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ABSTRACT 
The Application of Time Series Analysis to Injury Epidemiology Data 

 
Eric Wayne Lundstrom 

 
Introduction: Injury fatality rates in the United States (US) decreased throughout the majority 
of the 20th century, mostly due to declining rates of occupational and motor vehicle injuries. 
However, near the beginning of the 21st century, fatal injury rates in the US began to increase. 
This is principally due to the nation’s opioid epidemic, which has been characterized by different 
epidemic “waves”, each driven by overdoses associated with specific substances. Given the 
temporally dynamic nature of US injury trends, this study aimed to explore the application of 
time series analysis to injury data in the US. First, rates of non-fatal occupational injuries treated 
in US emergency departments were assessed to determine if non-fatal occupational injury rates 
mirror the historic decline of fatal occupational injuries in the 20th and 21st centuries. Next, we 
explored the temporal shift from prescription to illicit opioid overdose deaths in West Virginia 
(WV) to elucidate the transition between the opioid epidemic’s first and second waves in the 
state with the highest fatality rates in the nation. Finally, we compared the forecasting 
performance of three time series models when applied to national US opioid overdose data to 
explore what time series approaches best predict future rates of overdose. 
 
Methods: Study one assessed temporal trends in non-fatal occupational injuries treated in US 
emergency departments (EDs) using data the National Electronic Injury Surveillance System – 
Occupational Supplement (NEISS-Work) dataset. Descriptive statistics were used to assess 
annual injury rate estimates and monthly seasonality. Autoregressive integrated moving average 
(ARIMA) modeling was used to quantify trends in ED-treated occupational injury rate estimates 
while controlling for serial data correlation. Analyses were conducted both overall and stratified 
by injury event type. Study two used data from the Drug Enforcement Agency’s (DEA) 
Automation of Reports and Consolidated Orders System (ARCOS) database (accessed via The 
Washington Post) to determine when shipments of oxycodone and hydrocodone tablets to WV 
began decreasing; tablet shipments were measured both as dosage units and morphine milligram 
equivalents (MMEs). To identify the exact point when tablet shipments began decreasing, we 
used locally estimated scatterplot smoothing (LOESS). The point when total tablet shipments 
began decreasing was used as an intervention point in an interrupted time series analysis (ITSA) 
of prescription and illicit opioid overdose death rates calculated using data from the WV 
Forensic Drug Database (FDD), which collects drug death data from the WV Office of the Chief 
Medical Examiner. Prescription opioid deaths were defined as those involving oxycodone or 
hydrocodone, while illicit opioid overdoses were defined as those involving heroin or synthetic 
opioids other than methadone. The ITSA impact of the LOESS-identified points was compared 
via Akaike Information Criteria (AIC) to that of the 2010 release of an abuse deterrent 
formulation (ADF) of OxyContin, which is widely cited as a driving factor initiating the 
transition between the opioid epidemic’s first and second waves. Study three examined the 
forecasting performance of ARIMA; Error, Trend, and Seasonality (ETS); and Facebook Prophet 
models when applied to national US opioid overdose death data, both overall and stratified by 
the type of opioid involved in overdoses. Overdose death counts were extracted from the Centers 
for Disease Control and Prevention Wide-ranging Online Data for Epidemiologic Research 
(CDC WONDER) database. Overdose death rates were calculated using monthly all-cause 
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mortality as a denominator. Forecasts were validated used time series cross validation (TSCV), 
while forecast bias and predictive coverage probability were measured using mean average 
percent error (MAPE) and Winkler Scores, respectively. 
 
Results: Study one found that US ED-treated non-fatal occupational injury rate estimates were 
highest in 2012 and lowest in 2019. Apart from falls, slips, and trips, all injuries occurred at the 
highest rate in a summer month. ARIMA modeling found that there was a significant decrease in 
monthly rate estimates for 2012-2019. Study two found that the point at which opioid tablet 
shipments (measured via dosage units) to WV began decreasing had a greater impact on 
changing rates of prescription and illicit opioid overdose rates than the 2010 ADF OxyContin 
release. Study three found that ETS models accurately forecasted monthly rates US opioid-
involved overdoses while maintaining a high degree of precision relative to ARIMA or Facebook 
Prophet, particularly during the opioid epidemic’s fentanyl-dominated third wave. 
 
Discussion: The findings presented here indicate that although occupational injury rates have 
likely continued their decades-long decline in the US, the nation’s opioid epidemic has 
contributed significantly to recent US injury rate increases and is temporally dynamic. Future 
research should explore trends in other injury data by expanding the methodology used here to 
other epidemiological contexts. 
 
  

Eric Lundstrom
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Injuries and Public Health 
 Injuries are among the most serious public health problems affecting the United States 
(US) and are consistently among the leading cause of death for all age groups in the nation 
(Centers for Disease Control and Prevention n.d.). Risk of mental health disorders (O’Donnell et 
al. 2013), substance use (Durand et al. 2019; Weil et al. 2018), and disability increase after 
incurring an injury. In addition to their psychosocial cost, injuries result in a large economic 
burden; in 2019 alone, US fatal and non-fatal injuries were associated with total economic costs 
of $2.2 trillion (Peterson et al. 2021a) and $4.3 trillion (Peterson et al. 2021b), respectively. 
 Defined by the World Health Organization (WHO) as “the physical damage that results 
when a human body is suddenly subjected to energy in amounts that exceed the threshold of 
physiological tolerance, or from a lack of one or more vital elements” (World Health 
Organization - Europe 2007), injuries comprise a diverse set of health-related events. Among 
other characteristics, injuries may be classified based on intent, mechanism, or body part in 
which they were incurred. Formal injury classification allows for the standardized the collection 
of injury data, including general schemes, such as the WHO International Classification of 
External Causes of Injury (World Health Organization 2003), as well as context-specific 
systems, such as the US Bureau of Labor of Labor Statistics’ Occupational Injury and Illness 
Classification System (National Institute for Occupational Safety and Health (NIOSH) Division 
of Safety Research 2021). These and other classification instruments allow for standardized 
injury data collection and surveillance, which occurs through death certificates (Rauscher et al. 
2012), ED records (Weiss et al. 2021), and workers’ compensation claims (Witt et al. 2018) 
among numerous other data sources. Injury surveillance is an integral step in the development of 
targeted injury prevention and control measures, which aim to reduce injury-associated 
morbidity and mortality (Azaroff et al. 2002; Hemenway et al. 2006; Horan 2003). 
 Despite their impact and relevance, injuries remain under-researched relative to other 
public health topics. In 1998, the National Academy of Sciences stated, “Injury is probably the 
most under recognized major public health problem facing the nation today,” (Hemenway et al. 
2006) while a 2015 analysis found that injuries are greatly underfunded relative to their burden 
(Richards 2015). This may be attributable to the common notion that injuries are unpreventable 
“accidents” and result from inevitable human behavior (Barss et al. 1998). The successful 
implementation of injury prevention measures, such as workplace safety interventions 
(Monforton and Windsor 2010), harm reduction practices (Clark et al. 2014; Wheeler et al. 
2015), and suicide prevention measures (Kivisto and Phalen 2018; Yip et al. 2012) demonstrate 
this to be a misconception; injury risk factors, which are the result of one’s built environment, 
can be addressed using a public health approach (Mitchell and Ryder 2020; Sleet and Moffett 
2009). 
 
Trends in US Injury Rates and the Nation’s Opioid Epidemic 
 One of the major public health accomplishments of the 20th century was a massive 
decrease in injury death rates; all-cause injury fatality rates in the US decreased from 103.0 per 
100,000 population in 1910 to 34.8 in 2000, respectively (National Safety Council). One major 
contributor to this trend were decreasing rates of fatal occupational injuries, largely the result of 
labor activists and other social reformers’ efforts to see large-scale occupational safety and 
health policies enacted (Rosner and Markowitz 2020). Notable examples include the Walsh-
Healey Act of 1936, which required federal contractors to abide by specific occupational safety 
standards, and the Occupational Safety and Health Act of 1970, which created the Occupational 
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Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and 
Health (NIOSH) (Rosner and Markowitz 2020). Another factor contributing to declining injury 
fatality rates was improving motor vehicle safety, with motor vehicle-related fatalities decreasing 
by more than 50% between 1937 and 2000 (National Safety Council 2022). Improvements in this 
area are largely due to the implementation of US Federal Motor Vehicle Safety Standards, which 
ensure the safe design of motor vehicles (Kahane 2015), and targeted safety interventions, such 
as the implementation of state-level mandatory seat belt laws. 
 Despite nearly a century of decline, injury fatality rates began increasing in the 2000’s 
(Figure 1). This trend is being driven primarily by increases in opioid-involved drug poisonings 
in what has been broadly called the US opioid epidemic. The opioid epidemic has been 
characterized waves of overdose deaths caused by different opioids (Figure 2) (Ciccarone 2019). 
The first wave of the opioid epidemic was characterized by overdoses involving prescription 
opioid medications, which were prescribed at increasing rates from the late 1990’s to 
approximately 2010. This mass over prescription came as the medical community began 
emphasizing treating patient’s pain, with the American Pain Society urging physicians to treat 
pain as the “fifth vital sign” in 1999 (Scher et al. 2018). 
 Evidence for the deliberate over-prescription of opioid medications during this time is 
abundant. One well-documented example is the targeted overprescribing of Purdue Pharma’s 
Oxycontin, a brand name extended-release oxycodone formulation. Beginning in the late 1990’s, 
the number sales representatives employed by Purdue doubled and lucrative bonuses 
incentivized Oxycontin sales (van Zee 2009). To increase sales, Purdue personnel distributed 
non-FDA approved marketing videos and quoted non-peer-reviewed studies, including a 1980 
New England Journal of Medicine letter to the editor which downplayed the addictive potential 
of narcotic medications (Leung et al. 2017). As a result of the company’s misrepresentation of 
Oxycontin’s addictive properties, several Purdue executives pled guilty to criminal misbranding 
of Oxycontin in a 2007 federal case (van Zee 2009). While OxyContin has received much 
notoriety due to Purdue’s illegal sales tactics, several other opioid medications were prescribed 
and abused at comparable rates throughout the first wave of the epidemic, including generic 
oxycodone and hydrocodone (Cicero et al. 2007; Cicero et al. 2005; Kenan et al. 2012). 
 Prescription opioid overdoses increased in tandem with opioid prescription rates 
(Ciccarone 2019). Thus, opinions within the medical community began to change regarding 
opioid prescribing practices. For example, the American Pain Society and the US Department of 
Veterans Affairs released updated prescribing guidelines in 2009 and 2011, respectively (Chou et 
al. 2009; US Department of Veterans Affairs 2017). Following these and other guideline 
revisions, opioid prescription rates began decreasing in 2011 and continued to decline following 
updated guidelines released by the Centers for Disease Control and Prevention in 2016 (Dowell 
et al. 2016). Other factors likely to have influenced decreasing prescription rates include changes 
in regulatory programs, such as the extension of Prescription Drug Monitoring Programs, class 
wide changes to FDA opioid labeling, and the 2014 rescheduling of hydrocodone to a more 
restrictive classification (Aitken and Kleinrock 2018; Seago et al. 2016).  
 The second wave of the US opioid epidemic was characterized by increasing rates of 
heroin overdoses and lasted from approximately 2010 to 2013 (Ciccarone 2019). The transition 
from prescription to illicit opioid use in the US was likely a result of decreasing prescription 
rates driving already-dependent prescription users to illicit and more dangerous opioids (Dart et 
al. 2015; Tuazon et al. 2019). Evidence for the pill-to-heroin pipeline is provided by examining 
age-stratified prescription and illicit opioid overdose rates: from 2012-2014, prescription opioid 
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overdoses decreased while heroin deaths increased in individuals aged 20-34 (Ciccarone 2019; 
Unick and Ciccarone 2017). Furthermore, Cicero et al. have estimated that in a sample of 2010-
2013 heroin users, 75-79.5% abused prescription opioids prior to using heroin, suggesting a 
temporal link between the two; similar estimates were less than 20% in the 1960’s, before over-
prescription of opioid medications began (Cicero et al., 2014; Jones, 2013; Muhuri et al., 2013). 
 A “third wave” of opioid overdoses, beginning in 2013, was associated with the 
importation of the synthetic opioid fentanyl (Ciccarone, 2019b). Fentanyl has become a common 
additive in illicit heroin supplies within the United States due to its high potency, which 
decreases the amount of product needed to achieve a high; fentanyl is 50-100 times more potent 
than morphine (Centers for Disease Control and Prevention National Center for Injury 
Prevention and Control 2022). Although fentanyl/heroin combinations are preferable to heroin 
alone in certain demographic groups, such as younger people who inject drugs daily, 
fentanyl/heroin combinations are now practically unavoidable for people who inject drugs 
(Chandra et al. 2021; Latkin et al. 2019; McLean et al. 2019). In fact, heroin/fentanyl mixtures 
are so prevalent that ethnographic studies indicate users develop a heroin “connoisseurship” from 
their desire to discern the two (Ciccarone et al. 2017; Mars et al. 2016). 
 While fentanyl is currently responsible for most opioid overdose deaths in the US, the 
rate of synthetic opioid overdoses (other than methadone) began increasing only slowly from 
2001 (Daniels 2018). This includes the “first fentanyl epidemic” of 2005-2007, when there was a 
brief spike in fentanyl overdoses. In response, the US Drug Enforcement Agency placed more 
stringent regulations on the pre-cursor chemicals necessary for its manufacturer, mainly N-
phenethyl-4-piperidone (NPP) and 4-anilino-N-phenethyl-4-piperidine (ANPP) in 2007 and 
2010, respectively. As a result of the DEA’s crackdown, fentanyl overdose rates declined 
nationally (DEA Diversion Control Division 2016). Since the DEA’s initial crackdown, illicit 
fentanyl has made a resurgence. From 2013-2014, the number of DEA fentanyl seizures nearly 
quintupled, coinciding with a near doubling of the number of US fentanyl overdoses (Gladden et 
al. 2016). Fentanyl prescriptions decreased during the same period, and from 2013 it is assumed 
that most fentanyl involved in overdoses is manufactured clandestinely then mixed with heroin. 
 Currently, fentanyl is responsible for most drug overdose deaths in the US and fentanyl 
overdose rates have skyrocketed since 2013; the 2021 opioid overdose rates were more than 
double their rate in 2014, when fentanyl began entering supplies in significant quantities 
(National Center for Health Statistics 2022). Adding to this concern is evidence that illegal 
opioid potency is being pushed beyond that of fentanyl/heroin mixtures. For example, there were 
reports that carfentanil, a synthetic opioid 10,000 stronger than morphine and 100 times stronger 
than fentanyl, began entering illicit opioid supplies in 2014 (Delcher et al. 2020). Furthermore, 
while the first two waves of the epidemic effected primarily rural and Caucasian populations, 
rates of opioid overdose in non-white and urban populations have also increased drastically since 
fentanyl entered illicit supplies (Shiels et al. 2018). 
 A fourth wave of the opioid epidemic began around 2016, characterized by increasing 
psychostimulant/opioid polysubstance use and overdose. The primary psychostimulant used in 
polysubstance combination with opioids is methamphetamine, although cocaine involvement is 
also common in some areas (Jenkins 2021). Opioid use has been reported to be stable throughout 
the fourth wave, indicating the wave is being driven by increased use of psychostimulants 
(Jenkins 2021). In the context of the opioid epidemic, increasing methamphetamine use rates 
may be a result of challenges within the substance use disorder treatment infrastructure. For 
example, methamphetamine/opioid polysubstance users report less interest in entering substance 
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use treatment and have poorer retention rates compared to opioid-only users. There is evidence 
that increasing methamphetamine overdose deaths are being driven primarily by co-use with 
synthetic opioids. For example, a 2022 study of West Virginia medical examiner’s data showed 
that although methamphetamine/fentanyl overdose deaths increased drastically in the state, the 
proportion that involved only methamphetamine have remained stable (Dai et al. 2022). 
 
Time Series Analysis and Injury Epidemiology 
 Recent increases in overdose rates demonstrate that US fatal injury rates are not 
perpetually declining. Thus, injury epidemiologists need the capability to investigate, quantify, 
and anticipate changes in temporally collected injury data. One set of approaches, known as 
“time series analysis”, provide this ability. Widely used in the fields of economics (Nerlove et al. 
2014) and climatology (Privalsky 2020) (among others), time series analysis has gained 
acceptance within public health for its ability to model temporal trends in disease and forecast 
future rates of health-related events. 
 The primary feature delineating time series analysis from more general methods, such as 
simple linear regression, is its ability to adjust for serially correlated data structures. Serial 
correlation, formally known as autoregression, can be thought of as a time series having 
correlation with a delayed, or “lagged”, copy of itself (Figure 3) (U.S. Department of Commerce 
National Institute of Standards and Technology (NIST) 2012a). Autocorrelation patterns are 
often detected using autocorrelation function (ACF) plots, which display the correlation between 
a time series and its lagged values. After inspection of ACF plots, significant lags may be 
modeled through a moving average (MA) function. Let Yt represent a outcome variable Y, in our 
case an injury count or rate, measured at time points t = 1, 2, … T, where T is the length of the 
time series. An MA model may be applied to a time series through the model 
 

𝑌! = 𝑐 +	𝑒!	– (𝜃"𝑒!#" + 𝜃$𝑒!#$ +⋯+ 𝜃%𝑒!#%)! 
 
where c is a constant or y-intercept;  𝜃% is parameter of the model for the MA component at lag 
q; and e is random noise at time t. 
 Time series also often display patterns of partial autocorrelation, which is the correlation 
between a time series and a lagged copy of itself controlled for correlation at all other lags (U.S. 
Department of Commerce National Institute of Standards and Technology (NIST) 2012b). 
Similar to the process for determining the autocorrelation terms to include in a model, 
determining which partial autocorrelation lags to include is determined via inspection of partial 
autocorrelation function (PACF) plots. The functions used to model lags detected in PACF are 
autocorrelation functions. As previous, let Yt represent a dependent variable Y measured at time 
points t. An AR model may be applied to a time series through the model 
 

𝑌! = 𝑐	 + (𝜙"𝑌! + 𝜙$𝑌! +⋯+ 𝜙&𝑌!) + 𝑒! 
 
where c is a constant; 𝜙& is the parameter of the AR component at lag p; e is random noise at 
time t. 
 In injury data, autoregression and partial autoregression often takes the form of 
seasonality (Pierce 2013), where correlation patterns occur at a sub-annual interval. However, 
injury data can, and often do, display several serial correlation patterns (Hu et al. 2022; Lin et al. 
2015). Additionally, it must be mentioned that although ACF and PACF plots are usually 
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inspected to determine AR and MA lags, respectively, this is a rule of thumb and either type of 
autocorrelation may sometimes be addressed by either type of function. Moreover, both 
functions are often included in the same model, called an autoregressive moving average 
(ARMA) model. As previous, let Yt represent a dependent variable Y measured at time points t. 
Using the same notation as previously for AR and MA components, an ARMA model may be 
applied to a time series through the model 
 

𝑌! = 𝑐	 + (𝜙"𝑌!#" + 𝜙$𝑌!#$ +⋯+ 𝜙&𝑌!#&) + 𝑒!	– (𝜃"𝑒!#" + 𝜃$𝑒!#$ +⋯+ 𝜃%𝑒!#%) 
 
 
Another structure common in time series data is non-stationarity. A time series is said to be 
stationary if its mean and covariance are constant throughout time (Hyndman and 
Athanasopoulos 2021a). For a time, series to be modeled using an ARMA approach, the time 
series must be stationary or non-stationarity must be controlled. To control for non-stationarity, 
time series may be “differenced” by taking the difference between a value at time t and its lagged 
value. Ydt represents a time series differenced through the equation 

	
𝑌'! = 𝑌! − 𝑌!#' 

 
where d is the lag of the difference. 
 In 1970, Box and Jenkins introduced the autoregressive integrated moving average 
(ARIMA) model, which simultaneously models a time series’ autocorrelation, partial 
autocorrelation, and non-stationarity (Box et al. 2016). The is done by incorporating a 
differencing step (called “integration” by Box et al.) within the above mentioned ARMA 
process. As previously, let Yt represent a dependent variable Y measured at time points t. An 
ARIMA model may be applied to a time series through the model 
 

𝑌! = 𝑐	 + (𝜙"𝑌'!#" + 𝜙$𝑌'!#$ +⋯+ 𝜙&𝑌'!#&) + 𝑒!	– (𝜃"𝑒!#" + 𝜃$𝑒!#$ +⋯+ 𝜃%𝑒!#%) 
 
where c is a constant; 𝜙& and 𝜃% are parameters of the model for the AR and MA components, 
respectively; e is random noise at time t; and p, d, and q denote the lag terms for the AR, 
differencing, and MA components, respectively. 
 The final step to fitting an ARIMA model to a time series is determining if residual serial 
correlation is statistically random and non-stationarity is adequately controlled. This is 
accomplished by 1.) inspecting the ACF and PACF plots of the fitted model’s residuals to see if 
any single lagged residual is statistically significant and 2.) determining if the model’s overall 
residual serial correlation is random by applying a portmanteau test to the model, such as the 
Ljung-Box (Box et al. 2016), Breusch-Godfrey (Breusch 1978; Godfrey 1978), or Durbin-
Watson (Durbin and Watson 1971) test. The purpose of the portmanteau test is to determine if 
the model’s fitted residuals are significantly different from a “white noise”, or statistically 
random, process. 
 ARIMA models are useful in situations where it is necessary to model time series data 
that displays autocorrelation, such as seasonality in occupational injuries. However, these and 
other time series models have numerous other practical applications, including interrupted time 
series analysis (ITSA). ITSA quantifies the impact of an intervention with a known start date by 
segmenting time series data into two distinct periods: one before the intervention and one after 
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(Lopez Bernal et al. 2016). These segmented portions may then be compared statistically to 
determine if they are significantly different. While ITSA can be performed using simple linear 
regression, it is often necessary to use ARIMA modeling to control for serial data correlation and 
non-stationarity (Hudson et al. 2019). Within the field of injury epidemiology, ITSA has been 
used to assess the impact of occupational health interventions (Monforton and Windsor 2010), 
harm reduction programs (Walley et al. 2013), and the COVID-19 pandemic (Matthay et al. 
2021) on rates of injuries. 
An ITSA model takes the form 
 

𝑌! = 𝑁! + 𝐼! 
 
where Yt is an outcome variable of interest, Nt is model “noise” (i.e., serial data correlation), and 
It is an impact of interest (McDowall et al. 2019). Nt, in the case where serial data correlation is 
present, takes the form of an ARIMA model. It, the impact of an intervention of interest, takes 
the form of a dummy variable in which the variable is zero before the intervention start date. The 
dummy variable can be one after the intervention start date and/or a variable of increasing slope 
after the intervention; these impacts are known as “step-change” and “ramp” impacts, 
respectively (Nyugen 2022). Additionally, a linear time variable may be included to measure 
pre-intervention slope. The determination of which impact variables to include is often made 
based on expert consultation and previous literature. However, when the impact of an 
intervention is unknown or unclear, parameter significance, model parsimony, and minimization 
of Akaike Information Criteria (AIC) are used to determine which impact variables to include 
(Gilmour et al. 2006; Lopez Bernal et al. 2018; Schaffer et al. 2021). 
 A noted methodological limitation of ITSA is its application to events occurring on an 
unidentified date or within a vaguely defined period (Cruz et al. 2017; Gilmour et al. 2006). This 
pitfall results from the chronologically deductive nature of ITSA: the start date of an intervention 
must be inferred from known temporal information regarding the intervention itself (Lopez 
Bernal et al. 2016). When natural events are not externally controlled, or a precise intervention 
start date cannot be inferred, ITSA is generally considered impractical (Habib et al. 2021). 
Attempts to remedy this issue, while scare, have been made. One notable example is a method 
developed by Gilmour et al., who consulted relevant literature and law enforcement officers to 
infer a start date of the 2000-2001 Australian heroin shortage (Gilmour et al. 2006). While 
innovative, Gilmour et al.’s technique infers intervention start dates using principally subjective 
sources, likely introducing bias. Another method was introduced by Cruz et al., who identified 
intervention start dates of a nursing care delivery intervention by including a moving 
changepoint variable within a standard ITSA model (Cruz et al. 2017). Although Cruz et al.’s 
approach is objective, it’s emphasis on statistical changes in outcome data may infer 
epidemiological spurious intervention start dates. 
 Another useful extension of time series analysis within injury epidemiology is 
forecasting. Time series forecasting is a statistical method for predicting future response based 
on historical data and relevant predictors (Hyndman and Athanasopoulos 2021b). These 
approaches have demonstrated efficacy in predicting changes in healthcare and economic 
burdens associated with public health events (Cascante-Vega et al. 2022; Khan et al. 2020). 
Additionally, they have been used to forecast drug overdose (Lo-Ciganic et al. 2022; Saloner et 
al. 2020a; Saloner et al. 2020b), occupational injuries (Małysa 2022), and road traffic injuries 
(Khasawneh et al. 2022). 
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 To ensure forecasts represent a plausible future scenario, time series forecasts are 
“validated” by generating a forecast for which data already exist. This test forecast can then be 
compared to the extant data to determine its accuracy. Forecasting studies within injury 
epidemiology often use the fixed origin method for forecast validation (Cartus et al. 2022; 
Sumner et al. 2022), which uses a small, unmodeled section of data at the end of a time series 
(the test set) to assess the forecasting ability of the preceding segment (the training set) 
(Hyndman and Athanasopoulos 2021d). Despite wide use, the fixed origin method is easily 
biased by trends occurring near the forecast origin (i.e., the transition from training to test set), 
limiting its generalizability to a single temporal scenario (Tashman 2000). More robust forecast 
evaluation procedures, such as time series cross validation (TSCV), have seen recent use in 
public health research, primarily within infectious disease epidemiology (Atchadé and Sokadjo 
2022; Zhang et al. 2014) and, more rarely, within injury epidemiology (Schleimer et al. 2021). 
TSCV uses several training sets, each of which increases in length on a rolling basis, producing 
forecasts to be compared against each successive test set (Hyndman and Athanasopoulos 2021c). 
As the majority of data is used both as a training and test set throughout the TSCV process, it is 
highly generalizable and less easily biased by isolated, non-representative trends (Bergmeir and 
Benítez 2012). 
 As forecasts represent a statistically likely outcome were historical trends to continue, 
they may be inaccurate if an unexpected event occurs within the forecast window (Naess et al. 
2015). A notable example of this phenomenon is seen in overdose (Cartus et al. 2022) and motor 
vehicle injury (Inada et al. 2021) forecasts of the year 2020, which were lower and higher, 
respectively, than observed rates due to the initiation of the COVID-19 pandemic. However, 
forecasts may still be of use in these circumstances as they can serve as a counterfactual scenario 
in which an unexpected event did not occur (Rizzi and Vaupel 2021; Wang et al. 2022).  
 
Purpose Statement 
 Currently, time series analysis is underutilized within the field of injury epidemiology. Of 
over 1.02 million articles listed on PubMed containing terms related to injury or overdose, only 
3,282 include common time series phrases in their title or abstract.1 Given this underutilization, 
the studies presented here aim to explore and demonstrate the applicability of time series analysis 
to injury data. While the development of novel time series techniques has intrinsic value of its 
own, this is not the purpose of this study. Instead, it aims to implement time series approaches 
that, to the author’s knowledge, have yet to be used in specific epidemiologic contexts. 
The results of this study will provide three specific contributions to the field of injury 
epidemiology: 
 

• The quantification of temporal trends in occupational injuries treated in US emergency 
departments from 2012 to 2019. 

• The use of interrupted time series analysis to examine the transition from prescription to 
illicit opioid overdose in West Virginia. 

• The comparison of three time series models in their ability to forecast US opioid-
involved overdose death rates. 

 
1 As of April 10, 2023. PubMed search for ("Wounds and Injuries"[Mesh] OR "Drug Overdose"[Mesh]) 
compared to ("Wounds and Injuries"[Mesh] OR "Drug Overdose"[Mesh]) AND ("time series"[All Fields] OR 
"Interrupted Time Series Analysis"[Mesh] OR "interrupted time series" OR "ARIMA" OR "forecast*" OR 
"autoregress*" OR "stationarity" OR “non-stationary”). 
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 These three investigations, while diverse in their injury-related subject matter, are 
connected by their use of time series methodology. Each provides a unique application of time 
series analysis to a specific injury dataset. The first study seeks to determine if a well-established 
injury trend (decreasing rates of non-fatal US occupational injuries) have continued into recent 
years and is statistically significant. The second two studies aim to explore the application of 
time series techniques to the US opioid epidemic, a more recent area of investigation within 
injury epidemiology relative to its history.  It is anticipated that the demonstrative value of these 
studies promotes the application of their methods within other injury-related epidemiological 
contexts. 
 
Specific Aims 

• Specific Aim 1: Describe temporal trends in occupational injuries treated in US 
emergency departments (EDs) from 2012 to 2019, both overall and by injury event type. 

o Aim 1a: Report annual national injury rate estimates. 
o Aim 1b: Report seasonality of monthly national injury rate estimates. 
o Aim 1c: Report inferential statistics on trends in national monthly injury rate 

estimates. 
• Specific Aim 2: To elucidate the temporal transition from prescription to illicit opioid 

overdoses in West Virginia (WV). 
o Aim 2a: Identify a plausible point at which prescription opioid shipments to WV 

began decreasing. 
o Aim 2b: Compare the temporal impact of decreasing opioid shipments to the 2010 

release of an abuse deterrent formulation of Oxycontin. 
• Specific Aim 3: Compare ARIMA, ETS, and Facebook Prophet models in their ability to 

forecast US opioid-involved overdose death rates. 
o Aim 3a: Assess model performance both overall and stratified by individual 

opioid involvement. 
o Aim 3b: Assess model performance stratified by state-level drug overdose death 

reporting specificity. 
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Figures and Tables 
 

 
 
Figure 1. Annual injury rates in the United States, both total and by select causes (1968-2020).a 

 
aData from CDC WONDER. Series breaks associated with the transition to ICD-8 to ICD-9 coding and ICD-9 to 
ICD-10 occurring at 1978-1979 and 1998-1999, respectively. 
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Figure 2. Annual drug poisonings in the United States (US), both overall and stratified by 
multiple cause of death codes pertinent to the US opioid epidemic (1999-2020).a 

 
aData from CDC WONDER. Drug poisonings defined as any death with ICD-10 underlying cause of death codes for 
poisoning (X40–X44, X60–X64, X85, or Y10–Y14). Individual drug involvement defined using ICD-10 multiple 
cause of death codes for heroin (T40.1), other opioids (T40.2; labeled “Prescription opioids”), other synthetic 
narcotics (T40.4; labeled “Synthetic opioids”), and psychostimulants with potential for abuse (T43.6; labeled 
“Psychostimulants”). ICD-10 multiple cause of death codes are not mutually exclusive. 
 
 
 
 
 



 20 

 
 
Figure 3. A time series Yt correlated with delayed copies of itself at lags of one and two. 
Autocorrelation is the overall correlation of Yt with both Yt-1 and Yt-2 (top two arrows); this 
specific example shows an autocorrelation lag of one. Partial autocorrelation of Yt with Yt-2 
would be their correlation adjusted the correlation between Yt and Yt-1 (shown by the bottom 
arrow); this specific example shows partial autocorrelation with a lag of two. 
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Chapter 2 
 

Temporal trends in occupational injuries treated in US emergency departments, 2012-2019 
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Abstract 
 
Background: Evidence suggests that rates of occupational injuries in the United States (US) are 
decreasing. As several different occupational injury surveillance systems are used in the US, 
more detailed investigation of this trend is merited. Furthermore, studies of this decrease remain 
descriptive and do not use inferential statistics. The aim of this study was to provide both 
descriptive and inferential statistics of temporal trends of occupational injuries treated in US 
emergency departments (EDs) for 2012 to 2019. 
 
Methods: Monthly nonfatal occupational injury rates from 2012 to 2019 were estimated using 
the National Electronic Injury Surveillance System - Occupational Supplement (NEISS-Work) 
dataset, a nationally representative sample of ED-treated occupational injuries. Rates were 
generated for all injuries and by injury event type using monthly full-time worker-equivalents 
(FTE) data from the US Current Population Survey as a denominator. Seasonality indices were 
used to detect seasonal variation in monthly injury rates. Trend analysis using linear regression 
adjusted for seasonality was conducted to quantify changes in injury rates from 2012 to 2019. 
 
Results: Occupational injuries occurred at an average rate of 176.2 (95% CI = ±30.9) per 10,000 
FTE during the study period. Rates were highest in 2012 and declined to their lowest level in 
2019.All injury event types occurred at their highest rate in summer months (July or August) 
apart from falls, slips and trips, which occurred at their highest rate in January. Trend analyses 
indicated that total injury rates decreased significantly throughout the study period (-18.5%; 95% 
CI = ±14.5%). Significant decreases were also detected for injuries associated with contact with 
foreign object and equipment (-26.9%; 95% CI = ±10.5%), transportation incidents (-23.2%; 
95% CI = ±14.7%), and falls, slips, and trips (-18.1%; 95% CI = ±8.9%).   
 
Conclusions: This study supports evidence that occupational injuries treated in US EDs have 
decreased since 2012. Potential contributors to this decrease include increased workplace 
mechanization and automation, as well as changing patterns in US employment and health 
insurance access. 
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Introduction 
 Non-fatal occupational injuries represent a significant source of morbidity for workers in 
the United States (US), with an estimated 1,108,300 non-fatal occupational injuries requiring 
time away from work in 2019 (U.S. Bureau of Labor Statistics 2020a). Furthermore, 
occupational injuries cost the US economy an estimated $171 billion in 2019 alone (National 
Safety Council n.d.). In addition to a large national economic burden, occupational injuries result 
in significant psychosocial harm to workers (Kim and Choi 2016; Lax and Klein 2008), their 
families (e.g., through lost earnings and an increased time spent caring for an injured family 
member; Boden 2005; Dembe 2001), and their communities (Boden et al. 2001). 
 A crucial step in preventing occupational injuries is epidemiologic surveillance (Azaroff 
et al. 2002). As the US has no centralized occupational injury reporting system, non-fatal injury 
surveillance occurs through multiple sources, including emergency department (ED) records, 
employer-based surveys, and workers compensation claims (National Academy of Science 2018; 
Bush et al. 2021). Each source has relative strengths and weaknesses. For instance, ED treated 
injuries, collected via the National Electronic Injury Surveillance System – Occupational 
Supplement (NEISS-Work), represent workers of any employment type (e.g., public, private, 
self-employed, volunteers, etc.) but are limited to workers who seek ED treatment (National 
Institute for Occupational Safety and Health (NIOSH) Division of Safety Research 2019a). 
Conversely, employer-reported injury data, collected through the Bureau of Labor Statistics’ 
(BLS) Survey of Occupational Injuries and Illnesses (SOII), are collected through a large survey 
with high response rates but are limited to injuries incurred by privately employed workers 
(Williams 2022; Council of State and Territorial Epidemiologists 2021) ; while some state and 
local government employees are included in SOII, injuries incurred by federal and self-employed 
workers are not captured (Wiatrowski 2014). Finally, workers compensation data include many 
variables and allow for individual-level longitudinal analysis, but require an injury to be billed 
to, or have a claim associated with, a worker’s compensation system (Seabury et al. 2014; Witt et 
al. 2018). Previous literature estimates that over 40% of ED-treated occupational injuries 
nationally are not billed to workers’ compensation (Groenewold and Baron 2013) and that 
workers’ compensation is the expected payer in less than 5% of ED-treated occupational injuries 
at the state-level (Bush et al. 2021). Furthermore, workers’ compensation datasets are typically 
available only at the state level or for small proportions of the national working population 
(Murphy et al. 2021). 
 Despite their differences, several independent data sources report decreases in US non-
fatal occupational injury rates, continuing a decades-long trend of declines (Bhushan and Leigh 
2011). For instance, Guerin et al. reported that annual occupational injury rates treated in US 
EDs declined from 2012 to 2018 for workers aged 18-44 (Guerin et al. 2020).  Similarly, 
employer-reported data from the BLS SOII indicate that non-fatal occupational injuries and 
illnesses decreased from 3.7 per 100 full-time worker-equivalents (FTE) in 2012 to 3.0 in 2019 
(U.S. Bureau of Labor Statistics 2013; U.S. Bureau of Labor Statistics 2020b). Previous studies 
have suggested that several factors may potentially be contributing to these declines, including 
the outsourcing of dangerous jobs to lower-income countries (Abdalla et al. 2017), increased 
mechanization (Issa et al. 2019), and the implementation of targeted safety regulations 
(Monforton and Windsor 2010). Additionally, several factors may affect occupational injury 
surveillance without changing the rate at which workers incur injuries, such as decreased injury 
reporting as a result of changing rates of unionization (Morse et al. 2003) or changes to health 
insurance access (Berdahl and Zodet 2010). 
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 Although data suggests US occupational injury rates are declining, current literature 
describing trends in US all-industry occupational injuries is limited to annual descriptive 
statistics; inferential times series analyses of national injury trends have largely been used only to 
assess the impact of safety interventions within single industries (Monforton and Windsor 2010) 
or trends in specific types of occupational injuries (e.g., non-fatal traumatic brain injuries; Konda 
et al., 2015). Likewise, studies using US occupational injury surveillance data regularly exclude 
the assessment of seasonality, a temporal pattern common in injury data. Thus, we aimed to use 
NEISS-Work, a nationally representative database of occupational injuries treated in US EDs, to 
assess temporal trends in ED-treated occupational injuries in the US from 2012 to 2019. The 
specific aims of this study were: 1.) to report yearly national injury rate estimates, both overall 
and by injury event type, 2.) to report seasonality of monthly injury rate estimates, both overall 
and by injury event type, and 3.) to report inferential statistics on trends in occupational injury 
rates during the study period. 
 
Methods 
Data source 
 Non-fatal occupational injury data for the years 2012 through 2019 were obtained from 
NEISS-Work, a nationally representative database of non-fatal occupational injuries treated in 
US EDs. The National Institute for Occupational Safety and Health (NIOSH) obtains the data for 
NEISS-Work through an inter-agency agreement with the Consumer Product Safety Commission 
(CPSC), the agency responsible for collecting the NEISS-Work data. For the purposes of NEISS-
Work, an occupational injury is defined as an injury for which an ED chart or other hospital 
record indicates that the injury involved a non-institutionalized civilian who was injured while 
working for pay or compensation of any kind, working on a farm, or volunteering for an 
organization (Marsh et al. 2016; Reichard and Marsh 2021).  
 The NEISS-Work data are collected through a probability sample of approximately 67 
hospitals that report non-fatal data on occupational injuries seen in their EDs to the CPSC via 
coders trained to identify the work relatedness of occupational injury data based on extensive 
manual review of hospital admission information and ED chart inspection. NEISS-Work does 
not rely on International Statistical Classification of Diseases (ICD) codes or workers 
compensation billing status (National Institute for Occupational Safety and Health (NIOSH) 
Division of Safety Research 2021a) to identify cases, although the latter may be used as part of 
the overall manual chart review case identification process. Participating hospitals are stratified 
based on annual number of ED visits. Hospitals must have a minimum of 6 beds and a 24-hour 
ED for inclusion. Individual cases reported to NEISS-Work are weighted based on the inverse 
probability of the reporting hospital being included in the sample so that the estimates represent 
population total injuries for the US (National Institute for Occupational Safety and Health 
(NIOSH) Division of Safety Research 2021a). 
 Data for 2012-2019 were chosen as this was the longest period for which data for injury 
event were all comparably coded to the same version (v 2.01) of the BLS Occupational Injury 
and Illness Classification System (OIICS). BLS OIICS codes are used to assign injury event and 
diagnosis codes in NEISS-Work using a narrative comment field developed by coders through 
review of ED chart and hospital admission data. Data for years prior to 2012 were coded based 
on the BLS OIICS v 1.01 (National Institute for Occupational Safety and Health (NIOSH) 
Division of Safety Research 2021b). The shift from the BLS OIICS v 1.01 to v 2.01 in 2012 was 
considered a break in series. Furthermore, the 2019 data were the most recent data available at 
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the time of analysis (National Institute for Occupational Safety and Health (NIOSH) Division of 
Safety Research 2021a). Due to a series break that resulted in the exclusion of most illness cases 
starting with data from 2015, data for 2012-2014 were re-reviewed to ensure compatibility 
throughout the study period (National Institute for Occupational Safety and Health (NIOSH) 
Division of Safety Research 2021a).  
 
Statistical analysis 
 All data were stored on a secure drive accessible only to the study team. Statistical 
analyses were performed in Rstudio version 4.0.1 (Rstudio Team 2022). Using the NEISS-Work 
dataset, national ED-treated occupational injury count estimates were produced using the R 
packages “survey” and “srvyr” (Ellis et al. 2021; Lumley 2021) using the aforementioned 
NEISS-Work survey weights. ED-treated occupational injury count estimates were generated for 
all injuries and by injury event type, a categorical variable denoting the way an injury was 
incurred and is based on the aforementioned BLS OIICS v 2.01 classification system (National 
Institute for Occupational Safety and Health (NIOSH) Division of Safety Research 2021b); all 
analyses were conducted both for total injury rate estimates and stratified by injury event type. 
ED-treated occupational injury rates were calculated per 10,000 FTE using Current Population 
Survey (CPS) estimates which were generated using NIOSH’s Employed Labor Force (ELF) 
query system; as NEISS-Work includes all work-related ED-treated injuries, FTE estimates were 
generated for all jobs (as opposed to “primary” or “secondary” jobs only) (National Institute for 
Occupational Safety and Health (NIOSH) Division of Safety Research 2021c). Standard errors 
(SE) for FTE estimates were generated using generalized variance functions provided by BLS; 
standard errors were used to calculate monthly FTE variances by multiplying the square of the 
SE by corresponding ELF-generated monthly FTE estimates (i.e., the corresponding monthly 
sample size) (National Institute for Occupational Safety and Health (NIOSH) Division of Safety 
Research 2021c). Variances of both numerator (injury count estimates) and denominator (FTE) 
data were used to calculate 95% confidence intervals (CI) for ED-treated occupational injury rate 
estimates based on Taylor Series expansion (National Institute for Occupational Safety and 
Health (NIOSH) Division of Safety Research 2021d) and were reported as injury rate estimates ± 
margin of error. 

Seasonality of injury rate estimates was assessed by calculating seasonality indices per 
month. Seasonality indices were calculated by dividing the mean rate for each month by the 
mean monthly occupational injury rate for the entire dataset; seasonality indices of greater and 
less than one indicate higher than and lower than expected injury rates for a given month, 
respectively (Zhang et al. 2014). 

To assess linear trends in injury rates over time, we fit a linear regression model to 
monthly injury rate estimates and adjusted for autocorrelation and serially correlated error terms 
using autoregressive integrated moving average (ARIMA) modeling. This analysis was 
conducted using both monthly total injury rate estimates and monthly estimates stratified by 
injury event type. In data violating the linear regression assumption of no autocorrelation, 
ARIMA models are used to control for serial correlation (e.g., seasonality)by including lagged 
dependent variable values and errors, including in studies of injury data (Box et al. 2016; Zhu et 
al. 2015). An ARIMA model takes the form ARIMA(p,d,q)(P,D,Q)m, where p is the order of 
autocorrelation, d is the number of differences applied to the data, q is the order of moving 
average terms, P,D, and Q are the seasonal versions of these terms, and m is the order of 
seasonality (e.g., 12 for annually seasonality in monthly data) (Hyndman and Athanasopoulos 
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2018a). ARIMA models were fit to monthly injury rates by examining autocorrelation and partial 
autocorrelation plots. A lagged regression estimate was included if it showed statistical 
significance (p < 0.05) and was necessary to control for serial correlation. Finally, significance of 
each model’s Ljung-Box Q statistic was observed to ensure proper model fit, with a non-
significant value considered a properly fit model (Ljung and Box 1978). The conditional sum of 
squares method was used to estimate all models. To assess temporal trends, a trend regressor 
with slope of one was included in each ARIMA model as a covariate and reported with 95% CIs 
(Hyndman and Athanasopoulos 2018b). A total percent decrease in injury rates throughout the 
study period was estimated by multiplying this term by 96 (i.e., the total number of months in the 
study period) and calculating the percent difference from the model’s intercept; an analogous 
calculation using each trend parameter’s 95% CI was performed to determine each percent 
decrease’s 95% CI. 

 
Results 

Monthly estimates of occupational injuries treated in the US EDs with 95% confidence 
intervals are presented graphically in Figure 1 (graphical representation of monthly estimates of 
injury rates by injury event type are available in the Supplementary Material, Supplemental 
Figures 1-6). Injuries were incurred at an average rate of 176.2 (95% CI = ±30.9) per 10,000 
FTE during the study period (Table 1). Annual injuries were estimated at their highest rate in 
2012 (188.4 ±38.9 per 10,000 FTE) and their lowest in 2019 (156.8 ±34.5 per 10,000 FTE). 
Injuries caused by contact with objects and equipment had the highest cause specific rate during 
the study period (58.6 ±0.4 per 10,000 FTE); followed by overexertion and other bodily 
reactions (48.5; ±10.6 per 10,000 FTE); falls, slips, and trips (27.7 ±4.8 per 10,000 FTE); 
exposure to harmful substances or environments (17.9 ±3.9 per 10,000 FTE); and violence and 
other injuries by persons or animals (15.5 ±3.5 per 10,000 FTE). Analyses of rates of monthly 
injuries caused by fires and explosions, as well as nonclassifiable sources, were not reported due 
to NEISS-Work sample size reporting standards (unreliably small numbers).  
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 Rates varied widely by month and seasonality indices for total injury rates were greatest 
in July (1.15) and lowest in February (0.87) (Table 2). With the exception of falls, slips, and 
trips, all other injury event types showed similar seasonality (lowest seasonality index in 
February, highest in July or August), including injuries caused by violence (February = 0.82; 
July = 1.18), transportation incidents (February = 0.87; July = 1.18), exposure to harmful 
substances (February = 0.81; August = 1.45) and overexertion (February = 0.86; August = 1.10). 
Falls, slips, and trips were the only injury event type to have greatest seasonality index in a 
winter month with highest and second highest seasonality indices occurring in January (1.17) and 
February (1.16), respectively; a second peak in falls, slips, and trips occurred the summer (July = 
1.04; August = 1.03). Injuries caused by falls, slips, and trips occurred at their lowest rate in 
April with a seasonality index of 0.85. 

Table 3 presents trend analysis of injury rate estimates, both by month and by month and 
injury event type, as well as the ARIMA structure used to control for serial data correlation (e.g., 
seasonality) in each model. Total injury rates in January 2012 were estimated to be 191.8 per 
10,000 FTE, as denoted by the model’s intercept. Total injury rate estimates decreased at a rate 
of -0.37 (95% CI = ±0.29) per month and were estimated to be 156.3 per 10,000 FTE by the end 
of the study period (December 2019), resulting in an overall decrease of 18.5% (95% CI = 
±14.5%). Stratifying the data by month and injury event type, significant decreases were detected 
in monthly rates of injuries associated with contact with foreign objects and equipment (-26.9%; 
95% CI = ±10.5%); transportation incidents (-23.2%; 95% CI = ±14.7%); and falls, slips, and 
trips (-18.1%; 95% CI = ±8.9%). Monthly rates of injuries for some injury event types, including 
those associated with violence; exposure to harmful substances; and overexertion and bodily 
reaction showed non-significant decreases.  
 

Discussion 
 Using the NEISS-Work dataset, one of the US primary workplace injury surveillance 
programs, we analyzed rates of occupational injuries treated in US EDs from 2012 to 2019. We 
found that injury rates during the study period were greatest in 2012 (188.4 ±38.9 per 10,000 
FTE) and lowest in 2019 (156.8 ±34.5 per 10,000). ED-treated injuries displayed a marked 
seasonal pattern, with seasonality indices at their greatest in summer months (July or August) 
and lowest during winter months (December, January, or February). Seasonality indices for rates 
stratified by injury event type followed a similar pattern, apart from falls, slips, and trips, which 
had a peak seasonality index in January. Additionally, we observed a decrease in estimated rates 
of occupational injuries treated in US EDs of 18.5% (95% = ±14.5%) throughout the study 
period. 
 The BLS SOII, another major US occupational injury surveillance program, also reported 
a decrease in occupational injury rates throughout our study period. However, SOII recorded 
annual injury rates of 3.7 and 3.0 per 100 FTE for 2012 and 2019, respectively, nearly double the 
rates estimated in our study for those years (U.S. Bureau of Labor Statistics 2013; U.S. Bureau of 
Labor Statistics 2020b) (Table 1). A discrepancy in occupational injury rates between these two 
datasets has been noted in previous literature and is likely because NEISS-Work primarily 
captures injuries severe enough to require ED treatment, a fraction of the total number of injuries 
incurred in the US (Chen 2009). In contrast, SOII captures any injury in its sample reported by 
an employer in accordance with OSHA recordkeeping guidelines (National Academy of 
Sciences 2018; Council of State and Territorial Epidemiologists 2021). As NEISS-Work and 
SOII have different mechanisms for capturing injuries, the fact that they both display a decrease 
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from 2012 to 2019 strengthens evidence that US non-fatal occupational injury rates have 
decreased during this period. 
 To the authors’ knowledge, no study has used workers’ compensation data to estimate 
trends in national occupational injury rates throughout our study period; this is expected as the 
US does not have a national workers’ compensation system. However, state-level workers’ 
compensation studies, such as one study from Ohio for 2007-2017, also note state-wide 
decreases in injury rates throughout our study period (Wurzelbacher et al. 2021). Additionally, 
previous literature has noted differences in occupational injury rate estimates generated via ED-
based and workers’ compensation data, with one study finding that occupational concussion 
injury rates in Kentucky measured via ED data (21.7 per 100,000 employed civilians) were 
higher than those reported by workers compensation (11.7 per 100,000; Slavova and Bunn 
2015). This same study found that the estimated rate of injuries was highest when using linked 
ED, hospital discharge, and workers’ compensation data (31.8 per 100,000), implying that each 
surveillance system has inherent strengths in capturing occupational injuries. 
 We noted a seasonal pattern in which injury rate estimates were greatest in a summer 
month (July or August) and lowest in a winter month (December, January, or February) which 
has been attributed in other studies to increased heat and humidity, as well as an influx of 
temporary workers and increased construction during summer months (Oleske and Hahn 1992; 
Taylor et al. 2002). A similar pattern of seasonality has been noted in previous occupational 
injury literature. For example, Peirce calculated seasonality indices of occupational injury rates 
using 2003-2010 SOII data and found that injuries peaked in seasonality in July at an index of 
1.12, similar to our peak index of 1.15 in the same month for total injury rates (Pierce 2013). 
However, Peirce’s indices were lowest in December (seasonality index = 0.86) compared to 
February (seasonality index = 0.87) in our study, which they suggest may be influenced by lower 
end-of-year reporting in SOII. Categorized by injury event type, injury rate estimates in our 
study followed a similar seasonality pattern except for falls, slips, and trips, which peaked in 
January (seasonality index = 1.17). An increased rate of fall and slip injuries in winter months, or 
in association with cold weather, has been noted in previous literature. For example, studies of 
the mining industry have found an inverse relationship between temperature and incidence of fall 
and slip injuries (Bell et al. 2000; Hassi et al. 2000). This association is likely influenced by 
workers’ frequent contact with snow or icy surfaces during winter months (Chang et al. 2016), a 
hypothesis supported by Bentley and Haslam’s finding that the majority of slip injuries in a 
sample of mail delivery workers involved snow or ice (Bentley and Haslam 2001). Furthermore, 
survey data from Bentley and Haslam’s study indicate that 90% of mail delivery workers 
consider contact with slick surfaces to be a major contributing factor to occupational fall and slip 
injuries.  
 Several factors have likely influenced recent declines in US occupational injury rates, 
including reducing hazardous jobs and increased safety practices. Studies suggest that ergonomic 
interventions (Fathallah et al. 2008; National Research Council and Institute of Medicine Panel 
on Musculoskeletal Disorders and the Workplace 2001) and increasingly mechanized workplaces 
(Issa et al. 2019) have resulted in fewer jobsite hazards. One example of such a shift is within the 
logging industry, which regularly experiences injury rates far beyond the US all industry average 
(Janocha and Hopler 2018; Myers et al. 1998). As this industry has seen the introduction of 
mechanized timber harvesting in recent decades, studies show that logging companies have 
experienced significant decreases in injury rates after transitioning from manual (i.e., non-
mechanized, chainsaw-based) to mechanized timber harvesting (Bell 2002). Similarly, increases 
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in occupational automation have further removed workers from the physical production process 
and made several workplaces safer (Autor 2015; Leso et al. 2018). In fact, one study found that 
for every standard deviation increase in workplace automation, occupational injuries decrease 
1.2 per 100 workers (Gihleb et al. 2022). Another potential contributor to decreasing US 
occupational injury rates is increased globalization (Hämäläinen 2009), defined within an 
occupational health context as “…the transfer of manufacturing from Established Economic 
Markets (USA and European Community as defined by the World Bank) to ‘developing’ 
economic markets” (Schulze 2007). As laborious, high-risk manufacturing jobs are transferred to 
developing nations, an unintended consequence is that workers in higher income countries must 
find lower-risk employment (Abdalla et al. 2017). This can be seen in changing US 
manufacturing industry employment rates, which decreased 4.5% from 2012 to 2019 (the period 
analyzed in this study) (U.S. Bureau of Labor Statistics 2022a). Employment rates in some other 
goods-producing sectors, which have higher rates of occupational injuries relative to other 
sectors (U.S. Bureau of Labor Statistics 2020b), have also decreased (e.g., logging and mining 
employment rates decreased 31.2% for 2012-2019). 

These and other employment trends may have influenced our stratified analysis, which 
noted significant decreases in the rate of injuries associated with certain injury event types but 
not others (Table 3). For example, injuries due to contact with foreign objects and equipment 
decreased 26.9% during our study period, more than any other injury event type. Nationally, 
approximately 20% of occupational injuries due to contact with objects and equipment are 
incurred in the manufacturing industry (National Safety Council 2023); as noted previously, 
however, manufacturing employment rates decreased throughout our study period (U.S. Bureau 
of Labor Statistics 2022a). In contrast, violence injuries decreased at the lowest rate of any injury 
event type throughout our study period and this decrease was not significant (-6.2% (±14.9%)). 
As the majority (76%) of workplace violence injuries requiring days away from work are 
incurred by workers in the health care and social assistance industries (National Institute for 
Occupational Safety and Health 2022), this finding may have been influenced by increasing 
employment in these industries throughout our study period (12.9% to 13.5% from 2012 to 2019, 
respectively) (U.S. Bureau of Labor Statistics 2022b). While these examples represent plausible 
associations, we cannot definitively conclude a relationship between employment in a single 
industry and the trends reported in our study as NEISS-Work did not include detailed industry 
information for the entire study period. 
 Some factors may have affected the proportion of occupational injuries captured by the 
ED-based NEISS-Work without influencing the actual number of injuries incurred by US 
workers. For example, the annual number of self-employed workers increased 6.4% during our 
study period (U.S. Bureau of Labor Statistics 2020c). US self-employed workers have been 
noted to have an increased risk of occupational injury (Bunn et al. 2006) yet are not required to 
have health insurance or workers compensation benefits which may make them less likely to 
seek medical care; data suggests that the proportion of US self-employed workers lacking health 
insurance increased throughout our study period (Rothwell and Harlan 2019). Moreover, 
evidence suggests that NEISS-Work underestimates the number of occupational injuries incurred 
by self-employed US workers, possibly because they lack health insurance (Bhandari et al. 
2016). It may also be the case that more injured workers over time are seeking treatment in non-
ED settings. There was an increase of more than 37% in the number of urgent care centers in the 
US from 2013 to 2019 (Urgent Care Association 2019), which offer significantly less-expensive 
treatment than US EDs (Ho et al. 2017). Thus, workers lacking access to health insurance and 
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workers compensation may seek care in urgent care centers for minor and non-life-threatening 
injuries; workers may also be seeking urgent care as opposed to ED treatment given the latter’s 
convenience and significantly longer wait times (Khairat et al. 2021). Finally, decreasing 
unionization rates may have had an influence on occupational injury reporting; data from the US 
Bureau of Labor Statistics show that the total, all-industry unionization rate decreased from 
11.3% to 10.3% throughout the study period. Previous literature suggests differential reporting of 
injuries by union status, with non-unionized workers being less likely to report (Altassan et al. 
2018; Morse et al. 2003; Robinson and Smallman 2006). Extant literature also indicates that non-
unionized workers are less likely to have health insurance than those that are unionized (U.S. 
Bureau of Labor Statistics, 2019), and may therefore be less likely to seek treatment than 
unionized workers. 

This study has several strengths. One strength is that it examines all ED-treated injuries, 
not just those required to be reported to the BLS. The NEISS-Work dataset captures occupational 
injury data regardless of industry and its definition of work includes the self-employed and farm 
workers, giving it a wider capture of work-related injuries compared to employer-reported 
datasets, such as the BLS SOII. Additionally, NEISS-Work does not require an injury to be 
billed to workers’ compensation to be included. This is a crucial strength of this dataset as a large 
proportion of ED-treated occupational injuries are not billed to workers’ compensation 
(Groenewold and Baron 2013). Finally, to the authors’ knowledge, this is the first study to use 
inferential time series techniques to quantify trends in national, all-industry monthly 
occupational injury data in the US for the period assessed. Specifically, ARIMA modeling, 
which allows for the analysis of monthly occupational injury data, is an improvement over 
previous methods used to measure trends in national ED-treated injury data, such as negative 
binomial regression (Tiesman et al. 2018), which generally cannot account for seasonality. 
However, other studies have used extensions of ARIMA modeling, such as interrupted time 
series (ITS) analysis, to assess the impact of occupational safety and health, such as US Mine 
Safety and Health Administration regulations (Monforton and Windsor 2010), drugfree 
workplace interventions (Wickizer et al. 2004), and the influence of a crash prevention program 
in a large law enforcement agency (Tiesman et al. 2019); ITS analysis may allow future studies 
to assess the impact of interventions with potential to influence national ED-treated occupational 
injury rates (e.g., implementation of occupational health and safety policies, changes in workers’ 
access to health insurance, etc.) were one to be identified. 

This study also has several inherent limitations. First, NEISS-Work collects occupational 
injury data using a probability-based survey sample design. Thus, national occupational injury 
estimates generated using NEISS-Work are based on a subset of US hospital EDs and include 
sampling error. ARIMA modeling assumes homoscedasticity of sample variances and is 
incapable of incorporating any error intrinsic to the NEISS-Work sampling design; incorporating 
survey design error within our ARIMA model, if possible, would likely increase the width of the 
confidence intervals presented in Table 3. Despite this, sample variances of injury rate estimates 
were generally comparable across the study period (Figure 1), suggesting this limitation likely 
did not compromise the internal validity of study findings. Second, NEISS-Work only captures 
injuries treated in a subset of US EDs and do not reflect any change in injury rates due to injuries 
treated in any other setting. Third, these findings should be discussed only in reference to 
national, all-industry occupational injury rates, not in any subnational or industry-specific 
context. Finally, these data do not indicate the severity of the injuries included in NEISS-Work 
and it is possible that many of the injuries included for analysis were relatively minor; literature 



 32 

indicates that nearly 90% of US ED-treated injuries are not severe (Villaveces et al. 2013) and 
most injuries reported to NEISS-Work do not require hospital admission (Konda et al. 2015; 
Lipscomb et al. 2010; Reichard et al. 2015). As NEISS-Work contains data on whether a patient 
was hospitalized/transferred after treatment (National Institute for Occupational Safety and 
Health (NIOSH) Division of Safety Research 2021a), future studies should investigate if 
hospitalization rates of US ED-treated occupational injuries have changed in recent years. 
Additionally, as was reported, rates of injuries decreased significantly for some injury event 
types and not others. Thus, future research should also investigate factors potentially influencing 
these findings, including injury rate trends by industry and demographic factors. 
 
Conclusion 
 To our knowledge, this is the first study to assess temporal trends in a nationally 
representative dataset of occupational injuries treated in US EDs from 2012 to 2019. We found 
that annual injury rate estimates were greatest in 2012 and lowest in 2019. Additionally, we 
provided quantifiable measures of trends in occupational injuries during the study period; 
previously, only descriptive annual statistics were available to assess trends in such data. Future 
research should assess the influence of potential mechanisms, such as injury underreporting or 
shifts in employment, that may have contributed to the trends observed in this study.  
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Figures and Tables 
 

Table 1. Mean annual occupational injuries (per 10,000 FTE) treated in United States 
emergency departments, by injury event type.a  

Year All Injuries 

Violence and 
other injuries 
by persons or 

animals 

Transportation 
incidents 

Falls, Slips, 
and Trips 

Exposure to 
harmful 

substances or 
environments 

Contact with 
objects and 
equipment 

Overexertion 
and other 

bodily 
reaction 

2012 188.4 ±38.9 15.6 ±4.7 6.4 ±1.5 29.2 ± 6.0 17.9 ±3.7 65.9 ±14.0 49.6 ±11.8 
2013 182.6 ±38.4 15.9 ±4.8 5.2 ±1.2 28.8 ±5.6 17.9 ±3.9 64.8 ±14.4 48.0 ±11.9 
2014 183.1 ±35.6 15.3 ±3.9 5.4 ±1.2 29.8 ±5.8 17.3 ±3.9 62.0 ±12.8 50.4 ±11.6 
2015 182.1 ±48.4 16.1 ±4.3 5.3 ±1.4 29.6 ±8.3 18.9 ±6.2 61.3 ±16.0 48.9 ±14.9 
2016 186.8 ±47.8 16.7 ±4.4 5.2 ±1.2 29.1 ±7.9 19.3 ±6.1 58.9 ±14.3 55.0 ±17.1 
2017 171.5 ±31.2 16.1 ±3.6 5.1 ±1 25.4 ±4.6 18.7 ±4.4 55.4 ±10.1 47.6 ±10.8 
2018 160.9 ±34.2 14.3 ±3.5 4.4 ±1 24.8 ±5.1 17.3 ±5.0 51.8 ±10.0 45.8 ±12.5 
2019 156.8 ±34.5 14.6 ±3.3 5.0 ±1.1 25.3 ±5.4 16.1 ±4.4 50.4 ±10.5 43.1 ±12.4 
Total 176.2 ±30.9 15.5 ±3.5 5.2 ±0.9 27.7 ±4.8 17.9 ±3.9 58.6 ±10.4 48.5 ±10.6 

a Numerator data (monthly ED-treated injury count estimates) are from the National Electronic Injury Surveillance 
System-Occupational Supplement (NEISS-Work) dataset and were produced using the R packages ‘survey’ and 
‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) via the NIOSH 
Employed Labor Force query system. Variances from both numerator and denominator data were used to calculate 
95% CIs using a Taylor series expansion, which is reported as each injury rate estimate ± margin of error. Injury 
event type definitions are based on the Bureau of Labor Statistics Occupational Injury and Illness Classification 
System version 2.01. 
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Table 2. Seasonality indicesa of occupational injuries (per 10,000 FTE) treated in United 
States emergency departments by injury event type.b   

Month All Injuries 

Violence 
and 

other 
injuries 

by 
persons 

or 
animals 

Transportation 
incidents 

Falls, 
Slips, 
and 

Trips 

Exposure to 
harmful 

substances or 
environments 

Contact 
with 

objects 
and 

equipment 

Overexertion 
and other 

bodily 
reaction 

January 0.93 0.87 0.94 1.17 0.82 0.88 0.91 
February 0.87 0.82 0.87 1.09 0.81 0.81 0.86 
March 0.97 0.95 0.93 1.00 0.87 0.96 1.01 
April 0.96 1.02 0.92 0.85 0.89 0.96 1.02 
May 1.03 1.08 1.02 0.97 1.03 1.06 1.02 
June 1.07 1.06 1.10 0.98 1.15 1.13 1.04 
July 1.15 1.18 1.15 1.04 1.45 1.16 1.08 

August 1.13 1.10 1.03 1.03 1.31 1.17 1.10 
September 1.02 1.06 1.06 0.95 1.05 1.05 1.01 

October 1.04 1.04 1.04 0.99 0.94 1.08 1.05 
November 0.94 0.94 0.99 0.94 0.88 0.91 0.97 
December 0.89 0.88 0.94 0.99 0.82 0.84 0.92 

a Calculated by dividing the mean rate for each month by the mean monthly occupational injury rate for the entire 
dataset. 
 
b Numerator data (monthly ED-treated injury count estimates) are from the National Emergency Injury Surveillance 
System-Occupational Supplement (NEISS-Work) dataset and were produced using the R packages ‘survey’ and 
‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) via NIOSH Employed 
Labor Force querying system. Injury event type definitions are based on the Bureau of Labor Statistics Occupational 
Injury and Illness Classification System version 2.01. 
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Table 3. Trend analysis of monthly ED-treated occupational injury rates estimates per 10,000, 
2012-2019.a  

Injury Type ARIMA 
Structureb 

Interc
ept 

Trend Parameter (± 
95% CI) 

Percent Decrease, 2012-2019 (± 
95% CI)c 

All Injuries (1,0,2)(1,0,0)12 191.8 -0.37 (±0.29) -18.5% (±14.5%) 
Violence (1,0,0)(1,0,0)12 15.9 -0.01 (±0.03) -6.2% (±14.9%) 

Transportation Incidents (1,0,0)(0,0,0)12 5.9 -0.01 (±0.01) -23.2% (±14.7%) 
Falls, Slips, and Trips (0,0,0)(1,0,0)12 30.9 -0.06 (±0.03) -18.1% (±8.9%) 

Exposure to Harmful Substances (1,0,0)(1,0,0)12 18.4 -0.02 (±0.05) -9.3% (±24.9%) 
Contact with Foreign Objects and 

Equipment (1,0,3)(1,0,1)12 68.1 -0.19 (±0.08) -26.9% (±10.5%) 

Overexertion and Bodily Reaction (1,0,0)(1,0,0)12 51.3 -0.06 (±0.09) -12.6% (±16.3%) 

Significant values bolded.     
a Numerator data (monthly ED-treated injury count estimates) are from the National Emergency Injury 
Surveillance System-Occupational Supplement (NEISS-Work) dataset and were produced using the R packages 
‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) via 
NIOSH Employed Labor Force querying system. Injury event type definitions are based on the Bureau of Labor 
Statistics Occupational Injury and Illness Classification System version 2.01. 
 
bAn ARIMA(p,d,q)(P,D,Q)m  structure was used to control for serial correlation (e.g., seasonality) in monthly 
injury rate data, where p is the order of autocorrelation, d is the number of differences applied to the data, q is the 
order of moving average terms, P,D, and Q are the seasonal versions of these terms, and m is the order of 
seasonality (e.g., 12 for annually seasonality in monthly data). A linear trend parameter was used to measure 
overall decreases.  
c Calculated by multiplying each model’s trend parameter and 95% CI by 96 (i.e., the total number of months in 
the study period) and calculating percent difference from the model’s intercept; significant decreases are bolded. 
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Figure 1. Monthly injury rate estimates for occupational injuries treated in US EDs, 2012-2019. a 

 
a Numerator data (monthly ED-treated injury count estimates) are from the National Emergency Injury Surveillance 
System-Occupational Supplement (NEISS-Work) dataset and were produced using the R packages ‘survey’ and 
‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) via the NIOSH 
Employed Labor Force querying system. Variances from both numerator and denominator data were used to 
calculate for injury rate 95% CI (represented here by red shading) using a Taylor series expansion. Blue line 
represents a linear trend parameter adjusted for seasonality using ARIMA modeling. 
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Supplementary Material 
 

 
 
Supplementary Figure 1. Monthly injury rate estimates for occupational injuries caused by 
violence and other injuries by persons or animals treated in US EDs, 2012-2019.a 
 
a Numerator data (monthly ED-treated injury count estimates associated with violence and other injuries by persons 
or animals) are from the National Emergency Injury Surveillance System-Occupational Supplement (NEISS-Work) 
dataset and were produced using the R packages ‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from 
the Current Population Survey (CPS) via the NIOSH Employed Labor Force querying system. Variances from both 
numerator and denominator data were used to calculate for injury rate 95% CI using a Taylor series expansion. 
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Supplementary Figure 2. Monthly injury rate estimates for occupational injuries caused by 
transportation incidents treated in US EDs, 2012-2019. a 
 
aNumerator data (monthly ED-treated transportation injury count estimates) are from the National Emergency Injury 
Surveillance System-Occupational Supplement (NEISS-Work) dataset and were produced using the R packages 
‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) via the 
NIOSH Employed Labor Force querying system. Variances from both numerator and denominator data were used to 
calculate for injury rate 95% CI using a Taylor series expansion. 
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Supplementary Figure 3. Monthly injury rate estimates for occupational injuries caused by 
falls, slips, and trips treated in US EDs, 2012-2019. a 
 
a Numerator data (monthly ED-treated falls, slips, and trips injury count estimates) are from the National Emergency 
Injury Surveillance System-Occupational Supplement (NEISS-Work) dataset and were produced using the R 
packages ‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from the Current Population Survey (CPS) 
via the NIOSH Employed Labor Force querying system. Variances from both numerator and denominator data were 
used to calculate for injury rate 95% CI using a Taylor series expansion. 
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Supplementary Figure 4. Monthly injury rate estimates for occupational injuries caused by 
exposure to harmful substances or environments treated in US EDs, 2012-2019. a 
 
a Numerator data (monthly ED-treated injury count estimates associated with exposure to harmful substances or 
environments) are from the National Emergency Injury Surveillance System-Occupational Supplement (NEISS-
Work) dataset and were produced using the R packages ‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained 
from the Current Population Survey (CPS) via the NIOSH Employed Labor Force querying system. Variances from 
both numerator and denominator data were used to calculate for injury rate 95% CI using a Taylor series expansion. 
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Supplementary Figure 5. Monthly injury rate estimates for occupational injuries caused by 
contact with objects and equipment treated in US EDs, 2012-2019. a 
 
a Numerator data (monthly ED-treated injury count estimates associated with contact with objects and equipment) 
are from the National Emergency Injury Surveillance System-Occupational Supplement (NEISS-Work) dataset and 
were produced using the R packages ‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from the Current 
Population Survey (CPS) via the NIOSH Employed Labor Force querying system. Variances from both numerator 
and denominator data were used to calculate for injury rate 95% CI using a Taylor series expansion. 
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Supplementary Figure 6. Monthly injury rate estimates for occupational injuries caused by 
overexertion and other bodily reaction treated in US EDs, 2012-2019. a 
 
a Numerator data (monthly ED-treated injury count estimates associated with overexertion and other bodily reaction) 
are from the National Emergency Injury Surveillance System-Occupational Supplement (NEISS-Work) dataset and 
were produced using the R packages ‘survey’ and ‘srvyr’. Denominator data (FTE) were obtained from the Current 
Population Survey (CPS) via the NIOSH Employed Labor Force querying system. Variances from both numerator 
and denominator data were used to calculate for injury rate 95% CI using a Taylor series expansion. 
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Chapter 3 
 
The comparative impact of decreasing prescription opioid shipments and the release of an 

abuse deterrent OxyContin formulation on opioid overdose fatalities in WV 
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Abstract 
 
Introduction: The 2010 release of an abuse deterrent formulation (ADF) of OxyContin, a brand 
name extended release (ER) prescription opioid, has been cited as a major driver reduced 
prescription drug abuse and subsequently increasing rates of illicit opioid use and overdose. 
However, studies of this topic often do not account for changes in prescribing patterns or 
supplies of other prescription opioids that were widely abused before and after the ADF 
OxyContin release, including non-ER oxycodone formulations and hydrocodone. We therefore 
sought to compare the impact of the ADF OxyContin release to that of decreasing total 
prescription opioid supplies in West Virginia (WV). 
 
Methods: Overdose and opioid shipment data were extracted from The Washington Post 
ARCOS (2006-2014) and the WV Forensic Drug Database (2005-2020), respectively. To 
overcome the lack of a fixed intervention start point we used locally estimated scatterplot 
smoothing (LOESS) to estimate the best point when shipments of prescription opioids to WV 
began decreasing, measured via dosage units and morphine milligram equivalents (MMEs). 
Interrupted time series analysis (ITSA) was used to compare the impact LOESS-identified 
prescription supply changes and the ADF OxyContin release on both prescription (oxycodone 
and hydrocodone) and illicit (heroin, fentanyl, and fentanyl analogues) opioid overdose deaths in 
WV. Models were compared using Akaike Information Criteria (AIC). 
 
Results: ITSA models using the LOESS-identified change in prescription opioid shipments 
(measured via dosage units) resulted in lowest AIC for both prescription (AIC = -188.6) and 
illicit opioid-involved overdoses (AIC = -189.4), indicating this intervention start date resulted in 
the preferred model. Second lowest AIC was for models using the ADF OxyContin release (AIC 
= -185.5 and -185.6 for ITSA of prescription and illicit overdose, respectively). 
 
Discussion: Our results suggest that decreasing prescription opioid shipments in response to 
declining sales in WV had a greater impact on changing patterns of drug overdose in the state 
than the ADF OxyContin release. LOESS regression was essential in allowing us to estimate the 
best intervention start point for our ITSA. Given these results and previous research indicating 
the majority of oxycodone prescribed post-ADF Oxycontin release was generic and therefore 
still abusable, those with opioid use disorder had multiple other opioid options to using after the 
ADF release. 
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Introduction 
Opioid-involved overdose deaths have become a major public health problem in the 

United States (US), with more than 564,000 fatal overdoses occurring from 1999 to 2020 
(Centers for Disease Control and Prevention, 2022). The opioid epidemic has been characterized 
by multiple waves of overdoses associated with different drug classes and routes of 
administration (Ciccarone, 2019; Jenkins, 2021). The first wave was associated with overdoses 
due to prescription opioid medications, such as oxycodone and its brand name extended-release 
(ER) formulation Oxycontin (van Zee, 2009). Beginning in the late 1990’s, these and other 
prescription opioids were prescribed and dispensed at increasing rates throughout the US. As a 
result, fatal overdoses of prescription opioids increased in tandem (Ciccarone, 2019, 2021). 

Actions taken to decrease rates of prescription medication diversion, abuse, and overdose 
included efforts to reduce opioid prescribing rates (Schieber et al., 2019) and prescription 
reformulations which sought to restrict injecting or snorting tablets, including the August 2010 
release of an abuse deterrent formulation (ADF) of Oxycontin (Sessler et al., 2014). These 
targeted measures largely succeeded in decreasing rates of those opioid overdoses involving 
prescribed opioids. However, they also had the unintended consequence of diverting those 
suffering from untreated opioid use disorder from prescription opioids to cheaper and more 
available dangerous illicit alternatives, such as heroin and later fentanyl (Beletsky & Davis, 
2017; Ciccarone, 2019). 

The ADF Oxycontin release was widely promoted as the solution to diversion and abuse 
of prescription opioids; immediately following the ADF release in August 2010, sales of the non-
ADF formulation ceased and Oxycontin prescriptions were solely prescribed in the ADF 
formulation. This formulation change has been suggested as a major driver of the transition from 
prescription to illicit opioid use and overdose in the US by some researchers (Cassidy et al., 
2014; Cicero & Ellis, 2015) and the fundamental driver by others (Evans et al., 2019). This 
hypothesis is supported by decreasing rates of Oxycontin abuse and overdose after the ADF 
release (Cicero & Ellis, 2015; Sessler et al., 2014). However, other data indicate the majority of 
Oxycontin users did not start using heroin soon after the ADF release (Cicero & Ellis, 2015). In 
fact, a recent analysis suggests that many brand name Oxycontin users simply switched to 
generic ER oxycodone use following the ADF release and that falling rates of generic oxycodone 
prescriptions were more predictive (in comparison to the ADF OxyContin release) of subsequent 
increases in illicit opioid overdose at the state level (Zhang & Guth, 2021). Similarly, many 
previous studies on this topic have not included commonly prescribed opioids such as 
hydrocodone in their analyses (Cicero & Ellis, 2015; Coplan et al., 2013), an opioid which was 
prescribed and abused at rates comparable to Oxycontin before the ADF release (Cicero et al., 
2005, 2007; Kenan et al., 2012). 

Given the importance of supply side drivers of overdose (Ciccarone, 2019), omitting 
widely prescribed opioids from analyses limits current understanding of the transition between 
prescription and illicit opioid overdose in the US. Thus, using fatal opioid overdose data from 
West Virginia (WV), we examined the impact of decreasing opioid shipments to WV on the 
transition from prescription to illicit opioid overdoses in the state but no fixed date for the start of 
declining shipments was available . However current time series methods require a fixed stating 
point. Using a data-driven approach, we used LOESS regression to identify an approximate start 
date for the decline in opioid tablet shipments to WV given naturally occurring monthly variation 
in data; these points were used to inform an interrupted time series analysis (ITSA) of fatal 
prescription and illicit opioid overdoses in the state. ITSA assesses the impact of public health 
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events by quantifying trends before and after an intervention with a known start date (J. Lopez 
Bernal et al., 2016). We also assessed the impact of the August 2010 ADF Oxycontin release for 
comparison to our LOESS-informed analysis. In addition to elucidating the transition from 
prescription to illicit opioid overdoses in WV, this study provides a plausible framework for 
using ITSA to assess the impact of public health events with no intervention start date. 
 
Methods 
Data sources 

Data on opioid prescription shipments in WV for 2006-2014 were obtained from a subset 
of Drug Enforcement Agency’s (DEA) Automation of Reports and Consolidated Orders System 
(ARCOS) data publicly available through The Washington Post (The Washington Post, 2020). 
ARCOS tracks the flow of all schedule I/II and select schedule III/IV substances through their 
manufacture and subsequent distribution to points of dispersion (i.e., retail pharmacies, hospitals, 
practitioners, etc.). The Washington Post ARCOS subset contains data on individual oxycodone 
and hydrocodone tablet shipments, including the addresses of each shipment 
manufacturer/distributor and recipient, date of shipment, number of dosages (i.e., tablets) in each 
shipment, strength of each dose in milligrams, and morphine milligram equivalents (MME) 
conversion factor for each shipment (1 for hydrocodone, 1.5 for oxycodone). While this dataset 
only contains information on oxycodone and hydrocodone tablet shipments, The Washington 
Post reports that the prescription opioids excluded were shipped and diverted for abuse in much 
smaller quantities throughout the period reported (Rich et al., 2019). Quarterly dosage units were 
calculated using an ARCOS dataset column corresponding to the number of tablets in each 
shipment, while quarterly MMEs were calculated using the formula MME = Quantity × Strength 
× Conversion Factor (Supplemental Table S1) (Centers for Disease Control and Prevention, n.d.; 
Sedney et al., 2021; Winstanley et al., 2018). 
 WV opioid-involved overdose death data for 2005-2020 were obtained from a forensic 
drug database (FDD) maintained at West Virginia University through an agreement with the WV 
Office of the Chief Medical Examiner (OCME); the WV OCME uses a state-level, centralized 
death investigation system which includes comprehensive drug screenings and toxicology testing 
for suspected drug deaths (Dai et al., 2022). Counts of opioid-involved overdose deaths from 
January 2005 to December 2020 were aggregated to the quarterly level for drug-related deaths 
involving prescription (oxycodone or hydrocodone) or illicit opioids (heroin or a synthetic opioid 
other than methadone, including fentanyl, fentanyl analogs, 4-anpp, and u-47700). Proportions of 
deaths involving prescription or illicit opioids were calculated by dividing the quarterly 
aggregate of either category by the total number opioid-involved deaths in each quarter. 
 
Statistical analysis 

All statistical analyses were performed in RStudio version 4.2.1 (RStudio Team, 2022). 
To assess the impact of decreasing opioid prescription shipments to WV on the proportion of 
opioid overdose deaths associated with prescription and illicit opioids, we used an ITSA (J. 
Lopez Bernal et al., 2016; Schaffer et al., 2021). ITSA is a robust statistical approach in which 
the impact of an intervention is measured using segmented linear regression. Three potential 
interventions were investigated. First, two interventions denoting peak tablet shipments to WV, 
measured via both dosage units and MMEs. As shipments varied by quarter with no defined 
point when the decline began, we identified a plausible decline start point using locally estimated 
scatterplot smoothing (LOESS) of quarterly ARCOS data. LOESS fits weighted least squared 
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regression to data in several independent variable intervals and requires no global function, 
providing clear graphical representations of non-linear relationships. As a result, LOESS is often 
used to identify inflection points (i.e., changes in slope) in non-linear data (Jacoby, 2000; Ryan 
& Porth, 2007), including in time series data of opioid prescriptions (Ahmedani et al., 2014) and 
overdoses (Stevens et al., 2017). Next, an intervention for the introduction of the ADF Oxycontin 
(released in August 2010 or 2010 Q3) was informed by previous literature; non-ADF Oxycontin 
prescriptions ceased the same month that the ADF was released (Beachler et al., 2022). As there 
is a likely a temporal lag between changes in prescription opioid shipments and related variations 
in opioid overdose rates, we lagged each intervention by a transition period of two quarters. This 
approach is similar is used in previous analyses of prescription opioid supply in this timeframe 
(Mallama, 2020; Secora, 2020; Severtson et al., 2016). 
 Each intervention was modeled using the equation: 
 

𝑦! = 𝛽( + 𝛽"𝑡 + 𝛽$𝑃 + 𝛽)𝐷 + 𝜖 
 
where yt is an outcome of interest (e.g. quarterly proportion of opioid overdose deaths associated 
with prescription or illicit opioids), 𝛽( is the model intercept, t is time, 𝑃 is a variable 
representing time since the intervention (zero before the intervention, slope of one afterwards), 
and 𝐷 is a dummy variable representing the immediate effect of the intervention (Nyugen, 2022; 
Penfold & Zhang, 2013). 𝛽", 𝛽$, and  𝛽) represent the pre-intervention slope, the sustained post-
intervention effect (i.e., a slope change impact known as a “ramp” variable), and the immediate 
post-intervention effect of an intervention (i.e., a “step-change” impact), respectively. Finally, 
error is denoted by 𝜖 and may include autoregressive integrated moving average (ARIMA) terms 
when data violate the linear regression assumption of data independence (i.e., the data is serially 
correlated). ARIMA models include lagged values of a time series’ dependent variable and/or its 
error terms and is recommended for use in ITSA when data are not independent (J. Lopez Bernal 
et al., 2016, 2018). ARIMA terms were fit to opioid overdose data via inspecting autocorrelation 
and partial autocorrelation plots. In accordance with previous ITSA literature (Gilmour et al., 
2006; Schaffer et al., 2021), the terms in the above-specified model for each identified 
intervention were included or excluded based on the need for control of serial correlation, 
preservation of model parsimony, and minimization of Akaike Information Criteria (AIC). Final 
ITSA models were assessed for proper fit via inspection of each model’s ACF and PACF plots, 
as well as inspecting the significance of each model’s Ljung-Box statistic (with a non-significant 
value considered a properly fitting model) (Ljung & Box, 1978). The AIC of each final ITSA 
model was used for model comparison. To compare models using AIC, we abided by the 
convention that when comparing two models, the model with lower AIC is better fit and that a 
difference of two or more AIC units is meaningful (Burnhamn & Anderson, 2002). 
  
Results 
 From 2005-2020, a total of 9419 opioid-involved overdose deaths were identified in the 
WV FDD.  The proportion of these involving illicit opioids was 0.48, while the proportion 
involving prescription opioids (oxycodone or hydrocodone) was 0.37. Graphical representation 
of the quarterly proportion of opioid-involved overdose deaths involving each opioid 
investigated is presented in Figure 1. During the first two quarters of the study period, illicit 
opioid overdoses occurred at a rate comparable to prescription opioids, likely due to a brief 
fentanyl overdose outbreak that occurred nationally from 2005 to 2007 (DEA Diversion Control 
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Division, 2016). After this, prescription opioid overdoses occurred at a rate greater than those 
associated with illicit opioids until approximately 2015. 

LOESS regression of 2006-2014 ARCOS data indicated that maximum quarterly 
shipments of oxycodone and hydrocodone tablets occurred in 2011 Q3 when measured via 
dosage units (i.e., number of tablets) and 2012 Q4 when measured via MMEs. Graphical 
representation of quarterly dosage units and MMEs are presented in Figure 2 along with 
estimated peak total prescription shipments. Measured via dosage units, hydrocodone was 
shipped to WV in highest quantities, followed by non-ER oxycodone and brand name oxycodone 
tablets including OxyContin. Measured via MMEs, hydrocodone was shipped to WV in highest 
quantities until approximately 2012, when it was surpassed by non-ER oxycodone; OxyContin 
was shipped in third-highest quantities (measured via MMEs) after approximately 2007. The 
opioids products included in each category are available in Supplemental Table 2-7. 
 Graphical representation of each ITSA model and a corresponding counterfactual (i.e., no 
intervention) scenario is presented in Figure 3; the blue dotted line indicates the intervention date 
of interest while the grey shaded area denotes a transition period of two quarters post-
intervention. ITSA informed via ADF Oxycontin release and peak ARCOS MMEs appeared to 
over- and underestimate, respectively, increases in illicit opioid overdoses. For all ITSA models, 
serial correlation was adequately controlled with an AR (1) ARIMA term (Tables 2 and 3). ITSA 
of the proportion of prescription opioids was best modeled using time (𝛽1) and ramp (𝛽2) 
functions, corresponding to significant pre- and post-intervention trends (Table 2), respectively. 
ITSA of illicit opioids was best modeled using only a ramp function, indicating there was no pre-
intervention trend present (Table 3). No ITSA model was improved via inclusion of a step-
change (i.e., immediate impact; 𝛽3) function. For both prescription and illicit opioids, a dosage 
units-informed ITSA model had lowest AIC (-188.6 and -189.4 for prescription and illicit 
opioids, respectively), indicating best model fit, followed by models informed via ADF 
Oxycontin release and peak ARCOS MMEs. AIC difference between the three models was 
greater than two units for both prescription (Table 2) and illicit opioids (Table 3), suggesting 
meaningful differences between each model’s performance. 
 
Discussion 

In this study, we assessed the statewide transition from prescription to illicit fatal opioid 
overdoses in WV. We used LOESS regression to determine the starting point for when opioid 
tablet shipments to WV began decreasing (measured as both dosage units and MMEs) and used 
these as intervention start dates in an ITSA study. We compared these to an ITSA study using the 
ADF Oxycontin release as an intervention start data, which is widely cited as the factor initiating 
a transition from prescription to illicit opioid use in the US (Cicero et al., 2012; Cicero & Ellis, 
2015; Evans et al., 2019). Our findings suggest that in WV, overdose patterns began changing 
much closer to the time when prescription opioid shipments (measured via dosage units) began 
decreasing. We also accounted for an assumed six-month lag from shipment to observable effect 
on fatal overdose rates (Mallama, 2020; Secora, 2020; Severtson et al., 2016), indicating this 
observed impact was a full 1.5 years after the ADF Oxycontin release. 

Changes in prescription opioid supplies have a measurable impact on use of both 
prescription and illicit opioids (Ciccarone, 2019; Fischer et al., 2020; Greenfield & Paoli, 2017; 
Werle & Zedillo, 2018). Thus, it is likely that decreasing prescription opioid supplies in WV 
during our study period likely contributed to increasing rates of overdoses involving illicit 
opioids. From 2006-2011, the WV opioid prescription dispensing rate was the highest of any US 
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state (Centers for Disease Control and Prevention, 2021). However, WV opioid prescription 
rates, measured either via dosage units or MMEs, decreased more quickly than the US average 
during our study period (Centers for Disease Control and Prevention, 2021; Schieber et al., 
2019). These drastic supply changes may explain our finding that the ITSA study based on 
overall opioid shipments to WV (measured via dosage units) was the preferred model of both 
prescription and illicit overdose rates in our study. Moreover, our data indicate that the majority 
prescription opioids shipped to the state were not Oxycontin (Figure 2) or other ER oxycodone 
formulations; this is congruent with national data showing that the majority of oxycodone 
prescribed post-ADF Oxycontin release was generic and therefore abusable (Zhang & Guth, 
2021). Thus, those who used OxyContin in WV likely had many other prescription options to 
begin using following the release of its ADF formulation. Moreover, those with opioid use 
disorder often prefer immediate release prescription opioid formulations as opposed to ER 
formulations (Cicero et al., 2017). This may be why the ADF Oxycontin release did not fit our 
data well as a dosage unit-based intervention. 

Soon after its release, the ADF OxyContin reformulation was cited as a major contributor 
to subsequent increases in illicit opioid use and overdose (Cicero et al., 2012). However, 
analyses since the 2019 ARCOS data release by The Washington Post support our conclusion 
that changing supplies of other prescription opioids had a greater influence. For instance, Zhang 
and Guth assessed ARCOS, substance use data from The National Survey on Drug Use and 
Health (NSDUH), and opioid mortality data and found that the majority of Oxycontin users in 
their sample transitioned to generic oxycodone after the ADF release (Zhang & Guth, 2021). The 
authors also note that heroin mortality was highest in states with previously high generic 
oxycodone use and that illicit opioid overdose rates began increasing nearly two years after the 
ADF release. Our findings support and expand on those from Zhang and Guth by using ITSA, 
quarterly as opposed to annual data, and by including data on shipments of hydrocodone, a 
prescription opioid that was prescribed and abused at rates similar to Oxycontin and oxycodone 
before the ADF Oxycontin release (Cicero et al., 2005, 2007; Kenan et al., 2012).  

While we used ARCOS data to assess prescription opioid supplies throughout our study 
period, analyses of other data sources support our conclusions. For example, NSDUH data 
indicates those using prescription pain relievers other than Oxycontin before its ADF release had 
58% greater odds of heroin initiation than those using Oxycontin (Wolff et al., 2020). Similarly, 
in a large sample of individuals screened for substance abuse, oxymorphone and buprenorphine 
abuse rates increased after the ADF OxyContin release while heroin abuse rates did not change 
significantly (Cassidy et al., 2014). Another study using linked health insurance and National 
Death Index data did not find an overall effect on fatal and non-fatal overdose; the study did find 
a small decrease in OxyContin overdose rates (Beachler et al., 2022). Finally, a 2020 US Food 
and Drug Administration (FDA) joint meeting of the Drug Safety and Risk Management 
Advisory Committee and the Anesthetic and Analgesic Drug Products Advisory Committee used 
multiple data sources to assess the national post-market impact of the ADF Oxycontin release. 
Among the meeting’s findings were that while non-oral Oxycontin use decreased after the ADF 
release, oral use increased significantly (Mallama, 2020) and abuse of hydrocodone and other 
schedule II opioids increased significantly relative to Oxycontin (Secora, 2020). 

In addition to elucidating the transition from prescription to illicit opioid overdose in 
WV, this study expands on ITSA literature seeking to identify intervention dates using data that 
is related to, yet separate from, a time series of interest. Notably, Gilmour et al. used previously 
published survey data to identify a plausible ITSA start date of the Australian heroin shortage. 
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Similarly, Lopez Bernal et al. used a widely accepted definition for the beginning of an 
economic recession (the point at which gross domestic product growth rate is negative compared 
to previous quarter) to assess the impact of late 2000’s financial crisis on Suicide rates in Spain 
of (J. A. Lopez Bernal et al., 2013). While these studies provided innovative approaches, the 
methods used were statistically descriptive. Using LOESS regression, the inferential approach 
used in our study, future studies may be able to more accurately determine an intervention start 
date for use in an ITSA study when one is not easily defined.  
 This study has several strengths. For example, to the author’s knowledge, we are the first 
to demonstrate the feasibility of LOESS regression in determining a plausible intervention start 
data for use in an ITSA study of substance use data. As previous substance use research has 
identified the difficulty in studying interventions with no known start date (Gilmour et al., 2006), 
this is a crucial addition to current ITSA literature. Additionally, our study assessed medical 
examiner data from WV, which has a highly specific drug death investigation system relative to 
other states (Warner & Hedegaard, 2018). However, our study also has several limitations. First, 
although ITSA is a powerful statistical study design and is useful in many situations in which a 
public health intervention has no control group, it remains an ecologic study design and therefore 
cannot infer causality. Despite this, we believe the methodology in this study, which investigates 
several possible interventions, provides a robust approach towards strengthening evidence for a 
specific intervention’s impact as it uses ITSA to quantify the impact of several intervention 
points. Second, given urban/rural differences in prescription opioid abuse rates, our results may 
not be generalizable outside of WV, a largely rural state. Third, the medical examiner’s data used 
in this study relies on toxicology report that cannot differentiate between formulations of the 
same drug. We therefore cannot assess which formulation of oxycodone (Oxycontin or generic) 
or hydrocodone contributed to overdose rates throughout our study period. Finally, ARCOS is 
limited to hydrocodone and oxycodone; while data suggests these were the primary opioids 
contributing to substance use disorder during the early years of the opioid epidemic in WV, other 
prescription opioids played a role. 
 

Conclusion 

These results suggest that the transition from prescription to illicit opioid overdose in WV 
may have been affected by decreasing rates of prescription opioid shipments, not the release of 
ADF Oxycontin as previous reported in studies of national data. This may be related to the large 
quantity of hydrocodone shipped to WV (relative to Oxycontin), the deterrent use of which 
would not have been affected by the ADF Oxycontin release. While The Washington Post 
ARCOS is compressive in its inclusion of oxycodone and hydrocodone tablet shipments, it does 
not include data on other prescription opioids with potential for deterrent use. Future studies 
should seek to elucidate the impacts of supply-side changes in prescription opioid availability in 
WV on other outcomes, including substance use, substance use treatment, and related co-
morbidities, such as acute hepatitis C infection. 
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Figures and Tables  
 

 
 
Figure 1. The quarterly proportion of opioid overdoses in WV associated with prescription and 
illicit opioids. a 
 
a Prescription opioid overdoses were defined as those associated with oxycodone or hydrocodone, while illicit overdoses were 
defined as those involving heroin and synthetic opioids other than methadone, including fentanyl, fentanyl analogues, 4-anpp, 
and u-47700. Data from the West Virginia Forensic Drug Database, which compiles data from the West Virginia Office of the 
Chief Medical Examiner. 
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Figure 2. Quarterly opioid tablet shipments to West Virginia, both total and by individual opioid 
product and estimated change point in total opioid shipments indicated by red dot.a 
 
a Data are presented measured via dosage units and morphine milligram equivalents (MMEs) and are smoothed using locally 
estimated scatterplot smoothing (LOESS) regression to allow for the visualization of overall trends. Peak total quarterly dosage 
units and MMEs were identified via LOESS and are denoted using a red dot. Data are form the Drug Enforcement Agency’s 
Automation of Reports and Consolidated Orders System (ARCOS) database and were obtained from The Washington Post. 



 60 

 
 

  
 
Figure 3. Graphical representation of interrupted time series analysis (ITSA)a of quarterly 
opioid-involved overdose deaths.b 
 
a Upper and lower sub-figures represent ITSA of prescription and illicit opioid-involved overdose rates, respectively, while each 
column represents a unique ITSA intervention. Red lines represent estimated intervention impacts while dotted red lines 
represent estimated counterfactual (i.e., no intervention) trends. Blue dotted lines represent intervention start dates while grey 
shaded areas represent a two-quarter transition period after which the intervention impact is theorized to have begun.  
 
b Prescription opioid overdoses were defined as those associated with oxycodone or hydrocodone, while illicit opioid overdoses 
were defined as those involving heroin and synthetic opioids other than methadone, including fentanyl, fentanyl analogues, 4-
anpp, and u-47700. Data are from the West Virginia Forensic Drug Database, which compiles data from the West Virginia Office 
of the Chief Medical Examiner. 
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Table 1. Interrupted time series results of opioid-involved overdoses in West Virginia involving 
prescription opioids.a 
 
  Intervention: Oxycontin ADF released (2010 Q3)   
  Parameter   Estimate   P-value   AIC b   
  AR1 (𝜖)  0.32  0.007  

-185.5 

  

  Intercept (𝛽0)  0.28  <0.001    

  Time (𝛽1)  0.02  <0.001    

  Ramp (𝛽2)  -0.03  <0.001    
    

 
      

  Intervention: Peak dosage units (2011 Q3)   
  Parameter   Estimate   P-value   AIC   

  AR1 (𝜖)  0.25  0.042  

-188.6 

  

  Intercept (𝛽0)  0.32  <0.001    

  Time (𝛽1)  0.01  <0.001    

  Ramp (𝛽2)  -0.03  <0.001    
           
  Intervention: Peak MMEs (2012 Q4)       

  Parameter   Estimate   P-value   AIC   

  AR1 (𝜖)  0.43  <0.001  

-178.3 

  

  Intercept (𝛽0)  0.36  <0.001    

  Time (𝛽1)  0.01  <0.001    

  Ramp (𝛽2)   -0.03   <0.001     
 
a Prescription opioid overdoses were defined as those associated with oxycodone or hydrocodone. Data are from the West 
Virginia Forensic Drug Database, which compiles data from the West Virginia Office of the Chief Medical Examiner. 
 
b Akaike Information Criteria (AIC). A lower value is considered better model fit and a difference of more than two AIC units 
indicates a meaningfully better-fitting model. 
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Table 2. Interrupted time series results of opioid-involved overdoses in west Virginia involving 
illicit opioids.a 
 
  Intervention: Oxycontin ADF released (2010 Q3)   
  Parameter   Estimate   P-value     AIC b   
  AR1 (𝜖)  0.57  <0.001   

-185.6 
  

  Intercept (𝛽0)  0.17  <0.001     
  Ramp (𝛽2)  0.02  <0.001     
    

 
  

  
   

  Intervention: Peak dosage units (2011 Q3)   
  Parameter   Estimate   P-value     AIC   
  AR1 (𝜖)  0.50  <0.001   

-189.4 
  

  Intercept (𝛽0)  0.18  <0.001     
  Ramp (𝛽2)  0.02  <0.001     
       

     
  Intervention: Peak MMEs (2012 Q4)         
  Parameter   Estimate   P-value     AIC   
  AR1 (𝜖)  0.67  <0.001   

-180.7 
  

  Intercept (𝛽0)  0.21  <0.001     
  Ramp (𝛽2)   0.02   <0.001       

 
a Illicit opioid overdoses were defined as those involving heroin and synthetic opioids other than methadone, including fentanyl, 
fentanyl analogues, 4-anpp, and u-47700. Data are from the West Virginia Forensic Drug Database, which compiles data from 
the West Virginia Office of the Chief Medical Examiner. 
 
b Akaike Information Criteria (AIC). A lower value is considered better model fit and a difference of more than two AIC units 
indicates a meaningfully better-fitting model. 
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Supplemental Material 
 
Supplemental Table 1. Washington Post ARCOS data variables used in the calculation of 
dosage units and MMEs. 
 

Variable ARCOS Variable Name ARCOS Data Dictionary Description 

Quantity DOSAGE_UNIT DEA calculated field indicating number of pills, patches or 
lozenges, among others, shipped as part of the transaction. 

Strength dos_str Strength of dose in milligrams. 

Conversion 
Factor MME_Conversion_Factor Morphine Milligram Equivalent, or how the specific drug 

compares to a morphine equivalent. 
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Supplemental Table 2. Hydrocodone products shown in Figure 2, measured via total dosage 
units and morphine milligram equivalents (MMEs) shipped to West Virginia for 2006-2014. 
 

Product_Name MME Dosage_Units 
ACET/HYDROCOD.BIT.,500MG&5MG/TAB 15700 3140 
ACETA/HYDROCODONE.BIT - 750MG/7.5MG 126825 16910 
ACETAMINOPHEN 750MG/ HYDROCODONE BIT 11250 1500 
ANEXSIA 7.5MG TAB HYDROCODO.BIT ACET 13500 1800 
ANEXSIA.HYDROCODONE.BITARTRATE.10MG/ 1141000 114100 
CO-GESIC ACETA & HYDROCODO.BIT.,5MG 2000 400 
HYCODAN 5MG/TABLET 42000 8400 
HYCODAN TAB. / HYDROCODONE BIT. 5MG 1000 200 
HYDRO-APAP 7.5MG HYDROCOD.BIT/325MG 1350 180 
HYDROCOD. BIT 5MG TAB 284360 56872 
HYDROCOD. BIT 7.5MG/ACETAMINOPHEN 75 73500 9800 
HYDROCOD. BIT5MG & ACET TAB 13500 2700 
HYDROCOD.BIT 7.5 TAB 15752250 2100300 
HYDROCOD.BIT. & ACET.;2.5MG/600MG/TA 2180547.5 872219 
HYDROCOD.BIT. 5MG/HOMATROPINE.METHYL 648000 129600 
HYDROCOD.BIT./ACET.,5MG & 500MG/TAB 32500 6500 
HYDROCOD.BIT./ACET.,5MG & 500MG/TAB( 7500 1500 
HYDROCOD.BIT./ACET.,7.5MG & 500MG/TA 234375 31250 
HYDROCOD.BIT./ACET.,7.5MG & 750MG/TA 27000 3600 
HYDROCOD.BIT./APAP;5MG & 500MG/TAB;B 1500 300 
HYDROCOD.BIT./APAP;5MG&500MG/TAB;10X 66500 13300 
HYDROCOD.BIT.& APAP,10MG/660MG/TAB 50755000 5075500 
HYDROCOD.BIT.& APAP;7.5MG&750MG/TAB 21600 2880 
HYDROCODO.BIT 10MG & ACETA TABLET 11310000 1131000 
HYDROCODO.BIT 10MG&AC TAB 38396000 3839600 
HYDROCODO.BIT 10MG&AC USP TAB 252415000 25241500 
HYDROCODO.BIT 10MG&ACETAMINOPHEN USP 63000 6300 
HYDROCODO.BIT 7.5MG TAB 6658500 887800 
HYDROCODO.BIT.,7.5MG/APAP,750MG/TAB 32850 4380 
HYDROCODO.BIT/APAP 7.5MG/750MG USP T 157967250 21062300 
HYDROCODO.BIT5MG/AC TAB 353500 70700 
HYDROCODONE & ACETA 5MG/500MG 1500 300 
HYDROCODONE 10MG/APAP 325MG TABS 6000 600 
HYDROCODONE 7.5MG;APAP 750MG TABS. 4500 600 
HYDROCODONE BIT / ACETAMINOPHEN 10MG 66464000 6646400 
HYDROCODONE BIT & ACETA 7.5MG/500MG 38507775 5134370 
HYDROCODONE BIT & ACETAMINOPHEN 5MG/ 1464000 292800 
HYDROCODONE BIT & ACETAMINOPHEN 7.5M 1950000 260000 
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HYDROCODONE BIT 5MG/ACETAMINOPHEN 50 168557040 33711408 
HYDROCODONE BIT. & ACETA 10MG/325MG 696000 69600 
HYDROCODONE BIT. & ACETA 10MG/500MG 1224000 122400 
HYDROCODONE BIT. & ACETA 5MG/325MG T 21000 4200 
HYDROCODONE BIT. & ACETA 5MG/500MG T 1639500 327900 
HYDROCODONE BIT. & ACETA. 7.5MG/750M 479250 63900 
HYDROCODONE BIT. & IBUPROFEN 7.5MG/2 750 100 
HYDROCODONE BIT. & IBUPROPHEN 7.5MG/ 1058250 141100 
HYDROCODONE BIT. 10MG/ACETAMINOPHEN 915367000 91536700 
HYDROCODONE BIT. 5MG/ACETA. 325MG TA 5500 1100 
HYDROCODONE BIT. 7.5MG/ACETAMINOPHEN 59728931.25 7963857.5 
HYDROCODONE BIT.,7.5MG/ACET.500MG/TA 900 120 
HYDROCODONE BIT./ACET.,7.5MG & 650MG 75176250 10023500 
HYDROCODONE BIT./ACETA 10MG/325MG TA 98090000 9809000 
HYDROCODONE BIT./ACETA 10MG/500MG US 1302000 130200 
HYDROCODONE BIT./ACETA 5MG/325MG TAB 11471000 2294200 
HYDROCODONE BIT./ACETA 5MG/325MG USP 9500 1900 
HYDROCODONE BIT./ACETA 7.5MG/325MG T 18059250 2407900 
HYDROCODONE BIT./ACETA 7.5MG/500MG 1 53250 7100 
HYDROCODONE BIT./ACETA. 10MG/325MG U 2000 200 
HYDROCODONE BIT./ACETA. 7.5MG/325MG 1500 200 
HYDROCODONE BIT./ACETA. TABLETS USP 500 100 
HYDROCODONE BIT./ACETAM. TABS. 5MG/3 25500 5100 
HYDROCODONE BIT./ACETAMIN. TABS. 7.5 34500 4600 
HYDROCODONE BIT./ACETAMINOPHEN 10MG/ 10000 1000 
HYDROCODONE BIT./ACETAMINOPHEN TABS. 171344900 22863430 
HYDROCODONE BIT./APAP 10MG/325MG TAB 41616000 4161600 
HYDROCODONE BIT./APAP 10MG/650MG TAB 9368000 936800 
HYDROCODONE BIT./APAP 10MG/750MG TAB 2000 200 
HYDROCODONE BIT./APAP 5MG/325MG TABL 295400 59080 
HYDROCODONE BIT./APAP 7.5MG/325MG TA 8160750 1088100 
HYDROCODONE BIT./APAP 7.5MG/650MG TA 1120500 149400 
HYDROCODONE BIT./APAP 7.5MG/750MG 10 21750 2900 
HYDROCODONE BIT./IBUPROFEN;7.5MG & 2 9106500 1214200 
HYDROCODONE BIT.&ACETA 10MG/660MG TA 91000 9100 
HYDROCODONE BIT.7.5MG/ACETAMINOPHEN 418473750 55796500 
HYDROCODONE BIT/ ACETAMINOPHEN 5MG/5 47000 9400 
HYDROCODONE BIT/ACETA 10MG/325MG USP 243305000 24330500 
HYDROCODONE BIT/ACETA 10MG/500MG USP 463392000 46339200 
HYDROCODONE BIT/ACETA 5MG/325MG TABL 136000 27200 
HYDROCODONE BIT/ACETA 5MG/325MG USP 52575500 10515100 
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HYDROCODONE BIT/ACETA 7.5MG/325MG US 123987750 16531700 
HYDROCODONE BIT/ACETA 7.5MG/500MG US 507744750 67699300 
HYDROCODONE BIT/ACETAMINOPHEN 10MG/3 29732500 2973250 
HYDROCODONE BIT/ACETAMINOPHEN 5MG/32 15350 3070 
HYDROCODONE BIT/ACETAMINOPHEN 5MG/50 507248500 101449700 
HYDROCODONE BIT/ACETAMINOPHEN 7.5MG/ 19050 2540 
HYDROCODONE BIT/APAP 10MG/325MG TABL 2455200 245520 
HYDROCODONE BIT/APAP 10MG/500MG TABL 468000 46800 
HYDROCODONE BIT/APAP 5MG/325MG TABLE 2266200 453240 
HYDROCODONE BIT/APAP 5MG/500MG TABLE 594000 118800 
HYDROCODONE BIT/APAP 7.5MG/325MG TAB 1612950 215060 
HYDROCODONE BIT/APAP 7.5MG/500MG TAB 480600 64080 
HYDROCODONE BIT/HOMATROPINE METHYLBR 880000 176000 
HYDROCODONE BIT/IBUPROFEN  5MG/200MG 7500 1500 
HYDROCODONE BIT/IBUPROFEN 10MG/200MG 2.00E+05 20000 
HYDROCODONE BIT/IBUPROFEN 2.5MG/200M 3750 1500 
HYDROCODONE BIT/IBUPROFEN 7.5MG/200M 2220750 296100 
HYDROCODONE BITARTARATE.2.5MG & ACET 5364250 2145700 
HYDROCODONE BITARTRATE / ACETAMINOPH 15000 1500 
HYDROCODONE BITARTRATE & ACETA 10MG/ 12366000 1236600 
HYDROCODONE BITARTRATE & ACETA 5MG/3 7313000 1462600 
HYDROCODONE BITARTRATE & ACETA 7.5MG 98076675 13076890 
HYDROCODONE BITARTRATE & ACETAMINOPH 51201750 6747400 
HYDROCODONE BITARTRATE 10MG;ACETAMIN 151000 15100 
HYDROCODONE BITARTRATE 10MG;GUAIFENE 82000 8200 
HYDROCODONE BITARTRATE 10MG/ACETAMIN 293905800 29390580 
HYDROCODONE BITARTRATE 5MG TAB 1650 330 
HYDROCODONE BITARTRATE 5MG/ACETAMINO 64066900 12813380 
HYDROCODONE BITARTRATE 7.5MG /ACETAM 75600 10080 
HYDROCODONE BITARTRATE 7.5MG & ACETA 29246250 3899500 
HYDROCODONE BITARTRATE 7.5MG/ACETAMI 80486250 10731500 
HYDROCODONE BITARTRATE AND ACETA 10M 23923000 2392300 
HYDROCODONE BITARTRATE AND ACETA 5MG 21405000 4281000 
HYDROCODONE BITARTRATE AND ACETA 7.5 23453250 3127100 
HYDROCODONE BITARTRATE AND ACETAMINO 7500 1000 
HYDROCODONE BITARTRATE/ APAP TABLETS 20400 3080 
HYDROCODONE BITARTRATE/ APAP TABS US 32250 4300 
HYDROCODONE BITARTRATE/ACETA 2.5MG/3 250 100 
HYDROCODONE BITARTRATE/ACETA 7.5MG/3 43074000 5743200 
HYDROCODONE BITARTRATE/APAP 10MG/500 73178000 7317800 
HYDROCODONE BITARTRATE/IBUPROFEN 5MG 8500 1700 
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HYDROCODONE BITARTRATE/IBUPROFEN 7.5 39000 5200 
HYDROCODONE BITARTRATE/IBUPROPHEN 7. 21000 2800 
HYDROCODONE.BIT & ACETA  10MG & 500M 159945500 15994550 
HYDROCODONE.BIT 7.5MG/ACETAMINAOPHEN 21000 2800 
HYDROCODONE.BIT. & ACETA  5MG & 500M 68102000 13620400 
HYDROCODONE.BIT. & ACETA, 10MG & 500 18500 1850 
HYDROCODONE.BIT./ACET.,10MG & 325MG/ 369246500 36924650 
HYDROCODONE.BIT/IBUPROFEN 10MG/200MG 525000 52500 
HYDROCODONE.BITARTRATE 10MG & ACETAM 497000 49700 
HYDROCODONE.BITARTRATE 10MG/APAP 650 18674000 1867400 
HYDROCODONE.BITARTRATE 2.5MG/IBUPROF 3750 1500 
HYDROCODONE.BITARTRATE 7.5MG/APAP 65 1872750 249700 
HYDROCODONE.BITARTRATE 7.5MG/APAP 75 7008750 934500 
HYDROCODONE.BITARTRATE/ACETA 10MG/50 1000 100 
HYDROCODONE.BITARTRATE/IBUPROFEN 7.5 22134750 2951300 
HYDROCODONE.BITRATRATE.10MG/ACETAMIN 13430000 1343000 
HYDROCODONE/ACETAMINOPHEN 5MG/500MG 13909500 2781900 
HYDROCODONE/APAP - 5MG/500MG  TABLET 3000 600 
HYDROCODONE/APAP 10MG/325MG - 10MG H 4200 420 
HYDROCODONE/APAP 10MG/500MG TABLETS 12000 1200 
HYDROCODONE/APAP 5MG/500MG   TABLETS 594400 118880 
HYDROCODONE/APAP 5MG/500MG (LORTAB G 4000 800 
HYDROCODONE/APAP 7.5MG/200MG TABS. 1972500 263000 
HYDROCODONE/IBUPROFEN 5MG/200MG TABL 127000 25400 
HYDROCODONE/IBUPROFEN 7.5MG/200MG TA 22771500 3036200 
IBUDONE HYDROCODONE BIT./IBUPROFEN 1 73800 7380 
IBUDONE/HYDROCODONE BIT./IBUPROFEN 59900 11980 
IBUDONE/HYDROCODONE BIT./IBUPROFEN T 85500 10400 
LORCET HYD.BIT10MG/ACET650MG TAB 3543000 354300 
LORCET HYD.BIT10MG/ACET650MG TAB (4 4000 400 
LORCET PLUS HYDROCODO.BIT 7.5/ACET65 919500 122600 
LORCET+ HYDROCODO.BIT7.5MG/ACET650MG 75000 10000 
LORTAB 10 TAB HYDROCODO.BIT & AC 908000 90800 
LORTAB 10MG/500MG/TAB,HYDROCOD.BIT.& 8922000 892200 
LORTAB 5 HYDROCODO/AC TAB 996500 199300 
LORTAB 7.5 HYD.BIT/AC TAB 718500 95800 
LORTAB 7.5MG HYDROCODONE.BIT / 500MG 4953000 660400 
MAXIDONE;HYDROCODONE BIT./ACET.,10MG 45000 4500 
NORCO 5/325;5MG HYDROCOD.BIT. & 325M 149500 29900 
NORCO HYDROCODO.BIT./ACET.,10MG & 32 2009000 200900 
NORCO TAB - HYDROCODONE BIT/ACETA 10 455000 45500 
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NORCO TAB - HYDROCODONE BIT/ACETA 7. 207750 27700 
NORCO;7.5MG HYDROCOD.BIT.+ 325MG ACE 379500 50600 
P-V-TUSSIN TABS;5MG HYDROCODO.BIT. & 17500 3500 
PNEUMOTUSSIN TABS;2.5MG HYDROCOD.BIT 1000 400 
REPREXAIN - HYDROCODONE BIT./IBUPROP 985175 127050 
REPREXAIN - HYDROCODONE.BIT. 5MG/IBU 3600 720 
REPREXAIN (HYDROCODONE BITARTRATE/IB 7000 700 
TUSSEND;5MG HYDROCOD.BIT./TAB 1000 200 
TUSSIGON 5MG HYD.BIT&HOMA MBR 1.5MG/ 1151000 230200 
TUSSO HC HYDRO.BIT.10MG;GUAIF.1200MG 2000 200 
VICODIN ES HYDROCODONE BITRATE/ACETA 1053750 140500 
VICODIN ES TABLETS 7.5MG HYDROCODONE 5898750 786500 
VICODIN HP HYDROCODONE BITARTRATE/AC 1418000 141800 
VICODIN HP TABLETS 10MG HYDROCODONE. 2366000 236600 
VICODIN HYDROCODONE BITARTRATE/ACETA 797000 159400 
VICODIN TABLETS 5MG HYDROCODONE.BIT 756235 151247 
VICOPROFEN TABLETS 7.5MG HYDROCODONE 1156500 154200 
VICOPROFEN;7.5MG HYDROCOD.BIT.& 200M 1800 240 
XODOL - HYDROCODONE.BIT 10MG & ACETA 929200 92920 
XODOL 5MG HYDRO. BIT.;300MG ACET. TA 354000 70800 
XODOL 7.5/300MG HYDROCODONE.BIT. & A 108750 14500 
XODOL 7.5MG HYDROCODONE BIT. ;300MG 678750 90500 
XODOL HYDROCODONE.BITARTRATE 5MG/ACE 167000 33400 
XODOL- HYDROCODONE BIT/APAP 10MG/300 17000 1700 
XODOL- HYDROCODONE BIT/APAP 5MG/300M 1500 300 
XODOL- HYDROCODONE BIT/APAP 7.5MG/30 8250 1100 
XODOL;10MG HYDRO.BIT.;300MG ACET. TA 2507000 250700 
XPECT-HC/HYDRO.BIT.5MG/GUAIFENESIN 6 35300 7060 
ZTUSS/HYDRO.BIT.5MG/PSEUDOE.HC30MG/G 4000 800 
ZYDONE TABS;10MG HYDROCOD.BIT.& 400M 4503000 450300 
ZYDONE TABS;5MG HYDROCOD.BIT.& 400MG 211500 42300 
ZYDONE TABS;7.5MG HYDROCOD.BIT.& 400 1719750 229300 
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Supplemental Table 3. Generic extended-release oxycodone products shown in Figure 2, 
measured via total dosage units and morphine milligram equivalents (MMEs) shipped to West 
Virginia for 2006-2014. 
 

Product_Name MME Dosage_Units 
OXYCOD.HCL ER TABS;10MG/TAB 1582500 105500 
OXYCOD.HCL ER TABS;20MG/TAB 4455000 148500 
OXYCOD.HCL ER TABS;40MG/TAB 7254000 120900 
OXYCOD.HCL ER TABS;80MG/TAB 1848000 15400 
OXYCODONE 10MG ER TABLETS 90000 6000 
OXYCODONE 20MG ER TABLETS 279000 9300 
OXYCODONE 40MG ER TABLETS 792000 13200 
OXYCODONE 80MG ER TABLETS 936000 7800 
OXYCODONE HCL 10MG ER TABLET 6000 400 
OXYCODONE HCL 10MG ER TABLETS 13500 900 
OXYCODONE HCL 20 MG ER TABLETS 33000 1100 
OXYCODONE HCL 20MG ER TABLETS 1755000 58500 
OXYCODONE HCL 40MG ER TABLET 30000 500 
OXYCODONE HCL 40MG ER TABLETS 54000 900 
OXYCODONE HCL 80MG ER TABLET 12000 100 
OXYCODONE HCL 80MG ER TABLETS 96000 800 
OXYCODONE HYDRCHLORIDE 40MG 
EXTENDED 34134000 568900 
OXYCODONE HYDROCHLORIDE - ER - 
80MG/ 37704000 314200 
OXYCODONE HYDROCHLORIDE EXTENDED 
REL 4671000 311400 
OXYCODONE HYDROCHLORIDE EXTENDED-
REL 18843000 628100 
OXYCODONE.HCL ER 10MG TABS 2146500 143100 
OXYCODONE.HCL ER 20MG TABS 8127000 270900 
OXYCODONE.HCL ER 40MG TABS 16116000 268600 
OXYCODONE.HCL ER 80MG TABS 11940000 99500 
OXYCODONE.HCL ER TABS;80MG/TAB 756000 6300 
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Supplemental Table 4. Generic non-extended-release oxycodone products shown in Figure 2, 
measured via total dosage units and morphine milligram equivalents (MMEs) shipped to West 
Virginia for 2006-2014. 
 
 

Product_Name MME Dosage_Units 
ACET/OXYCOD.HCL;500MG&5.35MG/TAB 817747.5 101900 
OXYCOD.HCL IR TABS;5MG/TAB 303000 40400 
OXYCOD.HCL/APAP TABS;7.5MG & 500MG/T 549000 48800 
OXYCOD.HCL/APAP;10MG & 650MG/TAB,BOT 3139500 209300 
OXYCOD.HCL/APAP;2.5MG & 325MG/TAB;BO 117000 31200 
OXYCODO.HCL 5.35MG/TAB 5034885 627400 
OXYCODONE & ACETAMINOPHEN 10MG/325MG 129000 8600 
OXYCODONE AND ACETA  7.5MG/325MG USP 6996375 621900 
OXYCODONE AND ACETA 10MG/325MG TABLE 25446000 1696400 
OXYCODONE AND ACETA 7.5MG / 500MG TA 19280250 1713800 
OXYCODONE AND ACETAMINOPHEN 10MG/325 307500 20500 
OXYCODONE AND ACETAMINOPHEN 7.5MG/32 2176875 193500 
OXYCODONE HCI  20 MG TABLETS USP 73062000 2435400 
OXYCODONE HCI 10MG TABLETS USP 92359500 6157300 
OXYCODONE HCI 5MG TABLETS 23661750 3154900 
OXYCODONE HCI/APAP 5/325MG TABLETS 18000 2400 
OXYCODONE HCL & ACETA 10MG/325MG USP 789000 52600 
OXYCODONE HCL & ACETA 5MG/325MG USP 102000 13600 
OXYCODONE HCL & ACETA 7.5MG/325MG US 279000 24800 
OXYCODONE HCL & IBUPROPHEN 5MG/400MG 158250 21100 
OXYCODONE HCL & NIACIN 7.5MG/30MG US 18000 1600 
OXYCODONE HCL 10MG CR TABLETS 427500 28500 
OXYCODONE HCL 10MG IR TABLET 25068000 1671200 
OXYCODONE HCL 10MG IR TABS 802500 53500 
OXYCODONE HCL 10MG TABLET USP; 10 X 4500 300 
OXYCODONE HCL 10MG TABLET USP; 100 T 15000 1000 
OXYCODONE HCL 10MG TABLETS 96000 6400 
OXYCODONE HCL 10MG TABS 4939500 329300 
OXYCODONE HCL 10MG USP TABLETS 127500 8500 
OXYCODONE HCL 15MG IR TABLET 164250 7300 
OXYCODONE HCL 15MG IR TABS 13578750 603500 
OXYCODONE HCL 15MG TABLET USP; 100 T 132750 5900 
OXYCODONE HCL 15MG TABLETS 28235250 1254900 
OXYCODONE HCL 15MG TABLETS, 100 CT 179892000 7995200 
OXYCODONE HCL 15MG TABLETS, 100CT 272250 12100 
OXYCODONE HCL 15MG TABLETS, USP 35113500 1560600 
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OXYCODONE HCL 15MG USP TABLETS 251417250 11174100 
OXYCODONE HCL 20MG CR TABLETS 21000 700 
OXYCODONE HCL 20MG IR BLEND TABS 984000 32800 
OXYCODONE HCL 20MG IR TABLET 19824000 660800 
OXYCODONE HCL 20MG TABLET USP; 100 T 111000 3700 
OXYCODONE HCL 20MG TABLETS 534000 17800 
OXYCODONE HCL 20MG USP TABLETS 234000 7800 
OXYCODONE HCL 30MG IR TABLET 153000 3400 
OXYCODONE HCL 30MG IR TABS 20614500 458100 
OXYCODONE HCL 30MG TABLET USP; 100 T 679500 15100 
OXYCODONE HCL 30MG TABLETS 45859500 1019100 
OXYCODONE HCL 30MG TABLETS, 100 CT 368158500 8181300 
OXYCODONE HCL 30MG TABLETS, 100CT 261000 5800 
OXYCODONE HCL 30MG TABLETS, USP 56281500 1250700 
OXYCODONE HCL 30MG USP TABLETS 531652500 11814500 
OXYCODONE HCL 40MG CR TABLETS 60000 1000 
OXYCODONE HCL 40MG TABS 43866000 731100 
OXYCODONE HCL 5MG IR TABLET 240750 32100 
OXYCODONE HCL 5MG TABLET USP; 10 X 1 111750 14900 
OXYCODONE HCL 5MG TABLET USP; 100 TA 42750 5700 
OXYCODONE HCL 5MG TABLETS 4566750 608900 
OXYCODONE HCL 5MG TABLETS, 100CT 42000 5600 
OXYCODONE HCL 5MG TABLETS, USP 9674250 1289900 
OXYCODONE HCL 5MG USP TABLETS 21885750 2918100 
OXYCODONE HCL 5MG/IBUPROFEN 400MG TA 237750 31700 
OXYCODONE HCL 80MG CR TABLETS 144000 1200 
OXYCODONE HCL 80MG TABS 39948000 332900 
OXYCODONE HCL AND ASPIRIN 4.8355MG/3 195112.425 26900 
OXYCODONE HCL USP & IBUPROFEN 5MG/40 109500 14600 
OXYCODONE HCL/ACETAMINOPHEN 10MG/325 447124500 29808300 
OXYCODONE HCL/ACETAMINOPHEN 10MG/650 8418000 561200 
OXYCODONE HCL/ACETAMINOPHEN 2.5MG/32 223500 59600 
OXYCODONE HCL/ACETAMINOPHEN 5MG/325M 403299000 53773200 
OXYCODONE HCL/ACETAMINOPHEN 7.5MG/32 108936000 9683200 
OXYCODONE HCL/ACETAMINOPHEN 7.5MG/50 2665125 236900 
OXYCODONE HCL/ACETAMINOPHEN TABLET U 4084500 544600 
OXYCODONE HCL/ACETAMINOPHEN TABS 10M 146827500 9788500 
OXYCODONE HCL/ACETAMINOPHEN TABS 5MG 33074250 4409900 
OXYCODONE HCL/ACETAMINOPHEN TABS. 10 24906000 1660400 
OXYCODONE HCL/ACETAMINOPHEN TABS. 7. 2730375 242700 
OXYCODONE HCL/ASPIRIN 4.8355/325MG T 163198.125 22500 
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OXYCODONE HYDROCHLORIDE 10MG TABLETS 453000 30200 
OXYCODONE HYDROCHLORIDE 15MG TABLET 69750 3100 
OXYCODONE HYDROCHLORIDE 15MG TABLETS 281826000 12525600 
OXYCODONE HYDROCHLORIDE 20MG TABLETS 1782000 59400 
OXYCODONE HYDROCHLORIDE 20MG TABS. 6174000 205800 
OXYCODONE HYDROCHLORIDE 30MG TABLET 710356500 15785700 
OXYCODONE HYDROCHLORIDE 40MG TABLETS 3660000 61000 
OXYCODONE HYDROCHLORIDE 40MG TABS. 11334000 188900 
OXYCODONE HYDROCHLORIDE 5MG TABS USP 797250 106300 
OXYCODONE HYDROCHLORIDE 5MG&ACETAMIN 15054000 2007200 
OXYCODONE HYDROCHLORIDE 80MG TABLETS 4368000 36400 
OXYCODONE HYDROCHLORIDE 80MG TABS. 13320000 111000 
OXYCODONE HYDROCHLORIDE CONTROLLED R 144000 2800 
OXYCODONE HYDROCHLORIDE CR 20MG TABL 20343000 678100 
OXYCODONE HYDROCHLORIDE TABLETS 5MG 81765000 10902000 
OXYCODONE HYDROCHLORIDE TABLETS USP 152565750 6780700 
OXYCODONE HYDROCHLORIDE TABS. 10MG 1006500 67100 
OXYCODONE HYDROCHLORIDE USP 30MG TAB 232398000 5164400 
OXYCODONE.HCL 10MG / APAP 650MG TABL 89059500 5937300 
OXYCODONE.HCL 5MG IR (10 X 10 BLISTE 22500 3000 
OXYCODONE.HCL 5MG IR TAB 2973750 396500 
OXYCODONE.HCL/APAP 10MG/325MG TABS 166764000 11117600 
OXYCODONE.HCL/APAP 7.5MG/325MG TABS 37197000 3306400 
OXYCODONE.HCL/APAP TABLETS, 7.5MG/50 17239500 1532400 
OXYCODONE/APAP 5MG/325MG TABS. 10125 1350 
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Supplemental Table 5. OxyContin products shown in Figure 2, measured via total dosage units 
and morphine milligram equivalents (MMEs) shipped to West Virginia for 2006-2014. Bolded 
rows denoted abuse-deterrent formulations. 
 

Product_Name MME Dosage_Units 
OXYCONTIN - 10MG OXYCODONE.HCL CONTR 14522400 968160 
OXYCONTIN - 40MG OXYCODONE.HCL CONTR 232012800 3866880 
OXYCONTIN - 80MG OXYCODONE.HCL CONTR 290431200 2420260 
OXYCONTIN (OXYCODONE.HCL) CONTROLLED 76090950 2536365 
OXYCONTIN 10MG OXYCODONE HCL CR TABL 19325400 1288360 
OXYCONTIN 15MG CONTROLLED RELEASE OX 1512000 67200 
OXYCONTIN 15MG OXYCODONE HCL CR TABL 6472800 287680 
OXYCONTIN 20MG OXYCODONE HCL CR TABL 62755800 2091860 
OXYCONTIN 30MG COTROLLED RELEASE OXY 18346500 407700 
OXYCONTIN 30MG OXYCODONE HCL CR TABL 38507400 855720 
OXYCONTIN 40MG OXYCODONE HCL CR TABL 123261600 2054360 
OXYCONTIN 60MG COTROLLED RELEASE OXY 48069000 534100 
OXYCONTIN 60MG OXYCODONE HCL CR TABL 68443200 760480 
OXYCONTIN 80MG OXYCODONE HCL CR TABL 189686400 1580720 
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Supplemental Table 6. Brand name oxycodone products (other than OxyContin) shown in 
Figure 2, measured via total dosage units and morphine milligram equivalents (MMEs) shipped 
to West Virginia for 2006-2014. 
 

Product_Name MME Dosage_Units 
COMBUNOX - 5MG / 400MG OXYCODONE.HCL 1065000 142000 
ENDOCET - 10MG OXYCODONE.HCL/325MG A 243274500 16218300 
ENDOCET - 7.5MG OXYCODONE.HCL/325MG 35419500 3148400 
ENDOCET OXYCODO HCL5MG&AC TAB 34386000 4584800 
ENDOCET TABS - 10MG OXYCODONE.HCL & 140868000 9391200 
ENDOCET TABS;7.5MG OXYCODONE.HCL & 5 18250875 1622300 
ENDODAN OXYCODONE & ASP, USP 4.8355M 501199.575 69100 
MAGNACET 10MG/400MG OXYCODONE 
HCL/AC 885000 59000 
MAGNACET 5MG/400MG OXYCODONE 
HCL/ACE 3000 400 
MAGNACET 7.5MG/400MG OXYCODONE HCL/A 43875 3900 
MAGNACET TM /OXYCODONE 10MG;ACET.400 361500 24100 
MAGNACET TM OXYCODONE 2.5MG ACET. TA 3750 1000 
MAGNACET TM OXYCODONE 5MG;ACETA. 400 27000 3600 
MAGNACET TM OXYCODONE 7.5MG;ACET.400 65250 5800 
MAGNACET-OXYCODONE HCL/APAP 10MG/400 1500 100 
PERCOCET (OXYCODONE HCL/ACETA) 5MG/3 2325000 310000 
PERCOCET TABLETS 10MG OXYCODONE HCL/ 8898000 593200 
PERCOCET TABLETS OXYCODONE HCL 7.5MG 929250 82600 
PERCODAN - 4.8355MG OXYCODONE.HCL & 455504.1 62800 
PERLOOX OXYCODONE.HCL 5MG/ACETAMINOP 12750 1700 
PERLOXX OXYCODONE.HCL 10MG/ACETAMINO 40500 2700 
PERLOXX OXYCODONE.HCL 7.5MG/ACETAMIN 9000 800 
PRIMALEV OXYCODONE HCL 10MG & ACETA 109500 7300 
PRIMALEV OXYCODONE HCL 2.5MG & ACETA 375 100 
PRIMALEV OXYCODONE HCL 5MG & ACETA 3 27000 3600 
PRIMALEV OXYCODONE HCL 7.5MG & ACETA 4500 400 
PRIMLEV - OXYCODONE HCI/ACETAMINOPHE 25875 1800 
ROXICET - OXYCODONE.HCL & ACETA 5MG/ 18892500 2519000 
ROXICODONE - 15MG OXYCODONE HCL TABL 69750 3100 
ROXICODONE - 30MG OXYCODONE HCL TABL 715500 15900 
ROXICODONE (OXYCODONE HCI);30MG;100 1944000 43200 
ROXICODONE (OXYCODONE HCL) 15MG TABS 2772000 123200 
ROXICODONE (OXYCODONE HCL) 30MG TABS 7137000 158600 
ROXICODONE (OXYCODONE HCL) 5MG TABS. 381750 50900 
ROXICODONE 5MG TAB 17250 2300 
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ROXICODONE TABS;15MG OXYCODONE.HCL/T 182250 8100 
ROXICODONE TABS;30MG OXYCODONE.HCL/T 369000 8200 
ROXICODONE TABS.;(OXYCODONE HCI);15M 1599750 71100 
ROXICODONE TABS.(OXYCODONE HCI);5MG; 92250 12300 
ROXILOX OXYCO HCL 5MG &ACE500MG TAB 3714750 495300 
XARTEMIS XR - OXYCODONE HCL/ACETA 7. 142875 12700 
XOLOX - OXYCODONE HCL/ACETA  10MG/50 55500 3700 
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Chapter 4 
 

Forecasting US opioid overdose deaths: A comparison of time series methods 
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Abstract 
 
Introduction: Opioid-involved overdose fatalities are a major contributor to U.S. mortality and 
present a significant challenge to the nation’s public health infrastructure. Time series 
forecasting has been used to predict future trends in fatal opioid overdose. However, few studies 
have compared forecasting methods when applied to US opioid overdose rates. Thus, the 
objective of this study was to examine the predictive accuracy of forecasts generated via 
different time series models when applied to US opioid overdose mortality data. 
 
Methods: Monthly opioid-involved overdose mortality data for 1999 to 2019 were extracted 
from CDC WONDER. The forecasting performance of ARIMA (Autoregressive Integrated 
Moving Average), ETS (Error, Trend, and Seasonality), and Facebook Prophet models was 
assessed using time series cross validation. Forecast bias was evaluated using mean average 
percent error (MAPE). Forecast coverage probability was assessed via Winkler scores, which 
measures a prediction interval’s ability to include true values while preserving precision. 
Forecasts were assessed both overall and stratified by type of opioid involved. 
 
Results: While ARIMA modeling provided most accurate forecasts overall, each model 
delivered accurate forecasts before fentanyl-involved overdoses began increasing in 2014. From 
2014 onward, ETS models delivered best predictive coverage probability, including for heroin 
and fentanyl. Prophet models underperformed relative to ARIMA and ETS. 
 
Conclusion: ETS models delivered best predictive coverage probability of US opioid-involved 
overdose rates, including adjusting after large surges in overdoses associated with illicitly 
manufactured fentanyl. This implies that this approach adapts well to unexpected shifts in 
overdose rates. Future research should consider ETS modeling when planning for future resource 
allocation related to drug overdose mortality. 
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Introduction 
The United States (US) opioid epidemic is one of the nation’s most pressing public health 

emergencies. The crisis has placed a significant burden on the nation’s public health (Gomes et 
al. 2018), healthcare (Hsu et al. 2017), and economic (Florence et al. 2021) infrastructures, with 
more than 500,000 opioid-involved overdose deaths occurring since 1999 (Centers for Disease 
Control and Prevention 2022). The epidemic has been characterized by temporally distinct 
waves, each defined by specific classes or combinations of prescription or illicit drugs driving 
overdoses (Ciccarone 2019; Jenkins 2021). Introduction of the potent synthetic opioid fentanyl, 
the cost and availability of prescription opioids, and poor availability of opioid use disorder 
treatment have resulted in rapidly changing patterns of drug overdoses (Congressional Budget 
Office 2022; Gladden et al. 2016; Winstanley et al. 2020). This has made it difficult for public 
health practitioners to project resource needs associated with the prevention of future overdoses. 

One method for predicting future overdose rates is time series forecasting, which 
statistically models historical data to predict future rates of events (Hyndman and 
Athanasopoulos 2021a). Published researched has demonstrated this approach’s ability to 
accurately forecast opioid overdose rates at the zip code (Bauer et al. 2023), county (Marks et al. 
2021), and state level (Mukherjee et al. 2020�). A number of studies have produced forecasts of 
national opioid overdose rates with the goal of aiding in national policy planning and resource 
allocation, including using advanced forecasting methods such as  (Sumner et al. 2022). In 
addition, few studies have assessed national forecast accuracy stratified by opioid type (e.g., 
prescription opioids, heroin, fentanyl, etc.), limiting information on the applicability of 
forecasting methods to different substance use scenarios. Moreover, studies of national overdose 
forecasts often omit information pertaining to their forecasts’ prediction intervals, which give an 
impression of a forecast’s uncertainty (Christoffersen 1998). Specifically, these studies do not 
assess prediction coverage probability (Matero et al. 2023; Sumner et al. 2022), which is the 
capability of a forecast’s prediction interval to include actual/observed future values. Doing so 
would give researchers and public health stakeholders information on how well their forecasting 
methods can predict future rates of disease. 

To address limitations in extant opioid forecasting literature, including a lack of 
comparative time series analysis and the exclusion of prediction coverage probability 
assessment, we report findings from a comparative forecasting analysis. We compared the ability 
of three time series models (autoregressive integrated moving average (ARIMA), state-space 
exponential smoothing (ETS), and Facebook Prophet) to generate 24-month forecasts of U.S. 
opioid-involved poisoning mortality rates, both overall and stratified by type of opioid involved. 
In addition to assessing forecast accuracy using traditional approaches, we measured each 
forecast’s prediction coverage probability using Winkler Scores, which measure a forecast 
prediction interval’s ability to include actual/observed values while maintaining relative 
precision. 
 
Methods 
Data source 

Monthly opioid-involved poisoning death counts for 1999-2019 were obtained from the 
CDC WONDER database, which compiles mortality data collected through state death certificate 
registries (Centers for Disease Control and Prevention 2022). While opioid-related poisoning 
mortality data for 2020 was available at the time of analysis, previous literature indicates that 
extant forecasting approaches did not anticipate the large increase in overdose rates that occurred 
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during the COVID-19 pandemic due to the disruption of healthcare services (Cartus et al. 2022). 
As the goal of this study was to inspect forecasting accuracy and precision, and not to quantify 
the impact of the pandemic on poisoning rates, including 2020 would have detracted from our 
study’s aim and been of limited value. Opioid-involved poisoning deaths were defined as those 
with an ICD-10 underlying cause of death (UCOD) code listed as drug poisoning and an ICD-10 
multiple cause of death (MCOD) code listed as poisoning by opium, heroin, other opioids 
(largely prescription opioids excluding methadone, hereafter labeled "prescription opioids”), 
methadone, other synthetic narcotics (largely fentanyl and its analogs, hereafter labeled 
“fentanyl”), or unspecified narcotics. Since CDC WONDER does not report population or age-
adjusted rates at the monthly level, monthly all-cause mortality for 1999-2019 was used to 
calculate the rate of opioid-related overdoses per 1,000 fatality rates. 
 
Statistical Analysis 

All statistical analyses were conducted using RStudio version 2022.07.2+576 (Rstudio Team 
2022). Time series modeling and forecasting was conducted using the ‘fable’(O’Hara-Wild et al. 
2021a) and ‘fabletools’(O’Hara-Wild et al. 2021b) Rstudio packages. Three time series 
approaches were compared in this study: autoregressive integrated moving average (ARIMA) 
(Hyndman and Athanasopoulos 2021g), state-space exponential smoothing (ETS) (Hyndman and 
Athanasopoulos 2021f), and Facebook Prophet (Taylor and Letham 2018) modeling. Each 
method was used to model overall monthly total opioid-involved overdose mortality and 
overdose mortality stratified by ICD-10 MCOD codes; opium is associated with a negligible 
number of deaths in the US (<10 annually) and was therefore excluded from our stratified 
analysis. Each of these models is described below: 

 Autoregressive integrated moving average (ARIMA) modeling is a common approach 
for modeling data showing autocorrelation in which a time series is regressed on its previous, or 
lagged, values and error terms through autoregressive (AR) and moving average (MA) processes, 
respectively. In addition, non-stationarity of a time series, or changes in mean or variance over 
time, is controlled through differencing. Let Yt be the opioid-involved poisoning mortality rate at 
t = 1, 2, …T, where T is the length of the time series.  In full, a time series may be modeled via 
ARIMA through the equation: 

 
𝑌! = 𝑐	 + (𝜙"𝑌!#" + 𝜙$𝑌!#$ +⋯+ 𝜙&𝑌!#&) + 𝑒!	– (𝜃"𝑒!#" + 𝜃$𝑒!#$ +⋯+ 𝜃%𝑒!#%) 

 
where c is a constant or model intercept; 𝜙& and 𝜃% are parameters of the model for the AR and 
MA components, respectively; e is random noise at time t; and p and q denote the lag terms for 
the AR and MA components, respectively. Additionally, ARIMA models may be expanded to 
include seasonally lagged autocorrelation, differencing, or moving error terms denoted by P, D, 
and Q, respectively. 
 State-space exponential smoothing (ETS) models (also known as error, trend, and 
seasonality models) incorporate information on how the components of a time series (i.e., error, 
trend, and seasonality) interacts with one another. An advantage of ETS models is their state 
space form, which incorporates different types of error, trend, and seasonality. A framework for 
defining state pace ETS models, proposed by Hyndman, is based on whether each term is 
additive (A), multiplicative (M), or not present (N); additive terms are constant whereas 
multiplicative terms increase or decrease in amplitude throughout a time series (Hyndman and 
Athanasopoulos 2021b). Additionally, trend terms can be additive or multiplicative damped 
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(denoted by Ad and Md, respectively), referring to a slowing of a time series trend. As 
previously, let Yt be the opioid-related overdose rate at month t. A time series may be modeled 
via ETS through the nested equations: 
 

𝑌! = 𝑤(𝑣!#" − 1) + 𝑟(𝑣!#" − 1)𝑒! 
 

𝑣! = 𝑓(𝑣!#" − 1) + 𝑔(𝑣!#" − 1)𝑒! 
 
where 𝑣! is the state vector containing trend and seasonal components; 𝑤(𝑣!#" − 1) is 
measurement function representing different types of seasonality and trend; 𝑓(𝑣!#" − 1) is the 
transition function indicating how the model’s trend, seasonality, and error components interact; 
and 𝑔(𝑣!#" − 1)	is the persistence function, which is a vector of smoothing parameters 
indicating how responsive the model is to changes in the data. The 𝑟(𝑣!#" − 1) function 
represents model error, with additive error taking the form 𝑟(𝑣!#" − 1) 	= 	1 and multiplicative 
error takes the form 𝑟(𝑣!#" − 1) 	= 	𝑤(𝑣!#" − 1). There are 30 possible ETS model structures 
based on different types of error, trend, and seasonality, each of which have been described in 
mathematical detail elsewhere (Hyndman and Athanasopoulos 2021b). 
 Facebook Prophet models were first introduced by Facebook in 2017 as the 
corporation’s solution for forecasting “at-scale” or forecasting in a within a wide variety of 
settings and disciplines (Taylor and Letham 2018). As previously, let Yt be the opioid-related 
overdose rate at month t. The prophet model would take the following form:  

 
𝑌! = 𝑔(𝑡) 	+ 	𝑠(𝑡) 	+ 	ℎ(𝑡) 	+	𝑒! 

 
where g(t) is the trend function (taking the form of either additive, multiplicative, or no trend), 
s(t) denotes seasonality, h(t) is a holiday function (i.e., regularly predictable outliers which are 
not accounted for by seasonal fluctuation), and et is the error term. The trend term g(t) is 
composed of changepoints, which allows for piecewise linear regression (Hyndman and 
Athanasopoulos 2021c). Additionally, the seasonal term s(t) is modeled via a pre-specified 
(default of ten) number of Fourier transformations, which allows for a high degree of flexibility 
in modeling periodicity (Hyndman and Athanasopoulos 2021c). To produce Prophet models of 
monthly opioid-related overdose data, we used the ‘fable.prophet’ Rstudio package (O’Hara-
Wild et al. 2022), which extends use of the ‘fable’ (O’Hara-Wild et al. 2021a) and ‘fable.tools’ 
(O’Hara-Wild et al. 2021b) to the package ‘prophet’; the ‘prophet’ package automatically selects 
changepoints, seasonality, and other model attributes automatically using a Bayesian approach 
(Taylor and Letham 2022). 

We used a time series cross validation (TSCV) to evaluate each model’s forecasting 
ability (Hyndman and Athanasopoulos 2021d). We used a starting test set of five years and 
forecast length 24 months of data, increasing the training set length by one month per forecast 
for a total of 157 forecasts per dataset; the TSCV process is explained in detail in Supplementary 
Figure S1. To further improve forecasting validity within our, framework, modeling parameters 
were selected separately for each forecast and models were generated/selected automatically 
using the ‘forecast’ package, which selects an optimal model by minimizing Akaike information 
criteria (AIC) (O’Hara-Wild et al. 2021a). Forecast bias was evaluated by calculating mean 
average percent error (MAPE), given by the equation: 
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𝑀𝐴𝑃𝐸	 = 	
∑ B𝑋! − 𝑋D!B

𝑋!
× 100*

!+"

ℎ  
 
where 𝑋! is the actual value of a time series’ test set, 𝑋D! is the forecast value, and h is the total 
number of observations forecast. One advantage of MAPE is that it is not scale-dependent, 
meaning it can be compared across forecasts of time series from different dependent variables. 
Statistical predictive coverage probability of each model was assessed via mean 95% CI width, 
percent coverage (i.e., what percent of observed values are included in a forecast’s 95% CI), and 
Winkler scores. Winkler scores assess interval accuracy by assigning penalties to forecasts based 
on how far outside of a specified interval an observed value lies, with a greater distance from the 
interval equating to a greater penalty; Winkler scores of forecast distributions that include the 
observed value are simply the length of the interval. The mathematics of Winkler score 
calculations have been specified elsewhere (Hyndman and Athanasopoulos 2021e; Winkler 
1972). Winkler scores are scale-dependent and cannot be compared across models with different 
dependent variables. 
 
Results  
 Graphical representation of monthly US opioid-related overdose fatality deaths per 1,000 
all-cause mortality is presented in Figure 1. Prescription opioid overdoses occurred at the highest 
rate until approximately 2014, when heroin and fentanyl were responsible for the majority of 
opioid-involved overdoses. While each model accurately forecasted national overdose mortality 
throughout the first decade assessed, each under-estimated overdose rates from 2014 onward 
(Figure 2). Despite this, ARIMA and ETS delivered most accurate forecasts from 2014 on 
(MAPE = 10.6 and 10.8 for ARIMA and ETS, respectively), while ETS provided best coverage 
probability (Winkler score = 15.1). 
 
 ARIMA provided most accurate point forecasts of total/any opioid overdose rates; ETS 
provided most precise prediction intervals for this category, indicated by lowest Winkler scores 
(Table 1). Stratified by MCOD code, prescription opioid forecasts had highest point accuracy, 
while fentanyl forecasts were least accurate. For all MCOD strata, ETS-generated forecasts had 
the most precise probability coverage, indicated by lowest Winkler scores (Table 2). Similar bias 
and predictive coverage probability patterns were observed when analysis was stratified by state-
level drug death reporting specificity (supplementary tables S1 and S2). 

Figures 3A and 3B display forecast accuracy and coverage probability throughout 24-
month forecasts, respectively. ARIMA had lowest MAPE throughout 95.8% of 24-month 
forecasts for total opioid-involved drug deaths and throughout 100% of 24-month forecasts for 
heroin. ARIMA and ETS has lowest MAPE throughout 75% and 25% of other and synthetic 
narcotics 24-month forecasts, respectively. Prophet and ARIMA modeling had lowest MAPE for 
75% and 16.7% of methadone overdose forecasts, respectively, while Prophet and ETS modeling 
provided lowest MAPE for 66.7% and 33.3% of forecasts for other and unspecified narcotics, 
respectively. ETS had best coverage probability throughout 24-month forecasts for all strata, 
with the exception other and unspecified narcotics, for which ARIMA modeling had lowest 
Winkler score throughout 54.2% of 24-month forecasts. Prophet modeling produced highest 
Winkler scores throughout all 24-month forecasts. 
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Discussion 
This study provides a rigorous assessment of three time series models in their ability to 

forecast national 24-month opioid-involved overdose death rates. We evaluated forecasts both in 
terms of point accuracy and predictive coverage probability, which is often omitted from opioid 
overdose forecasting studies. While ARIMA modeling provided most accurate point estimates of 
national total opioid-related overdoses (Table 1), ETS provided best predictive coverage 
probability (Table 2; Figure 3B). This general pattern was observed overall, as well as stratified 
by the type of opioid involved in overdoses (Table 2) and state-level drug death reporting 
specificity (Supplemental Table S2). 

Throughout the first decade assessed (2004-2013), each model forecasted overdose rates 
with relative accuracy (Figure 2). During this period, overdoses were primarily driven by 
prescription opioids, which increased steadily until approximately 2011 (Figure 1). Methadone, 
which was similarly well-forecasted, decreased steadily throughout the forecast period after 
initially increasing in 1999-2006. Prescription opioids and methadone supplies mostly originate 
from licit sources, such as pharmacies and medication-assisted treatment programs, respectively, 
which change slowly relative to shifts in illicit drug supplies. Conversely, published research 
indicates that increases in fentanyl overdoses during epidemic’s third wave (beginning in 2014) 
were principally attributable to a large, sudden increase in drug lethality associated with 
introduction of illicit fentanyl into the the US beginning in 2013  (Gladden et al. 2016; 
Rosenblum et al. 2020). The concomitant increase in fentanyl-related overdose deaths in 2014 
was sudden relative to changes in prescription opioid and methadone overdoses; this is likely 
why forecasts were least accurate for fentanyl. As time series forecasts are generated using 
historical data,  

Given the sudden nature of the fentanyl-dominated phase of the epidemic, it is notable 
that ETS-generated forecasts consistently provided higher precision as assessed from winker 
scores during this period and were the fastest model to adjust to the sudden change represented 
by the introduction of lethal fentanyl. As a forecast’s 95% prediction interval represents a range 
of statistically likely future outcomes (Christoffersen 1998), this finding has important 
implications towards resource planning, particularly as synthetic opioid overdoses continue to 
rise and use of non-opioid substances, such as psychostimulants, begin driving new waves of the 
epidemic (Dai et al. 2022; Jenkins 2021). ETS’s ability to adapt to the fentanyl transition period 
may be related to its state-space form, which includes transition and persistence functions, which 
determine how different time series components (i.e., error, trend, and seasonality) interact and 
adapt to changes in time series data (Hyndman and Athanasopoulos 2021f). 

As noted, we did not extend our analysis into the COVID -19 pandemic (March 2020 and 
beyond). Opioid overdoses increased drastically during this unprecedented and unexpected event 
due to increased drug use in isolation and a large shift in resource allocation away from overdose 
prevention (Ghose et al. 2022). It is likely that ETS will be the model that adjusts fastest to this 
sudden change. As time series forecasting uses historical data to predict future rates of events, 
erroneous predictions in the presence of unexpected events are a noted limitation of the field 
(Naess et al. 2015). As noted, this is likely why fentanyl forecasts were least accurate in our 
study. However, forecasting can still be useful in such situations; using a forecast to represent a 
counterfactual scenario, excess burden associated with an unanticipated event can be estimated. 
In fact, Cartus et al. used this approach to estimate excess opioid overdose fatalities associated 
with the COVID-19 pandemic (Cartus et al. 2022). While studies using this approach often use 
fixed origin forecast validation (Inada et al. 2021), TSCV is preferred as it creates a more reliable 
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depiction of pre-event, and therefore “expected” post-event trends (Borrego-Morell et al. 2021; 
Nguyen et al. 2022; Schleimer et al. 2021). 
 In addition to its strengths, such as the use TSCV, comparisons of multiple models, and 
individual drug involvement stratification, our study has several limitations. One limitation is 
lack of inclusion of spatial dependence, where states who share common borders have similar 
death reporting standards; the inclusion of this characteristic would likely improve our 
forecasting accuracy. Previous studies have accounted for this by including spatiotemporal data 
through a variety of techniques, including Bayesian and machine learning methods (Campo et al. 
2020; Hepler et al.). Second, the methods used to compare between time series models did not 
include measures of statistical significance. This prevented us from determining whether one 
method better predicted opioid-involved mortality. Finally, we did not include temporal changes 
in important drivers of overdose mortality, such as socioeconomic trends, access to evidence-
based harm reduction, or polysubstance use. Including such data as has been done in other 
modeling studies (Irvine et al. 2022), would likely improve forecasting accuracy and expound 
upon the roles each plays in temporal patterns of drug overdose mortality. Future research 
directions include incorporating these into modeling approaches, as well as comparing the 
models used in our study to more complex approaches, including machine learning and ensemble 
modeling. 
 
Conclusions 
 Given the marked role of opioid overdoses in driving US mortality, it is imperative that 
public health stakeholders are provided with accurate overdose forecasts. We assessed three time 
series modeling approaches in their ability to forecast opioid overdose mortality. While each 
model provided adequate forecasts before the introduction of fentanyl, ETS forecast prediction 
intervals captured the temporal volatility associated with the fentanyl era while maintaining 
relative precision. This suggests ETS models may estimate a range of future opioid overdose 
rates with potential to aid in resource allocation planning and can more quickly adjust for sudden 
dramatic changes.  
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Tables and Figures 

 
 
Figure 1. Monthly national opioid-related overdose fatality deaths per 1,000 all-cause mortality 
by individual drug involvement, for 1999-2019.a 
 

a Numerator data are opioid overdose death counts, defined as deaths with an ICD-10 underlying cause of death 
codes for poisoning (X40–X44, X60–X64, X85, or Y10–Y14) and an ICD-10 multiple cause of death code 
indicating opium (T.40), heroin (T40.1), other opioids (T40.2; labeled “Prescription opioids”), methadone (T40.3), 
other synthetic narcotics (T40.4; labeled “Fentanyl”), or other and unspecified narcotics (T40.6) overdose as a 
contributing cause of death. Opium is associated with a negligible number of deaths in the US (<10 annually) and 
was therefore excluded from our stratified analyses. Denominator data are all cause mortality counts. Data from 
CDC WONDER. 
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Figure 2. Forecast accuracy and coverage probability for the period assessed (2004-2019). a 
 

a Each model provided relatively accurate forecasts until the fentanyl-dominated period from 2014 onwards (A). To 
highlight prediction accuracy during the fentanyl period, point forecasts for individual 24-month forecasts generated 
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via ARIMA (B), ETS (C), and Facebook Prophet (D) models are presented. For B-D, distance between a forecast 
value and the time it originates from is denoted by transparency (i.e., one-month forecasts are least transparent, 24-
month forecast most) and mean MAPE for 2014-2019 is presented for each model. Mean 95% CI of forecasts 
generated via each model at 12-months are presented in are presented (E-G) with mean Winkler score for each 
model for 2014-2019.  
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Table 1. Mean absolute percent error (MAPE) estimates of national 24-month opioid overdose 
death rate forecasts for ARIMA, ETS, and Prophet models, stratified by opioid involvement. 
 

Opioid involvement 
MAPE (%)   

ARIMA   ETS   Prophet   
Any opioid 5.5  6.8  6.7   
Heroin 15.7  16.9  19.2   
Methadone 11.2  11.9  10.7   
Other and unspecified narcotics 15.6  13.6  14.6   
Prescription opioids 8.8  8.6  10.2   
Fentanyl 21.0   21.4   25.8   
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Table 2. Predictive coverage probability of national 24-month opioid overdose death rate 
forecasts for ARIMA, ETS, and Prophet models, stratified by opioid involvement. 
 

Opioid involvement 

95% CI Width   % Coverage   Winkler Score   
ARIMA   ETS   Prophet   ARIMA   ETS   Prophet   ARIMA   ETS   Prophet   

Any opioid 2.1   3.2   1.3   73%   86%   49%   14.4   9.0   24.0   
Heroin 1.0  2.1  0.5  69%  81%  30%  5.3  4.3  15.4   
Methadone 0.9  1.3  0.4  93%  100%  71%  1.9  1.4  3.1   
Other and unspecified narcotics 0.6  0.5  0.4  92%  89%  84%  0.8  0.8  1.0   
Prescription opioids 1.1  1.5  0.6  79%  93%  42%  4.1  2.5  8.6   
Fentanyl 1.7   4.5   0.8   70%   75%   42%   16.8   14.5   31.8   
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Figure 3. Mean absolute percent error (MAPE) estimates (A.) and predictive coverage 
probability (B.) throughout 24-month forecasts by opioid involvement and model assessed, 
represented by MAPE and Winkler score, respectively.   
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Supplementary Material 
 
Time series cross validation procedure. 
 Time series cross validation is a robust method of forecast validation which has seen 
recent use in COVID-19 forecast evaluation (Atchadé et al. 2021; Atchadé and Sokadjo 2022; 
Cerqueira et al. 2019). TSCV assesses the accuracy of a given model by sub-setting time series 
data into training (i.e., a subset of the time series to be modeled) and test sets (i.e., a subset of the 
time series not modeled and compared against to assess forecasting accuracy) on a rolling basis. 
TSCV is preferred to using a single training and test set method (Figure S1A) as it produces 
forecasts using several lengths of data, increasing a given forecast’s generalizability beyond a 
single temporally defined scenario (Bergmeir et al. 2018; Song et al. 2021). 
 

 

 
 
Figure S1. Graphical representation of a fixed origin approach towards evaluating forecasting 
accuracy (A), compared to the time series cross validation approach used in this study (B). a  
 

a The accuracy of time series forecasts is assessed using training and test sets; a training set is composed of data used 
to model a time series (shown here in green), while a test is composed of data used only to compare the accuracy of 
a forecast generated from the test set model (shown here in red). In a single training and tests set approach, training 
and test sets of a single length are used to evaluate forecasting accuracy. In contrast, time series cross-validation 
approach, training and tests sets) are moved throughout a dataset in by pre-specified intervals. In this example, 
which illustrates the methodology used in our study, training sets increase in length by one-month intervals, while 
test sets remain at a length of 24 months.  
 
Analysis stratified by state-level drug death reporting specificity 

Year
Forecast

2018 2019… 20171999 2000 2001 2002 2003 2004
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Given high variability in drug-specific overdose reporting by state (Warner and 
Hedegaard 2018), we conducted a stratified version of our analysis by state-level proportion of 
overdose death certificates for which no specific drug was listed as a contributing cause of death. 
This was determined by calculating the proportion of drug poisoning-associated death 
certificates (i.e., those with ICD-10 UCOD codes X40–X44, X60–X64, X85, or Y10–Y14) that 
listed a specific drug as a contributing cause (i.e., those with ICD-10 MCOD code within the 
range T36–T50.8) for the year 1999-2019 and subtracting this value from one. Based on these 
values, four strata were used: <5%, 5-15%, 15-25%, and >25% of drug-related death certificates 
having no specific drug listed (Figure S1). Results from this analysis did not overall differ from 
our non-stratified analysis. Results are shown in Tables S1-S2. 

 

 
 
Figure S2. Geographical representation of strata used to represent state-level of proportion of 
death certificates with no drug specified, 1999-2019.a 
 

a Values creating by determining the proportion of drug-induced deaths (i.e., those with ICD-10 underlying cause of 
death codes X40–X44, X60–X64, X85, or Y10–Y14) with no drug specified (i.e., those with ICD-10 multiple cause 
of death code within the range T36–T50.8) and subtracting this value from one. Data from CDC WONDER. 
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Table S1. Forecast bias of national 24-month opioid overdose death rate forecasts for ARIMA, 
ETS, and Prophet models, stratified by opioid involvement and state-level drug death reporting 
specificity. 
 
  % of Death Certificates with no Drug Listed MAPE   
  ARIMA   ETS   Prophet   
  <5%             
 Any Opioid 8.7  8.1  8.9   
 Heroin 23.1  23.2  28.7   
 Methadone 17.9  18.2  18.7   
 Other and unspecified narcotics 27.1  25.6  35.0   
 Prescription opioids 13.5  13.4  14.1   
 Fentanyl 23.3  22.0  24.7   
 5-15%             
 Any Opioid 12.1  11.9  13.8   
 Heroin 23.0  24.1  26.3   
 Methadone 17.2  18.8  17.6   
 Other and unspecified narcotics 30.4  27.7  27.9   
 Prescription opioids 13.4  12.3  14.7   
 Fentanyl 30.5  30.5  34.3   
 15-25%             
 Any Opioid 8.3  8.5  7.3   
 Heroin 16.2  15.1  19.3   
 Methadone 14.8  13.3  15.2   
 Other and unspecified narcotics 16.3  15.8  16.3   
 Prescription opioids 11.2  11.3  11.1   
 Fentanyl 22.4  22.1  24.8   
 >25%             
 Any Opioid 8.9  9.6  8.7   
 Heroin 25.9  26.4  27.2   
 Methadone 20.6  19.8  21.2   
 Other and unspecified narcotics 23.6  23.7  24.7   
 Prescription opioids 14.2  15.3  14.1   
  Fentanyl 28.5   28.0   31.5   
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Table S2. Statistical predictive coverage probability of national 24-month opioid overdose death 
rate forecasts for ARIMA, ETS, and Prophet models, stratified by opioid involvement and state-
level drug death reporting specificity. 
 

% of Death Certificates with 
no Drug Listed 

  95% CI Width   Coverage   
Winkler Score 

  
ARIM

A   ET
S   Prophet   ARI

MA   ET
S   Prophe

t   ARIM
A   ET

S   Prophe
t 

<5%   
                      

  
          

Any Opioid  
5.2  5.7  3.1  88%  90

% 
 50% 

 
15.3  13.4  34.1 

Heroin  
1.9  4.2  1.2  62%  80

% 
 38% 

 
9.8  6.8  25.3 

Methadone  
2.4  2.8  1.3  85%  91

% 
 70% 

 
4.0  3.1  7.3 

Other and unspecified 
narcotics 2.3  2.3  1.7  87%  85

% 
 62% 

 
2.9  3.3  6.7 

Prescription opioids  
2.5  2.9  1.6  73%  79

% 
 50% 

 
7.3  4.9  12.6 

Fentanyl  
2.6  8.0  1.5  60%  77

% 
 46% 

 
33.1  18.7  50.0 

5-15%   
                      

  
          

Any Opioid  
5.1  5.2  2.3  85%  86

% 
 44% 

 
15.9  13.7  18.4 

Heroin  
1.7  3.9  0.9  54%  73

% 
 29% 

 
9.5  6.6  21.7 

Methadone  
1.3  1.4  0.8  81%  89

% 
 66% 

 
2.6  1.8  4.6 

Other and unspecified 
narcotics 1.3  1.4  1.0  86%  86

% 
 78% 

 
1.8  1.9  2.0 

Prescription opioids  
1.4  2.3  1.0  71%  80

% 
 50% 

 
5.6  4.6  8.8 

Fentanyl  
2.6  7.0  1.4  62%  76

% 
 48% 

 
24.1  15.5  38.8 

15-25%   
                      

  
          

Any Opioid  
3.6  3.5  1.7  85%  87

% 
 61% 

 
9.4  8.6  17.4 

Heroin  
1.1  1.3  0.6  68%  71

% 
 40% 

 
3.5  4.0  9.8 

Methadone  
0.9  1.1  0.5  85%  89

% 
 65% 

 
1.5  1.4  2.9 

Other and unspecified 
narcotics 0.5  0.7  0.4  89%  90

% 
 86% 

 
0.7  0.7  0.6 

Prescription opioids  
1.9  2.2  1.0  83%  83

% 
 59% 

 
3.2  3.4  6.6 

Fentanyl  
1.3  3.5  0.7  56%  71

% 
 39% 

 
17.5  11.0  23.9 

>25%   
                      

  
          

Any Opioid  
2.3  4.5  1.5  72%  90

% 
 54% 

 
17.4  9.2  23.5 

Heroin  
1.2  2.9  0.8  59%  78

% 
 40% 

 
6.7  4.2  13.7 

Methadone  
0.9  1.3  0.6  82%  90

% 
 68% 

 
1.7  1.5  3.1 

Other and unspecified 
narcotics 0.5  0.6  0.4  77%  84

% 
 69% 

 
1.0  0.8  1.3 

Prescription opioids  
1.1  2.0  0.8  65%  83

% 
 50% 

 
4.2  3.1  6.8 

Fentanyl   1.9   5.6   1.0   60%   76
%   46%   22.0   14.6   32.3 
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Chapter 5 
 

Conclusion 
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United States (US) injury rates declined throughout much of the 20th century, largely due 
to decreasing rates of occupational injuries. However, injury rates began increasing near the 
beginning of the 21st century in association with the US opioid epidemic. The opioid epidemic 
has been characterized by several interconnect waves of overdose, each driven by specific drug 
types. The epidemic’s temporally dynamic nature demonstrates the necessity of time series 
analysis for deeper understanding of the current US drug crisis and broader trends within 
historical injury data. Thus, this study aimed to explore the application of time series analysis to 
United States (US) injury data. 

We began by examining trends in US occupational injuries treated in US emergency 
departments for 2012-2019. Findings from this first study, which used autoregressive integrated 
moving average (ARIMA) modeling, support peer-reviewed literature finding that US 
occupational injuries in the 21st century have continued their decades-long trend of decline. We 
then sought to elucidate the transition from prescription to illicit opioid overdoses in West 
Virginia (WV), which is often considered the opioid crisis’ epicenter (Merino et al., 2019). This 
second study extended the first’s use of ARIMA modeling to interrupted time series analysis 
(ITSA) in an effort to compare the impact of factors potentially influencing the transition 
between the opioid epidemic’s first and subsequent waves. ITSA results indicate that patterns in 
opioid-involved overdose in WV changed near the point when hydrocodone and oxycodone 
tablet shipments (measured via dosage units) to the state began decreasing in late 2011. The 
contrasts previous literature supporting the hypothesis that the 2010 release of an abuse deterrent 
OxyContin formulation was a primary factor in initiating illicit opioid use in the US. In our third 
study, we compared the ability of three time series models to forecast US opioid-involved 
overdose rates. This study found that exponential smoothing (ETS) modeling accurately forecast 
US opioid-involved overdose death rates for 1999-2019. Notably, ETS models maintained a high 
degree of prediction interval precision relative to other approaches, including ARIMA modeling, 
both overall and stratified by individual drug involvement. 

Separately, these studies use three common utilizations of time series analysis (trend 
analysis, ITSA, and time series forecasting) and apply them to injury data. They also use 
approaches less common in injury epidemiology, such as the use of locally estimated scatterplot 
smoothing (LOESS) to inform an ITSA study in study two and time series cross validation 
(TSCV) in study three. To the authors’ knowledge, these methods have not been applied within 
these specific epidemiological contexts. 

Time series analysis allows for the assessment of temporally collected injury data and is a 
useful method for studying injury trends. However, it is not without limitations. First, time series 
analysis is inherently an ecological study design as it assesses group-level data. This includes 
ITSA, which aims to assess the impact of temporally-defined events. However, ITSA is often the 
most robust study design available for assessing the impact of natural events in large groups. 
Moreover, assessing the impact of multiple potential intervention and comparing between them, 
as we did in study two, can strengthen conclusions. A limitation specific to forecasting is its 
inability to anticipate unexpected events (Naess et al., 2015). This was observed in our third 
study, where each method projected future opioid overdoses with relative accuracy until rates 
increased drastically beginning in 2014. In such scenarios, prediction interval assessment as can 
improve forecast validation as it measures how well a model adjusts to unanticipated events 
while maintaining relative precision (Kim et al., 2011) This approach allowed us to determine 
that ETS models produced optimal forecasts throughout the transition to the epidemic’s fentanyl-
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dominated third wave and, therefore, would have been most useful for planning future resource 
allocation (Christoffersen, 1998). 

These studies demonstrate the utility of time series analysis in the field of injury 
epidemiology. Future studies should apply similar methods to injury-related topics beyond those 
explored here. One potential area of applicability is in the study of firearm injuries, one of the 
only sources of injuries (aside from overdoses) to increase significantly in recent years (Centers 
for Disease Control and Prevention, 2022). One exciting advancement from Schleimer et al. used 
TSCV-validated models to forecast rates of firearm violence during the COVID-19 pandemic 
(Schleimer et al., 2021). In addition to TSCV, studies of firearm injury forecasts should begin to 
incorporate assessments of prediction interval precision in order to describe the uncertainty 
associated with their forecasts. Similarly, there have been several methodological advancements 
that have made the application of time series analysis to epidemiological data more robust. These 
include the use of synthetic controls in ITSA studies (Bonander, 2018; Degli Esposti et al., 2020) 
and Gasparrini’s case time series study design, which incorporates self-matching procedures 
within a longitudinal, time series framework (Gasparrini, 2021, 2022). To our knowledge, the 
case time series design has yet to be incorporated into the field of injury epidemiology. Future 
research should apply these and other unique time series methods to injury data to improve 
epidemiologists’ current understanding of temporal trends in injuries and their associated 
exposures. 
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