
Graduate Theses, Dissertations, and Problem Reports 

2023 

Sequence Checking and Deduplication for Existing Fingerprint Sequence Checking and Deduplication for Existing Fingerprint 

Databases Databases 

Tahsin Islam Sakif 
West Virginia University, ts0056@mix.wvu.edu 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems 

Commons, and the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Sakif, Tahsin Islam, "Sequence Checking and Deduplication for Existing Fingerprint Databases" (2023). 
Graduate Theses, Dissertations, and Problem Reports. 11821. 
https://researchrepository.wvu.edu/etd/11821 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/11821?utm_source=researchrepository.wvu.edu%2Fetd%2F11821&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 
 

Sequence Checking and Deduplication for Existing Fingerprint Databases 

 

Tahsin Islam Sakif 

 

Thesis submitted to the 

Benjamin M. Statler College of Engineering and Mineral Resources 

At West Virginia University 

 

In partial fulfillment of the requirements for the degree of 

Master of Science in  

Computer Science 

 

Jeremy Dawson, Ph.D., Chair 

Donald Adjeroh, Ph.D 

Katerina Goseva-Popstojanova, Ph.D 

 

 

Lane Department of Computer Science and Electrical Engineering 

Morgantown, WV 

2023 

 

Keywords: Machine Learning, Fingerprints, Neural Networks, Deep 

Learning 

Copyright © 2023 Tahsin Islam Sakif 



 
 

ABSTRACT 
 

Sequence Checking and Deduplication for Existing Fingerprint Databases 

 

Tahsin Islam Sakif 

 

Biometric technology is a rapidly evolving field with applications that range from 
access to devices to border crossing and entry/exit processes. Large-scale applications 
to collect biometric data, such as border crossings result in multimodal biometric 
databases containing thousands of identities. However, due to human operator error, 
these databases often contain many instances of image labeling and classification; this 
is due to the lack of training and throughput pressure that comes with human error. 
Multiple entries from the same individual may be assigned to a different identity. Rolled 
fingerprints may be labeled as flat images, a face image entered into a fingerprint field 
or images entered in incorrect orientation (such as rotated face images, left or right iris, 
etc.) are common errors found large database records. Ultimately, these enrollment 
errors make it impossible to identify that individual upon subsequent identification 
encounters. Sorting through hundreds of images to check for classification errors is a 
tedious and time-consuming task, especially when several biometric databases are 
combined. Our goal is to correctly identify misclassified fingerprints using controlled 
embeddings and thresholds.  

This work provides a new perspective on image sorting as it focuses not on the 
traditional aspects of increasing accuracy metrics but provides a look into multiple 
factors through various embeddings and thresholds to provide a tool that can be used to 
scour large datasets with ease to provide what percentage of the images need manual 
correction. The proposed network provides various metric scores which allowed for 
analysis on the most effective embedding and thresholds to use, resulting in a proof-of-
concept to be used for practical purposes in the real world. 
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Introduction 
 

1.1 The World of Biometrics 
 

Over the decades, “biometrics” as a definition has evolved throughout literature as 

advancements have been made throughout science and technology. The word comes 

from the Greek words “bio” (life) and metric (to measure) [1]. Biometrics as a science is 

recognizing the identity of a person based on the unique physical or behavioral 

attributes of the individual such as face, fingerprints, and iris [2]. Biometrics as a 

technology is a rapidly evolving field with applications that range from access to devices 

to border crossing and entry/exit processes. These biometric modalities are categories 

in a biometric system which depends on what the human input is in the system, which 

typically include face, iris, fingerprint and hand geometry [3]. As there are many 

modalities, there is no single modality that is considered the best, as there are different 

factors to consider such as the location, device, existing data and users. As with any 

type of data, the more information that is available, the more reliable the system is. 

Large-scale applications to collect biometric data, such as border crossings result in 

multimodal biometric databases containing thousands of identities.  

Large multimodal biometric datasets have become a cornerstone in homeland security 

and identification. The US Department of Homeland Security (DHS) expects to have 

over 259 million face, fingerprint and iris scans in their biometric databases in 2022 [4]. 

In contrast, the database has increased by 40 million since 2017.  
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Figure 1 Growth of Biometrics in Department of Homeland Security 

DHS’s database is also the world’s second largest database; India’s biometric network 

that spans the entire country is even more impressive. Introduced in 2009, “Aadhaar” 

was a method to identify a resident and their identity easily, especially for the rural poor 

who lack the education and financial means to have self-identification [5]. Aadhaar 

profiles stores fingerprints, iris and face images and produces a unique 12-digit number 

which is stored in their centralized database, where other third-party may access for 

identity inspection [6]. This profile allows the residents to perform almost anything; 

creation of bank accounts, food rations or even new SIM cards [7]. The reasoning for 

such a system was for both security and fraud prevention. These digital biometric 

systems are constantly growing worldwide amongst governments as they are relatively 



3 
 

low cost and easy method to track residents. However, these databases are not perfect. 

Aadhaar as an experimental system has had issues with authentication due to human 

tampering, resulting in people unable to sign up for schools or access food because of 

errors in the dataset [8]. DHS’s new Homeland Advanced Recognition Technology 

(HART) database containing millions of modalities of biometrics of face, iris, fingerprint 

and even DNA of both citizens and foreigners in the United States faces scrutiny as it 

contains inaccurate data. Their tests of their own systems falsely rejected 1 in 25 

travelers; a report recently noted that “DHS error-prone scanning system could cause 

1632 passengers to be wrongfully delayed or denied boarding every day at New York’s 

John F. Kennedy (JFK) International Airport alone” [9]. The Federal Bureau of 

Investigation (FBI) admitted that it’s Next Generation Identification database “may not 

be sufficiently reliable to accurately locate other photos of the same identity, resulting in 

an increased percentage of misidentifications”. Other foreign governments who rely on 

such a database reported false positive rates almost as high as 98%. If the data in 

these large datasets are not sequence checked for image labeling and classification 

errors, the consequences can be catastrophic as innocent people may be labeled as 

suspects or unable to prove their identity under the mercy of their biometric data under 

the government.  
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1.2 Problem Statement 
 

As these biometric modalities result in large amounts of information, datasets are 

created in order to analyze and store biometric information. However, with any human 

endeavor, human factors can affect even the most robust systems. Large biometric 

datasets contain image labeling and classification errors due to human operators. This 

is due to a variety of factors. Lack of training is the most common as these large 

operations require a large personnel to handle them, and without proper training 

common errors can occur such as multiple entries from the same individual being 

assigned to a different identity. Throughput pressure may be another factor. Electronic 

Biometric Transmission Specification (EBTS) and Electronic Fingerprint Transmission 

(EFT) files that are used by law enforcement agencies and other organizations may 

contain mislabeled fingerprint images or images that are out of sequence. Multiple 

entries from the same individual may be assigned to a different identity [10]. Rolled 

fingerprints may be labeled as flat images, a face image entered into a fingerprint field 

or images entered in incorrect orientation (such as rotated face images, left or right iris, 

etc.) are common errors found in standard EBTS records. Such errors can result in an 

entire dataset being unreliable and not fit for use, as they are the datasets used for 

research on the basis that they are correctly obtained and checked [11].  

As we cannot ascertain that the reliability of these automated biometric systems is 

completely reliable due to the risk of being tampered due to human error, there needs to 

be a more reliable method to process and remove duplicate identities in a dataset. The 

process to detect and remove duplicate identities in a database is commonly referred to 

as de-duplication [12]. Currently, there is no standardized deduplication scheme for 
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large scale databases which contain face, iris and fingerprint images [13]. Ultimately, 

these enrollment errors make it impossible to identify that individual upon subsequent 

identification encounters. Sorting through hundreds of images to check for classification 

errors is a tedious and time-consuming task, especially when several biometric 

databases are combined.  

 

 

 

 

 

 

 

 

 

 

1.3 The Role of Neural Networks 
 

Utilizing the nature of neural networks is the solution to sort through the datasets at an 

efficient rate. Object and image classification is a well-known application area of 

convolutional neural network (CNN) architectures. Neural network approaches are 

especially suitable for fingerprint databases [14]. Fingerprints form a specific set of 

patterns of minutiae and ridges that allow for statistical characteristics. Neural networks 

tend to work well on seeking patterns, and fingerprints have a specific composition that 

allows for human beings to be similar but also distinct enough to use them as unique 

Figure 2. Misclassified Prints Due to Manual Error 
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identifiers [15]. Neural networks can also avoid issues with conventional approaches to 

matching minutia, which are sensitive to noise (inked fingerprints resulting in smudging 

which distort current minutia) and is also expensive (basically a graph matching 

problem) [14]. They are also trainable from samples as large datasets of fingerprints are 

easier to obtain from forensic sources that allow for millions of prints to be analyzed and 

trained on [16].  

1.4 Previous Work 
 

The concept for the biometric data classification was originally designed for multiple 

modalities used for both face, iris and fingerprint images. A preprocessing module was 

created to enable comparison of the different modalities in a common format compatible 

with the neural network architecture. WSQ files obtained from data collections were 

reshaped into 180X180X3 shape and loaded into a trained “ImageNet” dataset. The 

weights of this model were fine tuned in order to be suitable for biometric sorting 

purposes, using 5 epochs. Both inter-modality and intra-modality activities were used on 

the data collected through numerous collections at the West Virginia University 

Biometrics Lab following IRB protocols.  

For face images, the inter-modality classifications were frontal, profile and other seen in 

Figure 4. In the case of iris images, they were classified as left or right, and for 

fingerprint images, the classes were flat and rolled, with finger type in consideration 

such as index, middle, ring, thumb. A compilation of results can be seen in Figure 3. 
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Figure 3 Face, Fingerprint and Iris Classification 
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Figure 4 Frontal, Profile and Other Specifications for Face 

Figure 5. Iris Classification Results 
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 Inter-modality classification accuracy of face/fingerprint/iris sorting obtained a 

classification accuracy of 99%. The network was also able to easily distinguish between 

left and right iris sorting along with face pose sorting, both with a classification accuracy 

of 99% as seen in Figure 5. Fingerprint classification reached an accuracy of 84%. The 

fingerprint dataset caused confusion as the system could not recognize differences 

between left/right index and right/left thumbs causing huge drops in accuracy. Since the 

fingerprint classification was lacking in accuracy, the aim was to use a different neural 

network architecture to improve the efficacy of fingerprint detection.  
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As seen in Figure 6, Misclassified Fingerprints from Initial Testing revealed that some 

fingerprints were prone to misclassification as the network could not distinguish one 

from the other if they were of a similar type. 

 

 

 
 

 

Figure 6. Misclassified Fingerprints from Initial Testing 
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The result was to bring the concept of a classification tool to reality, as feeding it a 

dataset will provide a method to classify images into their correct labels or show where 

the errors lie for manual correction as shown in Figure 7. 

 

 

 

 

 

 

 

Figure 7. Classification Tool Concept 
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1.5 Goals and Objectives 
 

The goal of this research effort is to apply deep learning techniques to identify 

misclassified biometric images in multibiometric datasets and label the suspected errors 

for examination and manual correction. Inter-modality classification methods will be 

used to sort face, fingerprint, and iris data from large scale datasets, while intra-modality 

classification will be used to sort mistakes in left vs right iris, rolled vs flat fingerprints 

and frontal vs profile/other-angle face. In order to accomplish these tasks, a modified 

version of the Residual Network architecture will be used, known as Resnet. The main 

focus will be on fingerprint analysis, and of how to minimize the risk of errors in large 

datasets to ease manual error correction.  

The objectives are as follows: 

1. Preprocess images into a viable dataset to use to test the neural network on. 

Images will have to be sorted into classes that correspond to their specific finger 

(index, middle, ring, little, thumb). 

2. Design a network architecture that uses the ideas and structure of the previous 

ImageNet neural network and fine tune it for fingerprint classification. 

3. Testing of the new neural network architecture to test various options such as 

different embeddings, weights, etc. 

4. Optimization of neural network in order to achieve a high classification score to 

be used on different datasets. 
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1.6 Impact 
 

If this research is successful, it will impact the field of biometrics in providing a proof-of-

concept tool that will allow for finding classification errors in large datasets that may be 

compromised due to human or machine error. Large datasets that are no longer usable 

due to errors may be recovered and the data saved for further use. As a new concept, 

this research will provide an idea for a more specialized tool that will become the 

standard for preprocessing of large amounts of images before being finalized into a 

dataset and allow for far less manual correction. 

This research, however, is focused on image sorting, but not in the traditional sense of 

obtaining the highest statistical value. The use cases are: 

• Large datasets that we know have errors to quickly sort through and identify 

misclassified images in a practical sense. The ideal would be for such a network 

to be run on any dataset to quickly find the ideal manual classification value to 

reduce the amount of time needed to go through the whole dataset. 

• Feedback to operator in real time as this network can be used in areas or 

situations without large computational ability or before the dataset is shipped for 

finalization.  

• Show the different metrics that impact such a network, as most research has 

mostly focused on improving the accuracy only without a wide perspective on the 

other factors. 
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The clarification needs to be made that fingerprint research has been well documented 

and published, but the practical aspect of identifying misclassifications and identifying 

the factors that impact the results is a new territory yet to be explored. 

This research is organized into the background required to understand the various 

concepts of neural networks, fingerprints and image classification and lead into the 

metrics used for understanding the neural network’s results. Afterwards an overview of 

the dataset used and the results obtained from them to accomplish the goals of the 

research. 
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Chapter 2: Theory and Background 
 

2.1 Neural Networks Background 
 

Machine learning is one of today’s most rapidly growing technical fields in both research 

and industry. At its fundamentals it is both artificial intelligence and data science, within 

the realms of both computer science and statistics. It is based on the question of how 

we can create computer systems that improve automatically through experience. The 

field has progressed quite dramatically over the past decade, used in both laboratories 

and commercial use [16].  Neural networks are a specific type of machine learning 

model which functions similarly to the human mind; interconnected nodes known as 

neurons work together via an algorithm to understand data being fed into it. Similarly, to 

our own brain’s neural system, the way we perceive with our eyes, mouth and noise and 

process that information is similarly how a neural network being fed the proper data is 

able to perceive and understand patterns to come to the correct conclusion. This idea 

was introduced as Hebbian learning, where D.O. Hebb, a renowned neuropsychologist 

explained that a network of neurons learning tasks repeatedly reinforces learned 

behavior into a stronger entity [17]. With the introduction of the perception in the 1950s 

by Frank Rosenblatt, Hebb’s concept was brought to reality in computing. However, the 

field had a dull recession as researchers believed that the effectiveness of neural 

networks is limited. It was only when in the 1980s where gradient descent, 

backpropagation and other innovative ideas brought back the topic of neural networks 

with interest [18]. As with Moore’s law as time went on the computing power of the world 

has substantially increased, along with new ideas and algorithms neural networks 
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evolved into practical applications. In the current era, neural networks have been 

applied everywhere from research, industry and any other trainable task.  

2.2 Background on Fingerprints 
 

One of the most common methods of identification in biometric systems is fingerprints. 

Fingerprints are made from a sequence of ridges and furrows on the surface of the 

finger, with a central core. There are a unique set of patterns of loops and swirls results 

in each human’s print that makes up a fingerprint. An arch is a pattern where ridges 

enter from one side of the finger to another, while rising in the center to form an arc. A 

loop pattern is when ridges form a curve and exit the same side they enter while whorl 

ridges form in a circular shape around the middle of the finger [19]. The irregularities 

that these ridges are characterized by are known as minutiae. Minutiae are 

characteristics of ridges, such as when they end (ridge ending) and splits into more 

ridges (ridge bifurcation) [20]. These minutiae and its patterns allow us to analyze 

fingerprints and identify them, as no two fingerprints are the same [21]. Fingerprint 

classification by feature type of loop, whorl and etc. is mature and well understood [22]. 

Lin et. al were able to create a fingerprint classification algorithm with a robust feature 

extractor which was able to extract salient features from input images [15].  

A study by R. A. Searston demonstrated that over time humans can tell the difference 

between finger types based on fingerprints given sufficient experience and training [23]. 

Trainee examiners were tested over their first 12 months of working in a fingerprint unit 

and were eventually able to distinguish different fingerprints, obtaining various index 

scores. As expert latent print examiners are able to sort fingerprints by type, we can use 
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this concept in this research to train the neural network to identify and correctly classify 

prints based on their unique characteristics [24]. 

2.3 Image Classification 
 

As neural networks are applicable in any modern task, it is of utmost importance in the 

field of image classification which is deeply ingrained in this paper’s work. For analyzing 

and deciphering the data obtainable from images, the typical network that is used is 

known as a convolutional neural network [25]. A convolutional neural network, often 

abbreviated as CNN, is an algorithm in deep learning that essentially takes in an image 

and assigns characteristics to it, known as weights and biases. The main goal of this is 

to be able to understand the difference between one image and the next.  Traditional 

network architecture was known as the multi-layer feed forward network, which allows 

us to receive binary scores on predicting classes [26]. However, a convolutional neural 

network differs in that it is able to have high accuracy in complex images with enormous 

pixel densities and is able to fit the dataset by reducing the amount of parameters 

required [27]. As an example, if an image was of an immense size of 16K resolution, 

which consists of a pixel count of 15360X8640. With its separate color planes of red, 

green and blue (RGB) it will be very difficult computationally to directly feed this as an 

input image into a feed forward network. However, with a convolutional neural network it 

is possible to pick the most crucial features in order to achieve the desired prediction, 

while being computationally easier to process [28]. This allows us to use them on 

massive datasets, consisting of thousands of images with ease.  
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These neural networks have an output known as a feature map. LeCun et al. stated that 

“At the output, each feature map represents a particular feature extracted at all locations 

on the input” [25]. This factor allows for convolutional neural networks to optimize and 

learn from the images inputted, while factoring in the different weights, scales and size 

of the network. The main purpose of the CNN is to essentially extract these high-level 

features from the input image [29]. 

After the convolutional layer in a CNN, there is also another feature known as the 

pooling layer. This layer’s main purpose is to factor in the computational power of the 

neural network, and to optimize it to the best of its ability [30]. This is done through an 

action known as dimensionality reduction, which as its name implies down samples the 

provided input image for efficient learning. There are two methods of pooling, which are 

known as Max Pooling and Average Pooling. Max Pooling is obtained when in a specific 

kernel, obtaining the maximum combined value of the input image is achieved. Average 

Pooling gives the average value of all the values in a specified kernel.  

 

Figure 8 Max Pooling Demonstration [31] 
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With these architectures built into a convolutional neural network, image classification 

has achieved another level of advancement [32]. For this current work, it will be focused 

on one of the most recognized CNNs which is ResNet.  

2.4 ResNet50 
 

Resnet50 is a residual network that won the ImageNet Large Scale Visual Recognition 

Challenge for its image classification efficiency with large datasets [28]. Resnet allows 

for networks to be hundreds to thousands of layers deep and still achieve great 

accuracy. This neural network architecture can be used as a deduplication and finger 

sequence checking method to sort through massive datasets with ease. Presented in 

this paper is an implementation of the network to classify fingerprints in a large dataset 

and label misclassifications efficiently.  

The Resnet50 architecture was one of the biggest surprises of the ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC). The competition involved the 

classification of 1000 separate object categories. Resnet stands for Residual Network 

which was introduced by Microsoft Research for deep residual learning for image 

recognition. Deep convolutional neural networks function with many layers, each of the 

layers performing a specific task. However, adding more layers does not result in better 

accuracy, as it is an inverse relationship (the higher the layers, the lower the accuracy). 

Degradation occurs as deeper networks start to converge, resulting in a large problem, 

as not all systems are the same resulting in difficult optimization unique to each [33]. 

Residual networks resolve this problem through the usage of skip connections. Instead 

of going through layer by layer, skip connections allow for an alternate shortcut for 
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gradients to pass through and also learn identify functions. Through this “skipping,” it 

allows for higher layers of the model to function as well as the lower models. This 

skipping adds outputs from previous layers to outputs of the stacked layers resulting in 

more efficiency and deeper networks.  

 

 

 

 

 

 

 

 

 

2.5 Siamese Network 
 

According to the Merriam-Webster dictionary, the word “Siamese” is an adjective 

meaning something that exhibits great resemblance, or very like. A neural network of 

this concept was introduced in the 90s by Bromley [34]. It is a class of neural 

architectures which consists of two or more identical subnetworks, more specifically the 

networks being a complete duplicate of one another with the same settings and weights. 

Both the networks generate feature vectors for each input and compares them. 

Figure 9. Resnet50 Architecture [33] 
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Siamese networks have been used for face recognition, which is the problem of 

identifying a specific individual. The networks have been used to see whether a person 

in an input image pair is the same person. In terms of this paper’s work, the same 

concept can be used for fingerprints [35]. By feeding the network positive and negative 

images, it is possible to use the dual nature of Siamese networks to come to 

conclusions regarding an image. These positive and negative images are known as 

anchors. These are an image of the same class (positive) or an image that is not of the 

same class (negative). The anchor essentially functions as a ”representative” for that 

specific class. As an example, feeding the network an image of a left index fingerprint 

as a positive anchor teaches the network that this print is a left index fingerprint, and 

allows it to compare it with another left index print for confirmation. Now comparing the 

anchor, which is the representative with all other prints in a dataset the network can 

provide an estimation of how close or far the other prints are to the representative 

image, which in this case is the left index print.  
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2.6 Outcome Metrics 
 

Outcome metrics are a means to quantitatively assess the results of the experiment. In 

this work, various outcome metrics were used to assess the usability of the neural 

network. 

Accuracy 

Accuracy is a metric that allows to evaluate our effectiveness for classification models. It 

is the number of correct predictions over the total number of predictions [36]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Equation 1. Accuracy Explanation 
Accuracy is calculated by positive and negative terms. There is True Positive (TP) 

where the model predicts the positive class correctly. True Negative (TN) is where the 

model predicts the negative class correctly. False Positive (FP) is when the model 

predicts a class to be correct when it is not. False Negative (FN) is when the model 

predicts a class to be incorrect when it is not. By combining these terms, it is possible to 

obtain a numerical value for accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 2. Accuracy Equation 
In the case of this research, accuracy defines the number of fingerprints correctly 

classified over the total number of fingerprints in the dataset. 
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Conditional and Unconditional Accuracy 

In the case of this research, there are different ways of calculating the accuracy as it is 

not simple as the case of only positives and negatives. In order to provide a full picture, 

we calculated conditional and unconditional accuracy. Conditional accuracy only 

considers the images that are classified as positive or negative but does not include the 

images that are uncertain. Unconditional accuracy on the other hand considers all 

images/factors.  

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Equation 3. Conditional Accuracy Equation 

 

𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 4. Unconditional Accuracy Equation 

Uncertain 

Uncertain are predictions that fall in the range of threshold and 1-threshold. These are 

predictions for which there is not enough sufficient confidence to mark them as positive 

or negative. These can be images that have been tampered with (blurred or lower 

quality) or have some sort of error that the neural network is unable to classify 

accurately.  
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Precision 

Precision determines which proportion of positive identifications were accurately 

predicted to be correct. It is when True Positive is over the combination of True Positive 

and False Positive [37].  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 5. Precision Equation 
In the case of this research, precision defines the network’s ability to correctly predict 

and classify specific classes of the fingerprints, such as front left index and other 

classes. 

Recall 

Recall determines which proportion of actual positive identifications were correct. It is 

calculated using True Positive over the combination of True Positive and False Negative 

[37].  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 6. Recall Equation 
Conditional and Unconditional Recall 

In the case of this research, there are different ways of calculating the recall as it is not 

simple as the case of only positives and negatives. In order to provide a full picture, we 

calculated conditional and unconditional recall. Conditional recall only considers the 
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images that are classified as positive or negative but does not include the images that 

are uncertain. Unconditional recall on the other hand considers all images.  

 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 7. Conditional Recall 
 

𝑈𝑛𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝑈𝑛𝑐𝑜𝑛𝑑𝑡𝑖𝑜𝑛𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Equation 8. Unconditional Recall 

 

 

F1 Score 

The F1 Score, also known as the F-measure, is a metric which is based on error. It 

measures the neural network model’s performance by calculating the harmonic mean of 

precision and recall for the minority positive class [38]. It is one of the most commonly 

used metrics for classification models as it provides easy to understand results for 

balanced and imbalanced datasets factoring in the precision and recall values. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Equation 9. F1 Score Formula 
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To interpret the score, F1 provides an overall model performance from 0 to 1, with 1 

being the best possible score. It shows the model’s ability to detect positive cases in 

recall and accurately classified cases in precision. In the scope of this research, there 

will be Conditional F1 and Unconditional F1, with one considering the uncertain factor 

while the other does not. 

F1 Score Interpretation of Score 

Greater than 0.9 Excellent 

0.8 – 0.9 Great 

0.5 – 0.8  Average/Medium 

Less than 0.5 Low/Undesirable 
 

Table 1. F1 Score Distribution 
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Chapter 3: Datasets, Networks and 

Experiment 
 

3.1 Dataset Description 
 

For the biometric data classification effort described here, a preprocessing module was 

developed to enable comparison of the different modalities in a common format 

compatible with the neural network architecture. WSQ files were reshaped into an 8-bit 

PNG using the reshape function and convert them into 128X128X3 shape. Network 

weights were loaded from the previously trained “ImageNet” dataset used for the 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) which was involved in the 

classification of 1000 separate object categories. Transfer learning was then used to fine 

tune the weights of this model for biometric sorting purposes, resulting in 5 epochs to train 

to its current level. Inter-modality classification was trained and tested on a small subset 

of operational data comprised of 7500 images (2500 for each modality) and the intra-

modality activities were used on data collected by the West Virginia University Biometrics 

Lab via approved IRB protocols, with 40353 images used for training and 10088 used for 

testing. The datasets were sorted into both intramodality and inter-modality specifications. 

The fingerprint images were labeled and organized into 20 categories and in greyscale 

format. There are 20 classes, one for each finger categorized by flat or rolled based on 

how they were taken.    
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3.2 Finger Sequence Network 
 

The first iteration of the finger sequencing neural network was made using the Resnet50 

convolutional neural network and shown in the figure below: 

 

Figure 11. FingerSequence Network Initial Architecture 

Figure 10. 20 Classes for Each Respective Fingerprint 
for Flat and Rolled Prints 
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An image of size 128X128X3 was fed into the ResNet50 network and passed through 

the Global Average Pooling layer. This layer serves as a feature extractor. The 

extraction is achieved by calculating the average of the values in the pooling window. 

The network then passes through a dense layer of 256 neurons which represents an 

embedding of the image. The final layer consists of 20 neurons each representing one 

of the possible 20 classes. Only one of the output neurons is set to 1. All the other 

neurons are set to 0. An example would be feeding it a flat left index image it will try to 

correspond the entry to one specific class.  

The accuracy of this network was 87%. Classification accuracy needed to be improved 

in order to reliably scour through datasets and provide accurate results. 

 

3.3 Siamese Training 
 

 

Figure 12. Siamese Network Architecture 
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The updated network was the previous network converted into a Siamese network. It 

consists of two finger sequence networks modified to produce an embedding vector of 

dimensions 256 for each image. The purpose of the embeddings is to reduce the 

dimensionality of the images and are vector representations. They are then passed 

through to the Euclidean Distance layer. This is a distance measure which allows for the 

summarization of the relative difference between two objects in a domain. By calculating 

the distance between two vectors, this metric allows to measure the similarity between 

two observations. The Euclidean distance of the embedding vector is then fed into a 

sigmoid function. This produces the probability of matching between 0 and 1, with 0 

meaning the images are the same and 1 meaning the images are different. 

The original network always outputs a vector of size 20, where only one value is set to 

1. Each entry corresponded with one class. In the new network, the output is a 

probability of 0 or 1, indicating whether the two images are the same. This is done by 

feeding the network 2 images. The network outputs a 1 or 0 if the images are the same 

or not instead of directly classifying the image. 

The new network is trained with pairs. There is a representative image for a specific 

class that is fed to the network, which functions as the anchor. This allows the network 

to learn that positive images are 1, and negative images are 0. Once pair is positive with 

an image that is of the same class as the anchor image, and the other pair is negative, 

which is an image that is not of the same class as the anchor image. A positive pair can 

be labeled as the genuine pair, while the negative pair can be labeled as an impostor 

pair.  
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Figure 13. A Flat Left Index compared with a Flat Left Thumb 

Figure 14.  Example of Positive Pair (Index and Index) with Negative 
Pair (Index and Thumb) 
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3.4 Design of Experiments 
 

The design of experiments is using statistics to plan, conduct and analyze controlled 

tests in order to understand various factors of parameters. It is possible to manipulate 

our inputs to achieve our desired outputs to identify key explanations and results [39]. 

These inputs are known as independent variables, and the outputs the dependent 

variables. By establishing a design of experiments, it is possible to obtain validity, 

replicability and reliability in research.  

A factor is an independent variable whose settings are set by the experimenter. In this 

work, the factors are the number of neurons in the embedding, and the value of the 

thresholds used. A key idea was to see if more embeddings result in higher 

classification accuracy.  

In this paper we are using 3*4 full factorial design to evaluate the impact of the factors 

on the precision, accuracy and uncertainty of different thresholds. This allows us to 

examine all the combinations to see how the embeddings and thresholds affect the 

network. 

The embedding levels used are 64, 128, 256 and 512 while the threshold levels were 0.1, 

0.2 and 0.5. The independent variables are the embeddings and the threshold values. 

The dependent variables are the accuracy, precision and uncertain values obtained from 

running the network. There is an addition of the unconditional variants of accuracy and 

recall to see how much the uncertain factor affects the network. Each experiment was 

replicated 10 times. Results were then stored in a spreadsheet for analysis. The goal of 
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the research was to see how changing the embeddings (64, 128, 256, 512) and the 

thresholds (0.1, 0.2, 0.5) affected the classification accuracy of the Siamese network. 

 

Factor 1: Embedding Factor 2: Threshold 

64 0.1 

64 0.2 

64 0.5 

128 0.1 

128 0.2 

128 0.5 

256 0.1 

256 0.2 

256  0.5 

512 0.1 

512 0.2 

512 0.5 

 

Table 2. Embeddings and Thresholds Outline 
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Chapter 4: Results 
 

4.1 Design of Experiment Results: Embedding 
 

It was hypothesized that by using two different embeddings of 64, 128, 256, 512 the 

classification accuracy, precision and recall would improve. The uncertain factor 

(number of images that need to be manually classified) is factored into the conditional 

versus unconditional factors of accuracy and recall view its impact.  

 

Figure 15. Impact of Embeddings on Conditional Accuracy 
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Figure 16. Impact of Embeddings on Unconditional Accuracy 

 

As we compare both Figure 14 and 15, it is possible to see that the impact of embeddings 

is not significantly affecting the classification network. The error bars show the standard 

deviation of the accuracy at the specified level. Higher amounts of embedding seem to 

not significantly impact unconditional or conditional accuracy. However, the effect of the 

uncertain images are evident as the values for unconditional accuracy is much lower than 

the conditional accuracy values. The uncertain factor decreases the classification 

accuracy significantly. Surprisingly, 128 embeddings seem to perform badly compared to 

the other embeddings. 
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Figure 17.  Impact of Embeddings on Precision 

 

Similarly, to classification accuracy, the impact of embeddings seem to not affect the 

precision in a significant manner. While the outlier of 128 embedding performing slightly 

worse in average compared to the others, the figure overall shows more processing 

power does not necessarily mean better precision scores.  
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Figure 18. Impact of Embeddings on Conditional Recall 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Impact of Embeddings on Unconditional Recall 
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Similarly to conditional accuracy and unconditional accuracy, recall seems to display the 

same behaviors of not having much variance aside from the unconditional recall 

performing much worse in average. A notable drop in recall score can be found in the 128 

embedding, as it seems to perform poorer than the other embeddings, perhaps to due 

overfitting or the Resnet architecture causing conflict with that embedding. 

 

 

Figure 20. Impact of Embeddings on F1 Score Conditional 

 

 

 



39 
 

 

Figure 21. Impact of Embeddings on F1 Score Unconditional 

The F1 scores for both conditional and unconditional show that the impact of uncertain 

images are definitely providing a larger difference in higher embeddings. 128 embedding 

being an anomaly, the overall trend is that higher embeddings seem to provide a better 

F1 score.  
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Interaction Effects 

 

Figure 22. Interaction Effects on Conditional Accuracy of 0.1,0.2 and 0.5 thresholds 

As we can see in Figure 21, the interaction effects of accuracy on 0.1,0.2, 0.5 

thresholds shows that accuracy is generally higher on 512 embedding over 64, 128, 256 

embedding, however since the two lines are almost parallel, there is no significant 

interaction.  
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Figure 23. Interaction Effects on Unconditional Accuracy 

On unconditional accuracy we see that a higher threshold results in higher unconditional 

accuracy. This is due to 0.5 threshold not having any uncertain values, resulting in the 

inverse graph from conditional accuracy. Similarly, since the lines are almost parallel, 

there is no significant interaction.  
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Figure 24. Interaction Effects on Precision of 0.1, 0.2, 0.5 thresholds 

There is a minor interaction between the threshold and precision. The lower threshold 

value yields higher precision regardless of the embedding. Compared to accuracy, there 

is slightly more importance on choosing the correct embedding.  
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Figure 25. Interaction Effects on Conditional Recall 

 

Figure 26. Interaction Effects on Unconditional Recall 
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Similarly to the results on accuracy, we can see the inverse relationship between 

conditional recall and unconditional recall due to the factor of uncertain images (images 

that could not be classified). The thresholds of 64, 128, 256 and 512 all behave in the 

same manner, and since the lines are parallel there does not seem to be any significant 

interaction between them. 

 

4.2 Design of Experiments Results: Threshold 
 

Since embeddings did not seem to affect the metrics for the network effectively, the 

tuning of the thresholds was focused on. Since the Siamese network outputs a 

probability of 0 or 1 indicating whether the two images are the same, values below the 

threshold are considered negatives (image does not match the anchor) and values 

above the 1-threshold are considered positives (image matches anchor image). 
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Figure 27.  Impact of Threshold on Conditional Accuracy 

 

 

 

 

 

 

 

 

 
Figure 28. Impact of Threshold on Unconditional Accuracy 
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The threshold values of 0.1, 0.2 and 0.5 show that narrower values of the threshold 

result in higher accuracy scores. In terms of this research the tighter the threshold 

value, the more accurate the system becomes in recognizing fingerprints for what they 

are (classifying a right thumb as a right thumb). We can see the impact of the uncertain 

images in the inverse relationship between the conditional accuracy and unconditional 

accuracy results. Since 0.5 threshold does not have any uncertain values, the accuracy 

for that threshold is the highest in unconditional accuracy. Narrowing the threshold 

seems to have an adverse effect on the uncertain value. As we tighten the threshold 

values, the value of the uncertainty increases in conditional accuracy. This results in a 

higher portion of fingerprint images that remain unclassified or unrecognized by the 

neural network to belong to any specific class. 
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Figure 29. Impact of Threshold on Precision 

 

The effect of thresholds is clearly seen in the results of precision, as the narrower the 

threshold, the better the precision score.  
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Figure 30. Impact of Threshold on Conditional Recall 

 

 

 

 

 

 

 

 

 

 

Figure 31. Impact of Threshold on Unconditional Recall 
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Recall attempts to answer the question of what proportion of actual positive images 

were classified correctly in the dataset. It has a similar relationship with the accuracy 

values as the lower threshold values provide a higher recall score. This shows how the 

neural network was correctly able to identify the fingerprint images that were actually of 

the class they were from. Similarly to the conditional/unconditional relationship of 

accuracy, the narrower the threshold the higher the accuracy in conditional recall, while 

a higher threshold value results in higher unconditional recall due to no uncertain 

images in the 0.5 threshold value. 

 

Narrowing the thresholds produced a more significant improvement in achieving higher 

accuracy, precision, and recall/true positive rate. However, we need to consider the 

effects of conditional and unconditional factors as on one of them the uncertain images 

are considered. 
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Figure 32. Combined Histogram of Predicted Probabilities of Results 

Threshold Accuracy Uncertain Recall/True 

Positive Rate 

0.5 92.5% 0% 92.9% 

0.2 96.8% 14% 96.4% 

0.1 98.4% 24% 98.0% 
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The new model was able to achieve an accuracy of up to 98.4% compared to the old 

Finger Sequence network of 84% by implementing it into a Siamese network and fine 

tuning the threshold values.  

4.5 Discussion 
 

Changing the values of the embeddings from 64, 128 and 512 did not have a significant 

impact on classification accuracy and other metrics in the network. However, changing 

the threshold values into three subsets of 0.1, 0.2 and 0.5 displayed significant increase 

in accuracy when the values were narrowed. This in return increased the uncertain value 

from 0% to 24% from 0.5 threshold to 0.1 threshold. The uncertain factor is the number 

of images that fall in between the range between the threshold and 1-threshold. These 

are the predictions for which we do not have sufficient confidence to mark them as 

“positive” or “negative” resulting in them being “uncertain”. It is clearly seen on the 

conditional versus unconditional metrics of accuracy and recall as the uncertain factor 

drastically decreases the overall accuracy/recall. Smaller values for the threshold seem 

to result in higher accuracy and recall, but increasing the number of images that fall under 

“uncertain”. The tradeoff is between increasing the accuracy and precision while not 

labeling too many images as uncertain, as those images will have to be manually 

inspected or run through more sophisticated algorithms to classify them. 24% uncertainty 

may not seem a high value, but in a database which may have thousands or millions of 

fingerprints, that value is a high number of prints to manually inspect and resolve. While 

using this proof-of-concept network, in order to trade for higher accuracy, there needs to 

be an equal tradeoff in having a higher uncertain value.  
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Chapter 5: Conclusion 
 

In the current modern era, fingerprints have become an invaluable tool for identification 

purposes in the field of biometrics. Classification of fingerprints have become a growing 

concern as large datasets in Department of Defense or other institutions have datasets 

where one misclassified image can render a whole archive to be useless. Advancements 

in neural networks have allowed for efficient scouring of such datasets for misclassified 

images and if needed manual inspection on those deemed to be unfit for testing purposes. 

The goal of this study was to use a Siamese network created to correctly identify labeled 

fingerprints and test how different embeddings, namely 64, 128, 256 and 512 and different 

thresholds affected the classification accuracy of the network to provide more information 

on how these factors play a large role in finding the most efficient network possible to 

reduce the need for manual inspection. The results obtained were accuracy, precision, 

recall and conditional/unconditional variants (factoring in uncertain which are images that 

could not be classified). The most notable results were that having a lower embedding 

produced better results, while having a lower threshold resulted in higher accuracy and 

precision at the cost of a higher amount of uncertainty. This is a tradeoff that will need to 

be considered if such a network was to be used for a commercial scale, as one may need 

to balance higher accuracy with a higher case of more unclassified images, resulting in 

those images processed through a different network or manually inspected in person. 

98% accuracy may be an ideal percentage to chase for, but a 24% uncertain rate is an 

immense number of images if the dataset contains millions of images.  

 



53 
 

5.1 Future Work 
 

This proof-of-concept network is a steppingstone in using neural networks to improve the 

classification accuracy for biometric databases to keep records of fingerprints accurate 

and legitimate. This idea is not limited to just fingerprints, as it can be used for face, iris 

and other modalities. In this work, 64,128, 256 and 512 embeddings along with 0.5, 0.2 

and 0.1 threshold values were used. For future work a wide range of thresholds, 

embeddings and different datasets may be used to gauge the best settings to obtain the 

highest classification scores possible while keeping the uncertain score low. The final 

product will result in a lightweight, efficient tool that can be used for any dataset as a 

standard procedure before a dataset is finalized, being an invaluable tool in saving both 

time and costs of large data extraction operations. This work can be the steppingstone 

into commercial off the shelf sequence checking tools that become the industrial standard 

in maintaining dataset accuracy. 
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