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Abstract

Longest Path and Cycle Transversals and Gallai Families

James A. Long Jr.

A longest path transversal in a graph G is a set of vertices S of G such that every longest path in G has
a vertex in S. The longest path transversal number of a graph G is the size of a smallest longest path
transversal in G and is denoted lpt(G). Similarly, a longest cycle transversal is a set of vertices S in a graph
G such that every longest cycle in G has a vertex in S. The longest cycle transversal number of a graph
G is the size of a smallest longest cycle transversal in G and is denoted lct(G). A Gallai family is a family
of graphs whose connected members have longest path transversal number 1. In this paper we find several
Gallai families and give upper bounds on lpt(G) and lct(G) for general graphs and chordal graphs in terms
of |V (G)|.
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Chapter 1

Introduction

A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) with each edge consisting of a

unordered pair of vertices called its endpoints. Two vertices are adjacent, and are called neighbors, if there

is an edge between them. The neighborhood of a vertex v in a graph G is denoted NG(v) and is the set of

all vertices adjacent to v in G. We abbreviate NG(v) to N(v) when G is clear from context. Two edges are

incident if they have a common endpoint. The degree of a vertex v in a graph G is the number of times

that vertex appears as an endpoint of an edge of G and is denoted dG(v). We write d(v) instead when it is

clear from context what graph we are considering. A graph G is k-regular if d(v) = k for each v ∈ V (G).

The maximum degree of a graph G is denoted ∆(G) and is equal to max {d(v) : v ∈ V (G)}. Similarly, we

define the minimum degree of a graph G to be δ(G). A graph is finite if |V (G)| and |E(G)| are finite. Unless

otherwise stated, all graphs should be assumed to be finite.

A directed graph or digraph G is a pair consisting of a vertex set V (G) and an edge set E(G) such that

each edge in G is an ordered pair of vertices. If (u, v) is an edge of a directed graph G, then the edge goes

from the tail u to the head v. To simplify notation we write uv for (u, v).

A multigraph G is similar to a graph except that E(G) is a multiset, allowing multiple parallel edges to

join the same pair of vertices.

A graph G is isomorphic to a graph H if there is a bijective function f : V (G)→ V (H) such that u is

adjacent to v in G if and only if f(u) is adjacent to f(v) in H.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We say G contains

H if H is a isomorphic to a subgraph of G and write H ⊆ G. An induced subgraph H of a graph G is a

subgraph of G such that E(H) = {uv ∈ E(G) : u, v ∈ V (H)}. We say two subgraphs of a graph intersect if

they have a vertex in common.

A path is a graph in which its vertices can be ordered so that two vertices are adjacent if and only if

they are consecutive in the ordering. For any n ∈ N, we define Pn as the path on n vertices. The size or

order of a path is |V (G)|. The length of a path P is |E(P )|. A longest path in a graph G is a path of

maximum length in G. The endpoints of a path are the first and last vertices of the path. For a graph G,

and vertices u, v ∈ V (G), a uv-path is a path with endpoints u and v. The interior vertices of a path P

are the vertices of P which are not endpoints of P . Two paths are internally disjoint if their interiors are

1



comprised of distinct vertices.

A graph G is connected if there is a uv-path in G for every pair of vertices u, v in G. A graph is

disconnected otherwise. A graph G is k-connected if it has at more than k vertices and the removal of fewer

than k vertices from G does not disconnect the graph. The connectivity of a graph G is the maximum k

such that G is k-connected and is denoted κ(G). The components of a graph G are the maximal connected

subgraphs of G. A (vertex) cut in a connected graph is a set of vertices whose removal increases the number

of components.

A cycle is a 2-regular connected graph and note that all cycles on n vertices are isomorphic. We define

Cn as the cycle on n vertices. The length of a cycle C in a graph G is |E(C)|. A longest cycle in a graph G

is a cycle of maximum length. The graph C3, the cycle on 3 vertices, is known as a triangle.

A tree is a connected graph with no cycles. A leaf in a tree is a vertex of degree 1. If T is a tree with

n vertices, then T has n− 1 edges.

A graph G is complete if every pair of vertices is adjacent. We define Kn as the complete graph on n

vertices. A graph is bipartite if its vertices can be partitioned into two parts such that no edge has both

endpoints in the same part. The complete bipartite graph Km,n has one part X containing m vertices, one

part Y containing n vertices, and has edge set {xy : x ∈ X and y ∈ Y }. A clique is a set of pairwise adjacent

vertices in a graph G. The clique number of a graph G, denoted ω(G), is the size of a largest clique in G.

With some of the basics of graph theory out of the way, we introduce the Helly property.

A family of sets F is a k-Helly family and has the k-Helly property if, in every subfamily of F with

empty intersection, we can find a set consisting of at most k sets whose intersection is empty. That is, if

F ′ ⊆ F with
⋂
F ′ = ∅, then

⋂
F ′′ = ∅ for some F ′′ ⊆ F ′ with |F ′′| ≤ k. A 1-Helly family is a family of

sets whose non-empty members have a common element. If F is a 2- Helly family then we say F is a Helly

family and has the Helly property [1]. The Helly property is named after Eduard Helly who proved that

every finite family of convex sets in a Euclidean space of dimension n has the (n + 1)-Helly property. For

example, any finite family of intervals on the real line have the Helly property.

Of interest to us is the family of longest paths in a connected graph. It is well known that the family of

longest paths in a connected graph are pairwise intersecting, as proved in Proposition 1 below.

Proposition 1. If G is a connected graph, then the longest paths of G are pairwise intersecting.

Proof. Let P and Q be longest paths in a connected graph G and assume, for a contradiction, V (P )∩V (Q) =

∅. Since G is connected, there is a path from any vertex of P to any vertex of Q. Let R be a shortest path

with one endpoint in P and one in Q. Note that, by extremal choice of R, its interior is disjoint from both

V (P ) and V (Q). Let p be the endpoint of R on P and similarly define q. The vertex p is at least half the

length of P from one endpoint of P . A similar observation can be made of q. Taking the longer segment

from an endpoint of P to p, traveling across R, then taking the longer segment to an endpoint of Q from q,

we make a longer path. This is impossible since P and Q are longest paths.

In 1966, Tibor Gallai [2] asked if there was a vertex common to all longest paths in a connected graph.

Gallai was asking whether the family of longest paths in a connected graph has the Helly property. As

it turns out the answer to Gallai’s question is no. Walther found an example of a connected graph on 25
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vertices for which the family of longest paths does not have a common vertex [3]. He and Voss went on

to find a smaller example on 12 vertices [4]. Zamfirescu independently found the same example [5]. That

example is derived from the Peterson graph, pictured in Figure 1.1, by splitting one vertex into three vertices

of degree one. We refer to this graph as the Peterson fragment and it is pictured in Figure 1.2.

Figure 1.1: The Peterson graph

Figure 1.2: The Peterson fragment

A subgraph in a graph is spanning if it contains all the vertices of the graph. The Peterson fragment

G has no spanning paths as no path in G can use all three vertices of degree one. Furthermore, no path in

G uses 11 vertices as this path would necessarily use all vertices of degree three and two vertices of degree

one, which must act as endpoints. This path corresponds to a spanning cycle in the Peterson graph, which

famously does not have such a cycle. Paths on 10 vertices in G can be found by inspection, and are longest

paths in G. Since any such path omits at most two vertices of degree one, there is no longest path avoiding

two vertices of degree three in G.

The last statement of the previous paragraph is saying that, while we can’t always find a single vertex

common to all longest paths, in the case of the Peterson fragment, we can find a set of two vertices which

intersect all longest paths. Such a set vertices is called a longest path transversal. The idea of finding a

longest path transversal in general graphs is explored in Chapter 2. The majority of the content in Chapter

2 appears in a paper written by Long, Milans, and Munaro [6].

We could also ask for what families of graphs is there a vertex common to all longest paths. These

would be families that have a positive answer to Gallai’s question. Such ideas are explored in Chapter 3.

The majority of the content for Chapter 3 appears in a paper written by Long, Milans, and Munaro [7].
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Additionally, we may mix the concepts and look for small longest path transversal in a graph with a

particular structure. Chapter 4 deals with finding a small longest path transversal in chordal graphs. Some

of the results from this section will eventually appear in a paper with Dr. Milans and Michael Wigal, but,

at the current time, is still being written.

Another logical question not explored in this paper is the following: if any two longest paths in a con-

nected graph intersect, what about any three longest paths? The answer to this question remains unknown,

but there are some partial results. For example, Axenovich shows that if the union of three longest paths is

outerplanar, then those paths have a vertex in common [8]. It has been conjectured that any three longest

paths in a connected graph share a common vertex as noted in [8]. If this could be proved, the next step

would be to see if any four longest paths have a common intersection in connected graphs.

The Peterson fragment has a family of nine longest paths having empty intersection. Skupień constructed

a connected graph having a set of seven longest paths with empty intersection [9]. It is unknown if there is

a connected graph with six longest paths having no common vertex. One can try to find the maximum k

such that every set of k longest paths in a connected graph has nonempty intersection. Proposition 1 shows

k ≥ 2 and Skupień’s example shows k < 7.
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Chapter 2

Longest Path Transversals

2.1 Definitions and History

A longest path transversal in a graph G is a set of vertices S in G such that every longest path in G has at

least one vertex in S. The longest path transversal number of a graph G, denoted lpt(G), is the size of a

minimum longest path transversal in G.

Overall, it is non-trivial to construct a connected graph without a vertex common to all longest paths.

Regardless, we have one in the Peterson fragment, which, as previously noted, has longest path transversal

number equal to two. This is the smallest known example of a connected graph with lpt(G) > 1. That is,

there is no known connected graph G on 11 or fewer vertices with lpt(G) > 1. See Shabbir, C. Zamefirescu,

T. Zamefirescu, where it is claimed to be the smallest [10].

Graünbaum constructed a 324-vertex connected graph G with lpt(G) = 3 [11]. Soon after Zamfirescu

found a 270 vertex example with the same transversal number [5]. There is no known example of a graph G

with lpt(G) ≥ 4. Hence, we might expect that longest path transversal number is small and many have asked

if it is bounded by a constant. Moreover, graphs with high connectivity seem to admit a vertex common to

longest paths. Indeed, there is no known 4-connected graph G such that lpt(G) > 1. Graünbaum’s example

is 3-connected, so we do know 3-connected graphs need not have a vertex common to all longest paths.

As difficult as it is to find graphs with large longest path transversal number, it seems just as challenging

to show upper bounds on longest path transversal number for general, connected graphs. Once longest paths

start intersecting even a few times, their structures get quite complex.

The following proposition is more a set of observations about longest path transversals in connected

graphs.

Proposition 2. Let G be a connected graph and let P be the family of longest paths in G.

1. V (G) is a longest path transversal.

2. V (P ) is a longest path transversal for any P ∈ P.

3. If |P| = k, then lpt(G) ≤ k.
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Proof. (1) Every longest path in G is made from the vertices of G, hence V (G) is a transversal. Therefore,

we may always assume lpt(G) ≤ |V (G)|. If G is disconnected, this bound is best possible since the edgeless

graph has n longest paths of length zero.

(2) Since longest paths are pairwise intersecting in a connected graph, every other longest path in P
must have at least one vertex in common with P .

(3) If there are k longest paths in G, taking a vertex from each one yields a longest path transversal of

size k.

Based off Proposition 2, to have large longest path transversal number, we need a lot of long paths.

Indeed, if there are only ‘a few’ paths, or the longest paths are ‘short’, then we can find a ‘small’ transversal.

Proposition 3. If G is an n-vertex connected graph, then lpt(G) ≤
⌈
n
2

⌉
Proof. Let (X,Y ) be an arbitrary bipartition of the vertices of G. If X contains a longest path, then X is

a longest path transversal. Alternatively, if X does not contain a longest path, there is at least one vertex

from every longest path in Y . It follows that X or Y is a longest path transversal. Since this is true for an

arbitrary bipartition, the result follows by balancing the bipartition as much as possible.

Proposition 4. If G is an n-vertex, connected graph, then lpt(G) ≤
⌈
n
4

⌉
Proof. Let P be a longest path in G and let k be a positive integer to be determined later. Let S be the

middle k vertices of P , possibly being slightly off-center depending on the parity of the path length. Assume

S is not a longest path transversal and let Q be a longest path avoiding S. Since G is connected, P and

Q have a vertex in common. Note that Q cannot only share vertices with P on one side of S as we could

follow P from the opposite end, through S, until the first vertex P and Q share, then follow Q to whichever

endpoint is further away. This would result in a longer path, which is impossible. Let ql and qr be the

vertices in V (P )∩ V (Q) that are closest to S on each side of P . Note that removing ql and qr from Q splits

Q into three paths. If any of these paths have fewer than k vertices we can make a longer path by replacing

it with the interior of the qlqr-subpath of P . Hence, we get at least 4k vertices in G. We get k vertices from

S and k vertices from each components of Q− {ql, qr}. It follows that k ≤ n
4 as there are only n vertices in

G. Hence, if we choose k ≥
⌈
n
4

⌉
, then S must be a longest path transversal.

A closely related problem to finding longest path transversals is finding longest cycle transversals. That

is, given a graph G a set of vertices S in G is a longest cycle transversal if every longest cycle in G has at

least one vertex in S. We define the longest cycle transversal number of a graph G, which we denote lct(G),

as the smallest non-negative integer such that G has a longest cycle transversal of that size. For connected

graphs, Thomassen proved lct(G) ≤ n
3 and this is best possible [12]. An example achieving this bound is a

family of n
3 disjoint triangles strung together by a path (see Figure 2.1).

Note that in the example in Figure 2.1, the longest cycles are not pairwise intersecting. Longest cycles

do, however, pairwise intersect in 2-connected graphs, as is well-known and a consequence of Lemma 5.

One useful tool for proving both those claims is Menger’s Theorem, given below. Given sets of vertices

X and Y of G, an (X,Y )-separator is a set of vertices S such that no path in G − S has one endpoint

6



Figure 2.1: lct(G) = n
3 example

. . .

in X and the other endpoint in Y . We allow an (X,Y )-separator to contain vertices in X and Y . An

(X,Y )-connector is a collection of vertex-disjoint paths {P1, . . . , Pk} such that each Pi has one endpoint in

X, the other endpoint in Y , and the interior vertices of Pi are outside X∪Y . A variant of Menger’s Theorem

asserts that the minimum size of an (X,Y )-separator equals the maximum size of an (X,Y )-connector (see,

e.g., Theorem 3.3.1 in [13]).

Lemma 5. If G is 2-connected and C1 and C2 are longest cycles in G, then C1 ∪ C2 is 2-connected. In

particular, |V (C1) ∩ V (C2)| ≥ 2.

Proof. Note that C1∪C2 is connected, or else using 2-connectivity of G and Menger’s theorem, we obtain two

disjoint paths joining C1 and C2 and hence a longer cycle. Let H = C1∪C2, and suppose for a contradiction

that z is a cut vertex in H. Note that V (C1) and V (C2) cannot both contain a vertex y with y 6= z, since

then C1− z and C2− z would be in the same component of H − z, contradicting that H − z is disconnected.

Since V (C1) and V (C2) intersect, it follows that V (C1) ∩ V (C2) = {z}. Since G − z is connected, there is

a path P in G joining V (C1 − z) and V (C2 − z). Let x be the endpoint of P in C1 − z and let y be the

endpoint of P in C2 − z. We form a cycle C by combining P with the longer xz subpath of C1 and the

longer yz subpath of C2. Since C is longer than C1 and C2, we obtain a contradiction.

The previous lemma tells us longest cycles are pairwise intersecting in 2-connected graphs. In fact,

it tells us they must intersect at least twice. With the stronger assumption of 2-connectivity, we can try

to improve upon lct(G) ≤
⌈
n
3

⌉
. Hence, when dealing with longest cycles, we will require graphs to be 2-

connected. In most known cases, a technique to get a bound on longest paths in connected graphs can be

applied to get a longest cycle transversal in 2-connected graphs and vice versa.

The first significant improvement to the n
4 and n

3 bounds for longest path and longest cycle transversal

number was by Rautenbach and Sereni when they proved the following two theorems.

Theorem 6. If G is a connected n-vertex graph, then lpt(G) ≤
⌈

n
4 −

n
2
3

90

⌉
[14]

Theorem 7. If G is a 2-connected n-vertex graph, then lct(G) ≤
⌈

n
3 −

n
2
3

36

⌉
[14]

We were able to improve the upper bounds on lpt(G) and lct(G) to sublinear bounds. To do this,

we recognized longest path transversals and longest cycle transversals are special cases of a more general

transversal problem. These improvements, detailed in the rest of this chapter, appeared in our article

Sublinear longest path transversals[6].
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2.2 Maximum Subdivision Transversals

Given a multigraph F and an edge e ∈ E(F ) with endpoints u and v, the subdivision operation produces a

new multigraph F ′ in which e is replaced by a path uwv through a new vertex w in F ′. A subdivision of F

is a graph obtained from a sequence of zero or more subdivision operations. For a multigraph R and a graph

G, an R-subdivision in G is a subgraph of G isomorphic to a subdivision of R. We ask for a small set of

vertices in G that intersect every R-subdivision in G of maximum size. The cases of longest path transversals

and longest cycle transversals arise as R = P2 and R = C2 (the multigraph 2-vertex cycle), respectively. We

prove that for each connected multigraph R, if the family F of maximum R-subdivisions in G is pairwise

intersecting, then F admits a transversal of size at most Cn3/4, where C is a constant depending on R.

Let R be a multigraph. Recall that an R-subdivision in G is a subgraph of G isomorphic to a subdivision

of R, and a maximum R-subdivision is an R-subdivision F in G that maximizes |V (F )|. An R-transversal

of G is a set of vertices intersecting each maximum R-subdivision. Let τR(G) be the minimum size of an

R-transversal in G.

Our next result shows that when the maximum R-subdivisions in a graph G pairwise intersect, G has

sublinear R-transversals. We make no attempt to optimize the multiplicative constant 8 or the dependence

on m.

Theorem 8. Let R be a connected m-edge multigraph with m ≥ 1 and let G be an n-vertex graph. If the

maximum R-subdivisions in G pairwise intersect, then τR(G) ≤ 8m5/4n3/4.

Proof. Let m = |E(R)| and let ε = 2(m/n)1/4. We may assume that m ≤ n, since otherwise we may take

V (G) as our R-transversal. Let F be the family of maximum R-subdivisions in G. An ε-partial transversal

is a triple (H,X, Y ) such that H is a subgraph of G, X = V (G)− V (H), Y ⊆ X with |Y | ≤ ε|X|, and each

F ∈ F is a subgraph of H or contains a vertex in Y . Given an ε-partial transversal (H,X, Y ), we either

obtain an ε-partial transversal (H ′, X ′, Y ′) with |V (H ′)| < |V (H)| or we produce an R-transversal with at

most 8m5/4n3/4 vertices. Starting with (H,X, Y ) = (G,∅,∅) and iterating gives the result.

Let (H,X, Y ) be an ε-partial transversal, and let F0 be the set of F ∈ F such that F is a subgraph

of H. We may assume that H contains vertex-disjoint paths P1 and P2 each of size dεne. Otherwise,

every path in H has size less than 2 dεne, and so each F ∈ F0 has at most 2m dεne vertices. Since F0

is pairwise intersecting, we have that V (F ) ∪ Y is an R-transversal for each F ∈ F0. It follows that

τR(G) ≤ |Y |+ 2m dεne ≤ εn+ 2m dεne ≤ (2m+ 1)εn+ 2m ≤ (2m+ 2)εn ≤ 4mεn = 8m5/4n3/4.

Suppose that H has a (V (P1), V (P2))-separator S of size at most ε2n. Since graphs in F0 are connected,

each F ∈ F0 has a vertex in S or is contained in some component of H − S. Also, since F0 is pairwise

intersecting, at most one component H ′ of H−S contains graphs in F0. Since S is a separator, H ′ is disjoint

from at least one of {P1, P2}. With X ′ = V (G) − V (H ′) and Y ′ = Y ∪ S, we have |X ′| − |X| ≥ εn and

|Y ′| = |Y | + |S| ≤ ε|X| + ε2n ≤ ε|X| + ε(|X ′| − |X|) ≤ ε|X ′|. It follows that (H ′, X ′, Y ′) is an ε-partial

transversal. Also |V (H ′)| < |V (H)| since |X ′| > |X|.

Otherwise, by Menger’s Theorem, H has a (V (P1), V (P2))-connector P with |P| ≥ ε2n. Let P ′ be the set

of paths in P of size at most 2/ε2. Note that |P ′| ≥ |P|/2, or else P has at least (ε2n)/2 paths of size more than

2/ε2, contradicting that the paths in P are disjoint. So we have |P ′| ≥ |P|/2 ≥ (ε2/2)n = 2m1/2n1/2 ≥ 2.

Combining P1 with two paths in P ′ whose endpoints in V (P1) are as far apart as possible and a segment of P2
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C

Qe F

Q1 Q2

Q0

W

Figure 2.2: (V (C), V (F ))-connector case. The subpath W of the cycle C is dashed, and the cycle D is
displayed in bold.

gives a cycle C0 such that (ε2/2)n ≤ |V (C0)| ≤ 2 dεne+4/ε2−4 ≤ 2εn+4/ε2, where the lower bound counts

vertices in V (P1) ∩ V (C0) and the upper bound counts at most 2 dεne vertices in (V (P1) ∪ V (P2)) ∩ V (C0),

at most 4/ε2 vertices on the paths in P ′ linking P1 and P2, and observing that the 4 endpoints of the linking

paths are counted twice.

Let C be a longest cycle in H subject to |V (C)| ≤ 2εn + 4/ε2, let ` = |V (C)|, and note that ` ≥
|V (C0)| ≥ (ε2/2)n. If V (C) intersects each subgraph in F0, then Y ∪V (C) witnesses τR(G) ≤ |V (C)|+ |Y | ≤
(2εn+4/ε2)+εn = 3εn+(n/m)1/2 < 8m5/4n3/4. Otherwise, choose F ∈ F0 that is disjoint from C. We may

assume |V (F )| ≥ `, or else Y ∪V (F ) witnesses that τR(G) ≤ |V (F )|+ |Y | < (2εn+ 4/ε2) + εn < 8m5/4n3/4.

If H has a (V (C), V (F ))-separator T of size at most ε`, then we obtain an ε-partial transversal as

follows. At most one component H ′ of H − T contains graphs in F0. Let X ′ = V (G) − V (H ′) and

let Y ′ = Y ∪ T . Since H ′ is disjoint from one of {C,F}, it follows that |X ′| − |X| ≥ `. We compute

|Y ′| = |Y | + |T | ≤ ε|X| + ε` ≤ ε|X| + ε(|X ′| − |X|) ≤ ε|X ′|. Hence (H ′, X ′, Y ′) is an ε-partial transversal

with |V (H ′)| < |V (H)|.

Otherwise, H has a (V (C), V (F ))-connector Q with |Q| ≥ ε`. We use Q to obtain a contradiction. For

e ∈ E(R), let Qe be the path in F corresponding to e, and let Qe be the set of paths in Q which have an

endpoint in Qe. Since |E(R)| = m, it follows that |Qe| ≥ |Q|/m ≥ ε`/m for some edge e ∈ E(R). Let Q′

be the set of paths in Qe of size at most 2mn
ε` , and note that |Q′| ≥ |Qe|/2 ≥ ε`

2m , or else Qe has at least
ε`
2m paths of size more than 2mn

ε` , a contradiction. The endpoints of paths in Q′ divide Qe into |Q′| − 1

edge-disjoint subpaths. Choose Q1, Q2 ∈ Q′ to minimize the length of such a subpath Q0 of Qe, and note

that Q0 has length at most n−1
|Q′|−1 ; see Figure 2.2. Since m ≤ n, we have 2m ≤ 2m3/4n1/4 = ε3

4 n ≤
ε`
2 , and

hence n−1
|Q′|−1 <

n
ε`
2m−1

= 2mn
ε`−2m ≤

4mn
ε` .

The endpoints of Q1 and Q2 on C partition C into two subpaths; let W be the longer subpath. If

|E(W )| ≥ |E(Q0)|, then we would obtain a larger R-subdivision by using Q1, W , and Q2 to bypass Q0.

Since F is a maximum R-subdivision, we have |E(W )| < |E(Q0)|. Therefore using Q1, Q0, and Q2 to bypass

W gives a cycle D with |E(D)| > |E(C)|. By the extremal choice of C, it follows that |V (D)| > 2εn+ 4/ε2.
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On the other hand, |V (D)| = |E(D)| ≤ `
2 + |E(Q1)|+ |E(Q0)|+ |E(Q2)| ≤ `

2 + 2mn
ε` + 4mn

ε` + 2mn
ε` = `

2 + 8mn
ε` .

Therefore 2εn+ 4
ε2 < |V (D)| ≤ `

2 + 8mn
ε` ≤ εn+ 2

ε2 + 8mn
ε` ≤ εn+ 2

ε2 + 16m
ε3 , where the last inequality uses

` ≥ (ε2/2)n. Simplifying gives εn < 16m
ε3 −

2
ε2 <

16m
ε3 , and this inequality is violated when ε ≥ (16m/n)1/4.

Applying Theorem 8, we obtain the following corollary.

Corollary 9. Let G be an n-vertex graph. If G is connected, then lpt(G) ≤ 8n3/4. If G is 2-connected, then

lct(G) ≤ 20n3/4.

Proof. When R = P2, an R-transversal is a longest path transversal. As we have seen in Proposition 1 longest

paths in a connected graph are pairwise intersecting. By Theorem 8, we have lpt(G) = τR(G) ≤ 8n3/4.

Similarly, when R = C2, an R-transversal is a longest cycle transversal. If G is 2-connected, then the

longest cycles pairwise intersect, as we have seen in Lemma 5. By Theorem 8, we have lct(G) = τR(G) ≤
8 · 25/4 · n3/4 ≤ 20n3/4.

We do not know whether the assumption in Theorem 8 that R is connected is necessary to obtain

sublinear R-transversals. To obtain analogues of Corollary 9 for general R, we show that the maximum

R-subdivisions pairwise intersect when the connectivity of G is sufficiently large.

Lemma 10. Let R be a connected m-edge multigraph with m ≥ 1. If κ(G) > m2, then the maximum

R-subdivisions in G are pairwise intersecting.

Proof. Suppose for a contradiction that G has disjoint maximum R-subdivisions F1 and F2, and let k =

|V (F1)| = |V (F2)|. By Menger’s Theorem, there is an (V (F1), V (F2))-connector P with |P| = min{k,m2+1}.
If |P| = k, then every vertex in F1 is an endpoint of a path in P, and we obtain an R-subdivision of size

more than k by replacing an edge uv ∈ E(F1) with a path in P having u as an endpoint, a path in P having

v as an endpoint, and an appropriate path in the connected subgraph F2.

So we may assume |P| = m2+1. For each e ∈ E(R), let Fi(e) be the path in Fi corresponding to e. Since

R has no isolated vertices, we may associate each P ∈ P with an ordered pair of edges (e1, e2) ∈ (E(R))2

such that P has its endpoint in F1 in F1(e1) and its endpoint in F2 in F2(e2). Since |P| > m2, some pair

(e1, e2) is associated with distinct paths P,Q ∈ P. Let Wi be the subpath of Fi(ei) whose endpoints are in

V (P ) ∪ V (Q). If |E(W1)| ≥ |E(W2)|, then we modify F2 to obtain a larger R-subdivision by using P , W1,

and Q to bypass W2. Similarly, if |E(W2)| ≥ |E(W1)|, then we modify F1 to obtain a larger R-subdivision

by using P , W2, and Q to bypass W1.

Corollary 11. Let R be a connected m-edge multigraph. If G is an n-vertex graph with κ(G) > m2, then

τR(G) ≤ 8m5/4n3/4.

Note, we make no real attempt to minimize the required connectivity to guarantee pairwise intersection

in Lemma 10. This is because, in the two cases were care most about, paths and cycles, we already know

we need connected and two connected graphs, respectively.

This result has since been improved by Kierstead and Ren (2023+) in the specific case of longest path

and cycle transversals to O(n2/3) (personnel communication).
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Chapter 3

Gallai Families

Instead of searching for a bound on longest path transversal number for general connected graphs, we could

try to find all graphs G such that lpt(G) = 1. That is, we can try to characterize graphs with a positive

answer to Gallai’s question; with a vertex common to all longest paths. We call these graphs Gallai graphs.

If we are given a family of graphs G whose connected members are Gallai graphs, we say G is a Gallai family.

Additionally, if we have a vertex v in a graph G that is common to all longest paths in G we say v is a Gallai

vertex. When it is clear we are talking about a family of graphs, a specific graph, or a vertex, we simply say

that that family, that graph, or that vertex is Gallai.

There is, as of yet, no known characterization for Gallai graphs. There are several families of graphs that

are known to be Gallai, and there are a handful of graph constraints which also guarantee Gallai vertices.

Conversely, there are a few families of graphs which are known not to be Gallai.

Given a graph G and a graph H we say G is H-free if G does not have H as an induced subgraph. If G
is a family of graphs that are H-free, then we say G is H-free. If G is the family of all H-free graphs, we call

H the forbidden subgraph for G. As an extension, given a family of graphs H, we can define H-free graphs.

We say that a graph G is H-free if G is H-free for each H ∈ H.

Several known Gallai families, including many of our own results are about families of graph character-

ized by forbidden subgraphs.

3.1 Known Gallai Families

Our next proposition shows that a family of subtrees of a tree have the Helly property.

Proposition 12. A family of pairwise intersecting subtrees of a tree have non-empty intersection.

Proof. Let T be a tree and let S be a family of pairwise intersecting subtrees of T . Assume, by way of

contradiction, no vertex of T is common to each member of S. For each vertex v of T , there is exactly one

component of T − v containing a subtree of S. There must be at least one since v is not contained in every

subtree of S and there cannot be two components containing members of S as those subtrees would not

intersect. Let u be the neighbor of v in the component of T − v containing a member of S. We construct

an auxiliary digraph T ′ with vertex set V (T ) by adding the directed edge vu. Adding such a directed edge
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for each vertex v ∈ V (T ) results in a digraph T ′ with |V (T )| edges. Since T only has |V (T )| − 1 edges,

there is some edge of uv in T such that uv and vu both appear in E(T ′). This means there is a subtree

in S contained in the component of T − v containing u and a subtree of S contained in the component of

V (T )− u containing v. These two subtrees are disjoint, contradicting that S is pairwise intersecting.

Corollary 13. Trees form a Gallai family.

Proof. Note that the family of longest paths in any tree T is a pairwise intersecting family of subtrees in T .

The result follows from Proposition 12.

A set of vertices S in a graph G is independent if every pair of vertices in S is nonadjacent. The size of

a largest independent set in a graph G is called the independence number of the graph and is denoted α(G).

Split graphs, which are graphs whose vertex set can be partitioned into an independent set and a clique,

are a known Gallai family. Additionally, cacti graphs, which are graphs in which any two cycles share at

most one vertex, is a known Gallai family. Both results are shown by Klavžar and Petkovšek [15].

An intersection graph is a graph whose vertices are sets such that two vertices are adjacent if and only

if they intersect. An interval graph is an intersection graph where the vertices are intervals on the real line.

A circular arc graph is an intersection graph whose vertices are arcs on a circle. It was claimed in [16] that

circular arc graphs were a Gallai family. However, Joos found a missing case in the proof, which he solved

[17]. The former paper does solve the problem for interval graphs while the latter gives a completion of the

argument for circular arc graphs.

Let G be a graph and s and t be two of its vertices. We say G is series parallel with terminals s and t if

it can be turned into the edge st be a sequence of the following operations: replacement of a pair of parallel

edges with a single edge that connects their common endpoints or replacement of a pair of edges incident

to a vertex of degree 2 other than s or t with a single edge. A graph G is 2-terminal series parallel if there

are vertices s and t in G such that G is series parallel with terminals s and t. A graph G is series parallel if

each of its 2-connected components is a 2-terminal series parallel graph. Chen et al. showed that each series

parallel graph has a Gallai vertex [18].

A matching in a graph is a set of edges having no common endpoints. The matching number of a graph

G, denoted ν(G), is the size of a largest matching in G. Chen showed connected graphs with ν(G) ≤ 3 are

Gallai [19].

A chordal graph is a graph having no induced cycle of length more than three. A vertex u is a maximum

neighbor of a vertex v if N(w) ⊆ N(u) for each w ∈ N(v). Note that u = v is allowed in this definition.

A maximum neighborhood ordering of a graph G is a linear ordering v1, . . . , vn of V such that vi has a

maximum neighbor in Gi where Gi is the subgraph of G induced by {vi, . . . , vn} for all i from 1 to n. A

graph is dually chordal if it has a maximum neighborhood ordering. Jobson et al. showed dually chordal

graphs are a Gallai family [20].

A permutation graph is a graph whose vertices represent the elements of a permutation and whose edges

represent pairs of elements reversed by the permutation. A bipartite permutation graph is a permutation

graph that is also bipartite. Cerioli et al. showed bipartite permutation graphs are Gallai [21].
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Golan and Shan showed 2K2-free graphs are Gallai [22]. A graph is P4-sparse is any set of five vertices

induce at most one chordless path. Cerioli and Lima showed both P4-sparse and {P5,K1,3}-free graphs are

Gallai [23].

The graph Bi,j has a triangle consisting of the vertices x, y, and z where x is also an endpoint of a path of

length i and y is an endpoint of a path of length j. The graph Zi is equivalent to Bi,0. Gao and Shan showed

that the {K1,3, H}-free graphs are a Gallai family for every H in {C3, P4, P5, P6, Z1, Z2, Z3, B1,1, B1,2} [24].

It is entirely reasonable to pick our favorite graph family H and see if forbidding H results in a Gallai

family. A more structured approach though is to look at the Peterson fragment G0 and see what is ‘broken’

and see what ‘fixes‘ it. That is, we can look at induced subgraphs in G0 and forbid them.

We denote the family of H-free graphs Free(H). We say H is a fixer if Free(H) is a Gallai family. It is

so named since forbidding H ‘fixes’ Gallai’s question.

A linear forest is forest whose components are paths.

Proposition 14. If H is a fixer, then H is a linear forest on at most 9 vertices.

Proof. Let H be a fixer. By definition, if G is a graph with lpt(G) > 1, then H is an induced subgraph of G.

Recall the Peterson fragment G0 obtained from the Peterson graph (Figure 1.2) and the fact every path

in G0 omits at least 2 vertices. Let R be the three vertices of degree one in G0. Since the Petersen graph

is vertex-transitive [25] and has a 9-cycle, it follows that for each vertex x ∈ V (G0) − R, there is a longest

path in G0 with both ends in R that omits only x and the other vertex in R.

Let M be the set of 3 edges incident to the vertices in R. Let G1 be the graph obtained from G0 by

replacing each edge in M with a path of length q and replacing each edge outside M with a path of length

p, where p > |V (H)|. Provided that q > |E(G0)| · p, the longest paths in G1 are in bijective correspondence

with the longest paths in G0 that have both ends in R. Recalling that, for each x ∈ V (G0) − R, there is a

longest path in G0 with both ends in R that omits x, we have lpt(G1) > 1. Since G1 has girth larger than

|V (H)| and H is an induced subgraph of G1, it follows that H is acyclic.

Let S be the set of cubic vertices in G1. We obtain G2 from G1 by replacing each vertex w ∈ S with

a triangle Tw such that the three edges incident to w in G1 are incident to distinct vertices of Tw in G2.

Clearly, G2 is claw-free. Let P be a longest path in G2. Again, provided that q is sufficiently large, P has

its ends in R. When P visits a vertex in some Tw, it must visit all vertices in Tw before leaving. It follows

that the longest paths in G2 are in bijective correspondence with the longest paths in G1 and lpt(G2) > 1.

Since H is an induced subgraph of G1 and G2, it follows that H is triangle-free and claw-free, and so

∆(H) ≤ 2. Recalling that H is acyclic, we have that H is a linear forest. But H is also an induced subgraph

of G0 and to obtain an induced linear forest as a subgraph of G0, a vertex must be deleted from the closed

neighborhood of each cubic vertex of G0. Let R′ be the set of neighbors of vertices in R. Since the vertices

in R′ are cubic and have disjoint closed neighborhoods, each induced linear forest has at most |V (G0)|− |R′|
vertices, and so |V (H)| ≤ |V (G0)| − |R′| = 12− 3 = 9.

Remark 15. Gao and Shan asked whether all longest paths in a connected claw-free graph have a non-empty

intersection [24]. Proposition 14 answers this question in the negative.
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For |V (H)| ≤ 4, we show that H is a fixer if and only if H is a linear forest. Necessity follows from

Proposition 14. For sufficiency, we show that every 4-vertex linear forest is a fixer. The linear forests of order

4 are P4, P3 + P1, 2P2, P2 + 2P1, and 4P1. Cerioli and Lima showed that P4-sparse graphs, a superclass of

P4-free graphs, form a Gallai family [23], whereas Gao and Shan showed that 2P2-free graphs form a Gallai

family [22]. In other words, P4 and 2P2 are fixers. In the following, we address the cases: P3 +P1, P2 + 2P1,

and 4P1. These, along with the rest of the results in the chapter appear in our paper Non-empty Intersection

of Longest Paths in H-free Graphs [7].

Note that if H and K are graphs such that H is a subgraph of K, then Free(H) ⊆ Free(K) as any graph

that is H-free is also K-free, however a graph that is K-free may not be H-free. This means, for example,

showing 4P1 is a fixer also shows any subgraph of 4P1 is a fixer. Since the cases mentioned above turn out

to be fixers, they also show the linear forests on fewer than 4 vertices are also fixers.

4P1 2P2 P4P2 + 2P1 P3 + P1

Figure 3.1: The linear forests on 4 vertices. These are exactly the graphs H on 4 vertices such that Free(H)
is a Gallai family.

We begin with some basic but useful observations. Given vertices x, y ∈ V (G), an xy-fiber is a longest

path among all the xy-paths. Similarly, an x-fiber is a longest path among all the paths having x as an

endpoint, and a fiber is a longest path in G. Note that every fiber is an x-fiber for some vertex x, and every

x-fiber is an xy-fiber for some vertex y.

The following two basic lemmas are used repeatedly, sometimes implicitly. Similar ideas are key to the

results in [26]. The first basic lemma treats single neighbors of fibers.

Lemma 16. Let P be an xy-path in a graph G, where P = v0 · · · v` with x = v0 and y = v`. Let H be a

component of G − V (P ) with a neighbor vi on P . If P is an x-fiber, then i < `. Moreover, if 0 < i, then

v`vi−1 6∈ E(G). Similarly, if P is a y-fiber, then 0 < i, and if i < `, then v0vi+1 6∈ E(G).

Proof. Suppose P is an x-fiber. No vertex in H is adjacent to y, or else P extends to a longer x-fiber,

a contradiction. Therefore, i < `. Also, if i > 0 and vi−1v` ∈ E(G), then following P from v0 to vi−1,

traversing vi−1v`, following P backward from v` to vi, and traveling to H produces a longer x-fiber. The

case that P is a y-fiber is symmetric.

In many of our arguments, we show that a path P in G has some desired property or else we obtain a

longer path. We now formalize two common ways to obtain longer paths. Given two lists of objects a and

b, a splice of a with b is a sequence obtained from a by (1) replacing a non-empty interval of a with b, or (2)

inserting b between consecutive elements in a, or (3) prepending or appending b to a. Given a host path P

and a patching path Q, a splice of P with Q is a path whose vertices are ordered according to a splice of the

ordered list of vertices in P with the ordered list of vertices in Q. A splice of P that has the same endpoints

as P is an interior splice; otherwise, the splice is exterior.

A detour of an xy-path P is a path obtained from P by using two patching paths Q1 and Q2 as follows.

Suppose that Qi is a uiwi-path for i ∈ {1, 2} and u1, u2, w1, w2 are distinct vertices appearing in order along
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P . We follow P from x to u1, traverse Q1, follow P backward from w1 to u2, traverse Q2, and finally follow

P from w2 to y.

Note that our definitions of a splice and detour require the resulting object to be a path and therefore

implicitly impose certain disjointness conditions on segments of the host and the patching paths. Also, note

that interior splices and detours of P have the same endpoints as P . A splice or detour of P is augmenting

if it is longer than P .

Let P be a path in G and let H be a component of G − V (P ). A vertex s ∈ V (P ) with a neighbor in

H is an attachment point of H. Our next lemma concerns pairs of attachment points.

Lemma 17. Let P be an xy-path in a graph G and let H be a component of G − V (P ) with attachment

points s and s′, where s appears before s′ when traversing P from x to y. The following hold.

1. If s and s′ are consecutive on P , then there is an augmenting interior splice of P .

2. If s and s′ are not consecutive along P , w and w′ immediately follow s and s′ respectively, and ww′ ∈
E(G), then there is an augmenting detour of P .

3. If s and s′ are not consecutive along P , w and w′ immediately precede s and s′ respectively, and

ww′ ∈ E(G), then there is an augmenting detour of P .

Proof. For (1), since s and s′ are consecutive attachment points on P , we obtain an augmenting interior

splice by inserting an appropriate path in H between s and s′. For (2), let Q1 be an ss′-path with interior

vertices in H and let Q2 be the path ww′. There is an augmenting detour of P using patching paths Q1 and

Q2. The case (3) is symmetric.

When P is a kind of fiber and a component H of G − V (P ) has many attachment points, our next

lemma obtains a large independent set contained in P consisting of non-attachment points.

Lemma 18. Let P be an xy-path in G, let H be a component of G−V (P ), let k be the number of attachment

points of H. There is an independent set A of G such that A ⊆ V (P ), no edge joins a vertex in A and a

vertex in V (H), and the following hold.

1. If P is an xy-fiber, then A ⊆ V (P )− {x, y} and |A| ≥ k − 1.

2. If P is an x-fiber, then A ⊆ V (P )− {x} and |A| ≥ k.

3. If P is a fiber, then A ⊆ V (P ) and |A| ≥ k + 1.

Proof. Let s1, . . . , sk be the attachment points of H, with indices increasing from x to y along P , and let

S = {s1, . . . , sk} (see Figure 3.2).

For (1), let A be the set of vertices in P that immediately follow some si with 1 ≤ i < k. Since P is an

xy-fiber, Lemma 17 implies that si and si+1 are not consecutive along P . Therefore, S and A are disjoint

and so no vertex in A has a neighbor in H. By Lemma 17, it follows that A is an independent set.

For (2), suppose in addition that P is an x-fiber. By Lemma 16, sk 6= y, and we may take A to be the

set of vertices that immediately follow some si with 1 ≤ i ≤ k.
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For (3), suppose in addition that P is a fiber. By Lemma 16, we have s1 6= x. Let A be the set of

vertices that immediately follow an attachment point together with x. Note that since P is also a y-fiber, it

follows from Lemma 16 that x has no neighbor in A, and so A is an independent set of size k + 1.

s1 sk
x y

HH

P

Figure 3.2: Construction of A in the proof of Lemma 18.

We can finally show in the following sections that P3 + P1, P2 + 2P1, and 4P1 are all fixers.

3.2 P3 + P1 is a fixer

Theorem 19. If G is a connected (P3 + P1)-free graph, then every vertex of degree at least ∆(G) − 1 is a

Gallai vertex.

Proof. Let P be a longest path in G, where P = v0 · · · v` with x = v0 and y = v`. Suppose for a contradiction

that there is a vertex u with d(u) ≥ ∆(G)−1 but u 6∈ V (P ). Let H be the component of G−V (P ) containing

u. Let T = V (H), let S be the set of attachment points of H on P , let k = |S|, and let t = |T |.

Note that H is a complete graph, or else an induced copy of P3 in H together with an endpoint of

P would induce a copy of P3 + P1 in G. We now claim that xvi ∈ E(G) for each vi ∈ S. Otherwise, by

Lemma 16, given a neighbor z of vi in H, {z, vi, vi+1, x} would induce a copy of P3 + P1.

Next we claim that vi−1vi+1 6∈ E(G) when vi ∈ S. Otherwise, we obtain a longer path by starting with

a neighbor z of vi in H, walking along zvix, following P from x to vi−1, traversing vi−1vi+1, and following P

from vi+1 to y. Therefore zvi ∈ E(G) for each z ∈ T and vi ∈ S, otherwise {z, vi−1, vi, vi+1} would induce

a copy of P3 + P1. It follows that N(z) = (T \ {z}) ∪ S for each z ∈ T . In particular, d(u) = (t− 1) + k.

Next we claim that, if vi, vj ∈ S with i 6= j, then vivj+1 ∈ E(G). Otherwise, given a neighbor z of vi

in H, the set {z, vi, vi+1, vj+1} would induce a copy of P3 + P1 since vi+1vj+1 6∈ E(G) by Lemma 17. This

implies that, if vi ∈ S, then the neighborhood of vi contains x, T , and {vj+1 : vj ∈ S}, and so d(vi) ≥ 1+t+k.

Therefore ∆(G) ≥ d(vi) ≥ d(u) + 2, a contradiction.

The degree assumption in Theorem 19 is best possible. Indeed, the complete bipartite graph Kt,t+2 is

(P3 + P1)-free, has maximum degree t+ 2, and the vertices of degree t are not Gallai.
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3.3 P2 + 2P1 is a fixer

Proposition 20. If G is a connected (P2 +2P1)-free graph, then every vertex of maximum degree is a Gallai

vertex.

Proof. Let G be a connected (P2 + 2P1)-free graph and let P = v0 · · · v` be a longest path in G with ends

x = v0 and y = v`. Suppose for a contradiction that u is a vertex of maximum degree and u 6∈ V (P ). Let

k = d(u) = ∆(G), and let H be the component of G − V (P ) containing u, and let k = ∆(G). Note that

xy 6∈ E(G), or else we obtain a longer path by starting at a vertex in H with a neighbor on P and traveling

around the cycle P + xy. Also, V (G)− V (P ) is an independent set, or else, by Lemma 16, an adjacent pair

of vertices in V (G)− V (P ) together with x and y would induce a copy of P2 + 2P1.

Let S be the set of attachment points of H. Since H has one vertex, we have |S| = k. Applying

Lemma 18 where H is graph with the single vertex u, there is an independent set A ⊆ V (P ) such that

|A| = k + 1 and A ∩ S = ∅.

If some vertex s ∈ S has two non-neighbors w1, w2 ∈ A, then {u, s, w1, w2} induces a copy of P2 + 2P1.

Hence every vertex in S has at least k neighbors in A. Counting u, every vertex in S has degree at least

k + 1, contradicting that ∆(G) = k.

Vertices of degree ∆(G)−1 in a (P2 + 2P1)-free graph G need not be Gallai. Indeed, consider the graph

G obtained from Kt,t+2 by removing a matching saturating the part of size t. G is (P2 + 2P1)-free and

∆(G) = t+ 1. The longest paths in G omit one vertex, and the Gallai vertices are those in the smaller part.

Two of the non-Gallai vertices in the larger part have degree t, which equals ∆(G)− 1.

3.4 4P1 is a fixer

For a path P in a graph G containing the vertices x and y, the closed subpath of P with boundary points x

and y, denoted P [x, y], is the subpath of P with endpoints x and y. The open subpath of P with boundary

points x and y, denoted P (x, y), is P [x, y]− {x, y}. Additionally, we define the semi-open subpaths P [x, y)

and P (x, y] analogously.

Let x, y ∈ V (G), let P be an xy-path in G, and let H be a component of G − V (P ). For each non-

attachment point w ∈ V (P ), we define the rank of w, denoted rank(w), to be the maximum length of

a subpath of P [x,w] containing w but no attachment points. Note that if s1, . . . , sk are the attachment

points with indices increasing from x to y, then the rank of a non-attachment point w ∈ V (P (si, si+1)) is

distP (si, w)− 1.

Lemma 21. Let P be an xy-path in a graph G and let H be a complete component of G− V (P ). Let S be

the set of attachment points of H on P , where S = {s1, . . . , sk}, with indices increasing from x to y, and

suppose that the induced (S, V (H))-bigraph has a matching saturating S0 when S0 ⊆ S and |S0| ≤ |V (H)|.
The following hold.

1. If s1 = x, then P has an augmenting splice with endpoint y. If sk = y, then P has an augmenting

splice with endpoint x. If si and si+1 are consecutive on P , then P has an augmenting interior splice.
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2. If some component P0 of P − S has fewer than |V (H)| vertices, then P has an augmenting splice

replacing P0.

3. If w and w′ are in distinct components of P − S − V (P [x, s1]), rank(w) + rank(w′) < |V (H)|, and

ww′ ∈ E(G), then P has an augmenting detour.

4. If w and w′ are in distinct components of P −S, rank(w) + rank(w′) < |V (H)|, and ww′ ∈ E(G), then

G has a path with endpoint y that is longer than P .

Proof. For part 1, if s1 = x or sk = y, then we obtain an augmenting splice of P by prepending or appending

a Hamiltonian path of H. If si and si+1 are consecutive along P , then it follows from Lemma 17 that P has

an augmenting interior splice.

For part 2, let P0 be a component of P − S with 1 ≤ |V (P0)| < |V (H)|. Note that P0 is P [x, s1), or

P (sk, y], or P (si, si+1) for some i. Suppose that P0 = P (si, si+1). Hence there is a matching {siz, si+1z
′}

joining si and si+1 to distinct vertices z, z′ ∈ V (H). Since H is complete, H contains a spanning zz′-path

Q. Since |V (P0)| < |V (H)|, we obtain an augmenting interior splice by replacing P0 with Q. The cases

P0 = P [x, s1) and P0 = P (sk, y] are similar, except that we obtain an augmenting external splice.

For part 3, we may assume that w appears before w′ when traversing P from x to y. Let i and j be indices

such that w ∈ V (P (si, si+1)) and w′ ∈ V (P (sj , sj+1)) except that we set j = k if w′ ∈ V (P (sk, y]). Since w

and w′ are in distinct components of P −S, we have i < j. If |V (H)| = 1, then rank(w)+rank(w′) < |V (H)|
implies that w immediately follows si and w′ immediately follows sj . By Lemma 17 part (2), we have

that P has an augmenting detour. Otherwise, |V (H)| ≥ 2 and there is a matching {siz, sjz′} joining si

and sj to distinct vertices z, z′ ∈ V (H). Let Q1 be an sisj-path whose interior vertices form a spanning

zz′-path in H, and let Q2 be the path ww′. The detour of P with patching paths Q1 and Q2 adds the

vertices in V (H) but omits the rank(w) vertices in P (si, w) and the rank(w′) vertices in P (sj , w
′). Since

rank(w) + rank(w′) < |V (H)|, the detour is augmenting.

si sj
x y

w w′

sj+1si+1

z

z′ H

P

Figure 3.3: Part 3 in Lemma 21.

For part 4, we may apply the argument for (2) unless w ∈ V (P [x, s1]). As before, let j be the index

such that and w′ ∈ V (P (sj , sj+1)) except that we set j = k if w′ ∈ V (P (sk, y]). We obtain a new path P ′

by following P backward from y to w′, traversing w′w, following P forward from w to sj , traversing an edge

joining sj and a vertex in H, and finishing with a Hamiltonian path in H. The path P ′ includes all of V (H)

but omits the rank(w) vertices in P [x,w) and the rank(w′) vertices in P (sj , w
′). Since rank(w)+rank(w′) <

|V (H)|, the path P ′ is longer than P .
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Our next lemma provides additional structure when G is k-connected and α(G) ≤ k + 2.

Lemma 22. Let P be a longest path in G with endpoints x and y, and let H be a component of G− V (P ).

Suppose that G is k-connected and α(G) ≤ k + 2. The following hold.

1. The set S of attachment points of H on P has size k.

2. The subgraph H is complete.

3. The graph P − S has k + 1 components, and each has at least |V (H)| vertices.

4. If w and w′ are in distinct components of P −S and rank(w) + rank(w′) < |V (H)|, then ww′ 6∈ E(G).

5. The vertices in each component of P − S of rank less than |V (H)| form a clique.

Proof. Let S = {s1, . . . , sr}, with indices increasing from x to y. SinceG is k-connected andH is a component

of G−V (P ), it follows that r ≥ k, or else S separates V (H) from x and y. Since P is a fiber, it follows from

Lemma 18 that G contains an independent set A with |A| = r+ 1 such that A ⊆ V (P ) and no edge joins A

and V (H). Since 1 + (k + 1) ≤ α(H) + (r + 1) = α(H) + |A| ≤ α(G) ≤ k + 2, it follows that α(H) = 1 and

r = k. Hence, there are exactly k attachment points and H is complete.

Let S0 ⊆ S with |S0| ≤ |V (H)| and let B be the induced (S0, V (H))-bigraph. If B has no matching

saturating S0, then Hall’s Theorem [25] implies that there exists S1 ⊆ S0 such that |NB(S1)| < |S1|. It

follows that NB(S1)∪ (S−S1) is a cutset of size less than k, contradicting that G is k-connected. Therefore

Lemma 21 applies, and since P is a longest path, parts 3 and 4 follow.

It remains to establish part 5. Suppose for a contradiction that w and w′ are distinct vertices in the

same component W of P − S such that rank(w), rank(w′) < |V (H)| and ww′ 6∈ E(G). Let A be the set of

non-attachment points in P with rank 0, and obtain A′ from A by deleting the vertex in W ∩A and adding

w and w′. Note that, with the possible exception of {w,w′}, each pair of vertices in A′ has rank sum less

than |V (H)| and intersects two components of P −S. It follows from (4) that A′ is an independent set. Since

|A′| = k+2 and A consists of non-attachment points, we may add any vertex in H to obtain an independent

set of size k + 3, a contradiction.

Theorem 23. Let k ∈ {1, 2}. If G is k-connected and α(G) ≤ k + 2, then every longest path in G contains

every vertex of degree at least ∆(G)− (2− k).

Proof. Let P be a longest path in G with endpoints x and y, and suppose for a contradiction that there

exists u /∈ V (P ) with d(u) ≥ ∆(G) − (2 − k). Let H be the component of G − V (P ) containing u, and

let t = |V (H)|. Let s1, . . . , sk be the attachment points of H on P , indexed in order from x to y, and let

S = {s1, . . . , sk}. Note that ∆(G) ≤ d(u) + (2− k) ≤ ((t− 1) + k) + (2− k) = t+ 1.

For each component W of P − S, let f(W ) be the set of vertices w in W with rank(w) < t. We claim

that N(s1) either contains V (H) or f(W ), for some component W of P − S. If not, then let A be the set of

vertices consisting of the lowest-ranked non-neighbor of s1 in each component of P −S. Note that if {w,w′}
is a pair of vertices in A, then rank(w) + rank(w′) < t, or else s1 has a set B of at least t neighbors in

the components of P − S containing w and w′. Let z be the vertex in P [x, s1] that precedes s1. Note that

z 6∈ B, since some non-neighbor of s1 separates z and the initial segment of P [x, s1) consisting of vertices

belonging to B. Counting B together with z, it follows that d(s1) ≥ t+ 2, contradicting that ∆(G) ≤ t+ 1.
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Hence rank(w) + rank(w′) < t and it follows from Lemma 22 part (4) that A is an independent set. But A

together with s1 and a non-neighbor of s1 in H forms an independent set of size k + 3, contradicting that

α(G) ≤ k + 2. Therefore N(s1) either contains V (H) or f(W ) for some component W of P − S.

Note that |V (H)| = t and |f(W )| = t for each component W of P − S. Let v and v′ be the immediate

neighbors of s1 along P , and let v′′ be a neighbor of s1 in H. Noting that V (H) and each f(W ) intersect

{v, v′, v′′} in at most one vertex, it follows that d(s1) ≥ t+ 3− 1, contradicting that ∆(G) ≤ t+ 1.

We note two consequences.

Corollary 24. If G is a connected graph with α(G) ≤ 3 and ∆(G) − δ(G) ≤ 1, or if G is a 2-connected

regular graph with α(G) ≤ 4, then G has a Hamiltonian path.

Corollary 25. The graph 4P1 is a fixer.

3.5 A 5-vertex fixer

In this section, we show that 5P1 is a fixer. Although 5P1 is a fixer, there are connected 5P1-free graphs

in which no vertex of maximum degree is Gallai (see Example 33). By contrast, for each fixer F of order

at most 4, the vertices of maximum degree in a connected F -free graph are all Gallai. ([22] show this for

F = 2P2, our results in this chapter show this for F ∈ {P3 +P1, P2 +2P1, 4P1}, and it is also true for F = P4

).

The statement that 5P1 is a fixer is equivalent to the statement that if G is a connected graph with

α(G) ≤ 4, then G has a Gallai vertex. In the case that G is 2-connected, the result already follows

from Theorem 23. When G has cut-vertices, we exploit the block-cutpoint structure of G. We need the

following two variants of Theorem 23 in the case that P is an x-fiber or an xy-fiber for distinguished vertices

x, y ∈ V (G).

Lemma 26. Let G be a 2-connected graph with a distinguished vertex x. If α(G−x) ≤ 3, then every x-fiber

contains every vertex in G of maximum degree.

Proof. Let P be an x-fiber with other endpoint y, and suppose for a contradiction that u is a vertex

of maximum degree not on P . Let H be the component of G − V (P ) containing u, and let r be the

number of attachment points of H on P . Note that r ≥ 2, or else there is at most one attachment point

separating y and H, contradicting that G is 2-connected. Moreover, by Lemma 18 part (2), we have that

r + α(H) ≤ α(G− x) ≤ 3. Since r ≥ 2 and α(H) ≥ 1, it follows that r = 2 and α(H) = 1. Therefore H is a

complete graph. Let {s1, s2} be the set of attachment points of H on P , with indices increasing from x to

y, and let S = {s1, s2}.

Since G is 2-connected, there is a matching in the induced (S, V (H))-bigraph saturating S or |V (H)| = 1.

Let t = |V (H)| and note that d(u) ≤ (t−1)+2 = t+1. Since P is an x-fiber, it follows from Lemma 21 that

both P (s1, s2) and P (s2, y] are non-empty (part (1)) and have at least t vertices (part (2)). If s2 has at least

t neighbors in some set in {V (H), V (P (s1, s2)), V (P (s2, y])}, then d(s2) ≥ t+ 2 > d(u), contradicting that u

has maximum degree. Hence s2 has fewer than t neighbors in each of V (H), V (P (s1, s2)), and V (P (s2, y]).

Let w1 and w2 be the non-neighbors of s2 of minimum rank in P (s1, s2) and P (s2, y], respectively, and let

z be a non-neighbor of s2 in H.
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We claim that {s2, z, w1, w2} is an independent set, contradicting α(G−x) ≤ 3. By construction, s2 has

no neighbor in {z, w1, w2}. Since w1 and w2 are not attachment points, z has no neighbor in {w1, w2}. If

w1w2 ∈ E(G), then Lemma 21 part (3) and the fact that P is an x-fiber imply that rank(w1)+rank(w2) ≥ t.
Hence s2 is adjacent to all vertices in P (s1, w1) and P (s2, w2), and there are at least t of them. Together

with the vertex preceding s2 in P and a neighbor of s2 in H, we have d(s2) ≥ t+ 2, contradicting that u has

maximum degree.

Lemma 27. Let G be a 2-connected graph and let x and y be distinct vertices of G. If α(G − {x, y}) ≤ 2,

then every xy-fiber contains every vertex in G of maximum degree or G−{x, y} is the disjoint union of two

complete graphs.

Proof. Let P be an xy-fiber, let u be a vertex of maximum degree not on P , and let H be the component of

G− V (P ) containing u. Let {s1, . . . , sr} be the set of attachment points of H, with indices increasing from

x to y, and let S = {s1, . . . , sr}. Since G is 2-connected, we have r ≥ 2, or else deleting S separates H from

V (P )− S (which is non-empty since x 6= y). By Lemma 18, there is an independent set A ⊆ V (P − {x, y})
such that |A| = r − 1 and there are no edges joining A and V (H). Therefore 1 + 1 ≤ (r − 1) + α(H) ≤
α(G− {x, y}) ≤ 2. It follows that r = 2 and α(H) = 1.

Let t = |V (H)|. Note that H is complete and, since G is 2-connected, there is a matching in the induced

(S, V (H))-bigraph saturating S or |V (H)| = 1. By Lemma 21, we have |V (P (s1, s2))| ≥ t or else there is an

augmenting interior splice of P replacing P (s1, s2), contradicting that P is an xy-fiber.

Let W = V (P (s1, s2)). Note that W is a clique, or else a non-adjacent pair of vertices in W together

with a vertex in H gives an independent set of size 3, contradicting α(G− {x, y}) ≤ 2.

If (x, y) = (s1, s2), then G − {x, y} is the disjoint union of the complete graph H and the complete

graph on W . Otherwise, if x 6= s1, then s1 has a non-neighbor in H and a non-neighbor in W , or else

d(s1) ≥ t+2 > d(u). So s1 together with a non-neighbor in W and a non-neighbor in H form an independent

set of size 3 in G− {x, y}, a contradiction. The case that y 6= s2 is similar.

A block B of G is special if every longest path in G contains an edge in B.

Lemma 28. If no cut-vertex in a connected graph G is Gallai, then G has a special block.

Proof. Let G be a connected graph such that no cut-vertex is Gallai. Suppose for a contradiction that no

block of G is special. Let T be the block-cutpoint tree of G (see, e.g., [25]). We construct a digraph D on

V (T ) in which each vertex has out-degree 1. Let B be a block in G. We identify a particular cut-vertex

x ∈ V (B) and we include the directed edge Bx in D. Since B is not special, some longest path of G is

contained in some component H of G−E(B). Note that H and B have exactly one vertex in common, and

we take x to be this cut-vertex.

Let x be a cut-vertex in G. We specify a particular block B that contains x and we include the directed

edge xB in D. Since x is not Gallai, some component H of G − x contains a longest path in G. Let B be

the block containing x such that B − x ⊆ H. We add the directed edge xB to E(D).

Since |E(D)| = |V (T )| > |E(T )|, it follows that there is a block B and a cut-vertex x such that both

Bx and xB are edges in D. This implies that G has vertex-disjoint longest paths, a contradiction.
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Lemma 29. If G is a connected graph, α(G) ≤ 4, and G has a special block, then G has a Gallai vertex.

Proof. Let G be a connected graph with α(G) ≤ 4 and with a special block B. Let S be the set of cut-vertices

in B, with S = {x1, . . . , xk}. Since α(G) ≤ 4, we have k ≤ 4.

Case k = 0. In this case, G = B and so G is 2-connected. It follows from Theorem 23 that G has a

Gallai vertex.

Case k = 1. Let u ∈ V (B) with dB(u) = ∆(B). We claim that u is a Gallai vertex in G. Let P be

a longest path in G. If P is contained in B, then u ∈ V (P ) by Theorem 23. If P leaves B through the

cut-vertex x1, then P ∩B is an x1-fiber in B and it follows that u ∈ V (P ) by Lemma 26.

Case k = 2. Suppose first that B − S is not the disjoint union of two complete graphs. Let u ∈ V (B)

with dB(u) = ∆(B). We claim that u is a Gallai vertex. Let P be a longest path in G. Since B is special, it

follows that P ∩ B is a nontrivial subpath of P . Note that, as a subgraph of B, the path P ∩ B is either a

fiber, an x1-fiber or an x2-fiber, or an x1x2-fiber, depending on whether P has two, one, or zero endpoints

in B, respectively. It follows from Theorem 23, Lemma 26, or Lemma 27 that u ∈ V (P ∩B), respectively.

Otherwise, suppose that B−S is the disjoint union of two complete graphs W1 and W2 (see Figure 3.4).

Since B is 2-connected, for i ∈ {1, 2}, there is a matching in the induced (S, V (Wi))-bigraph saturating S

or |V (Wi)| = 1. Also, since S is a minimum cut in B, each vertex in S has neighbors in V (W1) and V (W2).

It follows that B has a Hamiltonian cycle. We claim that x2 is a Gallai vertex. Let P be a longest path in

G, and suppose for a contradiction that x2 6∈ V (P ). Since B is special, P has at least one endpoint in B.

Replacing the subpath of P inside B with an appropriate Hamiltonian path gives a longer path in G.

x1 x2

W1
W2

B

P

Figure 3.4: Case k = 2 in the proof of Lemma 29.

Case k = 3. Note that B − S is a complete graph W1 or else α(G) > 4. Suppose there is a pair of

cut-vertices, say {x1, x3}, such that B − {x1, x3} is the disjoint union of two complete graphs. These are

necessarily W1 and the 1-vertex subgraph consisting of x2; let W2 be this 1-vertex subgraph. As in the case

k = 2, it follows that B has a Hamiltonian cycle containing x1x2x3 as a subpath. We claim that x3 is a

Gallai vertex. Let P be a longest path in G and suppose for a contradiction that x3 6∈ V (P ). Note that P

cannot have an endpoint in B, or else replacing P ∩B with an appropriate Hamiltonian path gives a longer

path in G. Therefore, as a subgraph of B, the path P ∩B is an x1x2-fiber. But B has a spanning x1x2-path,

contradicting x3 6∈ V (P ).
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Otherwise, there is no pair of cut-vertices whose removal from B results in the disjoint union of two

complete graphs. Let u ∈ V (B) with dB(u) = ∆(B). We claim that u is a Gallai vertex. Let P be a longest

path in G. It follows that, as a subgraph of B, the path P ∩B is a fiber, an xi-fiber for some xi ∈ S, or an

xixj-fiber for some xi, xj ∈ S, depending on whether P has two, one, or zero endpoints in B, respectively.

It follows from Theorem 23, Lemma 26, or Lemma 27 that u ∈ V (P ∩B), respectively.

Case k = 4. The condition α(G) ≤ 4 requires that |V (B)| = 4 and 2-connectivity requires that B

contains a 4-cycle C. Let xi be a cut-vertex in B which maximizes the length of an xi-fiber in G − E(B).

We claim that xi is a Gallai vertex. Let P be a longest path in G, and suppose for a contradiction that

xi 6∈ V (P ). The path P decomposes into three subpaths P1, P2, and P3, where P2 = P ∩ B. Let xj be the

vertex in V (P1) ∩ V (P2), and let xk be the vertex in V (P2) ∩ V (P3). Since |V (B)| = 4, it follows that xj or

xk is a neighbor of xi in C. If xkxi ∈ E(C), then we find a longer path in G by keeping P1, extending P2 by

the edge xkxi to obtain P ′2, and replacing P3 with an xi-fiber P ′3 in G − E(B). Since P ′2 is longer than P2

and P ′3 is at least as long as P3 by our choice of xi, the path obtained by combining P1, P ′2, and P ′3 is longer

than P . The case xjxi ∈ E(C) is symmetric.

Applying our lemmas gives the following.

Theorem 30. Let G be a connected graph. If α(G) ≤ 4, then G has a Gallai vertex. Equivalently, 5P1 is a

fixer.

Proof. If some cut-vertex in G is Gallai, then the claim follows. Otherwise, we have that G has a special

block by Lemma 28, and hence G has a Gallai vertex by Lemma 29.

The graph G0 from Figure 1.2 shows that there is a connected graph G such that G has no Gallai vertex

and α(G) = 6. The case α(G) ≤ 5 remains open.

Conjecture 31. If α(G) ≤ 5 and G is connected, then G has a Gallai vertex.

When G is 3-connected, α(G) ≤ 5, and G is sufficiently large, Theorem 32 shows that G has a Gallai

vertex. Outside of a finite number of cases when κ(G) ≥ 3, resolving Conjecture 31 reduces to the cases

that κ(G) = 1 and κ(G) = 2. Although it is reasonable to expect that the case κ(G) = 1 may be treated by

analyzing the block structure of G, it is less clear how to handle the case κ(G) = 2.

3.6 A Chvátal–Erdős type result

A celebrated result of Chvátal and Erdős [26] states that if α(G) ≤ κ(G), then G has a Hamiltonian cycle,

and the same technique shows that G has a Hamiltonian path when α(G) ≤ κ(G) + 1. Clearly, when G has

a Hamiltonian path, every vertex in G is Gallai. We show that if α(G) ≤ κ(G) + 2 and G is sufficiently large

in terms of κ(G), then the maximum degree vertices in G are Gallai.

Theorem 32. For each positive integer k, there exists an integer n0 such that if G is an n-vertex k-connected

graph with α(G) ≤ k + 2 and n ≥ n0, then each vertex of maximum degree is Gallai.

Proof. We take n0 = k(k+2)(2k+3)+1. Let P be a longest path in G with endpoints x and y, and suppose

for a contradiction that u ∈ V (G)−V (P ) and d(u) = ∆(G). Let H be the component of G−V (P ) containing

u, and let t = |V (H)|. From Lemma 22, it follows that H is complete and H has a set S of k attachment
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points on P . Let S = {s1, . . . , sk} with indices increasing from x to y. For 1 ≤ i < k, let Wi = V (P (si, si+1));

we also define W0 = V (P [x, s1)) and Wk = V (P (sk, y]). By Lemma 22, we have that |Wi| ≥ t for 0 ≤ i ≤ k.

Since u ∈ V (H), we have that N(u) ⊆ (V (H) − {u}) ∪ S and therefore ∆(G) = d(u) ≤ (t − 1) + k. If

t ≤ 2k(k+1), then ∆(G) ≤ k(2k+3)−1 and so α(G) ≥ n/(∆(G)+1) ≥ n/[k(2k+3)] > k+2, since n ≥ n0.

Therefore we may assume that t > 2k(k + 1).

We claim that H is the only component of G − V (P ). If G − V (P ) contains a second component H ′,

then let S′ be the set of attachment points of H ′ on P . By Lemma 22, it follows that |S′| = k. For each

i, choose ai ∈ Wi among the vertices with ranks in {0, . . . , k} so that ai 6∈ S′. Let A = {a0, . . . , ak}. Since

t > 2k(k + 1) > 2k, it follows from Lemma 22 that A is an independent set of size k + 1. Since A is disjoint

from S ∪ S′, we may extend A to an independent set of size k + 3 by adding a vertex in H and a vertex in

H ′. Since α(G) ≤ k + 2, we obtain a contradiction, and so H is the only component of G− V (P ).

Next, we claim that each vertex w ∈ Wi has at most k neighbors outside Wi. Let A be the subset

of V (P ) − S consisting of the vertices w such that rank(w) = 0. By Lemma 22, we have that A is an

independent set with |A| = k + 1. Note that each vertex w ∈ V (P ) − (S ∪ A) has at least one neighbor

in A, or else w together with A and a vertex in H would give an independent set of size k + 3. Since

|A| = k + 1 and ∆(G) ≤ t + k − 1, it follows that |V (P ) − (S ∪ A)| ≤ (k + 1)(t + k − 1) and hence

|V (P ) − S| ≤ (k + 1)(t + k) = t(k + 1) + k(k + 1). Since V (P ) − S =
⋃k

i=0Wi and |Wi| ≥ t for each i, it

follows that t ≤ |Wi| ≤ t+ k(k+ 1). By Lemma 22, in each Wi, the t vertices of smallest rank form a clique.

By symmetry, in each Wi, the t vertices of largest rank also form a clique. Since |Wi| ≤ t+ k(k+ 1) < 2t, it

follows that each vertex in Wi is among the t vertices with smallest rank or the t vertices with largest rank.

In particular, each vertex in Wi has at least t − 1 neighbors in Wi and hence at most k neighbors outside

Wi.

It now follows that each Wi is a clique. Indeed, if wi, w
′
i ∈ Wi but wiw

′
i 6∈ E(G), then we obtain an

independent set A with A ⊆ V (P ) − S and |A| = k + 2 as follows. Starting with A = {wi, w
′
i}, we add a

vertex to A from each Wj with j 6= i. Since |Wj | ≥ t > k(k + 1) and each of the vertices already in A have

at most k neighbors in Wj , some vertex in Wj can be added to A. The set A together with a vertex in H

gives an independent set of size k + 3, a contradiction. Hence each Wi is a clique.

A vertex z dominates a set of vertices B if z is adjacent to each vertex in B. Next, we claim that

each si ∈ S dominates some set in {W0, . . . ,Wk, V (H)}. If some attachment point si has more than k2

non-neighbors in each Wj and a non-neighbor v in H, then we may obtain an independent set of size k + 3

by starting with {si, v} and adding one vertex from each Wj . It follows that each si has at least t − k2

neighbors in some set in {W0, . . . ,Wk, V (H)}. Let Wk+1 = V (H), let si be an attachment vertex, and

choose j such that 0 ≤ j ≤ k + 1 and si has at least t − k2 neighbors in Wj . We claim that si dominates

Wj . Indeed, if w ∈ Wj but siw 6∈ E(G), then we obtain an independent set A of size k + 3 starting with

A = {si, w} and adding one vertex from each W` with 0 ≤ ` ≤ k + 1 and ` 6= j. Since si has at most

(t + k − 1) − (t − k2) neighbors in W`, each of the other vertices already in A has at most k neighbors in

W`, and |W`| ≥ t > (k(k + 1)− 1) + (k + 1)k, it follows that W` contains a vertex that can be added to A.

Since α(G) ≤ k + 2, we obtain a contradiction, and so si dominates Wj .

Let 1 ≤ i < k. Since Wi is a clique and Wi = V (P (si, si+1)), we obtain a path P ′ with V (P ) = V (P ′)

and the same set of attachment points by reordering the vertices in Wi arbitrarily, so long as the first vertex

is adjacent to si and the last vertex is adjacent to si+1. Similarly, we may reorder W0 provided that the last
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vertex in W0 is adjacent to s1 and we may reorder Wk provided that the first vertex in Wk is adjacent to sk.

Let R be the set of neighbors of S in P . Note that for each w ∈ Wi −R and each q with 1 ≤ q ≤ |Wi| − 2,

we may obtain a path P ′ with V (P ) = V (P ′) and the same attachment points in which rank(w) = q by an

appropriate reordering of Wi. It follows that if ww′ ∈ E(G), for some w ∈ Wi and w′ ∈ Wj , with i and j

distinct in {0, . . . , k}, then w,w′ ∈ R. Otherwise, we may reorder Wi and Wj to obtain a new path P ′ in

which either rank(w) ≤ 1 and rank(w′) ≤ 1, or rank(w) ≥ |Wi| − 2 and rank(w′) ≥ |Wj | − 2. In the latter

case, reversing P ′ gives a path P ′′ in which rank(w) ≤ 1 and rank(w′) ≤ 1. This contradicts Lemma 22 with

respect to P ′ or P ′′ since rank(w) + rank(w′) ≤ 2 but |V (H)| = t > 2k(k + 1) ≥ 4.

We obtain a final contradiction by showing that some attachment point has degree exceeding ∆(G).

Let D =
∑k

i=1 d(si) and note that D ≤ k(t + k − 1). We give a lower bound on D using three sets of

edges. First, for each si, let Ti be a set of 3 edges incident to si consisting of the edges joining si to its two

neighbors in R and a third edge joining si and a vertex in H. Second, for 0 ≤ i ≤ k, there is a matching

Mi of size k joining vertices in Wi and V (G) −Wi, or else Kőnig-Egerváry Theorem [25] implies that the

induced (Wi, V (G) −Wi)-bigraph has a vertex cover of size less than k, which is also a vertex cut since

|Wi|, |V (G) −Wi| ≥ t > k. Obtain M ′i from Mi by discarding edges incident to vertices in Wi ∩ R. Note

that |M ′i | ≥ |Mi| − 2 ≥ k − 2 always, but for i ∈ {0, k} we have |M ′i | ≥ |Mi| − 1 ≥ k − 1. Suppose that

e ∈ M ′i , let w be the endpoint of e in Wi, and let v be the other endpoint of e in V (G) −Wi. Since w is

not an attachment point, we have v 6∈ V (H), and since H is the only component of G − V (P ), it follows

that v ∈ V (P ) −Wi. Since w 6∈ R, it follows that v must be an attachment point. Hence each edge in M ′i
joins a vertex in Wi − R and a vertex in S. Moreover, M ′i and Tj are disjoint, as each edge in Tj has an

endpoint in R ∪ V (H) and no edge in M ′i has such an endpoint. With Z =
⋃k

i=0M
′
i ∪

⋃k
j=1 Tj , we have

|Z| ≥ [(k−1)(k−2)+2(k−1)]+3k = k(k+2). Third, for 1 ≤ i ≤ k, let Fi be the set of edges joining si and

a set in {W0, . . . ,Wk, V (H)} dominated by si. Note that |Fi ∩Z| ≤ 2, since Fi contains at most one edge in⋃k
i=0M

′
i and at most one edge in

⋃k
j=1 Tj . Let F =

⋃k
j=1 Fi, and note that |F | ≥ tk and |F ∩ Z| ≤ 2k.

We compute D ≥ |F ∪ Z| = |F | + |Z| − |F ∩ Z| ≥ tk + k(k + 2) − 2k = tk + k2 = k(t + k). Since

D ≤ k(t+ k − 1), it follows that k(t+ k) ≤ D ≤ k(t+ k − 1), contradicting that k is positive.

Example 33. The assumption α(G) ≤ κ(G) + 2 in Theorem 32 is best possible. Let G be the graph obtained

from the star K1,k+2 with leaves {x1, . . . , xk+2} by replacing the center vertex with a k-clique S and replacing

each leaf vertex xi with a t-clique Xi containing a set of k distinguished vertices Yi that are joined to S.

Since V (G) can be covered by k + 3 cliques, we have α(G) ≤ k + 3. Also, we have κ(G) = k since S is a

cutset of size k and when R ⊆ V (G) and |R| < k, the graph G − R contains at least one vertex in each of

S, Y1, . . . , Yk+2, implying that G−R is connected.

We claim that the set of Gallai vertices in G is S. Since |S| = k and G − S is the disjoint union of

k + 2 copies of Kt, it follows that every path in G has at most |V (G)| − t vertices. Paths in G that achieve

this bound contain S and all but one of X1, . . . , Xk+2, implying that u ∈ V (G) is Gallai if and only if u ∈ S.

By construction, each vertex in S has degree k(k + 2) + (k − 1). Hence, when t is sufficiently large, the set

of vertices in G of maximum degree is Y1 ∪ · · · ∪ Yk+2, and none of these is Gallai.

Although maximum degree vertices are not Gallai, our construction still has Gallai vertices. It is natural

to ask whether every graph with sufficiently high connectivity has a Gallai vertex [27, 28]. As noted at the

beginning of Chapter 3, there are k-connected graphs having no Gallai vertices when k ≤ 3. The question

remains open for k ≥ 4.
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The complete bipartite graphs Ks,s+2 show that the condition α(G) ≤ κ(G) + 1 cannot in general

be relaxed to α(G) ≤ κ(G) + 2 while still guaranteeing existence of Hamiltonian paths [26]. However,

Theorem 32 immediately implies that this is possible for sufficiently large regular graphs.

Corollary 34. For each positive integer k, there exists n0 such that every k-connected regular graph G with

α(G) ≤ k + 2 and n ≥ n0 vertices has a Hamiltonian path.

We do not know whether the condition α(G) ≤ k + 2 in Corollary 34 is best possible. The following

construction from [29] shows that it cannot be relaxed to α(G) ≤ k + 5.

Example 35. Let k ≥ 6 be even. Let G1 be Kk+1 minus an edge and let G2 be Kk+1 minus a matching on

k−4 vertices. Let G be the graph obtained from two copies of G1 and one copy of G2 by adding a new vertex

adjacent to all k vertices of degree k − 1. We have that G is a 1-connected regular graph with α(G) = 6 and

no Hamiltonian path.
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Chapter 4

Chordal Graphs

4.1 Motivation and Tree Representation

A graph G is chordal if every induced cycle in G of length 4 or more has a chord, which is an edge not on

the cycle, but having both endpoints on the cycle. Several subfamilies of chordal graphs are known to be

Gallai. For example, trees, series parallel graphs and interval graphs are Gallai families. Thus, it is natural

to investigate transversals in chordal graphs as a progression of previous results.

Chordal graphs are interesting in their own right; indeed, chordal graphs have many nice properties

and features. One such property is that minimal cut sets in chordal graphs are cliques. A simplicial vertex

is a vertex whose neighborhood is a clique. Another useful property is that every chordal graph G has a

simplicial elimination ordering v1, . . . , vn such that vj is simplicial in the subgraph induced by {v1, . . . , vj}
for each j. Many graph theory texts provide general information on chordal graphs (see [25], for example).

The most useful property for this work is a chordal graph’s tree representation. A tree representation

for a chordal graph G is the intersection graph of subtrees of a tree T . It is well known [30] that a graph

is chordal if and only if it has a tree representation. The representation associates a vertex v in G with a

subtree of T , which we denote S(v). If two vertices are adjacent in G, then their subtrees intersect in T .

The converse is also true. That is, if S(u) and S(v) are the subtrees of T corresponding to vertices u and v

in G and S(u) intersects S(v), then u and v are adjacent in G. This means if a vertex v in T is common to a

family of subtrees corresponding to a set of vertices in G, then those vertices are pairwise adjacent. Hence,

each vertex x in T corresponds to a clique in G, which we call a bag denoted by B(x).

The Graph Minors Project [31] introduced the tree width graph parameter which is well-studied and

exceedingly useful. The parameter measures how far a graph is from being a tree. It has received significant

attention due to its applications in fixed parameter tractable algorithms. The tree width of a graph G,

denoted tw(G), is defined as:

tw(G) = min {ω(H)− 1 : G ⊆ H and H is chordal}

This is yet another reason to look at chordal graphs.

A tree representation T for a chordal graph G is minimal if there is no tree representation of G with a
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host tree on fewer than |V (T )| vertices. A contraction of an edge uv in a graph G removes u and v from G

and creates a new vertex w such that N(w) = N(u) ∪N(v)

Proposition 36. Given a connected chordal graph G and a tree representation T of G, we have T is a

minimal tree representation if and only if B(x) 6⊆ B(y) for each x, y ∈ V (T ). Moreover, if T is a minimal

tree representation of G, then the bags are exactly the maximal cliques in G.

Proof. Assume T is a minimal tree representation but that there is a pair of vertices x, y ∈ V (T ) such

that B(x) ⊆ B(y). Let P be the xy-subpath of T and let x′ be the vertex adjacent to x in P . Note that

B(x) ⊆ B(x′). We can obtain a smaller tree representation for G by contacting the edge xx′ in T as well as

any subtrees containing xx′ to form a new tree representation T ′.

Conversely, suppose B(x) 6⊆ B(y) for each pair x, y ∈ V (T ) and that T ′ is another tree representation

of G. Note that every clique in G is contained in some bag B(x) for some x ∈ V (T ) by the Helly property.

Since each bag of a vertex in T is a clique in G, and since no bag contains another, G has at least |V (T )|
maximal cliques. Since the maximal cliques in G are contained in distinct bags of vertices of T ′, we have

|V (T )| ≤ |V (T ′)|.

Note that minimal tree representations for a given chordal graph need not be unique since it may be

possible to ‘connect’ maximal cliques in G in different ways.

A bramble of a graph is a set of connected subgraphs that pairwise intersect or are joined by an edge.

In particular, the set of longest paths of a connected graph and the set of longest cycles in a 2-connected

graph form brambles. The order of a bramble is the size of a minimum vertex transversal. It is well known

[32] that the tree width of a graph is equal to the maximum order of a bramble minus one. As observed

by Rautenbach and Sereni [14], this proves lpt(G) ≤ tw(G) + 1. In particular, for chordal graphs this gives

lpt(G) ≤ ω(G). (This is also easy to see from the tree representation of a chordal graph, as shown in

Proposition 49). Later, Harvey and Payne [33] improved this bound to most 4
⌈
ω(G)
5

⌉
for chordal graphs.

For the case of longest cycles, they obtained a transversal of size at most 2
⌈
ω(G)
3

⌉
for 2-connected chordal

graphs. We find upper bounds of lpt(G) ≤ O(log2(n) and lct(G) ≤ O(log(n) for connected and 2-connected

n-vertex chordal graphs, respectively.

4.2 Longest Cycle Transversals

A rooted tree is a tree with a distinguished vertex r, called the root of T . If T is a rooted tree with root

r and u ∈ V (T ), then the subtree of T rooted at u is the tree induced by the set of all vertices w ∈ V (T )

such that the rw-path in T contains u. A subtree of T is a rooted subtree if it is the subtree of T rooted at

u for some u ∈ V (T ). Our convention is to use X to name a rooted subtree of T with root vertex x. It is

convenient to also allow empty rooted trees with no vertices and no edges. If X is an empty rooted subtree

of T , then V (X) = ∅.

For convenience, we assume that each host tree T is equipped with a distinguished root vertex r. Given a

subgraph H of a chordal graph G with tree representation T , the core of H is the union, over all uv ∈ E(H),

of V (S(u)∩S(v)). Note that when H is connected, the core of H induces a connected subgraph of T . A set

W ⊆ V (T ) has the core capture property with respect to a family of subgraphs H of G if each H ∈ H has a

core which intersects W .
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Lemma 37. Let G be a graph with rooted tree representation T . Let X be a rooted subtree of T with root x,

and let H be a connected subgraph of G such that H has a core vertex in X but x is not a core vertex of H.

There is a vertex w ∈ V (H) such that S(w) ⊆ X − x.

Proof. Let y ∈ X be a core vertex of H, and let uv ∈ E(H) such that y ∈ V (S(u)) ∩ V (S(v)). Note that

for some w ∈ {u, v}, we have that x 6∈ S(w), or else x would also be a core vertex of H. Since S(w) is a

subtree of T , it must be that S(w) is contained in a component of T − x. Since y ∈ V (S(w)) and y is in a

component of X − x, it follows that S(w) ⊆ X − x.

We make frequent use of the following lemma.

Lemma 38 (Jordan’s Tree Separator). Let T be a tree, then there exists a vertex z ∈ V (T ) such that each

component of T − z has at most |V (T )|/2 vertices [34].

Let G be a chordal graph with tree representation T , let x, y ∈ V (T ), and let P be the xy-path in T .

The components of T − E(P ) containing an endpoint of P are exterior components, and the components

containing an interior vertex of P are interior components. (Note that if P has no interior vertices, then

T − E(P ) has no interior components and one or two exterior components according to |V (P )| = 1 or

|V (P )| = 2.)

Let T be a rooted tree, let X be the subtree rooted at a vertex x ∈ V (T ), and let Q be a subpath of X

with endpoint x. For each y ∈ V (Q), we define the descendants of y in X relative to Q, denoted D(y;Q,X),

to be the component of X − E(Q) containing y. For a subpath Q0 of Q, we define D(Q0;Q,X) to be the

union, over y ∈ V (Q0) of D(y;Q,X).

Lemma 39. Let G be a chordal graph with a rooted tree representation T , let x and y be distinct vertices

in T , and let P be the xy-path in T . If G has a subgraph H such that H has a core vertex in each exterior

component of T −E(P ) but no core vertex in any interior component, then H contains κ(H) vertices v such

that S(v) contains P .

Proof. Let Tx and Ty be the exterior components of T −E(P ) containing x and y respectively. Let ex and ey

be edges in H having a core vertex in Tx and Ty respectively. Both endpoints of ex have subtrees intersecting

Tx, and since H has no core vertex in an interior component of T −E(P ), at least one of these endpoints ux

has a subtree S(ux) that is contained in Tx. Similarly, let uy be an endpoint of ey with S(uy) ⊆ Ty. With

k = κ(H), let Q1, . . . , Qk be internally disjoint uxuy-paths in H.

We claim that each Qi contains a vertex vi with P ⊆ S(vi). If not, then each vertex v in Qi has a subtree

S(v) that is either disjoint from Ty or disjoint from Tx. Since Qi has endpoints ux and uy which are disjoint

from Ty and Tx respectively, it follows that Qi has adjacent vertices ww′ such that S(w) is disjoint from Ty

and S(w′) is disjoint from Tx. It follows that S(w) ∩ S(w′) is disjoint from Tx ∪ Ty, and so S(w) ∩ S(w′)

contains a vertex in an interior component of T − E(P ), contradicting that the core of H is disjoint from

those components.

Let T be a rooted tree let X be the subtree rooted at a vertex x ∈ V (T ), and let Q be a subpath of X

with endpoint x. For each y ∈ V (Q), we define D(y;Q,X) to be the component of X −E(Q) containing y.

For a subpath Q0 of Q, we define D(Q0;Q,X) to be the union, over y ∈ V (Q0) of D(y;Q,X).
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Lemma 40. Let G be a chordal graph with a rooted tree representation T , let X be the subtree of T with root

x, and let Q be a subpath of X such that x is an endpoint of Q. Let H be a nonempty family of subgraphs of

G such that V (X) has the core capture property for H and let k = min{κ(H1 ∪H2) : H1, H2 ∈ H}. Let Q0

be a minimal subpath of Q such that V (D(Q0;Q,X)) has the core capture property for H. If |V (Q0)| ≥ 2,

then G has k vertices v such that S(v) contains Q0.

Proof. Let y1 and y2 be the endpoints of Q0. By minimality of Q0, for i ∈ {1, 2}, there exists Hi ∈ H such

that Hi has a core vertex in D(yi;Q,X) but no core vertex in D(Q0 − yi;Q,X). Let H = H1 ∪ H2 and

note that H has a core vertex in each exterior component of T − E(Q0) but no core vertex in an interior

component of T −E(Q0). It follows from Lemma 39 that G has κ(H) vertices v such that S(v) contains Q0,

and κ(H) ≥ k.

Lemma 41. Let G be a graph, let W be a pair of glue vertices, and let H be a family of subgraphs of G,

where each H ∈ H is a maximum path or maximum cycle in G and V (H) ∩W = ∅. An attachment point

is a vertex u ∈ V (G) such that W ⊆ N(u). Let R be a nonempty family of paths in G such that each R ∈ R
is disjoint from W and the endpoints of R are distinct attachment points in G. If each H ∈ H contains a

subpath in R, then a longest path in R intersects every H in H.

Proof. Let R be a longest path in R, and suppose for a contradiction that R is disjoint from some H ∈ H.

Let R0 be a subpath of H in R, and let x and y be the endpoints of R0. We have |V (R0)| ≤ |V (R)|. Let

W = {w1, w2}. We modify H to obtain a longer path or cycle in G by replacing the subpath R0 with the

path xw1Rw2y.

Lemma 42. Let G be a connected chordal graph with minimal tree representation T . Let C be a family of

longest cycles in G, and let X be a subtree of T with root x having the core capture property for C. There is

a rooted subtree X ′ of X with |V (X ′)| ≤ |V (X)|/2 and a set of vertices A ⊆ V (G) with |A| ≤ 4 such that

for each C ∈ C, we have that V (C) ∩A 6= ∅ or C has a core vertex in X ′.

Proof. Suppose that y is a vertex in T with |B(y)| = 1. Since T is a minimal representation and B(y) is

not contained in any other bag, it follows that the vertex u ∈ B(y) satisfies V (S(u)) = {y} and so u has no

neighbors in G. Since G is connected, the lemma is satisfied with A = V (G) = {u} and X ′ empty. Hence

we may assume |B(y)| ≥ 2 for each y ∈ V (T ).

Apply Lemma 38 to obtain a vertex z ∈ V (X) such that each component of X−z has at most |V (X)|/2
vertices, and let Q be the xz-path in X. By Lemma 5, we have that C1∪C2 is a 2-connected subgraph of G.

Let Q0 be a minimal subpath of Q such that V (D(Q0;Q,X)) has the core capture property for C. We claim

that G has a pair of vertices {w1, w2} with each S(wi) containing Q0. If |V (Q0)| ≥ 2, then this follows from

Lemma 40. Otherwise, if Q0 consists of a single vertex y, then we choose {w1, w2} to be a pair of vertices

from B(y) arbitrarily. Let W = {w1, w2}.

Let C1 be the set of all cycles C ∈ C such that C is disjoint from {w1, w2}. We may assume C1 6= ∅, or

else the lemma is satisfied with A = W and X ′ empty. Let C ∈ C1. We claim that C contains a vertex whose

subtree is contained in a component of D(Q0;Q,X)−V (Q0). Since C has a core vertex in V (D(Q0;Q,X)),

it follows that C contains adjacent vertices u1 and u2 such that S(u1)∩S(u2) intersects D(Q0;Q,X). Since
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C is a longest cycle and w1 6∈ V (C), at least one of {S(u1), S(u2)} is disjoint from V (Q0) and hence is

contained in a component of D(Q0;Q,X)− V (Q0).

Suppose that there exists C ∈ C1 such that all but at most one vertex v ∈ V (C) satisfies S(v) ⊆ Y for

some component Y of D(Q0;Q,X)− V (Q0). It follows from Lemma 5 that each cycle in C1 intersects C in

at least one vertex whose subtree is contained in Y , implying that V (Y ) has the core capture property for

C1. Hence the lemma is satisfied with A = W and X ′ = Y . So we may assume that each C ∈ C1 contains

a vertex u with S(u) ⊆ Y for some component Y of D(Q0;Q,X) − V (Q0) and a pair of distinct vertices

{v1, v2} with S(vi) intersecting Q0.

Let R be the family of paths R in G−W such that the endpoints of R are distinct and have subtrees

intersecting Q0 and each interior vertex v of R satisfies S(v) ⊆ Y for some component Y of D(Q0;Q,X)−
V (Q0). Note that each C ∈ C1 contains a subpath in R; since C1 is nonempty, so is R. Let R be a longest

path in R. It follows from Lemma 41 that each C ∈ C1 intersects R. Let w3 and w4 be the endpoints

of R, and let C2 be the set of all C ∈ C1 that are disjoint from {w3, w4}. Let Y be the component of

D(Q0;Q,X)− V (Q0) such that each internal vertex v of R satisfies S(v) ⊆ Y . Note that each C ∈ C2 must

intersect R in an interior vertex of R and hence each C ∈ C2 has a core vertex in Y . We set A = {w1, . . . , w4}
and X ′ = Y . Since each C ∈ C which is disjoint from A is in C2, the lemma is satisfied.

Theorem 43. If G is an n-vertex 2-connected chordal graph, then lct(G) ≤ 4(1 + dlg ne).

Proof. Let T be a minimal tree representation for G. Since bags in T correspond to maximal cliques in

G, it follows from a simplicial elimination ordering on G that |V (T )| ≤ n. Choose a root vertex x ∈
V (T ) arbitrarily. Let C be the family of longest cycles in G. We apply Lemma 42 iteratively to obtain

(C0, X0), . . . , (Ct, Xt) andA1, . . . , At as follows. We set (C0, X0) = (C, T ). Given (Ci, Xi) such that ∅ ( Ci ⊆ C
and V (Xi) has the core capture property for Ci, we obtain a set of vertices Ai+1 ⊆ V (G) with |Ai+1| ≤ 4 and

a subtree Xi+1 with |V (Xi+1)| ≤ |V (Xi)|/2 such that each C ∈ Ci intersects Ai+1 or has a core vertex in

Xi+1. We let Ci+1 be the set of all C ∈ Ci that are disjoint from Ai+1, obtaining the next pair (Ci+1, Xi+1)

in the iteration. The iteration ends with a pair (Ct, Xt) such that Xt is empty (and necessarily Ct = ∅ also,

since V (Xt) has the core capture property for Ct). Since |V (Xi)| ≤ n/2i, it follows that t ≤ 1 + dlg ne.
Let A =

⋃t
i=1Ai, and note that A is a longest cycle transversal for G since C ∈ C intersects Ai, where

C ∈ Ci−1 − Ci. Since each Ai has size at most 4, the bound follows.

4.3 Longest Path Transversals

In this section, we prove that each connected chordal graph G with n vertices has a longest path transversal

of size O(log2 n).

Note that if X is a rooted subtree of a rooted tree T and Q is a subpath of X, then V (D(Q;Q,X)) =

V (X). It follows that if V (X) has the core capture property for a family of subgraphs H of G, then for each

subpath Q, there is a minimal subpath Q0 of Q such that V (D(Q0;Q,X)) has the core capture property for

H.

Lemma 44. Let G be a connected chordal graph, and let T be a minimal rooted tree representation of G. Let

X be a rooted subtree of T and let P be a family of longest paths in G such that V (X) has the core capture

property for P. Moreover, suppose that for each path P ∈ P, both S(u) and S(v) have a vertex outside X,
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where u and v are the endpoints of P . There exists a set A ⊆ V (G) with |A| ≤ 4 and a subtree X ′ of X with

|V (X ′)| ≤ |V (X)|/2 such that for each P ∈ P:

1. P has a vertex in A, or

2. P has a core vertex in X ′.

Proof. Note that if X is an empty rooted subtree, then P must be empty, since X has the core capture

property for P. In this case, the lemma is satisfied with A = ∅ and X ′ empty. Hence we may assume that

X is a nonempty subtree of T rooted at x ∈ V (T ).

Note that since T is a minimal tree representation, we may assume that each bag in T has size at least

2, as a singleton bag would give a vertex in G forming a maximal clique of size 1. Since G is connected, this

would imply that G is just a single vertex, in which case we may take A = V (G) and X empty.

Choose z ∈ V (X) so that each component of X−z has at most |V (X)|/2 vertices. Let Q be the xz-path

in T . Note that V (D(Q;Q,X)) = V (X), and so V (D(Q;Q,X)) has the core capture property for P. Let

Q1 be a minimal subpath of Q such that V (D(Q1;Q,X)) has the core capture property for P. We claim

that G has a vertex w1 such that S(w1) spans Q1. If |V (Q1)| = 1 and Q1 = y, then minimality of T gives

that B(y) is nonempty and we may choose w1 ∈ B(y). Otherwise, if |V (Q1)| ≥ 2, then we apply Lemma 40

to obtain w1.

Let P1 be the set of all paths P ∈ P that do not contain w1; note that if P1 is empty, then the lemma

is satisfied with A = {w1} and X ′ empty. So assume P1 is nonempty and let Q2 be a minimal subpath of

Q1 such that V (D(Q2;Q,X)) has the core capture property with respect to P1. Our next aim is to obtain

w2 ∈ V (G) such that w2 6= w1 and S(w2) spans Q2. Indeed, if |V (Q2)| = 1 with Q2 = y, then we may use

|B(y)| ≥ 2 to choose w2 ∈ B(y) distinct from w1. Otherwise, if |V (Q2)| ≥ 2, then we obtain w2 by applying

Lemma 40 with H = P1, and observing that w2 is chosen from the union of two paths in P1, none of which

contain w1.

Let P2 be the set of all paths P ∈ P1 that do not contain w2. Again, we may assume P2 is nonempty, or

else the lemma is satisfied with A = {w1, w2} and X ′ empty. Let R be the family of paths in G− {w1, w2}
of size at least 3 whose endpoints have subtrees intersecting Q2 and whose interior vertices u satisfy S(u) ⊆
D(Q2;Q,X)− V (Q2). We claim that each P ∈ P2 has a subpath in R. Indeed, since D(Q2;Q,X) has the

core capture property for P1 and P ∈ P2 ⊆ P1, it follows that P has a core vertex in V (D(Q2;Q,X)). Since

P is a longest path, V (Q2) ⊆ S(w2), and w2 6∈ V (P ), it follows that P has no core vertex in V (Q2). Since

P has a core vertex in D(Q2;Q,X) but no core vertex in V (Q2), it follows that there exists u ∈ V (P ) with

S(u) ⊆ D(Q2;Q,X)−V (Q2). Since the endpoints of P have subtrees intersecting T −V (X), it follows that

u is an interior vertex in a subpath of P in R.

Let W = {w1, w2}, and let R be a path in R of maximum length. Applying Lemma 41 with H = P2

to W and R, it follows that V (R) intersects each path in P2. Let w3 and w4 be the endpoints of R. Note

that R− {w3, w4} is a (nonempty) connected subgraph of G, all of whose subtrees are contained in a single

component of D(Q2;Q,X)− V (Q2), which happens to be a rooted subtree X ′ of X.

Let A = {w1, . . . , w4}. Let P be a path in P disjoint from A, and note that P ∈ P2. Recall that P and

R intersect, and since the endpoints of R are contained in A, it follows that P contains a vertex u in the

interior of R. Since S(u) ⊆ X ′ and since |V (P )| > 1 follows that P has a core vertex in X ′.
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Corollary 45. Let G be an n-vertex chordal graph with minimal rooted tree representation T , and let X be a

rooted subtree of T . Let P be a family of longest paths in G such that V (X) has the core capture property for

P and the endpoints of each P ∈ P have subtrees that contain a vertex outside X. There is a set A ⊆ V (G)

that intersects each path in P with |A| ≤ 4(1 + blg |V (X)|c).

Proof. Iteratively apply Lemma 44 to obtain a sequence (P0, X0), . . . , (Pt, Xt) and sets A1, . . . , At starting

with (P0, X0) = (P, X) and terminating when Xt is empty, such that V (Xi) has the core capture property

for Pi, the family Pi+1 is the set of all paths in Pi that are disjoint from Ai+1, and |V (Xi+1)| ≤ |V (Xi)|/2.

Since |V (Xi)| ≤ |V (X)|/2i, it follows that Xi is empty when i > lg |V (X)| and so t ≤ 1 + blg |V (X)|c. Also,

since Xt is empty but has the core capture property for Pt, it follows that Pt = ∅. Therefore
⋃t

i=1Ai is a

transversal for P of size at most 4t.

Lemma 41 considers a set of paths R such that each R ∈ R has endpoints that are adjacent to the glue

vertices; these paths start in and return to the neighborhood of the glue vertices. Our next lemma is an

analogue for “one-way” paths that start in the neighborhood of a glue vertex and need not return. A suffix

of a path P is a subpath of P containing an endpoint of P .

Lemma 46. Let G be a graph, let w be a glue vertex, and let P be a family of longest paths in G with each

P ∈ P avoiding w. An attachment point is a vertex u ∈ N(w). Let R be a nonempty family of paths in G

such that each R ∈ R avoids w and has at least one attachment endpoint. If every path P ∈ P contains a

suffix in R, then a longest path in R intersects every path in P.

Proof. Let R be a longest path in R and suppose that some P ∈ P is disjoint from R. Let R0 be a suffix

of P with R0 ∈ R. Let x and y be the endpoints of R0, with y also serving as an endpoint of P . Note that

y is not an attachment point, or else we may extend P by appending w at y. Therefore x is an attachment

point. Since |V (R)| ≥ |V (R0)|, we obtain a longer path by replacing R0 with the path xwR (with R oriented

appropriately).

Lemma 47. Let G be a connected chordal graph with minimal rooted tree representation T . Let X be a

rooted subtree of T and let P be a family of longest paths in G such that V (X) has the core capture property

for P. There exists a set A ⊆ V (G) with |A| ≤ 4 blg |V (X)|c + 5 and a rooted subtree X ′ of X with

|V (X ′)| ≤ |V (X)|/2 such that for each P ∈ P:

1. P has a vertex in A, or

2. P has a core vertex in X ′.

Proof. If X is empty, then P = ∅ since X has the core capture property for P. In this case, the lemma

is satisfied with A = ∅ and X ′ empty. So we assume X is nonempty. Let x be the root of X, and choose

z ∈ V (X) so that each component of X − z has at most |V (X)|/2 vertices. Let Q be the xz-path in T .

Let Q1 be a minimal subpath of Q such that V (D(Q1;Q,X)) has the core capture property for P. We

claim some vertex w1 ∈ V (G) satisfies Q1 ⊆ S(w1). If Q1 is a single vertex y, then we may take w1 to be

any vertex in B(y). Otherwise, we apply Lemma 40 with H = P to obtain w1.

Let P1 be the set of all P ∈ P such that w1 6∈ V (P ). We may assume P1 is nonempty, or else the lemma

is satisfied with A = {w1} and X ′ empty. Let Q2 be a minimal subpath of Q1 such that V (D(Q2;Q,X)) has
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the core capture property for P1. We claim there is a vertex w2 ∈ V (G) such that w2 6= w1 and Q2 ⊆ S(w2).

Indeed, if Q2 is a single vertex y, then since |B(y)| ≥ 2 and we may choose w2 ∈ B(y) distinct from w1.

Otherwise, we apply Lemma 40 with H = P1 to obtain w2. Since w2 is chosen from the union of two paths

in P1, neither of which contains w1, we have w2 6= w1. Let P2 be the set of paths in P1 that do not contain

w2. Since S(w2) contains Q2 and all paths in P2 avoid w2, it follows that the endpoints of each path in P2

have subtrees that are disjoint from V (Q2) (or else appending w2 would extend the path).

Let P3 be the set of all paths P ∈ P2 that have an endpoint v such that S(v) ⊆ D(Q2;Q,X)− V (Q2)

and let P4 = P2 − P3. Our goal is to apply Corollary 45 to obtain a small set of vertices B such that every

path in P4 intersects B. If P4 = ∅, then we may simply take B = ∅. Suppose P4 is nonempty. Let R be

the family of paths R in G of size at least 3 such that each endpoint of R has a subtree intersecting Q2 and

each interior vertex u of R satisfies S(u) ⊆ D(Q2;Q,X) − V (Q2). We claim that if P ∈ P4, then P has a

subpath in R. Since P has a core vertex in V (D(Q2;Q,X)) but no core vertex in V (Q2), it follows from

Lemma 37 that P contains a vertex u such that S(u) ⊆ D(Q2;Q,X)− V (Q2). Since P 6∈ P3, it follows that

u is an interior vertex in a subpath of P contained in R. Let R be a longest path in R. Applying Lemma 41

to P4 with glue vertices W = {w1, w2}, it follows that each path in P4 intersects R. Choose y ∈ V (Q2) and

y′ ∈ V (D(y;Q,X))∩N(y) such that each interior vertex u of R has a subtree S(u) contained in the subtree

Y of T rooted at y′. Let w3 and w4 be the endpoints of R, and observe that each P ∈ P4 that avoids w3 and

w4 must contain an interior vertex in R and hence have a core vertex in Y . By Corollary 45, there exists

B ⊆ V (G) such that |B| ≤ 4(1+ blg |Y |c) ≤ 4 blg |X|c and each path in P4 contains a vertex in B∪{w3, w4}.

Our next goal is to process P3. If P3 = ∅, then the lemma is satisfied with X ′ empty and A =

{w1, w2, w3, w4} ∪ B. So we amy assume P3 is nonempty. If P3 contains a path P such that S(P ) ⊆
D(Q2;Q,X)−V (Q2), then we choose y ∈ V (Q2) and y′ ∈ V (D(y;Q2, X))∩N(y) such that S(P ) is contained

in the subtree X ′ of T rooted at y′. In this case, the lemma is satisfied with X ′ and A = {w1, w2, w3, w4}∪B.

So we may assume each path P ∈ P3 has an endpoint u with S(u) ⊆ D(Q2;Q,X)− V (Q2) and some other

vertex v with S(v) intersecting V (Q2).

Let R be the set of paths R in G of size at least 2 such that some endpoint u has a subtree S(u) that

intersects V (Q2) but all other vertices v in R satisfy S(v) ⊆ D(Q2;Q,X)− V (Q2). Note that each path in

P3 has a subpath in R, and it follows from Lemma 46 with w = w2 that a longest path R ∈ R intersects each

path in P3. As above, choose y ∈ V (Q2) and y′ ∈ V (D(Q2;Q,X)) ∩N(y) such that all but one vertex in R

has a subtree contained in the subtree X ′ of T rooted at y′. Let w5 be the endpoint of R such that S(w5)

intersects V (Q2), and note that each path in P3 that avoids w5 contains a vertex from R whose subtree is

contained in X ′. Therefore X ′ has the core capture property for the family of paths in P3 that avoid w5.

Let A = {w1, . . . , w5} ∪ B, and note that each path P ∈ P either intersects A or has a core vertex in

X ′.

Our goal is to show that each connected n-vertex chordal graph has a longest path transversal of size

at most O(log2 n). In our bound below, we make no attempt to optimize the multiplicative constant 4 on

the leading lg2 n term.

Theorem 48. If G is a connected n-vertex chordal graph, then lpt(G) ≤ (4 blg nc+ 5)(blg nc+ 1).

Proof. Let T be a minimal rooted tree representation for G. Since T is a minimal tree representation, the

vertices x ∈ V (T ) correspond to maximal cliques in G, and it is easy to see from a simplicial elimination
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ordering of V (G) that G has at most n maximal cliques. Hence |V (T )| ≤ n.

Let X = T and let P be the family of longest paths in G. We may assume that each P ∈ P has an

edge, or else G is a single vertex. It follows that X has the core capture property for P.

We apply Lemma 47 iteratively to obtain (P0, X0), . . . , (Pt, Xt) and A1, . . . , At as follows. We set

(P0, X0) = (P, X). Given (Pi, Xi) such that Xi is a rooted subtree of T with V (Xi) having the core capture

property for Pi, we obtain (Pi+1, Xi+1) and a set Ai+1 ⊆ V (G) with |Ai+1| ≤ 4 blg |V (Xi)|c + 5 such that

|V (Xi+1)| ≤ |V (Xi)|/2, each path in Pi+1 −Pi intersects Ai+1, and Xi+1 has the core capture property for

Pi+1. The iteration terminates when Pt = ∅.

Note that since |V (Xi)| ≤ n/2i, we have that t ≤ 1+blg nc. Let A =
⋃t

i=1Ai, and note that A is a longest

path transversal for G. Since |Ai| ≤ 4(blg nc − (i− 1)) + 5 ≤ 4 blg nc+ 5, we have |A| ≤ t(4 blg nc+ 5).

4.4 Leafage Bound

The leafage of a connected chordal graph G, denoted leaf(G), is the minimum number of leaves in a tree

representation of G. Previously introduced by Lin, McKee and West [35], leafage is a measure of how far a

chordal graph is from being an interval graph. It is known to be computable in polynomial time [36].

For a tree T on at least 2 vertices, let f(T ) be the maximum, over all e ∈ E(T ), of the minimum number

of leaves of T contained in a component of T − e. For a connected chordal graph G with tree representation

T , we show that lpt(G) ≤ f(T ).

Balister, Györi, Lehel, and Schelp [16] observed that tree representations of connected chordal graphs

contain longest path transversal bags; we include the simple argument for completeness.

Proposition 49 (Balister–Györi–Lehel–Schelp [16]). Let T be a tree representation of a connected chordal

graph G. There is a vertex x ∈ V (T ) such that B(x) is a longest path transversal of G.

Proof. Let P be the family of longest paths in G. For P,Q ∈ P, we have that P and Q meet in a common

vertex w, and it follows that S(P ) and S(Q) both contain S(w). Therefore {S(P ) : P ∈ P} is a pairwise

intersecting family of subtrees of T , and since subtrees of a tree have the Helly property, there exists x ∈ V (T )

belong to each S(P ) for P ∈ P. It follows that B(x) is a longest path transversal for G.

Let T be a tree with k leaves. For x, y ∈ V (T ), we let T [x, y] denote the path in T with endpoints x

and y. A finger of x is a path of the form T [x, z], where z is a leaf in T . Note that every vertex of a tree T

has k fingers.

Let G be a connected chordal graph and let T be a minimal tree representation of G with vertex x. A

path u1 . . . ut is handy with respect to x if x ∈ V (S(u1)) but x 6∈ V (S(uj)) for j > 1. With Q = u1 . . . ut,

we have that S(Q− u1) is contained in a component of T − x.

Proposition 50. Let T be a tree representation for a chordal graph G, and let x be a vertex in T such that

B(x) is a longest path transversal in G. If Q is a handy path with respect to x of maximum size, then V (Q)

is a longest path transversal in G.
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Proof. By way of contradiction, let P be a longest path in G that is disjoint from Q. Note that P contains

at least one vertex in B(x). Let u and v be the endpoints of P , let w be the vertex in B(x) ∩ V (P ) that is

closest to v, and let P0 = P [w, v]. Note that P0 is a handy path with respect to x, and by our selection of

Q, we have |V (Q)| ≥ |V (P0)|. Since an endpoint of Q has a subtree containing x, we obtain a longer path

by attaching P [u,w] to Q.

Let T be a tree representation for a chordal graph G, let x, y ∈ V (T ). We say that u ∈ V (G) is maximal

from x toward y if, among all vertices in B(x), the vertex u maximizes |V (S(u)) ∩ V (T [x, y])|.

Lemma 51. Let G be a chordal graph with tree representation T , and let ww′ ∈ E(G). If w ∈ B(x) and

S(w′) is contained in the component X of T − x, then there is a leaf y in T belonging to X such that every

vertex in G maximal from x toward y completes a triangle with ww′.

Proof. Since ww′ ∈ E(G), we have that ∅ ( V (S(w)) ∩ V (S(w′)) ⊆ V (X). It follows that there is a vertex

z ∈ V (T ) that is common to all three subtrees in {S(w), S(w′), X}. Let y be a leaf in T such that z is on

T [x, y], and let u ∈ V (G) be maximal from x toward y. Since x, z ∈ V (S(w)), it follows from our choice of u

that x, z ∈ V (S(u)) also. Since z is common to S(w), S(w′), and S(u), it follows that {w,w′, u} is a triangle

in G.

Lemma 52 (The Hand Lemma). Let G be a connected chordal graph with tree representation T and a vertex

x ∈ V (T ) such that B(x) is a longest path transversal of G. Let Q be a handy path with respect to x of

maximum size, and suppose that |V (Q)| ≥ 2. Let X be the component of T − x containing S(Q) − x. Let

y1, . . . , yk be the leaf vertices of T in X. For each i, let ui be a vertex in B(x) that extends maximally towards

yi. The set {u1, . . . , uk} is a longest path transversal for G.

Proof. Let A = {u1, . . . , uk}, and let Q = v1 . . . vt with v1 ∈ B(x). Since v1v2 ∈ E(G) with S(v2) ⊆ X, it

follows from Lemma 51 that some u ∈ A completes a triangle with v1v2. Therefore uv2 . . . uk is also handy

with respect to x. Hence we may assume without loss of generality that v1 ∈ A.

Let P be a longest path in G and suppose for a contradiction that V (P ) ∩ A = ∅. By Proposition 50,

we have V (P )∩ V (Q) 6= ∅, and so P contains a vertex whose subtree is contained in X. Additionally, since

B(x) is a longest path transversal, it follows that P contains adjacent vertices ww′ such that w ∈ B(x) and

S(w′) ⊆ X. By Lemma 51, some vertex in A completes a triangle with w and w′, and we obtain a longer

path by inserting this vertex in P between w and w′.

Recall that f(T ) is the maximum, over all e ∈ E(T ), of the minimum number of leaves of T contained

in a component of T − e.

Theorem 53 (Leafage Bound). If G is a connected chordal graph with tree representation T , then either G

is complete or lpt(G) ≤ f(T ).

Proof. Note that if T ′ is obtained from T by contracting an edge, then f(T ′) ≤ f(T ). Hence we may assume

that T is a minimal tree representation. If |V (T )| = 1, then clearly G is complete, so we assume |V (T )| ≥ 2.

Let x ∈ V (T ) and let y be a neighbor of x. By minimality of T , we have that v ∈ B(y) − B(x) for some

vertex v ∈ V (G). By connectivity of G, there exists a vertex u ∈ B(x)∩B(y). Note that uv ∈ E(G) and uv
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is a handy path with respect to x. It follows that for each x ∈ V (T ), a maximum handy path with respect

to x has size at least 2.

We construct an auxiliary digraph H on V (T ) as follows. For each x ∈ V (T ) such that B(x) is a longest

path transversal, we select a maximum handy path Q with respect to x, and we direct an edge in H from x

to y, where y is the neighbor of x belonging to the component of T − x containing S(Q − v1), where v1 is

the endpoint of Q in B(x).

Note that in H, the outdegree of x is 1 if B(x) is a longest path transversal of G and 0 otherwise. By

Proposition 49, there exists an edge in H. Suppose xy ∈ E(H). By Lemma 52, we obtain a longest path

transversal contained in B(x) ∩ B(y). Hence xy ∈ E(H) implies that B(y) is a longest path transversal in

G, and therefore y also has outdegree 1. It follows that H contains a directed cycle. Since the underlying

graph of H is acyclic, it follows that xy ∈ E(H) and yx ∈ E(H) for some vertices x, y ∈ V (H).

Let e be the edge xy in T , let Tx be the component of T − e containing x, and let Ty be the component

of T − e containing y. Since xy ∈ E(H), it follows from Lemma 52 that maximal vertices from x toward

leaves in Ty form a longest path transversal. Similarly, maximal vertices from y toward leaves in Tx also

form a longest path transversal. Therefore lpt(G) ≤ min{`(Tx), `(Ty)} ≤ f(T ), where `(Tx) and `(Ty) are

the number of leaves in T belonging to Tx and Ty, respectively.

Corollary 54. If G is a connected chordal graph, then lpt(G) ≤ leaf(G)/2.

Proof. Let T be a tree representation of G with leaf(G) leaves. By Theorem 53, we have lpt(G) ≤ f(T ) ≤
leaf(G)/2.

A graph G is a star if it is isomorphic to K1,k for some k ∈ N. We call such graphs k-stars. A vertex of

degree k in a k-star is a center (vertex), and this vertex is unique except when k = 1. A subdivided star is a

star whose edges are subdivided some number of times (possibly zero). Two edges of the original star need

not be subdivided the same number of times.

Corollary 55. The family of chordal graphs admitting a tree representation T such that T is a subdivided

star tree is Gallai.

Proof. Let G be a connected chordal graph with tree representation T such that T is a subdivision of a

star. Note that f(T ) = 1. It follows from Theorem 53 that G is complete (implying lpt(G) = 1) or

lpt(G) ≤ f(T ) = 1.
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Chapter 5

Conclusion

It has been said that one of the worst things to do in research is solve a problem completely. The idea being

there is no more to be done. One of the greatest strengths of longest path transversals and all the work

presented here is just how many more avenues there are to explore. Yes, there are some nice results here,

and some good progress, but the problems are far from solved. And that is all the better.

In the second chapter, we give a sublinear upper bound on longest path transversal number for connected

graphs. Like many others, though, we think the best possible bound should be constant. Obtaining such a

bound appears to be difficult, though. Much of the resistance seems to come from the freedom longest paths

enjoy and how complicated their intersections can be.

It was suggested to us to try to bound lpt(G) in terms of various graph parameters. For example, a

fraction of the clique number added to another fraction of independence number. Perhaps there is progress

to made here.

Instead of looking at upper bounds on lpt(G), we could try to raise the lower bound. We could search

for a connected graph G with lpt(G) = 4, which is deceptively hard. If we find one, we could search for a

connected graph G with lpt(G) = k for larger k. This task is challenging as it will likely require a reasonably

large number of vertices (at least dozens).

Graünbaum’s lpt(G) = 3 example comes from replacing degree three vertices in a graph with lpt(G) = 2

with the Peterson fragment. This trick, however, fails to produce a graph with lpt(G) = 4 as there (usually)

is some Peterson fragment that is a transversal, so one can just select its three vertices of degree one as the

transversal. Hence, we will need a new gadget to find a graph with lpt(G) = 4.

Additionally, we can look at how various graph parameters affect transversals. We have given a result

giving a Gallai vertex in large graphs with α(G) ≤ κ(G) + 2. It seems possible it can be extended to all

graphs G with α(G) ≤ κ(G) + 2, not just large graphs. This does not seem like the whole truth is there,

either. Recall that we know of no 4-connected graph G with lpt(G) > 1. It is possible that α(G) ≤ κ(G) + 3

or even α(G) ≤ κ(G) + 4 is sufficient to guarantee a Gallai vertex. The Peterson fragment shows that

α(G) ≤ κ(G) + 5 is not sufficient.

Another reasonable direction to continue is to forbid other linear forests in the Peterson fragment. All

linear forests in G0 on at most four vertices have been taken care of, and 5P1 is also a fixer. It remains to
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look at the other linear forests in G0 having between 5 and 9 vertices. If we could show, for example, 3P3 is

a fixer then all of its subgraphs are also fixers. An easier task is to start with smaller subgraphs.

Next, as in the previous chapter and as many others have done, we could try to give upper bounds

for longest path transversal number for other families of graphs. We conjecture that chordal graphs form a

Gallai family and, at worst, should have logarithmic longest path transversals.

If we cannot show chordal graphs form a Gallai family, we could look at other host trees for the tree

representation, or try to tighten the leafage bounds.

As things stand, our bound on the longest cycle transversal number of a 2-connected chordal graph has

smaller order of magnitude than our bound on the longest path transversal number of a connected chordal

graph. It seems possible that they should be of the same order of magnitude.

An asteroidal triple in a graph G is a set of three distinct vertices such that each pair of vertices is

connected by some path avoiding the neighborhood of the third vertex. Interval graphs are the chordal graphs

without asteroidal triples [37], and notably interval graphs are Gallai. Hence, graphs with no asteroidal triple

may form a Gallai family.

Overall, there is simply a lot to do here. The various problems regarding longest path transversals, and

their longest cycle transversal variants, all could be studied. There are plenty of interesting graph families

and graph parameters that impose structure that could help in solving these transversal problems.
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