed 

data. It is a potent tool for reducing the dimensionality of high-dimensional datasets, enabling 
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easier visualization and analysis of the data. Additionally, PCA can be employed for feature 

extraction, anomaly detection, and data compression. However, it is noteworthy that PCA 

presupposes that the data is linearly related and that the relationship between variables is Gaussian. 

Therefore, PCA may not be suitable for all types of data (Hasan and Abdulazeez 2021). 

PCA facilitates the detection of data patterns by leveraging the correlation between various 

features. In essence, PCA endeavors to discover the directions of greatest variability in multi-

dimensional data and transforms it into a fresh subspace comprising either equal or reduced 

dimensions than its antecedent space (Gewers et al. 2021). The orthogonal axes (also known as 

principle components) within the novel subspace can be comprehended as the directions of utmost 

variance while ensuring that the newly established feature axes remain perpendicular to each other, 

as portrayed in Figure 2.29. 

 

Figure 2.29: Principle Component Analysis (PCA) 

In the antecedent illustration, x1 and x2 signify the initial feature axes, while PC1 and PC2 

denote the principle components. When PCA is utilized for dimensionality reduction, a 

transformation matrix W with dimensions d x k is constructed. This matrix facilitates the mapping 



63 
 

of a sample vector x onto a new feature subspace that has a reduced dimensionality of k, in contrast 

to the original d-dimensional feature space. 

𝒙 = 𝑥 ,𝑥 , … , 𝑥 ,     𝑥 ∈  ℝ                                          (2.11) 

↓ 𝒙𝑾, 𝑾 ∈  ℝ ∗  

𝒛 = 𝑧 ,𝑧 , … , 𝑧 ,     𝑧 ∈  ℝ                                         (2.12) 

Following the transformation of the original d-dimensional data onto the k-dimensional 

subspace (usually k ≪ d), the primary principle component will exhibit the maximal achievable 

variance, whereas all ensuing principle components will possess the greatest variance subject to 

the restriction that these components remain uncorrelated (orthogonal) to the other principle 

components (Velliangiri and Alagumuthukrishnan 2019). Furthermore, despite the presence of 

correlations among the input features, the resultant principle components will remain mutually 

orthogonal (uncorrelated). 

It is worth noting that the PCA directions are sensitive to data scaling. Therefore, it is 

advisable to standardize the features before performing PCA, particularly if the features were 

measured on different scales, and aimed to assign equal significance to all the features. Before 

delving deeper into the PCA algorithm for dimensionality reduction, the approaches are 

summarized in a few straightforward steps (Kherif and Latypova 2020): 

1. Standardize the original d-dimensional dataset. 

2. Construct the covariance matrix. 

3. Decompose the covariance matrix into its eigenvectors and eigenvalues. 

4. Arrange the eigenvalues in descending order to rank the corresponding eigenvectors. 
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5. Select k eigenvectors that correspond to the k largest eigenvalues, where k represents 

the dimensionality of the new feature subspace (k ≤ d). 

6. Create a projection matrix W using the top k eigenvectors. 

7. Transform the d-dimensional input dataset X using the projection matrix W to obtain 

the new k-dimensional feature subspace. 

Upon concluding the mandatory data preprocessing, the subsequent step involves 

constructing the covariance matrix. The symmetric covariance matrix is d x d dimensional, where 

d represents the number of dimensions in the dataset. This matrix stores the pairwise covariances 

between the various features. To illustrate, the covariance between two features, xj, and xk, on a 

population level can be computed by applying the following formula: 

𝜎 = 𝑥
( )

−  𝜇 𝑥
( )

−  𝜇                                     (2.13) 

In this equation, μj and μk represent the sample means of features j and k, respectively. It is 

worth mentioning that if we standardized the dataset, the sample means would be zero. A positive 

covariance between two features indicates that the features increase or decrease in conjunction, 

while a negative covariance indicates that the features vary in opposite directions. For instance, 

the covariance matrix of three features can be expressed as follows. 

Σ =

𝜎 𝜎 𝜎

𝜎 𝜎 𝜎

𝜎 𝜎 𝜎

                                                                 (2.14) 

The principle components, also known as the directions of maximum variance, are 

represented by the eigenvectors of the covariance matrix, whereas their magnitude is determined 
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by the corresponding eigenvalues. The preprocessed dataset contained 38 eigenvectors and 

eigenvalues from the 38 x 38-dimensional covariance matrix. 

In the third step, the eigenpairs of the covariance matrix are obtained. An eigenvector v 

satisfies the given condition: 

∑ 𝑣 = 𝜆𝑣                                                                   (2.15) 

Here, λ is a scalar: the eigenvalue. The goal is to reduce the dimensionality of the dataset 

by projecting it onto a new feature subspace, thereby compressing it. To achieve this, only the 

subset of eigenvectors, i.e., principle components are selected, that contain most of the information 

or variance. The magnitude of the eigenvectors is determined by the corresponding eigenvalues, 

so the eigenvalues must be sorted in descending order. Top k eigenvectors that correspond to the 

highest eigenvalues are preferred since they contain the most information. 

Before collecting the k most informative eigenvectors, the variance-explained ratios of the 

eigenvalues are needed to be examined. The variance-explained ratio of an eigenvalue λj is the 

ratio of the eigenvalue λj to the total sum of eigenvalues. These ratios are plotted to understand the 

contribution of each eigenvalue to the total variance. 

The proportion of variance (PoV) (PC = j) =
∑

                                                (2.16) 

To reduce the dimensionality of a dataset, it is necessary to determine which principle 

components (PCs) should be retained or discarded. This can be accomplished by ranking the PCs 

in descending order of the proportion of variance (PoV) they account for and then computing the 

cumulative PoV for each successive PC. A scree plot can be used to visualize the PoVs of the PCs. 

Selecting a larger cumulative PoV will help to ensure that a significant amount of information 
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about the data distribution is not lost. The top p PCs, where p is less than d, are selected based on 

this ranking. The appropriate number of PCs to consider can be determined by examining changes 

in the slope of the scree plot, selecting eigenvalues greater than or equal to one, or defining a 

minimum acceptable percentage of cumulative explained variance. 

The decisive step of the PCA algorithm involves calculating the principle component 

scores for the selected principle components. This is done by computing a linear combination of 

the raw data values and the coefficient matrix. Specifically, given a matrix Z with n rows 

(representing data points) and d columns (representing variables), and a coefficient matrix V with 

p columns (representing the selected principle components), the matrix Y for the linear 

combination can be computed as follows: 

𝑌 = 𝑍𝑉 =

𝑥 , ⋯ 𝑥 ,

⋮ ⋱ ⋮
𝑥 , ⋯ 𝑥 ,

𝑒 , ⋯ 𝑒 ,

⋮ ⋱ ⋮
𝑒 , ⋯ 𝑒 ,

                             (2.17) 

Hence, the principle component scores for a given data point i and PC j can be obtained by 

computing the linear combination function. The resulting value represents the projection of the 

data point i onto the PC j axis, indicating how much the data point i contributes to the variation 

along the PC j direction (Jolliffe and Cadima 2016). 

2.10 ANN Result Validation Process 

Artificial neural networks (ANN) with backpropagation are widely used in various fields 

of research and industry for prediction and classification tasks. The accuracy of the ANN model 

in predicting the outcome variable is evaluated using performance measures such as R2 and root 

mean squared error (RMSE). 
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R2 is a statistical measure that represents the proportion of the variance in the dependent 

variable that is explained by the independent variables in the model. It ranges from 0 to 1, where 

1 indicates that the model perfectly fits the data and 0 indicates that the model does not fit the data 

at all. RMSE is a measure of the difference between the predicted and actual values of the outcome 

variable. It is calculated by taking the square root of the average of the squared differences between 

the predicted and actual values. RMSE is an important measure of accuracy, as it gives an idea of 

how much the predicted values deviate from the actual values (Chicco et al. 2021). R2 and RMSE 

values were determined using Equation 2.18 and Equation 2.19, respectively.   

𝑅 = 1 −
∑ ( )

∑ ( )
              (2.18)  

𝑅𝑀𝑆𝐸 =  
∑ ( )

                  (2.19)  

where:  

• 𝑦i  = actual value observation i; 

• 𝑦 ̂ = predicted value of observation i; 

• 𝑦 ̅ = average value of observation i; and 

• n = the number of observations. 

RMSE is a quality measurement for determining how close the estimated values are to real 

values. An RMSE value closer to zero indicates that the result is useful for prediction. In the ANN 

model, the values of training RMSE and Train R2 are used to confirm the learning effect, and Test 

R2 is used to check the predictive power; hence, Test R2 is the most important indicator for the 

predictive model. 
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To analyze the performance of the ANN model with backpropagation, first step in 

analyzing the ANN model's performance is to prepare the data. The data should be checked for 

missing values, outliers, and inconsistencies. The data should also be split into training and testing 

sets to evaluate the performance of the model on unseen data. The next step is to train the ANN 

model on the training data. During training, the model adjusts its weights and biases to minimize 

the error between the predicted and actual values. The backpropagation algorithm is used to 

calculate the gradient of the error function for the model parameters, which is then used to update 

the weights and biases (Wright et al. 2022). Once the model is trained, it is evaluated on the testing 

data to assess its performance on unseen data. The predicted values are compared with the actual 

values using R2 and RMSE. A higher R2 value indicates a better fit between the predicted and 

actual values, while a lower RMSE value indicates a lower prediction error. If the model 

performance is not satisfactory, the model can be optimized by changing the number of neurons 

in the hidden layer, adjusting the learning rate, or changing the activation functions. The model 

can be retrained and evaluated to see if the performance has improved (Ashtiani et al. 2018). 

In summary, the performance of an ANN model with backpropagation can be evaluated 

using R2 and RMSE. These measures can be used to assess the accuracy of the model in predicting 

the outcome variable. The model can be optimized by adjusting various parameters to improve its 

performance on unseen data.  

There is no perfect way to determine the optimal number of neurons in the hidden layer for 

the best performance of the ANN model. Instead, the number of neurons in the hidden layer is 

determined based on the rule of thumb, considering the complexity of a problem or the number of 

input and output variables. That is, the number of hidden neurons could be increased for more 

complex problems. Using the simplest way, several hidden neurons can be randomly determined 
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between one and the number of input variables. Using another way, the ANN model utilizes the 

trial-and-error method, which assesses the number of hidden neurons from one hidden neuron to 

MAXYn hidden neurons, where MAXYn is the maximum number of hidden neurons. ANN model 

usually adds one additional neuron for bias to input and hidden layers to increase the flexibility of 

the model (De Veaux and Ungar 2012). If the result is satisfied, the final weights and biases are 

saved as the result. On the other hand, if the weights and biases are reassigned to the model, it is 

necessary to assess the model again until a satisfactory model is found. Reassigning the weights 

and biases means the model is re-trained with the same input combination and number of hidden 

neurons. 

2.11 Hypothesis Testing for Understanding the Impact of WIM Data in PPPMs 

A statistical technique is known as the t-test is often employed to assess whether two groups 

exhibit a significant difference. The t-test primarily examines the difference between the means of 

the two groups, to establish whether a such difference is statistically significant (Kim and Park 

2019). The t-test employs a t-statistic to quantify this difference by taking into consideration the 

variance of the data points in each group. The t-statistic is then compared to a critical value based 

on the t-distribution probability distribution, accounting for the degrees of freedom and sample 

size. 

The p-value is another crucial parameter utilized in the t-test. It indicates the probability of 

achieving the observed results solely by chance, on the assumption that the null hypothesis holds. 

The null hypothesis asserts that no significant difference exists between the two groups. The p-

value is typically compared with a pre-selected significance level (such as 0.05 or 0.01), 

representing the level of certainty required to reject the null hypothesis (Okunev 2022). 
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If the computed p-value is smaller than the chosen significance level, the null hypothesis 

is rejected, implying a significant difference between the two groups. In contrast, if the p-value is 

larger than the selected significance level, the null hypothesis is not rejected, and one must 

conclude that the evidence does not support the assertion of a significant difference between the 

two groups. 

To understand the impact of WIM (Weigh-in-Motion) data in PPPMs (Pavement 

Performance Prediction Models), the following hypothesis will be formulated: 

Null hypothesis (H0): WIM data has no significant impact on PPPMs. 

Alternative hypothesis (HA): WIM data has a significant impact on PPPMs. 

To assess this hypothesis, the t-test statistic will be defined to compare the mean pavement 

performance prediction model output with and without WIM data. The significance level will be 

set at 0.05, which means the null hypothesis will be rejected if the p-value is less than 0.05. 

Collected data will be divided into two different data sets for developing pavement performance 

prediction models with and without WIM data. Collect data included the pavement condition, 

traffic volume, and other relevant variables that may affect the pavement performance. Using the 

collected data, a t-test statistic was generated for the two groups, with and without WIM data. 

Based on the t-test statistic and the degrees of freedom, the p-value will be calculated. If the p-

value is less than 0.05, the null hypothesis will be rejected, and concluded that WIM data has a 

significant impact on PPPMs. If the p-value is greater than 0.05, it will fail the rejection of the null 

hypothesis, and it will be concluded that WIM data has a significant impact on PPPMs. This will 

imply that incorporating WIM data in PPPMs can improve their accuracy and reliability, leading 

to better pavement management and maintenance decisions.   
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3. Chapter 3. Methodology 

3.1 Objective 

The advent of Weigh-In-Motion (WIM) technology has enabled the generation of high-

quality traffic load data, thereby presenting an opportunity to cost-effectively enhance current 

pavement maintenance practices. Developing mechanistic-empirical Pavement Performance 

Prediction Models (PPPMs) based on the Long-Term Pavement Performance (LTPP) data is a 

laudable goal, and to achieve it, this research aims to investigate the suitability of traffic 

characteristics information in efficiently utilizing them with other pertinent information for PPPM 

development. The proposed research seeks to explore how the application of traffic characteristics 

information can contribute to the development of PPPMs, which will provide valuable insights 

into pavement performance and improve pavement maintenance practices. By leveraging the 

WIM-generated traffic load data and integrating it with other crucial information, the research 

endeavors to provide a comprehensive framework for the development of effective PPPMs. 

3.2 Methodology 

To create effective artificial neural network (ANN) based pavement performance 

prediction models (PPPMs) for seven different performance indicators, 300 pavement sections 

with Weigh-In-Motion (WIM) data were carefully selected from various locations across the 

United States of America. The data was collected over 20 years, ranging from 2001 to 2020, and 

encompassed a range of factors such as pavement age, material properties, climatic properties, 

structural properties, and traffic-related characteristics. The primary dataset was then divided into 

two subsets - one with WIM-generated traffic data and another without. To ensure that the data 

was suitable for use, thorough data cleaning and normalization procedures were conducted using 

the Z-score normalization method. Each of the subsets was then further divided into two groups - 
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one containing 15 years of data for training models and the other containing 5 years of data for 

testing purposes. The seven distinct performance indicators being predicted by the PPPMs include 

IRI, longitudinal crack, transverse crack, fatigue crack, potholes, polished aggregate, and patch 

failure. 

This research aimed to develop highly accurate PPPMs using ANN, which would be 

effective for predicting pavement performance across a range of factors. The inclusion of WIM-

generated traffic data can facilitate the efficient use of traffic characteristics information, in 

combination with other essential information, to improve the accuracy of the models. The use of 

ANN-based models allowed for the creation of complex models capable of accurately predicting 

pavement performance across different performance indicators. To accomplish the objectives, an 

overview of the methodology is presented in Figure 3.1.  

 

Figure 3.1: Overview of the process for Methodology 
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3.3 Data Collection  

Data play one of the key roles in the development process of PPPMs. The input data used 

for the development of PPPMS is represented as predictors because these values are used to train 

the model that aims to predict. The application of machine learning algorithms required a large 

amount of data to learn the pattern in the data and predict based on this learning. Predictors’ data 

collected from LTPP are categorized as age, material properties, climatic properties, and structural 

properties. In addition, pavement condition data was also collected from the LTPP database. The 

description of predictor data collected from LTPP for this research work is presented in Table 3.1.  

Table 3.1: Collected LTPP data description 

Type of 

Predictor 
Predictor Description 

Age 

Age (first construction) 
Number of years passed after the first 

construction of the pavement 

Age (last construction) 
Number of years passed after the last 

construction of the pavement 

Material 

properties 

Subgrade liquid limit Liquid limit of the subgrade material 

Subgrade plastic limit Plastic limit of the subgrade material 

Subgrade No. 200 passing 

Percent of extracted aggregate for 

subgrade material passing the #200 

sieve 

Subgrade unbound specific gravity 
The unbound specific gravity of the 

subgrade material 



74 
 

Subgrade moisture content 
The moisture content of the subgrade 

material 

Subgrade confining pressure 

(kPa) 

Chamber confining pressure results in 

the subgrade material 

Subgrade nominal maximum axial 

stress (kPa) 

Nominal maximum axial stress of 

subgrade materials 

Subgrade resilient modulus average 
Resilient modulus average for the 

subgrade material 

Subgrade resilient strain average 
Resilient strain average of the 

subgrade material 

Base layer liquid limit Liquid limit of the base layer material 

Base layer No. 200 passing 
Percent of extracted aggregate for base 

layer material passing the #200 sieve. 

Base layer moisture content 
The moisture content of the base layer 

material 

Base layer unbound specific gravity 
The unbound specific gravity of the 

base layer material 

Original surface layer coefficient of 

thermal expansion 

(mm/mm/°C) 

Coefficient of thermal expansion 

value 

Original surface layer compressive 

strength 

(psi) 

Compressive strength of the original 

surface layer 
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Climatic 

properties 

Total annual precipitation (mm) Total precipitation for the year 

Annual total snowfall (mm) Total snowfall for the year 

Mean annual temperature (°C) 
Mean of the annual temperature for 

the year 

Annual freezing index 

(°C degree days) 
Calculated freezing index for the year 

Annual freeze-thaw 

The number of days in the period 

when the air temperature goes from 

less than 0°C to greater than zero °C; 

assumes minimum daily temperature 

occurs before the maximum daily 

temperature 

 Average humidity  
Average daily mean relative humidity 

for the year 

Structural 

properties 

Base layer thickness (in) The thickness of the base layer 

Subbase layer thickness (in) The thickness of the subbase layer 

Original surface layer thickness (in) 
The thickness of the original surface 

layer 

Overlay Thickness (in) Thickness of overlay 

 

Traffic load data for the development of PPPMs are collected from the WIM system 

installed in three hundred locations for traffic characteristics data collection. WIM system 

possesses the capacity for high-quality traffic loading data and developing a machine learning-
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based model requires a large amount of historical data. WIM systems are installed in many 

locations in these three analyzed states. The details of the traffic characteristics data collected from 

WIM systems are presented in Table 3.2. 

Table 3.2: Traffic characteristics data collected from WIM 

Predictor Description 

Vehicle Class (4-13) No vehicle for FHWA class 4 to class 13 

 

Figure 3.2 presents FHWA vehicle class that was used in LTPP to define vehicle class data. 

 

Figure 3.2: FHWA 13 Vehicle Category Classification (FHWA 2001) 
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3.4 Data Collection Locations  

For this study, 300 locations/sections are selected throughout the United States of America. 

The data was collected for the year 2001 to 2020 from LTPP. The reason for selecting three 

hundred locations/sections with Weigh-In-Motion (WIM) systems throughout the United States of 

America is to ensure that the pavement performance prediction models (PPPMs) developed using 

artificial neural network (ANN) are generalizable and can be used in different regions of the 

country. By selecting pavement sections from various locations, the models can be trained to 

account for different pavement materials, climatic conditions, and traffic characteristics that may 

influence pavement performance. The use of WIM-generated high-quality traffic load data also 

ensures that the models can accurately predict pavement performance under different traffic 

volumes and axle loads. 

The data collected for the year 2001 to 2020 from the Long-Term Pavement Performance 

(LTPP) program is to ensure that the models are developed using a wide range of pavement age 

and condition data. By including data from 20 years, the models can account for the effects of 

aging on pavement performance and can be used to predict performance for both newer and older 

pavements. Additionally, using data from the LTPP program ensures that the models are developed 

using a consistent methodology for collecting and analyzing pavement data, which enhances the 

reliability and consistency of the models. Two separate datasets were created where one dataset 

included WIM-generated vehicle types of information and the other dataset excluded WIM-

generated data. WIM stored historical traffic load data and data is available for public use through 

the LTPP website. Each test section consists of a 152-meter (m) monitoring portion with a 15.2-m 

materials sampling section at each end. On test sections, a maintenance control zone, extending 

152 m in front of and 76 m beyond the limits of the monitoring section, is commonly established 
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around each test section. As an example of the data collection locations/sections for this study, the 

locations for West Virginia, Virginia, and Pennsylvania are presented in Table 3.3. 

Table 3.3:  Sample Data collection locations/sections 

State SHRP ID Latitude Longitude County 

West Virginia 

4003 38.14941 -81.84423 Boone 

4004 38.02254 -81.35431 Fayette 

5007 39.28509 -80.42048 Harrison 

1640 38.28388 -81.76463 Kanawha 

7008 38.42770 -81.81807 Kanawha 

Pennsylvania 

0602 40.97496 -77.7913 Centre 

0603 40.98661 -77.811 Centre 

0604 40.98734 -77.813 Centre 

0608 40.98949 -77.8196 Centre 

0659 40.97982 -77.7945 Centre 

0660 40.99011 -77.8227 Centre 

0662 40.99129 -77.8286 Centre 

1597 41.97236 -77.2385 Tioga 

1598 40.2721 -77.0227 Cumberland 

1599 41.4337 -78.7129 Elk 

1605 41.00081 -76.8332 Northumberland 

1606 40.22314 -78.469 Bedford 
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1608 39.99838 -78.5962 Bedford 

1613 39.99621 -75.3474 Delaware 

1614 40.82473 -78.0247 Centre 

1617 40.05779 -75.3301 Montgomery 

1618 39.77067 -78.9127 Somerset 

1623 41.24602 -76.9577 Lycoming 

1627 41.04159 -78.4128 Clearfield 

Virginia 

0113 36.62313 -79.3651 Pittsylvania 

0159 36.64686 -79.3647 Pittsylvania 

1417 38.60894 -77.7876 Fauquier 

1464 37.33266 -76.7086 York 

2021 36.73346 -80.8029 Carroll 

5009 37.50871 -77.2527 Henrico 

 

The LTPP program is a study of the behavior of in-service pavement sections. These 

pavement sections have been constructed using highway agency specifications and contractors and 

subjected to real-life traffic loading. These in-service pavement sections are classified in the LTPP 

program as General Pavement Studies (GPS) and Specific Pavement Studies (SPS). GPS consists 

of a series of studies on 800 in-service pavement test sections throughout the United States and 

Canada. SPS are intensive studies of specific variables involving new construction, maintenance 

treatments, and rehabilitation activities. The specific 300 locations in the maps are shown in Figure 

3.3. 
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Figure 3.3: The locations of data collection 

Artificial Neural Network (ANN) models have become a popular tool for pavement 

performance prediction due to their ability to model complex relationships and learn from large 

datasets. However, the accuracy and reliability of the ANN model depend on the quality and 

quantity of input data used to train the model. Time-series data is one type of data that is commonly 

used in pavement performance prediction models because it allows for the identification of trends, 

patterns, and relationships over time. 

Time-series data refers to data that is collected over a period at regular intervals. Examples 

of time-series data in pavement performance prediction include pavement distress data, roughness 

measurements, and traffic volumes. By using time-series data, an ANN model can be trained to 

capture the dynamic nature of pavement performance and how it changes over time. This is 

particularly important for predicting the future performance of pavement, as it allows the model to 

consider the effects of aging, weather, and other environmental factors. 
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There are several reasons why time-series data is preferred over other types of data in 

pavement performance prediction models. Firstly, time-series data provides a more complete 

picture of the pavement's performance history. By collecting data over time, the model can identify 

patterns and trends that may not be apparent from a single snapshot in time. For example, if a 

pavement has experienced a sudden increase in roughness, the model can identify whether this is 

due to a sudden increase in traffic, changes in weather patterns, or other factors. 

Secondly, time-series data allows for the identification of seasonal or cyclical patterns in 

pavement performance. For example, a pavement may experience more distress during certain 

times of the year due to changes in weather or traffic volumes. By capturing these patterns, the 

model can make more accurate predictions of future performance and identify appropriate 

maintenance and rehabilitation strategies. 

Thirdly, time-series data can be used to evaluate the effectiveness of maintenance and 

rehabilitation strategies over time. By comparing performance data before and after a maintenance 

intervention, the model can determine the effectiveness of the intervention and refine its 

predictions for future performance. 

Finally, time-series data is often readily available and easy to collect. Many pavement 

management systems routinely collect time-series data on pavement performance, making it an 

easily accessible source of input data for ANN models. 

In summary, the use of time-series data in ANN-based pavement performance prediction 

models is important for capturing the dynamic nature of pavement performance and improving the 

accuracy and reliability of predictions. Time-series data allows for the identification of trends, 
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patterns, and relationships over time, which can help to refine maintenance and rehabilitation 

strategies and improve the overall performance of pavement networks. 

3.6 Data Processing 

The execution of dependable data analysis and modeling necessitates the inclusion of data 

cleaning and normalization procedures. The fundamental objective of data cleaning is to eradicate 

anomalies from the unprocessed dataset. It is common for real-world data to be tainted by missing 

values and outliers. Such low-quality data can undermine the precision and trustworthiness of the 

data analysis and modeling process. Hence, it is imperative to undertake the critical task of 

identifying and eliminating outliers to achieve more accurate and dependable outcomes. 

 A rigorous data-cleaning process was implemented to ensure the accuracy and reliability 

of the data used in the analyses. The data cleaning process involved identifying and resolving 

various anomalies that could have a negative impact on data analyses, such as noise, missing 

values, and outliers. To initiate the data cleaning process, a thorough examination of the raw data 

was conducted to detect any inconsistencies, inaccuracies, or missing information. One of the most 

prevalent issues with raw data is noise, which refers to irrelevant or random data points that can 

distort the results of statistical analyses or machine learning models. To mitigate this issue, several 

techniques, including smoothing, filtering, and clustering was employed. 

Smoothing is a technique used to eliminate high-frequency noise from the data while 

retaining the underlying trends and patterns. This method involved calculating the average of a 

window of adjacent data points or assigning more weight to recent data points using exponential 

smoothing. These methods helped reduce the impact of noise on the data, making it easier to detect 

underlying trends and patterns. 
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Filtering is another technique used to eliminate noise from the data. Filters are 

mathematical algorithms that are utilized to selectively remove or retain certain frequencies in 

data. A low-pass filter was used to remove high-frequency noise, whereas a high-pass filter was 

used to remove low-frequency noise. Other types of filters include band-pass filters and notch 

filters, which were used to remove specific frequency ranges or frequencies that interfere with the 

data. 

Clustering is a technique used to identify and eliminate noise from the data. Clustering 

involves grouping similar data points based on their attributes, such as their distance from each 

other or their similarity in terms of their values. Data points that differ significantly from the other 

data points can be recognized as outliers and removed from the dataset. 

Another prevalent issue with raw data is the presence of missing values, which can occur 

due to a variety of reasons such as data entry errors, system failures, or data corruption. To oversee 

missing values, various methods were employed, including deletion, imputation, or interpolation. 

When dealing with missing values, the extent of missing values was evaluated in the 

dataset. As the missing values were insignificant, deletion was employed to eliminate all the rows 

or columns containing missing values and use the remaining data for analysis. However, if the 

missing values were significant, imputation could be employed to replace the missing values with 

an estimated value based on statistical analysis or modeling. 

For numerical data, mean or median imputation involved replacing the missing values with 

the mean or median value of the corresponding attribute. For categorical data, mode imputation 

was used, which involved replacing the missing values with the mode value of the corresponding 
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attribute. Another technique that was used was regression imputation, which involved estimating 

the missing values based on a regression model that is trained on the other attributes in the dataset. 

Interpolation is another method that was used to estimate missing values. Interpolation 

involved estimating the missing values based on the values of neighboring data points. Several 

methods of interpolation are available, including linear interpolation, spline interpolation, and k-

nearest neighbor interpolation. Linear interpolation involves estimating the missing values based 

on the linear relationship between the neighboring data points, while spline interpolation involves 

using a piecewise polynomial function to estimate the missing values. K-nearest neighbor 

interpolation involves estimating the missing values based on the values of the k-nearest neighbors 

in the dataset. 

When analyzing data, it is essential to ensure that the data is accurate and reliable. One 

common issue that can negatively impact data analysis is the presence of outliers. Outliers are data 

points that are significantly different from the other data points in the dataset. They can be caused 

by a range of factors, such as data entry errors, measurement errors, or extreme values that do not 

fit the expected pattern of the data. Therefore, it is necessary to remove outliers from the dataset 

to ensure that the data analysis results are dependable. 

Various techniques were implemented to remove them from the dataset. One of the 

methods used was the Z-score method, which is a statistical method that measures the distance 

between a data point and the mean of the dataset in terms of standard deviations. The Z-score of a 

data point is calculated as the difference between the data point and the mean divided by the 

standard deviation of the dataset. If the Z-score of a data point exceeded a certain threshold, which 

is typically 2.5 or 3, the data point was considered an outlier and removed from the dataset. 
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Another method used was the interquartile range (IQR) method, which is a non-parametric 

method that measures the spread of data. The IQR is calculated as the difference between the third 

quartile and the first quartile of the dataset. Any data point that falls below the first quartile minus 

1.5 times the IQR or above the third quartile plus 1.5 times the IQR is considered an outlier and 

removed from the dataset. 

In addition, a visual inspection can be applied to identify outliers that were not detected by 

statistical methods. The visual inspection involved examining the data plots and manually 

identifying data points that did not fit the expected pattern of the data. These data points were then 

removed from the dataset. When removing outliers, it is important to consider the context of the 

data and the purpose of the analysis. 

In conclusion, removing outliers from the dataset is a crucial step in ensuring that the data 

analysis results are dependable. Employing various techniques such as the Z-score method, IQR 

method, and visual inspection helped identify and remove outliers from the dataset.  

Overall, the data cleaning process is a critical step in ensuring the reliability and accuracy 

of the data used in my analyses. Through careful examination, the implementation of various 

techniques, and the utilization of appropriate methods for addressing noise, missing values, and 

outliers, can provide reliable insights that are useful for making informed decisions. 

After cleaning the data, the data was normalized. The implementation of the Z-score 

normalization method is a widely used technique to standardize data sets, making them more 

comparable and easier to analyze. The steps involved in implementing the Z-score normalization 

method are as follows: 

1. Collecting and organizing the data set into a matrix 
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The first step in implementing the Z-score normalization method was to collect and 

organize the data set into a matrix format. This matrix had rows corresponding to the observations 

and columns corresponding to the variables. 

2. Calculating the mean of each variable 

Next, the mean of each variable is calculated. This was done by summing up the values of 

each variable and dividing them by the total number of observations. The result of this step was a 

vector containing the mean value for each variable in the data set. 

3. Calculating the standard deviation of each variable 

The standard deviation of each variable was then calculated. This is done by taking the 

square root of the variance of each variable, where the variance is the sum of the squared 

differences between each observation and the mean of that variable, divided by the total number 

of observations minus one. 

4. Subtracting the mean from each value in that variable and dividing by its standard 

deviation. After computing the mean and standard deviation of each variable, the mean was 

subtracted from each value in that variable and divided by its standard deviation. This 

process is called standardization or Z-score normalization. The result of this step was a 

new matrix where each variable has a mean of zero and a standard deviation of one. 

In summary, the implementation of the Z-score normalization method involved collecting 

and organizing the data set into a matrix, calculating the mean and standard deviation of each 

variable, standardizing the data set by subtracting the mean from each value in that variable and 

dividing by its standard deviation, and using the standardized data set for further analysis. 
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3.7 Principle Component Analysis  

Principle Component Analysis (PCA) is a widely used statistical technique that is utilized 

to explore and reduce the dimensionality of data sets (Liu and Yoon 2019). The process of applying 

the PCA test for principle components without using any equations involved the following steps: 

1. Collecting and organizing the data set into a matrix 

The initial step in applying for the PCA test involved collecting and organizing the data set 

into a matrix format. This matrix had rows corresponding to the observations and columns 

corresponding to the variables. 

2. Calculating the mean of each variable 

Next, the mean of each variable was calculated. This was done by summing up the values 

of each variable and dividing it by the total number of observations. The result of this step was a 

vector containing the mean value for each variable in the data set. 

3. Subtracting the mean from each variable 

After computing the mean of each variable, it was subtracted from each value in that 

variable. This process is called centering the data set. The result of this step was a new matrix 

where each variable has a mean of zero. 

4. Calculating the covariance matrix of the mean-centered matrix 

The covariance matrix of the mean-centered matrix was then computed. This matrix 

showed the covariance between each pair of variables in the data set. The diagonal elements of 

this matrix represented the variances of the variables. 

5. Computing the eigenvalues and eigenvectors of the covariance matrix 
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The next step was to compute the eigenvalues and eigenvectors of the covariance matrix. 

Eigenvalues represented the amount of variance explained by each eigenvector, while eigenvectors 

represented the direction of maximum variance in the data set. 

6. Sorting the eigenvectors in descending order of their corresponding eigenvalues 

The eigenvectors were sorted in descending order of their corresponding eigenvalues. This 

step ensures that the eigenvectors with the highest variance are retained, while those with the 

lowest variance are discarded. 

7. Selecting the eigenvectors corresponding to the highest eigenvalues 

The eigenvectors corresponding to the highest eigenvalues were then selected. These 

eigenvectors represented the selected principle components that best explain the variance in the 

data set. 

8. Obtaining the principle components by multiplying the mean-centered matrix by the 

selected eigenvectors 

The principle components were obtained by multiplying the mean-centered matrix by the 

selected eigenvectors. The resulting matrix had specified selected columns, each corresponding to 

a principle component. 

In summary, the process of applying the PCA test for selected principle components 

without using any equations involves collecting and organizing the data set into a matrix, 

calculating the mean of each variable, centering the data set by subtracting the mean from each 

variable, computing the covariance matrix of the mean-centered matrix, computing the eigenvalues 

and eigenvectors of the covariance matrix, sorting the eigenvectors in descending order of their 
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corresponding eigenvalues, selecting the eigenvectors corresponding to the highest eigenvalues, 

obtaining the principle components by multiplying the mean-centered matrix by the selected 

eigenvectors and using the resulting matrix of principle components for further analysis. 

The t-test method is a statistical hypothesis test used to determine whether there is a 

significant difference between the means of two groups of data. The following are the steps 

involved in implementing the t-test method: 

1. Define the Null and Alternative Hypotheses: The first step in implementing the t-test method 

was to define the null and alternative hypotheses. The null hypothesis (H0) stated that there is 

no significant difference between the means of the two groups, while the alternative hypothesis 

(HA) states that there is a significant difference between the means of the two groups. 

2. Collect the Data: The next step was to distribute collected data into two groups that are being 

compared. It was important to ensure that the data is collected in a random and unbiased 

manner to avoid any errors in the analysis. 

3. Calculate the t-statistic: The t-statistic is a measure of the difference between the means of the 

two groups, normalized by the standard error of the difference. The formula for calculating the 

t-statistic is t = (X1 - X2) / SE, where X1 and X2 are the means of the two groups and SE is the 

standard error of the difference. 

4. Determine the Degrees of Freedom: The degrees of freedom are the number of independent 

observations in the sample. The formula for calculating the degrees of freedom is df = n1 + n2 

- 2, where n1 and n2 are the sample sizes of the two groups. 

5. Calculate the p-value: The p-value is the probability of obtaining a t-statistic as extreme as the 

one observed, assuming that the null hypothesis is true. The p-value was calculated using a t-

distribution table. 
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6. Interpret the Results: If the p-value is greater than the significance level (usually 0.05), then 

the null hypothesis was rejected, and it concluded that there is a significant difference between 

the means of the two groups. If the p-value was less than the significance level, then the null 

hypothesis could not be rejected, and it concluded that there is no significant difference 

between the means of the two groups. 
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4. Chapter 4. Development of PPPMs and Analysis 

Predicting pavement performance is often considered to be an arduous task because many 

factors must be considered. Consequently, accurate pavement performance models that include 

more pavement data are needed as the basis for pavement maintenance and rehabilitation strategy 

selection. Many causes of pavement deterioration potentially vary from one road section to the 

next, which makes the modeling of pavement performance a complex process. Therefore, 

developing pavement performance prediction models requires both obtaining relevant data (e.g., 

pavement conditions and climate data) and identifying robust performance prediction approaches. 

In this research, artificial neural network (ANN) models were used to predict pavement 

performance.  

4.1 Development of PPPMs  

Traffic loading and environmental factors result in pavement distress. The ability to trace 

that distress over time allows researchers and agency decision-makers to develop performance 

prediction models. Predicting pavement performance requires historical data about pavement 

conditions, traffic loading, structural characteristics, and climate data. These data can be acquired 

from a single test road or from in-service pavements to obtain data for more practical prediction 

models. However, constructing and monitoring single test roads is expensive and unrealistic for 

small and local agencies. Developing accurate prediction models for pavements allows 

transportation agencies to effectively manage their highways in terms of budget allocation and 

scheduling maintenance and rehabilitation activities. 

In this research, historical traffic loading collected from Weigh–In–Motion (WIM) systems 

and pavement structural, material, maintenance, condition, and historical climate data was 

obtained from   Long Term Pavement Performance (LTPP) database to include all related variables 
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in the prediction models. The results of this research will improve the understanding of pavement 

distress and evaluate the impact of traffic characteristics information on predicting pavement 

performance.  

4.1.1 Data Collection  

Data are the main building blocks in performance modeling, so obtaining excellent quality 

data is essential to getting accurate results. In this study, two kinds of data were obtained. Pavement 

condition, structural, material, and maintenance data were obtained from the LTPP, and traffic 

characteristics data were obtained from the WIM systems. Data used in this study are described in 

the following sections, followed by sections that discuss data integration and developing ANN 

pavement performance models. 

The LTPP database includes information about the highway system, including section 

identification, construction history, pavement type, maintenance history, traffic loading, structure 

parameters, and pavement distress. The Long-Term Pavement Performance (LTPP) program was 

established to collect pavement performance data as one of the major research areas of the Strategic 

Highway Research Program (SHRP) and is currently managed by the Federal Highway 

Administration (FHWA). Pavement condition data from 2001 through the end of 2020 was used 

in this research. Each pavement section in the study had the same features (i.e., pavement type, 

maintenance history, traffic loading, subgrade stiffness, layer thicknesses, and pavement 

distresses). Rutting, roughness, longitudinal cracking, transverse cracking, fatigue cracking, and 

patching were pavement distress features of the pavement sections.  
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Table 4.1: Predictor data collected from LTPP 

Type Age 
Material 

properties 
Climatic 

properties 
Structural 
properties 

Traffic 
Characteristics 

No. of 
predictors 

2 16 6 4 10 

 

4.1.2 Data Clean and Processing:  

Data cleaning is an essential process in preparing data for analysis by identifying and 

resolving anomalies such as noise, missing values, and outliers that can negatively affect the 

analysis. The process began with a thorough examination of the raw data to detect inconsistencies, 

inaccuracies, or missing information. Noise is a prevalent issue that can distort the results of 

statistical analyses or machine learning models, and techniques such as smoothing, filtering, and 

clustering are employed to mitigate it. Smoothing involved eliminating high-frequency noise from 

the data while retaining underlying trends and patterns, and filtering selectively removes or retains 

certain frequencies in data. Clustering groups similar data points together to identify and eliminate 

noise from the data. 

Another prevalent issue with raw data is the presence of missing values, which was 

managed through deletion, imputation, or interpolation. Deletion is used when the missing values 

are insignificant, whereas imputation is used to replace missing values with an estimated value 

based on statistical analysis or modeling. Mean or median imputation is used for numerical data, 

and mode imputation is used for categorical data. Regression imputation involved estimating 

missing values based on a regression model trained on other attributes in the dataset. Interpolation 

estimated missing values based on neighboring data points, using methods such as linear 

interpolation, spline interpolation, or k-nearest neighbor interpolation. 
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When conducting data analysis, accuracy and reliability are paramount. One potential 

hindrance to accurate analysis is the presence of outliers, which are data points that differ 

significantly from most of the dataset due to various factors such as errors in measurement or data 

entry. To ensure dependable analysis results, outliers were removed from the dataset. Different 

techniques were employed for this purpose, including the Z-score method, which calculates the 

difference between a data point and the dataset mean in terms of standard deviations. Any data 

point with a Z-score exceeding a certain threshold (usually 2.5 or 3) is considered an outlier and 

removed. The interquartile range (IQR) method, which measures data spread, is another option. 

The IQR was calculated as the difference between the first and third quartiles of the dataset. Any 

data point falling outside the range of 1.5 times the IQR below the first quartile or above the third 

quartile is identified and removed. Additionally, visual inspection was used to identify outliers not 

detected by statistical methods. It involved examining data plots and identifying data points that 

do not align with the expected pattern. It is important to consider the data context and analysis 

purpose when removing outliers. Overall, removing outliers was essential to ensure dependable 

data analysis results, and various techniques were utilized to achieve this goal. 

In conclusion, data cleaning is a critical step in ensuring reliable and accurate analysis 

results. Employing appropriate techniques to address noise, missing values, and outliers provide 

trustworthy insights that are valuable for informed decision-making. 

The Z-score normalization method is a commonly used technique to standardize data sets 

for easier analysis and comparability. To implement this method, the data set was organized into 

a matrix with observations as rows and variables as columns. The mean of each variable is then 

calculated by dividing the sum of all values in that variable by the total number of observations. 

The standard deviation of each variable is then determined using the variance, which is the sum of 
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the squared differences between each observation and the variable mean, divided by the total 

number of observations minus one. The mean is subtracted from each value in the variable, and 

the result is divided by its standard deviation, resulting in a standardized data matrix where each 

variable has a mean of zero and a standard deviation of one. This standardized data can then be 

used for further analysis, such as classification, clustering, or visualization. The interpretation of 

standardized data depends on the specific data set and context. 

4.1.3 PCA  

The widely used statistical technique, Principle Component Analysis (PCA), is employed 

to explore and reduce the dimensionality of data sets. The process of applying the PCA test 

involved several steps. Firstly, the data set is collected and organized into a matrix format, with 

rows and columns representing observations and variables, respectively. In the dataset, there were 

38 variables presented. So, a 38×38 matrix was generated from the variables.  

 Next, the mean of each variable is calculated by dividing the sum of its values by the total 

number of observations. The data set is then centered by subtracting the mean from each variable. 

The covariance matrix of the mean-centered matrix is then computed to show the covariance 

between each pair of variables. The eigenvalues and eigenvectors of the covariance matrix are then 

computed, with eigenvalues representing the variance explained by each eigenvector and 

eigenvectors representing the direction of maximum variance. These eigenvectors are then sorted 

in descending order of their corresponding eigenvalues, and the eigenvectors with the highest 

eigenvalues are selected as principle components. These selected components are obtained by 

multiplying the mean-centered matrix by the selected eigenvectors, resulting in a matrix with 

specified columns corresponding to principle components. This matrix of principle components 

can then be used for further analysis such as clustering, classification, or visualization. To 
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understand the process, Figure 4.1 represents the Proportion of Variation (PoV) based on 

individual and cumulative explained variance. 

 

Figure 4.1: Scree plot for Proportion of variation 

To incorporate the information of the original input variables in PCA, a cumulative PoV of 

at least 80% is typically considered necessary (Adler and Golany 2001). For this analysis, 12 

components cumulatively had around 96% PoV. In the present investigation, the chosen approach 

involved utilizing the twelve Principal Components (PCs) that were identified by meeting the 

minimum threshold for cumulative Proportion of Variation (PoV). This decision was made in 

consideration of the case study in question, to achieve an optimal representation of the underlying 
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data structure. The minimum cumulative PoV criterion, which accounts for the proportion of total 

variance explained by the selected PCs, was employed as a means of identifying the most 

significant PCs that encapsulated most of the relevant information. Therefore, this study sought to 

apply a judicious selection of PCs to ensure that the resulting analysis was robust and reflective of 

the underlying patterns within the data. To compute the principal component scores in this study, 

a process was undertaken whereby the normalized values of 300 data points, representing locations 

with data from the year 2020, were used. These scores were computed based on the twelve 

Principal Components (PCs) that were identified as being significant in capturing the underlying 

variability in the data. The computation of these scores was conducted to summarize the 

information contained within the original dataset into a smaller, more manageable set of variables. 

By utilizing the normalized values, the data points were standardized to ensure that the scores were 

not influenced by differences in scale or units of measurement. Overall, this approach allowed for 

a more comprehensive understanding of the relationships between the 300 locations in the dataset 

and provided a useful framework for analyzing the patterns and trends within the data. Tables 4.2 

and 4.3 represent the eigenvalues and eigenvectors for the highest 12 PCs.  
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Table 4.2: Eigenvalue, Variance percentage, and Cumulative Variance Percentage for the 12 

dimensions 

 
Eigenvalue Variance Percent Cumulative Variance 

Percent 

Dim. 1 1.5515 0.263679 0.263679 

Dim. 2 1.2546 0.241149 0.504828 

Dim. 3 1.1121 0.150701 0.655529 

Dim. 4 0.8667 0.088637 0.744166 

Dim. 5 0.6213 0.067914 0.81208 

Dim. 6 0.5758 0.055463 0.867543 

Dim. 7 0.4842 0.046209 0.913752 

Dim. 8 0.3912 0.034805 0.948557 

Dim. 9 0.3143 0.026298 0.974855 

Dim. 10 0.2423 0.015922 0.990777 

Dim. 11 0.2013 0.00564 0.996417 

Dim. 12 0.1912 0.003583 1.000001 
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Table 4.3: Eigenvector for the highest PCs 

 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC1

0 

PC1

1 

PC1

2 

Base 

Layer 

Unbound 

SPEC 

GRAVI

TY 

0.69

2344 

0.69

0187 

0.68

803 

0.68

5873 

0.68

3716 

0.68

1559 

0.69

2344 

0.69

0187 

0.68

6643 

0.68

6335 

0.68

6027 

0.68

5719 

Subgrad

e CON 

PRESSU

RE 

0.72

6671 

0.50

973 

0.29

2789 

0.07

5848 

-

0.14

109 

-

0.35

803 

0.72

6671 

0.50

973 

0.15

3327 

0.12

2335 

0.09

1344 

0.06

0352 

Subgrad

e NOM 

MAX 

AXIAL 

STRESS 

0.52

4988 

0.25

8102 

-

0.00

878 

-

0.27

567 

-

0.54

256 

-

0.80

944 

0.52

4988 

0.25

8102 

-

0.18

035 

-

0.21

848 

-

0.25

661 

-

0.29

473 

Total 

Annual 

Precipita

tion 

0.96

7514 

0.05

7511 

-

0.85

249 

-

0.76

25 

-

0.67

25 

-

0.28

25 

0.96

7514 

0.05

7511 

-

0.06

607 

-

0.06

63 

-

0.06

654 

-

0.06

678 

Mean 

Annual 

0.06

6124 

0.05

5933 

0.04

5742 

0.03

5551 

0.02

536 

0.01

5169 

0.06

6124 

0.05

5933 

0.03

9191 

0.03

7735 

0.03

6279 

0.03

4823 



100 
 

Tempera

ture  

Subbase 

layer/int

erlayer+ 

Sabgrade 

layer 

Thicknes

s  

-

0.36

897 

-

0.49

264 

-

0.61

632 

-

0.73

999 

-

0.86

367 

-

0.98

734 

-

0.36

897 

-

0.49

264 

-

0.69

582 

-

0.71

349 

-

0.73

116 

-

0.74

883 

Interlaye

r BSG 

-

0.64

436 

-

0.85

872 

-

0.07

307 

-

0.28

742 

-

0.00

177 

0.18

3877 

-

0.64

436 

-

0.85

872 

-

0.36

444 

-

0.35

696 

-

0.34

949 

-

0.34

202 

AC 

Layer 

Below 

Surface 

(Binder 

Course) 

+Overla

y 

Thicknes

s  

0.21

1365 

0.23

7578 

0.26

3791 

0.29

0004 

0.31

6217 

0.34

243 

0.21

1365 

0.23

7578 

0.28

0642 

0.28

4387 

0.28

8132 

0.29

1876 

VEH 

CLASS 

5 DIST 

0.43

7696 

0.52

2782 

0.60

7868 

0.69

2954 

0.77

804 

0.86

3126 

0.43

7696 

0.52

2782 

0.66

2566 

0.67

4721 

0.68

6876 

0.69

9032 
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PERCE

NT 

VEH 

CLASS 

6 DIST 

PERCE

NT 

-

0.75

819 

-

0.96

52 

-

0.17

221 

-

0.37

922 

-

0.08

623 

0.10

6767 

-

0.75

819 

-

0.96

52 

-

0.45

886 

-

0.45

033 

-

0.44

181 

-

0.43

329 

VEH 

CLASS 

8 DIST 

PERCE

NT 

0.27

6847 

0.06

9839 

-

0.13

717 

-

0.34

418 

-

0.55

119 

-

0.75

819 

0.27

6847 

0.06

9839 

-

0.27

025 

-

0.29

982 

-

0.32

939 

-

0.35

896 

VEH 

CLASS 

10 DIST 

PERCE

NT 

0.80

4931 

0.06

208 

-

0.68

077 

-

0.42

362 

-

0.16

647 

-

0.60

932 

0.80

4931 

0.06

208 

-

0.07

26 

-

0.08

468 

-

0.09

675 

-

0.10

883 

 

In addition, the statistical properties of the selected input variables are presented in Table 

4.4. 
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Table 4.4: Statistical properties of the selected input variables 

 Unit mean std min max 

Base Layer Unbound 
SPEC GRAVITY 

 2.623189 0.062136 2.526 2.762 

Subgrade CON 
PRESSURE 

(kPa) 29.74111 16.15447 13.8 103.4 

Subgrade NOM MAX 
AXIAL STRESS 

(kPa) 43.85667 25.99092 13.8 206.8 

Total Annual 
Precipitation 

(mm) 1211.67 140.0962 885.7 1679.6 

Mean Annual 
Temperature 

(°C) 12.61111 0.794708 11.1 14.3 

Subbase 
layer/interlayer+ 
Sabgrade layer 

Thickness 

(in) 85.22 2.403705 84 90 

Interlayer BSG  2.635798 0.037737 2.589 2.714 

AC Layer Below 
Surface (Binder 

Course) +Overlay 
Thickness 

(in) 8.408889 6.089328 3.9 20.5 

VEH CLASS 5 DIST 
PERCENT 

 31.99267 16.6675 9.34 53.47 

VEH CLASS 6 DIST 
PERCENT 

 9.965778 6.385496 1.93 18.15 

VEH CLASS 8 DIST 
PERCENT 

 6.436556 1.887951 4.31 9.3 

VEH CLASS 10 DIST 
PERCENT 

 2.108778 1.101717 0.86 3.59 
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4.1.4 Developing Artificial Neural Network (ANN) Models 

Development of ANN models involve three major components: setting up the architecture 

of the model designed to devise the structure of connection between the input and output layers, 

improving the learning method by adjusting the weights of connection, and an activation function 

to initiate the neurons of the network. The determination process of the ANN architecture plays 

the leading character in the construction of an optimum ANN model and adequate observation 

effort in the modeling process is demanded to figure out the architecture that serves the purpose of 

developing the specialized model. For the development of the PPPMs, the ANN model architecture 

used in this study consists of three layers: input layer, hidden layer, and output layer as shown in 

Figure 4.2. The independent variables that connect to the output layer are entered into the input 

layer and an individual neuron is assigned for each independent variable that served in the next 

phase of analysis intended to explain the effect of each input variable on the outcomes produced 

by the output layers. The number of neurons in the hidden layer should be chosen accordingly 

because that choice impacts model performance. Too many neurons used in the hidden layer can 

result in complexity in the model (Rafiq et al. 2001). The next challenge was the selection of the 

number of hidden layers because that choice impacts model performance significantly (Amin 

2020). The number of layers decides the deep learning process of the model affecting the accuracy 

of the developed models. The single hidden layer model removes the limitations of the 

ambiguousness of the model, but this affects the learning process significantly because the single 

layer cannot yield reliable results causing drops in the performance of the model.  
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Figure 4.2: Basic structure of ANN utilized in PPPMs development 

Artificial Neural Networks (ANNs) are a type of computational model that attempts to 

emulate the behavior of biological neurons. ANNs consist of an input layer, one or more hidden 

layers, and an output layer. The hidden layer(s) are responsible for processing the input data and 

generating output. The optimal number of hidden neurons is a crucial factor that contributes to the 

success of the ANN model. The process of determining the optimal number of hidden neurons 

involves several steps: 

1. Collecting data: The first step in developing an ANN model was to collect data. The data 

should be representative of the problem that the ANN is intended to solve. In addition, the data 
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should be pre-processed and normalized to ensure that the ANN model can effectively learn 

from it. 

2. Defining the architecture of the ANN: The architecture of an ANN refers to the number of 

layers, the number of neurons in each layer, and the type of activation function used. 

Determining the optimal number of hidden neurons was the focus of this step. Therefore, the 

input and output layers were fixed, and the number of neurons in the hidden layer(s) was 

focused. 

3. Choosing a range of values for the number of hidden neurons: The next step was to choose a 

range of values for the number of hidden neurons. This range should be based on the 

complexity of the problem that the ANN is intended to solve. A simple problem may require 

only a few hidden neurons, while a more complex problem may require many more. 

4. Training the ANN: Once the architecture of the ANN was defined, the next step was to train 

the model using the training data. During the training process, the weights of the connections 

between the neurons were adjusted to minimize the error between the predicted output and the 

actual output. 

5. Evaluating the performance of the ANN: After the ANN was trained, the performance of the 

model is evaluated using the testing data. The evaluation metric is used to depend on the 

problem being solved.  

6. Varying the number of hidden neurons: The decisive step in determining the optimal number 

of hidden neurons was to vary the number of neurons in the hidden layer(s) and evaluate the 

performance of the model at each value. This was done by repeating steps 4 and 5 for different 

values of the number of hidden neurons. 
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One important consideration when determining the optimal number of hidden neurons was 

overfitting. Overfitting occurs when the model is too complex and performs well on the training 

data but poorly on the testing data. This was because the model memorized the training data instead 

of learning the underlying patterns. To avoid overfitting, it is important to use techniques such as 

regularization, early stopping, or dropout.  

Regularization involved adding a penalty term to the cost function that is being minimized 

during training. This penalty term discourages the model from becoming too complex and helps 

to prevent overfitting. Early stopping involves monitoring the performance of the model on a test 

set during training and stopping the training process when the performance on the test set starts to 

degrade. Dropout involved randomly dropping out some of the neurons in the model during 

training, which helps to prevent the model from relying too heavily on any one neuron. For an 

ANN-based pavement performance prediction model with six thousand data points, regularization 

was beneficial in several ways: 

 Reducing model complexity: Regularization techniques such as L1 and L2 regularization 

added a penalty term to the loss function of the model. This penalty term discouraged the 

model from assigning too much importance to any one feature, thereby reducing the 

model's complexity. 

 Avoiding overfitting: By reducing the model complexity, regularization helped to prevent 

overfitting, improving the model's ability to generalize to new, unseen data. 

 Improving model performance: Regularization can also lead to better model performance, 

as it helps to remove noise and irrelevant features from the training data, allowing the 

model to focus on the most prominent features. 
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Therefore, by using regularization techniques such as L1 or L2 regularization, we can avoid 

overfitting in an ANN-based pavement performance prediction model and improve its ability to 

generalize to new data, resulting in more accurate and reliable predictions. 

 Figure 4.3 presents the flowchart for finding the optimal number of hidden neurons. This 

part introduces the performance indicators of the training process and the three steps for 

determining the optimal combination and number of hidden neurons: training, averaging, 

comparing, and testing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Flowchart for finding the optimal number of hidden neurons 

 

Adjustment of the number of neurons 

in the hidden layer (n) 

Record Test R2 

Average of Test R2 

Test number of neurons with highest 

average Test R2 

Assign weights and 

biases to the ANN model 

Testing of ANN model 

Training 
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For the development of the model, the first 15 years of pavement section data were used as 

training data, and the remaining 5 years of data served as test data, whereby it produces a mean 

root square error (RMSE) of training, Train R2, and Test R2 values. Figure 4.4 shows the 

performance of an ANN model for determining the number of neurons in the hidden layer for 

predicting the surface distress with their average outcomes where the highest average R2 value was 

achieved at 12 hidden neurons. The number of optimal numbers of hidden neurons in both 

normalization methods was 12. The final layer in the structure of the ANN model is the output 

layer that produces the result from processing provided by the hidden layer.  

  

Figure 4.4: Performance of an ANN model based on neuron number 

The training data set is used to develop the model, while the test data is used to assess the 

accuracy of the ANN model and avoid overfitting in the model (Ling et al. 2017). The results of 

the training process produce the weight matrices that are stored in links between layers and that 

can also be used to extract information about the contribution of each input in the model output. 
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In the training process, the connection weights between the layers are adjusted, thereby minimizing 

the overall mean error by using the back-propagation algorithm.  

In an Artificial Neural Network (ANN) backpropagation model, the number of epochs is a 

crucial hyperparameter that influences the training process and the overall performance of the 

model. The selection process of the optimal number of epochs is important to achieve a model that 

is accurate, robust and not overfitting the training data. 

The number of epochs refers to the number of times that the entire training dataset is passed 

through the model during the training process. A single epoch consists of a forward propagation 

and a backward propagation of the error signal, which updates the weights in the network. 

Typically, the more epochs the model is trained for, the more it can learn and improve its 

performance. However, there is a point at which additional epochs lead to overfitting, where the 

model becomes too specific to the training data and performs poorly on new, unseen data. 

The process of selecting the optimal number of epochs for an ANN backpropagation model 

can be approached in several ways. One of the most common methods is to use a validation dataset, 

which is separate from the training dataset and is used to evaluate the performance of the model 

during the training process. The process involves the following steps: 

1. Partitioning the data: The first step was to partition the data into three sets: training, validation, 

and testing. The training set was used to update the weights of the model during each epoch, 

the validation set was used to evaluate the performance of the model during the training 

process, and the testing set was used to evaluate the final performance of the model after 

training. The sample dataset containing thirty locations with 20 years of data was used for this 
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step. The first 15 years' data was used for training, the next 3 years' data for validation, and the 

last 2 years' data for testing.  

2. Choosing a range of epochs: The next step was to choose a range of epochs to assess the model 

over. A frequent practice was to start with a small number of epochs and increase gradually, 

monitoring the validation loss at each epoch. 

3. Training the model: The model was trained over the range of epochs while monitoring the 

validation loss. If the validation loss begins to increase, it is a sign of overfitting, and the 

training should stop to avoid further overfitting. 

4. Evaluating the model performance: Once the model is trained, it is evaluated on the testing 

dataset to assess its performance. If the performance is satisfactory, the model can be deployed. 

Several techniques can be used to prevent overfitting during training, which can influence 

the optimal number of epochs for the model. These include dropout, regularization, and early 

stopping. For this step, regularization was used. 

In conclusion, the selection process of the optimal number of epochs for an ANN 

backpropagation model involves a range of techniques, including partitioning the data, defining 

the model architecture, choosing a range of epochs, training the model, and evaluating the 

performance of the model. By monitoring the validation loss and implementing techniques to 

prevent overfitting, a model can be trained that is accurate, robust, and generalizes well to new 

data.  

The proposed ANN model considers the following elements: activation function, training 

algorithm and regularization, neural-network architecture, and the number of hidden neurons. 

Table 4.5 summarizes the methods selected for the elements, which are discussed in the following 

subsections. 
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Table 4.5: Methods Selected for the Elements 

Model Element Method of Selection 

Training Algorithm Back-propagation 

Training Regularization Bayesian regularization 

Activation Function 
Hidden Layer Logistic activation function 

Output Layer Linear activation function 

Number of Epochs 1500 

 

The logistic activation function and the hyperbolic tangent activation function can add non-

linearity properties to the ANN model so that the model can learn from the data (Godfrey and 

Gashler 2015). The linear-activation function maps the pre-activation to itself, and the range of 

output values is between (−∞, ∞) (Herawan et al. 2017). The logistic and hyperbolic tangent 

activation functions are used for a hidden layer while the linear activation function is suitable for 

an output layer where the output values not constrained to any boundary are generated to predict 

target values. Between the activation functions for non-linearity, the convergence behavior of the 

logistic activation function shows a more non-linear pattern as the hyperbolic tangent activation 

function is almost linear at the low absolute values of the input variables. Therefore, PPPMs used 

the logistic activation function and linear activation function for the hidden layer and output layer, 

respectively.  

Backpropagation is the most common and efficient training algorithm; hence, it was used 

as a training algorithm in this dissertation. In addition, in traditional neural network training, early 

stopping regularization is commonly used to avoid overfitting. Early stopping occurs when training 

is stopped before overfitting, which means that when the test error is at the minimum, the training 
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process should be shut off (see Figure 4.5). However, it is difficult to detect when the test error 

reaches the minimum it is difficult to stop training at the right point. Most studies point out that 

Bayesian regularization performs better than early stopping in many cases. Bayesian regularization 

for neural networks is based on probabilistic interpretation to choose optimal sets of weights to 

minimize estimation error and efficiently avoid overfitting (Kayri 2016). The major advantage of 

using Bayesian regularization is that it does not require that the test dataset be separated from the 

training data set.  

 

Figure 4.5: Training process of ANN 

Despite the vast capability of ANN in prediction modeling, such models are often 

criticized as “black box” models, because of the difficulty in interpreting the contribution of each 

variable to the response variable making it hard to gain an understanding of the relationships 

among variables, which is considered a weakness when compared to traditional statistical models 

(Olden and Jackson 2002).  

4.2 Result  

This section presents the results of utilizing ANN to predict pavement performance 

conditions. To understand the predicted condition of the pavement, pavement conditions of each 
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location was predicted by ANN models using current traffic and other important data input. The 

ANN model demonstrated the capability for predicting pavement conditions based on several 

variables and for estimating the relationship between traffic characteristics and pavement 

conditions at the network management level.  

The performance of the ANN models was assessed to understand the accuracy of the 

models in predicting pavement performance as calculated by riding, cracking, potholes, patch 

failure, and polished aggregates indices. R2 and RMSE values were used to measure and compare 

the performance of the models. Good prediction models should have a high R2 and low RMSE. 

Historical data was used on ANN models to predict individual distresses for AC/flexible pavement 

sections. This individual distress was predicted based on weather factors (i.e., temperature, 

precipitation, and freeze-thaw cycles), traffic loading (AADT, AADTT, axle types, and loading), 

pavement age, layer thicknesses, material properties, and maintenance history. By predicting 

individual distresses, decision-makers can evaluate the individual distress for each pavement 

section, and determine which distress has more effect on the overall pavement condition. 

After determining the architecture of each ANN model, the database for the period from 

2001 to 2020 was randomly divided into training (first 15 years data) and test (next 5 years data) 

datasets. The training data set was used to develop the model whereas the test data was used to 

assess the accuracy of the ANN model and avoid overfitting in the model (Ling et al. 2017). The 

results of the training process produced the weight matrices that are stored in links between layers 

and that can also be used to extract information about the contribution of each input in the model 

output. The analysis showed the ANN models yield better predictions in terms of R2 and RMSE. 

4.2.1 IRI (Roughness) Model 

 The result of the IRI training models developed for three states is presented in Figure 4.6. 
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Figure 4.6: Performance for IRI from PPPMs 

The result showed that the model generated from WIM data included performed better than 

without WIM data. This is true for both R2 and RMSE. Overall, the performance of the PPPMs in 

terms of IRI prediction looked particularly good as it showed -high values for R2 and low values 

for RMSE.  

4.2.2 Cracking Models 

Cracking is one of the most important measures of deterioration in bituminous pavements. 

Fatigue and aging have been identified as the principal factors which contribute to the cracking of 

a bituminous pavement layer. The propagation of cracking is accelerated through the 

embrittlement resulting from aging and the ingress of water, which can significantly weaken the 

underlying pavement layers. There are three types of cracking considered: longitudinal, transverse, 

and fatigue (alligator) cracking. For each type of cracking, separate relationships are given for 

predicting the time to initiation and then the rate of progression. Figure 4.7, Figure 4.8, and Figure 
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4.9 illustrate the performance of longitudinal, transverse, and fatigue (alligator) cracking, 

respectively.  

 

Figure 4.7: Prediction result of longitudinal cracking from PPPMs 

 

Figure 4.8: Prediction result of transverse cracking from PPPMs 

With WIM Data W/O WIM Data

R² 0.85 0.82

RMSE 5.461861 6.215484

0

1

2

3

4

5

6

7

Result of Longitudinal Cracking Prediction

R² RMSE Linear (R² ) Linear (RMSE )

With WIM Data W/O WIM Data

R² 0.81 0.75

RMSE 9.1584841 8.151571

0

2

4

6

8

10

12

Result of Transverse Cracking Prediction

R² RMSE Linear (R² ) Linear (RMSE )



116 
 

  

Figure 4.9: Prediction result of fatigue cracking from PPPMs 

  The result for cracking shows reliable performance for three crack types. For Longitudinal 

cracking, the best result was generated for the WIM data included model. The performance of 

PPPMs for longitudinal cracks shows that the generated can be used for different performance 

indicators with the same data and it can perform well. For the transverse crack, the performance 

without WIM data was better than the performance of the WIM data included model. The value of 

R2 was high and RSME was comparatively low which indicated the performance was better. So, 

the model outputs for cracking were good considering high R2 and low RMSE.  

4.2.3 Potholes Model 

Potholes usually develop on a surface that is either cracked, raveled, or both. The presence 

of water accelerates pothole formation both through a general weakening of the pavement structure 

and by lowering the resistance of the surface and base materials to disintegration. Figure 4.10 

presents the result of the Pothole generated by PPPMs. 
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Figure 4.10: Prediction result of potholes from PPPMs 

 Both WIM-included data and without WIM data-based models had low R2 values and 

slightly higher RSME. Among them, the result for WIM data-based model shows a slightly better 

performance than others.  

4.2.4 Polished Aggregate Model 

 The micro-texture of road aggregates wears away under traffic action over time and gets 

polished. The result generated by the PPPMs for polished aggregate is presented in Figure 4.10.  

 

Figure 4.11: Prediction result of polished aggregate from PPPMs 
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  The result of polished aggregates generated by PPPMs shows moderate performance in 

both WIM and without WIM data-based models. The models of WIM data included model 

performed better than the other as it has higher R2, but lower RMSE. The moderate performance 

of the model can be a consequence of the non-present of polished aggregates on the pavement. So, 

the models have some limitations regarding zero values. So, further improvement of the PPPMs is 

needed so that they can adopt distinct types of indicators.  

4.2.5 Patch Failure Model 

 Patching failure can cause serious harm to pavement structure by providing water to enter 

the pavement at a large volume and the underneath structure swells causing more damage to the 

pavement. Several reasons can cause the patch to fail. The results generated by PPPMs for patch 

failure are presented in Figure 4.12. 

 

Figure 4.12: Prediction result of patch failure from PPPMs 

   The result for patch failure models for both normalized data types showed moderate-higher 

values for R2 and lower values for RMSE. This indicated the patch failure models performed better, 
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specifically for the WIM data included model which showed a slightly high value for R2 and low 

value for RMSE than the other. Future investigation is required to improve the performance of the 

prediction.    

4.3 Improve PPPMs Results Using WIM Data 

Pavement performance prediction models are widely used in transportation engineering to 

assess the performance of roadways and to forecast maintenance needs. These models are 

developed based on a range of factors, including traffic loads, climate conditions, and pavement 

material properties. One of the most significant challenges in developing accurate pavement 

performance prediction models is the limited availability of reliable data. Weigh-In-Motion (WIM) 

technology has emerged as a promising solution to this problem, as it provides real-time data on 

traffic loads and vehicle characteristics that can be used to improve the accuracy of pavement 

performance prediction models. 

By incorporating WIM data into pavement performance prediction models, several benefits 

can be achieved. Firstly, WIM data allows for a more accurate representation of the actual traffic 

loads that pavements are subjected to, as it captures data on the number of axles, axle weights, and 

vehicle speed. This information is critical in accurately estimating the damage that pavement will 

experience due to traffic loads. Secondly, WIM data can provide a more detailed understanding of 

the distribution of traffic loads on the pavement surface. This information can be used to develop 

models that consider the impact of distinct types of vehicles and axle configurations, which can 

improve the accuracy of pavement performance predictions. 

Empirical results have demonstrated that the incorporation of WIM data can significantly 

improve the accuracy of pavement performance prediction models. The coefficient of 

determination (R2) and Root Mean Squared Error (RMSE) are commonly used to evaluate the 
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performance of pavement performance prediction models. This study has shown that the use of 

WIM data increased R2 values by up to 10% and reduced RMSE by up to 31%, indicating a 

substantial improvement in model accuracy. The results of the improvements are presented in 

Figure 4.13. 

  

Figure 4.13: Illustration of performance improvements of PPPMs using WIM data 

Furthermore, the use of WIM data in pavement performance prediction models can 

facilitate the identification of pavement distress mechanisms and provide valuable insights into the 

factors that influence pavement performance. This information can be used to develop more 

effective pavement management strategies and to prioritize maintenance and rehabilitation 

activities. 
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In conclusion, incorporating WIM data into pavement performance prediction models has 

the potential to significantly improve the accuracy of these models, providing valuable insights 

into the factors that influence pavement performance, and informing the development of more 

effective pavement management strategies. 

 4.4 Hypothesis Testing: 

Hypothesis testing is a critical statistical technique used in research studies to determine 

whether a given hypothesis is supported by the available data or not. In this study, the null 

hypothesis was that Weigh-In-Motion (WIM) data has no significant impact on the performance 

of the pavement performance prediction model. To evaluate this hypothesis, a t-test was 

conducted, and the results showed that the p-value was greater than the significance level. 

Therefore, the null hypothesis was rejected, indicating that WIM data does have a significant 

impact on the performance of the Artificial Neural Network (ANN)-based pavement performance 

prediction model. 

The t-test is a statistical test that determines whether the means of two groups are 

significantly different from each other or not. In this study, the two groups were the pavement 

performance prediction model without WIM data and the model with WIM data. The t-test was 

conducted to compare the mean performance of these two groups, and the resulting p-value 

indicated the probability of obtaining the observed difference in performance by chance. If the p-

value is less than the significance level (usually set at 0.05), then the null hypothesis is rejected, 

indicating that there is a significant difference between the two groups. Table 4.6 showed the two-

tailed P-values for RMSEs for eight types of performance indicators.  
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Table 4.6: P-values for RMSEs for seven types of performance indicators 

Comparison of WIM data-based model 

performance with WITHOUTWIM data-based 

model 

P- Value (RMSE) 

IRI 0.010407 

Longitudinal Crack 0.00568 

Transverse Crack 0.006716 

Fatigue Crack 0.008601 

Potholes 0.009666 

Polished Aggregate 0.007994 

Patch Failure 0.006087 

 

In this study, the results of the t-test showed that the p-value was greater than the 

significance level, indicating that there was a significant difference in the mean performance 

between the two groups. Since the null hypothesis stated that there was no impact of WIM data on 

the performance of the pavement performance prediction model, this result was sufficient to 

conclude the hypothesis testing. Therefore, the null hypothesis was rejected, and it was concluded 

that WIM data does have a significant impact on the performance of the pavement performance 

prediction model. 

In conclusion, hypothesis testing is a powerful statistical technique that can be used to 

determine the impact of a range of factors on the performance of a given model or system. In this 

study, the null hypothesis was rejected, indicating that WIM data does have a significant impact 
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on the performance of the pavement performance prediction model. This finding highlights the 

importance of considering WIM data in the development of pavement performance prediction 

models and can inform the development of more accurate and effective pavement management 

strategies. 
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5. Chapter 5. Conclusions and Recommendations 

5.1 Summary of the Research 

 The primary objective of this dissertation is to create Pavement Performance Prediction 

Models (PPPMs) using the high-quality traffic loading data generated by Weigh-In-Motion (WIM) 

systems. The research focuses on developing PPPMs for flexible pavements based on the collected 

LTPP in 300 locations in the USA with WIM systems, intending to assist transportation agencies 

in managing the maintenance of their road infrastructure. 

The dissertation begins with a review of the state-of-the-art machine learning-based 

modeling of pavement performance. Pavement infrastructure is capital-intensive and requires 

continuous monitoring to ensure its stability and acceptable serviceability. However, 

transportation agencies face the challenge of limited resources for maintenance work due to budget 

constraints. PPPMs have become crucial tools for providing optimal allocation of resources in 

maintenance activities. They are generated using inventory and monitoring data concerning the 

state of pavement structure, traffic load, and climate conditions. 

PPPMs can be classified based on the formulation type, conceptual format, application 

level, and type of variables used. Machine learning based PPPMs draw generalizable predictive 

patterns, while statistical models draw population interpretations from a sample. These models 

relate pavement conditions (e.g., cracking, rutting) to a set of explanatory variables (e.g., traffic 

loadings, age, environmental factors, pavement design characteristics). 

Among the various machine learning algorithms developed and implemented by the 

research community for PPPMs, artificial neural networks (ANNs) be the most widely used. 

Hence, this study employs ANN for the development of PPPMs. Six PPPMs based on distress 

types and one roughness based PPPM were developed using the data collected from 300 LTPP 
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locations in the USA with the WIM system installed. The LTPP database was used to collect 

pavement condition and predictor types, including climatic, material, structural, and traffic data, 

through the InfoPave website. 

The use of high-quality traffic load data generated by WIM systems in developing PPPMs 

holds immense potential. These models can predict the present and future condition of the 

pavement, which can be used to understand the pavement's performance and prioritize 

maintenance activities. The models developed in this dissertation can assist transportation agencies 

in optimizing the allocation of their limited resources for pavement maintenance. 

5.2 Summary of the Results 

Pavement performance prediction models are widely used in transportation engineering to 

assess the performance of roadways and to forecast maintenance needs. These models are 

developed based on a range of factors, including traffic loads, climate conditions, and pavement 

material properties. One of the most significant challenges in developing accurate pavement 

performance prediction models is the limited availability of reliable data. Weigh-In-Motion (WIM) 

technology has emerged as a promising solution to this problem, as it provides real-time data on 

traffic loads and vehicle characteristics that can be used to improve the accuracy of pavement 

performance prediction models. 

By incorporating WIM data into pavement performance prediction models, several benefits 

can be achieved. Firstly, WIM data allows for a more accurate representation of the actual traffic 

loads that pavements are subjected to, as it captures data on the number of axles, axle weights, and 

vehicle speed. This information is critical in accurately estimating the damage that pavement will 

experience due to traffic loads. Secondly, WIM data can provide a more detailed understanding of 

the distribution of traffic loads on the pavement surface. This information can be used to develop 
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models that consider the impact of distinct types of vehicles and axle configurations, which can 

improve the accuracy of pavement performance predictions. 

Empirical results have demonstrated that the incorporation of WIM data can significantly 

improve the accuracy of pavement performance prediction models. The coefficient of 

determination (R2) and Root Mean Squared Error (RMSE) are commonly used to evaluate the 

performance of pavement performance prediction models. This study has shown that the use of 

WIM data increased R2 values by up to 10% and reduced RMSE by up to 31%, indicating a 

substantial improvement in model accuracy. 

The t-test is a statistical test that determines whether the means of two groups are 

significantly different from each other or not. In this study, the two groups were the pavement 

performance prediction model without WIM data and the model with WIM data. The t-test was 

conducted to compare the mean performance of these two groups, and the resulting p-value 

indicated the probability of obtaining the observed difference in performance by chance. If the p-

value is less than the significance level (usually set at 0.05), then the null hypothesis is rejected, 

indicating that there is a significant difference between the two groups. 

The comparison of the WIM data-based model performance with the WITHOUTWIM 

data-based model showed P-values for RMSEs of IRI, Longitudinal Crack, Transverse Crack, 

Fatigue Crack, Potholes, Polished Aggregate, and Patch Failure. In this study, the results of the t-

test showed that the p-value was greater than the significance level, indicating that there was a 

significant difference in the mean performance between the two groups. Since the null hypothesis 

stated that there was no impact of WIM data on the performance of the pavement performance 

prediction model, this result was sufficient to conclude the hypothesis testing. Therefore, the null 
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hypothesis was rejected, and it was concluded that WIM data does have a significant impact on 

the performance of the pavement performance prediction model. 

5.3 Limitations of the Study 

 The current research was conducted for interstate flexible pavements using pavement data 

collected from the LTPP database from three states. Therefore, the results and their implications 

are specific to the collected data, its quantity, quality, and variation. Since pavement data were 

collected from various states, data variation and unobserved heterogeneity may be higher because 

transportation agencies have different standards and specifications for pavement design, 

construction, and maintenance. Using data from different states may also result in spatial 

heterogeneity. For potholes and polished aggregates, many data points with zero value may cause 

inconsistent distribution and may this issue have resulted in the performance drops for PPPMs for 

these distress types. Moreover, the WIM system is not operated continuously, and this causes data 

issues. As most transportation agencies do not have a proper understanding of the significance of 

these systems in generating big data for PMS.  

 The ANN algorithm utilized for the PPPM development has some disadvantages as this 

algorithm cannot inherently process time-series data. Also, ANN requires processors with parallel 

processing power, by their structure. For these, it takes a lot of time to develop the model. There 

is no specific rule for determining the structure of ANN. For these, it cannot be said our developed 

models have outperformed others.  

5.4 Contributions of the Research 

This research makes various contributions to the body of knowledge and the body of practice 

in pavement infrastructure asset management. The overall contribution of this research is to 



128 
 

enhance probabilistic pavement performance modeling that can support the development of 

sustainable decision-making strategies for PMS. 

5.4.1 Contributions to the Body of Knowledge 

 Artificial Neural Networks (ANN) models have been widely used in various fields of 

engineering and science due to their ability to model complex systems, predict outcomes, and 

provide valuable insights into the problem at hand. This dissertation presented a critical analysis 

of various aspects of ANN-based models as applied in the literature, revealing research gaps in the 

relevant body of knowledge, and offering suggestions to address these gaps for future research. 

The study provides important contributions to the body of knowledge by highlighting the potential 

applications of Weigh-In-Motion (WIM) data in improving the accuracy of pavement performance 

prediction models (PPPM) and informing pavement management strategies. 

The dissertation provided a thorough review of the literature on ANN-based models and 

highlighted the strengths and weaknesses of different ANN architectures, training algorithms, and 

input features used in PPPM. The analysis revealed that most of the models in the literature used 

a feedforward neural network architecture, which was found to be suitable for PPPM due to its 

ability to model nonlinear relationships between input and output variables. However, the study 

also showed that other ANN architectures, such as radial basis function networks and recurrent 

neural networks, can also be used in PPPM to improve model performance. 

The study also identified research gaps in the use of ANN-based models in PPPM. One of 

the significant gaps was the limited availability of reliable data, which makes it challenging to 

develop accurate PPPM. To address this gap, the study proposed the use of WIM data, which 

provides real-time data on traffic loads and vehicle characteristics that can be used to improve the 

accuracy of PPPM. The study also highlighted the need for a comprehensive evaluation of the 
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performance of different ANN-based models and input features in PPPM to identify the best-

performing models and improve their accuracy. 

The application of WIM data is one of the major contributions to the body of knowledge 

from this research. The study showed that incorporating WIM data into PPPM has several benefits, 

including a more accurate representation of actual traffic loads that pavements are subjected to, 

and a more detailed understanding of the distribution of traffic loads on the pavement surface. This 

information can be used to develop models that consider the impact of distinct types of vehicles 

and axle configurations, which can improve the accuracy of PPPM. 

The successful application of WIM data has shown the potential for developing more 

accurate and effective pavement management strategies. Applications of WIM data can be 

explored in the direction of increasing efficiency of weight enforcement, increasing protection and 

preservation of pavement structure, improving highway safety, improving traffic operation and 

management, improving freight monitoring planning, and improving asset tracking. The use of 

WIM data can also help to reduce the need for expensive and time-consuming pavement 

inspections, leading to cost savings and more efficient use of resources. 

The study's contributions to the body of knowledge can have significant implications for 

pavement management and transportation engineering. By incorporating WIM data into PPPM, 

transportation engineers can make more informed decisions regarding pavement design, 

maintenance, and rehabilitation. This can lead to significant cost savings and a more sustainable 

pavement infrastructure that meets the needs of the traveling public. 
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In conclusion, this dissertation provides valuable insights into the use of ANN-based 

models in PPPM and highlights the potential applications of WIM data in improving the accuracy 

of PPPM and informing pavement management strategies. The study's contributions to the body 

of knowledge can help researchers and practitioners better understand the available algorithms and 

select the appropriate one that can serve their purpose. The use of WIM data presents enormous 

opportunities for developing more insightful ideas that will support decision-making for PMS, 

including increasing the efficiency of weight enforcement, improving pavement structure 

protection, improving highway safety, improving traffic operation and management, improving 

freight monitoring planning, and improving asset tracking. The findings of this study can inform 

the development of more accurate and effective pavement management strategies that can bring 

sustainability to this system. 

5.4.2 Contributions to the State of Practice 

 The successful development of the PPPMs can support policy development for minimizing 

the cost of the design life of the pavement section. The condition-based pavement performance 

prediction will open the potential of PPPMs applicability for the optimization of the maintenance 

activities and can help to generate a more cost-effective maintenance policy. The development of 

a cost-effective policy will make the service provided to the consumer more productive. The 

automation of the PMS can be achieved if the outcomes from research work are deeply investigated 

and further improved to make it applicable to real-life applications.  

5.5 Recommendations for Future Research 

 The data utilized for this research is cleaned and processed only for missing values and 

outliers. The inconsistent values for two of the predictors showed performance drops due to a 

significant amount of zero values. In future works, further investigation will be done to know any 
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relation between zero values and performance drop. Also, the data collected from the LTPP are 

time-series data. Recurrent neural networks (RNNs) are deep learning models, typically used to 

solve problems with sequential input data such as time series. RNNs are a type of neural network 

that retains a memory of what it has already processed and thus can learn from previous iterations 

during its training. It is a class of artificial neural networks where connections between nodes form 

a directed graph along a temporal sequence. This allows it to exhibit temporal dynamic behavior. 

Derived from feedforward neural networks, RNNs can use their internal state (memory) to process 

variable-length sequences of inputs. For accurately predicting future pavement conditions, 

developing an RNN model based on time-series data can be more advantageous. In the future, this 

aspect will be explored.  
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