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ABSTRACT 

MAPPING INFILTRATION IN AN URBANIZING MIXED-LAND-USE WATERSHED 
WITH MULTI-TEMPORAL SATELLITE IMAGERY 

Sarah J. Higgins, M.S. 

Advisor: Dr. James A. Thompson 

Digital soil mapping (DSM) is a field of soil science that aims to improve traditional soil 
maps by producing higher resolution predictive maps of soil properties using spatial 
environmental data. DSM has historically relied primarily on static environmental covariates—
such as slope gradient, slope aspect, and other topographic variables derived from digital terrain 
models—for predicting static soil properties, like soil texture. Advancements in satellite imagery 
and statistical modeling improve the accuracy of digital soil maps by incorporating multi-
temporal data that can capture landscape-scale change over relatively short periods of time. 
Adding these dynamic environmental covariates may be especially useful for spatial prediction 
of dynamic soil properties, like infiltration rate, that are strongly affected by phenomenon that 
satellite imagery can detect, like land use that changes rapidly due to human activity. Infiltration 
strongly impacts soil health and hydrologic characteristics in a watershed. Understanding 
infiltration for sustainable land management is vital for making best management decisions in 
urbanizing environments like the West Run Watershed in Morgantown, West Virginia. We 
hypothesized that infiltration could be predicted at a higher accuracy and a finer spatiotemporal 
scale using digital soil mapping techniques than is currently provided by the current official soil 
data and maps produced by the National Cooperative Soil Survey. Spatial predictions of 
infiltration rate were produced for the West Run watershed using both static and dynamic 
environmental covariates as inputs into multiple linear regression (MLR) and random forest (RF) 
models, each of which were made using 10-fold cross validation. Training and independent 
validation sampling locations were selected using a conditioned Latin hypercube sampling 
scheme and observed saturated hydraulic conductivity of the soil surface was collected using 
automated dual-head infiltrometers. The MLR and RF models had R2 of 0.302 and 0.201, 
respectively. Validation sampling was stratified by the predicted infiltration values of the MLR 
model. Validation R2 values for the MLR and RF models were 0.080 and 0.103. The results from 
this study will benefit the development of a dynamic soil survey and will improve hydrologic 
models in this and potentially other mixed-land-use watersheds. 
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CHAPTER 1. INTRODUCTION 

Dynamic soil properties (DSP), or soil properties that are influenced by anthropogenic 

disturbance over short periods of time, are gaining more attention from scientists for use in soil 

health and sustainable watershed management because they are strongly connected to land use 

practices (Karlen et al., 2019). Patterns in DSPs are inherently linked to land use due to the 

different vegetation and management characteristics associated with different land uses (Wills et 

al., 2017). For example, forests and pastures exhibit different vegetation structures and 

management regimes that may lead to differences in various soil physical and chemical 

characteristics, even in similar soil types and landscape positions. It is important characterize 

DSPs across a landscape because they influence a soil’s capacity to perform necessary functions 

like holding water, storing nutrients, and maintaining structural support (Natural Resources 

Conservation Service, 2022). One DSP critical to soil scientists, hydrologists, and engineers is 

infiltration, which is the process by which water derived from precipitation or overland flow 

enters the soil. Infiltration influences erosion, runoff, streamflow, and available water to plants, 

making it a significant factor in hydrologic models (Horton 1933, Blasch et al., 2006). As a DSP, 

infiltration is linked to land use. Vegetation characteristics and management techniques change 

soils' organic matter content and bulk density, which are both strongly related to infiltration rate 

(Sun et al., 2018). Detailed infiltration maps are necessary to improve the accuracy of hydrologic 

models and strategically target management on a watershed scale (Vieux, 2001). This is 

especially true for urbanizing watersheds that encompass several different land uses, such as the 

West Run watershed in Morgantown, West Virginia. Flooding is an increasingly common 

problem in Appalachia due to the region's rugged topography and higher occurrences of severe 

precipitation events (Harvey, 2022). Extreme flooding events are economically devasting in 
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West Virginia—in fact, in their 2022 state climate summary for West Virginia, the National 

Oceanic and Atmospheric Administration found flooding as “the costliest and most severe 

natural hazard for the state” (Runkle et al., 2022). Infrastructure within the West Run watershed 

is at risk of flood damage, and severe, damaging floods are becoming more common. Each year 

urbanization in the watershed increases. Understanding the spatiotemporal variation in 

infiltration offers insight into flooding dynamics in a watershed and provides useful information 

for flood mitigation strategies. 

We propose that infiltration, measured as the saturated hydraulic conductivity of the soil 

surface, can be modeled using multi-temporal satellite imagery when combined with terrain 

derivatives traditionally used in digital soil mapping (DSM). Infiltration varies over space and 

time according to vegetation and land use, both of which are spatially and temporally variable in 

the West Run watershed. We hypothesize that the temporal resolution offered by multi-temporal 

satellite imagery can capture this change and thus improve infiltration map accuracy. As such, 

the goals of this study are to: 

1. Represent DSP on a watershed-scale using DSM techniques. 

2. Use both static and dynamic environmental covariates to predict DSP. 

3. Determine the utility of multi-temporal environmental covariates for creating a DSS. 

The objectives of this study are to analyze the links between the spatial variability of 

infiltration and use these measurements to develop an infiltration raster map that will contribute 

to a dynamic soil survey and serve as input for distributed hydrological modeling. Study 

objectives will be accomplished by developing and validating a predictive soil map for a 

dynamic soil property (infiltration of surface soil) using static and dynamic environmental 

covariates. 
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We hypothesize that hydrologic properties of the surface soil will vary among land use 

types in a mixed-land-use watershed. These differences will be evident in measurements of 

infiltration rate and saturated hydraulic conductivity. Our specific hypothesis is that spatial 

predictions of both static and dynamic soil properties will be improved by incorporating dynamic 

environmental covariates into the modeling workflow. 
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CHAPTER 2. LITERATURE REVIEW 

Soil and water share a close relationship that has been studied since the beginning of soil 

science as a discipline (Brevik & Hartemink, 2010). Notably, Vasily Dokuchaev (Johnson & 

Schaetzl, 2015) and Hans Jenny (1941) outlined climate, a function of mean annual temperature 

and precipitation (in addition to other climatic factors), as one of the key factors controlling 

pedogenesis and regional soil heterogeneity. At a local scale, topography also influences 

landscape hydrology and soil formation by controlling the direction and velocity of water flow in 

a watershed. It also controls subsurface flow and the water table level and is thus an important 

factor when considering soil water infiltration in a comprehensive water budget (Crave & 

Gascuel-Odoux, 1997). Water is also a driver of pedogenesis by transporting ions and clay 

minerals down a profile and creating opportunities for anaerobic soil processes to occur by 

saturating parts of a soil profile (Johnson et al., 1990). The interactions between soil and water 

are fundamental to understanding ecosystem function and the watershed response to precipitation 

events (Hewlett & Hibbert, 1967). Precipitation that falls in an unurbanized watershed is fated to 

be either intercepted by vegetation, fall directly into surface water bodies, or seep into the soil. In 

an urban or urbanizing watershed, rainfall may also be intercepted by concrete or other built 

structures. It then may find its way to nearby soil, surface waters, a rainwater basin, or a 

stormwater management system. Common measures to quantify this relationship between soil 

and water include soil moisture content, hydraulic conductivity, and infiltration. 

Infiltration 

Infiltration is the process of water movement into the soil surface. Infiltration rate is the 

rate at which water enters the soil, which is commonly measured in units of thickness of water 

infiltrated over time such as centimeters per second or millimeters per hour (Natural Resources 
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Conservation Service, 2022). Saturated hydraulic conductivity of the soil surface refers to the 

movement of water through the soil when the soil is fully saturated and all pores are filled with 

water. It is a common metric used to estimate the steady-state infiltration rate, which is the 

infiltration rate that is reached after initial infiltration once all pores are filled with water under a 

constant head (Lal & Shukla, 2004). Infiltration rate of a soil is considered a DSP, or a soil 

property that changes over a relatively short spatiotemporal scale with natural and anthropogenic 

disturbances (Natural Resources Conservation Service, 2022). Soil organic matter content and 

total porosity share a strong positive relationship to infiltration rate, while bulk density and initial 

moisture content show a negative relationship to infiltration rate (Shukla et al., 2003; Sun et al., 

2018; Anderson et al., 2020). Additions of organic matter to the soil surface promotes 

aggregation of soil particles, thereby increasing average pore size, improving pore space 

connectivity, and providing preferential flow paths for water (Shukla et al., 2003). Increased 

organic matter content and minimal compaction will lower bulk density, increasing infiltration 

rates (Shukla et al., 2003). Both soil organic matter content and bulk density are soil properties 

that are strongly influenced by land use and management (Shukla et al., 2003; Sun et al., 2018), 

making infiltration spatially and temporally dynamic in nature. Soil surface texture, while not a 

DSP, is a spatially variable soil physical property that also has a strong influence on infiltration 

due to the inherent porosity characteristics associated with each soil textural class (Saxton et al., 

1986; Jabro et al., 1992; Arya et al., 1999). 

Several direct methods are used to measure infiltration. Among the most common 

approaches are using a single-ring infiltrometer, double-ring infiltrometer, permeameters, and 

tension infiltrometers (Erikson et al., 2013). As the name suggests, a standard single-ring 

infiltrometer is one ring that is driven into the ground. With some of the ring remaining above 
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the surface, water is poured into the ring to pool over the surface and saturate the soil. An issue 

with single-ring infiltrometers is the error caused by sub-surface lateral flow into the surrounding 

soil outside of the ring. To mitigate this effect, a double-ring infiltrometer uses two separate 

rings: a 15-cm diameter ring inside a 30-cm diameter ring driven into the ground (Gregory et al., 

2005). Once both rings are at the same height, water is pooled in both. There are two ways to 

measure infiltration rate using the ring methods—both of which require having a known volume 

of water when beginning the measurement. The falling head test measures the water level (of the 

inner ring in the case of the double-ring infiltrometer) over time as it infiltrates into the soil. 

Alternatively, the constant head test maintains a constant water level throughout the entire 

measurement by adding more water as infiltration occurs. The constant head test is more 

accurate than the falling head test (Wu et al., 1997). Permeameters can measure soil hydraulic 

properties in a borehole and can measure soil hydraulic conductivity at various depths in the 

subsoil, although modified methods exist for using permeameters methods for surface soil 

infiltration (Ahmed et al., 2014). Two commonly used permeameters are the Guelph 

permeameter and the Philip-Dunne permeameter. The Guelph permeameter maintains a constant 

head of water over the soil using a Mariotte reservoir and takes measurements at two different 

pressure heads. The Guelph method can be modified to measure the soil surface hydraulic 

conductivity by using a tension infiltrometer, which also connects to a Mariotte reservoir 

(Reynolds, 1993). Tension infiltrometers use a porous disc that is placed on the surface, which 

allows measurement of the unsaturated soil hydraulic conductivity using two different pressure 

heads (Reynolds & Elrick, 1991). For the Philip-Dunne permeameter, a tube is inserted into the 

borehole and filled with water. This permeameter uses the falling head test. Hydraulic 

conductivity of the specified depth is measured by recording the time for half of the water in the 
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tube and infiltrate and when the tube is completely empty (Philip, 1993). Compact constant-head 

permeameters (also known as Amoozemeters) are also commonly used to measure saturated 

hydraulic conductivity of an unsaturated soil. This measurement also takes place in an auger bore 

hole in the field and maintains a constant hydraulic head. This method uses less water than the 

others, but still takes several hours and requires constant monitoring (Amoozegar, 1989). All 

methods for infiltration outlined previously are viable and accurate, but either require tens of 

gallons of water, specialized equipment, constant monitoring, and/or several hours to obtain a 

single measurement. Automated dual-head infiltrometers are a more recent method that aims to 

produce accurate results using less water and effort in less time. These infiltrometers use one ring 

that is driven into the ground and an infiltrometer head that attaches to it and pools water over 

the ring. The head is connected to a computer system that automatically calculates saturated 

hydraulic conductivity in the field at two pressure heads, specified in the system’s settings. Once 

these infiltrometers are running, they are relatively “hands-off” and complete the measurement 

of saturated hydraulic conductivity in about one and a half to two hours, depending on the 

system settings. (Rivera et al., 2016).  

Timely and accurate field measurements of infiltration are important because infiltration 

parameters are a significant factor in many hydrologic models, including those used to predict 

erosion, flooding, streamflow, and groundwater levels (Gray et al., 1985; Roo & Riezebos, 1992; 

Vieux, 2001; Shanafield & Cook, 2014). Lower infiltration rates are often associated with higher 

rates of runoff and erosion. Erosion occurs when a soil particle becomes detached from its 

surrounding particles and it transported elsewhere by an erosive agent, such as wind, water, or 

gravity. Water that does not infiltrate into the soil may become runoff, which is capable of 

carrying soil particles from the nutrient-rich topsoil with the overland flow (Ellison, 1948). 
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Raindrop impact from precipitation events and compaction cause soil surface crusting as fine 

particles become detached and clog surface pores (McIntyre, 1958). This soil surface crusting 

process, which is especially risky for disturbed bare soils, causes reduced infiltration rates and 

increased runoff compared to soils where this phenomenon is not occurring (Moore, 1981). 

Watershed Management and Land Use 

Infiltration is a key environmental process considered in watershed management to 

achieve soil and water conservation goals (Zimale et al., 2017). Soil infiltration capacity is 

critical to groundwater recharge, runoff and erosion control, and supplying water to the soil 

matrix for use by plants (Sun et al., 2018). Soils with high infiltration capacities can also mitigate 

flood damage during extreme rainfall events (Itsukushima et al., 2021). In addition to being a 

temporally dynamic soil property, infiltration also is spatially variable across a watershed 

depending on land use, vegetation, surface texture, bulk density, organic matter content, slope 

gradient, and hillslope position (Shukla et al., 2003; Schaik, 2009; Sun et al., 2018). As such, 

site-specific infiltration modeling is necessary for an adequate understanding of soil and water 

dynamics on a watershed scale, especially in rapidly urbanizing watersheds with significant 

anthropogenic influence on the soil. Land use is strongly tied to infiltration due to differences in 

vegetation characteristics and management practices. Management practices that are more 

intensive and frequent tend to decrease the soil's infiltration capacity through compaction and 

organic matter disturbance (Anderson et al., 2020). Understanding the land use impact on soil 

and water interactions is important when considering infiltration dynamics in a mixed-use 

watershed. 
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Forested Land 

Forests are typically associated with relatively high infiltration due to abundant native 

forest vegetation and minimal anthropogenic disturbance. Vegetation plays a critical role in 

watershed soil and water conservation and watershed response to precipitation events. In most 

forested ecosystems, including the eastern hardwoods of the Appalachian region, the infiltration 

rate across the various soils exceeds the amount of rainfall in normal precipitation events, 

preventing significant surface runoff and erosion (Harden et al., 2003). Trees have extensive root 

systems comprising both large and fine root networks, providing numerous preferential flow 

paths for water to infiltrate the soil (Sun et al., 2018; Anderson et al., 2020). Additionally, in 

penetrating into the soil, tree root systems break up any existing compaction and increase the soil 

porosity, thereby lowering the bulk density and improving the infiltration rate (Harden et al., 

2003). Forest soils also receive consistent annual additions of organic matter at the soil surface 

from leaf litter, raising the soil's organic matter content and maintaining their relatively high 

infiltration rates (Stuart & Edwards, 2006). Additionally, forest soils have high amounts of soil 

fauna, like earthworms, which aid in organic matter decomposition and positively affect 

infiltration through their burrows (Lee & Foster, 1991). These trends are evident in the meta-

analysis conducted by Sun et al. (2018), which examined land use conversion experiments across 

China with infiltration data on bare land, cropland, shrubland, grassland, and forest. Average 

infiltration rate changes from all land use conversions showed that conversion of any of the other 

land uses to forest significantly increased infiltration rate (Sun et al., 2018). Forests were also 

found to have the highest infiltration rate across various land uses in a study by Anderson et al. 

(2020) in the Lower Mississippi River Valley in Arkansas, USA. More specifically, deciduous 

forests had a significantly higher infiltration rate than coniferous forests, native prairie, 
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agricultural lands, and Conservation Reserve Program sites. Conversely, if a forest is severely 

disturbed through conversion to another land use, the infiltration rate decreases over time while 

erosion and runoff increase due to the different vegetation characteristics of the other land use 

(Harden et al., 2003; Sun et al., 2018). For example, in the meta-analysis conducted by Sun et al. 

(2018), the average infiltration rate of forest to pasture conversions across various studies in 

China decreased as the complex forest root system was replaced by the smaller and finer root 

systems of grasses and forbs. And like with other land uses, forest management, such as 

prescribed fire, timber harvesting, and other silvicultural techniques, will affect infiltration. 

Prescribed burning is a frequently used silvicultural technique used for various management 

objectives, including favoring fire-adapted native vegetation, reducing competition, stimulating 

nutrients, reducing severe fire risk, and combatting invasive species (Fernandes & Botelho, 

2003; DiTomaso et al., 2006). Ash is hydrophobic by nature, so ash leftover on the soil after a 

prescribed burn may temporarily reduce the infiltration rate (Bodí et al., 2014). However, the 

extent to which this phenomenon occurs depends on the spatially heterogeneous burn severity 

(Robichaud, 2000). Timber harvest reduces infiltration through removal of trees and soil 

compaction, specifically on skid trails. The severity of harvest effects on infiltration depends on 

the type of harvest and management used but given time forest soils can recover from this 

disturbance (Croke et al., 2001). The infiltration of forest soils is also variable depending on the 

canopy tree species and the characteristics of the forest floor under them. Leaf litter from 

different species have different chemical properties and promote different soil microorganisms 

when undergoing decomposition, which can result in different rates of infiltration and runoff 

(Neris et al., 2013). 
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Agricultural Land 

Infiltration on agricultural land is highly dependent on management. Conventional tillage 

is a frequently used in agriculture to break up the soil and prepare a seedbed for planting. 

Conventional tillage may offer short-term benefits like temporarily increased aeration and 

infiltration. However, it often causes long-term detrimental effects on the soil after repeated 

annual use by degrading the soil structure, thereby increasing soil compaction and reducing soil 

infiltration. No-till practices preserve soil structure and better maintain the soil’s infiltration 

capacity (Hill, 1990). A study led by Shukla et al. (2003) in the agricultural soils in the 

Appalachian region of Ohio reaffirms this idea. Their study examined the effects of manure 

application as an organic matter amendment and conventional versus no-till treatments on 

infiltration rate. The results show that the treatment incorporating manure and no-till practices 

resulted in the highest cumulative infiltration over three hours. Because no-till agriculture is a 

less intensive management practice, it prevents soil compaction and is better able to preserve the 

natural aggregates in pores in the soil when compared to conventional tillage. Incorporating 

organic matter into the soil is also beneficial as it further encourages the aggregation of soil 

particles, reducing the bulk density and creating more flow paths for water (Six et al., 2004). 

Agricultural soils also tend to have reduced infiltration capacity compared to less disturbed soils 

due to the characteristics of their root systems. Especially in monoculture row crop systems, like 

corn or soybean, the root systems are not very dense, do not penetrate very deep into the soil, and 

are mainly compromised of fine roots (Mengel & Barber, 1974). In a meta-analysis led by Sun et 

al. (2018) in China, results showed that conversion of any other land use except bare land (e.g., 

shrubland, grassland, and forest) to cropland produced a significantly lower infiltration rate due 
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to the loss of the diverse and complex root systems of native vegetation, as well as the negative 

effects of agricultural management practices. 

Urbanized Land 

Urban environments have a wide variety of surface cover, ranging from impermeable 

concrete to grassy lawns and parks, making soil and water interactions in developed areas 

extremely variable, complex, and difficult to characterize. However, soil infiltration and 

stormwater infrastructure are critical variables in urbanized watersheds when simulating 

stormflow and runoff (Hossain Anni et al., 2020). Several factors contribute to the complexity 

and diversity of urban soils. Anthropogenic disturbance by compaction and vegetation removal is 

extremely common and makes urban soils inherently different from other soils (Ali et al., 2021). 

Degree of compaction is considered the most important factor limiting the infiltration of urban 

soils (Pitt et al., 2000) as it contributes to frequent flooding in urban environments through 

increased levels of runoff. 

Along with the physical and economic effects of flooding, runoff from urban 

environments also has significant environmental implications. Urban runoff carries higher 

concentrations of pollutants than runoff from forested or agricultural areas, worsening water 

quality downstream (Yang & Zhang, 2011). As the percentage of urban land in a watershed 

increases, erosion and runoff are also expected to increase due to the low infiltration rates from 

compaction associated with urban development (He, 2003; Ali et al., 2021). This effect is more 

pronounced the closer the urban development is to the stream network (He, 2003; Coulter et al., 

2004). Additionally, flood risk is often underestimated in urban environments because the pre-

development infiltration rate of the soil is commonly used in models, disregarding the effects of 

compaction and other disturbance during development (Gregory et al., 2016). This further 
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emphasizes the importance of developing a better understanding of soil infiltration in the urban 

environment. Increases in runoff have major implications on the hydrology of a watershed, 

including possible increased occurrence of flooding events. Modeling potential flood risk from 

urbanization is vital to sustainable urban planning and flood mitigation (Suriya & Mudgal, 

2012). As mentioned previously, vegetation strongly influences infiltration, is often altered from 

its natural state, and is highly variable in urban environments. For example, sparsely vegetated 

areas, like medians and landscaping that frequently endure foot and vehicular traffic have a 

lower infiltration rate and higher runoff than larger and more densely vegetated areas, like urban 

parks (Ali et al., 2021). Urban green areas can be harnessed to reduce flood risk by increasing the 

infiltration rate if managed sustainably (Ren et al., 2020). Infiltration of urban soils can be 

enhanced through practices that reduce compaction or add organic matter to the soil, like 

restoring natural areas, composting, planting native species, and using porous construction 

materials (Ali et al., 2021). For example, planting native tree species that have wide root 

distributions improves the infiltration of urban soils because the roots can penetrate the subsoil 

and break up compacted layers by lowering the bulk density and increasing the porosity, thereby 

providing flow paths for water (Xie et al., 2020). At the same time, trees add organic matter to 

the soil annually through leaf litter. (Xie et al., 2020). Residential urban yards are also a valuable 

and significant aspect of the urban environment because they have enough infiltration capacity to 

capture urban runoff and mitigate some flood risk, especially if they are being managed for soil 

health (Shuster et al., 2014). The infiltration of yards can be enhanced further through 

minimizing impermeable surface coverage (like concrete patios), planting more trees, and adding 

organic amendments (Shuster et al., 2014). With all these potential sources of variability, finer 

scale, site-specific soil infiltration maps are needed to understand the urban soil response to 
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precipitation events fully (Shuster et al., 2014). Further study of the impact of urban 

environments on watershed hydrology is essential to advance urban watershed management 

decision-making and practices. 

Digital Soil Mapping 

Digital soil mapping (DSM) examines soil-landscape spatial relationships using 

geographic information systems and other spatial analysis tools (McBratney et al., 2003). It is an 

extremely useful approach for producing more accurate depictions of soil characteristics at the 

landscape scale and expanding the utility and information contained in conventional soil survey. 

DSM is necessary to predict soil properties over a spatial scale of interest. Pedotransfer functions 

have proven useful for predicting infiltration based on data on other soil properties in the same 

soil profile (Ghorbani-Dashtaki et al., 2016). However, these methods are not applicable for 

predicting soil properties across a watershed because they possess no spatial component and 

cannot be extrapolated over an area. In DSM, all predictor covariates must have a spatial 

component, meaning there is data available for all locations within an area to be able to make a 

prediction of a soil property at each location in an area. In DSM, soil classes or properties can be 

spatially predicted based on geographic position, environmental covariates, and/or other soil 

attributes from input data layers. The concept for predicting soils is mathematically represented 

through the scorpan model (McBratney et al., 2003), which expands on the five soil-forming 

factors of climate, organisms, relief, parent material, and time (clorpt), described by Hans Jenny 

(1941), to include soil properties and spatial position as well. It is formulaically represented as: 

S= f(s,c,o,r,p,a,n) 

where S represents either soil classes or attributes at a specific point, s are soil properties, c are 

climate variables, o represents organisms (flora/fauna/human activity), r includes 
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relief/topographic variables, p are parent materials, a represents age, and n is the spatial position 

(McBratney et al., 2003). 

The scorpan model is more applicable to DSM than the clorpt model because it is 

inherently tied to geospatial position. With the layers of geospatial information (both continuous 

and categorical) associated with each of the factors, it can be used to predict and map soil 

information at specific locations, whereas clorpt is purely a conceptual model (Thompson et al., 

2012). Data for these environmental covariates is obtained through use of remote and proximal 

sensing methods, like satellite and radar (McBratney et al., 2003; Boettinger et al., 2008). 

 

Table 1. Environmental covariates and their relationship to the scorpan factors. 

scorpan factor Static covariates Dynamic covariates 
Soil SSURGO map unit Brightness 
Climate Solar radiation, TWI Wetness 
Organisms N/A NDVI, Greenness, MID-

Infrared Index, NDBI 
Relief Slope gradient, slope aspect, 

slope curvature, landform, 
topographic ruggedness, 

relative elevation, hillshade 

N/A 

Parent materials Landform, SSURGO map 
unit 

N/A 

Age N/A N/A 
Spatial position N/A N/A 

 

Each environmental covariate targets some aspect of the scorpan equation (Table 1). 

Terrain data is useful for modeling soil classes and soil properties, including DSP like 

infiltration, because topography controls landscape-scale water movement. Slope gradient, slope 

aspect, slope curvature, topographic wetness index (TWI), solar radiation, topographic 

ruggedness, landform, and relative elevation will likely be useful predictors as they have been 

significant in similar DSM projects and have important intrinsic relationships to hydrology 
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(McBratney, 2003; Zhang et al., 2017; Pahlavan-Rad et al., 2020). Measures of slope steepness 

affect whether water infiltrates into the soil or runs off with gravity during precipitation events 

(Moore et al., 1991). Steeper slopes, in some cases, have been shown to have higher infiltration 

rates than gentler slopes. This phenomenon is attributed to the formation of high permeability 

micro-terraces and seal layers on steep slopes and more compacted soil crusts on gentle slopes 

under rainfall (Janeau et al., 2003; Assouline & Ben-Hur, 2006; Ribolzi et al., 2011). Thus, 

steeper slopes generate less runoff during rainfall events, however they do have greater amounts 

of soil erosion due to higher sediment concentration in the runoff that does occur (Assouline & 

Ben-Hur, 2006). Different slope aspects harbor different vegetative communities because 

northern and eastern slopes are more protected than southern and western slopes, meaning they 

get less solar radiation and thus retain more moisture. As such, north and east facing slopes are 

likely to have more species that prefer mesic conditions while south and west facing slopes are 

likely to have more species that prefer xeric sites (Desta et al., 2004). As discussed previously, 

vegetation will affect infiltration differently depending on their characteristics, like root 

distribution (Schaik, 2009). Also, as mesic sites are wetter, they tend to have higher levels of 

organic matter accumulation, which impacts the infiltration (Sun et al., 2018). Landform is 

related to measures of steepness and vegetative community, so may also show effects on 

infiltration in similar ways. Slope curvature is often quantified through the profile curvature, 

which is the curvature in the direction of the maximum slope, and the plan curvature, which is 

the form of the slope perpendicular to the direction of the maximum slope (Evans & Cox, 1999). 

Different profile and plan curvature combinations will produce variable effects on infiltration. 

Convexity and concavity of hillslopes will affect the infiltration purely through the steepness of 

their features. As such, exactly opposite hillslopes (similar slope gradients in both the vertical 
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and horizontal directions, regardless of convexity and concavity) will produce similar infiltration 

rates because they have roughly similar distributions of slope gradient (Wang & Chen, 2021). 

The TWI is an index that quantifies soil water content based on slope and the size of the 

catchment area. As mentioned, these factors play a role in the infiltration rate and are worth 

considering for the model (Beven & Kirkby, 1979). 

Collecting environmental covariate data for DSM purposes has been greatly enhanced 

with remote sensing such as radar, LiDAR, and multispectral satellite imagery (McBratney et al., 

2003). Satellite technology expands the capabilities of DSM use on a landscape scale. Soil 

reflectance data from satellite imagery have been used to derive soil properties like surface soil 

texture, surface roughness, surface temperature, and surface soil moisture, and have the potential 

to be applied to many more (McBratney et al., 2003; Gallo et al., 2018; Fathololoumi et al., 

2021). Programs like Landsat, a project funded by the United States to collect remotely sensed 

imagery from space, offer access to 30-meter spatial and a 16-day temporal resolution global 

satellite imagery for no cost (NASA, 2022). Spectral data acquired from Landsat 8 Operational 

Land Imager (OLI) has been used to improve the efficiency and accuracy of DSM efforts (Zeng 

et al., 2020). One limit to this type of data is that it restricts the information collected to the 

properties of the surface soil. However, subsoil properties, including mineralogical and parent 

rock information, can be observed or inferred using radar and gamma radiometry (McBratney et 

al., 2003). These multiple types of data collected from databases, existing maps, remote sensing, 

and field measurements can be input as covariates for modeling the soil property of interest 

(McBratney et al., 2003). Inclusion of both static environmental covariates, like digital terrain 

model (DTM) derivatives, and dynamic environmental covariates, like multitemporal remotely 

sensed data, has been shown to improve prediction of both static and dynamic soil properties in 
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tree-based machine learning regression models, such as Cubist and RF (Fathololoumi et al., 

2020). Fathololoumi et al. (2020) found that when including both types of environmental 

covariates into these two models, Cubist had better model efficiency than RF, but also had the 

most uncertainty and bias. Machine learning models are a powerful tool in DSM because of their 

ability to run the models as many times as desired with randomness in the observations and 

covariates in every run to find the most likely prediction for every individual pixel (McBratney, 

2003). A brief overview of DSM projects and methods is provided in the Appendix. 

One of the major barriers to DSM using environmental covariates other than DTM 

derivatives is that soil information cannot be readily retrieved from satellite or radar when the 

land surface is covered by vegetation for most of the year. This is especially true in the eastern 

United States, where much of the land is largely covered by deciduous forests. Using multi-

temporal satellite images is one technique to resolve this issue (Diek et al., 2016; Gallo et al., 

2018; Fathololoumi et al. 2020). Use of multitemporal satellite imagery offers the potential to 

enhance soil characteristic predictions in DSM applications. Gallo et al. (2018) found that multi-

temporal satellite images effectively detect the variation in topsoil's texture. Multi-temporal 

satellite imagery minimizes the amount of land area covered by vegetation by selectively 

choosing images with the highest number of bare soil pixels and combining them into a “Bare 

Soil Composite Image.” Multi-temporal composite images were also successfully used in a DSM 

effort by Diek et al. (2016) to predict the percentage of sand of topsoil using a partial least 

squares regression. An important caveat to be considered when using multi-temporal satellite 

imagery in DSM is correcting for the different values for the same pixel of bare soil in different 

years. Diek et al. (2016) used the empirical line method to correct for these differences. Use of 

multi-temporal images as a dynamic environmental covariate enhances the prediction of DSP, 
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like soil moisture, in DSM. Static environmental covariates alone are insufficient to effectively 

predict DSP because DSP are highly temporally variable and static environmental covariates 

have no temporal factor (Fathololoumi et al., 2021). There are many ways “multi-temporal” 

covariates can be applied in DSM models, varying in their use, purpose, and method of creation. 

For instance, multi-temporal satellite imagery can also be used itself as a covariate for modelling 

soil properties. Zhu et al. (2010) characterized a “land surface dynamic feedback pattern,” which 

compiled images of six to seven consecutive dry days after a major rain event, measuring the 

change in soil reflectance as the land dried out. They found that under the same rainfall 

conditions, different soil types exhibited different temporal drying patterns that were detectable 

from satellite imagery. Liu et al. (2012) expanded on the findings from Zhu et al. (2010) by using 

these dynamic feedback patterns as environmental covariates for mapping soil surface texture. 

They found that using land surface dynamic feedback successfully predicted soil texture and 

using temporal landscape change as a dynamic environmental covariate offers potential in other 

DSM projects for predicting other soil properties. 

DSM can be used to create detailed maps of DSP to inform management decisions, which 

is becoming increasingly necessary as society shifts its focus to sustainable development and 

management. This is especially needed on land uses with high levels of anthropogenic 

disturbance, like urban areas and intensive agricultural land, where the nature of the disturbance 

may be a challenge to traditional DSM and the soil’s characteristics are highly variable due to the 

disturbance (Zhang et al., 2017). 

Dynamic Soil Survey 

The concept of a dynamic soil survey (DSS) is to address the need for soil information 

that can account for current land conditions, and to have it at a finer resolution for more effective 
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land management (Natural Resources Conservation Service, 2022). The current state of the soil 

survey provides valuable information regarding soil type, static soil properties, and 

recommended management in a polygon format. It also provides DSP estimates; however, it is 

not detailed enough to accurately capture their transient nature, so it is insufficient to be used in 

models and management applications. The goal for DSS is that it will exist in raster format to 

display static and dynamic soil properties and soil type at a much finer resolution (Natural 

Resources Conservation Service, 2022). Compared to the current soil survey, a DSS will provide 

land managers with a more accurate depiction of soil spatial and temporal variability (Natural 

Resources Conservation Service, 2022). 

The ideas for needed improvement on the current soil survey that is available on Web 

Soil Survey (Soil Survey Staff, 2022) are not new, but until relatively recently had no concrete 

name or methodology. Although not specifically referred to as a “dynamic soil survey,” Tugel et 

al. (2005) expressed the need for soil survey efforts in the future to incorporate elements of “soil 

change,” or DSP. The DSS also evolves from the concepts of hydropedology, a sub-discipline in 

soil science focused on spatiotemporal interactions between pedological and hydrological 

processes on a landscape scale (Lin, 2003; Ma et al., 2017). As in the goals of a DSS, the field of 

hydropedology aims to translate hydropedological interactions to be useful on a management 

level via mapping, modeling, and monitoring (Ma et al., 2017). 

Exploring DSM in the context of infiltration prediction is a relatively recent notion. 

Pahlavan-Rad et al. (2020) successfully predicted soil water infiltration in an arid Iranian 

floodplain using multiple linear regression and random forest models with an array of 

environmental covariates. Their RF model used 10 covariates, with the most important being 

stream order of channel networks, sand percentage, normalized salinity difference index, 
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elevation, and normalized difference vegetation index. The multiple linear regression model used 

only four covariates, with distance from river and sand concentration being the most important. 

While both models performed well, the authors decided the random forest was better due to its 

consistency with existing observations. Currently, several projects are active in mapping DSP, 

which all work towards creating a DSS; however, they are all recent enough that there are no 

publications on results yet (Natural Resources Conservation Service, 2022). This project will 

contribute to the creation of a DSS as well. This project's focus is unique compared to the other 

ongoing ones in that it addresses the application of these mapping and modeling approaches in 

an urbanizing environment. Also, infiltration is the primary output that will be modeled across 

the watershed, which has not yet been the focus of a DSS project in an eastern United States 

temperate deciduous landscape. This project will be the first component of several used to build 

a DSS in the West Run watershed. 
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CHAPTER 3. MATERIALS AND METHODS 

Study Area 

This project was conducted in the West Run watershed (WRW), which covers 23.3 km2 

in Monongalia County, West Virginia. West Run creek flows into the Monongahela River within 

the larger Ohio River watershed. Monongalia County experiences a humid continental climate 

(Beck et al. 2018) with four distinct seasons. The mean annual air temperature in Monongalia 

County is 12.4 degrees Celsius, and the mean annual precipitation is 106.7 cm (Northeast 

Regional Climate Center, 2022). Elevation in the West Run watershed ranges from 244 m to 427 

m above sea level. The lowest areas are where West Run creek enters the Monongahela River 

and the highest at the headwaters (West Virginia Water Research Institute and West Run 

Watershed Association, 2008). Geologies in the WRW are mostly from the Paleozoic era, 

primarily of the Carboniferous age. As such, parent rocks of soils in this area include sandstone, 

limestone, coal, slate, and shale, but are most commonly sandstone and shale (West Virginia 

Geologic and Economic Survey, 1913). 

The WRW is mixed-use watershed (Table 1; Fig. 1), predominantly supporting forested 

(42.7%), urbanized (37.7%), and agricultural land (19.4%), among other uses (0.2%) (Hubbart et 

al., 2022). Agricultural land in this watershed consists mainly of pasture and row crops. Natural 

vegetation is mixed northern hardwood forests, with the overstory largely dominated by oak and 

hickory (Griffith & Widmann, 2000). The WRW includes the northern sections of the city of 

Morgantown, West Virginia, which is rapidly expanding, thus continually increasing the 

percentage of urban area in this watershed and increasing number of flood incidents (West 

Virginia Water Research Institute and West Run Watershed Association, 2008). 



23 

 

Twenty-one soil series are mapped in the WRW. The watershed's two most extensive 

map units are the Culleoka-Westmoreland and Dormont-Guernsey complexes (Table 2). 

Culleoka, Westmoreland, Dormont, and Guernsey soils are commonly used as pastureland, but 

their native vegetation is predominantly deciduous hardwoods. Monongahela soils typically 

support row crops like corn, soy, or pasture. Native vegetation is also primarily deciduous 

Figure 1. Land uses within the boundary of the WRW. Map created using ArcGIS software by Esri. 
Source data: World Topographic Map (World Topographic Map—ArcGIS Data Appliance | 
Documentation) and adapted 2016 National Agriculture Imagery Program 
(http://wvgis.wvu.edu/data/dataset.php?ID=489)  
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hardwood species (Wright et al., 1982). The infiltration model created accommodates all land 

uses and most common soil types in the WRW.  

 

Table 2. Description of all map units within the WRW and extent mapped (Wright et al., 1982). 

 
Map unit name 

 
Symbol 

Coverage 
(%) 

Culleoka-Westmoreland silt loam, 25-35% slopes CwE 15.212 
Culleoka-Westmoreland silt loam, 15-25% slopes CwD 8.508 

Figure 2. Soil map units located in the WRW. Map created using ArcGIS software by Esri. Source data: 
Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web 
Soil Survey. Available online at the following link: http://websoilsurvey.sc.egov.usda.gov/. Accessed 
[02/21/2022]. 
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Map unit name 

 
Symbol 

Coverage 
(%) 

Clarksburg silt loam, 8-15% slopes CkC 7.599 
Urban land-Monongahela complex, 8-15% slopes UmC 5.983 
Udorthents U1 5.780 
Culleoka-Westmoreland silt loam, 8-15% slopes CwC 5.680 
Dormont-Guernsey silt loam, 8-15% slopes DgC 5.263 
Culleoka-Westmoreland silt loam, 35-65% slopes CwF 3.940 
Dormont-Guernsey silt loam, 15-25% slopes DgD 3.541 
Westmoreland silt loam, 8-15% slopes WeC 2.957 
Tilsit silt loam, 8-15% slopes TlC 2.879 
Dekalb very stony loam, 25-35% slopes DdE 2.868 
Lobdell-Holly silt loam Lh 2.428 
Monongahela silt loam, 8-15% slopes MgC 2.362 
Urban land-Culleoka complex, 15-25% slopes UeD 2.355 
Clarksburg silt loam, 15-25% slopes CkD 2.289 
Westmoreland silt loam, 15-25% slopes WeD 2.059 
Dormont-Guernsey silt loam, 3-8% slopes DgB 1.333 
Holly silt loam Ho 1.311 
Westmoreland silt loam, 35-65% slopes WeE 1.285 
Lobdell silt loam Lb 1.233 
Culleoka-Westmoreland silt loam, 3-8% slopes CwB 1.069 
Sewell very channery sandy loam, unreclaimed highwall, 15-25% slopes ShD 0.880 
Tilsit silt loam, 3-8% slopes TlB 0.846 
Westmoreland silt loam, 3-8% slopes WeB 0.799 
Urban land Uc 0.765 
Urban land-Zoar complex, 8-15% slopes UzC 0.742 
Bethesda channery loam, unreclaimed highwall, 15-25% slopes BhD 0.693 
Sewell very channery sandy loam, unreclaimed highwall, 35-65% slopes ShF 0.650 
Lily loam, 3-8% slopes LaB 0.648 
Bethesda loam, reclaimed, 15-25% slopes BsD 0.570 
Buchannon & Ernest very stony soils, 15-25% slopes BeD 0.490 
Zoar silt loam, 8-15% slopes ZoC 0.483 
Bethesda channery loam, unreclaimed highwall, 35-65% slopes BhF 0.417 
Dekalb very stony loam, 35-65% slopes DdF 0.346 
Lily loam, 8-15% slopes LaC 0.331 
Bethesda loam, reclaimed, 35-65% slopes BsF 0.330 
Chagrin silt loam Cg 0.312 
Dekalb channery loam, 3-8% slopes DaB 0.311 
Itmann very channery loam, 15-25% slopes ImD 0.263 
Zoar silt loam, 3-8% slopes ZoB 0.250 
Dekalb channery loam, 8-15% slopes DaC 0.249 
Fairpont channery silt loam, unreclaimed highwall, 35-65% slopes FhF 0.239 
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Map unit name 

 
Symbol 

Coverage 
(%) 

Urban land-Fairpont complex, reclaimed FuD 0.225 
Sewell channery sandy loam, reclaimed, 15-25% slopes SlD 0.150 
Clarksburg silt loam, 3-8% slopes CkB 0.149 
Fairpont channery silt loam, unreclaimed highwall, 15-25% slopes FhD 0.146 
Bethesda channery loam, unreclaimed, 15-25% slopes BdD 0.139 
Water W 0.138 
Dekalb channery loam, 35-65% slopes DaE 0.121 
Bethesda loam, reclaimed highwall, 15-25% slopes BaD 0.118 
Bethesda channery loam, unreclaimed, 35-65% slopes BdF 0.091 
Itmann very channery loam, 35-65% slopes ImF 0.089 
Sewell channery sandy loam, reclaimed, 0-8% slopes SlB 0.088 

 

Table 3. Brief description of all soil series present in the WRW (Wright et al., 1982). 

 
Soil Series 

 
Classification 

 
Landform 

Parent Material 

Bethesda Loamy-skeletal, 
mixed, active, acid, 
mesic Typic 
Udorthents 

Upland Mine spoil 

Buchanan  Fine-loamy, mixed, 
superactive, mesic 
Aquic 
Fragiudults 

Upland Colluvium 

Chagrin Fine-loamy, mixed, 
active, mesic Dystric 
Fluventic Eutrudepts 

Floodplain Alluvium 

Clarksburg Fine-loamy, mixed, 
superactive, mesic 
Oxyaquic Fragiudalfs 

Upland Colluvium 

Culleoka  Fine-loamy, mixed, 
active mesic Ultic 
Hapuldalfs 

Upland Colluvium or 
residuum 

Dekalb Loamy-skeletal, 
siliceous, active, 
mesic Typic 
Dystrudepts 

Upland Residuum 

Dormont Fine-loamy, mixed, 
superactive, mesic 
Oxyaquic Hapludalfs 

Upland Residuum 
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Soil Series 

 
Classification 

 
Landform 

Parent Material 

Ernest Fine-loamy, mixed, 
superactive, mesic 
Aquic Fragiudults 

Upland Colluvium 

Fairpont Loamy-skeletal, 
mixed, active, 
nonacid, mesic Typic 
Udorthents 

Upland Mine spoil 

Guernsey Fine, mixed, 
superactive, mesic 
Aquic Hapludalfs 

Upland Colluvium 
and residuum 

Holly Fine-loamy, mixed, 
active, nonacid, 
mesic Fluvaquentic 
Endoaquepts 

Floodplain Alluvium 

Holly Fine-loamy, mixed, 
active, nonacid, 
mesic Fluvaquentic 
Endoaquepts 

Floodplain Alluvium 

Itmann Loamy-skeletal, 
mixed, semiactive, 
acid, mesic Typic 
Udorthents 

Upland Mine spoil 

Lily Fine-loamy, 
siliceous, semiactive, 
mesic Typic 
Hapludults 

Upland Residuum 

Lobdell Fine-loamy, mixed, 
active mesic 
Fluvaquentic 
Eutrudepts 

Floodplain Alluvium 

Lobdell Fine-loamy, mixed, 
active mesic 
Fluvaquentic 
Eutrudepts 

Floodplain Alluvium 

Monongahela* Fine-loamy, mixed, 
semiactive, mesic 
Typic cFragiudults 

Terrace Alluvium 

Sewell Loamy-skeletal, 
mixed, semiactive, 
acid, medic Typic 
Udorthents 

Upland Mine spoil 

Tilsit Fine-silty, mixed, 
semiactive, mesic 
Typic Fragiudults 

Upland Residuum 



28 

 
Soil Series 

 
Classification 

 
Landform 

Parent Material 

Udorthents Udorthents Upland Cut & fill  
Urban land N/A N/A N/A 
Water N/A N/A N/A 
Westmoreland Fine-loamy, mixed, 

active, mesic Ultic 
Hapuldalfs 

Upland Residuum 

Zoar* Fine, mixed, 
semiactive, mesic 
Aquic Hapludults 

Terrace Lacustrine 

∗also mapped in an urban-land complex 

Field & Laboratory Methods 

The conditioned Latin hypercube sampling (cLHS) method, a form of stratified random 

sampling, was employed to select 50 points for data collection. An additional satellite point was 

selected nearby at each point generated from the cLHS sample. The satellite point was chosen to 

capture a different land use, soil type, or slope position. This sampling design was selected to 

align with the approach that has been adopted by the NRCS for other DSS projects. With this site 

selection process, the goal was to sample approximately 100 points. After removing some 

inaccessible points outside the watershed or having issues sampling, 86 points were sampled for 

use in the models. The WRW was stratified based on land use, soil survey map unit, slope 

gradient, topographic wetness index, normalized difference vegetation index, and slope aspect. 

The cLHS method was chosen to follow precedent set by similar DSM projects and for its cost 

function. In a cLHS, a cost raster can be imported to maximize the number of random plots 

within the West Run watershed that can fall on property owned by West Virginia University 

(WVU) while still maintaining a random sample to cover all variability in the watershed. Sample 

points on WVU property were prioritized because they were simpler to access and coordinate 

than points that fell on privately owned property. Two separate sampling campaigns took place, 

both using a cLHS with a cost raster to select sample points. The first took place throughout the 
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growing season of 2022 to collect data to be used as the training dataset to build the model. The 

second sampling was independent of the first sampling to collect a validation dataset and took 

place after the model had been built in the spring of 2023. This sampling for the validation 

dataset was stratified to cover the full range of infiltration measurements from the predictive map 

produced for infiltration.  

At each plot, data were collected on infiltration, saturated hydraulic conductivity (Ksat), 

soil temperature, antecedent soil water content, slope gradient (%) of the landform of the site, 

slope gradient (°) of each infiltrometer head at the site, slope aspect (°), depth to bedrock (cm), 

land use, and dominant vegetation. Ksat was measured using fully automated dual-head 

infiltrometers (DHI) (Meter Group, WA, USA). The DHI were selected for this project due to the 

ease, speed, accuracy, and efficiency of their infiltration and Ksat measurements. The DHI were 

run using the optimized method outlined by Zhang et al. (2019). This method uses one long 

pressure cycle instead of two short pressure cycles, which Zhang et al. (2019) found to yield 

steadier infiltration rates. A pressure cycle consists of two distinct pressure head settings, 

standardly at 5 and 15 cm. Pressure head settings may be changed based on site variability. Sites 

with exceptionally high infiltration rates may need lower pressure heads, whereas sites with 

exceptionally low infiltration rates require a higher pressure head. Regardless of site 

requirements, a difference of 5 cm is always maintained between the high and low pressure 

heads. Three DHI were run at the same time to get three measurements on infiltration and Ksat at 

each plot. They were placed lateral to the plot center so that they all fall along the same slope 

gradient. The three measurements will be averaged to account for any spatial variability of soil 

properties. Adjacent to each DHI, three measurements of both soil temperature and antecedent 

soil water content were collected and averaged as well. Soil temperature at a depth of 5 cm was 



30 

measured in degrees Celsius with a digital thermometer from VEE GEE Scientific. Antecedent 

soil water content, as a percentage, was measured using the ML3 ThetaProbe Soil Moisture 

Sensor from Delta-T Devices, a moisture probe based on time domain reflectometry (Topp et al., 

1980; Noborio, 2001).  

Basic soil, landform, and vegetation descriptions was collected from each plot. Each of 

these measurements was taken at the plot center, except for depth to bedrock, which was 

measured once near each infiltrometer. Depth to bedrock was found using a tile probe as they are 

a minimally invasive tool. The tile probe used for this project is 124 cm long, which defined the 

maximum depth to bedrock that could be measured. Bedrock deeper than 124 cm was classified 

as “greater than 124 cm.” Slope gradient was measured using a clinometer and slope aspect was 

measured using a compass. Land use and vegetation descriptions were made using the judgement 

and experience of those collecting the data. The soil series was determined after observing the 

soil profile through an auger boring and using those observations and the descriptions of soil 

series common in the WRW (Wright et al., 1982), along with the judgement and experience of 

the data collectors. The soil series determination will assist the subsequent creation of a digital 

soil map of the watershed. Additionally, three soil cores, with a 5.08-cm diameter and 5.08-cm 

length each, were collected at each plot where permission to sample was granted and taken back 

to the laboratory for further analysis of bulk density and particle size distribution. Bulk density 

was measured using the core method (Blake & Hartge, 1986). Auger descriptions and bulk 
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density samples were not taken at every site because they are a more invasive process and 

require landowner permission. Samples taken were archived for future analysis. 

 Figure 3. Forested sample site. 



32 

 

Figure 4. SATURO device running on forested site. 
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Modeling Methods 

Predictive soil maps of infiltration were created using the random forest (RF) method, a 

complex of regression trees, in R (Breiman, 2001). RF was chosen for its common use in DSM, 

specifically in capturing the spatial relationships of DSP (Sihag et al., 2018; Pahlavan-Rad et al., 

2020). Additional predictive maps were made using multiple linear regression (MLR) 

(McBratney et al., 2003). Both static and dynamic covariates were used as inputs in the model 

with infiltration as the dependent variable. The same covariates were offered to the selection 

method for each model. To test if the addition of dynamic covariates significantly improves the 

accuracy of the model for infiltration, another model was produced that only uses static 

environmental covariates as the explanatory variables. Models were evaluated based on 

goodness-of-fit parameters like R2 and the root mean square error. 

Environmental Covariates 

Environmental covariates were derived from several different sources. Remotely sensed 

satellite imagery of the WRW is available through the Landsat programs funded by the National 

Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (NASA, 2022; 

U.S. Geological Survey, 2022). Spectral data from recent imagery from the Landsat 8 satellite as 

digital numbers was used, specifically from the visible, near infrared, shortwave infrared, and 

thermal bands. Sentinel-2 was considered as well, but for the purposes of this project it did not 

provide better data than what was available through Landsat 8. Images selected were from over 

the growing season. Spectral indices were used as dynamic covariates in the model. The 

normalized difference vegetation index (NDVI) and MID-infrared index were used to separate 

vegetation and bare soil (Carlson & Ripley, 1997; Gallo et al., 2018): 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅)
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅) 

 

𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆2) 

 

The NDVI, which uses the near-infrared and red bands, is useful in distinguishing green 

vegetation from bare soil in satellite imagery (Carlson & Ripley, 1997). In addition, it can 

indicate moisture stress and overall vegetation health (Lotsch et al., 2003). Vegetation will 

appear greener following precipitation events and will appear less green under drought 

conditions (Anyamba & Tucker, 2005). Surface soil texture is related to water holding capacity 

and thus water availability to plants. As such, NDVI has been used to successfully predict 

surface texture in the southwestern U.S. (Maynard & Levi, 2017). In essence, greener vegetation 

has access to adequate amounts of soil water, and less green or wilting vegetation does not have 

enough soil water available. Information from the NDVI could be related to soil water dynamics, 

and thus infiltration rate. The MID-Infrared Index is typically used for bare straw and crop 

residue covering agricultural fields (Gallo et al., 2018). It could be useful in this watershed on 

cool season grasses in either pastures or lawns that tend to appear browner in the summer 

months. The normalized difference built-up index (NDBI) was used to separate impervious 

concrete and asphalt surfaces in the watershed from urban development. NDBI has been used as 

an environmental covariate to model other dynamic soil properties, like soil carbon (John et al., 

2020). Since this project takes place in an urbanizing watershed, we expect the NDBI could be 

useful in the model to detect differences by land use. The NDBI uses the shortwave infrared and 

near infrared bands (Zha et al., 2003): 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑁𝑁𝑁𝑁𝑁𝑁)
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑁𝑁𝑁𝑁𝑁𝑁) 

 

A tasseled cap transformation was performed on the satellite images for an alternative view of 

the spatial distribution of soil reflectance (brightness), vegetation (greenness), and moisture 

content (wetness) in the watershed. This enhancement condenses the information in each satellite 

image to make it easier to interpret and compare (Crist, 1985). 

Terrain derivatives were calculated from a DTM of the WRW. A DTM of the watershed 

was taken from the West Virginia Elevation and LIDAR Download Tool, a feature of the West 

Virginia Geographic Information System Technical Center, which provides LIDAR data for 

West Virginia at a one-meter resolution. All terrain covariates were calculated on a five-meter 

spatial resolution DTM. The static terrain covariates included slope gradient (as a percentage), 

topographic wetness index, slope aspect (as a factor), land use, planform curvature, profile 

curvature, total curvature, topographical position index (calculated with scales of 15, 30, and 45), 

transformed aspect, landform, and terrain roughness index (calculated with windows of three, 

five, and nine). The Gridded Soil Survey Geographic database contained two static soil 

covariates- available water storage and soil organic carbon content. Available water storage 

values were for the top 20 cm of the soil and represent the maximum amount of plant available 

water a soil can store. Soil organic carbon values represent the organic carbon content in the top 

20 cm of the soil (Soil Survey Staff, 2023). 

Six years of satellite imagery from Landsat 8 were used to create the mono-temporal 

dynamic environmental covariates, which represent values for the dynamic covariates on 

individual dates. All images were from June, during the growing season and had minimal cloud 
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cover. Dates used were June 22, 2013; June 12, 2015; June 14, 2016; June 1, 2017; June 23, 

2019, and June 9, 2020. Landsat 8 satellite imagery for the necessary bands (red, green, blue, 

NIR, SWIR1 and SWIR2) for these indices is available for download from EarthExplorer at a 30 

m spatial resolution. Downloaded images were resampled to a 5-m spatial resolution to match 

other data layers. NDVI, NDBI, Mid-infrared index, brightness, greenness, and wetness were 

calculated for each year at a 5-m spatial resolution. 

Twelve multi-temporal covariates were calculated from the mono-temporal covariates. 

Multi-temporal covariates represent the quantifiable trend in the mono-temporal covariates 

through the years. Six were created simply by subtracting the 2013 layers from the 2022 layers. 

For example, the NDVI of 2020 minus the NDVI of 2013. This was repeated for each type of 

covariate. The other six multi-temporal covariates were created by calculating the pixel-by-pixel 

trend in the covariates across all years. Ultimately, the value for each pixel in the final trend 

layer represents the slope of the regression line from a linear model of that values of that pixel 

over the six years. For example, in the case of NDVI, a positive value in the trend layer would 

mean that pixel has become greener from 2013 to 2020. A value around zero would mean that 

there was little or no change, and a negative value would indicate that the pixel has become less 

green since 2013. This was done for each type of dynamic covariate. 

Each environmental covariate created was resampled to 5-m by 5-m spatial resolution, 

clipped to the outline of the WRW, and projected to Transverse Mercator with a coordinate 

system of NAD 1983 UTM Zone 17N. All environmental covariates raster layers were stacked 

and the value of each layer at each sample site was extracted to build the predictive model. 
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Model Development and Validation 

All models were developed using R statistical software (R Core Team, 2022). Packages 

used to create to models include the spatial, raster, glmnet, and caret packages. All random forest 

models were created using the RF regression tree method (Brungard et al., 2015; Fathololoumi et 

al., 2020). For the RF models, environmental covariates were selected using recursive feature 

elimination (RFE) (Brungard et al., 2015). RFE requires inputs for the number of features it 

should select, and then will fit a model and remove the least important variables in the model 

until it reaches the best of the specified amount (Gregorutti et al., 2017). Environmental 

covariates for the MLR models were selected using Least Absolute Shrinkage and Selection 

Operator (LASSO), a penalized regression approach using a shrinkage parameter (Tibshirani, 

1996). LASSO can identify important variables for modeling by shrinking the coefficients of the 

less significant variables to zero (Hastie & Friedman, 2001). Models were trained using 10-fold 

cross validation. The performance of all predictive maps was assessed using goodness-of-fit 

parameters like R2, lowest mean absolute prediction error (MAE), and the root mean square error 

(RMSE). The best model for continuous data will have a relatively high R2, low MAE, and low 

RMSE.  
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Where n is the number of samples, 𝑦𝑦𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the predicted infiltration values, 𝑦𝑦𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  are 

the observed infiltration values, and 𝑦𝑦�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 are the mean of the predicted infiltration values.  

The final model was validated with a separate independent sampling. This sampling 

proceeded similar to the first sampling for training data, using a cLHS design. This sampling was 

stratified using the infiltration values from the final model and by land use to ensure that all 

infiltration values and land uses would be represented in the validation data. Twenty points were 

selected for the validation sample, five on each land use: urban, pasture, forests, and hard 

surfaces. Validation R2 concordance, and RMSE of the final models will be found. 
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CHAPTER 4. RESULTS 

In total 86 saturated hydraulic conductivity (Kfs) estimates were collected during the 

growing season of 2022 using the cLHS sampling design in WRW. Thirty-three sites were 

urbanized, 27 were in pasture, 23 were forested, and 10 were hard surfaces, which included roads 

and roofs. Hard surfaces make up a large portion of the WRW since it is an urbanizing area, so 

they were important to represent in the models. Instead of taking a measurement with an 

infiltrometer on the pavement and roofs, infiltration was assumed to be zero. Saturated hydraulic 

conductivity (Kfs) measurements varied across the sampled sites (Table 4). Excluding the hard 

surfaces (for which infiltration was not measured and were assigned a Kfs value of 0 mm hr-1), 

the next lowest Kfs value was 12.68 mm hr-1, which occurred on an urbanized site. The highest 

measured infiltration rate of 1606.56 mm hr-1 was also on an urbanized site. However, this 

observation was removed from the modeling process as it was found to be an outlier based on a 

chi-squared test. Excluding that observation, the highest measured Kfs was 823.12 mm hr-1 on a 

forested site. The forested land use had the highest median infiltration rates among the sites (Fig. 

6). Medians of the urban and pasture sites were similar. The urban land use had the largest 

variation in the Kfs values (Table 4).  
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Figure 5. Sites sampled and associated Kfs (mm/hr) for the calibration dataset. Map created 
using ArcGIS software by Esri. Source data: and adapted 2016 National Agriculture Imagery 
Program (http://wvgis.wvu.edu/data/dataset.php?ID=489). 

 

Table 4. Summary statistics of calibration sample of infiltration. 

Land 
Use n 

Minimum 
(mm/hr) 

Maximum 
(mm/hr) 

Mean 
(mm/hr) 

Median 
(mm/hr) 

Standard 
Deviation (mm/hr) 

Urban 30 12.69 1606.56 234.6 151.72 299.39 
Pasture 25 15.73 433.12 190.14 160.87 128.78 
Forest 21 157.87 823.12 406.18 385.68 208.43 
Hard 
Surface 10 0 0 0 0 0 
Total 86 0 1606.56 237.03 182.9 245.08 

http://wvgis.wvu.edu/data/dataset.php?ID=489
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Figure 6. Boxplots of Kfs (mm/hr) by land uses in the WRW. 
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Figure 7. Boxplot of Kfs (mm/hr) by most common (spatial extent) soil series mapped in the 
WRW. 

 

The square root of the Kfs values was used for model building to meet the normality 

assumption for linear models. In total, 66 environmental covariates (Table 6) were offered for 

selection in the models for prediction of square root of Kfs. Of the 66 covariates, 18 were static, 

36 were mono-temporal dynamic, and 12 were multi-temporal dynamic (Table 6).  
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Table 5. All environmental covariates offered for selection for the models. 

Mono-temporal 
dynamic1 

Multi-temporal 
dynamic Static4 

NDVI NDVI trend2 Slope gradient 
NDBI NDBI trend Topographic wetness index 
MID-IR MID-IR trend Slope aspect 
Brightness Brightness trend Land use 
Greenness Greenness trend Planform curvature 
Wetness Wetness trend Profile curvature 
 NDVI difference3 Total curvature 
 NDBI difference Transformed aspect5 
 MID-IR difference Terrain ruggedness index6 

 Brightness difference Topographic position index6  
 Greenness difference Landform 
 Wetness difference Soil organic carbon (0-20 cm) 
  Available water storage (0-20 cm) 
  Parent Material 

1 Each mono-temporal dynamic environmental covariates were derived from Landsat 8 on six 
different dates: 22 June 2013, 12 June 2015, 14 June 2016, 1 June 2017, 23 June 2019, and 9 
June 2020.  

2 Each multi-temporal dynamic trend covariate was derived as the slope of the best-fit linear 
regression model through the six corresponding Landsat 8 scenes from 2013 to 2020. 

3 Each multi-temporal dynamic difference covariate was derived as the difference between the 
2020 and 2013 Landsat scenes of the corresponding mono-temporal dynamic covariates. 

4 Each static environmental covariate was calculated from the LiDAR-derived DTM at 5 m, 
except for soil organic carbon (0-20 cm), available water storage (0-20 cm), parent material, 
which were derived from the gSSURGO database. 

5 Transformed aspect assigns slopes a value based on north-northeastness (zero), indicating 
cooler and wetter slopes, and south-southwestness (one), indicating hotter and drier slopes. 

6 Calculated at three spatial extents: 15x15 m, 30x30 m, and 45x45m moving window. 
 

LASSO was used for covariate selection for the MLR model. The best lambda for the 

LASSO model was 0.988 and the R2 was 0.313. The LASSO selected nine covariates for use in 

the MLR model: NDBI of 2017, NDBI of 2019, wetness of 2019, greenness of 2016, wetness of 

2015, brightness of 2013, terrain ruggedness index using a window with a radius of nine pixels 

(45 m), topographical position index using a window with a radius of nine pixels (45 m),, and 
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soil organic carbon in the top 20 centimeters. To assess multicollinearity, these nine variables 

forced into a regular MLR and their variance inflation factors were tested. Variables with 

variance inflation factors greater than five were removed one at a time, as five has been found as 

a threshold between acceptable and concerning variance inflation factors based on the degree of 

multicollinearity (Gareth et al., 2013). Based on this, wetness of 2019 was removed. Rerunning 

the MLR without wetness produced variance inflation factors that were all less than five. Model 

building proceeded with the remaining eight covariates for the final MLR. The final MLR was 

developed using a 10-fold cross-validation. The R2 of the cross-validated MLR model is 0.332, 

and the adjusted R2 is 0.302. The RMSE and MAE were 45.70 mm hr-1 and 29.42 mm hr-1, 

respectively. 
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Figure 8. Map of the predicted square root of infiltration rate from the MLR model. Map made 
by ArcGIS software by Esri. 
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Figure 9. Variable importance in the MLR model. 

 

Table 6. Coefficients of covariates used in the MLR model. 

EC Coefficient (mm/hr) 

NDBI 2019 -8.12E+05 

NDBI 2017 3.73E+05 

Greenness 2016 -2.51E+00 

Wetness 2015 8.68E+00 

Brightness 2013 -1.36E+01 

TRI at 45 m 9.22E+03 

TPI at 45 m 3.60E+04 

SOC (0-20 cm) 3.12E+01 
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Figure 10. Predicted vs. Observed (measured) Kfs (mm/hr) for the MLR model. 

 

Recursive feature elimination was the covariate selection method for the random forest 

model. Five covariates selected by recursive feature elimination produced the best model for 

random forest: slope gradient, NDBI of 2019, wetness of 2015, NDVI of 2019, and NDBI of 

2017. The RF model was developed using a 10-fold cross validation. The parameters of the 

random forest model were the default with 500 as the number of trees and two variables tried at 

each split. The final RF model explained 20.1% of the variance of infiltration rate in the WRW, 

which is equivalent to an R2 of 0.201.  
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Figure 11. Map of predicted square root of infiltration rate in the RF model. Map made using 
ArcGIS software from Esri. 
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Figure 12. Variable importance in the RF model. 
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Figure 13. Predicted vs. Observed (measured) Kfs (mm/hr) for the RF model. 

 

The MLR was chosen as the best model because it had the largest R2 and visually agreed 

with what was expected in certain watershed areas. As such, this model was used as input into 

the cLHS for a random sample of validation points. In total, 17 validation points were sampled. 

This sampling consisted of three urban, five pasture, four forest, and five hard surface sites. The 

lowest Kfs value of the validation sample (other than the hard surfaces, which were assigned 

values of 0 mm hr-1)  was 42.35 mm hr-1, whichwas on a forested site. The highest value 

(1426.14 mm hr-1) was also on a forested site. The validation sample yielded an R2 of 0.080 and 

0.103 for the MLR and RF, respectively. The MLR had a concordance value of 0.178 and the 

RF’s concordance was 0.156. 
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Figure 14. Sites sampled and associated Kfs (mm/hr) for the validation set. Map made using 
ArcGIS software by Esri. 
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Table 7. Summary statistics of validation sample of infiltration. 

Land 
Use n 

Minimum 
(mm/hr) 

Maximum 
(mm/hr) 

Mean 
(mm/hr) 

Median 
(mm/hr) 

Standard Deviation 
(mm/hr) 

Urban 3 99.97 153.62 103.7 99.97 48.17 
Pasture 5 113.5 585.4 302.53 220.93 191.25 
Forest 4 42.35 1426.14 565.66 397.08 613.99 
Hard 
Surface 5 0 0 0 0 0 
Total 17 0 1426.14 240.38 113.5 359.64 

 

 

Table 8. Validation statistics of MLR and RF models. 

Model R2 Concordance MSE RMSE 
MLR 0.080 0.178 65.76 8.11 
RF 0.103 0.156 68.87 8.30 
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CHAPTER 5. DISCUSSION 

The infiltration characteristics by land use generally follow expected trends, with the 

highest median infiltration on forested land (Sun et al., 2018; Anderson et al., 2020) and urban 

sites having a high variability (Shuster et al., 2014; Ali et al., 2021). The goals of this study were 

to represent infiltration, a DSP, over a watershed using DSM methods and to determine the 

utility of static, mono-temporal dynamic, and multi-temporal dynamic covariates to make that 

prediction. The resulting predictive models indicate that using these ECs explains some of the 

variability of infiltration in the WRW, as displayed by their R2 values of 0.302 and 0.201 for the 

MLR and RF, respectively. The validation R2 values were lower, at 0.080 and 0.103 for the MLR 

and RF, respectively. There was one forested observation in the validation dataset that was 

extremely overpredicted by both models. This point occurred on the edge of a forest and was 

completely covered in honeysuckle with no real overstory canopy. This area was bordered by an 

urban area and had refuse from the nearby residential area mixed in with the soil. We kept this 

point in the dataset because it is a valid point in the watershed. Still, it threw off the model 

because it predicted that area as having the infiltration of a normal, less disturbed forest in the 

watershed. When that point is removed from the validation set, the R2 values for the MLR and 

RF increase to 0.138 and 0.134, respectively. Without that point, the concordance increased to 

0.243 and 0.188 for the MLR and RF, respectively. The models struggled to predict any of the 

hard surfaces correctly, as they all should be zero. For the MLR model, the predicted values of 

the hard surfaces ranged from 71.97 to 182.99 mm hr-1, and for the RF they ranged from 52.52 to 

320.55 mm hr-1. To improve the representation of the infiltration rate of hard surfaces, the land 

use layer was used to force all hard surfaces to have a value of zero while leaving predictions on 

all other land uses unchanged. The result of these modified prediction maps improved the 
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goodness-of-fit metrics for the validation samples, producing an R2 of 0.52 and a concordance of 

0.66 for the MLR and an R2 of 0.65 and a concordance of 0.73 for the RF map outputs. 

Evaluating the quality of a DSM model can be somewhat subjective due to the wide 

variety of applications in which DSM can be applied. Generally, for modeling efforts of 

variables in nature, like soil, some researchers contend that R2 values of less than 0.5 should be 

considered unacceptable predictions. In contrast, those greater than 0.5 but less than 0.75 should 

be considered acceptable predictions, and those above 0.75 should be considered good 

predictions (Chang et al., 2001; Shepherd & Walsh, 2002; Wang et al., 2013). This scale of 

acceptability is not broadly applicable to most DSM projects. Acceptable R2 and other goodness-

of-fit metrics vary by project according to the spatial scale, the quality of the covariates, and the 

nature of the targeted soil property for prediction. Generally, lower R2 may be considered more 

acceptable and useful for DSM projects over a large spatial extent and/or more difficult to 

predict soil properties, which include many DSPs. Conversely, DSM projects predicting more 

well-understood soil properties or on smaller spatial extents, higher R2 values are expected. This 

is demonstrated by the results of Reddy et al. (2021), who predicted several soil properties across 

India. In their study, the R2 varied by soil property, with R2 ranging from 0.66 to 0.73 for pH and 

from 0.16 to 0.24 for sand content. Similar R2 values are observed in Mulder et al. (2016), who 

mapped various soil properties across France. For predictions of the soil surface, they had a R2 of 

0.55 (0.48 validation) for pH, 0.36 (0.29) for soil organic carbon, 0.33 (0.24) for cation exchange 

capacity, and 0.24 (0.17) for coarse fragment percentage. These R2 values decreased when 

predicting these same soil properties for deeper depths in the soil profile (Mulder et al., 2016). 

For predicting organic carbon over a watershed in Iran, Fathololoumi et al. (2020), the best 

models for organic carbon had a R2 of 0.69 and for sand content 0.59. Over a watershed in 
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Brazil, Gallo et al. (2016) had R2 values of 0.56 for sand content, 0.40 for cation exchange 

capacity, and 0.34 for soil organic matter content. As demonstrated, many different factors 

influence the evaluation of DSM models. Given that this project occurred in a small watershed 

and that infiltration is difficult to characterize and not yet well-understood spatially, an adjusted 

R2 of 0.302 is adequate for this modeling effort. There are few DSM projects predicting 

infiltration thus far, so it is difficult to make comparisons. Still, observations from this project 

will be beneficial in informing future DSM projects for infiltration and other DSPs, especially in 

highly vegetated environments. 

The multi-temporal ECs created were not selected for either the MLR or the RF models, 

suggesting they were not useful for predicting DSPs. Other types of multi-temporal covariates 

have been useful in mapping other DSPs, as in Diek et al. (2016), Gallo et al. (2018), and 

Fathololoumi et al. (2020, 2021). All these researchers explored ways to incorporate multi-

temporal dynamic ECs into DSM, resulting in unique methods to create these multi-temporal 

covariates, such that their end products differ from the type of multi-temporal covariate used in 

this project. Whereas most of the multi-temporal covariates in the current literature are “multi-

temporal” in the sense that they aggregate multiple satellite images taken at different times into a 

single product to get a complete view of the targeted dynamic covariate, our “multi-temporal” 

covariate aimed to quantify a change in a dynamic covariate over time by analyzing the pixel-by-

pixel linear trend over several satellite images from various years. This presents a challenge for 

comparing the utility of multi-temporal covariates for DSM, specifically of DSPs, but 

nonetheless offers valuable information for the vast number of methods and applications that 

could be used. For instance, Fathololoumi et al.'s (2020, 2021) studies had multi-temporal 

models that used various dynamic covariates over one growing season. Unlike our study, their 
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studies took place in a semi-arid environment where vegetation had less of an impact on the 

study. As such, their most important factors for predicting soil properties were soil surface 

satellite properties including emissivity, land surface temperature, albedo, and incidence. Their 

best models were the “multi-temporal” ones comprised of dynamic ECs from any month over the 

growing season. Being in a vegetated and urbanized environment, our study primarily relied on 

covariates that reflected the vegetative and urban spatial patterns, like NDVI, NDBI, Greenness, 

Wetness, and Brightness. For our study, these patterns were best represented through the mono-

temporal dynamic covariates instead of our multi-temporal options. Diek et al. (2016) and Gallo 

et al. (2018) were both presented with the challenge of modeling with satellite imagery in a 

temperate environment to create a predictive model of sand. They overcame this through their 

version of multi-temporal dynamic covariates—using multiple satellite images to patch them 

together into one bare soil composite image. Since these studies were both in highly agricultural 

regions, their multi-temporal covariates were able to take advantage of the crop management and 

harvest patterns each year that would expose different areas of the soil. This method is 

inapplicable for creating a bare soil composite image in heavily forested environments like 

Appalachia, where most vegetation covers the ground for decades to hundreds of years, as 

opposed to the cultivation observed each year in most crop systems. Maynard & Levi (2017) 

created multi-/hyper-temporal covariates in their study that were similar to ours, in which they 

captured seasonal and yearly trends in a 28-year time series, improving their soil texture models 

and course fragment content. Our trend covariates in contrast captured the trend over several 

years to quantify land use change rather than seasonal and yearly effects on dynamic covariates 

from seasonal/yearly differences in rainfall and moisture. All these DSM studies discussed the 

benefit from the use of their version of multi-temporal covariates. However, unlike our project, 
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the targeted variables for prediction were static soil properties. Our project also uniquely applies 

multi-temporal covariates in an urbanizing, temperate forest environment. The use of multi-

temporal covariates for DSP prediction, like for this project, is a more recent goal in the field of 

DSM and requires more research on how they can be applied. 

Despite the multi-temporal dynamic covariates not being selected, the information 

captured by dynamic ECs is important for the models, as evidenced by the mono-temporal 

dynamic covariates being most of the ECs that were selected in the best models. In the RF 

model, four out of five covariates selected were mono-temporal dynamic ECs. The remaining 

covariate in the MLR model was a static EC. For the MLR, five out of the eight covariates 

selected were mono-temporal dynamic ECs. Of the remaining three, two were static and one was 

a soil covariate. This suggests that there is some relationship that exists between dynamic soil 

properties and dynamic environmental covariates. Static covariates and soil covariates were less 

important. Still, they helped explain some of the variability in infiltration, indicating that 

infiltration has some relationship to terrain and soil factors but is more strongly impacted by the 

characteristics of dynamic covariates. At least one static EC was selected in both the MLR and 

RF models. Terrain steepness factors, like slope gradient and terrain ruggedness, appear to 

influence the variability of infiltration as they were used in the RF and MLR models, 

respectively. Slope gradient as a measure of terrain steepness was the only static covariate used 

for the RF. The influence of slope gradient on infiltration has been observed by Assouline & 

Ben-Hur (2006) and Ribolzi et al. (2011), who found that steeper slopes have higher infiltration 

rates than gentler slopes. Overall, the covariates that best explained variability in infiltration for 

our study contrast with the findings from Pahlavan-Rad et al. (2020), in which static covariates 

were more important to their infiltration predictions in Iran. Like our project, they mapped 
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infiltration using RF and MLR models, and in each model, their most important covariates were 

related to sand content and factors related to stream networks. Their models only used two 

dynamic covariates: the normalized difference salinity index (NDSI) and NDVI. The types of 

important covariates varied between their project and ours, likely due to the different study 

regions. Pahlavan-Rad et al. (2020) modeled infiltration in an arid, low-relief, sparsely vegetated 

floodplain where the dominant land cover is agricultural land, abandoned land, saline land, and 

sand dunes. In our local environment, variability in infiltration is expected to be controlled by 

different factors. For instance, saline soils are not experienced in West Virginia because our high 

precipitation levels would wash out salt in WV soils and not allow it to accumulate. As such, 

NDSI would not be a covariate considered here for influencing infiltration. And since the WRW 

has more rugged terrain, different terrain covariates will have more influence, like the effect of 

slope gradient. Disregarding the environmental differences, our results for prediction of 

infiltration are less adequate than those of Pahlavan-Rad et al. (2020) in comparison. They 

reported an RMSE of 13.9 mm hr-1 and an MAE of 10.9 mm hr-1 for their MLR model, which is 

much lower than those in the current study (Table 8). 

For both the MLR and RF model, their reliance on primarily dynamic covariates 

reinforces that infiltration has an important relationship to land use in the region of our study. 

Each dynamic EC captures information related to land use patterns in the watershed. Both the 

MLR and the RF model used NDBI from 2019 to 2017, distinguishing the more highly urbanized 

watershed areas from the less urbanized ones. Wetness from 2015 was also selected for both 

models, which captures moisture levels in the soil surface and vegetation canopy. The remaining 

dynamic covariate for the MLR was NDVI from 2019, which shows the more vegetated areas 

from the less vegetated areas. The RF used Greenness from 2016 to measure vegetated versus 
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less vegetation areas and did not use any NDVIs. The RF model also used Brightness from 2013, 

which captures ground reflectance and tends to mirror the urbanized areas with higher 

reflectance values due to pavement. As hypothesized, dynamic covariates are important for 

predicting dynamic soil properties, like infiltration, because they can change quickly over time in 

accordance with the different vegetation and management characteristics associated with 

different land uses. 

Multi-temporal covariates were not selected for either of the models, suggesting that they 

were not important in explaining the variability in DSPs like infiltration. The multi-temporal 

covariates that were offered for selection were calculated based on six years of data spanning 

from 2013 to 2020 in the watershed. Only six satellite images were used due to the limited 

availability of images over the watershed that were (1) from Landsat 8, (2) during the growing 

season, and (3) cloud-free. Appalachia frequently experiences clouds and precipitation, so there 

are rarely entirely cloud-free days. Because of the small size of the WRW, even a few small 

clouds and their shadows could cover a relatively large portion of the watershed and render the 

image unusable. The possibility of using imagery from Sentinel-2 was considered, but after 

exploring the data it was not found to be any more obstruction-free than Landsat 8. As such, 

roughly each growing season had one useable image, and years without useable images were 

skipped. It is likely that having only six years of observations to calculate the multi-temporal 

layer is insufficient to produce values that would help explain variation in infiltration across the 

watershed. Land use proportions in the WRW changed from 2013 to 2020, that time frame is not 

long enough to capture the longer-term impact of land use conversion from decades ago that still 

has lingering effects. This aligns with results from Zhao et al. (2013), who studied a 79-year 

chronosequence of a cropland restored to grassland in China and found that infiltration rate 
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rapidly increased until 16 years after the restoration began and then only slightly increased after. 

Similarly, Zema et al. (2021) found that infiltration increased along with forest stand age, with 

the lowest infiltrations occurring in the most recent forests. Sampling throughout the WRW, it 

becomes evident that not all forests are equal, as Zema et al. (2021) suggest. These subtleties are 

difficult to pick up from a mono-temporal satellite image, which is best at identifying if a forest 

is present or not in a certain area based on the characteristics canopy coverage. As such, much of 

the heterogeneity between forests is lost. For instance, one forest site we sampled at first glance 

may look like any other forest in the watershed, but upon further investigation, we observed that 

most of trees appeared younger (around 30 years old) and even-aged. The soil there was 

extremely compacted for a forest soil and had a relatively slow infiltration rate. According to the 

landowner, the area we sampled had previously been developed, so the soil properties in that 

area were still in the process of changing from its land use history. In another forested area in the 

validation sample, cows that grazed in the nearby field were also allowed to go into the forest, 

leaving those soil trampled and compacted. Yesilonis et al. (2016) observed the lingering effects 

of land use history on forests that transitioned from agriculture 50-70 years ago, 12-150 years 

ago, and historically undisturbed forests. They found that forests that grew on abandoned 

agricultural land exhibited different soil surface properties than the undisturbed forests: these 

younger forests had higher bulk densities, lower carbon content, evidence of erosion of the 

surface horizon, and no organic horizon. The impact of historic land use on soil properties has a 

lasting effect and in many cases is irreversible, as it sets the soil on a different trajectory of 

formation than its undisturbed counterparts (Yesilonis et al., 2016). Mono-temporal satellite 

images are not able to read the story that we are able to observe on the ground, which is why 

multi-temporal covariates are important due to their potential to quantify the effects of historic 
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management and use of an area. Additionally, even though by definition DSPs change over 

relatively short periods of time (in contrast to static soil properties that change over hundreds or 

thousands of years), seven years is still a short time to observe change in soil properties. Change 

in DSPs may be more wholly represented through multi-temporal dynamic ECs that span over 

tens of years, at a minimum. In most cases, it takes several years to observe significant changes 

in soil properties after changes in vegetation cover and land management. 

The goal is for the models produced for DSPs, and the overall DSS, to be generalizable 

(or transferable) both spatially and temporally. Spatially generalizable would mean that the ECs 

found to be useful for prediction of infiltration in the WRW would similar be effective for 

predicting infiltration in other watershed under similar environmental conditions like those 

throughout other West Virginian watersheds and across Appalachia. Temporally generalizable 

models are one of the benefits of DSS over the conventional soil survey. This would mean the 

models could be applied to the variation of conditions and changes the watershed will experience 

decades in the future. The same types of ECs would be recalculated and updated, and still 

produce a sufficient prediction of infiltration in the future. It is not known whether the models 

produced from this project are spatially or temporally transferrable as they currently exist. 
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CHAPTER 6. CONCLUSIONS & SUGGESTIONS FOR FUTURE RESEARCH 

The goals of this study were to represent DSP using DSM methods using static, mono-

temporal dynamic, and multi-temporal dynamic covariates. Across the three land uses, forests 

had the highest infiltration rate. The median infiltration rates of the pasture and urban land uses 

were similarly low, but the urban land had the largest amount of variability. MLR and RF models 

were produced, with R2 values of 0.302 and 0.201, respectively. Results demonstrate that some 

relationship can be harnessed from satellite imagery and terrain data as representatives are 

environmental conditions in a watershed and the spatial variability of infiltration that can be used 

to develop predictive maps. However, with the data collected and ECs used in the models, this 

relationship is not well represented within the scope of this study. This project provided insight 

and methods that will be useful in the subsequent larger goal of developing a dynamic soil 

survey. Namely, creating and employing multi-temporal dynamic covariates that capture trends 

in ECs across several years offers potential to be useful factors to include for mapping DSPs in 

future DSM projects. Additionally, although the models were not strong, the covariates selected 

for the best models confirm that dynamic ECs are important for predicting DSPs. 

The results of this study lead to several questions that future DSM/DSS projects should 

investigate. The expansion of multi-temporal dynamic covariates over several decades may 

prove useful information for building DSP predictive maps, including infiltration in future 

applications. Quality, longevity, and continuity of satellite imagery pose a technical challenge to 

creating these multi-temporal ECs, but the collection of satellite imagery available to the public 

increases and improves over time, alleviating that restriction. The possibility of using images 

outside of the growing season could also be explored to quantify seasonal trends. Seasonal 

differences among the dynamic covariates could also be explored, like using the average, 
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maximum, and minimum values across each year. For example, using the difference between 

maximum NDVI, which is likely during the growing season over the summer, and the minimum 

NDVI, which is likely over the winter, could potentially identify differences in vegetated areas 

that may look the same when only analyzing across growing seasons. Additionally, the mono-

temporal covariates could be further evaluated to find the best scale and method to create them 

that can pick up variability in infiltration. Along with that, other predictors should be explored 

for the predicting infiltration and other DSPs and highly vegetated and urbanizing areas, like 

those found in much of the eastern United States. Additionally, kriging of the residuals of the 

models could be explored and put back into the models to try to represent some of the 

unexplained variability in infiltration. More projects addressing the prediction of other DSPs in 

regions like this will work together to complete a full DSS for the WRW and other watersheds. 

This work towards a finer resolution, raster soil survey that includes DSPs is extremely 

important and necessary for optimizing land management for sustainability of natural resources, 

soil health, and overall watershed health, which would mean encouraging management practices 

that minimize soil compaction and erosion while encouraging less disturbing methods that would 

restore natural vegetative cover, lower bulk density, and increase organic matter content. 

Through identifying current watershed-scale hydrologic patterns, areas that require attention can 

be addressed with targeted management plans. 
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APPENDIX 

Summary of soil properties predicted in previous DSM projects. 

Soil property Type of property Modeling Method Reference 
Organic carbon 
content 

Dynamic Cubist, RF Fathololoumi et al., 2020 

RF Grimm et al., 2008 

RF, cubist, artificial 
neural network. 
Multiple linear 

regression, support 
vector machines 

John et al., 2020 

Taxonomic classes Static RF, bagged classfication 
tree, classification tree, 

K nearest neighbor, 
linear discriminant 

analysis, linear support 
vector machines, 

multinomial logostic 
regression, multilayer-

perceptron neural 
network, nearest 

shrunken centroids, 
radial-basis support 

vector machines, single-
hidden-layer neural 

networks 

Brungard et al., 2015 

Infiltration Dynamic Multiple linear 
regression, RF 

Pahlavan-Rad et al., 2020 

Particle size 
contents 

Static Partial least squares 
regression 

Diek et al., 2016 

Cubist, RF Fathololoumi et al., 2020 

Partial least squares 
regression 

Gallo et al., 2018 

Support vector machines Maynard & Levi, 2017 

Linear regression Zeng et al., 2020 

Moisture content Dynamic Partial least squares Diek et al., 2016 

Cubist, RF Fathololoumi et al., 2021 
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Soil property Type of property Modeling Method Reference 
Organic matter 
content 

Dynamic Partial least squares 
regression 

Diek et al., 2016 

Partial least squares 
regression 

Gallo et al., 2018 

Calcium carbonate 
equivalent 

Static Cubist, RF Fathololoumi et al., 2020 

Cation exchange 
capacity 

Dynamic Partial least squares 
regression 

Gallo et al., 2018 
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ECs used in MLR and RF models. 
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