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Abstract 

Enhancing the forensic comparison process of common trace materials through the development of 

practical and systematic methods 

Meghan Prusinowski 

 

An ongoing advancement in forensic trace evidence has driven the development of new and objective 

methods for comparing various materials. While many standard guides have been published for use in trace 

laboratories, different areas require a more comprehensive understanding of error rates and an urgent need 

for harmonizing methods of examination and interpretation. Two critical areas are the forensic examination 

of physical fits and the comparison of spectral data, which depend highly on the examiner’s judgment.  

The long-term goal of this study is to advance and modernize the comparative process of physical fit 

examinations and spectral interpretation. This goal is fulfilled through several avenues: 1) improvement of 

quantitative-based methods for various trace materials, 2) scrutiny of the methods through interlaboratory 

exercises, and 3) addressing fundamental aspects of the discipline using large experimental datasets, 

computational algorithms, and statistical analysis. 

A substantial new body of knowledge has been established by analyzing population sets of nearly 4,000 

items representative of casework evidence. First, this research identifies material-specific relevant features 

for duct tapes and automotive polymers. Then, this study develops reporting templates to facilitate thorough 

and systematic documentation of an analyst’s decision-making process and minimize risks of bias. It also 

establishes criteria for utilizing a quantitative edge similarity score (ESS) for tapes and automotive 

polymers that yield relatively high accuracy (85% to 100%) and, notably, no false positives. Finally, the 

practicality and performance of the ESS method for duct tape physical fits are evaluated by forensic 

practitioners through two interlaboratory exercises. Across these studies, accuracy using the ESS method 

ranges between 95-99%, and again no false positives are reported. The practitioners’ feedback demonstrates 

the method’s potential to assist in training and improve peer verifications.  

This research also develops and trains computational algorithms to support analysts making decisions on 

sample comparisons. The automated algorithms in this research show the potential to provide objective and 

probabilistic support for determining a physical fit and demonstrate comparative accuracy to the analyst. 

Furthermore, additional models are developed to extract feature edge information from the systematic 

comparison templates of tapes and textiles to provide insight into the relative importance of each 

comparison feature. A decision tree model is developed to assist physical fit examinations of duct tapes and 

textiles and demonstrates comparative performance to the trained analysts. The computational tools also 

evaluate the suitability of partial sample comparisons that simulate situations where portions of the item 

are lost or damaged. 

Finally, an objective approach to interpreting complex spectral data is presented. A comparison metric 

consisting of spectral angle contrast ratios (SCAR) is used as a model to assess more than 94 different-

source and 20 same-source electrical tape backings. The SCAR metric results in a discrimination power of 

96% and demonstrates the capacity to capture information on the variability between different-source 

samples and the variability within same-source samples. Application of the random-forest model allows for 

the automatic detection of primary differences between samples. The developed threshold could assist 

analysts with making decisions on the spectral comparison of chemically similar samples.  

This research provides the forensic science community with novel approaches to comparing materials 

commonly seen in forensic laboratories. The outcomes of this study are anticipated to offer forensic 

practitioners new and accessible tools for incorporation into current workflows to facilitate systematic and 

objective analysis and interpretation of forensic materials and support analysts’ opinions.
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Chapter 1: Introduction 

1.1. Problem Statement 

Trace materials often play an important role in forensic investigations as they can provide 

information about potential sources and the activities that may have led to the contact and exchange 

of traces between a place, an object, and an individual of interest. Examining these traces often 

requires microscopical and instrumental analyses to characterize and compare a recovered item to 

a known source. These analyses usually begin with physically comparing items to determine if 

they could have been joined together. Without a physical fit, the practitioner compares the 

materials' physical, optical, and chemical features to determine if differences warrant an exclusion 

or if the observed similarities support an association. Finally, the examiner provides an opinion of 

the significance of the findings, which can include interpretation at the source or activity level to 

explain the relevance of the evidence under the given hypothesis. 

 

Although most trace examination and interpretation processes enjoy scientific validity and 

standard methods, some areas still need to be improved regarding the perceived risk of subjectivity 

and bias. For example, evaluating physical fits has been a longstanding procedure in forensic 

science. The assumption has been that a physical fit allows for two items to be individualized to a 

single source. However, while the ability of analysts to determine the presence of physical fits has 

been assessed in research studies and proficiency exams, the examination depends only on the 

scientist's judgment, which is problematic in the absence of protocols with consensus-based 

criteria. On the other hand, some comparisons of spectral data are based solely on human-based 

decisions of the similarity or difference observed when two or more spectra are overlaid. Spectral 

overlay comparisons have been recently criticized for the level of subjectivity and inter-examiner 

variability in defining what constitutes an exclusionary difference. 

  

As a result, there is a need to develop tools that can lead to more systematic and objective 

examinations and reports. This research aims to enhance objectivity in analyzing and interpreting 

polymeric materials commonly examined in trace evidence, such as tape and plastics. These goals 

were addressed through two main approaches: 1) the development and validation of quantitative 

criteria that can be used to support and inform examiners' opinions during a physical fit 

examination, and 2) the development of quantitative metrics for comparing spectral instrumental 

data.  

 

The first objective of this study is to assess the practical application and performance of a method 

for the systematic comparison of polymers’ physical fits. To address the need for systematic 

methods in physical fit examinations, this research expands upon a technique previously developed 

in our group for evaluating the quality of duct tape physical fits by substantially increasing the size 

of the dataset, conducting inter-laboratory exercises, and utilizing various statistical analyses to 

assess factors that can affect the quality of a fit. The method provides a similarity metric named 

the edge similarity score (ESS) that provides a quantitative value of the quality of a fit. The ES 
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score method is reproducible, allows for a straightforward and transparent peer review process, 

and provides statistical support to the examiners’ conclusions. We hypothesized that inter-

laboratory collaborations could lead to fine-tuning the method, assessing practicality, evaluating 

sources of errors, and developing strategies for future adoption at crime labs. This study also 

compares the performance of human-based approaches to a computational algorithm for 

comparing fractured duct tape edges. We hypothesized that automated algorithms for comparing 

edges of fractured materials could provide a rapid analysis of a large population of samples and an 

objective assessment of the similarity of two separated edges. In addition, this research also 

includes the new development of a systematic procedure and quantitative criteria for physical fit 

examinations of rigid polymers, such as those typically separated from vehicles involved in 

accidents or criminal activities. These methods are anticipated to support analysts conducting 

physical fit evaluations of trace materials and serve as a foundation for future research and the 

development of standardized criteria. 

 

The second objective of this study is to develop a quantitative and reproducible method for 

comparing micro-X-ray Fluorescence (µXRF) data collected from electrical tapes. The proposed 

approach introduces spectral contrast angle ratios (SCAR). The value of SCARs is demonstrated 

by comparing X-ray Fluorescence (XRF) data collected from electrical tape backings originating 

from different areas of the same rolls and various manufacturing sources and qualities of tapes. 

The approach has shown high discrimination power through a combination of SCARs and a two-

stage approach to interpretation. It provides consistent information on data collected from various 

instruments and configurations. This approach offers a more widespread and transparent 

interpretation of spectral data. 

 

By completing this research, the application of quantitative evaluation of similarity scores will 

give examiners statistical support for making decisions on physical examinations and µXRF 

spectral comparisons of trace materials. The assessment of error rates will serve as an experimental 

basis for the proposed methods’ reliability. This study is anticipated to provide a means to facilitate 

the standardization of protocols for the identification and examination of relevant features, 

establish comparison criteria, transparent peer-review processes, and data-driven conclusions. The 

methods are intended to be easily incorporated into current protocols of trace materials and be 

widely applicable for various applications.  

 

1.2. Literature Review and Background Information 

 

Manufacturing and Use of Polymer Materials 

Pressure-sensitive tapes and automotive polymers were selected as materials of interest in this 

research as they are commonly encountered as evidence in criminal events. The following sections 

describe polymer materials' main composition and manufacturing process to provide context for 

the methods proposed in this study. 
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Polymer materials are substances composed of monomers connected in chains to form large 

molecules. Polymers can comprise repeated monomers of the same chemical composition or 

molecular weight and structure. Also, most natural and synthetic polymers are made up of two or 

more types of monomers, known as copolymers [1]. Polymers, such as proteins, starches, cellulose, 

and nucleic acids, occur naturally. A particular type of polymer found in adhesives is isoprene, 

which is foundational to materials such as resin and rubber. Inorganic polymers that occur naturally 

include graphite and diamond. In addition, synthetic polymers are common materials used in 

everyday life. For example, polyethylene is a commonly manufactured polymer used in many 

items such as coatings, packaging, vehicle parts, bottles, and containers. Polyvinyl chloride (PVC) 

is another synthetic polymer used in films, coatings, and larger items such as pipes [2]. Polymer-

based plastic products represent an extensive industry and are manufactured and used worldwide. 

According to Plastics Europe, in 2021, more than 390 million metric tons of plastic were produced 

worldwide. That value does not include polymers used to make adhesives, sealants, paints, or 

textiles, meaning that the number of polymer-based products is even higher [3].  

 

Pressure-sensitive tapes, including duct, electrical, and packaging, are common consumer products 

that adhere to a substrate after applying light pressure. These types of tape typically contain 

multiple layers, with most at least including a backing and an adhesive. Additional layers may be 

present depending on the intended purpose of the tape. In duct tapes, the most common backing 

composition is polyethylene. Electrical tapes commonly contain polyvinyl chloride mixed with 

substances that add flexibility and flame-retardant properties [4-5]. Adhesive tape layers are 

usually made of a combination of natural or synthetic rubber (e.g., styrene-isoprene-styrene or 

styrene-butadiene). Additional components within the adhesive serve as tackifiers (terpenes or 

rosin derivatives), extenders (amines, phenols), colorants (titanium dioxide, zinc oxide, or carbon 

black), or fillers (talc, clay, calcium carbonate) [6-8]. In addition to the backing and adhesive 

layers, duct tape contains an additional layer to reinforce and strengthen the final product. This 

layer is known as the scrim, typically composed of a fiber mesh-like medical gauze. Scrim 

reinforcement fibers are placed between the backing and adhesive and are mostly made of cotton, 

polyester, rayon, or a mixture [7-8]. The composition and the weave or knit pattern can vary by 

manufacturer. Fibers are usually woven in a simple weave pattern in which the successive yarns 

are varied over and under each other. However, different patterns, such as a weft-insertion, are 

used [8]. 

 

The manufacturing of tape first involves making the tape's main components separately. The 

relevant layers (such as the backing film and reinforcement layer) are pressed together and coated 

with a film of liquified adhesive through a series of calendar rollers [8-10]. Some backings are 

plain color, while others have printed patterns of multiple colors and shapes. Electrical tapes 

typically are one color, while duct tapes have a wider variety of designs, colors, and patterns. Most 

tapes are rolled into large “jumbo” rolls for storage until the tape is cut to its final size. As such, 

all tape rolls originating from the same “jumbo” roll typically have very consistent physical and 
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chemical characteristics. As a complicating factor in tracking back the manufacturing source of a 

tape sample, manufacturers of tape products often sell to multiple distributors. These distributors 

usually relabel the tape items under their own brand name, meaning that tape rolls sold under a 

particular brand name have the potential to share physical and chemical compositions as other rolls 

with different brand names [9]. Examiners must consider that in cases where the investigation 

requires the characterization and identification of potential manufacturers. Those investigative 

leads often require databases and collaborations between the forensic laboratory and industry to 

maintain updated exemplars. 

 

Unlike the polymers used in films, the composition of hard plastics aims for firmness in the final 

product; this can incorporate a wide variety of plastic products such as interior and exterior vehicle 

parts, pipes used in plumbing, flooring materials, containers such as bottles and jars, packaging 

materials, disposable cutlery, and many more. These materials are primarily composed of polymers 

and composites such as acrylic or polymethyl methacrylate (PMMA), polycarbonate (PC), 

polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PETE or 

PET), or polyvinyl chloride (PVC). [2]. Many techniques are used to manufacture materials using 

these polymer compounds, the most common of which involves molding. Injection molding is a 

manufacturing process in which heated liquid material is injected into a pre-made mold and 

allowed to cool. The finished product conforms to the shape of the mold when removed [2]. 

Products made using injection molding include plastic containers (i.e., water bottles, soap 

containers), vehicle headlights, and taillights. Another type of injection molding is reaction 

injection molding (RIM), used with thermosetting polymers. This class of polymers cures as it 

cools, providing additional durability and stability, as they do not soften when exposed to heat 

after cooling [11]. Examples of plastic products made using RIM include circuit boards, packaging 

materials, and automotive bumpers. These polymers are common as they are durable and resistant 

to many substances that would otherwise damage or weaken the polymer material.  

 

The manufacture and composition of the end-product of soft and hard polymers are quite different; 

as a result, analysis methods, physical characteristics, and chemical composition vary 

considerably. The relevance of these differences is discussed below regarding how this information 

contributes to forensic investigations.  

 

Forensic Analysis of Polymer Materials 

Polymer materials are ubiquitous in everyday life, so they are commonly recovered from crime 

scenes as potential evidence. For example, paint chips and fragments of headlights transferred to 

a hit-and-run victim can link the scene to a suspect vehicle; or tape illicitly used to commit a crime 

can be associated with a suspect roll [11]. For examination purposes, fibers, paints, tapes, and 

polymers are trace evidence types for which standardized analysis methods are available [12-21]. 

Duct tapes are found in various cases – used to gag or restrain victims in violent crimes such as 

homicides, kidnappings, and rapes [6]. Electrical tapes are also commonly found in crime scenes, 
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such as those involving an improvised explosive device [7]. Tapes tend to be pliable, and their 

separation can be performed by hand or using a cutting instrument such as a knife, cutter, or 

scissors. Hard plastics are often associated with cases where the original material fractures by 

impact, such as hit and runs, burglaries, and vandalism [11]. Hard plastics are brittle, breaking by 

tension when enough force is applied [22]. Automotive plastics are generally found in relatively 

large-sized fragments in scenes such as hit-and-runs and car accidents.  

 

Figure 1-1 demonstrates a typical analytical approach to the forensic analysis of polymers. Like 

most materials analyzed in trace evidence, the primary trend of analysis is to start with the most 

non-destructive technique(s) and then, as needed, move into the more destructive methods. This 

ensures that most evidence is left intact for additional analysis whenever possible. Some 

techniques provide complementary information, so the specific methods depend on the evidence 

type and available instruments. Many polymer materials share similar analytical techniques. While 

those for tapes, paints, and textiles have been widely studied and standardized, the analysis of other 

polymer materials is less regulated.  

 

 
Figure 1-1. Typical analytical methods used in polymer analysis. The general trend is to move 

from least destructive to most destructive while providing as much compositional information as 

possible. In instances where there are known and unknown samples, the analysis will continue 

until exclusionary differences are observed, at which point the source will be excluded.  
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When receiving trace evidence from a crime scene, the most common first step is physically 

examining the items. Physical characteristics are used to identify and classify samples and allow 

for the rapid exclusion of samples when the features as clearly distinctive, such as different colors 

or textures. Physical examination is also generally non-destructive, meaning the sample remains 

intact and usable for additional analysis techniques.  

 

A physical examination can provide valuable information for tapes as some types are more 

distinguishable based on physical characteristics. Duct tapes are manufactured in various colors 

and designs to help compare known and unknown samples. For duct tape samples, the color and 

thickness of the backing and adhesive, the texture of the backing, the width of the tape, and 

manufacturing marks are all characteristics that can be used to distinguish between items [9, 19, 

23]. In addition, the scrim layer can be evaluated. The two directions of tape scrim are known as 

the warp and weft, where the warp is in the direction of manufacturing along the length of the tape, 

and the weft direction is along the width of the tape. The scrim is characterized by counting fibers 

per inch in both warp and weft directions (scrim count), observing the morphology of the yarns in 

each direction and the weave pattern, and determining the composition of the fibers. These physical 

characteristics have been found to remain consistent throughout a roll of tape and provide the 

highest discrimination power between different duct tape rolls [9, 24]. On the other hand, electrical 

tapes do not have as much variability in physical characteristics. However, like duct tape, the color 

and thickness of backing and adhesive, texture of the backing, and width of the tape can be used 

as features to distinguish between samples.  

 

Like tapes, hard plastics have a wide variety of observable physical characteristics. The intended 

purpose of the material influences macroscopic features on the surface. Polymers from taillights 

and headlights are generally transparent. They may have some degree of curvature or patterning. 

At the same time, plastic originating from a vehicle’s bumper is usually opaque and may have 

layers of paint applied over the plastic substrate. These objects can also come marked with a serial 

number that can be used to establish the composition of the polymer material as reported by the 

manufacturer. General features such as the color, thickness, hardness, presence of a coating or 

layers, patterning and texture, and manufacturing or spontaneous defects in the material are some 

characteristics that can be observed while comparing these samples. At the microscopic level, the 

curvature of pieces, smaller fractures radiating from the leading fractured edge, overlapping 

material, and distinctive fracture patterns and directionality can inform the analyst’s opinion [11, 

25].  

 

An extension to the physical examination includes a physical fit evaluation if evidence items do 

not demonstrate any exclusionary differences in physical features. A physical fit is an association 

between items based on the realignment of three-dimensional characteristics indicating they were 

once joined together to form a single object. The characteristics observed to determine the presence 

of a fit can be inherent to the material (e.g., texture, pattern, construction) or features created by 
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the separation of the items (e.g., displacement of material, scratches, or surface damage). The 

recommendation for physical fit evaluations of trace materials is to, where possible, examine the 

items at both a macroscopic and microscopic level to evaluate all potential features and note areas 

of differences [26]. If no differences and characteristics indicate a physical fit, the items are 

considered to have the highest degree of association [27]. It is worth noting that although forensic 

physical fit examinations are relatively straightforward and have a wide-standing history of use in 

the field, analysis is heavily dependent on expert judgment, and there are limited to no consensus-

based standardized methods [10].  

  

Additional examinations can be conducted if a physical fit is not identified. Chemical 

characterizations of polymer materials are performed using techniques such as Fourier Transform 

Infrared Spectroscopy (FTIR) and Pyrolysis Gas Chromatography-Mass Spectrometry (py-GC-

MS), which can provide information on the main polymer composition for the evidence item, as 

well as identify other compounds used in the manufacturing of the material [14, 16, 19, 20, 28, 

29]. Elemental analysis can be performed using methods such as Scanning Electron Microscopy-

Energy Dispersive X-Ray Spectroscopy (SEM-EDS), X-ray Fluorescence (XRF), Inductively 

coupled Plasma Mass Spectrometry (ICP-MS) Laser-ablation Inductively coupled Plasma Mass 

Spectrometry (LA-ICP-MS), and Laser-induced Breakdown Spectroscopy (LIBS) [4-6, 19, 29-

31]. Unlike duct tapes, which are highly distinguishable by physical examination, electrical tapes 

are highly distinguishable by elemental analysis methods. Studies considering electrical tape 

backings have found that a variety of elemental techniques can even provide information regarding 

manufacturing sources [4, 5, 30, 31].  

 

While methods for tapes, paints, and fibers are standardized, many potential polymer materials are 

encountered in crime scene investigations, such as latex gloves, polyurethane foam, plastic bags, 

condoms, and pipe materials used in explosives. Standardizing specific protocols for each 

polymeric item encountered is impractical. Instead, the focus has been on published standards for 

specific analytical techniques, including SEM-EDS and py-GC-MS for general polymeric 

materials [28-29]. Trained practitioners utilize these techniques and additional examinations 

relevant to the item.  

 

1.3. Studies of Physical Fits of Trace Materials 

 

Current State of Human-Based Examinations of Physical Fits  

The foundation of trace evidence relies on the divisible nature of materials generated during a 

crime and their transfer mechanisms. It is a common belief that when fracture characteristics on 

separated items correspond with one another, it demonstrates they were once part of the same 

object, referred to as a physical fit. Due to the high probative value and non-destructive nature of 

physical examinations, fit comparisons are included in the first steps of evaluating physical 

evidence. Many materials are submitted to forensic laboratories for fracture fit examination. A 
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survey conducted by the National Institute of Standards and Technology – Organization of 

Scientific Area Committees (NIST-OSAC) Trace/Materials Subcommittee in 2020 indicated that 

from these materials, rigid plastics and tapes are most often submitted for physical fit examinations 

at crime laboratories, followed by textiles, paints, and paper [32]. As described previously, while 

making observations at the macroscopic and microscopic level is a critical aspect of the overall 

examination of trace materials, the recognition and documentation of key features of a fractured 

edge are not currently standardized between laboratories. Only in recent years has the forensic 

scientific community begun to direct substantial attention to creating consensus protocols for the 

physical assessment of trace materials and physical fit evaluations. This area is a gap that this 

research project is intended to address.  

 

For a physical fit, separated evidence items must have a three-dimensional alignment of the edges, 

including surface, fracture, and manufacturing or acquired features. The physical features imparted 

during the separation of materials depend in part on whether the material is brittle, malleable, 

amorphous, crystalline, or fibrous [11, 32]. The material's manufacturing process, composition, 

and structure are essential in the class characteristics and acquired features left on the fractured 

pieces. Evaluating the reliability of physical fit determinations introduces many challenges. 

Assessing a physical fit is inherently subjective, and analysts have no standard practices or 

methods to use when evaluating a potential fit. This poses a problem as examiners working in 

different agencies may use different protocols that can lead to inconsistent reports. Methods used 

in crime laboratories tend to be non-material specific, despite practitioners' acknowledgment that 

various materials require alternative or additional preparation for physical fit assessment [32]. 

There is also no consensus in the internal peer-review and verification process of results. Some 

laboratories only verify samples identified as fit, and some do not require a physical re-

examination of the samples during the review [32]. Currently, the reliability and reproducibility of 

physical fit determinations between analysts are challenging to evaluate without harmonized 

protocols or verification processes and run the risk of introducing bias [33]. The development of 

quantitative criteria and determination of error rates for physical fits in trace materials has been a 

recognized critical research need for over a decade [34-36].  

 

Various research studies have been conducted on physical fits in the trace evidence discipline. 

Most are published case studies highlighting specific physical fit identifications in casework 

covering a variety of materials, including paint, metals, textiles, polymers, and paper. Generally, 

the case reports focus on describing qualitative features or methods that contributed most to 

assessing the overall confidence in the fit due to more limited sample sizes or the inability to 

reproduce the fit experimentally [10, 37-43]. Fractography studies also provide a fundamental 

understanding of how materials fracture. These studies can help determine the suitability of a piece 

of evidence for physical fit examination, what features are relevant for physical comparison, and 

how to preserve features for documentation and observation. Fractography studies can address 

assumptions about the separation of materials, such as the assumption that fracture’s features are 
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individualizing and are not replicated randomly [37]. Finally, other studies have provided 

quantitative assessments of physical fit comparisons using larger sample populations to determine 

error rates for physical fit determinations. Nonetheless, the lack of understanding of error rates for 

physical fit comparisons is still a major limiting factor in using physical fit examinations during 

expert testimony of criminal cases. [37]  

 

Physical Fit Studies of Polymers 

As described above, numerous studies address physical fits across various materials. Among those 

include several publications considering polymer materials, including tapes, soft plastics (such as 

plastic bags), and hard plastics (such as polymer-based lenses). Table 1-1 describes some of these 

studies, including the material in question, the size of the population where relevant, the statistical 

measures performed, and some of the main findings of each study.  

 

The studies on pressure-sensitive tapes are particularly relevant to this research topic. Tapes are 

amongst the most studied materials for physical fit comparisons due to the numerous 

characteristics present and the relative frequency of their submission as crime scene evidence. 

Electrical tapes have not demonstrated strong suitability for physical fit examinations. It is 

generally believed they are specifically designed to be highly flexible and deformable, and 

therefore they do not retain distinctive edge characteristics. Nonetheless, there have not been 

enough studies to generalize this assumption. In 2011, Bradley et al. published a study that showed 

that out of a total of 106 true matches in the study, there was a 7.5% false exclusion rate and a 

0.049% false positive rate [60]. While there has been some investigation into ways of reverse 

distortion of electrical tapes for comparison [46-47], the elemental composition of electrical tape 

backings has been demonstrated to offer an alternative method with highly discriminating features 

[4, 5, 30, 31] 

 

Duct tapes, however, have shown feasibility for physical fit examination, and various studies have 

evaluated error rates of physical fit examinations. Bradley et al. in 2006 conducted a study on 

physical fits of duct tape, for which 92% of 81 total comparison pairs were correctly identified, 

with no false positives [55]. Following that, McCabe et al. published a study in 2013 that 

considered a large population set of tape edges, incorporating1600 tape pairs taken from 8 different 

kinds of tape and four separations methods (hand-torn, scissor-cut, box cutter, and an Elmendorf 

Tear Tester). The study reported low false positive and false negative errors, with the highest false 

positive rate at 3.33% and the highest false negative rate at 2.67%. This study was the first to 

present a potential quantitative measure - a score determined by the relative length of the fracture 

found to be in alignment with the total width of the edge. However, the authors did not explore 

how the metric corresponded with the overall performance of their method [57]. These studies 

formed the foundation on which our previous method was developed. 
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Table 1-1. A few studies that discuss physical fits of polymer materials [37]. The studies are categorized as case studies, fractography 

studies, or quantitative studies.  

Category 
Material 

Type 
Population Size Experimental Design 

Statistical 

Performance 

Measures 

Main Findings 
Reference 

Number 

Case Report 
Soft 

plastic 

1 questioned, multiple 

known exhibits 

-Observations of physical features of the questioned 

and known bags 

-Elemental analysis via XRF 

-Visited the manufacturer to gain information on the 

production process 

-Determined frequency of individual bag type 

-Collected reference samples for determination of 

the period of manufacture time before the feature 

change 

 -Die line slope method described by Von Bremen 

and Blunt was used to determine the order of 

manufacture 

Population 

frequency 

provided 

-Both questioned and known bags were the results of “J sheets” 

during the manufacturing process, a characteristic appearing on 

only 2 of 4 stock sheet rolls produced at once 

 -A bag with the same slope as the questioned bag was 

produced only once every 412 bags produced 

-Changes in die striae and chemistry are observed in two-hour 

intervals, in which 254 bags of similar characteristics are 

produced, spread d over 16 rolls of stock film, and randomly 

loaded into different bag machines.  

-Consistency demonstrated in persistent die striae, elemental 

composition, tie flap offset, bag width, degree of tie-flap 

centering, and the presence of die flap over-tucks (due to 

origination from “J-sheets”) between the questioned and known 

bags 

38 

Case Report 
Hard 

plastic 
2 questioned, 2 known 

-Broken pieces of a wheel in the well from the scene 

were visually compared to the wheel well of a 

suspect’s car 

None 
-Questioned pieces were found to align with known wheel well 

visually 
39 

Case Report 

Metal, 

hard 

plastic 

1 questioned, 1 known 
-A roof located at a chop shop was compared to the 

roof beams of a known vehicle 
None 

-A physical fit was discovered due to physical examination and 

measurements 
40 

Case Report 
Soft 

plastics 
1 questioned, 1 known 

-Trash bag examination for consecutive manufacture 

determination between questioned bags and known 

roll 

-Manufacturing plant to learn of melt pattern 

characteristics that can be used to associate 

consecutive trash bags 

None 

-Manufacturer-imparted, melt pattern characteristics of trash 

bags, such as lines and arrowheads, can be used to associate 

consecutive trash bags 

-These features can be revealed with transmitted lighting 

41 

Case Report 
Soft 

plastics 
4 questioned, 1 known 

-Examination under the microscope revealed 

striations on the surface of questioned sole 

fragments 

-Examination of the soles of the suspect's boots 

revealed similar striations and missing portions 

-Voids in soles cast in Mikrosil and then compared 

to the fragments 

None 

-Direct physical fit inconclusive before casting 

-Fragments were concluded as having come from the suspect’s 

soles due to alignment in striations between cast voids and sole 

fragments 

42 

Case Report 
Hard 

plastic 
1 questioned, 1 known 

-Questioned blade fragments were compared 

visually to two known knives 

-Questioned sample and a section of one of the 

broken blade fragments were cast using Mikrosil 

None 
-Casts were found to have similar features 

-Direct comparison with reverse lighting revealed a physical fit 
43 
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Fractography/ 

Qualitative 

Soft 

plastics 

-13 packages of garbage 

bags: 10 packages of 

various brands purchased 

from local stores; 3 retail 

packages obtained from 2 

manufacturing plants 

-13 consecutively made 

garbage bags obtained from 

a manufacturing plant 

-7 packages of sandwich 

bags: 5 of various brands 

purchased from local 

stores; 2 obtained from a 

manufacturing plant 

-Bags first examined for color, size, perforations, 

construction, code, pigment bands, and hairline 

marks presence or absence 

-For garbage bags, the production sequence is 

determined by finding the slope of a prominent 

marking across all bags 

-Bags then examined for colored striations under 

crossed polars, as well as individual characteristics, 

including fisheyes, arrowheads, streaks, and tiger 

stripes 

-Individual characteristics examined on sandwich 

bags include surface scratches and colored bands 

None 

-Knowledge from the manufacturing process can be utilized to 

discern the order or markings across multiple plastic bags 

-Bags can be thought of as consecutive when both class and 

individual characteristics align 

44 

Fractography/ 

Qualitative 

Glass, 

Metal, 

Hard 

plastics 

Not given 

- Three different loads were used (0.98N, 2.0N, and 

2.9N) for a hard indenter to reproducibly create 

fractures 

-The second part of the study included bending 

glass, in which a universal testing machine was used 

to create reproducible load distributions  

-The third test was with polymers using an impact 

“hail-stone gun.” Plastic balls were discharged at 

polymethyl methacrylate (PMMA) sheets 

-Tensile tests completed on steel wires 

None 

-Fractures were found to have random distributions of cracks 

-Cracks themselves were found to have a random number, 

lengths, propagations, directions, shapes, and orientations 

-Curves and fractures made in the second study were randomly 

distributed 

-Cracks from the impact (third study) were found to be random 

-Curves and fracture surfaces of the wires were random and 

varied between the different wires  

-The steel wires were found to allow for a fracture match 

between the edges 

45 

Fractography/ 

Qualitative 
Tape Not given 

-Tapes from six different manufacturers were torn 

by hand and observed with a comparison 

microscope 

-The edges were treated with 100 Celsius hot air for 

a few seconds 

-After treatment, the tapes were re-observed under 

comparison microscopy 

None 

-Heat treatment was found to make it easier to find the 

corresponding edge and improved confidence in the conclusion 

-The author did note, however, that applying heat treatment 

may destroy other evidence (DNA, fingerprints) 

46 

Fractography/ 

Qualitative 
Tape NA 

-Tapes were either sheared or torn, heat-treated at 

100°C with demineralized water to undo any plastic 

deformation occurring after fracture, cast with 

casting material, and each edge of the fracture cast 

was examined using comparison microscopy for 

fracture matching 

None 

-Each tested fracture generated an individual fracture pattern of 

which a cast could be taken for nearly mirror-image 

comparison microscopy results 

47 

Fractography/ 

Qualitative 
Tape Not given 

-Tapes were torn by hand and cut with scissors to 

demonstrate non-reproducibility 
None 

-Tearing and shearing black electrical tape samples left distinct 

tears that were non-reproducible 
48 
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Fractography/ 

Qualitative 

Soft 

plastics 
NA 

-A review/recommendation for analysis of garbage 

bags for consecutive manufacturing identification 

rather than a study with actual samples 

-Garbage bags can be aligned according to their 

heat-sealed edges/ending. Transmitted light from 

underneath can reveal striations from the 

manufacturing process that can attribute to a 

common source 

None 

-Horizontal streaks in plastic bag material formed during the 

manufacturing process are in the following categories: 

1-fisheyes (randomly distributed dark pigments) 

2-arrowheads (triangular striae of dark pigment) 

3-tiger stripes (horizontal striae of dark pigment) 

4-die lines (become visible in the blowing and stretching 

process, straight horizontal lines) 

49 

Fractography/ 

Qualitative 

Soft 

plastics 
NA 

-Summary of characteristics of polyethylene films 

that can be used for comparisons and manufacturing 

processes 

NA 

-Additives to films from manufacturing appear as 

striations/patterning 

-Extrusion marks originate from the roller 

-Additional scratches and surface striations come from machine 

wear 

-Dye variations come from uneven applications of dye 

50 

Fractography/ 

Qualitative 

Soft 

plastics 
NA 

-A black card was cut to have ⅛ in X 6 ½ slots. Two 

sheets of glass were put together and placed above 

the grid. A 500-watt lamp illuminated the grid at a 

right angle 

-A camera was focused on putting the whole area of 

glass in the negative 

-Polyethylene piece was sandwiched between the 

glass sheets with the extrusion marks on the short 

side 

NA 
-The photography method was found to help visualize and 

document extrusion marks in polyethylene film 
51 

Fractography/ 

Qualitative 

Soft 

plastics 
NA 

-This paper focuses on photographing the physical 

characteristics of plastic bags and film that have the 

potential to be used to denote matching edges or 

connected pieces of evidence 

None 

-Extrusion marks are recommended to be photographed using a 

secondary lens system so that the extrusion marks can be 

focused at any magnification 

-Heat marks originate from bags that are sealed together by an 

individual separately from the manufacturing heat seals 

-Secondary heat marks were often created using a soldering 

iron or laundry iron or by commercially made sealing machines 

-For sealing machines, conclusions could be made by 

examining the patterns left by the heat-proof fabric on the 

machine, by observing inclusions and irregularities created in 

consecutive seals made by the same machine, and by hot spots 

(unique areas of deformation caused by heat) 

-Cut edges of films could offer additional details if the 

instrument used to sever the edges left similar characteristics 

(snags, changes in cut direction t, etc.) 

52 
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Fractography/ 

Qualitative 

Soft 

plastics 
NA 

-Summary of a variety of methods that can be used 

to visualize and assess the physical properties of 

plastic bags and cling film 

-Kinds of properties that can be utilized include 

color and variation of die lines, polarization 

patterns, striations from manufacturing 

-Summary as well of the manufacturing of plastic 

bags and film: 

-Manufacturing: plastic bags are made by blowing 

polymer through a circular tube and then flattened. 

Cling film is also made by a blown film extrusion 

but forms a single sheet that is wound up 

-Finally, four cases mentioned in which 

characteristics of plastic bags were viewed to allow 

for matching 

None 

-Polarization (polarization table): used because many polymeric 

films are birefringent. Consecutively produced bags often have 

similar or consecutive colors under cross-polars, and the 

patterns can be compared to fit matching bags together 

-Shadowgraph and Schlieren imaging: shadowgraphs involve a 

point light source at an angle to the film, highlighting 

discontinuities and defects within the film. The film is 

photographed in front of the light. For Schlieren, the point 

source is directed through a convex lens or spherical mirror so 

that a parallel beam of light passes through the film. A 

matching lens or mirror catches the light and allows for 

photography 

-Incident and transmitted light microscopy: microscopes that 

can be adjusted to allow for visualization of inhomogeneities of 

the films 

-Four cases include an instance of printing defects showing 

bags produced on the same production line, a case where the 

polarizations colors demonstrated the bags were produced 

consecutively, a case where the polarization, die lines, and 

striations demonstrated consecutive manufacturing, and finally, 

a case where cling film die lines demonstrated consecutive 

manufacturing 

53 

Fractography/ 

Qualitative 

Glass, 

hard 

plastic 

60 panes of double-strength 

glass, 60 clear glass wine 

bottles, 60 polymer tail 

light lenses 

-60 each of three sample types, two fracture 

methods: dynamic impact and static pressure, 30 

samples each, three fracture tips (blunt, round, 

sharp) 

-Dynamic: 8x8” glass panes, wine bottles coated 

with RTV urethane, 5.5/8x4.1/4” plastic lens, 10 

glass samples per dropping weight impact tip, 10 

plastic lenses per dropping height, reassembled, 

imaged, and videoed for velocity measurements 

-Static: 8x8” sample, wine bottles coated with RTV 

urethane, indenter crosshead speed 10 mm/min, 10 

samples per indenter tip (only wide tip used on 

plastic, so all 30 were the same), load vs. extension 

measured by Instron software, reassembled and 

imaged 

-Visual comparisons: fractures traced onto acetate 

and overlay one-to-one per sample at four 

orientations (two for bottles) 

None 

-Blunt fracture tips required the highest velocity (dynamic) and 

force (static), while sharp tips required the least 

 -Sharp tip fracture patterns contained the fewest lines, blunt tip 

patterns contained the most lines 

 Glass panes: Blunt tip created more radial and concentric 

fractures, and dynamic fracture patterns more simple than static 

 Wine bottles: The number of fractures between impact tips was 

more evenly distributed, and fracture patterns between dynamic 

and static samples did not vary as much 

 -Linear relationship expected between load and extension, 

curvature obtained from load profiles 

 -In plastic lenses, velocity increased as drop height increased, 

causing a center crushing and edge fracturing 

 -Plastic extension value exceeds glass values; however, the 

load is smaller 

25,54 
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Quantitative Tape 
5 tests with 10 tape strips 

per set 

-5 test sets: hand-torn from each of three rolls and 

scissor cut from each of the two rolls 

-Four examiners, individual assessments of each set. 

Separate sets per examiner, 20 prepared total 

Performance 

rates 

-46/50 or 92% of hand-torn end matches identified correctly 

-25/31 or 81% of scissor-cut end matches identified correctly 

-No false positives or negatives; the remaining were 

inconclusive 

-2 misidentifications occurred when examiners re-evaluated the 

scissor cut sets (due to lower matching percentage) 

55 

Quantitative Tape 

1600 torn pairs for hand-

torn 

200 Elmendorf-torn  

200 scissor-cut 

200 box cutter-cut 

-4 separation methods (hand torn, Elmendorf torn, 

scissor cut, box cutter cut) 

-3 analysts, all peer-reviewing each other 

-Contingency 

tables: 

inconclusive rate, 

accuracy rate, 

false-positive 

rate, the false-

negative rate  

 -Mean and 

standard 

deviations 

calculated for 

each analyst 

Peer review results: 

-Hand-torn: 9 false negatives, 2 false positives, 37 inconclusive 

-Elmendorf-torn: 3 false negatives, 0 false positives, 11 

inconclusive 

-Scissor-cut: 4 false positives, 0 false negatives, 1 inconclusive 

-Box cutter-cut: only one misidentification  

-Totals: Elmendorf = highest IN rates across examiners; Hand 

torn NGB NPB 3MGB 3MGG somewhat high; scissor-cut 

relatively low; box cutter-cut all 0 

-Mean accuracy torn tape: 98.58 - 100.00% 

-Mean accuracy cut tape: 98.15 - 99.83% 

-Mean false positive rate torn tape: 0.00 - 0.67% 

-Mean false positive rate cut tape: 0.00 - 3.33%  

-Mean false negative rate torn tape: 0.00 - 2.67%  

-Mean false negative rate cut tape: 0.33% 

56,57 

Quantitative Tape 

11 tape sets, 200 tapes per 

set, 40,000 inter-

comparisons, a total of 

440,000 comparisons 

-Sets were 200 samples each of the following 

fracture methods: hand torn (8 sets), Elmendorf torn 

(1 set), scissor cut (1 set), and box cutter (1 set) 

-Digital images are taken of all individual ends and 

fracture pair exemplars 

-An algorithm was developed to extract coordinates 

of fracture ends, thresholds set depending on image 

illumination and tape color, the binary image 

generated, noise from contamination filtered out 

-Similarity/distance between coordinates of a 

fractured pair calculated as the sum of squared 

residuals (SSR) value to quantify differences. Lower 

values indicate more similarity between items 

-Frequency 

histograms of the 

true match and 

non-match SSR 

values 

-Box plots for 

SSR values 

among 

comparisons 

-Colored matrix 

plot of SSR 

values (shows 

that high and low 

SSRs are not 

random and 

common in 

certain samples)  

-SSR means and 

standard 

deviations 

between matches 

and non-matches 

-True matching SSR values were consistently below a critical 

value 

-Majority of non-matching SSRs were orders of magnitude 

larger than matching  

-In some samples, a non-matching SSR could be even smaller 

than a matching SSR if fractures were somewhat similar 

-General grade tapes error rates with 40,000 intercomparisons: 

0.0025-0.29%  

-General grade tapes error rate with 200 intra-comparisons: 0.5-

18.50%  

-Professional grade tapes error rate with 40,000 

intercomparisons: 0.085-0.20% 

-Professional grade tapes error rate with 200 intra-comparisons: 

7.0-7.5% 

58 
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Quantitative Other 

12 fracture pairs from 

silicon, 24 metal-coated 

paper samples, and 22 

Perspex plates 

-Fractures illuminated with oblique lighting and 

scanned 

-Two computerized systems were developed: one 

extracts contour representation from fracture 

image/scan, other compared to the database to 

generate the statistical probability of the match 

-Individual similarity scores against the databases 

determined by the algorithm 

-Correct matches were classified by human users 

who marked match points on the software. Pixel 

distances between the proposed points were then 

calculated 

-Classification process told system correct matches 

and non-matches for different material types and 

fracture line lengths. Pixel lengths between known 

matches and non-matches used to generate criteria 

for the classification of a questioned fracture  

-Probabilities of occurrence within generated 

databases used to determine optimal separation 

criterion for this purpose 

Similarity 

measures 

between sections 

of fracture 

contour: 

-Difference sum 

of squares  

-Difference in 

standard 

deviation 

-Normalized 

cross-correlation  

-Histograms and 

probability 

density functions 

for correct match 

and populations  

-Likelihood 

ratios of a match 

within the 

material 

population in the 

database 

-Correct match classification probability: 0.968 

-False positive classification probability: 0.0519 

-Likelihood ratio of true positive: 18.66  

-Positive predictive value: 0.9491  

-Bayes risk (false classifications): 0.084 

-50% correct criterion positive likelihood ratio: 529 (pairs with 

a matching error below 0.775 will be classified as correct 

matches) 

-Probability of correct classification of a matching pair with 

error values between 1.05-1.15 = 0.0561  

-Probability of a non-match with these error values = 0.0039 

-0.93 probability of being a correct pair within these error 

ranges 

59 

Quantitative Tape 30 test sets 

-3 examiners performed end matches on 10 sets 

each of electrical tape fracture pairs 

-Each set design consisted of factor variation 

between tape brand, test set preparer, and mode of 

separation 

Performance 

rates 

-2142 end comparisons possible due to various combinations of 

tape ends  

-98/106 true matches identified 

-7 pairs were misidentified as inconclusive, and 1 was a false 

positive  

-A secondary reviewer also reported a false positive on the 

same tape pair  

-False positive rate was 0.049% 

60 

Quantitative Tape 2280 pairs 

-Tape pairs of various qualities, either hand-torn or 

scissor-cut 

-Number of areas between scrim that matched 

across tape edges counted (edge similarity score) 

and conclusion of non-match or match determined 

-Total population of known non-matches and 

matches used to evaluate score distribution and 

performance rates 

-Performance 

rates 

-Score-based 

likelihood ratios 

-No false positives detected in the dataset 

-Accuracy reported between 84-99% 

-ESS higher than 80% supported match, and ESS lower than 

25% supported non-match 

10 
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Quantitative Tape 3300 pairs 

-Tape pairs of 3 qualities, either hand-torn or 

scissor-cut 

-Performance rates and edge similarity score 

distributions determined for each set 

-Analysis of factors performed to see if quality, 

separation method, and separation have a significant 

influence on ESS distributions 

-Performance 

rates 

-Score-based 

likelihood ratios 

-Kernel Density 

Functions 

- Logistic 

Regression 

-No false positives detected in the dataset 

-Accuracy reported between 84-99% 

-Quality and Separation method was determined to have some 

effect on true fit ESS values, not on true non-fits 

61 

Quantitative Tape 136 pieces of tape 

- Tape from 3 qualities, all with weft-insert scrim 

weave 

-Assigned values of 0, 1, 2 to represent the type of 

link breakage between loops 

- Assigned positive or negative value to represent 

the distance of the next weft from the edge 

-Bayesian 

models 

-Likelihood 

Ratios 

- Overall showed high discrimination power and relatively low 

misleading rates of evidence 

- Bayesian models provided the means to calculate likelihood 

ratios 

-Limited by scrim weave type 

62 

Quantitative Tape 150 pairs 

- Algorithm designed in R to extract the edges of 

each tape sample and perform edge alignment and 

comparison. 

-Cross-correlation function (CCF) was used to 

assess alignment, and probability of fit 

-An additional exploration into the comparison of 

partial edges was performed 

Cross-correlation 

function (CCF) 

- Overlap of CCF values between true fit and true non-fit pairs 

- 48% of the true-fit scores were above the 95th quantile of the 

true-non-fit distribution 

- The algorithm could distinguish between a true fit and non-fit 

edges greater than 27% of the total width 

63 

Quantitative Tape 21 pairs 

-38 participants across two interlaboratory exercises 

performed end matches on 7 pairs of hand-torn duct 

tape 

-Calculated ESS values reported along with the final 

decision of fit or non-fit 

-Feedback received from the first interlaboratory 

was used to enhance the second 

Performance 

rates 

-Z-Scores 

-Dunnett control 

charts 

-Accuracy of 90-100%  

-Inter-participant agreements generally high 

-Consistency in reported ESS and conclusion improved in the 

second study 

64 
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A recent paper considered loop-breaking patterns, referring to the chains created by the fracture of 

weft-insert scrim fibers, to quantitatively represent the comparison of two duct tape edges. In this 

study, van Dijk et al. [62] use these quantitative values to calculate likelihood ratios using a 

Bayesian network and provide evidential value to comparisons. The samples for this study consist 

of 136 pieces (272 edges, with a total of 127 true fit pairs) from three different quality tape sources. 

The authors state that when weft-insert duct tape is torn, the warp yarn usually breaks at the point 

where it is looped onto itself, as this is supposedly the weakest point. Where two loops intertwine, 

the fracture can cause at least one of these loops to break. For each of these occurrences on the 

edge, a value was assigned according to the appearance, as either a 0, 1, or 2 depending on if the 

loop was closed (or missing), open, or complex. In addition, the horizontal position of the edge 

fibers was denoted, assigned a positive or negative value depending on how far away the first weft 

fiber was from the fracture was. These values were used to generate Bayesian models and calculate 

likelihood ratios, which overall showed high discrimination power and relatively low misleading 

rates of evidence [62]. However, a limitation of this approach is that weft-insert scrim weaves are 

less common than simple weaves, meaning this method is less widely applicable.  

 

Currently, only some studies address hard polymer materials for forensic physical fit examinations. 

One comprehensive fractography study is by Tulleners et al. on the fracture of glass and polymers. 

The authors broke polymer lenses, glass bottles, and glass panes under varying conditions, 

including different fracture tips and methods. The results indicated that sharp fracture tools 

required the least velocity and force to puncture the sample. They noted that an impact collision 

caused the polymer lens to crush instead of splinter. Of note for physical fit examinations, the 

authors reported that the fractures tended to follow ridges in the molding away from the impact 

point, potentially due to the distribution of thinner areas on the polymer lens [25, 54].  

 

The basis of this research is our previously published systematic method for the quantitative 

assessment of the quality of a physical fit [10]. The quantitative metrics developed duct tape is 

referred to as the edge similarity score (ESS), which measures the quality of the fracture fit in 

alignment across the edge. The ESS has the potential to be interpreted in a variety of ways. The 

initial duct tape study evaluated several types of tapes and separation method and inter-analyst 

agreement. Over 2,000 duct tape comparisons were performed, resulting in overall accuracies 

between 84.9-99.8%. The quality of the duct tape affected the distribution of edge similarity scores 

across known true matches and known true non-match samples. The higher quality tape with 

thicker adhesive and more scrim fibers per square inch produced more negative misidentifications 

and a wider distribution of scores for the true positive samples. Despite the influence of the tape 

grade, no false positives were reported for the comparison sets [10]. In addition to discussion of 

error rates, the distribution of scores were assessed through various exploratory data analysis 

techniques including boxplots and histograms. The data was also evaluated using kernel density 

plots and score-based likelihood ratios to provide a proxy for the weight of the evidence [10].  

 



18 

 

This study serves as the foundation for this research. This dissertation further evaluated the 

published method through additional sample sets and interlaboratory studies and contrasted it to a 

computational comparison method. Furthermore, the data collected from the duct tapes were used 

to answer additional questions that have yet to be extensively addressed in the physical fit analysis. 

These include the minimum width of tape necessary to determine a physical fit reliably, 

identification of the most critical features for analysis, and evaluation of factors that could affect 

the quality of a fit. In addition, it serves as a model for developing a systematic method for 

comparing hard plastics. However, the characteristics, features, and comparison areas were 

adapted accordingly for each type of material.  

 

Computational Methods to Aid Physical Fit Comparisons 

As more studies are being conducted regarding fractography and physical fit assessments, another 

avenue that is being explored is using algorithms to assess edges of separated materials. Studies 

using physical samples and human analysts can take considerable time to complete when 

conducted on a statistically appropriate number of samples. Algorithms have the potential to utilize 

a larger population of samples to compare to questioned samples in a shorter period than can be 

accomplished by traditional physical comparison and provide additional support to the scientific 

findings. Applying algorithms to forensic evidence has become a growing area of interest as 

computational capacity has improved. Examples of these include the Automatic Fingerprint 

Identification System (AFIS), a database of forensic automotive paint samples (Paint Data Query 

(PDQ)), and the United States Secret Service database for ballpoint ink pens [65-67]. In these 

systems, data collected from an unknown sample is uploaded and compared to the stored library 

of samples to determine if the system returns any similar results. Often, these systems will generate 

a ranked list of potential sources from which an analyst can evaluate and compare the unknown 

sample against to make a final determination.  

 

A few algorithms have been developed to model the fracture of various materials to learn more 

about the randomness of fracture patterns. Several models have also been created to associate a 

corresponding item with a separated fragment. Yekutieli et al. in 2012 [59] published an automated 

method for examining the edges of paper, silicone, and Perspex (a material like Plexiglas). This 

model was composed of two systems, the first performed a physical assessment on the edges, and 

the second collected statistics on the samples used. The input was a scan or image of the original 

sample, and the output was a series of segments of the material that algorithm determined to be 

the most likely fit. A large population of true fit and non-fit samples was introduced for the second 

system, which utilized the populations to determine error rates and likelihoods. Applying the 

algorithm to these materials resulted in combined error rates of 0.007%, 0.37%, and 0.4%, 

respectively [59]. 

 

Several studies have involved computational models in comparing and evaluating duct tape edges' 

error rates. One such algorithm was developed by Ristenpart et al. in 2017 [58], using the samples 



19 

 

previously analyzed in McCabe’s 2013 human-based study [57]. The algorithm was designed to 

do quantitative image analysis using scanned images of the tape backings. The algorithm used 

edge detection and smoothing to extract the contour of the edge of a tape backing and compare it 

against others in the set to try to determine what edge was the most similar. The similarity metric 

was a sum of square residuals, with lower values found for a true match. Their study determined 

that 97% of the tears result in the true match having the lowest sum of squares residual. However, 

they noted that scissor-cut tapes produced a substantially high false positive rate of 61.5%, likely 

due to straighter edges and fewer distinctive features in cut tape edges [58].  

 

Spaulding et al. designed another recent model [63]. This study incorporated automatic edge 

detection and used a cross-correlation function and random match probabilities to compare duct 

tape fits. A total of 44850 comparisons were created, with 150 being true fits. Although there was 

substantial overlap in similarity scores, 48% of the true-fit scores were above the 95th quantile of 

the true-non-fit distribution. This study also evaluated partial duct tape edge comparisons, noting 

that the algorithm could distinguish between true fit and non-fit edges widths greater than 27% of 

the full width. Like Ristenpart et al. [58], Spaulding et al. noted limitations in the method due to 

distortions and artifacts introduced to the sample edges. Importantly, Spaulding et al. indicated 

that the results of their study demonstrated that not all fits hold the same probative value, which is 

consistent with the results presented in our previous study [10, 63].  

 

It is worth noting that the algorithms described above only considered the contour of the edges. 

Materials also possess 3D features and surface characteristics of the material and the fracture, 

providing additional information. Many case studies and physical fit studies note that fracture 

characteristics and surface features contribute substantially to the ability to determine the presence 

of a fit; as a result, the performance of the algorithms was outperformed by the corresponding 

human-based examination. Therefore, in the model designed for this research, one of the aims is 

to include those features as they are expected to improve overall accuracy and reduce false 

positives. 

 

1.4. Project Design and Objectives 

 

Overall Project Goals 

This research aims to address the crucial need for improving standard methods and criteria for 

making decisions on comparative analysis of trace evidence materials. Evaluating physical fits has 

been a longstanding procedure in forensic science. The assumption has been that a physical fit 

allows for two items to be individualized to a single source. However, while the ability of analysts 

to successfully determine the presence of physical fits has been assessed in research studies and 

proficiency exams, only some studies propose systematic and validated criteria that can be used to 

support decisions.  
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To address the need for systematic methods, this research expands upon a method previously 

developed for evaluating the quality of duct tape physical fits. The ESS method has been assessed 

using additional sample sets supporting the originally developed method for duct tapes. In addition, 

the results of the human examination of duct tape physical fit pairs are compared against the results 

of a computational algorithm designed to evaluate the same duct tape edges. Computational 

models are also used to extract data from the comparison templates, including critical features for 

comparison, and assessing the minimum width of tape necessary to perform physical fit 

evaluations reliably. Further verification of the duct tape ESS method has been assessed using 

results collected from two interlaboratory studies. The second interlaboratory exercise expands 

and improves the documentation and training for the ESS method based on feedback provided by 

the first interlaboratory. Both studies demonstrate consistent results between analysts, with high 

accuracy rates.  

 

In addition, this research introduces a newly developed method for systematically comparing the 

physical fits of hard polymers. This method defines new comparison criteria and features for brittle 

plastic materials, and error rates and inter-analyst variability are determined. The similarity metrics 

are evaluated further through exploratory analysis. This method is anticipated to support analysts 

conducting physical fit evaluations of trace materials and serve as a foundation for future research 

and development of additional material-specific methods.  

 

There are five main steps to the development of the systematic methods for physical fits, described 

below in Figure 1-2. 

 

Finally, this research addresses the need for statistical comparison methods for spectral data. 

Electrical tape elemental data collected from X-ray Fluorescence (XRF) is compared using spectral 

contrast angle ratios (SCAR). The SCARs are used to evaluate thresholds by which analysts can 

support a decision of distinguishable or indistinguishable spectra, supporting the currently used 

method of spectral overlay. In addition, applying a random forest model and a two-stage approach 

to interpretation provides additional probative value, such as manufacturing and sourcing 

information.  
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Figure 1-2. Diagram depicting the five main steps to the physical fit method development. 
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Objectives and Respective Tasks 

 

Objective 1. Expand the validation of a human-based systematic comparison method for duct tape 

physical fits with a more extensive dataset of duct tapes and interlaboratory studies. 

 

Task 1.1. Prepare a dataset of known samples for comparison. The sample sets consist of 3321 

tape comparisons, incorporating samples from rolls of varying quality (low, medium, or high). The 

tape edges are either scissor-cut or hand-torn. The hand-torn subsets are also subjected to 

manipulation to evaluate the effect of stretching on the quality of a fit, resulting in a total of 9 

subsets. The low-quality tape has 650 comparisons (250 scissor-cut, 200 hand-torn, and 200 hand-

torn stretched). The high-quality has 647 comparisons (250 scissor-cut, 199 hand-torn, and 198 

hand-torn stretched). The medium-quality tape has a total of 2016 comparisons (500 scissor-cut, 

508 hand-torn comparisons completed by two independent analysts, and 508 hand-torn stretched). 

Each comparison results in an edge similarity score (ESS), a quantitative value between 0 to 100% 

representing the similarity between the edges [10, 61].  

 

Task 1.2. Determine threshold values and error rates for the edge similarity score (ESS) criteria 

across the tape subsets. Performance rates, including sensitivity (true positive), selectivity (true 

negative), false positive, false negative, and accuracy, are calculated following each subset's 

analysis to assess the method's performance. The distribution of ESS values is also explored using 

boxplots and frequency histograms to identify differences in the distribution of scores between 

true fit and true non-fit pairs. In addition, probabilistic assessments using score-based likelihood 

ratios are used to provide a proxy for the probative value of a given pair.  

 

Task 1.3. Evaluate the experimental factors that influence the quality of a physical fit. The factors 

of separation method (2 levels: hand-torn, scissor-cut), tape quality (3 levels: low, medium, and 

high), and stretching (2 levels: pristine and stretched) are evaluated using logistic regression 

models to assess which have a substantial influence on a duct tape physical fit examination. 

 

Task 1.4. Create and manage an interlaboratory study on duct tape physical fits. Create a set of 

fractured duct tape testing kits, a training guide, and a post-survey to be distributed to 

interlaboratory participants. A set of physical duct tape fracture edges are created to serve as a 

basis to assess the duct tape ESS comparison method developed. The samples generated consist of 

three sets of seven pairs (a total of 21 pairs of tape), for which there are four true fits and three true 

non-fits per set. Pre-distribution consensus evaluations are conducted to establish expected ESS 

values and inter-examiner variability for each pair. 

 

Task 1.5. Conduct inter-laboratory exercises on physical fits to assess the proposed fracture fit 

comparison method and evaluate the performance of the method. Thirty-eight forensic 

practitioners from 23 laboratories participated in the exercises, resulting in 266 comparisons. 



23 

 

Results are collected from each pair to evaluate error rates, reported ESS values, and the 

demographic results and feedback in the post-examination survey.  

 

Task 1.6. Determine the performance of the edge similarity score method when utilized by 

forensic practitioners. Performance rates, including sensitivity (true positive), selectivity (true 

negative), false positive, false negative, and accuracy, are calculated following each 

interlaboratory study to assess the method’s performance. The distribution of ESS values is also 

explored using boxplots to evaluate the distribution of ESS scores across participants for each kit 

and interlaboratory exercise. In addition, the reported similarity scores for the sample kits are 

compared against the pre-distribution consensus score using Z-scores and Dunnett control charts, 

which allows for identifying results significantly different from the consensus. 

 

Objective 2. Compare the performance of a computational algorithm for comparisons of duct tape 

physical fits against the human-based results. 

 

Task 2.1. Digitize a population of duct tape sample edges for use in computational modeling. 

Approximately 2000 tape samples are digitized using an EPSON 12000XL scanner (SilverFast 8, 

version 8.8.0r14 software) at a minimum of 600 dots per inch resolution. Both sides of the tape are 

scanned, accounting for a complete database of approximately 4000 images. The tapes in this study 

are the same used in the human examination [10, 61] and cover the hand-torn and scissor-cut sets 

from all three qualities of tape. The contrast of the tape images against the background is 

maximized using a black background for each image, and irrelevant artifacts and noise are reduced 

using Photoshop. Pre-processing of the images after digitization is performed using the ForensicFit 

package in python [68]. 

 

Task 2.2. Evaluate the computational algorithm's performance and compare results to those 

obtained through human-based examination of duct tape edges. Following the convolutional neural 

network training on the tape sample set, the algorithm’s performance is compared to the human 

analysis for the same samples. Performance rates, including sensitivity (true positive), selectivity 

(true negative), false positive, false negative, and accuracy, are calculated for each subset to assess 

the algorithm’s performance. These values were then compared to those of the human examination 

from the same tape sets. The human-based analysis provides a quantitative edge similarity score 

(ESS), which can be compared to the computational membership prediction (a quantitative 

probability of belonging to the ‘fit’ or ‘non-fit’ class). The distribution of similarity metrics can be 

compared as an additional assessment of the performance of the computational algorithm.  

 

Task 2.3. Contrast the areas of the tape found to be the most important for human analysis 

compared to the convolutional neural network. Given pairs of tape can be extracted from the neural 

network and compared against the documentation of the human analysis. A method of pixel 

importance demonstrates which pixels of the tape image are recognized and used to decide by the 
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neural network. These areas are observed and compared with the human comparison of the same 

pair, identifying features in common, such as the edge morphology, pattern of backing, or any 

protruding fibers.  

 

Objective 3. Extract and interpret edge feature data of duct tape and textile physical fit 

examinations using computational models. 

 

Task 3.1. Compile bin-by-bin data from the human analysis of duct tape physical fit sets as input 

data for the algorithm to assess the effect of tape edge size. Five subsets of duct tape pairs (three 

low-quality sets: scissor-cut, hand-torn, and hand-torn stretched, and two high-quality sets: scissor-

cut and hand-torn) were previously analyzed and have documented bin-by-bin quantitative data 

for each subunit area of comparison. Each bin is assigned a value of 0, 1, or 0.5 for fit, non-fit, or 

inconclusive. This study accounts for 650 pairs of low-quality tape (32 bins per pair) for 20800 

bins and 448 pairs of high-quality tape (55 bins per pair) for 24640 bins. The data from each bin 

are combined per pair and subset of tape.  

 

Task 3.2. Extract random tape widths from bin-by-bin comparisons and calculate performance 

rates by bin width. The duct tape pairs' bin-by-bin alignment values (0, 0.5, or 1) are extracted, 

and sampling is conducted to determine the error rates based on random width segments. For 

example, at a given width of 10 bins, a selected tape pair has an arbitrary start point chosen, and 

the width of 10 consecutive bins with the corresponding alignment values would be obtained. The 

ESS is then calculated for this pair of tapes. This process is repeated for all possible widths for the 

tapes (32 bins for low-quality and 55 for high-quality). Random selection of tapes and bin widths 

is performed five times to account for the variation of ESS within tape samples.  

 

Task 3.3. Estimate the minimum width of tape necessary to conduct physical fit examinations 

reliably. The calculated partial ESS values and resulting fit/inconclusive/non-fit decision can be 

compared to the ground truth, and error rates determined for each bin width. These error rates are 

modeled using beta regression in R to evaluate the minimum width for reliable accuracy. 

 

Task 3.4 Extract feature information from documentation templates and determine which features 

are critical for decision-making. Three subsets of duct tape pairs (low-quality hand-torn stretched, 

high-quality scissor-cut, and high-quality hand-torn stretched) that were previously analyzed have 

documented bin-by-bin feature data for each subunit area of comparison following the 3-step ESS 

method [61]. The eight features of interest are the alignment of severed dimples, alignment of 

calendaring striations, alignment of warp scrim, alignment of scrim weave, corresponding 

protruding warp fibers and gaps, distortion explained by stretching directionality, consistent weft 

scrim near or at the edge of the sample, missing material. The occurrence of these features by tape 

subset and ground truth is calculated, and their value in deciding a fit or non-fit is assessed using 

mutual information gain. Mutual information gain can allow for the detection of relationships 
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between variables, which provides information as to whether the presence of a feature can indicate 

a particular decision.  

 

Task 3.5. Provide a preliminary decision-making guide for analysts using feature occurrence. 

Using the features highlighted by the mutual information gain, a decision tree indicates which 

decision (fit, non-fit, inconclusive) should be considered when observing a particular feature. To 

this end, an analyst could observe the decision tree, observe the features of a given tape pair, and 

follow the decision tree to a conclusion of fit, inconclusive, or non-fit.  

 

Objective 4. Develop and validate a systematic method to quantify the quality of fracture fits of 

hard plastics. 

 

Task 4.1. Prepare a dataset of known ground-truth polymer samples for comparison. The sample 

set of polymers consists of more than 500 comparisons originating from broken heads and taillights 

taken from vehicles. The head and taillights are broken by hand using tools including a hammer 

and crowbar, and fragments are then collected and reconstructed to ensure the known ground truth 

of each edge. Each sample is randomly labeled, and non-participating analysts document the 

reconstructed full lights and each pair to maintain the ground truth of the pairs. As additional 

information, infrared spectrums were collected from each distinct polymer type from each source 

light to provide compositional information.  

 

Task 4.2. Develop a standard method for the quantitative assessment of the quality of physical fits 

of hard plastics and define comparison features and measurements that can be used for comparison. 

The comparison edge of each polymer pair is divided into five sections based on the total length 

of the fracture. A flexible string is used to measure the total length to account for bends or 

indentations in the polymer surface. A series of features were defined for use in comparison to 

polymer edges. The features of interest consist of the following: 3D edge alignment, surface 

plane/directionality alignment, edge curvature/directionality, pattern alignment, surface damage 

alignment, scratch alignment, extraneous material correspondence, fracture marks alignment, 

protruding feature correspondence, missing material. For each feature, a quantitative value referred 

to as a prominence value is assigned in accordance with the presence or absence of a feature, 

whether it indicates fit or non-fit, and if it is highly distinctive. For example, edge curvature highly 

indicative of fit would receive a prominence value of +2. These prominence values are summed 

for all five bins of a pair and are reported as a feature prominence sum (FPS). In addition, each bin 

of the pair is assigned a value of 0, 0.5, or 1 and reported as a relative percentage to estimate an 

edge similarity score (ESS).  

 

Task 4.3. Perform blind analysis of a large population of polymer samples following a systematic 

comparison method. Two independent analysts blindly perform the analysis of the polymers, with 

the pairs prepared and assigned random numbers by a non-participating analyst to maintain blind 
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ground truth. Five hundred comparisons are performed, with the subsets of polymers divided by 

the polymer type and morphology, so only pairs of similar polymer types are compared. Some 

pairs are repeated between the two analysts to evaluate inter-analyst variation. The analysts report 

a fit, non-fit, or inconclusive conclusion along with ESS and FPS for each pair.  

 

Task 4.4. Assess the performance of the method by each polymer subset and analyst. Following 

analysis of the polymer subsets, performance rates of the method are calculated, including 

sensitivity (true positive), selectivity (true negative), false positive, false negative, and accuracy. 

In addition, the ESS and FPS values are explored using boxplots for true fits and non-fits to 

evaluate potential threshold values for determining strong support for a fit or non-fit.  

 

Objective 5. Develop and validate a systematic method to compare XRF data of electrical tapes.  

 

Task 5.1. Collect XRF data from known different sources and same source electrical tape 

backings. Spectral data from 95 black electrical tape backings are collected using XRF, with one 

roll as a source to evaluate intra-roll variation and the other 94 as different-source samples. Three 

replicates are analyzed for each sample, and additional duplicates are monitored as quality control 

[30]. The identified element peaks are used in the subsequent data analysis for intra-roll and inter-

roll variation and calculating spectral contrast angle ratios.  

 

Task 5.2. Calculate the spectral angle contrast ratio for each pairwise comparison. Spectral 

contrast angle ratios (SCAR) are calculated for each pairwise comparison (n=4,561 comparisons). 

Each spectrum is preprocessed to remove noise and areas with minimal information, correct 

baseline and normalize intensity. Spectral contrast angles are calculated for comparisons within 

the three replicates of each sample (within-source angles) and comparisons of each replicate from 

one sample to each replicate of another (between-source angles). Each sample has 3 within-source 

angles, and comparing two produces 9 between-source angles. The SCAR is then calculated by 

taking the ratio between the circular mean of the between-source angles and the circular mean of 

the within-source angles.  

 

Task 5.3. Assess the potential of SCARs for classification of samples and calculating the weight 

of evidence. Hierarchical clustering is performed on the proximity matrix representing all pairwise 

SCARs between the 94 tapes, and then validated using random forest classifiers and comparing it 

with the manual classification. The classifiers are designed to automatically detect common and 

differing peaks (based on intensity and slopes) between sets of XRF spectra. Commonality and 

differences are assessed based on the importance of each wavelength to reach a correct 

classification. A two-stage approach is used to evaluate the power of the test and calculate the 

random match probability between given samples.  
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1.5. Deliverables  

This project was primarily funded by the National Institute of Justice (NIJ) under award #2020-

DQ-BX-0012. Objectives 1 and 3 correspond to research objectives included in the NIJ grant. All 

data sets and methods for data processing created during this study will be made available to 

interested stakeholders and archived by the NIJ. In addition, physical sample collections of 

approximately 3000 comparison pairs of duct tape and 500 pairs of hard plastic material will be 

inventoried, as well as the sample kits and templates generated for the interlaboratory studies of 

duct tapes. A database consisting of the digitized tape samples and a photographic inventory of the 

polymer samples will be delivered as part of the research. The comparison templates for tapes and 

hard polymers will be archived. As part of disseminating data related to this research, we have 

published two scientific publications in peer-review journals, shared research results at six 

scientific meetings in the form of posters and oral presentations, and three additional publications 

are in preparation.  

 

1.6. Chapter Structure 

Chapter 1 introduces the motivation of this research, the background information of relevant 

literature, the primary goals and tasks, and the structure of the chapters that compose this 

dissertation.  

 

Chapter 2 describes the results of a joint multidisciplinary approach proposed in the National 

Institute of Justice award #2020-. The first part of the chapter describes an expanded evaluation of 

the edge similarity score (ESS) method for physical fits of duct tapes. This study expands upon 

the previously developed method that quantifies the similarity of the compared tape edges by 

systematically studying the effect of several separation methods (hand-torn and scissor-cut) and 

tape grades (low, medium, and high) on the quality of a fit. Over 3300 pairs of hand-torn or scissor-

cut duct tapes from three different tape grades are analyzed following a three-step methodology 

and systematic reporting protocols. The three steps incorporate first a qualitative assessment of the 

overall edge alignment and description of edge pattern, second, a macroscopic evaluation of the 

edges’ features, and finally, a bin-by-bin subunit assessment of tape edges and estimation of the 

edge similarity score. The first step allows for an initial examination of each sample individually 

and then the first side-by-side comparison. The second breaks down the sample into five 

macroscopic sections and evaluates several critical features for comparison. The last step involves 

breaking down the edges into small comparison areas by the scrim fibers, documenting comparison 

features, and assigning quantitative values to each bin to represent the alignment of each bin. The 

total values are calculated as the pair's edge similarity score and provide a metric of the fit quality 

that informs and supports the examiner’s opinion. The method offers a visual and practical 

representation of the fit, non-fit, and inconclusive bins that can assist practitioners in comparing 

results and the decision-making process during training, technical reviews, and verifications. 

Statistical analysis of the separation method and tape quality reveals a potential interaction 

between these factors. It showed they significantly impact the edge scores for true fitting pairs but 
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not the true non-fits' scores. The first portion of this chapter was published as article in Forensic 

Science International with the author of this dissertation holding primary authorship. [Forensic 

Science International. Prusinowski M, Andrews Z, Neumann C, Trejos T. Assessing significant 

factors that can influence physical fit examinations – physical fits of torn and cut duct tapes. 

Published online January 2023. 343. https://doi.org/10.1016/j.forsciint.2023.111567].  

 

The second part of this chapter covers the assessment of a computational comparison algorithm 

for comparison of duct tape physical fits built in collaboration with Dr. Romero’s group at the 

West Virginia University’s Physics and Astronomy Department. The tape samples from the first 

portion of Chapter 2 are digitized, top and bottom surfaces. Then a convolutional neural network 

is trained on the database to perform comparisons on the same samples to predict fit or non-fit and 

estimate the weight of evidence. The sample sets incorporated are those from the hand-torn and 

scissor-cut sets of all three tape qualities. The computational model demonstrates comparable 

accuracy to the human examination but shows trends where the model predicts medium-quality 

and high-quality scissor-cut sets with higher accuracies than the hand-torn sets of the respective 

tape qualities. In contrast, the opposite is true for the low-quality tape. Using pixel importance, the 

model demonstrates that it recognizes similar features to the human examination. Overall, this 

model indicates that there is potential for computational models to support human analysis of 

physical fits by providing additional objective support.  

 

This portion of Chapter 2 is the product of the joint effort of researchers in both the Forensic and 

Investigative Science Department and the Physics and Astronomy Department. The design, 

development, code, training, testing, and validation of the computational algorithm was the 

product of Pedram Tavadze, Logan Lang, and Aldo Romero. Meghan Prusinowski, Zachary 

Andrews, and Tatiana Trejos contributed human analysis and imaging of samples, curation of the 

sample image database, image adjustment, and assisted with testing and interpretation of the model 

output. This chapter is adapted submitted to Forensic Science International where the author of 

this dissertation contributed as a major co-author. [Forensic Science International. Tavadze P, 

Lang L, Prusinowski M, Andrews Z, Trejos T, Romero A. Using convolutional neural networks 

to support examiners in duct tape physical fit comparisons. Under review.] 

 

Chapter 3 describes the results of two interlaboratory studies for duct tape physical fit 

examinations that evaluate the consistency among practitioners using the new ESS method to 

analyze, document, and interpret tape edge comparisons. Both studies incorporate the ESS method 

described in Chapter 2. However, the second interlaboratory study includes more improvements 

highlighted in Chapter 2, such as the three-step methodology for comparison and a more 

comprehensive documentation template. The two interlaboratory studies are separated by 

enhancements based on practitioner feedback from the first interlaboratory exercise. Both studies 

share a similar experimental design: three different kits containing 7 pairs of samples (4 fit, 3 non-

fit). Each kit includes pairs similar in edge morphology and pre-assessed by a panel of consensus 

https://doi.org/10.1016/j.forsciint.2023.111567
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analysts. The selected pairs demonstrate less than 10% variability within the panel members. The 

first study incorporated results from 20 different participants and demonstrated accuracy of 95%. 

One of the main observations of the first exercise was that there were instances where the 

participant’s reported conclusion did not correspond with the reported ESS value. To address these 

inconsistencies, the second interlaboratory exercise incorporated more thorough and standardized 

training and documentation templates, resulting in an overall accuracy of 99% considering the 

results of 18 participants. This research demonstrates the value of the ESS method standardization 

and transparency of physical fit examinations. It provides a means for current analysts to share 

their thought process transparently during training, analysis, and technical review or verification 

of physical fits. This chapter has been published as an article in Forensic Chemistry with the author 

of this dissertation holding primary authorship. [Forensic Chemistry. Prusinowski M, Brooks E, 

Neumann C, Trejos T. Forensic interlaboratory evaluations of a systematic method for examining, 

documenting, and interpreting duct tape physical fits. 2023. 34: 100487. 

https://doi.org/10.1016/j.forc.2023.100487]  

 

Chapter 4 covers a novel extension of the duct tape ESS method, where information is extracted 

from the documentation templates with two primary purposes: to determine the minimal width of 

tape necessary for reliable physical fit examinations, and to evaluate which features are the most 

critical for decision making on a physical fit. To that end, the documentation templates of several 

tape subsets (three low quality and two high quality) and a dataset of textiles are used to compile 

the bin-by-bin quantitative alignment measurements (0, 1, or 0.5 to represent fit, non-fit or 

inconclusive). Using the collected quantitative data, simulated partial width edges are generated 

from random segments of the bin-by-bin documentation. With the segments and ground truth, error 

rates are calculated for each width, and beta regression is performed to evaluate the improvement 

in accuracy as bin width increases. Separately, feature data extraction allows for analysis using 

mutual information gain to identify features critical for comparison. The findings from the mutual 

information gain provide the means to inform a decision tree, by which analysts could follow the 

branches and make an informed decision based on the observed features of a tape or textile 

comparison pair. This research addresses several gaps in current practice – namely, the minimum 

width necessary to complete reliable physical fit examinations, and more transparency on critical 

decision-making features. The research presented in this chapter is part of an article in preparation 

that will be submitted to the Journal of Forensic Sciences. The author of this dissertation will hold 

primary co-authorship with Pedram Tavadze. Dr. Tavadze contributed through the development 

of the decision tree model, as well as performing the data extraction and statistical analysis for the 

mutual information. Meghan Prusinowski, Zachary Andrews, and Divyanjali Pulivendhan 

contributed to the human analysis that provided the bin-by-bin quantitative and qualitative data. 

Meghan Prusinowski, Pedram Tavadze, Zachary Andrews performed the statistical analysis and 

interpretation of the results under the supervision of principal investigators Tatiana Trejos and 

Aldo Romero, in collaboration with Cedric Neumann who provided valuable statistical support 

and interpretation for this study.  

https://doi.org/10.1016/j.forc.2023.100487
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Chapter 5 presents a new method for comparison of hard plastics. This method broadens the 

previously developed ESS method of tapes into a new material commonly submitted to forensic 

laboratories for fit examinations. The features and observed characteristics for hard plastics vary 

considerably from tapes. So, it is necessary to define new comparison criteria and adjust the 

method to account for the material difference. The comparison method for hard plastics is a two-

step method. The first is an overall assessment of the question sample, then the known, and finally 

a side-by-side comparison. The second step incorporates splitting the sample into five comparison 

bins based on the overall length of the fracture and includes the observation and documentation of 

nine distinct features. The feature documentation is accompanied by a prominence value, assigned 

based on the presence or absence of the feature, if it indicates a fit or non-fit as well as whether it 

is distinctive. The ESS based on the five comparison bins and the feature prominence sum are 

reported as final quantitative values representing the similarity between the two pieces. A total of 

385 comparison pairs are generated from fracturing head and taillights to evaluate this method. 

The method results in 85% accuracy, and inter-analyst examinations of a subset of samples 

demonstrated consistent accuracy and error rates. No false positives were reported, but the rate of 

inconclusive and false negatives was generally higher than previously observed in other materials 

using the ESS method. This is hypothesized to be contributed primarily by small edge sizes, 

scratches and marks left after the separation event, and distortion of some edges. Overall, the 

preliminary results of this method indicate that with further improvements to feature definitions 

and documentation procedures, that the combination of ESS and feature prominence values can 

provide support for comparisons of hard plastics. This chapter will be part of an article in 

preparation, with a planned submission to Forensic Science International. The author of this 

dissertation will hold primary authorship. Meghan Prusinowski and Zachary Andrews provided 

the human analysis of the polymer samples, and worked on interpreting the results. Pedram 

Tavadze participated in experimental design, sample preparation, and data analysis, and the study 

was performed with the support of principal investigator Tatiana Trejos.  

 

Chapter 6 addresses the final goal of this research, which is the need for statistical comparison 

methods for spectral data. This study compares elemental data collected from electrical tape 

backings using X-ray Fluorescence (XRF) using spectral contrast angle ratios (SCARs). SCARs 

calculated from one same source roll (n=190 comparisons) and 94 different source rolls (n=4371 

comparisons) are used to determine the range of variability within and between sources. A SCAR 

threshold is devised to assess potential association or exclusion of sources and is optimized to 

minimize error rates. An automated approach to sample comparison utilizing a random forest 

algorithm is presented to assist in identifying the basis for similarities or differences between 

compared spectra. This study also presents an objective approach to reporting opinions and 

probabilistic determinations of spectral data that can be used as a model for other fields and 

materials. The SCAR metric performed well for classifying samples and making inferences about 

the sample’s origin. This study provides a means for statistical analysis and comparison of semi-
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quantitative spectral data, identified as a critical research need in forensic chemical analysis. In 

addition, this research reinforces manufacturing and source trends observed from additional 

analysis of the same electrical tape samples using other instruments. This research study will be 

submitted as an article to Forensic Chemistry. The author of this dissertation will hold primary 

authorship for the data analysis and writing of this manuscript under the supervision of principal 

investigator Tatiana Trejos. Evie Brooks participated in data collection and analysis as well as 

review of the manuscript. The statistical analysis in this study was performed in collaboration with 

Cedric Neumann who provided valuable statistical support and interpretation.  

 

Chapter 7 summarizes the overall conclusions of this research and proposes future work for 

additional expansions and improvements upon the comparison methods described in this 

dissertation. This chapter describes how the forensic trace evidence community benefits from 

transparent, systematic, and statistically supported methods that provide the means to compare 

samples and results. In addition, future steps, and challenges towards implementing these methods 

are discussed.  
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Chapter 2: Advancement of a systematic and quantitative method for comparison of duct 

tape edges 

2.1. Overview 

This study expands upon a previously developed method that quantifies the similarity of the 

compared tape edges. First, we increased the tape pair datasets, introduced a standardized template 

to systematically document the analyst’s decisions during the comparison, created a reporting tool 

that automatically estimates the edge similarity score (ESS) and provides a 2D visualization of the 

aligned bins, and studied the effect of several separation methods and tape grades on the quality 

of a fit. Second, we applied a computational model to analyze and compare fractured tape edges 

and compared the results to the human examination of the same samples.  

 

In the human-based approach, the analysts examined more than 3300 pairs of hand-torn or scissor-

cut duct tapes from three different tape grades while blind from the ground truth to minimize bias. 

A three-step methodology for comparing samples was followed: 1) qualitative assessment of the 

overall edge alignment and description of edge pattern, 2) macroscopic evaluation of the edges’ 

features, 3) bin-by-bin subunit assessment of tape edges and estimation of the edge similarity 

score. A report template designed to maintain records of the decision-making process was used. 

Eight comparison features were defined and documented in the second and third steps using auto-

populated cell options. Misidentification rates were low, with no false positives reported. 

Coinciding with previous research, low scores (under 20%) provided the most support for a non-

fit conclusion, while high scores (80% or higher) supported a fit decision. A statistical analysis of 

the separation method and tape quality revealed a potential interaction between these factors and 

that they significantly impact the edge scores for true fitting pairs but not the true non-fits’ scores. 

The developed comparison and documentation criteria can assist practitioners with a more 

straightforward, consistent, and transparent interpretation and reporting approach.  

 

For the computer-based approach, a subset previously examined by the analysts of nearly 2,000 

tapes and 4,000 images was evaluated. The tape edge images were digitized, including the top and 

bottom surfaces. Then a convolutional neural network was trained on the database to perform 

comparisons on the same samples, predict fit or non-fit, and estimate the weight of evidence. The 

sample sets incorporated hand-torn and scissor-cut sets of all three tape qualities. The model 

predicted the medium-quality and high-quality scissor-cut sets more accurately than hand-torn 

ones, whereas low-quality tape performed better for hand-torn separations. The computational 

performance was consistent with the human-based examination, and the model could identify some 

of the same features that the analysts observed.  

 

The following chapter is an adaptation of a previously published article ©2023: Prusinowski M, 

Andrews Z, Neumann C, Trejos T. Assessing significant factors that can influence physical fit 

examinations –Part I. Physical fits of torn and cut duct tapes. Forensic Science International, 343, 

111567. Published online January 2023. https://doi.org/10.1016/j.forsciint.2023.111567.  

https://doi.org/10.1016/j.forsciint.2023.111567
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Also, the computational approach is the product of a collaboration between Dr. Romero and Dr. 

Trejos’ research groups, and part of this work was submitted for publication (Using convolutional 

neural networks to support examiners in duct tape physical-fit comparisons. Pedram Tavadze, 

Logan Lang, Meghan Prusinowski, Zachary Andrews, Tatiana Trejos, and Aldo H. Romero, 2023 

in review) 

 

2.2. Introduction 

Commonly performed in forensic laboratories, physical fit examinations involve comparing items 

to determine if there are corresponding distinctive characteristics along the fractured edges [1]. A 

physical fit between two items demonstrates that they were once part of the same object, as it is 

expected that the fracture features are not replicable [2]. Despite the probative value that a physical 

fit may hold for a forensic case, a scientific demonstration of the reliability and validity of these 

examinations is still needed. In recent years, organizations such as the Organization of Scientific 

Area Committees (OSAC)-Trace Materials Subcommittee have highlighted research needs that 

include the development of objective methods for physical fit comparisons and estimating error 

rates [3]. The underlying assumptions of physical fit analysis have yet to be extensively evaluated, 

mainly regarding which features are relevant for comparison and how the sample condition 

influences these features. As there are yet to be universally adopted standard methods for physical 

fits, these examinations are subject to errors that may undermine the evidentiary value [4,5]. 

Moreover, since physical fit assessments depend entirely on human judgment, it is essential to 

consider factors that can minimize bias and lead to standardized decision-making criteria [2].  

 

Consequently, the field can benefit from developing consensus methodologies and data-driven 

criteria for analyzing and reporting physical fits. Studies that evaluate the uncertainty and error 

rates for physical fit examinations are necessary to support the scientific basis of this type of 

analysis. Such studies must account for various factors affecting samples received in crime 

laboratories. In response to these needs, there has been an increase in studies focusing on physical 

fit examinations in the last decade, some of which have addressed error rates [1]. While many 

materials can be examined for physical fits, the present study focuses on one of the most analyzed 

materials in forensic trace evidence: duct tape.  

 

Duct tapes are well suited for physical fit examinations. They possess several layers, including a 

backing, an adhesive, and a reinforcement layer made of cloth (known as scrim). The scrim layer 

contributes to the strength of duct tape; therefore, it is less likely to distort or stretch during the 

events of a crime than other kinds of tape. Different rolls of duct tape can often be distinguished 

based on physical characteristics alone, as there are various features available for comparison 

between items, such as color, thickness, width, construction, and number of scrim fibers [6]. 

However, within a single roll of tape, the features produced by the manufacturing or construction 

of the tape are shown to be very consistent [7].  
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Studies evaluating physical fits of duct tape have been performed with relatively large populations 

of samples, such as the sets evaluated by Bradley et al., which reported very few misclassifications 

of pairs as inconclusive, and no false positives or negatives [8]. Similarly, McCabe et al. reported 

low misidentification rates in a study of 1600 tape pairs, at or below 3% for both hand-torn and 

cut tape edges [9]. More recently, quantitative methods of comparing tape edges have been 

proposed. McCabe et al. describe a process that calculates a similarity metric by measuring the 

distance of the matching area along the comparison edge and dividing it by the total length of the 

comparison edge [9]. Another recent article recommends using loop-breaking patterns, which 

refers to how the loops created by weft-insert scrim fibers can fracture. The authors employ 

likelihood ratios and Bayesian Networks to interpret the evidence. This method demonstrated high 

accuracy, and most comparisons strongly supported the respective fits or non-fits [10].  

 

The method utilized for the present study uses an edge similarity score (ESS) to measure the quality 

of a fit and assess the evidence’s probative value. The ESS is calculated by defining the smallest 

comparison unit as the areas defined between consecutive warp scrim fibers. One advantage of 

this method is that the number and width of scrim areas are reproducible across a single roll, thus 

providing a methodical comparison approach. The ESS is calculated as the percentage of 

comparison areas aligning across the fracture out of the total number of comparison areas. Due to 

its simplicity and high level of performance, our method is much more suitable to be implemented 

in forensic laboratories than previously proposed quantitative methods. In a previous study, the 

ESS was used to evaluate 2280 duct tape pairs. This initial study demonstrates high accuracy and 

the calculation of score-based likelihood ratios (SLRs) [5]. A mock kidnapping case illustrates the 

use of ESS and SLRs in assessing the evidence [5].  

 

The goal of this study is to further enhance the scientific foundations and practicality of the 

quantitative method for measuring physical fits by (a) defining standardized terminology and 

criteria for documenting the decision-making process and (b) statistically evaluating how different 

factors may influence the performance of the method and the resulting similarity metric.  

 

The main factors previously considered in the literature for duct tape include the tape’s separation 

method and quality grade. Results concerning the separation method have had varying 

interpretations, depending on the methodology employed. For instance, Bradley et al. and McCabe 

et al. reported higher levels of misidentifications for scissor-cut sets compared to hand-torn sets, 

while in Prusinowski et al., the hand-torn and scissor cut sets yielded good accuracy [5, 8, 9]. 

These differences are attributed to the level of detail utilized in the examination. In the Prusinowski 

et al. study, microscopic features of the tape were noted as a critical factor contributing to the 

method’s performance, whereas the Bradley and McCabe studies only looked at more general 

macroscopic features that are less discriminating in straight cuts [5, 10].  
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Prusinowski et al. [5] and van Dijk et al. [10] demonstrate methods of assessing the probative value 

of a fit through different constructions of likelihood ratios. The technique using loop-breaking 

patterns calculates likelihood ratios using a Bayesian network. The proposed likelihood ratio 

system shows that loop-breaking patterns can provide strong evidence for physical fit comparison 

and even provide strong support even for partial edges and tapes with reversed tearing directions 

[10]. In the study by Prusinowski et al., the score-based likelihood ratios are calculated from ESS 

to assign the value of a given fit [5]. The observed distribution of the SLRs calculated on the test 

sample shows that ESS values higher than 80% generally indicate strong support for a fit. In 

comparison, ESS values lower than 20% indicate strong support for a conclusion of non-fit [5]. 

 

In the current study, we use logistic regression [11-13] to explore the relationship between the 

experimental factors (e.g., separation method, tape grade) and the edge similarity score for duct 

tapes. A logistic regression model is a generalized linear model in which the logit link function 

transforms the output of a linear model from [−∞, ∞] to [0,1]. The interval [0,1] can be seen as a 

probability of class membership in a two class-classifier. Logistic regression is appropriate for the 

ESS method since ESS are always in the interval [0,1], where an ESS close to 0 is an indicator of 

the “non-fit class” and an ESS close to 1 is an indicator of the “fit class.” One of the limitations of 

logistic regression models is that if one of the independent variables, or a combination thereof, 

completely separates the two classes, interpreting the parameters is difficult [14]. 

 

As an expanded impact of this research, we introduce an innovative approach that utilizes a 

computational model to compare fractured edge samples. While the results of our human-based 

approach are encouraging, we anticipate that the development of objective computer-based 

algorithms can assist practitioners in their decision-making process and improve the reliability of 

physical fits in testimony. The use of computational models is common in forensic science 

disciplines. They are commonly used in fields that require pattern recognition, such as fingerprint 

and footwear evidence. In addition, other types of models are used to assist in the discrimination 

of sources and recognize trends in data, such as that used for large-scale drug trafficking tracking 

[15]. Despite this, the application of computational models to physical fit examinations has been 

limited. A few studies have demonstrated using computational models to compare duct tape 

samples. Ristenpart et al. and Spaulding et al. present models that perform edge detection on tape 

images to outline the contour of the tape, which is then compared to other samples [16, 17]. In 

these studies, the computational models demonstrate strong potential for use to analyze large 

populations of samples in an abbreviated time frame. Despite this, both studies display higher error 

rates than observed in the human examination, likely due to limitations resulting from using only 

the backing portion of the tape. Our work has shown that there is substantial information obtained 

from observation of the scrim/adhesive side of duct tape that complements the features from the 

backing layer. Therefore, developing a model that uses both sides of the tape edges is anticipated 

to improve accuracy.  

 



40 

 

The model applied to our tape data utilizes a convolutional neural network. In this approach, the 

model's architecture is a convolutional neural network that connects to a fully connected neural 

network [18, 19]. Convolutional neural networks (CNN) are commonly used when performing 

pattern recognition on images. A CNN contains a series of layers that are used to learn from the 

input data (such as an image). The layers of the neural network have filters applied to recognize 

specific features, and the output of each layer is used as the input for the next. In addition to 

convolution layers, additional layers assist in computational performance, such as activation and 

pooling layers [20]. Following the learning using convolutional layers, the output image is carried 

through a fully connected network known as an artificial neural network, or ANN. The ANN takes 

the input and processes it through a series of hidden layers, makes decisions from the previous 

layer and then assesses the weight of each layer enhance the output [20]. The purpose of the two 

connected networks in this approach is to allow the CNN to extract the features from the tape, 

reduce the dimensions of the input images, and then use the fully connected network to learn from 

the images and make decisions on new pairs to assign probabilities of membership (i.e., fit, 

inconclusive, or non-fit).  

 

In this study, the performance of the computational model is compared to the human-based 

examination of the same samples to evaluate how they can be complementary and provide 

additional objective support for a physical fit examination. 

 

2.3. Assessing significant factors that can influence physical fit examinations - Physical 

fits of torn and cut duct tapes 

2.3.1. Methods and Materials 

The current duct tape dataset consists of 2813 physical tape comparison pairs. The tape rolls are 

of different grades, low quality (LQ), medium quality (MQ), and high quality (HQ). The brand 

name and physical characteristics of the samples are listed in Table 2-1. 

 

Table 2-1. Summary of the physical characteristics of the tapes utilized in the study. 

Tape Label 
Scrim Count 

(Weft/Warp) 
Weave Pattern 

Color 

(Backing) 
Width 

Texture 

(Backing) 

Color 

(Adhesive) 

Gorilla 16/58 
Simple Weave (double 

alternate warp scrim) 
Silver 4.8 cm Dimpled Grey 

Duck Brand 8/20 Simple Weave Silver 4.8 cm Dimpled Cream 

Tool Bench 8/17 Simple Weave Silver 4.7 cm Smooth White 

 

Each tape pair of a given quality originated from the respective roll. The edges are either hand-

torn (HT) or scissor-cut (SC). Some subsets of hand-torn pairs are stretched (S) to evaluate against 

the original, non-stretched items. (Figure 2-1). Because two analysts independently completed the 

medium-quality hand-torn (MQ-HT) to evaluate inter-analyst variability, the dataset consists of 
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3321 comparisons. However, some samples were reused to make the stretched sets or to utilize 

both edges of the samples for comparisons. The 3321 comparisons were made from a total of 1998 

tape samples (900 low-quality tape samples, 200 medium-quality tape samples, and 898 high-

quality tape samples). Other than MQ-HT, all sets were completed by one analyst, as previously, 

the method has demonstrated no substantial differences in scores between analysts, and intra-

examiner evaluation of tapes from a given set has an elevated risk of bias [5].  

 

 
Figure 2-1. Breakdown of subsets for the tape dataset. The complete tape set consists of subsets 

of samples originating from each of three grades of tape, low quality (LQ), medium quality (MQ), 

or high quality (HQ). Edges are scissor-cut (SC), hand-torn (HT), or hand-torn with additional 

stretching (HT-S).  

 

Although product labels do not explicitly describe the grade or quality of the tape, market cost and 

physical features are used to infer the grade range in this study. The primary distinguishing 

physical characteristics between the different grades include the number of scrim (reinforcement 

fibers) and the thickness of the backing and adhesive layers. The low-quality (LQ) tape has the 

thinnest adhesive thickness and the lowest scrim count per square inch (17 warp fibers, eight weft 

fibers). In contrast, the high-quality (HQ) tape has thicker backing and adhesive layers and a much 

higher ratio of warp/weft scrim fibers per square inch (58 warp, 16 weft). The medium-quality 

(MQ) tape has a scrim count of 20 warp to 8 weft fibers per square inch.  
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This study expands the previously developed method [5] by comparing samples into three steps 

based on feedback from practitioners in the field. Figure 2-2 shows an examination scheme for 

physical fits, with the three steps incorporated into the typical workflow. In the first step, the 

analyst determines if the samples are suitable for a fit examination. If they are suitable, the analyst 

observes the overall edge morphology, including the edge pattern, denoting the edge as straight, 

angled, wavy, or puzzle-like (see Figure 2-4 in the results section). The analyst compares the edge 

morphology of both tapes and performs an initial assessment of the level of fit based solely on 

edge morphology. The second step includes a macroscopic evaluation of the tape edges. This step 

involves splitting the tape edge into five macroscopic comparison areas and documenting the 

presence or absence of eight defined features (see Figure 2-5 in the results section). The analyst 

also annotates if the presence or absence of the feature influences the decision of the macroscopic 

area as a fit or non-fit. For example, severed dimples on the backing may be present, but if only 

on one side of the fracture, it indicates a non-fit for that area. The third and final comparison step 

involves a bin-by-bin subunit comparison of the edges. The same predetermined features are again 

documented, but this time at the microscopic level in each comparison area (smaller bin area 

between two scrim fibers). The analyst then reports a score separately for each bin, assigning a 

value of 0, 0.5, or 1 for non-fit, inconclusive, or fit, respectively. Individual values for each 

comparison bin are then summed and expressed as a relative percentage of total comparison areas 

to estimate the similarity score (ESS).  

 

A reporting template designed in Microsoft Excel automatically calculates the ESS and documents 

the decision-making process at each step, facilitating the note-taking process with built-in auto-

populated cells. The bin score cells have a simple code, where if the analyst enters the number 0 

(non-fit bin), the cell turns red, yellow for 0.5 (inconclusive bin), or green for 1 (fit bin). This color 

coding allows for rapid visualization of consecutive cells across the compared edges. 

 

Several methods for evaluating the data are applied with the reported ESS values from each tape 

subset. The method’s performance is evaluated using false positive, false negative, specificity, and 

sensitivity rates for each subgroup. Boxplots are used to demonstrate the distribution of the ESS 

in ground truth datasets and provide an initial exploration of the potential relationships between 

the different experimental factors considered (e.g., separation method, tape quality, stretching). A 

logistic regression model is applied to the data to evaluate the statistical significance of the 

experimental factors. Finally, score-based likelihood ratios (SLR) are calculated to estimate the 

probative value of a pair of tapes.  
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Figure 2-2. Examination scheme for physical fit comparisons. Other chemical examinations are 

necessary if the samples are not suitable for physical fit examination. If the sample edges 

demonstrate apparent differences in the comparison features at any stage, the outcome is “no 

physical fit.” Beyond the microscopic comparison (Step 3 of ESS), the result is “no physical fit 

(non-fit),” “inconclusive,” or “physical fit” with a description of its value. The quantitative ESS 

score and SLR can then be used to estimate the probative value of the outcome.  

 

2.3.2. Results and Discussion 

 

2.3.2.1. Development of methodical comparison and documentation criteria 

This study introduces a critical improvement of the examination and documentation process of 

physical fits since our first publication [5], considering feedback received from practitioners who 

participated in an interlaboratory study. As described in the methodology section, one of the 
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method’s novelties is creating a multi-step approach with predetermined terminology and 

documentation with auto-populated cells. The template is shown in Figures 2-3, 2-4, and 2-5, 

where each step of the comparison is broken down in  

 

In the first step, the analysts document overall observations regarding the tape morphology of each 

edge, along with general edge alignment characteristics. Tape edge’s standardized descriptions 

include one of four patterns: straight, angled, wavy, or puzzle-like [5]. Some tape features and 

separation methods tend to produce patterns that are more dominant than others. For example, the 

reduced reinforcement of the scrim in the low- and medium-quality tapes can cause irregularity 

and more puzzle-like edges when the tape is torn. Figures 2-6, 2-7, and 2-8 display this 

phenomenon, particularly in the LQ-HT set. Interestingly, in Figure 2-6, none of the low-quality 

hand-torn tapes demonstrate straight or angled edges, while low-quality scissor-cut predominantly 

produce straight or angled edges, with only one instance of wavy or puzzle-like edges. Conversely, 

the high-quality hand-torn (HQ-HT) set results in very straight edges, likely due to the improved 

strength of the tape from the scrim and backing layers.  

 

The few puzzle-like patterns in the HQ-HT are distinguishable from the LQ-HT set by exhibiting 

less prominent protrusions/cavities in the puzzle shapes. Scissor-cut edges consist of straight, 

angled, and wavy patterns, regardless of the tape grade. In very few cases, scissor-cut tapes 

produce puzzle-like patterns caused by a slight change of directionality on the cut, particularly 

with thicker adhesives (Figure 2-7). 
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Figure 2-3. Example of step 1 of the documentation template with filled out annotations. This step covers the overall assessment of 

each edge independently and then a side-by-side comparison, where the analyst documents whether they observe the pair as a fit or non-

fit and the confidence level in that decision. The complete Excel file clean template can be accessed in Appendix 2-A. 

  

WEST VIRGINA UNIVERSITY DUCT TAPE COMPARISON TEMPLATE

Tape A Tape B

Tape Pair 1-A 1-B

Please use the three (3) consecutive steps protocol to examine and report your opinion on each step.

Please report your observations and opinions based on the proposed method (regardless of the protocol used in your laboratory).

Straight

1. Start the physical fit examination by assessing the questioned/unknown edge. Angled

2. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) Wavy

3. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options. Puzzle-Like

4. Click cell 1-1A and record general comments on your assessment of the overall edge appearance, and any overall features of note.

5. Click cell 1-1B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge.

1-1B. Edge Pattern of 

Questioned Tape (Tape A)

Puzzle-Like

1. Once analysis of the question tape edge is complete, move on to an independent assessment of the known edge. 

2. Examine the general features of the alignment of the edges (observe the backing and adhesive sides)

3. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options.

4. Click cell 1-2A and record general comments on your assessment of the overall edge appearance, and any overall features of note.

5. Click cell 1-2B for a drop-down menu of the description of your opinion of the overall edge pattern for this tape edge.

1-1B. Edge Pattern of Known 

Tape (Tape B)

Puzzle-Like

Fit

1. Slide the transparency films until the edges of interest are positioned side by side. Examine the general features of the alignment of the edges (observe the backing and adhesive sides) Inconclusive High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed general features)

2. Report your observations by clicking in the respective cell below for a drop-down menu of comparison edge overall results options (Cell 1-3A). A preliminary conclusion of fit, non-fit, or inconclusive can be selected for the overall alignment of the edges. Non-fit Low confidence in Fit (I believe that generally the edges fit, but there are some areas where there are a lack of features, discrepancies in features across the edges, or distortion that could be obscuring potential discrepancies)

3. Click the respective cell 1-3B for a drop-down menu of the description of your opinion of the overall edge alignment. Inconclusive (I believe there are similarities and differences throughout the edges that do not let me support a decision of either fit or non-fit)

4. Provide general comments on your assessment of the comparison pair edges in this first step of the examination in cell 1-3C. Low confidence in Non-fit (I believe that generally the edges do not fit, but there are some areas of alignment or distortion that could be obscuring potential alignment)

5. Regardless of your conclusion in this step (fit, non-fit or inconclusive) continue with the examination and reporting for the step 2. High confidence in Non-Fit (I am confident that the sample edges are not a physical fit based on the observed general features)

Fit
High confidence in Fit (I am confident that the sample edges are a physical fit based on the 

observed general features)

Edge morphology corresponds with distinct puzzle-like morphology. Some observable distortion/curling at bottom of 

fracture

General instructions

If possible, conduct the observation of the duct tape edges through a transparency film so as to observe the scrim and adhesive without altering the edges in any way. When the tape ends are mounted on clear transparency films, they can be aligned and flipped back and forth without worrying about the edges and adhesive being stuck or 

altered

Step 1. Overall Alignment of Tape Edges
Section Guidelines:

Step 1-1. Assessment of Known Tape Edge

1-1A. Questioned Tape (Tape A) Edge Description

Puzzle like protruding morphology at top of fracture edge, some slight disortion/stretching near the bottom of the edge

1B. Description of Overall Edge Tape Alignment 1C. Additional Edge Comparison Comments

Section Guidelines:

Step 1-2. Assessment of Questioned Tape Edge

1-2A. Known Tape (Tape B) Edge Description

Puzzle like indentation at top of fractured edge. Some minor distortion/curling near the bottom of the fracture edge

Section Guidelines:

STEP 1-3. REPORTING OF STEP 1 COMPARISON RESULTS: Overall Alignment of Tape Edges

1A. Comparison Pair Overall 
Alignment Conclusion
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Figure 2-4. Example of filled out cells for step 2; this step covers the macroscopic assessment of the compared pairs of tapes. The edges 

are visually separated into five macroscopic sections, and nine major features are documented for their absence or presence. If present, 

the analyst document whether the feature indicates a fit or non-fit. In addition, each section is documented as a fit or non-fit and the 

confidence level in that decision. The complete Excel file clean template can be accessed in Appendix 2-A. 

 

 

 

  

Section Guidelines: Absent Absent

1. Conduct a more detailed observation of the edge features by visually dividing the tape edge into approximately five macro sections (~1cm each) Present - indicative of fit Present and explained by stretching

2. For each macro section, observe any alignment (or lack of) and the presence of any differences or presence of similar distinctive features. Present - indicative of non-fit Present and not explained by stretching

3. Select the observed different or similar characteristics in the macroscopic sections by clicking in the respective cells 2A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X).

If additional features are present that are not listed here, please describe them in the comments. High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)

4. Report your observations by clicking the respective section on cell "2B" below for a drop-down menu of observations of compared areas. Select a decision of fit, non-fit, or inconclusive for the alignment of each of the ~1cm macro comparison sections. Low confidence in Fit (I believe that generally the edges fit, but there are some areas where there are a lack of features, discrepancies in features across the edges, or distortion that could be obscuring potential discrepancies)

5. Click the respective cell for a drop-down menu of cell "2C" below to select the description of the macro section edge comparison that better describes your observations and opinion. Inconclusive (I believe there are similarities and differences throughout the edges that do not let me support a decision of either fit or non-fit)

6. If at the end of step 2, an obvious non-fit between the edges is determined, a non-fit may be reported with no further microscopic assessment. Low confidence in Non-fit (I believe that generally the edges do not fit, but there are some areas of alignment or distortion that could be obscuring potential alignment)

7. If the conclusion at the end of step 2 is fit, inconclusive, or a non-fit which is complex or otherwise difficult to observe, continue with the examination and reporting for the step 3. High confidence in Non-Fit (I am confident that the sample edges are not a physical fit based on the observed macroscopic features)

I. Alignment of Edge 

Pattern Morphology

II. Alignment of Severed 

Dimples on Tape Backing

III. Calendaring Striations 

across Edge

IV. Macro Alignment of Warp 

Scrim

V. Correspondence of 

Protruding Warp Yarns and 

the Respective Pattern Gaps in 

the Other Edge

VI. Continuation of Scrim 

Weave Pattern

VII. Distortion Explained by 

Stretching Directionality

VIII.Weft Scrim at or near 

Edge Consistent with the 

Overall Weft Pattern

IX. Missing Material

1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit
Present and explained by 

stretching
Consistent

Not applicable (no 
missing material)

2 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent
Not applicable (no 

missing material)

3 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit
Present and explained by 

stretching
Consistent

Not applicable (no 
missing material)

4 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit
Present and explained by 

stretching
Consistent

Not applicable (no 

missing material)

5 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit
Present and explained by 

stretching
Consistent

Not applicable (no 
missing material)

Macro 

Comparison 

Sections
2B. Macro Comparison 

Sections Conclusion

1 Fit

2 Fit

3 Fit

4 Fit

5 Fit

Corresponding protruding warp yarns and 

respective gaps. 

Corresponding edge morphology and 

calendaring striations. Distortion present 

but consistent

Step 2. Macroscopic Assessment of Tape Edges

Macro 

Comparison 

Area

2A. Observation of Distinctive Features and Comments on Macro Sections

XI. Edge Comparison Comments

X. Additional features not listed 

here (please write in comments 

what those features are)

Corresponding edge morphology and 

calendaring striations. Distortion present 

but consistent

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent

Corresponding edge morphology and 
calendaring striations. Distortion present 

but consistent

REPORTING OF STEP 2 COMPARISON RESULTS: Macroscopic Assessment of Tape Edges

2C. Description of Macro Sections Edge Comparison

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)

High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed macroscopic features)
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Figure 2-5. Step 3 of the documentation template, example of a filled-out form resulting in an ESS of 80. This step covers the 

microscopic assessment of the compared pairs of tapes. The edges are visually separated into bins based on the number of areas between 

the scrim fibers. In each bin, the same nine major features from Step 2 are documented. In addition, each section is documented as a fit 

or non-fit and the confidence level in that decision. The analyst reports each bin as fit, non-fit, or inconclusive by coding it as 1, 0, or 

0.5, which is then automatically colored and calculated as the ESS. Then, the overall conclusion is reported. The complete Excel file 

clean template can be accessed in Appendix 2-A. 

Section Guidelines:

1. Examine the pairs under a stereomicroscope, both backing and scrim sides. High confidence in Fit (I am confident that the sample edges are a physical fit based on the observed features (e.g., ESS score 80 or higher))

2. Align the top edge first to help with the physical fit assessment Low confidence in Fit (I believe that generally the edges fit, but there are some areas where there are a lack of features, discrepancies in features across the edges, or distortion that could be obscuring potential discrepancies (e.g., ESS between 60 to 80))

3. Adjust the number of scrim areas to correspond with your tapes. Each scrim area is the edge region between the consecutive top and bottom scrims. Inconclusive (I believe there are similarities and differences throughout the edges that do not let me support a decision of either fit or non-fit (e.g. ESS score between 40 to 60))

4. Make observations on each of the scrim areas on cells "3A" below (consider alignment or lack off, and differences or presence of distinctive features) Low confidence in Non-fit (I believe that generally the edges do not fit, but there are some areas of alignment or distortion that could be obscuring potential alignment (e.g., ESS between 30 to 40)

5. Type "1" if you observed fit in the scrim area, "0" is there is non-fit, or "0.5" is there are some similarities as well as differences (inconclusive). High confidence in Non-Fit (I am confident that the sample edges are not a physical fit based on the observed features (e.g., ESS score lower than 30)

6. To facilitate the visual observation of the results, these cells should automatically populate once you have entered your area fit codes per scrim area. The cells will automatically populate in color (red = 0, yellow = 0.5, green = 1)

7. Select the observed different or similar characteristics in each micro subunit by clicking in the respective cells 3A (I to VIII) drop down options. Provide additional comments of observed features (Cell IX) or additional general comments you may want to share (Cell X).

8. The systematic documentation of observations per scrim area will facilitate the comparison of relevant features observed by each participant and understand decision processes. This intend to simulate the use of this tool for peer review or training purposes.

9. The number of matching scrim areas (cell 3B) and Edge Similarity Score (cell 3C) for the comparison pair will be automatically calculated and displayed.

10. Based on the ESS step, click the respective cell "3D" for a drop-down menu of comparison edge overall conclusion options (fit, non-fit, or inconclusive)

11. Click the respective cell "3E" to select a drop-down menu of the description of your opinion on the overall subunit EES comparison

12. Based on pilot studies, a score of 80 or above is usually indicative of a fit, while scores between 60 a 80 are indicative of a fit with less distinctive features.

A score below 30 is indicative of a non-fit, beteeen 30 and 40 indicative of a non-fit with some similarities, and a score between 40-60 is indicative of inconclusive. You can use this criteria to form your opinion.

Scrim Area
Area Fit Code 

(1 if Fit, 0.5 if INC, 0 if 

Non-Fit)

I. Alignment of Edge Pattern 

Morphology

II. Alignment of Severed Dimples 

on Tape Backing

III. Calendaring Striations 

across Edge

IV. Micro Alignment of Warp 

Scrim

V. Correspondence of 

Protruding Warp Yarns and 

the Respective Pattern Gaps 

in the Other Edge

VI. Continuation of Scrim 

Weave Pattern

VII. Distortion Explained by 

Stretching Directionality

VIII.Weft Scrim at or near 

Edge Consistent with the 

Overall Weft Pattern

IX. Missing Material

1 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

2 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material)

3 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of non-fit Present - indicative of fit
Present and explained by 

stretching
Consistent Not applicable (no missing material)

4 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

5 1 Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material)

6 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

7 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

8 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

9 1 Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material)

10 1 Present - indicative of fit Absent Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material)

11 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and explained by 

stretching
Consistent Not applicable (no missing material)

12 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

13 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

14 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

15 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Present - indicative of fit Present - indicative of fit Absent Consistent Not applicable (no missing material)

16 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

17 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and explained by 

stretching
Consistent Not applicable (no missing material)

18 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and explained by 

stretching
Consistent Not applicable (no missing material)

19 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

20 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

21 1 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

22 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

23 0.5 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

24 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

25 0 Present - indicative of non-fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Observed Missing Material

26 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

27 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

28 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

29 1 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit Absent Consistent Not applicable (no missing material)

30 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Not applicable (no missing material)

31 0 Present - indicative of non-fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Observed Missing Material

32 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Not applicable (no missing material)

33 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Not applicable (no missing material)

34 0.5 Present - indicative of fit Absent Present - indicative of fit Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Not applicable (no missing material)

35 0.5 Present - indicative of fit Absent Absent Present - indicative of fit Absent Present - indicative of fit
Present and not explained by 

stretching
Consistent Not applicable (no missing material)

3B. Number of 
Matching Scrim 

Areas

3C . Edge Similarity 

Score

28 80

Consistent edge morphology and protruding fiber

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and protruding fiber

Consistent edge morphology and protruding fiber

Distortion of edge morphology

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Area Comments

Consistent edge morphology and scrim weave

Consistent edge morphology and protruding fiber

Slight distortion of edge, missing partial warp scrim fiber

Consistent edge morphology and scrim weave

Fit
High confidence in Fit (I am confident that the sample edges are a physical fit based on the 

observed features (e.g., ESS score 80 or higher))

While slight distortion, edges have consistent puzzle-like morphology, and 

demonstrate multiple instances of corresponding protruding fibers

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Distortion of edge morphology

Tape curled at area - missing material

Distortion of edge morphology

Distortion of edge morphology

Distortion of edge morphology

Distortion of edge morphology

Consistent edge morphology and scrim weave

Tape curled at area - missing material

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Distortion of edge morphology

REPORTING OF STEP # 3 COMPARISON RESULTS: Subunit Assessment

3E. Description of subunit ESS overall comparison 3F. Edge Comparison Comments3D. Comparison Pair Overall Conclusion

Consistent edge morphology and scrim weave

Consistent edge morphology and protruding fiber

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Consistent edge morphology and scrim weave

Distortion of edge morphology

Step 3. Subunit Assessment of Tape Edges (Edge similarity score)

5A. REPORTING OF EACH SUBUNIT

X. Additional features not listed here (please write in 

comments what those features are)
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Figure 2-6. Examples of true fit pairs from the tape sets. The images show the distorted 

morphology observed in the MQ-HT-S, LQ-HT, and LQ-HT-S edges. Despite also being hand-

torn, the edges observed in the HQ-HT set are very straight and less distinctive, even when 

stretched. Meanwhile, the scissor-cut sets produce much cleaner edges regardless of tape quality. 
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Figure 2-7. Examples of edge morphology for each sample set. Straight and angled edges were not observed in the LQ-HT set. Stretched 

sets shared the same edges as the non-stretched edges, so no additional examples are demonstrated here.  
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The medium-quality hand-torn (MQ-HT) tape has a wider variety of all four edge separation 

patterns, although wavy patterns are the most predominant type. The additional stretching of 

medium and high-quality hand-torn sets further reduces the relative occurrence of angled and 

straight edges (Figure 2-8). 

 

  
Figure 2-8. Edge pattern occurrence trends for true-fit pairs for all compared sets. Overall, puzzle-

like edges are more common in hand-torn sets, while straight or angled edges are more commonly 

observed in scissor-cut sets.  

 

This first step allows the examiner to document the general observations of the questioned and the 

known item edges separately and use this overall assessment to determine the suitability of the 

specimens for fit examinations. For instance, at this stage, extreme distortion or damaged edges 
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can lead to an item not being apt for further comparisons. On the other hand, if exclusionary 

differences are found at this stage, they are reported, and no further physical fit examination is 

needed (e.g., questioned or known items with different color-shades or texture in the backing or 

adhesive, different scrim count). If no exclusionary differences are found in this screening stage, 

then the analysis continues to the second step. 

 

In the second step, more detailed examination and documentation are conducted to identify major 

features in relatively large regions of the tape. One of the critical goals of this study is to provide 

standardized criteria for parts and terminology, which examiners can use to describe their 

observations consistently. Most standard operating procedures currently used by forensic 

laboratories for physical fit examinations are general and lack examples of material-specific 

features that can be observed. While some of these features may be discussed in examiner training 

programs, there is no consensus of defined characteristics and descriptors and therefore the 

consistency and trends of these features amongst different materials and examiners still need to be 

discovered. To reduce this gap and make documentation consistent, we recommend observing and 

documenting eight major features that we have found to hold the most weight in the decision 

process of a fit or non-fit. Examples of these features are shown in Figure 2-9. Some of these 

features, such as severed dimpling and calendaring striations, are observable on the backing side 

of the tape, while many are observed while looking at the adhesive side of the tape. Distortion and 

missing material may be viewed on either side of the tape.  

 

These features can be observed on many separated tapes, regardless of grade quality. Some duct 

tapes may not have dimpling on the backing, but all duct tapes have scrim fibers that can be 

observed. To make the scrim fibers viewable without needing to remove the adhesive, tape pieces 

can be placed on transparency film. However, there may be cases where the adhesive needs to be 

removed to observe the scrim fibers. In those cases, such as in the high-quality roll from this study, 

a small strip of adhesive can be removed from the comparison edges using hexane. When such 

preparation is required, it is critical that examiners first observe the edges and document any shift 

or loss of fibers resulting from the removed adhesive, as shifted fibers may influence the 

documentation of features or the resulting classification of fit or non-fit. 
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Figure 2-9. Examples of the eight descriptive features documented for duct tape edge comparisons. These features are some of the most 

observed on duct tape regardless of grade. Frequently, they help establish and document standardized criteria during sample 

comparisons.
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Finally, the last step consists of a detailed microscopic bin-by-bin comparison, where 

documentation of the presence, absence, and effect of the eight defined features assists with the 

transparency and reproducibility of the decision-making process. Since examiners must make a 

data-driven assessment of each bin independently and follow specified and demonstrable criteria, 

we argue that this bin-by-bin methodology increases objectivity. It is in this step that ESS is 

calculated. This quantitative metric provides a means to evaluate and convey the quality of a fit 

transparently. The ESS is beneficial when conclusions are based on complex comparisons 

involving fewer distinctive features, distortion, or stretching. In these cases, ESS provides a 

transparent and explainable criterion for examiners to use when performing physical fit 

comparisons. Moreover, detailed documentation and a quantitative criterion can assist in 

comparing results from different examiners; doing so can lead to more robust training and improve 

the technical review and verification processes.  

 

The use of quantitative metrics provides new alternatives to assess the quality of fit, define decision 

criteria, assess error rates, and understand at a deeper level how comparisons are affected by 

common factors observed in authentic specimens (e.g., separation method, tape grade, stretching, 

and distortion, to mention some). 

 

From the research perspective, documenting all three steps is vital to generate data that can build 

up the current body of knowledge in this field. However, when considering the practical 

application and adoption of this proposed method, a detailed bin-by-bin ESS may not be necessary 

when non-fits are well established in the first two steps. In these cases, tapes determined to be non-

fits can be further examined by physical and chemical protocols that are standardized in the 

laboratories to examine and compare class characteristics. Conversely, when a potential fit is found 

after step 2 (or when the non-fit is more complex), we strongly recommend completing step 3 due 

to all benefits discussed above (Figure 2-2). 

 

2.3.2.2. Exploratory analysis of method performance and distributions of edge similarity 

scores on true-fit and true non-fit populations 

Overall, the method demonstrates good performance, with accuracies for all sets at approximately 

80% or higher and no false positives. While error rates are critical to evaluating the reliability of 

physical fit comparisons, false positives have a severe consequence for this type of examination 

due to the implications of the perceived probative value of a physical fit. A false positive has the 

potential to contribute to a miscarriage of justice, as a fit between edges is considered the strongest 

degree of association for trace evidence materials. As seen in Table 2-2, the tape subsets in this 

study did not result in any false positive results. This provides scientific support to the belief that 

the items that have been broken, torn, or separated exhibit physical features that realign in a manner 

that is not expected to be replicated by chance. Likewise, false negative results in forensic fit 

examinations should be ideally as low as possible. Tapes more prone to distortion or possessing 
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fewer distinctive features upon separation tend to produce more false negative conclusions. For 

instance, high-quality hand-torn sets (HQ-HT and HQ-HT-S) exhibit relatively straight edges and 

limited distinctive features. For the analysts in this study, the limited features contribute to 

substantially higher false negative rates and more reported inconclusives than other sets. In 

addition, a more substantial force is required to lift the HQ tapes from a surface due to stronger 

adhesion and cohesion of the adhesives. Thus, the high-quality sets tend to produce additional edge 

distortions upon stretching than the lower-quality samples. The stretching in HQ torn tapes leads 

to increased false negative results and reduces the overall accuracy, as seen in Table 2-2 (e.g., 

accuracy from 84.9 to 79.8 %). The low and medium-quality tapes show accuracy better than 98% 

(ranging from 98 to 100%, depending on the subset). 

 

This study expands on the previous work [5] by completing two additional scissor-cut sets, one for 

low-quality tape, one for high-quality tape, and two other stretched sets from low and high-quality 

tapes (Table 2-2). The scissor-cut sets in this study did not contribute to higher misidentification 

rates. The accuracy of all three scissor-cut sets is greater than 98%, with only two false negative 

pairs in the LQ-SC set and one false negative in the MQ-HT set. Despite the cleaner edges observed 

with cut edges, the alignment of severed dimples and consistency in scrim weave (as seen in 

Figure 2-9) prove valuable for identifying true fit pairs.  

 

The stretching aims to simulate complex sample manipulations observed in casework samples. No 

substantial changes in performance are observed for the low-quality hand-torn stretched set. Table 

2-2 shows that only one true fit pair from the LQ-HT-S set is reported as inconclusive, with no 

other misidentifications. Conversely, as discussed before, the HQ-HT-S set demonstrates a higher 

false negative rate than the original HQ-HT set. This is likely due to additional distortion 

introduced during the stretching.  
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Table 2-2. Summary of the method’s performance rates for the duct tapes. For the low quality (LQ), medium quality (MQ), and high 

quality (HQ), the subsets are labeled as scissor cut (SC), hand-torn (HT), and hand-torn stretched (HT-S). Two analysts independently 

evaluated the MQ-HT set [7]. There are no false positives reported for any set. Inconclusive results are not included in the false positive 

and negative rates but are incorporated in the overall accuracy estimation. 

Performance 

rate (%) 

LQ-SC 

(n=250 

pairs) 

LQ-HT 

(n=200 

pairs) 

LQ-

HT-S 

(n=200 

pairs) 

MQ-SC 

(n=500 

pairs) 

MQ-HT 

(Analyst A) 

(n=508 pairs) 

MQ-HT 

(Analyst B) 

(n=508 pairs) 

MQ-HT-S 

(n=508 

pairs) 

HQ-SC 

(n=250 

pairs) 

HQ-HT 

(n=199 

pairs) 

HQ-

HT-S 

(n=198 

pairs) 

False positive 

rate (FP) 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

False-negative 

rate (FN) 
1.5 0.0 0.0 1.0 1.0 2.0 1.0 0.0 21.4 31.6 

True negative rate 

(Specificity) 
97.5 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

True positive rate 

(Sensitivity) 
98.5 100.0 99.0 99.0 98.0 98.0 99.0 100.0 69.4 57.2 

Accuracy 98.0 99.5 99.5 99.8 99.6 99.6 99.8 100.0 84.9 79.8 
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To explore the distribution of the scores in true fits and true non-fit datasets, boxplots are shown 

in Figure 2-10 to document the reported ESS for each set of tapes based on the ground truth (fit 

or non-fit). For this series of boxplots, the one for MQ-HT combines the results from the two 

examiners who independently completed the set. For most sets, there is an observable separation 

between the ESS obtained for true-fitting and non-fitting pairs. The score distributions for all the 

sets for true non-fit pairs are generally consistent at 30 or below, and the majority fall below 10. 

Conversely, the score distributions for the true fit pairs are different for some of the sets but are 

predominantly higher than 80 (Figure 2-10). Some trends are observable in the boxplots, such as 

broader variability of scores and the shift in the distribution of true fitting pairs in the HQ-HT and 

LQ-HT to slightly lower values, resulting from the edge morphology and predominant features 

observed on those sets. The distribution of scores for true fits in the LQ-HT-S is also consistent 

with the LQ-HT set. However, these characteristics are primarily observed in the hand-torn sets. 

The scissor-cut sets for both low- and high-quality tape are more like the medium-quality scissor-

cut set, with most fitting pairs having ESS of 90 or higher.  

 

The distribution of scores for the true fitting pairs in HQ-HT and HQ-HT-S is wider than in any 

other set. The high-quality tape is prone to contribute fewer features for comparison due to the 

relatively straight edges and potential distortions caused by removing the thick adhesive. The 

additional stretching on the samples compounds the issue with the tape, indicating that the high-

quality tape used in this study is not necessarily the most suitable for physical fit comparisons. 

While true non-fits are relatively straightforward to rule out (seen in the 100% true negative rate 

for both HQ-HT sets), the reduced specificity and broader distribution of scores for true fit pairs 

for the sets indicate that for tapes that do not contribute many comparison features, there is 

generally reduced quality of fits between samples. Therefore, the additional chemical analysis may 

be warranted even if a fit is observed.  
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Figure 2-10. Boxplots showing the ESS distribution of each tape set, with true non-fits (TNF) 

displayed on the top boxplot of each set and true fits (TF) shown on the bottom boxplot of each 

set. Generally, there is a separation between the ESS distributions of the true fit and true non-

fitting pairs, with higher scores for fits and lower scores for non-fits. 

 

2.3.2.3. Statistical assessment of ESS values 

While exploratory analysis denotes small shifts in score distributions based on the grade of tape, 

separation method, or stretching, it fails to determine whether these shifts are statistically 

significant and reveal any underlying interactions between factors. Therefore, we determine the 

extent of the effect of these factors on the ESS using a generalized linear mixed effect model, more 

specifically, a logistic regression model. Note that our model has no predictive abilities in specific 

cases since it only relies on general observations (such as tape quality and method of separation) 
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made on the tape comparisons. We want to emphasize that our model is only meant to interpret 

the effect of the different factors by interpreting the regression coefficients.  

 

The coefficients of our model are estimated by considering the log-odds transform of the ESS for 

each comparison as the dependent variable and one-hot encodings of the different levels of the 

different factors of interest (ground truth, quality, separation method, edge pattern) as fixed effects 

independent variables. Our model includes random effects to account for the replicated 

determination of ESS on the same samples. Initially, a random effect was added to account for the 

lack of independence between the ESS. Indeed, all the ESS in this study come from cross-

comparisons between tape samples; thus, two ESS involving the same tape sample might be 

correlated. A study of this random effect showed that it was mostly negligible and has been 

removed in the final version of the model.  

 

The model has been fitted using a Hamiltonian Monte-Carlo algorithm implemented in Stan 2022 

[21]. Prior distributions for the coefficient values are centered on 0. We use variable selection to 

reduce the size of the model to select factors and interactions that are statistically significant. 

Variable selection relied on the widely applicable information criterion (WAIC), the standard 

deviation of the WAIC, and the number of parameters generated by the model with different 

combinations of variables and interactions. The WAIC is used to evaluate model quality as a 

measure of the amount of loss of information by a model as it is fit to the data set and can be used 

to account for both potential overfitting and underfitting of the model to the data.  

 

The resulting model incorporates the interaction between the experimental factors of grade and the 

separation method, which is supported by the observations of the score distributions seen in the 

boxplots (Equation 1). In addition, there is an interaction between the ground truth and all other 

variables, as the ground truth of the pairs influences the ESS regardless of the other variables. 

Stretching is incorporated as a factor, but we found no evidence of interaction between stretching 

and grade or separation method. 

 

log odds (ESS) ~ Ground Truth × (Grade ×  Separation Method + Stretching +

Edge Pattern) (Equation 1) 

 

The posterior distributions for the value of the grade and separation method coefficients are shown 

in Figure 2-11. These distributions show the magnitude and variance of the coefficient values for 

each experimental factor for true-fit tape and true non-fit pairs. The distributions in Figure 2-11 

are marginalized over the remaining factors (e.g., Figure 2-11A shows the distributions of the 

coefficients for each grade of tape as a combination of the values resulting from the separation 

methods, stretching, and edge pattern, while Figure 2-11B shows the distributions of the 

coefficients for each separation method as a combination of the values resulting from the grade of 

tape, stretching and edge pattern).  
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Figure 2-11 shows that the value of the coefficients for the different grades of tapes and the two 

separation methods is significantly different from 0 for both true fits and true non-fits. 

Furthermore, apart from coefficients for Low and High grades of tape in non-fit pairs, all 

coefficient distributions are quite different. This indicates clearly that both tape quality and method 

of separation are factors that affect the resulting ESS.  

 

Regarding individual levels of these factors, medium-quality tapes tend to result in the highest and 

lowest ESS (depending on whether the considered pairs are true (non-)fit). The more extreme ESS 

indicates that this type of tape contains more discriminative features. The medium-quality tape 

produces less distortion when torn than the other qualities of tape, and the scores are not influenced 

substantially by stretching (Figure 2-8). Along with more occurrences of distinct-puzzle-like 

edges, the medium-quality tape retains many features for comparison that are not obscured by 

distortion or adhesive. While it could be expected that more distinctive puzzle-like edges only 

correspond with their true fit edge, these patterns commonly produce a greater amount of distortion 

in low-quality tapes, meaning that some uncertainty is caused by the degree of distortion observed.  

 

Similarly, cut tapes tend to have more extreme ESS than pieces torn by hand, which indicates that 

cutting tapes does not prevent association between edges. Scissor-cut edges produce more angled 

edges, and if an angled edge has a sharper degree, the more likely it is to only correspond with its 

true edge. Certain features are observed primarily in the scissor-cut edges. Observance of severed 

dimples and consistent weft fibers that cross over the fracture edge is highly distinctive and 

strongly supports a fit conclusion. Conversely, the tapes with torn edges do not usually 

demonstrate these features and are more prone to stretching during separation, making it harder to 

associate the edges with high scores.  

 

Counterfactual plots explore the effect of each experimental factor on the log-odds of the ESS 

(and, therefore, on the similarity scores). Counterfactual plots show the distributions of the 

expected values of the dependent variable under all combinations of levels of the different factors 

of a model, accounting for the uncertainty in the values of the model’s parameters. Figure 2-12A 

shows the counterfactual plot for the grade of tape. The left side of the counterfactual plot shows 

the distributions of the expected values of the log-odds ESS resulting from the model. In contrast, 

the right side of the plot shows kernel density estimated distributions of the empirical ESS data 

from the analyzed tape pairs.  
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Figure 2-11. Marginalized posterior distribution of the logistic model parameters fitted to the duct 

tape data. Figure 2-11A (top) shows the distributions of the coefficients for the grade, while 

Figure 2-11B (bottom) shows the coefficients for the separation method.  
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First, comparing both sides of Figure 2-12A shows that the expected values of the log-odds ESS 

are similar in means but have a larger variance than empirical ESS. Figure 2-12A also shows that 

the distributions of the empirical data are multimodal. In contrast, the distributions of the expected 

values are Gaussian by the assumption of the model used in this study. The similarities and 

differences between the predicted and empirical ESS distributions allow us to conclude that (a) the 

model correctly captures the mean effects of the factors under investigation; however, (b) the 

effect(s) of some unknown factor(s) is(are) not accounted for.  

 

Second, Figure 2-12A shows that while the distributions for the coefficient values for the different 

grades of tape are very well separated (which indicates statistically different effects for the 

different levels of the grade factor), the resulting impact of varying the grade factor on ESS is not 

particularly pronounced when accounting for the other factors and analyst variability. In addition, 

we observe that the model predicts a certain degree of overlap between the ESS resulting from true 

fits and true non-fits, just as it can be observed in the empirical data.  

 

Figure 2-12B shows the counterfactual plot for the separation method. Similar conclusions to 

Figure 2-12A can be drawn from Figure 2-12B. While the distributions of the coefficients for the 

separation method are well separated, the predicted effect of the separation method is not as clear 

once other factors and analysts’ variability are considered. Figure 2-12B confirms that cut tapes 

result in better separated ESS distributions than torn tape. These results indicate that despite the 

cleaner edges, scissor-cut edges still retain sufficient features for reliable comparisons, particularly 

when these observations are made at the microscopic bin sub-unit areas. Documentation of 

features, including severed dimples and consistent weft fibers that cross over the fracture edge, are 

common at the microscopic level in these samples, contributing to high ESS values.  

 

As mentioned above, the selected logistic model for this data does not appear to account for all 

factors influencing the observed ESS. However, the data collected to date can still provide valuable 

insights about the contribution of factors to the expected ESS and quality of the fit. These trends 

can then be used to support the opinions of examiners conducting physical fit examinations of duct 

tapes and understanding how to set criteria when deciding on a fit examination outcome and 

associated uncertainties.  

 

The probative value of tapes can be estimated using ESS to calculate score-based likelihood ratios 

[5, 22-24]. SLR values describe the likelihood of a given ESS value given the hypothesis that the 

pair is either a true fit or a true non-fit. The distribution of scores from each quality is estimated 

using kernel density estimation to calculate SLRs. These estimated distributions are shown in 

Figure 2-13. Because the counterfactual plots show that tape grade is a critical factor for 

determining the similarity score, the datasets have been combined by grade to generate the kernel 

density plots; however, expanding to larger datasets is recommended in the future. 
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Figure 2-12. Counterfactual plot showing the distributions of the expected ESS values for duct 

tape data. The counterfactual plot shows the expected ESS values resulting from the model and 

the experimental data. Figure 2-12A (top) shows the distributions marginalized for the grade of 

tape. Medium-quality tape generally results in higher ESS than other types of tape when samples 

truly originated from the same tape. Figure 2-12B (bottom) shows the distributions marginalized 

for the separation method. Scissor-cut tapes generally contribute to higher ESS than torn tapes 

when samples truly originated from the same tape. Both grade and separation methods do not 

provide substantial differences in expected ESS values for true non-fit pairs.  
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Figure 2-13. Kernel density plots depict the likelihood of obtaining a similarity score of 0 to 100 

for each tape grade. The curves are separated by true fit and true non-fits. A threshold using a 3N 

rule [25-26] was set for each dataset to minimize extreme likelihood values resulting from a lack 

of data. Note that the kernel density estimates were bounded to avoid having a probability mass 

below 0 and above 100.  

 

Due to the lack of overlap in the ES score distributions for true fit and true non-fit pairs, there are 

instances where there are no values for a given ESS value. To overcome this, a 3N [25-26] rule is 

applied to each dataset, in which the density of a given score is set to a threshold of 3/N, where N 

represents the total number of tape pairs in the dataset. For example, for medium quality, there are 

a combined total of 2016 ESS values in the dataset, so the density threshold is set at 3/2016. This 

prevents extreme values resulting from the calculation of SLR values where the likelihood of a 

true fit or true non-fit is close to or equal to zero. The resulting SLR distributions are shown in 

Figure 2-14. The log of the SLR values is shown to simplify the interpretation of SLR values.  
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Figure 2-14. SLR distributions for each tape quality across the total range of potential ESS values. 

The log of the SLR values is shown to simplify the interpretation of the SLR values. 

 

These distributions show the range of ESS values and what conclusions those values provide 

support for. Scores below 20 for all tape grades show the strongest support, with log SLR ranging 

from approximately -4 to 0 (corresponding to SLR values between 0.001 to 1). For example, a 

medium-quality tape pair resulting in an ESS of 0 corresponds to a log SLR of approximately -4, 

meaning that observing a score of 0 is 10000 times more likely for a pair that is a true non-fit than 

a fit. ESS values above 80 provide the strongest support for a fit, with log SLR values ranging 

from approximately 0.5 to around 4 (corresponding to SLR values of 3 to 10000). These values 

depend more on the quality, as a tape with an ESS value of 90 can result in an SLR of 

approximately 0.8, 1.3, or 2.4, depending on whether the tape is low, high, or medium quality. The 

range of 40 to 60 results in log SLR values of 0, meaning that there is no support for either a 

conclusion of fit or non-fit. However, data in those ESS regions may become available with larger 

datasets. 
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2.4. Application of a convolutional neural network to support physical fit comparisons 

of duct tape 

 

2.4.1. Methods and Materials 

 

2.4.1.1. Creation of a database of digitized tape samples 

A subset of the tape samples previously described for the human examination was digitized for 

use in the computational model. The database contains images collected from the top (backing) 

and bottom (scrim/adhesive side) of a total of 1998 individual tapes. The images were collected 

using an EPSON 12000XL scanner using SilverFast 8 software (version 8.8.0r14) at a resolution 

of a minimum of 600 dots per inch. A background made of black poster board was placed behind 

each sample during scanning to improve contrast. Minor corrections to each image were made 

during scanning to enhance the contrast and visibility of the edges and features, such as setting the 

image’s black point to the posterboard to ensure the background was the darkest part of the image 

and minimize the interference of the posterboard paper’s fibers. Additional corrections to remove 

artifacts such as fingerprints, residual adhesive, long protruding fibers, acetate outlines, and sample 

labels were conducted as necessary using Adobe Photoshop (version 23.5.1).  

 

To be used for the model, the images needed to be pre-processed. This step prepares the input (the 

tape images) in the most appropriate format for the model. This approach utilized a neural network, 

meaning the input needed to be an array of numbers with a fixed length. However, the high-

resolution images required to document the tape features properly led to issues introducing the 

data to the model. The dimensions of the images needed to be reduced to prevent computational 

memory issues, but this process can result in the loss of information [27–29]. This problem was 

addressed in the algorithm's image collection, pre-processing, and architecture. The images were 

collected in as low a resolution as possible that still allowed for recognition of features (600 dpi), 

as well as the preprocessing of the tape images through reduction of the image width to as close to 

the comparison edge as possible. The process is detailed in the ForensicFit package developed by 

Tavadze and Lang [18, 30], available on GitHub. This python package was designed explicitly to 

compare forensic trace materials in physical fit evaluations. It provided the means to store and 

adapt raw images for pre-processing, statistical analysis, and training a machine-learning model.  

 

2.4.1.2. Training of the computational model 

To use the CNN, the input images must be all prepared in the same manner. While this may seem 

an easy process for a human to scan images of the samples, it is worth noting that the width of the 

tape roll can vary between different sources of tape, which could cause substantial issues for CNN 

in the learning process. To account for this potential variation, the width of the tape image (y-

dimension) was cropped according to the actual width of the tape and then resized to ensure 

consistent inputs to the networks. While this can cause distortion if all samples in the database 

were treated similarly, resizing the samples would not substantially influence the output. To keep 
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the two sides of the tape properly together as part of the decision-making process between two 

separate tape samples, the two images are concatenated along with those of the other sample. Two 

independent, identical CNN models were trained separately on the scrim and backing side of the 

image tapes, each of which would produce a prediction of fit or non-fit. These two outputs would 

then be combined, leading to a final probability that would predict a fit, non-fit, or inconclusive 

classification. More detail on the exact architecture of the model is described in Tavadze et al. 

[18].  

 

A critical aspect of machine learning is the training of the model. Before training, two potential 

issues inherent to the tape material were addressed. The first considers the ratio of true fits to true 

non-fits. In the context of tape material used in forensic science, there are inherently more true 

non-fits than true fits. A given sample can only fit with one other edge but would be a true non-fit 

to every other edge in the database. As a result, the dataset in this study was imbalanced, which 

could affect the accuracy of the final model [31-33]. The model was designed with a fit to the non-

fit ratio of 3:10, selected by assessing the performance using various ratios [18]. The second issue 

was possible misalignment or orientation of potential sides during the comparison of the tape. To 

prevent the model from being unable to handle random orientations of input edges, the training of 

the model was conducted with random mirroring, where the sides of the tapes would randomly be 

flipped so the model would learn not to reject edges just because they faced the same side [18]. 

The dataset was split into a ratio of 80:20 for training and validation. The learning rate, 

optimizations, and the number of iterations of the learning were optimized by trial and error [18].  

 

2.4.2. Results and Discussion 

Overall, the model demonstrates comparable performance to the human analysts. Table 2-3Error! 

Reference source not found. shows the performance rates of the model for the subset of samples 

compared (hand-torn and scissor-cut of all three tape qualities). The model results in lower false-

negative rates for the hand-torn sets. This result is not unexpected, as hand-torn samples are more 

likely to produce distinct edge patterns, which is also recognized in the human examination. 

However, unlike in the human examination, the model did have some false positives. However, all 

false positive rates were below 10%.  
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Table 2-3. Performance of the computational model for the tape sets [18]. The tape sets referred 

to here are low-quality (LQ), medium-quality (MQ), or high-quality tape (HQ). The separation 

method for the subset is denotated as scissor-cut (SC) or hand-torn (HT). 

Set LQ-SC LQ-HT MQ-SC MQ-HT HQ-SC HQ-HT 

No. of comparison pairs 73 68 60 81 48 68 

No. of fits/No. of non-fits 30/43 19/49 17/43 23/58 20/28 19/49 

False-positive rate (%) 0.0 8.7 0.0 0.0 7.1 7.7 

False-negative rate (%) 25.0 9.1 15.8 6.7 7.1 0.0 

True-negative rate (%) 100 91.3 100 100 92.9 92.3 

True-positive rate (%) 75.0 90.9 84.2 93.3 92.9 100 

Accuracy (%) 72.6 76.5 88.3 85.2 81.3 71.3 

 

It is noteworthy that the model’s performance is based only on twenty percent of the dataset, as 

the rest is used to train the model. High-performing CNNs are often trained on datasets containing 

tens of thousands or millions of images, whereas this study only incorporates a database of around 

4000 samples [34-36]. Despite the limitation, there are still enough images in this tape database to 

perform pilot testing, the feasibility of this approach, and the potential of a computational model 

that can perform automated quantification of the similarity/dissimilarity of duct tape edges and 

assist human analysis of samples.  

 

Trends observed in the human examination are also reproduced in the computational comparison. 

Namely, the role of the quality of the tape shows a substantial influence on performance. In both 

approaches, MQ samples demonstrate high accuracy and low error rates. LQ samples perform the 

next best, with HQ demonstrating lower performance than the others. As observed in the human 

examination, likely, the more extensive distortion seen in LQ tapes and the lack of distinct features 

and edges observed in HQ pairs cause reduced performance and confidence in the computational 

examination. In addition, these samples are likely to introduce additional noise. The adhesive of 

the HQ samples is thick and obscuring. While removing the adhesive at the edge exposed the 

fibers, the residual adhesive could produce issues for the machine-learning. 

 

Similarly, the LQ adhesive/scrim side was more transparent than HQ but not as distinctive as in 

the MQ, meaning that the contrast between the fibers and the bin areas could have contributed to 

lower performance. The separation method also has a measurable impact on performance. There 

is a relatively high false negative rate in all three SC sets. This is likely due to an abundance of 

straight edges in those sets. If the pair has strongly angled edges, non-fits are more recognizable, 

but not so when the edges are very straight, as it becomes more complicated to compare. We 

hypothesize that human analysts recognize more features in the microscopic comparison that can 

more definitively influence a correct decision (Figure 2-6). When the edge morphology is 

insufficient, characteristics such as alignment of dimples and calendaring striations along with the 
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fiber weave become critical for comparison. The model is not likely to recognize these features as 

effectively. However, both the human-based examination and computation model demonstrate that 

scissor-cut edges retain sufficient features for comparison, which contrasts previous assumptions 

about scissor-cut edges [8].  

 

The relationship between the quantitative metrics from the human-based and computational 

approaches is shown in Figures 2-15 and 2-16. The boxplots in Figure 2-15 compare the 

distributions of ESS estimated by the analyst to the fit membership probability assigned by the 

CNNs. The results of each approach are separated by the respective subsets of tapes and the known 

ground truth (i.e., true fit or true non-fit). Notably, true fit and true non-fit pairs are generally well 

separated using either metric. True non-fit pairs typically receive ESS of 30 or less, with most 

below 10. Most true non-fits had low probabilities (generally less than 0.10) assigned by the model 

for the “fit-membership.” True fits typically receive high values (ESS of 80 or higher or probability 

of fit-membership greater than 0.7 for the CNN). The hand-torn sets span a wider range of 

probability outputs and ESS for true fits compared to scissor-cut samples. It is also observable 

where the computer-based model yields false positive pairs in various subsets, where there are 

none in the human analysis. Despite this, it is worth noting that when considering the model’s 

output, some of the true fit tape pairs with lower probabilities are more likely to be reported 

inconclusive due to a disagreement in membership probabilities reported between the scrim and 

the backing CNNs.  

 

 
Figure 2-15. Boxplots of edge similarity score for all the sets from human examination (left). 

The right image shows the boxplots of the probabilities assigned by the model. The data was 

obtained by combining the output of the two convolutional neural networks (scrim and backing). 
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The edge similarity scores are obtained from all the tapes in the subsets, while the probabilities 

are obtained only from 20% of the dataset (validation set). 

An alternative comparison of the two approaches is shown in Figure 2-16, where the distribution 

of ESS and CNN probabilities are estimated using kernel density estimation. The datasets have 

been combined by quality in both approaches to generate the kernel density plots. In both methods, 

MQ tapes more commonly receive high scores or probabilities for true fits, followed by LQ and 

HQ. This result is consistent across both approaches but is less pronounced in the computational 

model. A similar trend is observed for true non-fits, where most tape pairs have low values (ESS 

20 or less, CNN fit membership probabilities less than 0.3). In addition, there is a limited overlap 

between true fits and true non-fits in both cases, indicating good discrimination power. More 

importantly, both ESS and CNN outputs can be used as the basis to estimate likelihood ratios to 

estimate the respective probative value or weight of the evidence [5, 37]. This provides the 

opportunity to use a probabilistic interpretation of the probative value of the evidence to support 

and inform an analyst’s conclusion. 
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Figure 2-16. Kernel density plots demonstrating the spread of the different datasets for both the 

human-based approach and the computational mode. The top kernel density represents the edge 

similarity score estimated by the analyst’s examination (top). The bottom kernel density shows 

the estimates of the fit membership probabilities calculated by the computational method for the 

tape pairs [18].  

 

These results indicate good potential for the model in addition to the human examination; a concern 

of using neural networks in forensic science is the need for more transparency in how decisions 

are made. While the model’s architecture may be known, the exact features the model is tracking 

and using for decision-making can be challenging to demonstrate. This is particularly important 

for future implementation of computational methods, as forensic practitioners who use the model 

are likely to be questioned during testimony on the model’s inner workings. As one of the intended 

goals of this model is to allow it to be more accessible, it is critical to understand what the model 

is using for the predictions. As a solution to this concern, this technique shows the critical areas 

for comparison to the model by Layer-wise Relevance Propagation (LRP) [38], where the 

important pixels for the prediction decision are highlighted.  

 

Figure 2-17 shows an example pair with LRP highlighting important pixels in cyan blue. This is 

a true fit pair from the HQ-SC subset, resulting in a model prediction of a fit with a probability of 

0.87 and its conclusion with an ESS of 100. According to the LRP, the most important pixels are 

at the edges of the tape, where the model recognizes both edge morphology and the texture of the 

backing. As an example, the top portion of the pair has consistent severed dimples close to the 

edge highlighted by the model. The notes from the human examination also recognize these 

dimples as critical for the fit decision for the same area of the tape. While not severed at the bottom 

of the tape pair, the dimples are still recognized as important by the algorithm. This feature would 

also be useful during an examination by a human analyst. While more variable than other features, 
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the spacing between dimples could still be valuable when determining non-fits if the spacing is 

substantially different from the rest of the observable backing.  

 
Figure 2-17. Layer-wise Relevance Propagation (LRP) analysis of a true fit HQ-SC pair compared 

to human documentation of the same pair. LRP identifies the most important features at the tape’s 

top and bottom, especially the severed dimples and edge morphology [18].  

Expansion of this database is expected to improve the confidence of the CNN model and address 

issues related to more realistic casework samples (samples with extensive artifacts and distortions). 

In the meantime, these approaches provide the means to estimate rates of misleading evidence.  

 

2.5. Conclusions 

The edge similarity score method provides good overall performance for physical fit examinations. 

The addition of the two scissor cut sets of low and high quality coincides with the accuracy seen 

in the previous medium-quality cut set, with accuracy over 98% and no false positives. Stretching 

of hand-torn tapes adds some variability to the ESS but does not significantly influence the overall 

conclusion. Generally, edge similarity scores for true fits are consistently greater than 80. Scores 

of true fit pairs are more widely distributed for the low- and high-quality hand-torn sets. The use 

of the systematic method provides consistent results between examiners. The defined comparison 
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criteria assist with understanding the reported conclusion for a given pair and allow for 

understanding what features are most common in the different qualities and separation methods. 

For example, severed dimples primarily occur on scissor-cut edges and are rare on hand-torn edges. 

This is most often due to the relative placement of the weft fibers, which on all three tapes tend to 

fall underneath the dimples. Hand-torn tapes generally do not tear across a single weft fiber and 

so commonly do not show severed dimples. Conversely, hand-torn edges display more distortion 

and puzzle-like patterns due to stretching, as the scissor-cut edges do not generally present with 

distorted edges. An exception is the high-quality hand-torn sets, which produce less distortion 

upon separation and few distinctive puzzle-like patterns. 

 

This study shows that different variables have varying impacts on the edge similarity score when 

evaluating the statistical effect of the experimental factors of interest. For non-fits, the influence 

of the separation method and tape quality on the ESS values is negligible, and the ESS trend 

towards low values regardless. Generally, scissor-cut tapes result in higher scores for true fit pairs 

than hand-torn pairs. Regarding tape quality, in true-fit pairs, medium-quality tapes receive higher 

scores overall, followed by low-quality and high-quality. The calculated score-based likelihood 

ratios based on ESS values show that the likelihood of observing an edge similarity score below 

20 is much more likely if the edges are true non-fits.  

 

Meanwhile, tapes with scores above 80 are much more likely if the samples originated from true 

fitting pairs. While the effects of these variables are not overt, the observed effect seen in the 

counterfactual plot coincides with the exploratory data analysis from the different tape sets. As 

such, examiners must consider the suitability of the tape material during physical examinations. 

The construction and physical properties of the tape may result in fewer informative features or 

contribute to more uncertainty in the decision-making process. While it may be challenging to 

determine the separation method for tapes, the findings of this study show that examiners should 

not assume that a potential cut edge will not possess distinctive features for comparison. 

Conversely, this study indicates that scissor-cut edges result in the slightest variation of scores for 

all three grades, meaning the examiners consistently note enough features to have a higher degree 

of confidence in their reported conclusion.  

 

Establishing a set of standard features and terminology for comparison of tape edges provides 

more straightforward documentation of the criteria used in examinations of physical fits. The 

proposed methods are anticipated to assist examiners in evaluating the edges through 

documentation and observation in a systematic manner, reporting standardized comparison 

criteria, understanding potential sources of variations, and presentation of error rates. The ESS 

method is valuable for training and peer-review processes. The three-step comparison process 

allows for a more nuanced understanding of the quality of the edge from macroscopic and 

microscopic observations and defined criteria. 
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Additionally, this research provides a functional computational model for tape physical fits. The 

open-source python package, ForensicFit, developed by our partners in this research [18, 30], 

provides a means for pre-processing images for forensic physical fit examination. The package has 

provided data for machine learning to train two independent convolutional neural networks for the 

respective tape sides (backing and scrim), with analysis performed on the combined probabilities 

and membership assignment. The proposed computational model performs well with comparable 

high accuracies and low error rates to the human examination. This study confirms the previous 

findings observed by the analysts through physical and microscopic examination, such as the value 

of scissor-cut edges for comparison despite cleaner edges. As such, it demonstrates the potential 

of machine learning models to provide statistical support to analyst conclusions. The application 

of LRP allowed the computational model to recognize the most critical features and demonstrates 

that they are consistent with the features identified through human examination. The results also 

indicate that the approach has room for improvement, particularly with the addition of larger 

datasets in the future, which will assist the learning process of the model. 

 

This study demonstrates that not every physical fit conclusion holds the same confidence. 

Therefore, we recommend accompanying a reported physical fit with an assessment of its 

probative value. Overall, the ESS approach demonstrates that observing a physical fit on two duct 

tape pieces that were not joined together is unlikely, as no false positives are observed in the 

various populations evaluated. It is worth noting that both studies result in errors, reinforcing that 

physical fit examinations are not error-free, whether conducted by an analyst or by a computer 

algorithm. Therefore, it is critical to raise awareness of potential error sources and factors 

influencing the accuracy of physical fit examinations. Even though this study uses a relatively 

small dataset (~4000 images) compared to what is typically used to train CNNs for other 

applications, the model still performs comparably with the human examination. As such, it shows 

the potential to help provide additional support to physical fit examinations. The model presented 

here allows the forensic community to collaborate and build databases of other materials of 

forensic interest.  
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The following object links to a spreadsheet containing the template for the duct tape comparisons.  
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UNIVERSITY DUCT TAPE COMPARISON TEMPLATE_updatedSept2022.xlsx
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Chapter 3: Interlaboratory evaluations of a systematic method for assessing duct tape 

physical fits 

3.1. Overview 

This research applies the method we developed to quantify compared duct tape edges through 

evaluation of the method by forensic practitioners. We evaluated the method through two 

interlaboratory exercises, the first with twenty (20) participants and the second exercise having 

eighteen (18) current forensic trace evidence practitioners. With each participant comparing seven 

samples, the total number of comparisons across both studies reaches 266.  

 

The goal of the first exercise was to assess method performance, variation, and determine what 

aspects of the method needs improvement. The first study results show a 97% accuracy according 

to the reported conclusions made by the practitioners. However, upon further inspection of the 

documentation templates, there are numerous instances of participants reporting a conclusion that 

does not correspond with the reported edge similarity score (ESS). For example, a pair with a 

reported ESS of 20 may have been reported as a fit with high confidence. As such, the results are 

evaluated using ESS values, which instead indicates an accuracy of 95%. The discrepancies 

observed in the documentation are hypothesized to be due to misunderstanding of the methods, 

lack of standardized training, and participants relying on their own criteria to make decisions. As 

such, for the second exercise, more formalized training, more extensive documentation, and 

changes based on feedback received in the first study are incorporated to determine if performance 

and consistency in responses improved. The second exercise demonstrates a slightly improved 

accuracy (99%), and no discrepancies between the reported conclusion and ESS values. 

Furthermore, the enhanced documentation allowed for visual demonstration of results between 

participants and allowed for transparency of the thought process of the analysts for what they 

consider the most important features for making decisions. The formalized training ensures that 

all participants are interpreting the method, the documentation, and the ESS value in a consistent 

manner.  

 

In addition to the performance of the method across both interlaboratory exercises, the ESS values 

provided by the participants are assessed using Dunnett control charts and z-scores. These two 

approaches indicate that most participants' results were satisfactory, with a few cautionary and 

insufficient results in the first exercise, and fewer cautionary results in the second exercise.  

 

Overall, the inter-laboratory performances indicate that the proposed qualitative and quantitative 

criteria assist practitioners in arriving at reproducible assessments of the quality of a fit. While 

there are still improvements that can be made to the training and documentation template, the ESS 

method for duct tapes provides thorough records of physical fit evaluations and allows for a 

straightforward and transparent comparison of results among independent analysts, paving a way 

to facilitate blind verification of physical fit samples in forensic laboratories.  
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The following chapter is an adaptation of an article submitted for publication ©2023: Prusinowski 

M, Brooks E, Neumann C, Trejos T. Forensic interlaboratory evaluations of a systematic method 

for examining, documenting, and interpreting duct tape physical fits. Forensic Chemistry. 

 

3.2. Introduction 

While physical fit examinations have a long history of use in forensic science; there is an increased 

interest in the forensic community to demonstrate its reliability and to develop standardized 

methods for examination and interpretation [1-5]. 

 

Although previously published studies demonstrate that analysts have relatively high accuracy 

rates when examining physical fits, they also demonstrate that physical fits are not exempt from 

errors [2]. Therefore, it is of the foremost importance to develop tools to detect, evaluate and 

minimize potential sources of errors and bias in physical fit examinations. One material that has 

received attention in this field is duct tape, due to the prevalence of this type of evidence in 

casework [5-10].  

 

The studies performed by Prusinowski et al. demonstrate low error rates using a method that 

reports a similarity score for a duct tape physical fit pair [8, 9]. The proposed method has evolved 

from its initial development and assessment of performance rates through large datasets of known 

ground truth items (> 3000 duct tape comparisons) [8], to the identification and development of 

standardized reporting criteria and assessment of significant factors that can influence physical fit 

examinations [9], and finally, its evaluation and refinement through interlaboratory studies. The 

examinations in the two initial studies from Prusinowski et al. are performed solely by a few 

researcher analysts. The present study is designed to identify the capabilities and limitations of the 

proposed approach when the examinations are performed by practitioners with experience in 

physical fit examinations but new to the proposed ESS and reporting criteria. 

 

A critical step in the implementation of new methodologies in forensic science involves 

establishing the performance and robustness of the method. Accreditation standards require that 

forensic laboratories utilize methods that have substantial testing to verify the utility, validity, 

reliability, and reproducibility across laboratories and independent analysts. One of the most 

effective means of evaluating a new method is through interlaboratory studies where multiple 

practitioners analyze the same sample (or samples with similar compositions/origins) under set 

conditions [11]. The study is often led by a coordination body, who creates the experimental design 

and evaluates it with an expert panel prior to distribution to participants [12]. The coordination 

body also maintains the anonymity of participants, verifies the data, conducts analysis and 

interpretation of results and incorporates the findings and participant feedback to implement 

improvements. 
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In this paper, we report the results of two interlaboratory studies designed to assess the proposed 

method for examining, documenting, and interpreting physical fits of duct tapes using standardized 

qualitative descriptors and quantitative metrics. The second interlaboratory study applies feedback 

from the first to refine the proposed method, and the training provided to the participants. An 

overarching goal of these exercises is to incorporate this feedback to develop consensus protocols 

that can be practical and likely to be implemented by the scientific community. 

 

3.3. Methods and Materials 

3.3.1. Sample preparation 

The tape samples utilized in these exercises originate from medium-quality grade duct tape (Duck 

Brand Electrician’s Grade Gray Duct Tape, ShurTech Brands, Avon, OH) [8, 9]. The tape roll has 

approximately 4.0 mils backing thickness, 2.5 mils adhesive thickness, and 20/8 warp/weft scrim 

count. Each sample consists of a hand-torn, 6-8 cm long strip of the roll. Samples are placed on 

clear acetate sheets following fracture to allow for the backing and adhesive side of the tape to be 

examined without the need to remove the adhesive with solvent. The samples are labeled with 

unique identification numbers that are traceable to the coordination body but maintain the ground 

truth unavailable to participants. Pairs of tape samples are created, with some pairs including 

consecutive strips of the roll, and some pairs including non-continuous strips.  

 

Initial tape pairings are analyzed by four independent analysts using a blind process, where the 

ground truth was unknown by the panel. The panel analysis consists in assessing each pair for 

alignment features on both the backing and adhesive sides under a stereomicroscope and following 

the interpretation criteria and reporting template. Twenty-one (21) pairs resulting in inter-

participant ESS relative standard deviations lower than 10% ESS are selected from the samples 

set and rearranged into seven groups of three similar pairs each, to prepare 3 kits of 7 comparison 

pairs each. Classification of the seven optimized pairs includes three fits of ESS greater than 80% 

(F+), one fit of ESS below 80% (F-), and three non-fits of ESS lower than 40% (NF+). The sets 

also include a variety of edge morphology (straight, wavy, puzzle-like) as described in Table 3-1. 

 

3.3.2. Design of Studies 

Following discussions with practitioners, the interlaboratory study is designed to allow for direct 

examination and handling of the samples in a manner that closely resembles casework. To facilitate 

simultaneous distribution to various participants and maintain practical turn-around times, three 

kits containing 7 pairs of tape are used. Table 3-1 shows that the chosen pairs share similar 

characteristics and ES scores to the corresponding pair in the other kits (e.g., Pair 1 and 3 of Kit A 

is the same ground truth, similar in edge morphology and has similar ESS values to Pair 1 and 3 

of Kits B and C). Refer to Appendix 3A for detailed images of the pairs. 
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Table 3-1. Description of the seven tape pairs selected for each of the three interlaboratory kits, 

and respective ground truth and consensus values obtained by the pre-distribution examination 

panel. 

 

 
 

To minimize potential bias, each participant independently receives, processes, and returns the kit 

and documentation to the coordination body while remaining blind to the ground truth. Study kits 

are distributed so that each kit returns to the coordination body before re-distribution to the next 

participant. The experimental design of both exercises aims for seven participants per kit (21 

participants per interlaboratory study) with a turnaround time of 3-4 weeks, for approximately 7-

8 months to complete all interlaboratory distributions. However, due to uncontrolled 

circumstances, several participants took longer to submit results, and some could not complete the 

exercise, so each interlaboratory study took approximately 11 months. A total of 252 examinations 

from 36 participants are reported from 20 and 18 participants in the first and second interlaboratory 

study, respectively, with five individuals participating in both studies. However, the experiments 

are designed to ensure that they receive different kits on each exercise to prevent bias. In the event 

of multiple participants from the same laboratory, instructions are provided to work independently 

and report individual answers.  

 

In the first interlaboratory study, participants are provided training material containing examples 

of the feature descriptions and an explanation of the ESS method. An optional virtual question-
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and-answer session is offered for any participant who requests additional assistance in 

understanding the methodology. In the sample kit, participants receive the seven pairs of tape in 

separate envelopes with labels. In addition, they receive physical and electronic versions of the 

study instructions and the reporting template. The electronic version has a page for each 

comparison, with cells for reporting the alignment of each bin, and an automated calculation for 

the ESS. The final page of the template contains a survey, including information on how long it 

took the participants to complete the kit, information on accreditation and proficiency testing in 

physical fits, and questions regarding the utility of the ESS method. An example of the instructions 

and reporting template is included in Appendix B.  

 

Following the completion of the first interlaboratory study and a meeting with participants to 

discuss the outcome of the exercise, a second interlaboratory study is developed to address some 

of the feedback provided in the first study. Among the most important modifications derived from 

these discussions are 1) the creation of more detailed documentation of the bin-by-bin observations 

of the edge features that lead to a decision, 2) inclusion of a metric for an inconclusive decision on 

a bin,, 3) addition of documentation of the comparison process before to the microscopic bin-by-

bin assessment, and 4) more comprehensive instructions and familiarization with the proposed 

method and reporting tools. 

  

In the second study, two training videos are prepared to describe the method and procedure for the 

interlaboratory study and guidance for reporting qualitative feature descriptors, the quantitative 

bin-by-bin scores, overall ESS, and the interpretation criteria. The training consists of two videos, 

each approximately 20-25 minutes. The training videos are included in Appendix C.  

 

The first video describes the foundation of the comparison method, including results collected 

from initial tests of the method on a sample set of around 3000 comparisons.8,9 In addition, this 

training video describes some of the feedback and lessons learned from the first interlaboratory 

study. The second video details the procedure for the exercise. It highlights the contents of the 

sample kit, explains the template and characterized features, and gives an example of how a tape 

edge can be compared and documented. This video is used in place of the Microsoft PowerPoint 

slides included in the first interlaboratory study, as it is hypothesized that a video with 

demonstrable steps and a live question-and-answer session will increase the understanding of the 

method and comparison features. All participants in the second interlaboratory study attend a 

training session where the two videos are shown followed by one-on-one discussion. The live 

sessions are offered for each participant at their own convenience and are available on-demand for 

reviewing the videos at any time after training. 

 

In addition, the reporting template is expanded to include a more thorough documentation of the 

physical fit examination process. The method is divided into three main steps. The first step is to 

observe and document the overall edge alignment and description of edge pattern morphology, the 
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second step is to examine and document alignment and feature occurrence at a macroscopic level, 

and the final step is to examine and document bin by bin the features and edge alignment at a 

microscopic level, estimate an ESS value, and report a conclusion. In the second and third steps, 

eight comparison features are documented using pre-defined options, and a score of 1 (fit), 0.5 

(inconclusive), or 0 (non-fit) is decided for each bin. An automated calculation then displays the 

ESS once the participant fills out the bin comparisons. Supported by previous research, the 

participants are instructed that low scores (under 20%) provided the most support for a non-fit 

conclusion, while high scores (80% or higher) support a fit conclusion. The updated instructions 

and template used in the second interlaboratory exercise is included in Appendix B. 

 

Other than these adjustments, the design of the interlaboratory study is consistent with the first – 

three sample kits containing seven pairs of tape that prior to distribution had been documented to 

share similar ESS and edge morphology characteristics. The same kit specimens are used for both 

interlaboratory exercises to determine if the modifications made to the method improve the 

participants' performance and decrease inter-participant variability. To minimize potential bias, 

the kits and samples are renamed, the order of the comparison pairs presented to a participant is 

randomly reorganized, and in cases when an individual or laboratory participated in the first study, 

a different kit is assigned in the second exercise. Performance rates and statistical analysis are 

performed in Microsoft Excel (Version 19.08), JMP Pro 16 (v.2021, SAS Institute Inc., NC), and 

open access R (version 4.2.2, R studio version 2022.07.2+576). 

 

3.4. Results 

3.4.1. Selection of samples and the consensus values prior to experiment 

The original pool of physical tape comparison pairs includes a variety of edge patterns typically 

observed in hand-torn separations. To select the optimal pairs to be used in the interlaboratory, the 

sample pairs are further divided into seven groups of three similar pairs each, to prepare three 

distribution kits. The grouping criteria is defined for each kit to contain seven pairs, three of which 

have scores representing a high-confidence fit (F+ ranging from 86% to 99%), one has ESS 

representing a more challenging fit (F-, ESS ranging from 70 to 77%), and three have ESS 

representing high-confidence non-fits (NF+, ESS ranging from 0 to 11%). Also, each of the three 

inter-kit pairs contains similar edge morphology while representing various edge patterns across 

the seven pairs. Comparison pairs not meeting this criterion are excluded from the sample pool set 

as a potential inter-laboratory kit item. 

 

After this preliminary selection process, a panel of four analysts independently examine the 

samples while maintaining no knowledge of the ground truth or anticipated scores. For this study, 

a consensus of ESS between panel members is defined as all answers being within a 10 ESS range.  

The annotations made by the panel members on a reporting template during their examinations are 

used to evaluate agreement in the decision process. The reporting templates allow for a more 

transparent discussion and review process when comparing panel members’ results to assess which 
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samples resulted in the highest consensus in their ESS results. Finally, the samples are assigned to 

the kits with the goal to keep the edge morphology and consensus ESS as close as possible and 

minimize the variability between kits. Table 3-1 presents the samples assigned to each kit. 

 

3.4.2. Performance rates of the first interlaboratory study 

The performance of the ESS method has been assessed based on the ground truth or consensus 

ESS compared to 1) the final overall conclusion the participants report for a given pair, and 2) the 

ESS reported by the participants [8, 9]. For the ESS criteria, an ESS value of 60% or higher is 

considered support for a fit, with scores higher than 80% demonstrating higher confidence in a fit. 

ESS values of 40% or lower support a non-fit opinion, with pairs with scores below 20% 

demonstrating the most support in a non-fit result. Inconclusive results occur when the ESS is 

between 40 to 60%, as in those instances there are substantial similarities and differences between 

the samples to prevent a decision of fit or non-fit. In this study, we refer to these category ranges 

as the ESS thresholds.  

 

Performance rates are calculated to evaluate the accuracy, sensitivity (true positive rate; TPR), 

specificity (true negative rate; TNR), false positive rate (FPR) and false negative rate (FNR) for 

each kit [8]. The performance of the method using the participant-reported conclusions are listed 

in Table 3-2. Initial analysis of the results demonstrated high overall accuracy for the method, 

ranging between 95 and 100%, with only a few samples reported as inconclusive, and none as false 

positive or false negative. Kits 1 and 2 include pairs reported as inconclusive by the participant for 

true fit samples (3 total pairs, 1 from Kit 1 and 2 from Kit 2).  

 

Table 3-2. Performance of the first interlaboratory study using the participant-reported conclusion 

of fit, non-fit, or inconclusive. Inconclusive conclusions are not included in sensitivity and 

specificity rates but are included in the overall accuracy calculation. (n=number of participants). 

Performance rates (%) 
Kit 1 

(n=7) 

Kit 2 

(n=6) 

Kit 3 

(n=7) 

Overall 

(n=20) 

Sensitivity 96 92 100 95 

Specificity 100 100 100 100 

False Positive Rate 0 0 0 0 

False Negative Rate 0 0 0 0 

Accuracy 98 95 100 97 

 

However, in this first study, some participants report conclusions that do not always correspond 

with their calculated ESS. For example, one true fit tape pair is reported as a fit with high 

confidence by a participant who gave an ESS of 38, while another participant reported a fit with 

low confidence for a pair while giving an ESS of 19. When evaluating the rationale for the 

discrepancy, several participants still used their own criteria in decision-making as they did not 

feel comfortable interpreting the ESS score. Correspondingly, the performance rates based on the 
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participant’s reported conclusion vary from those estimated from the reported ES score. Table 3-

3 reports the performance based on the ESS threshold. Utilizing the ESS approach, accuracy rates 

range between 90 and 100%, and the false negative rate of Kit 1 increases to 18%. In Kit 1, five 

pairs with ESS scores reported below 60% are considered false negatives despite being reported 

by the participant as a fit.  

 

Table 3-3. Performance of the first interlaboratory study based on the participant-reported ESS 

and using ESS thresholds to support a fit or non-fit.  

Performance rates (%) 
Kit 1 

(n=7) 

Kit 2 

(n=6) 

Kit 3 

(n=7) 

Overall 

(n=20) 

Sensitivity 82 92 100 94 

Specificity 100 100 100 100 

False Positive Rate 0 0 0 0 

False Negative Rate 18 8 0 6 

Accuracy 90 100 100 95 

 

After evaluating the data and participants’ feedback, the discrepancy between some of the 

participants’ reported ESS and their conclusion is considered to have originated from a 

misinterpretation of the use of the ESS, and a lack of formal training in the method. Interestingly, 

all the instances of discrepancy in score and conclusion originate with participants who did not 

participate in training, and so the second study includes some improvements to minimize this 

source of variance; a required training session for all participants and more clear instructions on 

how to report conclusions based on the ESS and not on the current criteria used at their agencies.  

 

3.4.3. Performance rates of the second interlaboratory study 

Two main adjustments are implemented in the second interlaboratory exercise based on the 

participants feedback and the data evaluation from the first study: 1) provide a more thorough one-

on-one training and requiring participants to complete it before the study, 2) update the 

methodology and reporting template to simulate typical casework workflow. 

 

Table 3-4 lists the main improvements that were implemented based on the first interlaboratory 

study. One of the main aspects that greatly facilitated the standardization and consistency of 

analysts’ conclusions is splitting the examination into three sequential steps, including one step for 

the general assessment of the comparison pair and two steps that require a more detailed 

examination and documentation to identify major features in relatively large regions of the tape 

(step 2) and in each bin (step 3).  

 

One of the aims of this upgraded process is to provide practitioners with standardized criteria and 

features for documenting their observations and thought processes. To that end, the reporting of 

the presence, absence, and effect in the decision of a fit or non-fit is documented on each 
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comparison region for eight relevant features. The terminology and criteria for each of these 

features are demonstrated in the instructions and training of the second exercise. The eight features 

that have been shown to influence a duct tape physical fit examination are: 1) Alignment of severed 

dimples on tape backing, 2) Calendaring striations across edge, 3) Macro alignment of warp scrim, 

4) Correspondence of protruding warp yarns and the respective pattern gaps in the other edge, 5) 

Continuation of scrim weave pattern, 6) Distortion explained by stretching directionality, 7) Weft 

scrim at or near edge consistent with the overall weft pattern, and 8) Missing material [9].  

 

Another improvement implemented from the participant’s feedback is the addition of an 

inconclusive option on each comparison bin. As a result, the updated template contains an auto-

populated cells that are coded with a value of 0 for a non-fit, 0.5 for inconclusive, and 1 for a fit. 

Moreover, we decided to boost the visual assessment of the fit examination by including a macro 

in the excel template that automatically colors each bin cell with green for a fit, red for a non-fit, 

and yellow for an inconclusive. Observers can then immediately identify the areas within the tape 

edges that have corresponding features. This feature also proved helpful during the comparison of 

the reported results across participants. Moving forward, this green-red-yellow visualization tool 

has the potential to facilitate peer-review and presentation of results in the courtroom. After the 

second interlaboratory test, another improvement that will be incorporated in the template is to 

conduct the examination of the questioned sample in step one, independently, and before observing 

and documenting the known sample, to further minimize potential bias. ISO/IEC 17025 and studies 

on contextual bias recommends that where possible, questioned samples should be examined 

before known samples to help reduce the influence of contextual bias, such as looking for features 

observed in the known in the questioned sample instead of focusing on finding differences [13-

17]. In the context of physical fit examinations, because samples must be compared side-by-side, 

this aspect is incorporated into step one, where each sample can be examined independently before 

comparison begins. 

 

Since physical fits depend on the analysts’ judgment, the risk of subjectivity and bias is inherent 

[14-16]. While some risk factors can be controlled by laboratory procedures (such as managing 

case information through linear sequential unmasking) [14], the proposed approach addresses 

many areas of potential bias specific to physical fit comparisons. For example, creating 

standardized methods and defined criteria can help ensure that practitioners consistently observe 

and interpret material-relevant features. Since the analyst documents specific criteria to assign a 

score to each bin independently, the decision is less likely to be influenced by previous bin 

observations. In addition, several laboratories have previously reported that they only perform 

verification on samples for which a fit is identified, leading to a potential bias that verifying 

practitioners are more likely to agree with the original decision [17]. The method evaluated here 

provides a path to facilitate blind verification by independent examiners that transparently 

document the criteria and judgment to arrive at a fit or non-fit conclusion. For instance, the initial 

examiner and the verifier can systematically document their thought process and provide a tangible 
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comparison of the rationale of their conclusions through the standardized reporting template and 

the respective qualitative features and quantitative scores. Implementing an independent 

examination and documentation system allows transparent documentation of agreement and 

discrepancy rates between examiners and can facilitate a mechanism for introducing verifications 

of various conclusion types and complexities (i.e., establish policies to verify fits, no-fits, and 

inconclusive conclusions). 

 

The findings show that the overall performance improves in the second interlaboratory with the 

adjustments made. Improved training and documentation in the templates have helped to provide 

more consistency between participants. In the new template, the additional standardized 

terminology and steps help to add transparency and make an independent review process more 

straightforward. In the second study, there are no discrepancies between the ESS and conclusions 

reported by participants. Only 1 comparison is a false negative, and there are no false positives. 

As such, the accuracy ranges between 98% to 100%, both for the ESS threshold approach and the 

conclusion reported by the participant (Table 3-5).  
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Table 3-4. Comparison of the evolution of improvements from the method and reporting templates used in the first and second 

interlaboratory study. 

Feature Interlaboratory #1 Reporting Template  Interlaboratory #2 Reporting Template 

Bin by bin comparisons Yes Yes 

Bin by bin score codes Yes, 1(fit), 0 (non-fit) Yes, added inconclusive option: 1(fit), 0 (non-fit), 

0.5 (inconclusive) 

Auto-populated estimation of ESS 

metric 

Yes Yes 

Color-coded visualization tools No Yes 

Overall comparison of edge 

qualifiers, drop-down 

Yes, including the following terminology: 

M+ = Match with high confidence 

M- = Match with low confidence 

INC = Inconclusive 

NM- = Non-match with low confidence  

NM+ = Non-match with high confidence  

 

Yes, adjusted to new terminology: 

F+: High confidence in Fit (I am confident that the 

sample edges are a physical fit based on the 

observed macroscopic features) 

F-: High confidence in Fit (I am confident that the 

sample edges are a physical fit based on the 

observed macroscopic features) 

IN: Inconclusive (I believe there are similarities and 

differences throughout the edges that do not let me 

support a decision of either fit or non-fit) 

NF-: Low confidence in Non-fit (I believe that 

generally the edges do not fit, but there are some 

areas of alignment or distortion that could be 

obscuring potential alignment)  

NF+: High confidence in Non-Fit (I am confident 

that the sample edges are not a physical fit based on 

the observed macroscopic features) 

Overall conclusion drop-down Yes,  

M = Match  

INC = Inconclusive  

NM= Non-match 

Yes, adjusted terminology 

F = Fit 

INC = Inconclusive  

NF= Non-fit 

Multistep examination and 

documentation 

No, single step. 

Subunit assessment of tape edges (Edge Similarity Score) 

Yes, three steps 

1) Overall alignment of tape edges 

2) Macroscopic assessment of tape edges 

3) Subunit assessment of tape edges (Edge 

Similarity Score) 

Documentation of features 

relevant for the decision process 

No, although the 8 features were explained in the 

instructions, they were not explicitly documented in the 

template 

Yes, documentation of 8 features included in steps 2 

(macro-assessment) and step 3 (bin-by-bin) 
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Table 3-5. Performance of the second interlaboratory study using the participant-reported 

conclusions and ESS values.  

Performance rates (%) 
Kit 4 

(n=7) 

Kit 5 

(n=6) 

Kit 6 

(n=5) 

Overall 

(n=18) 

Sensitivity 100 96 100 99 

Specificity 100 100 100 100 

False Positive Rate 0 0 0 0 

False Negative Rate 0 4 0 1 

Accuracy 100 98 100 99 

 

A reported accuracy of 100% does not mean that there is no variation in reported scores and bin 

areas across the participants. Rather, the variation lies within minor differences in interpretation 

of the tape edges features, representing less than 20% ESS variation between participants and not 

affecting the final report of the fit or non-fit as per the ground truth. Some variation of ESS between 

analysts is not unexpected, based on level of experience in physical fit examination, the material 

of interest, the sample morphology, and distortion level. Probabilistic interpretation has shown that 

values within +/- 20 ESS can still provide similar support for a conclusion [8, 9]. These findings 

further demonstrate that the proposed protocol aids in the standardization of the physical fit 

examination process.  

 

3.4.4. Comparison of results across both interlaboratory studies 

The distribution of scores across the sample pairs and kits are evaluated to compare the results of 

both interlaboratory studies. The pairs in the kits consist of three true non-fit pairs (labeled as NF), 

and four true fit pairs (labeled as F+). One of the true fit pairs has been specifically included as a 

more challenging comparison, with an expected score that is lower than the other true fit pairs 

(labeled as F-). All reported ESS values across both interlaboratory exercises can be seen in 

Appendix D. As seen in Figure 3-1, the boxplots representing the score distributions for all kits 

across both studies generally fall in the expected range. The first study shows that there was a 

much wider range of scores for both the F- and F+ pairs, and even some instances of false 

negatives. In addition, there are a few ESS that fall into the range of 40-60%, which are considered 

inconclusive. Meanwhile, the distribution of scores in the second interlaboratory study are less 

variable overall, and the fewer outliers were still within the expected thresholds. Only one false 

negative, and no inconclusive results or false positives are observed across all 126 examinations 

in the second exercise. 
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Figure 3-1. Boxplots showing distribution of scores for true non-fits (NF+), true fits (F+), and 

challenging true fit (F-) pairs for each of the sample kits. The thresholds for fits and non-fits have 

been set at 60% and 40% respectively. The variability of scores for the second interlaboratory 

study (ILS 2 – Kits 4 through 6) shows narrower quantiles and whiskers in comparison to ILS 1 

(Kits 1 through 3).  

 

In addition to the overall ESS distribution, the proximity of reported ESS for each participant is 

also evaluated according to statistical significance testing by analysis of variance with the 

Dunnett’s test at a 95% confidence interval. Using this test, about 74.3% (104 of 140 comparisons) 

of the reported ESS in the first study show no significant differences from the respective pre-

distribution consensus mean scores. The Dunnett’s control chart in Figure 3-2 shows the interval 

of reported scores for each ground-truth in comparison to the consensus mean. Participants who 

reported scores within the decision limits did not demonstrate significant differences against the 

consensus mean. Interestingly, most participants from the first interlaboratory exercise who report 

significantly different ESS scores from the consensus range opt out formal instructional training. 

Most of the variation among the eight participants that significantly differ from the consensus ESS 
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come from the participants that did not receive the in-person training. Four of those eight 

participants that have deviations from the consensus report results that do not correspond to a 

change in the expected conclusion. For example, reporting an ESS of 40 for a non-fit would be a 

bit higher than expected for the non-fit, but it does not preclude the sample from being rightfully 

considered a non-fit. As expected, the F- pairs shows more variation in ESS scores according to 

Dunnett’s due to the increase in the complexity of the comparison (Figure 3-2).  
 

 
 

Figure 3-2. Dunnett's control plot for the three ground truth difficulty sets (F+, F-, NF+) for the 

20 participants of the first study (ILS 1). The participant IDs are independent of the IDs used in 

ILS 2. The plots for the NF+ and F+ account for all samples with those respective categories (3 

samples each). While most participants fell within the decision limits, several participants reported 

scores outside the expected range.  
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There are ten instances where the participants of ILS 1 report an overall conclusion that is 

inconsistent with the reported ESS. Several of those are where participants report a fit with high 

confidence for a low ESS, but in one instance, a participant reports a non-fit for a pair that has a 

high ESS. This trend is likely a result of the participants following their own criteria for making 

decisions instead of using the ESS to support their overall conclusion. For example, there is one 

instance of a pair reported as a non-fit while having an ESS higher than 80. In that comparison, 

the participant notes “Overall there are no individualizing characteristics, therefore would not be 

considered a fracture match at our laboratory. The pattern is good with minor distortions but there 

are no specific areas that indicate that this fracture match is specific to this roll and this tear and 

that it couldn't be reproduced.” Finally, other participants note in the comments that the edges 

show distortion, such as one participant who notes “Overall shape of fractured edges appear to 

correspond (scrim areas 25-37) but because those areas were wrinkled and/or folded over on the 

acetate, it was difficult to accurately assess the features and make a conclusion. Those areas were 

graded as "0 non-match".” As such, in ILS 1, there is indication that some participants revert to 

criteria they use in their own laboratories’ method instead of concluding based on the ESS. To that 

end, the more thorough documentation and training implemented in ILS 2 addresses this deficit.  

  

In comparison, 81.7% (103 of 126) of the reported ESS in the second study show no significant 

differences from the pre-distribution consensus means. The Dunnett’s control chart in Figure 3-3 

shows the interval of reported scores for each ground-truth for ILS 2. Once again, the F- pairs 

shows more variation in ESS scores, but the extent of the variation is lower than in the first study. 

In addition, the F+ pairs demonstrate only two participants who are at the cusp of the lower the 

decision limit of the Dunnett control mean, and fewer outside the limits for both NF+ and the F- 

pairs. Converse to the results seen in the first study, all ESS assignments in the second ILS were 

paired with a consistent conclusion of fit or non-fit. This improved over the trends seen in the first 

study, where it is more common to see conclusions that do not correspond with the reported ESS. 

In other words, except for the false negative result, all instances outside of the decision limits in 

ILS 2 were close enough to not create a change in the decision qualifier (i.e., they correctly remain 

as F- (ESS >80), F- (ESS 60-80), or NF+ (ESS <20), based on the expected ESS threshold). Even 

for the false negative, the participant reported the overall conclusion as a non-fit. 
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Figure 3-3. Dunnett’s control plot for the three ground truth difficulties for the second 

interlaboratory study (ILS 2). The participant IDs are independent of the IDs used in ILS 1. As 

expected, there is more variance in the F- pair, however, the variation is not as extensive as in ILS 

1. In addition, fewer participants reported scores outside the expected range for all three categories.  

 

Dunnett’s test is helpful when using a reference value as the control group; in this case, we use the 

consensus ESS established by the expert panel in lieu of a “ground truth.” However, the consensus 

ESS is estimated from only four analysts that are already very familiar with the ESS method. A 

complementary metric to evaluate the inter-examiner agreement is using z-scores that consider the 

deviation from a participant from the study mean. Therefore, to further evaluate performance using 

reported ESS, z-scores are calculated for each comparison across the practitioners. Z-scores are a 

common method used for interlaboratory exercises, which describe the standardized deviation of 

an individual result from the mean value of the study. The study mean ESS and standard deviations 
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are calculated using all results from each respective ILS per sample, regardless of kit. Outliers are 

evaluated but not removed from the Z-score calculations, as analysis shows that while there are a 

few (3 or less) outliers in each ILS across all comparisons, removing the outliers from the study 

mean did not contribute to a substantial improvement in performance. Most importantly, 

maintaining all data points allows the identification of laboratories and samples that were outside 

expected study limits. 

 

In this context, an individual comparison is considered satisfactory if the absolute value of its 

corresponding z score is less than 2. The comparison is considered cautionary if the absolute value 

of the z score lies between 2 and 3 and insufficient if the absolute value of the z score is greater 

than 3 [11]. Figures 3-4 and 3-5 show the calculated z-scores for each sample in both 

interlaboratory exercises. Negative z-values indicate that the reported ESS was less than the study 

mean, while positive z-values indicate the reported ESS was higher than the mean. The z-values 

have been color-coded for visualization of which comparisons were considered satisfactory or too 

far outside the z-score interval. Values marked in yellow or red represent those that are cautionary 

(yellow) or insufficient (red).  

 

In the first interlaboratory exercise, 130 of 140 comparisons (93%) are considered satisfactory, 

while 8 (6%) are considered cautionary and 2 (1%) are insufficient. In the second exercise, out of 

the 126 comparisons, only 4 are considered cautionary (3%), 1 is insufficient (0.8%), and the rest 

are satisfactory (96%). The individual comparisons identified as outliers across both studies were 

marked either as warnings or unsatisfactory using this criterion. The few red and yellow flags for 

unsatisfactory or cautionary results are observed in non-fits as well as fits of different complexity 

(F- and F+), indicating that there are no trends for a given comparison type. In the first 

interlaboratory exercise, there is at least one participant who participated in the additional 

informational training who still has responses marked as cautionary, meaning that the difference 

in training between participants does not fully exclude the possibility of variances between 

participants. The same is true considering the second interlaboratory study, where all participants 

trained in the same way, still results in cautionary results as well, although there are fewer than 

ILS 1. All calculated Z-scores are available in Appendix D. 
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Figure 3-4. Z-scores of the reported ESS values for ILS 1 for each participant. The participant IDs are independent of the IDs used in 

ILS 2. The z-values have been color-coded for visualization. Green bars are considered satisfactory, yellow bars are considered 

cautionary, and red bars are considered insufficient (too far outside the confidence interval). Ground truth of the samples is as follows: 

Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample V (NF+), Sample VI (F+), and Sample VII (NF+).
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Figure 3-5. Z-scores of the reported ESS values for ILS 2 for each participant. The participant IDs are independent of the IDs used in 

ILS 1. The z-values have been color-coded for visualization. Green bars are considered satisfactory, yellow bars are considered 

cautionary, and red bars are considered insufficient (too far outside the confidence interval). Ground truth of the samples is as follows: 

Sample I (F+), Sample II (F-), Sample III (F+), Sample IV(NF+), Sample V (NF+), Sample VI (F+), and Sample VII (NF+).
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As explained before, the improvement in performance and reduced variation of ES scores from the 

first to second exercise is attributed to improved training and understanding of the ESS method in 

the second study, as well as more consistent documentation, interpretation, and application of the 

ESS value to support the participants’ opinion for a given pair. For the five repeat participants, 

good performance is consistent between four participants on the two exercises, while 

improvements are seen in one participant on the consistency of reported conclusions to ESS. This 

shows that the first interlaboratory feedback enhanced the introduction of the method to new 

participants and shows good progress toward future implementation procedures.  

 

3.4.5. Survey Results 

The final tab of the sample template incorporates a survey that evaluates each participant’s 

experience level in physical fits, the occurrence of duct tape physical fits in their laboratory, and 

their overall opinion on the application of the duct tape ESS methodology. 

 

Overall, the 36 survey responses across both studies show that all participants work at accredited 

forensic laboratories. Only two participants across both studies report not having completed 

proficiency testing in either duct tape or physical (fracture) matches. One participant reports 

having no casework experience with physical fit examinations, and four report having physical fit 

experience in other materials besides duct tape. The majority state having at least 1-10 cases 

involving physical fits of tapes, with six participants indicating they have had more than 20 cases. 

As such, this study benefits from participants that are familiar with physical fit examination prior 

to introduction to the ESS method, and therefore the participants provide substantial feedback.  

 

In the first study, 94% of participants note that analysis of the sample kit took more than 90 

minutes. In the second, the modified question asks how many hours it took the participants to 

complete the kits. The average during the second study was 15 hours to complete the 7 comparison 

pairs in the set, with at least four participants reporting 24 hours or longer for completion (Figure 

3-6). While this may seem high, many participants also state that a typical physical fit examination 

takes them at least one to three days, and some report spending a week on a typical exam. This 

timeframe seems reasonable for the completion of seven pairs, as unlike standard physical fit 

examinations, the samples in this set were already prepared, and participants were not required to 

document the overall physical characteristics and image the samples, unlike standard practice in 

casework.  
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Figure 3-6. Distribution of responses to the second ILS survey questions. Figure 3-6A (left) shows 

that most respondents typically spend 1-3 days on a typical physical fit examination. Figure 3-6B 

(right) shows that most participants spent between 5-20 hours on the sample kit.  

 

In the first study, approximately half of the participants indicate they did not find the approach 

helpful. Based on the feedback provided, this is due to several reasons. Those that do not find the 

method useful tended to report that it was due to 1) concerns about areas that had indicated both 

fit and non-fit, and how there was not an option to report inconclusive, 2) that they rely more on 

overall observation or macroscopic assessments when making decisions, 3) that they feel that the 

ESS could be misleading if it doesn’t indicate a 100% fit or a 0% non-fit, and/or 4) laboratory 

specific policies that differ from what this method requests. Specific feedback is listed in 

Appendix E. For the first two areas of concern, we incorporate and address this feedback in the 

second exercise by adding the option to report bins as inconclusive (0.5), as well as introduce the 

three-step methodology that follows an overall, macroscopic, and then microscopic comparison 

process. As for the concern over the ESS being misleading, previous studies have shown that not 

all pairs have the same degree of similarity, even if they are true fits.9 This is particularly true when 

the samples have been stretched or damaged. A critical goal of this method is to provide analysts 

with the means to transparently document the features and criteria they use to make decisions. 

Finally, regarding conflicting laboratory practices, one of the key motivations for the development 

of the ESS method is that there is currently no consensus-based method for physical fit 

comparisons of any material in forensic trace evidence. As a result, there is no consensus for what 

should be considered an individualizing feature, or when a tape pair should undergo more 

analytical evaluation. This is what the ESS method is proposed to help address with further 

research and feedback from current practitioners.  

 

To help address these areas of feedback, the second study incorporates more thorough 

documentation, and more standardized training to address. The main improvements include 

incorporating the 3-step methodology, specific feature documentation at the macroscopic and 

microscopic level, the ability to report inconclusive bins, and ensuring all participants of the 
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second study attended a virtual training with the authors. The training ensures that all participants 

have the method explained in a clear and transparent manner and can clarify any questions they 

have before they start comparisons. As a result, 11 out of 18 participants (61%) in the second 

exercise report that the ESS method was useful for documenting their thought process for a 

physical fit examination. Of the seven who disagreed, few state why they felt the method is not 

helpful. The main observation made is that while the macroscopic assessment is helpful, going all 

the way to do the microscopic ESS documentation becomes too rigid, and the overall assessment 

becomes lost in the detailed documentation process. Another participant notes that they feel the 

template has too much detail and causes the most critical features to be misplaced. Specific 

feedback from the second interlaboratory studies is available in the Appendix E. Despite these 

concerns, the results from the study indicate that the microscopic ESS assessment leads to inter-

examiner agreement and more tangible support of the initial macro-assessment. 

 

On the other hand, the value of the ESS method for training and technical review is seen favorably 

by most participants across both studies. One of the critical aspects of this method is to provide 

practitioners with a metric and visual representation of the similarity or differences between the 

compared samples. As such, two practitioners can independently complete their examination of a 

pair of samples, and quickly compare results to determine if there are discrepancies. An example 

application of inter-examiner comparisons is shown in Figure 3-7 for one of the more challenging 

F- pairs, with several examples of participants’ opinions on the same tape pair. Although there are 

slight variations in reported values in the scrim bins, the overall ESS value and the documentation 

of the areas of distortion are consistent. As represented by the color-coded bins in yellow 

(inconclusive) or red (non-fit), most of the participants report lower scores on bins 25 to 35, where 

tape distortions are present (see Figure 3-7 insert images)  
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Figure 3-7. Example of application of documentation template to a duct tape physical fit 

examination for the pair F- of Kit 1. The participants in this example have slightly different 

reported ESS, but the overall conclusion of fit is consistent, and most of the participants report the 

area of distortion consistently.  

 

Moreover, when looking at their reporting templates, it becomes evident that the reasons for the 

lower confidence in the yellow areas are caused by feature distortion, such as the reported 

misalignment of warp fibers, correspondence of protruding warp fibers, and the respective gaps 

across the edges, and particularly stretching observed but explained by the distortion of the edge. 

This is particularly critical considering that all participants from the second study report that their 

laboratory completes verification on 100% of duct tape physical fits. According to a larger survey 

conducting regarding physical fits across forensic laboratories, most laboratories only complete 

verification on samples reported as fits, but others perform verification on all pairs [17]. In the 

same survey, no participant reported any discrepancy during verification of physical fit cases in 

the last five years (Figure 3-8). This is problematic as it can introduce bias by creating general 

expectations of agreeing with peers. All participants report that in a case of discrepancy, a 

discussion will be held between the original analyst and the verifying analyst to determine where 

the discrepancy lies. To facilitate blind verification, this method endorses systematic 

documentation by an independent examiner, and for the first time, provides a transparent and 
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quantifiable way of comparing the results of two or more examiners in a way that thoroughly 

demonstrates the thought process and observations made by each examiner. These tools and 

evaluation mechanisms can motivate managers to implement verification processes that are not 

limited to “fit decisions” and can lead to monitoring performance trends. 

 

 
Figure 3-8. Distribution of responses to the second ILS survey questions. Figure 3-8A (left) shows 

that distribution of the number of duct tape physical fit cases reported to have undergone 

verification in the last five years. Figure 3-8B (right) shows that no participants reported any 

instances of a discrepancy during verification. One participant was not currently performing 

casework, and so was unsure.  

 

The survey reveals some concerns expressed about the implementation of the ESS method which 

can be addressed as more training and interlaboratory collaborations are conducted. One of the 

most common comments across the two studies is that some participants feel that ESS has the 

potential to misinform juries and attorneys if it is not a 100% fit. However, the ESS method is not 

intended to be the only decision criteria for physical fit examinations. It is intended to support and 

inform the participant’s opinion. Not every fit between samples in casework holds the same 

probative value, and since a 100% perfect fit is not always possible, it is important to maintain that 

transparency. Like other disciplines, the trier of fact does not necessarily expect a 100% certainty; 

what is important is to be able to express what a given quality of a fit means based on the scientific 

foundations and error rates reported in the literature for the assessment of the proposed methods. 

One possibility to alleviate those concerns is to provide more training and develop consensus-

based standards about how to communicate the results to the jury. 

 

3.5. Conclusions 

This study compares results from two interlaboratory studies to evaluate the performance of the 

proposed method for the examination, documentation, and interpretation of duct tape physical fits. 

Thirty-eight (38) participants across 23 laboratories examined the sample kits, resulting in 266 

total examinations. The overall accuracies are high (90-100%) and inter-participant agreement is 
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generally high, with most reporting ESS scores falling within a 95% confidence interval of the 

mean consensus values or the inter-participant means (study means). The inter-participant 

agreement and accuracy improved from the first to the second study based on the practitioners’ 

feedback, accounting for the improvements made to training and documentation of the 

examination process. Several participants in the initial study provided qualifiers that are 

unreasonable for the respective ESS ranges, which is addressed in the second study, leading to 

more consistent reports of ESS. 

 

When looking at performance rates based on conclusions and ESS thresholds, discrepancies 

observed between some participant’s conclusion and ESS were resolved in the second trial, 

displaying an improvement in accuracy from 95 to 100% across all three kits, for the first and 

second study, respectively.  

 

When using z-score criteria, in the first study, only 10 out of 140 total comparisons across the 20 

participants are outside the expected range according to z-score comparisons. Conversely, only 5 

out of 126 total comparisons across the 18 participants of the second study are outside the expected 

range of consensus ESS means, and only one is considered unsatisfactory.  

 

Overall, the two ILS demonstrate that the proposed ESS method provides support to participant 

conclusions, demonstrates scientific reliability with low error rates and high accuracies, and offers 

analysts systematic and transparent documentation criteria. This method provides a quantitative 

value representing the quality of a fit, and the interlaboratory studies have allowed for an 

estimation of inter-participant error rates. Moreover, the design of standard terminology and 

reporting of relevant features in a systematic template provides valuable means to harmonize 

practice. Participants generally agree that the method has the potential to facilitate systematic and 

transparent peer review and training. The feedback incorporated across both studies has led to 

improvements in documentation templates, training, and communication of the method that is 

anticipated to assist with future implementation into casework. Additional work in this area will 

continue to address the concerns and feedback provided by practitioners in physical fit 

examination, with the goal of continuing to improve and expand the application, communication, 

and interpretation of the ESS method on duct tapes and other materials.  

 

In summary, the lessons learned in the studies serve as important benchmarks to provide criteria 

that assist with standardization and transparency of the examination and interpretation, and a 

mechanism to demonstrate the thought process during training, examination, technical review or 

verification of physical fits. These findings are anticipated to offer a path forward to the forensic 

examination of physical fits and facilitate incorporation into current guidelines. The proposed 

method aligns with ongoing standard guides being developed in the field for the examination of 

physical fits and is anticipated to easily adapt to current workflows. 
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Appendix 3-A 

 
 

Figure 3A-1. Images of each Sample 1 pair from the three analysis kits used in ILS 1 and 2. Sample 1 in ILS 1 was labeled as Sample 

3 in ILS 2. The ground truth of this sample pair was a true fit, intended to have high confidence.  
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Figure 3A-2. Images of each Sample 2 pair from the three analysis kits used in ILS 1 and 2. Sample 2 in ILS 1 was labeled as Sample 

7 in ILS 2. The ground truth of this sample pair was a true fit, intended to have low confidence, meaning it was expected to have lower 

reported ESS.  
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Figure 3A-3. Images of each Sample 3 pair from the three analysis kits used in ILS 1 and 2. Sample 3 in ILS 1 was labeled as Sample 

2 in ILS 2. The ground truth of this sample pair was a true fit, intended to have high confidence.  
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Figure 3A-4. Images of each Sample 4 pair from the three analysis kits used in ILS 1 and 2. Sample 4 in ILS 1 was labeled as Sample 

1 in ILS 2. The ground truth of this sample pair was a true non-fit, intended to have high confidence.  
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Figure 3A-5. Images of each Sample 5 pair from the three analysis kits used in ILS 1 and 2. Sample 5 in ILS 1 was labeled as Sample 

4 in ILS 2. The ground truth of this sample pair was a true non-fit, intended to have high confidence.  
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Figure 3A-6. Images of each Sample 6 pair from the three analysis kits used in ILS 1 and 2. Sample 6 in ILS 1 was labeled as Sample 

5 in ILS 2. The ground truth of this sample pair was a true fit, intended to have high confidence.  

 

 

 



109 

 

 
 

Figure 3A-7. Images of each Sample 7 pair from the three analysis kits used in ILS 1 and 2. Sample 7 in ILS 1 was labeled as Sample 

6 in ILS 2. The ground truth of this sample pair was a true non-fit, intended to have high confidence.  



110 

 

Appendix 3-B  

 

The following object links to a spreadsheet containing the instructions, templates, and surveys for 

both interlaboratory exercises (ILS1 and ILS2).  

 

ILS_Instructions_Tem

plates_Surveys.xlsx  
 

Appendix 3-C 

 

The following two links are the two training videos utilized in the second interlaboratory exercise 

(ILS 2). The first (Part 1) covers the foundation of the research on duct tape physical fits, as well 

as describing the results of the first interlaboratory exercise (ILS 1), while the second video (Part 

2) explains the protocol and documentation template for the second interlaboratory exercise (ILS 

2).  

 

Part 1. Introduction to Physical Fit Research (WVU) 

 

Part 2. WVU Round Robin 2 Protocol Video 

 

 

https://drive.google.com/file/d/1oSWiVWidPJAw3pnsOcWkK5Avk6J8NpuR/view?usp=share_linkv
https://drive.google.com/file/d/1vjHqPtpfZPxA_NpXEPh0J6abU0eIneCi/view?usp=share_link
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Appendix 3-D  

Table 3D-1. This table demonstrates all reported ESS values for each participant across the 

interlaboratory studies. The ID of each participant is listed, which kit they completed, and what 

the reported ESS was for each comparison they completed.  
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Table 3D-2. This table demonstrates all calculated Z-scores for each participant across the two 

interlaboratory studies. The ID of each participant is listed, which kit they completed, and what 

their respective Z-score was for a given comparison. Z-scores are calculated using the results of 

each laboratory exercise independently.  
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Appendix 3-E  

Table 3E-1. Results of question seven of ILS 1 survey. Question was: Did you find the edge similarity score (ESS) approach easy to follow for duct tape end 

comparisons? The participant’s response to the question, along with any comments they left, are shown below. 

Participant Answer Comments 

ILS-01 Difficult 
I found myself consistently losing count of the scrim areas and having to go back to the top edge and count again to figure out where I was. I also found it difficult to count 

the scrim areas when looking at the backing side of the tape (even when using transmitted light). 

ILS-02 Easy No Comment 

ILS-03 Easy No Comment 

ILS-04 Easy No Comment 

ILS-05 Easy No Comment 

ILS-06 Average 
I think that using 1 for significant correspondence of features, 0 for featureless correspondence in an area, and -1 for significant differences in an area would be more in line 

with how an evaluation is really done. 

ILS-07 Easy Some edges were featureless and could be considered inconclusive but that selection was not available. Featureless edges were scored as a match. 

ILS-08 Easy 
I wish there was a sliding scale to align a number with each scrim area. I would turn to fill out paper and get lost midway down the tape and forget which area number I had 

done, so a lot of recounting. This opens an opportunity for error.  

ILS-09 Difficult 
there were several times that the edges of a scrim area could be made to align but only if you ignored the fact that the area directly above or below was VERY misaligned. I 
wasn't sure how to score that. There were also times that the weft yarn ends didn't align and it was hard to figure out if that should apply to the scrim area above or below 

the yarns, or to both. 

ILS-10 Easy 
Under the current system, with every area getting a score regardless, it generates an arbitrary number that could be misleading. If the tape is determined to be a physical 

match or not, the number generated should not give the impression that there is less than certainty of the result, either positive or negative.  

ILS-11 Average No Comment 

ILS-12 Easy No Comment 

ILS-13 Average 
It was more time consuming than difficult; especially when trying to keep track of the # for the scrim area that was being compared. If it were my own case I would have 

written on the acetate. 

ILS-14 Average 

The basic idea is easy to follow but did struggle trying to keep the edges lined up and counting down the areas. It would have been a little easier if both pieces of tape had 

been on the same acetate/been able to manipulate them some like in a real case. Difficult to view calendaring and dimple marks when using transmitted light so still had to 
flip back and forth, having to realign the tape and count areas again took longer.  

ILS-15 Average 
It was hard at times to flip the duct tape over and make sure I was looking at the same area on both backing and adhesive sides. It also took a lot more time than a typical 

examination. 

ILS-16 Easy No Comment 

ILS-17 Very Easy 
I think that scoring each of the 37 edge areas was a systematic manner of comparing each tape set. Caused me to slow down and really inspect each you the smallest of 

details. I also liked making notes of the striae that appear on the backing relative to each of the 37 areas. Demonstrates how much you saw and where. 

ILS-18 Difficult 

The layout of the ESS seemed to black/white in making a determination. In our laboratory we look at the overall characteristics but in order to form an opinion we are 

looking for the presence of individualizing characteristics. An overall pattern could be present but if there no individualizing characteristics are present then a physical 

match cannot be called and the sample will proceed to full manufacturing characteristic comparison. 

ILS-19 Average 
There were often several features on these samples that would lead me to conclude a PM; a few individual characteristics were "enough" to call a PM on these samples. I 

did not think the ESS score greatly influenced my decision. 

ILS-21 Difficult 
I struggled with it - I take an approach of big picture and then go smaller. It was hard to not be biased when I had seen that the samples didn't align with the contour of the 

tear. 
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Table 3E-2. Results of question eight of ILS 1 survey. Question was: Did you find the edge similarity score metric useful to inform/support your opinion? The 

participant’s response to the question, along with any comments they left, are shown below. 

Participant Answer Comments 

ILS-01 Not Useful 

Ideally, I would first examine each scrim area to generate an edge similarity score. Then the combination of my observations and the ESS would lead me to a conclusion. 

However, I couldn't help myself from making an initial conclusion about the physical fit almost as soon as I saw the tape. Once I had it in my head that a physical fit 

existed or didn't exist, I was basically only looking at the scrim areas to confirm my existing opinion. I felt like my exam of the scrim areas was biased because I had 
already jumped to a physical fit conclusion before calculating the ESS. This may be because I am an experienced physical fit/tape examiner. In my opinion, this method 

could be extremely useful when training a new examiner, to boost their confidence in their opinion before they gain the experience necessary to make physical fit calls 

independently. 

ILS-02 Not Useful 
This is a good way to document what is observed by the examiner for the review process, I don't feel the score would be anything that would push my opinion one way or 

the other. A physical fit exam is wholistic and the conclusion is based upon all of the data. I think it is dangerous to rely on a value that can be used to separate a match 

from a non-match. Also, we verify all PM exams by a second scientist.  

ILS-03 Useful No Comment 

ILS-04 Not Useful 
I understand that stats are more beneficial with more points of comparison; however, I observed that the features I used to associate or discriminate were present over 4-6 
areas rather than each area individually. Therefore, this approach would make more sense to me if the evaluation was binned every 5 segments rather than as 37 individual 

segments. 

ILS-05 Useful 

Somewhat useful. I found that I had an opinion already before I evaluated each scrim area, and looking at the scrim areas individually affected my certainty (made me less 

certain). Having an ESS that highly corresponded with my initial overall opinion would ultimately support that opinion. For those ESSs that weren't on the extreme ends 
(near 1 or 0), I was less certain. In casework with dirty samples, I would be concerned the ESS metric might make my overall opinion less supported and I may be inclined 

to report more inconclusives. 

ILS-06 Not Useful No Comment 

ILS-07 Useful No Comment 

ILS-08 Useful 
Yes, so long as there is context. Does there have to be a number below which you should conclude a non-match or inconclusive? Is there a particular number or percentage 

of corresponding areas that must align to support the match?  

ILS-09 Not Useful 
would have been more helpful to have an inconclusive option as opposed to just match/non-match. For example, when both edges are both so distorted that you can't even 

see an edge to see if it matches or not. Or for edges that are roughly linear- they technically "match" but don't have any unique features that I would use in casework to 

determine a physical match. 

ILS-10 Not Useful 
Under the current system, with every area getting a score regardless, it generates an arbitrary number that could be misleading. If the tape is determined to be a physical 

match or not, the number generated should not give the impression that there is less than certainty of the result, either positive or negative.  

ILS-11 Useful No Comment 

ILS-12 Useful No Comment 

ILS-13 Very useful 
Yes and no. There were some samples where the overall shape appeared to match but the individual characteristics of the edges did not fit neatly back together. Therefore, 

the score metric might appear to detract from the decision to call it a match. 

ILS-14 Not Useful It could be a valuable tool for court purposes, but I find our current method of documenting the overall fracture contour and individualizing characteristics to be sufficient.  

ILS-15 Not Useful 
Not really useful for informing my opinion because before using the edge similarity score, I could already see whether they matched or not. It could potentially support an 

opinion if the numbers correlate, but typically in court an image would probably demonstrate a match / non match better. 

ILS-16 Useful No Comment 

ILS-17 Useful No Comment 

ILS-18 Not Useful Needs to be more specific as to if samples have non-individualizing characteristics and therefore no opinion can be rendered in that area. 

ILS-19 Not Useful The Similarity score metric I don't think would greatly influence my overall conclusion, given all the details documented in the sample. 

ILS-21 Not Useful 
I don't think it was useful for my decision, but I can see how it might be useful to support it when there is a newer scientist. My other concern would be that there isn't room 

for explainable differences - in the edges that are stretched and don't align, the stretching can explain why it doesn't match there.  
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Table 3E-3. Results of question nine of ILS 1 survey. Question was: If you were to implement the ESS approach in your examinations, would you find the report 

templates for the score metric useful for a peer-review process? The participant’s response to the question, along with any comments they left, are shown below. 

Participant Answer Comments 

ILS-01 Very Useful All the templates were very well designed and easy to use. 

ILS-02 Useful No Comment 

ILS-03 Useful No Comment 

ILS-04 Useful No Comment 

ILS-05 Very Useful No Comment 

ILS-06 Not Useful 

This approach is useful in validated physical matches in tape. But it is limited because it can only be used on certain types of tapes. Not all tapes have scrim patterns 

and not all duct tapes have horizontal scrim threads. Since this practice cannot be universally applied to physical matching of tapes, it is of limited use in actual 

casework.  

ILS-07 Useful No Comment 

ILS-08 Useful 
Maybe? Verifications are performed in my lab of all positive and probative physical fits. So would need to consider if the verifier would also need to complete one of 

these. The verification is done by looking at the original evidence, so the verifier could see different characteristics and put different weight on them than original 

examiner. I think it would help support but would not eliminate the need of photographs and would only add to the documentation requirements.  

ILS-09 Not Useful 
Would have been more helpful to have an inconclusive option as opposed to just match/non-match. For example, when both edges are both so distorted that you can't 

even see an edge to see if it matches or not. Or for edges that are roughly linear- they technically "match" but don't have any unique features that I would use in 

casework to determine a physical match. 

ILS-10 Very Useful No Comment 

ILS-11 Useful No Comment 

ILS-12 Not Useful No Comment 

ILS-13 Useful Our laboratory conducts verifications (blind whenever possibly) of every physical match case, so it could be a useful tool during this step. 

ILS-14 Useful No Comment 

ILS-15 Useful No Comment 

ILS-16 Useful No Comment 

ILS-17 Very Useful 
Especially if one were to go back, as a reviewer, the re-check by looking at the same samples yourself vs images or drawings. Images can only show so much but this 

sheet would pint me to the critical features and simplify a review. 

ILS-18 Useful With certain modifications to indicate areas that are generally non-individualizing the implementation could be useful in review and in court. 

ILS-19 Useful The report template was easy to follow. 

ILS-21 Very Useful No Comment 
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Table 3E-4. Results of question twelve of ILS 2 survey. Question was: Did you find the edge similarity score (ESS) approach easy to follow for duct tape end 

comparisons? The participant’s response to the question, along with any comments they left, are shown below. 

Participant Answer Comments 

ILS_001  Agree Found it challenging to score for distorted areas that overall fit but had to score as .5 since edges did not align. However, did not seem accurate to score as 0. 

ILS_002  Somewhat disagree No Comment 

ILS_004  Somewhat Agree No Comment 

ILS_005  Somewhat Agree No Comment 

ILS_006  Agree 
As long as you know you have the entire fractured ends from both sides of the tape this process could be useful. The ESS could give false numbers if section(s) 

of the fractured edges are missing. 

ILS_008  Somewhat Agree No Comment 

ILS_009  Somewhat Agree No Comment 

ILS_011  Agree No Comment 

ILS_012  Agree I would have liked a NA response in some cases 

ILS_013  Somewhat Agree 
It was easy to determine the result from the edge similarity score, however the process of analyzing each individual scrim made the determination more time-

consuming. 

ILS_014  Somewhat Agree No Comment 

ILS_015  Agree No Comment 

ILS_016  Somewhat Agree It's easy to follow but can be very difficult to keep track of where you are, especially with the inner most sections. 

ILS_019  Somewhat Agree 
It is difficult to get my brain to wrap around treating each scrim bin as its own physical fit with its own characteristics. During training, we are taught that it is 

the totality of the edge features that allows one to determine a physical fit or not. So it was hard to let that go. 

ILS_020  Somewhat Agree It was generally easy to follow however a lot of what it asked seemed to be redundant information with the samples we had 

ILS_024  Agree No Comment 
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Table 3E-5. Results of question thirteen of ILS 2 survey. Question was: Did you find the edge similarity score metric steps useful to document your thought process 

in a systematic manner that would be easy to describe to other examiners? The participant’s response to the question, along with any comments they left, are shown 

below. 

Participant Answer Comments 

ILS_001 Agree 
Generally, agree. Video somewhat helpful to understand what's being asked for each feature, however the one example shown was straightforward. Suggest 

including more explanations of what is meant by each feature (column) and each option (drop-down) for several scrim areas. 

ILS_002 Completely Disagree I would agree document my thought process after lawyers agree to document theirs 

ILS_004 Somewhat Agree 
I found the macroscopic level useful, to make sure all aspects of the duct tape were considered, and to somewhat break it down. When I broke it down to the scrim 

level, however, I felt that I was questioning myself too much with the extreme detail and that I was losing the "overall picture" 

ILS_005 Somewhat Agree No Comment 

ILS_006 Somewhat Agree The ESS number could indicate the likelihood of fracture match no hard conclusions could be made from that number 

ILS_008 Somewhat disagree 

I initially thought this would be a useful evaluation tool for me (after the 1st study and as the instructions were presented). But I found that in practiced it is too 

granular. I can see the benefit of the macro assessment where the width is segmented into sections; however, I found the further delineation to be too prescriptive 

as I was evaluating the overall area for distortion or concordance of multiple features (warp, weft, backing) that existed over a larger area than the distance 
between two warp yarns. 

ILS_009 Somewhat Agree No Comment 

ILS_011 Somewhat Agree No Comment 

ILS_012 
Neither agree nor 

disagree 
I think there is a lot of room to interpret some of the characteristics. i.e. how much stretching is needed to mark stretching is present. 

ILS_013 Agree From the edge similarity score approach, it is easy to identify in exactly which scrim there is differences, which can make it easier to allow others to review. 

ILS_014 Agree No Comment 

ILS_015 Agree No Comment 

ILS_016 
Neither agree nor 

disagree 

It would be useful to document the thought process used when using this method, but this would likely have differences from the thought process I would typically 

be using. I also feel like sometimes you can get too "zoomed in" and areas that are truly a match have too much distortion on a microscopic level. Also, in a 

typical case currently, we would be removing adhesive at the ends to ensure all warp yarns line up as you can't really see all the ends with the adhesive still there. 

ILS_019 Somewhat Agree 
It is a different way of approaching a PF examination that takes some time to adjust to. I think it is relatively easy to explain, but maybe not so easy to put into 

practice. 

ILS_020 Disagree 
The is not the process that I normally take when approaching a physical fit, yes, I do a macro and then see if there are any features that traverse both edges but 

rarely do I look at each individual part and evaluate that for a fit or not 

ILS_024 Somewhat Agree No Comment 
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Table 3E-6. Results of question fourteen of ILS 2 survey. Question was: If you were to implement the ESS approach in your examinations, would you find the 

report templates for the score metric useful for a peer-review process or as a training tool? The participant’s response to the question, along with any comments 

they left, are shown below. 

Participant Answer Comments 

ILS_001  Somewhat Agree 
Due to distortion, two of the tape comparisons scored in between fit and non-fit. However, based on the totality of the correspondences, I felt confident to call 

them fits. These discrepancies between the ESS and my determination are why I'm responding this way, as then the final opinion is still subjective. And the ESS 

approach is less useful in these circumstances. 

ILS_002  Disagree No Comment 

ILS_004  Somewhat Agree I think the macroscopic level was useful, both for review and for training. 

ILS_005 
 Neither agree nor 

disagree 
No Comment 

ILS_006  Somewhat Agree 

I would probably not implement this approach due to it only being applicable for use with duct tape. I would look into implementing a model that could be used 

for facture matches with various substates. As for a training tool, this could be useful for a beginner of fracture matches. I don't believe it would be useful in a peer 

review process. The number is based on the initial examiners findings which is what the peer review is checking, not a number based off of those findings. 

ILS_008 
 Neither agree nor 

disagree 
No Comment 

ILS_009 
 Neither agree nor 

disagree 
No Comment 

ILS_011  Agree No Comment 

ILS_012  Disagree 

Too difficult to follow in the report templates. I think that using the numbering system is valuable to point out the specific area features are located. However, the 

key features are lost in the table of data. I would prefer a table that assumes consistent unless noted for a match and assumes not consistent unless noted for a non-
match. Only include areas of significance in table and remove all other data. 

ILS_013  Agree 
I would find it useful as a peer-review process, since you can easily identify the areas with discrepancies, as well as for a training tool, since it can show trainees 

what examiners look for when performing physical fit comparisons for duct tapes. 

ILS_014  Somewhat Agree Somewhat agree with both applications. 

ILS_015  Completely agree No Comment 

ILS_016  Agree 
Yes, the templates are good for the ESS approach. I do think that some categories for the microscopic subunit section are not necessary - like continuation of scrim 

weave pattern and weft scrim at or near edge. Those can just be run through once in section 2 and should not change. 

ILS_019  Agree 
The report templates were very easy to follow - only suggestion would be to clarify that Parts 1 and 2 can be done with a stereoscope (I originally thought they 

both had to be done visually only).  

ILS_020  Disagree No Comment 

ILS_024  Somewhat Agree No Comment 
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Table 3E-7. Results of question fifteen of ILS 2 survey. Question was: With those considerations, do you think the ESS step can be used to support your opinion 

by providing additional comparative data and systematic criteria? The participant’s response to the question, along with any comments they left, are shown below. 

Participant Answer Comments 

ILS_001 Agree No Comment 

ILS_002 Disagree No Comment 

ILS_004 Somewhat disagree 
Again, I think the macroscopic assessment was useful, but the ESS was too minute as to make myself question my results more. I think finding significant, unique 
points of comparison is more useful. Also, if you had a duct tape that had a perfect match on half of it, and the other half was missing, the ESS score would not be 

an accurate reflection of the fact that the tapes are a match. 

ILS_005 Somewhat Agree No Comment 

ILS_006 Disagree no, based on the notes above the ESS number is only "valid" if it supports your conclusion. 

ILS_008 Somewhat disagree I think the macro segments approach has greater utility than the ESS approach. 

ILS_009 Somewhat Agree No Comment 

ILS_011 Agree No Comment 

ILS_012 Agree I would never include the number in a report, but I would use it in my notes to reflect the areas with similarities and differences 

ILS_013 Agree I do think this method could help when there is confusion or uncertainty on what result to report, since it has a specified range for each result. 

ILS_014 Somewhat Agree No Comment 

ILS_015 Agree No Comment 

ILS_016 Somewhat Agree 

It is possible it could be used to support my opinion, but my concern is that I might have too many non-matching or inconclusive areas in some fracture matches in 

which I am confident of a fit. Sometimes when there is too much distortion, no conclusion can be made about each individual area, when in fact they do fit as a 

whole. 

ILS_019 
Neither agree nor 

disagree 

Even if this information isn't included in the report, the notes are still discoverable. Although there is all sorts of other documentation gathered during a PF 
examination, I'm worried that there is a real chance that a jury or defense attorney will misinterpret the ESS score as a type of confidence score (e.g., "they said it 

was a physical fit but the ESS is only 82%!") - particularly during closing arguments when we aren't there to clarify [hair analysis has previously fallen victim to 
this and has been called "junk science" because of it]. 

ILS_020 Disagree No Comment 

ILS_024 Somewhat Agree No Comment 
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Chapter 4: Experimental results on data analysis algorithms for extracting and 

interpreting edge feature data for duct tape and textile physical fit examinations 

4.1. Overview 

This study proposes various computer-based methods to support the analyst’s decisions in physical 

fit examinations of duct tapes and textiles. First, the study evaluates the error rates associated with 

complex case situations that simulate the recovery of partial samples. Experimental thresholds of 

minimum sample size are estimated as a function of relative missing portions of the textile or 

tape’s width on the comparison edges. Second, a machine learning algorithm extracts and assesses 

the importance of edge feature information from analysts’ reporting templates. Then, a decision 

tree model is presented to add objectivity to the analysts' conclusions.  

 

The duct tape dataset includes 1098 pairs originating from low and high-quality rolls. The samples 

are either hand-torn or scissor-cut, and several sets undergo stretching. The textile dataset consists 

of 600 samples taken from clothing items made of 100% cotton and fractured by stabbing the item 

or tearing it by hand. In the comparison templates for each material, the analysts document 

comparison features for each edge comparison bin and quantitative values (0, 0.5, and 1) that 

denote each bin decision (non-fit, inconclusive, fit). The partial edge analysis of duct tapes 

demonstrates that accurate physical fit comparisons are feasible with at least 35% of the edge 

width, while textiles are feasible with at least 40% of the edge. However, the uncertainty increases 

with less sample available for comparison. These results reveal that, regardless of material, 

accuracy for partial width comparisons suffers for more complex or distorted samples, such as 

high-quality hand-torn tapes, where partial sample examinations are not recommended.  

 

The extraction and analysis of feature information show that certain features hold different weights 

in the decision depending on the separation methods and tape’s qualities. For example, the 

alignment of severed dimples is one of the most influential features of scissor-cut backings, but 

not other separation methods. Similarly, the importance of a feature such as a scrim weave pattern 

is superior to high-quality tapes than other grades. While the importance of the features observed 

in textiles is not as divergent as in tapes, there are still noticeable trends, such as that the 

print/pattern and construction alignment hold more value for stabbed samples, while the yarn 

alignment is more informative in hand-torn samples. This information is then used to train decision 

tree models, which provide comparable performance to the human analysis, and demonstrate the 

value of incorporating objective computational models to support the analyst’s conclusions.  

 

4.2. Introduction 

Growing attention is being paid to forensic physical fit examinations, and several studies have 

been published to address gaps in this area [1-6]. While most standard operating procedures in 

forensic laboratories are generalized [4], the features and characteristics used to inform an 

analyst’s opinions depend on the material. For example, the fibers’ features observed in duct tape 

samples differ in importance in a physical fit comparison compared to textile fabrics [7-9]. As 
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such, one of the most critical aspects to address in physical fit examinations is identifying which 

features are relevant to a given material during the comparison steps and why.  

 

With the advent of machine learning, big data, and powerful computational tools, there is a 

growing opportunity to narrow those gaps and better use underlying information [10]. While neural 

networks have become increasingly popular in this field, other statistical analysis techniques are 

often overlooked despite their potential advantages. For example, statistical tools such as mutual 

information can be handy when dealing with smaller datasets [11]. They can help with feature 

ranking and extraction without requiring extensive data. Here, these methods are used to 

understand better the significance of different features in a physical fit examination, which can 

improve the data curation process and design of the examination approach. 

 

Incorporating a range of statistical analysis techniques and machine learning tools can provide 

valuable insights into the data generated by forensic institutions. By leveraging these insights, the 

examination methods can be refined to improve the training for forensic scientists and peer review 

processes. This approach can lead to more accurate and reliable forensic analyses, significantly 

impacting criminal investigations and justice outcomes. Forensic physical fit examinations are 

inherently subjective, which makes them vulnerable to legal challenges in court. However, by 

quantifying the importance of different features experienced examiners consider, new decision-

making tools can be developed to increase scientific foundations, objectivity, and reliability.  

 

Several studies already use computational modeling to provide a quantitative assessment of 

physical fits to address current questions in physical fit analysis. Two include studies by van Dijk 

et al. and Spaulding et al. on duct tapes [12-13]. van Dijk et al. use what they refer to as ‘loop-

breaking patterns’ created by the separation of weft-insert yarns to assess the similarity of two 

edges quantitatively. These values, created from a comparison set of 272 tape edges, are used to 

calculate likelihood ratios using a Bayesian network and assess the evidential value to 

comparisons. The authors assign a value according to the appearance of each loop along with width 

as either a 0, 1, or 2 depending on if the loop was closed (or missing), open, or complex. Overall, 

this approach shows high discrimination power and generally low rates of misidentified evidence 

[12]. Spaulding et al. use a model that uses automatic edge detection to calculate cross-correlation 

functions and random match probabilities to compare duct tape fits. From a set of 150 end-

matching pairs, this study evaluates partial duct tape edge comparisons, with the algorithm 

distinguishing between true fit and non-fit edges when the width is at least 27% of the full width 

[13].  

 

Our research group has also developed several methods in this area based on an edge similarity 

score (ESS) principle. The ESS metric is intended to provide analysts with a quantitative value to 

denote the similarity between two edges based on the features present and the analyst’s 

interpretation of the edges. The ESS method has been developed and applied to several materials 
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thus far, including duct tape and textiles [7-9]. In a study of more than 3000 duct tape comparisons, 

the ESS method results in 84.5-99.8% accuracy, depending on the tape quality and the separation 

method used. In addition, when tapes are stretched, this study shows that though the variability of 

ESS scores increases, there is no substantial influence on overall accuracy [7, 8]. For textiles, in a 

population of 600 samples, accuracies of the ESS method range between 98-100% based on the 

construction and separation method [9]. In addition, interlaboratory studies conducted using the 

ESS methods for both tape and textiles have led to improved documentation of features for both 

materials. The interlaboratory studies result in an overall accuracy of 95-99% for the duct tapes 

and 89% for the textiles. [14-15].  

 

Beyond the application to physical samples, a machine learning model [16] has also been 

developed to assist in the physical fit analysis of duct tapes. The developed model consists of two 

independent convolutional neural networks (one for each side of a tape: backing and scrim) that 

output combined probabilities for each network and then assign membership to either fit or non-

fit for a given pair. Using a dataset of more than 4000 images of duct tapes, the computational 

model results in 71-88% accuracy, specifically reproducing some trends observed in the human 

analysis of the same samples [16].  

 

As a new approach to the value of machine learning for physical fit examination, this study utilizes 

the methods developed in our group. It introduces a novel approach that uses mutual information 

and decision trees as fundamental data analysis tools. First, the potential minimum length of the 

tape necessary to complete a physical fit evaluation is assessed by evaluating the accuracy of the 

ESS method from randomly selected portions of tapes in the dataset. Following that, mutual 

information is applied to quantify the importance of features in the eyes of the analysts. Finally, a 

decision trees model is created as a decision assistant for physical fit examinations of duct tapes. 

The outcome of this study is expected to aid forensic examiners in conducting more objective 

physical fit examinations. 

 

4.3.Materials and Methods 

4.3.1. Sample data 

The data in this study originate from samples initially studied by Prusinowski et al. [7, 8]. The 

datasets are from low-quality (LQ) and high-quality (HQ) tape. Specifically, data is from the low-

quality scissor-cut (LQ-SC), low-quality hand-torn (LQ-HT), low-quality hand-torn stretched 

(LQ-HT-S), high-quality scissor-cut (HQ-SC), and high-quality hand-torn stretched (HQ-HT-S) 

sets. The samples are placed on pieces of transparency film to allow the adhesive and scrim fibers 

to be observed. For the high-quality samples, a thin strip (~3mm) of adhesive is removed from the 

tape edge to allow the scrim fibers to be seen, as the adhesive is dark and opaque. The dataset in 

this study accounts for a total of 1098 edge comparisons [8]. The textile data used in this study is 

derived from a larger population of textile physical fit comparison pairs explored by Andrews et 
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al. [9]. The data includes 600 comparison pairs generated from fifteen 100% cotton garments of 

varying construction (knit or weave). These pairs consist of 301 stabbed pairs and 299 torn pairs.  

 

For both materials, the pairs are examined by a human analyst using a standardized documentation 

spreadsheet to record the presence or absence of pre-defined comparison features and document 

the overall conclusions regarding each comparison pair. All comparisons are performed blindly, 

meaning the analysts is unaware during the comparison of the ground truth of the sample pair. 

 

4.3.2. Standardized Reporting Template  

Each comparison is broken into three main steps: an overall assessment of the edges and general 

morphology. The second is a macroscopic assessment of the edge performed by visually separating 

the sample pair into five comparison areas and documenting each section's main features and 

alignment. The final step is a microscopic assessment of the tape edges, where a comparison bin 

is defined as the area between the scrim fibers (hereby referred to as ‘scrim bins’). Each scrim bin 

is independently observed, documented for comparison, and assigned a quantitative value 

representing the alignment of the individual bin (hereby referred to as the area bin code). The 

values are 0 for a non-aligning bin (non-fit), 0.5 for a bin with both aligning and misaligning 

features (inconclusive), and 1 for a bin demonstrating aligning features (fit). The template 

automatically calculates the pair's edge similarity score (ESS), representing the overall alignment's 

quantitative value as a relative percentage of the number of scrim bins aligning across the tape 

width [8].  

 

A template is filled out for every pairwise comparison of tape samples. The features documented 

are described in Table 4-1. Each comparison area has a total of 8 main features, and the template 

has drop-down options for the analyst to select and denote the feature and the rationale for their 

choice in the interpretation of each bin. For most, the feature can be described as absent or present, 

and if present, whether it indicates a fit or non-fit. Also, the template incorporates a simple visual 

aid that color-codes the comparison bins to identify at a glance the fitting (green), non-fitting (red), 

and inconclusive bins along the overall edge width. 

 

The documentation template for textile comparisons is similar to that of duct tape but only consists 

of two primary steps. The first step is an overall assessment of the textile edges, and the second 

step is a microscopic assessment of the edges. For this second step, the comparison edge is divided 

into ten areas, or bins, of equal size. Unlike tapes, the bin size on the textile fragments is based on 

the overall length of the fracture, divided by ten, whereas the tape is divided into bins based on the 

inherent number of scrim fibers. The rest of the template is very similar to the one for duct tapes: 

color-coded comparison areas indicating the area fit code, seven pre-defined comparison features 

with response options to document the presence or absence in each bin, and automatic calculation 

of the overall ESS as a relative percentage of the ten bins. The specific features documented for 

textiles are described in Table 4-2.  
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4.3.3. Data Extraction 

4.3.3.1. Minimum Width on Partial Comparison Items 

To evaluate partial comparisons of duct tapes and textiles, the area fit codes data of all the available 

tape, and textile samples in the reporting template are extracted to assess the minimum width 

needed for reliable physical fit examinations. Following this, partial widths simulating the 

recovery of only a portion of the edge are defined based on the number of scrim areas. A randomly 

selected starting point among the edge is chosen for a given sample pair, and the corresponding 

number of consecutive bins is recorded. From there, the ESS of the partial width is calculated, and 

an overall conclusion is assigned. If the ESS of the partial width is less than 40, the edge 

comparison is considered a non-fit, an ESS of 40-60 is considered inconclusive, and an ESS of 60 

or higher is considered a fit. The recorded outcome of the partial width comparison is evaluated 

versus the known ground truth (i.e., known true fit, known true non-fit).  
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Table 4-1. Table of features documented for tapes and the respective response options for 

observation of the features at the macroscopic and microscopic level.  
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Table 4-2. Table of features that are documented for textile comparisons, including a description 

of the feature, an image of the feature, and the response options available to select for each feature.  

Feature Description Options Image 

Construction 

Alignment 

Consistency and alignment of 

construction, including type 

(weave/knit) and direction, 

between two textile fragments. 

Consistency in the thread or 

yarn count between the two 

fragments is also considered. 

• Consistent 

• Inconclusive 

• Inconsistent 

• Cannot be assessed 

 

Gap Alignment 

Alignment of yarns from one 

fragment into corresponding 

gaps observed in another 

fragment along the comparison 

edge.  

• Consistent 

• Inconclusive 

• Inconsistent 

• Cannot be assessed 

 

Yarn Alignment 

Alignment of yarns that have 

been pulled out of the fracture 

edge between two textile 

fragments. 

• Present - Indicative of fit 

• Present - Indicative of non-fit 

• Inconclusive 

• Absent 

 

Design Alignment 

Consistency and alignment of 

yarn color and pattern between 

two textile fragments. 

• Present - Indicative of fit 

• Present - Indicative of non-fit 

• Inconclusive 

• Absent 

 

Distortion 

Force applied during the 

fracture event causes distortion 

that can mask other features. 

 

• Present - Indicative of fit 

• Present - Indicative of non-fit 

• Inconclusive 

• Absent 

 

Secondary 

Tearing 

A secondary, perpendicular tear 

that is not the primary fracture 

that is being compared.  

• Present - Indicative of fit 

• Present - Indicative of non-fit 

• Inconclusive 

• Absent 

 

Fluorescence 

Fluorescence of individual 

yarns can aid in the 

identification of a physical fit. 

• Consistent 

• Inconclusive 

• Inconsistent 

• Cannot be assessed 
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This process is repeated for all potential lengths across all samples in the dataset. Five iterations 

of random selections of widths and starting points are performed to evaluate the variability in 

performance across the datasets. Following the calculation of the performance rates for each partial 

width across all five iterations of the model, beta regression is applied to the performance rates. 

This allows for an evaluation of the average performance rate at each partial width and an 

assessment of the variability at each point. Where relevant, the data is separated by material type, 

quality, and separation method. 

 

4.3.3.2. Mutual Information Theory  

In 1948, Claude Shannon introduced the concept of mutual information in his seminal paper "A 

Mathematical Theory of Communication" [17]. Alongside entropy and channel capacity, mutual 

information is considered one of the foundational concepts in information theory. This measure 

quantifies the amount of information shared by two random variables and is used to assess their 

mutual dependence. It serves as a tool for quantifying the information shared between the 

variables. 

 

Suppose 𝑋 and 𝑌 are two random variables with corresponding probability distributions 𝑝(𝑋) and 

𝑝(𝑌), respectively, and let their joint distribution be represented as 𝑝(𝑋, 𝑌). Mutual information, 

denoted as 𝕀(𝑋; 𝑌), measures the degree to which the joint distribution 𝑝(𝑋, 𝑌) is similar to the 

factored distribution 𝑝(𝑋)𝑝(𝑌). The mathematical formula for mutual information is given as 

follows [17]: 

 
𝕀(𝑋;  𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑦

 

𝑥

  (1) 

 

If 𝑋 and 𝑌 are independent, then their joint probability distribution 𝑝(𝑥, 𝑦) is equal to their factored 

probability distributions 𝑝(𝑥)𝑝(𝑦), resulting in a mutual information value of zero.  

 

This concept can be better understood by comparing the mutual information formula and 

recognizing its similarities to the concept of entropy from information theory. Entropy ℍ(𝑋) in 

information theory is represented by the following equation: 

 ℍ(𝑋) = − ∑ 𝑝(𝑥) log 𝑝(𝑥)

𝑥

 (2) 

 

Entropy, in information theory, measures the amount of uncertainty (i.e., randomness) in an 

information source. This definition is similar to entropy in statistical mechanics, which measures 

the degrees of disorder (i.e., randomness), differing only a factor of 𝑘𝐵 the Boltzmann factor. In 

other words, mutual information measures the reduction in the uncertainty of one variable (𝑋) after 

knowing the value of the other variable (𝑌). For example, what is the uncertainty about a pair of 
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duct tape's physical fit after knowing they come from the same brand? Please refer to Appendix 

A for a more in-depth discussion of the relationship between mutual information and entropy.  

 

4.3.3.3. Data Preparation 

Mutual information (MI) is used to analyze data from previous studies by Prusinowski et al. [8] 

and Andrews et al. [9]. The data is stored in tables within an Excel template, as explained in section 

2.2. Each table represents a comparison between two samples, with each row corresponding to a 

bin on the comparison edge and each column representing observable features. One column, "Area 

fit code," indicates the analyst’s decision (0, 0.5, or 1) regarding whether the two samples fit 

together. The other columns describe the major features for comparison used by the analysts and 

the analyst’s opinion regarding the influence of that feature on the bin decision. 

 

To determine the importance of each feature in the examiner's decision-making process, all 

comparison tables are concatenated into a single table and mapped by text values to numbers using 

a lookup table (see Appendix Table 4A-1 for details). The mutual information of each feature is 

then calculated concerning the area fit code, which represents the decision the analyst made during 

the process. Figure 4-1 provides a schematic of the process followed. To assess and calculate the 

mutual information, the "mutual_info_classif" function from the scikit-learn Python package is 

used [18].  

 

 

 
Figure 4-2 Process of data manipulation for the calculation of mutual information. 

 

 

4.3.4. Decision Tree  

Decision trees, also called classification and regression trees (CART) are a type of supervised 

machine-learning algorithms. The decision tree breaks down a complex decision-making process 

into smaller, more manageable steps. This is done by recursively partitioning the feature space into 
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a set of rectangles and assigning a constant (e.g. fit or non-fit) to each. This can be represented by 

one tree with multiple leaves each representing one region in the feature space [10]. When dealing 

with two variables it is easy to represent the classification with rectangular divisions, however, in 

larger dimensions with many features this task becomes impossible and the feature space 

partitioning can be fully described by a single tree. Creating the decision tree is equivalent to 

finding the optimum partitioning for an n-dimensional feature space. The advantage of using a 

decision tree in this study is that it allows for breaking down a complex decision-making process 

into simpler, more manageable steps, making it easier to analyze and understand the evidence. 

 

Finding the optimal partitioning of the feature space is shown to be a nondeterministic polynomial-

time complete (NP-complete), which it is a type of computational problem that no efficient 

solution algorithm has been found to solve [19], and so scientists use different approaches to find 

locally optimal partitioning. The methods to quantify the quality of each split include 

misclassification rate, entropy, and Gini index [10, 20]. This study uses the 

DecisionTreeClassifier function implemented in the Scikit learn package [18]. Entropy is used 

as the criterion for growing of the decision tree. 80% of the data is used for the training stage but 

the final performance metrics are calculated using the entirety of the data. 

 

4.4.Results and Discussion 

4.4.1. Minimum width on Partial Comparison Items 

As described previously, it is commonplace in casework to have samples submitted for physical 

fit examination that are only partial fragments. When this occurs, it is often left up to the analyst 

to determine if enough of the fragment length is available and if there are enough distinct features 

to make a reasonable decision. With a lack of foundation in this area or guidelines to support 

analysts, this study aims to estimate the edge length necessary to reliably conduct a physical fit 

analysis for materials for which there is a substantial amount of available quantitative data: tape 

and textiles.  

 

A critical aspect of the data extraction for the partial width comparison analysis is to ensure that 

despite a random starting point on the sample, the bins following are consecutive. This is intended 

to reflect realistic casework samples. The partial width extraction is performed five times per 

material type to provide additional data and insight into the variability in edge alignment of the 

material datasets. Figure 4-2 describes an example of a partial width selection conducted by the 

model in this study, with the number of bins being 10, out of the 30 bins corresponding to the 

complete edge. In this example, while the full-width pair is classified as inconclusive, the two 

separate partial-width selections correspond to a non-fit or fit decision, depending on the starting 

point selection.  

 

It has previously been reported that the construction, manufacturing, and method of separation of 

a sample can impact the quality of the sample edge for comparison and what features are left 
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behind. In tapes, the edge morphology, features left during separation, and comparison 

performance are influenced most heavily by the quality (grade) of the roll [8]. As such, the tape 

sets evaluated in this study are also separated by grade. The previous research reports that scissor-

cut pairs generally retain sufficient features for comparison, while hand-torn edges tend to result 

in more distorted but distinctive edge patterns. Generally, stretching deforms some of the features, 

impacts the ESS, and causes increased variability, but not to the extent of producing significant 

changes in the overall accuracy of the method [8]. In textiles, separating and constructing the fabric 

samples contributed the most towards differences in ESS values. However, the impact is less 

substantial than in tapes [9]. For this study, the sample set is divided by separation method, as in 

the original research, the separation method contributed specific features critical for observation 

and decision-making in physical fit analysis. 

 
Figure 4-2. Diagram depicting the random selection and calculation of performance of the ESS 

method applied to a partial sample width. Selection of two different starting points on the sample 

pair edge results in significantly different outcomes. The bins contain the overall bin code, colored 

green (fit, 1), yellow (inconclusive, 0.5), or red (non-fit, 0). The ESS for full width is 43, while the 

ESS of two randomly selected edge portions (33% each) lead to different ESS outcomes (20 and 

80, respectively). 

 

 

Starting with the duct tape samples, following the calculation of error rates of all possible partial 

width lengths, the trends were observed compared to the full-width comparisons of the tape 

samples. With LQ samples, the accuracy of the entire width of tapes by human examination is 

relatively high, ranging above 90% [8]. The results by partial width yield similar accuracies for 

the LQ scissor-cut set. However, it is notable that for the hand-torn sets, the method’s accuracy 
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decreases and has a wider spread of variability, which becomes more evident when the length of 

the tape is less than 30-40% of the width (Figure 4-3). This is likely due to the increased distortion 

observed in these hand-torn separated samples. Figure 4-3 shows the accuracy of the ESS method 

when applied to portions of the low-quality tape subsets. The solid line represents the beta-

regression model of the accuracy from the five iterations performed for data extraction. The shaded 

portions represent the accuracy variability for each percentage of the tape width. When considering 

these variability ranges, the results indicate that to maintain an accuracy above 90% for this dataset, 

the sample must contain at least 35% of the original width. 

 

 
Figure 4-3. Accuracy of the ESS method as applied to partial widths of the low-quality tape 

subsets.  

 

When considering the high-quality samples, the general observations made during the analysis of 

the full-width samples persist on the partial edges. The scissor-cut samples demonstrated high 

accuracies, with significantly less variability in reported ESS compared to the hand-torn samples 

from the same roll. This has been accredited to the reduced distortion and observation of additional 

features not easily observed in hand-torn samples. Conversely, the high-quality hand-torn sets 

demonstrated much lower accuracy rates than all other sets, which resulted from a much higher 

rate of distortion observed in these samples, from the tearing process and additional uncertainty 

introduced by the required adhesive removal process. Figure 4-4 shows the accuracy of the ESS 

method when applied to portions of the high-quality tape subsets. As described for the LQ set, the 

solid line represents the beta-regression model of the accuracy from the five iterations performed 

for data extraction. The shaded portions represent the accuracy variability for each percentage of 
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the tape width. Here, the HQSC set maintains high accuracy regardless of the missing portions of 

the sample, with a slight increase in variability as the edge size decreases.  

 

On the other hand, the HQHTS set has a lower accuracy even for full-size items, caused mainly 

by a larger number of false negative results. The accuracy decreases from about 84% to up to 74% 

as the size decreases, raising a cautionary flag. Since our studies have shown that ESS values under 

80% don’t provide the strongest support for a fit, we recommend not using physical fit 

examinations as the only assessment of high-quality hand-torn duct tape when partial evidence is 

submitted for comparisons. In other words, a physical fit examination of partial edges on this tape 

category can be done to rule out a potential fit. Still, its interpretation should state potential sources 

of error and should be followed for additional chemical and physical examinations based on its 

class characteristics. 

 

 
Figure 4-4. Accuracy of the ESS method as applied to partial widths of the high-quality tape 

subsets.  

 

With the low-quality tapes, the scissor-cut sets demonstrate the lowest variability in accuracy, and 

the more tape that is present, the higher the accuracy becomes overall. In both sets, the accuracy 

of the stretched set is the lowest at full-size comparisons, but the accuracy of the high-quality set 

is more influenced by size.  

 

The trends based on the separation method are like those observed in tapes for textiles. The hand-

torn samples are generally more variable in accuracy across all partial widths, especially when the 



133 

 

length is less than 30-40% of the width (Figure 4-5). On the other hand, the stabbed samples show 

less variability and higher overall accuracy, consistent with the findings of Andrews et al. [9]. 

Once again, this is likely due to the increased distortion observed in the hand-torn samples. Figure 

4-5 shows the accuracy of the ESS method when applied to portions of the textile dataset. 

Considering the results of these textiles, to maintain an accuracy above 90% for this dataset, the 

sample pair must contain at least 40% of the original width. 

 
Figure 4-5. Accuracy of the ESS method as applied to partial widths of the textile samples. HT 

represents hand-torn samples, while SB represents stabbed samples.  

 

There are some limitations to this approach to evaluating potential length effects. For example, in 

the cleaner edges seen in the stabbed textiles and the scissor-cut tapes (such as the HQSC and 

LQSC sets), Figures 4-3, 4-4, and 4-5 indicate high accuracy, even at less than 10% of the 

comparison bins being used. This is likely due to the highly distinctive features observed in these 

sets. In tapes, cutting the sample preserves several features, such as the alignment, or evident 

misalignment, of dimples that have been cut through. In textiles, the edge is less likely to unravel 

and stretch during separation if cut by a blade or instrument compared to the pulling and stretching 

induced by tearing by hand. A critical note of the textile samples used in this study is that the 

sample edges are approximately two-inch wide, each cut from a larger garment such as a shirt or 

pants. So, in this case, 40% of an edge is only a very small proportion of the original garment. That 

provides an additional limitation to the interpretation of a partial textile fragment. 

 

In actual casework, an analyst is unlikely to compare edges with less than 10% of the edge 

available for comparison. However, these results may help indicate when additional analysis 
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should be performed if a physical fit is found on a partial tear. These results suggest that a partial 

fracture may be possible to determine at a width of at least 30-40% of the width of either tape or 

textiles while yielding accuracies above 90%. However, extreme caution should be taken in 

interpreting the value of partial comparisons. These results provide an experimental foundation on 

the effect of size but should not be taken as a fixed threshold. 

 

4.4.2. Mutual information 

With new attention on systematic approaches to physical fits, one of the remaining questions is 

identifying which features hold the most value in comparing edges. Human analysts performing 

examinations on sample edges may rely on specific features or criteria in their analysis that help 

to inform their decision. To that end, one of the main goals in developing systematic methods for 

physical fit comparisons is defining comparison features that can lead to standardization in the 

discipline.  

 

For duct tapes, research has identified several relevant features inherent to tape manufacturing or 

construction that are known to remain relatively consistent along a full roll. This includes the 

presence or absence of calendaring striations and backing dimples, the number of warp and weft 

fibers, and the overall direction of the fiber weave. Other features, such as distortion, missing 

material, and corresponding protruding fibers and gaps, are introduced during separation [8]. In 

textiles, features inherent to the samples include the design and construction of the fabric, as well 

as any fluorescence of the fibers. Features contributed by separation include alignment of gaps, 

alignment of yarns across the fracture, secondary tearing, and distortion [9]. 

 

A critical aspect of feature recognition in physical fit comparisons is understanding how a feature 

may influence a decision. An assumption made here is that not all features share the same weight. 

For example, duct tapes have fiber reinforcement pressed in between the adhesive and backing 

layers. Due to how duct tapes are manufactured, the number of warp and weft fibers per square 

inch remains consistent throughout an entire roll of tape. The same is true of the orientation and 

location of the fibers along the edge. As such, samples in this study were observed to have true 

non-fitting pairs for which the microscopic alignment of the warp fibers corresponds and indicates 

that the samples fit together. If the warp fibers did not correspond, however, the value of that 

feature is substantially stronger for indicating an opinion of non-fit for that bin. 

 

The importance of the different features is explored regarding the mutual information of the feature 

and the overall decision. The tape data is divided by several factors, including separation method 

and quality, to evaluate what features contribute most to a given subset of samples. Figure 4-6 

shows bar plots representing the mutual information for each tape comparison feature by 

separation method. Small value bars, such as those observed in missing material, indicate that the 

feature is rarely present or not particularly informative for making a decision. Some differences 

between hand-torn and scissor-cut samples stand out regarding the feature’s importance. First, the 
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alignment of severed dimples is substantially more informative in scissor-cut samples while not 

being observed in hand-torn. On the other hand, the scrim weave pattern and consistency in the 

weft fiber pattern are informative for both separation methods but more so for scissor-cut samples.  

 

 
Figure 4-6. Barplots representing the mutual information of the tape features by separation 

method. The larger the bar, the more value the feature has for comparisons.  

 

As seen in Figure 4-6, the alignment of severed dimples is critical for scissor-cut samples but not 

for hand-torn pieces. This results from an interesting observation made about the samples during 

tearing. In the tapes used for this study, the dimpling on the backing tends to align with the weft 

fibers on the scrim side. As a result, when torn by hand, the samples do not generally tear across a 

weft yarn but will tear on the side of the yarn, where the material provides less resistance to tearing. 

As such, the torn edges do not generally cross a dimple pattern. That is not true of the scissor-cut 

samples, for which the edge separation is dictated by the direction the users choose for the cut. 

Severed dimples and weft fibers play a critical role in comparing these samples. It is more common 

to see cuts that cross over the fracture, leaving multiple distinctive aligning features (or misaligning 

features in case of non-fits). These transversal cuts are relatively distortion-free and influence the 

‘consistent weft scrim at or near the edge’ feature and the ‘continuation of scrim weave.’ These 

features are still present in hand-torn samples but carry more value in scissor-cut samples as they 

tend to deform when torn. The same applies to aligning dimples, commonly seen in the scissor-

cut samples, adding substantial weight to a fit or non-fit decision for a particular bin. The opposite 
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is true of corresponding protruding warp yarns, which are more influential for hand-torn samples. 

This feature is not commonly observed in the scissor-cut samples as they tend to originate when 

the warp yarns stretch before fracture, which does not occur when the tapes are cut.  

Interestingly, corresponding protruding warp yarns are only informative in the LQHTS set, despite 

there being another hand-torn set. This is due to the nature of the tapes. The higher-quality tape 

has a much higher number of scrim fibers. Specifically, it has a double-warp pattern with two warn 

fibers side-by-side in the alternating direction, whereas most LQ tapes only have one warp yarn. 

This contributed to the higher strength of the HQ roll and likely prevented the yarns from stretching 

as they tore. Conversely, the lower-quality tape is more prone to distortion and has fewer fibers 

overall. As such, protruding fibers are more common in these samples.  

 

Figure 4-7 shows the mutual information of the features divided by set. In this case, only HQHTS, 

HQSC, and LQHTS are shown. Some of the same trends apply, as seen in Figure 4-6. The 

alignment of severed dimples is critical for the HQSC set, while the continuation of the scrim 

pattern is most critical for HQSC, followed by HQHTS and then LQHTS. Scrim weave and 

corresponding weft scrim are seen as influential in all sets.  

 

 
Figure 4-7. Barplots representing the mutual information of the tape features by sample subset. 

The larger the bar, the more value the feature has for comparisons.  
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Meanwhile, the mutual information of the textile dataset demonstrates similar trends. Some 

features hold more value in a stabbed sample or hand-torn sample. As seen in Figure 4-8, some 

features are only observed in the hand-torn samples, including secondary tearing and extreme 

distortion. The small bar indicated for both these features suggests that while observed in edges 

torn by hand only, their occurrence is still uncommon in the overall population. Hand-torn pair 

comparisons also rely slightly more on gap and yarn alignment than stabbed samples, because the 

more violent nature of hand-tearing tends to pull yarns away from the comparison edge when the 

fragments are pulled apart. Meanwhile, construction and print alignment are slightly more 

informative in stabbed sample edges. This is to be expected because these features are easier to 

observe on the less-frequently distorted stabbed edges. It is worth noting that the variation in the 

value of a feature is not as diverse between separation methods as in duct tapes, further reinforcing 

the need for separate features and criteria for the material in question.  

 

 
Figure 4-8. Barplots represent the mutual information of the textile features by separation method. 

The larger the bar, the more value the feature has for comparisons.  

 

The feature analysis shows that a comparison feature's occurrence and informative value depend 

on the fracture’s circumstances, including but not limited to separation method and quality (grade). 

This study shows that the alignment or misalignment of a feature can hold a particular weight 

toward a fit or non-fit decision. This information is helpful for analysts as it provides a deeper 

understanding of the relative relevance that a feature may have in a fit examination. The next step 
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towards utilizing this information more effectively is to assign quantitative values to the feature 

patterns to assist analysts in making decisions.  

 

4.4.3. Decision tree 

A primary goal of this study is to use the information gained from the systematic comparison of a 

large dataset to assist in analyst comparisons. To that end, a method using a decision tree model is 

presented here. The decision tree is a machine-learning model that follows a set of rules to make 

decisions. In this case, the decision tree uses information extracted from the comparison templates 

to learn from. The decision tree evaluates the pattern of features from every bin and uses the 

outcome of that pattern to make a decision, following a similar process to the human analysis. The 

purpose of this decision tree model is not to replace the human input but to supplement it with 

additional objective analysis to reduce the risk of bias in a comparison. For a given pair of samples, 

some variability in the decision reported by the analyst and the decision tree model can be 

expected. However, that variability should not be extensive enough to change the outcome of the 

decision substantially. If it does, that may indicate a risk of bias in the comparison or an 

opportunity to assess the rationale for those differences in the analytical process and document it 

with transparency. Figure 4-9 shows a diagram of the intended comparison process.  

 

 
Figure 4-9. Diagram demonstrating how the process of human analysis of a pair of tapes would 

be performed and compared to the results of the decision tree model.  

 

The decision tree for duct tapes is trained using the tape dataset samples and the respective 

templates. However, the initial performance of the decision tree results in low accuracy due to 
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contradicting decisions for feature patterns. An example of a feature pattern with the respective 

bin decision is shown in Table 4-2, where the pattern from feature edge I to VIII can be represented 

as (A, A, PF, A, PF, A C, NA) where A is absent, PF, present indicative of a fit, C consistent and 

NA not applicable. There are occurrences of that same pattern of the eight features in the human 

analysis that results in different decisions (i.e., fit or non-fit). This is because the analysts weighted 

in their minds each feature according to the observed characteristics, which is information not 

captured by the algorithm. In other words, the pattern sequence only provides one level of 

information to the algorithm. Still, it does not include a higher level of information on the relative 

relevance of those features. These “contradictions” of outcomes from similar patterns contribute 

to the poor performance of early decision tree modeling. To clarify these cases, a human analyst 

blindly reviews those patterns and provides a decision for a bin based solely on level-one 

information about the feature patterns.  

 

An example is shown in Table 4-3. These revised decisions are used to retrain the decision tree 

model. The structure of the tape decision tree is available in Appendix 4-B. 

 

Table 4-3. Example of feature pattern and bin decision assigned by an analyst. 

Feature Response 

I. Alignment of Severed Dimples on Tape Backing Absent 

II. Calendaring Striations across Edge Absent 

III. Micro Alignment of Warp Scrim Present - indicative of fit 

IV. Correspondence of Protruding Warp Yarns and the 

Respective Pattern Gaps in the Other Edge 
Absent 

V. Continuation of Scrim Weave Pattern Present - indicative of fit 

VI. Distortion Explained by Stretching Directionality Absent 

VII. Weft Scrim at or near Edge Consistent with the Overall 

Weft Pattern 
Consistent 

VIII. Missing Material 
Not applicable (no missing 

material) 

BIN DECISION FIT 

 

Following the re-training of the model, performance improves. Figure 4-10 shows the breakdown 

of performance for each tape subset. The model generally performs equally as well as the human 

analysis of the samples. An exception is seen in the HQHTS set, which improves true positives 

compared to the human analysis. but also produces a few false positive results, which are not seen 

in the human analysis. The HQHTS set is a particularly complex set, both for human and 

computational analysis. Despite being hand-torn, the samples generally separate with straight 

edges that do not leave distinct edge morphologies. In addition, removing the adhesive from the 

edge to allow observation of the edge features added some uncertainty to the decision-making 

process, as the fibers may have shifted from their original positions. The shifting fibers could cause 
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alignment in non-fitting pairs or vice versa. As such, the human analysis results in higher false 

negative and inconclusive rates than the decision tree analysis. 
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Figure 4-10. Performance of the decision tree against the human analysis for each duct tape sample set. The performance rates included 

are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for 

both true non-fits (INR) and true fits (IPR), and the accuracy (ACC).  

 

 
Figure 4-11. Performance of the decision tree against the human analysis for each textile sample set. The performance rates included 

are the true positive rate (TPR), true negative rate (TNR), false negative rate (FNR), false positive rate (FPR), inconclusive rates for 

both true non-fits (INR) and true fits (IPR), and the accuracy (ACC). 
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The decision tree for textiles is also trained on the respective data and templates. Like the initial 

tape model, the initial textile model suffers from reduced performance due to contradicting 

decisions for feature patterns. These cases are reviewed and re-assigned a decision by a human 

analyst based on the patterns of decisions, which improves overall performance. The model 

performs equally as well as the human analysis of the samples. However, the model does produce 

false positives and is inconclusive across both hand-torn and stabbed samples.  

 

These results indicate that the decision tree model shows significant potential as a tool to help in 

the decision-making process for physical fit comparisons. While caution is needed regarding the 

chance of false identifications, if used in tandem with human analysis, the tool could help identify 

samples where a further examination is recommended if the model outcome disagrees with the 

analyst. It also provides additional information that adds transparency and support to the 

conclusion. For instance, confidence and objectivity can be demonstrated if the algorithm agrees 

with the analyst’s decision. The algorithm removes the judgment from the decision process. It 

minimizes the risk of bias from the prior information from the analyst’s observations of the 

question and known overall alignment or misalignment. 

 

4.5.Conclusions 

This study demonstrates the value of modeling data and feature extraction to provide additional 

information for forensic physical fit analysis. The quantitative data provided by the ESS approach 

can be used to model and assess the partial widths of tapes and how only having a portion of the 

edge for comparison could influence the method's accuracy. While, ideally, forensic practitioners 

would have the entire length of a fracture during comparison, the whole width of the sample may 

only be available in some cases. The fragments may have separated or been lost during the 

commission of the crime or in evidence recovery. This study addresses this important dilemma. 

The results demonstrate that, based on the sample sets used here, a length of at least 35% of the 

edge will provide acceptable accuracy in most samples. The relative size is highly dependent on 

the tape specimen, and samples more prone to distortion or lacking distinct features may not be 

suitable for comparison with only a small portion of the edge available.  

 

In addition, the method and templates derived from analysts’ examinations are used to identify 

specific features of the tape edges that contribute the most to a decision. In contrast, the decision 

tree model evaluates the value of those features quantitatively and provides a tool that analysts can 

use to support their decisions. The mutual information analysis of the sample templates indicates 

several trends in feature value for the different subsets. While Prusinowski et al. [8] and Andrews 

et al. [9] demonstrate that the separation method does not have much effect on the tapes and textiles 

ESS scores provided by the method, this study shows that the features recognized in the samples 

and their relative weight vary considerably. In scissor-cut tape samples, the alignment of severed 

dimples is much more important for making decisions, while the feature is rarely observed in hand-

torn samples. In contrast, corresponding warp yarns are usually only relevant in the hand-torn 
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samples. In addition, the continuation of the scrim weave and consistency of the weft fibers, while 

observed in hand-torn, hold more value in scissor-cut pairs. The mutual information approach 

demonstrates that the tape quality considerably impacts the features observed and their importance 

in comparison. The low-quality tape overall contributed to more distortion and distinct edges than 

observed in high-quality samples, leading to features such as distortion and exposed warp fibers 

being particularly important in those samples. Meanwhile, construction and design alignment in 

textiles contribute more to stabbed samples, while gap and yarn alignment hold more influence in 

hand-torn samples. Two features only observed in hand-torn samples (extreme distortion and 

secondary tearing) indicate those two can have substantial value for a decision.  

 

Finally, the decision tree model trained on the sample sets demonstrates consistent accuracy with 

the human analysis in most datasets. While it provides more true positives in the complex HQHTS 

tape set, it also results in a much higher false positive rate for that dataset and both textile subsets. 

As a result, the outcome of this method indicates that while it should not replace human analysis 

entirely, it holds strong potential as a supplementary tool. Samples independently evaluated by 

both the human analysis and the decision tree that arrive at different decisions can be assessed in 

more depth, such as by additional physical examination by another independent analyst or through 

further chemical analysis to support the findings.  

 

Overall, this study increases the body of knowledge and scientific foundations of physical fit 

examinations of duct tapes and textiles. It addresses two important gaps in this field. First, it 

estimates how much the sample size can be absent for comparison before yielding unreliable 

results. Second, for the first time, it offers experimentally based information that can assist 

practitioners in understanding the weight a particular feature can hold in the examination and 

provides a means to document the decision-making process more objectively and transparently. 

Future work in this area can include the addition of more sample subsets to provide additional data 

for mutual information and the decision tree model. In addition, we intend to introduce the decision 

tree model as an open-access source to allow practitioners to evaluate the tool to help support their 

decisions.  
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Appendix 4-A 

 

Mutual information 

Mutual information is a measure of the relationship between two random variables. Mutual 

information can be expressed in terms of entropy, which requires understanding conditional 

entropy. Conditional entropy measures the amount of uncertainty that remains in a random 

variable 𝑌 after observing 𝑋. It quantifies the uncertainty of 𝑌 given that 𝑋 is known and is 

denoted as ℍ(𝑌|𝑋). The mathematical formula for calculating ℍ(𝑌|𝑋) is: 

 ℍ(𝑌|𝑋) =  − ∑ ∑ 𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)

𝑦𝑥

 (3) 

Using this formula, we can rewrite equation 1 in terms of conditional entropy: 

 

 𝕀(𝑋;  𝑌) = ℍ(𝑋) − ℍ(𝑋|𝑌) = ℍ(𝑌) − ℍ(𝑌|𝑋) (4) 

This equation shows that mutual information between X and Y can be interpreted as reducing 

uncertainty about 𝑋 after observing 𝑌, and vice versa (due to symmetry). 

 

Data preparation 

Table 4A-1. Table representing the mapping of the feature response options into the numerical 

format. 

Feature value Mapped to 

Absent  0 

Present - indicative of fit 1 

Present - indicative of non-fit 2 

Present and explained by stretching 0 

Present and not explained by stretching 1 

Consistent 0 

Not Consistent 1 

Not applicable (no missing material) 0 

Observed Missing Material 1 

Stretched 0 

Not Stretched 1 
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Appendix 4-B 

 
Figure 4B-1. Decision tree diagram for the physical fits of duct tapes. Nodes in blue represent those that contribute to a fit decision, 

nodes in green represent inconclusive, and nodes in orange represent non-fit.  



147 

 

 
Figure 4B-2. Decision tree diagram for the physical fits of textiles. Nodes in blue represent those that contribute to a fit decision, nodes 

in green represent inconclusive, and nodes in orange represent non-fit.  
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Chapter 5: Development of a systematic comparison method for forensic physical fit 

analysis of automotive polymers  

5.1. Overview  

This study proposes a method for the physical fit comparison of brittle automotive polymers. The 

previously developed comparison method for duct tape edges inspired the approach, with 

adaptations specific to the rigid polymer’s properties and the respective features imparted after a 

fracture. The method includes identifying relevant comparison features, deciding how the polymer 

edges can be divided into subunits for comparison, and developing standardized quantitative 

criteria. A reporting template is designed to guide analysts through the comparison and thought 

process documentation. The template requires documentation of qualitative comparison features. 

It estimates two quantitative metrics, the edge similarity score (ESS) and the feature prominence 

value (FPV), which describes the influence of a feature on a fit or non-fit decision.  

 

More than 380 pairs of polymer samples are compared to evaluate the newly developed method. 

The pairs originate from automotive headlight and taillight assemblies that were broken in a 

controlled manner. The polymer sources are grouped based on the main polymer composition and 

morphology into three classes, translucent clear, translucent colored, and opaque colored. While 

analyzing the samples independently, the analysts are kept blind to the ground truth of the pairs. 

The report template used by the analysts documents ten comparison features for each comparison 

bin on the edges of the samples. Auto-populated cell options are provided to characterize the 

influence of the feature on a decision. These decision options are then assigned a quantitative value 

defined as the feature prominence value (FPV). The sum of the feature prominence values (FPS) 

and quantitative edge similarity scores (ESS) provides analysts with the means to assess the 

similarity between two given edges and estimate potential thresholds to help support an analyst’s 

decision.  

 

Misidentification rates of the initial comparison set are low, and no false positives are reported. 

The method demonstrates that most true non-fit polymers receive low ESS (0-10%) and low FPS 

(less than -5). True fit pairs generally receive high ESS (90-100%) and high FPS (15 or greater). 

Exploratory data analysis shows that polymer composition may impact the quality of a physical fit 

between polymer edges. Inter-analyst variation of ESS and FPS is low for samples analyzed by 

two independent analysts. The documentation template provides clear and transparent insight into 

the features that influenced the decision-making process. The proposed approach is expected to 

facilitate the implementation of consensus-based protocols at forensic laboratories and provide 

scientific foundations for data-driven opinions. 

 

5.2. Introduction 

Plastic materials are common in everyday life; as such, they are also regularly collected as potential 

forensic evidence. When the items are separated during criminal activity and left behind at a scene, 

they might be valuable evidence and assist in reconstructing events. To understand the features 
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imparted during the fracture of plastics, one first needs to recognize the objects' main composition 

and physical properties. Plastic materials are composed primarily of polymers (long-chain 

molecule strings). Polymers can be classified based on many criteria, such as the source of the 

material (including if it is a natural or synthetic polymer or polymer type) or application-based 

(such as rigid plastics or soft plastics) [1]. Another way of classifying polymers is whether they 

are brittle or ductile. Brittle polymers tend to shatter once the stress passes their elastic limit and 

don’t deform as much. Examples of brittle polymers include plastic lenses, Styrofoam, and 

disposable cutlery. Ductile polymers are generally more flexible and tend to deform before 

fracture, and include materials such as tapes, plastic bags, and films such as cling wrap.  

 

For forensic purposes, polymer materials are generally grouped by their application. The analytical 

techniques used to characterize the polymer depend on the sample type and the instrumental 

methods adopted in laboratories. One limitation of forensic polymer analysis is the substantial 

number of end-use items that can be analyzed, such as tapes, bags, automotive parts, plastic 

containers, fabrics, and textiles. Defining standardized protocols for every possible object type is 

unrealistic. So instead, the focus has been on developing specific protocols for the polymer 

materials most seen in forensic laboratories: fibers, tapes, and paints [2-4]. Otherwise, for other 

polymers, more general protocols are specified by technique rather than by material [5-6]. These 

techniques allow for the characterization of the main polymer types plus additional components, 

including colorants, fillers, and additives. As such, there is potential for evidence items to be 

associated based on class characteristics. However, more distinctive features are required to 

individualize a sample to a possible source. 

 

To be individualized to a single source, a questioned item must align to a source with distinct and 

consistent edge morphology and features that indicate the two items once belonged together (e.g., 

a fragment from a headlight from a hit-and-run) [7-8]. The assumption has been that fracture edges 

are unique and not randomly reproduced. As such, many laboratories consider a physical fit 

conclusion sufficient not to warrant additional chemical analysis on the samples to consider class 

association [9]. However, in recent years, renewed calls to demonstrate the reliability of forensic 

pattern-matching disciplines have driven additional research in physical fit examinations [10-12]. 

Numerous studies have been published that estimate error rates for physical fit examinations of 

common forensic materials. Currently, however, only some studies propose a systematic and 

quantitative method for physical fit comparisons of polymer materials, and there are no consistent 

features or criteria that analysts can use when making decisions. Our group has developed novel 

methods that allow a quantitative assessment of the probative value of a fit for duct tapes and 

textiles. This work expands those approaches to the examination of automotive polymers.  

 

Various studies have introduced new methods for comparing and interpreting the value of a 

physical fit. Most existing publications cover specific cases where physical fit examinations 

provide critical evidence for a criminal investigation. Still, in recent years a shift has been observed 
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in the literature toward more extensive populational studies and statistical evaluations of the error 

rates and probative value of a physical fit [13]. Most studies report on the most common trace 

materials requested for physical fit analysis, including tapes, textiles, polymers, and paper. Ductile 

polymers, such as tape, have been the focus of numerous studies, and several recent studies propose 

quantitative comparison methods and provide error rates and statistical evaluation of physical fit 

[13-22].  

 

On the other hand, a limited number of studies currently evaluate brittle polymer materials for 

forensic physical fit examinations. One of the few studies by Baca et al. [23] considers the 

fractography of glass and brittle polymers. The authors analyze polymer lenses broken using 

different methods and tools. The results indicate that an impact collision caused the polymer lens 

to crush instead of splintering, which could influence the appearance of potential fragments 

recovered at a crime scene [23].  

 

Another study incorporates a computational method for comparing polymer materials. Two 

polymer types are evaluated – silicon-based polymer casts and Perspex (acrylic glass) plates. The 

two polymers represent differing polymer characteristics – the silicon polymers are elastic, while 

the Perspex is brittle. Two computerized systems are used to detect the contour of edges of polymer 

materials and compare them against a database of other samples to generate a statistical probability 

of a potential fit. The results find that length of the fracture is a critical feature for the algorithm. 

The smallest fracture lengths (0.125 cm for silicon and 1 cm for Perspex) contribute the highest 

error rates, at 22% and 40%, respectively. However, longer lengths improve the accuracy 

substantially. In the silicon polymer, increasing the fracture length from 0.125 cm to 0.250 cm 

drops the error rate from 22% to 8%, and when the length increases to 3 cm, the error rate further 

drops to 0.016%. The same is true of the Perspex, where a fracture length of 2 cm reduces the error 

rate to 17%, and increasing the length to over 5 cm drops the error rate to 4%. The authors note 

that the silicone-polymer edges produce enough information and distinct edges regarding the 

algorithm contour detection. In contrast, the Perspex edges have less information (less distinctive 

edges). Despite that, the algorithm can produce likelihood ratios that can estimate the weight of 

evidence for a given fit [24].  

 

The proposed method in this study takes inspiration from the edge similarity score (ESS) method 

developed for duct tapes and textiles. Each sub-unit bin is independently observed, and the features 

and overall alignment are determined. Quantitative values are assigned to each bin depending on 

alignment, and the ESS is calculated as the relative percentage of alignment. True fit pairs result 

in high ESS, while non-fit pairs result in low ESS [21-22]. Here, we expand the approach to rigid 

polymers and adapt it for brittle polymer materials, specifically automotive headlight and taillight 

samples. The critical features needed for decision-making are material-specific. Thus, a primary 

goal of this study is to identify which features are most relevant for physical fit examinations of 

automotive polymers. In addition, brittle polymers can be observed in a three-dimensional plane, 
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which challenges imaging the microscopic features. Overall, the developed method is intended to 

provide analysts with a systematic comparison method for brittle polymers, defined criteria and 

features, and a detailed documentation template to enhance transparency and consistency in the 

decision-making process.  

 

5.3. Methods and Materials 

The polymer materials are obtained from vehicle headlights and taillights salvaged from 

automotive body shops. The initial lamp housings are somewhat broken, originating from vehicles 

that replaced the damaged light. The original light assemblies are documented with images and 

then disassembled to the extent possible to separate the different observable polymer types (i.e., 

clear automotive lens cover, black housing, silver accents, and colored sections). Figure 5-1 shows 

an example of one of the headlights in its original form, and then the different components are 

removed.  

  

 
Figure 5-1. Images of an original headlight and the separated components before fracture. The 

initial assembly is shown in the top left image, while the deconstructed parts are in the other 

images. The lamp is taken apart to separate the different types of polymers and remove non-

polymer parts (metal/glass).  

 

Following the deconstruction of the automotive head/taillight assemblies, the components are 

sampled for analysis using Fourier Transform Infrared Spectroscopy (FTIR) to identify the 

primary polymer type of the different components and further understand their mechanical 

properties. The FTIR spectra classifications of each polymer sub-type are available in Appendix 

5A. The parts are then grouped according to their overall appearance. The main classes of polymers 

and their respective compositions are described in Table 5-1.  
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Following deconstruction, the different components are broken further into smaller fragments. 

Images of each intact polymer are captured before fracturing using a Nikon 7200 DSLR camera 

with an AF-S Nikkor 18-140 mm lens. After imaging, one side of each sample is covered in 

painter’s tape to ensure that most fragments stay together after fracturing. The polymers are 

fractured by placing each piece within a square concrete housing and dropping a 16 kg kettlebell 

directly onto the polymer sample from a consistent height of four feet. A cardboard concrete 

forming tube is used to guide the weight falling. The kettlebell is dropped onto the polymer and 

repeated to break the polymer sample into numerous fragments. After fracturing, all fragments are 

stored in a sealed plastic evidence bag to avoid cross-contamination between pieces from different 

sources. 

 

 

 

Table 5-1. List of polymer composition and morphologies in this study. This set includes a mixture 

of polymer types, compositions, and morphologies from several assemblies.  

 

Polymer Composition Type of Plastic Study Polymer Class 

Polycarbonate 

 

Thermoplastic 
Translucent Clear, 

Translucent Color 

Polypropylene Terephthalate (PPT) 

 

Thermoplastic Opaque Color 

Polymethyl Methacrylate (PMMA) Thermoplastic Translucent Clear 
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Following the breaking, each polymer is reassembled using the original photographs as a guide. 

Each fragment is given a unique, partially randomized ID and packaged separately in small manila 

envelopes. The ID of each fragment maintains traceability of the original polymer source 

(headlight and taillight), the inventory number of the original polymer sample, the fragment 

number, and a randomized two-letter code. Non-participating analysts perform the imaging, 

labeling, and documentation to ensure those performing the comparisons are blind to the ground 

truth of which samples belong together. The analysts not responsible for examination prepare non-

fit ground truth pairs by comparing pieces that were not joint but had similar edge characteristics. 

Finally, each pair is photographed together in the orientation intended to be analyzed; an example 

pair is shown in Figure 5-2. The individual comparison pairs all originate from the same type of 

polymer; as in casework analysis, samples of distinctly different polymers would be excluded 

before a physical fit examination. The selected pairs of samples are imaged to allow the analysts 

to orient the fragments correctly for comparison. While this knowledge is not available in true 

casework, providing the images ensures that the analysts perform comparisons only on the 

intended edges where the respective “truth” is known but blind to the examiner.  
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Figure 5-2. Example comparison pair of polymer samples. Each sample's label has an arrow 

pointing to the fragment's randomly selected “North” side. This label provides the intended 

orientation of the fragments and edges of interest. For example, this pair is designed to be analyzed 

for HL2.1-VG in the southwest orientation and HL2.1-TG in the north orientation. 

 

5.4. Results and Discussion 

 

5.4.1. Development of comparison and documentation criteria 

The first step of this study is to develop a comparison method and define features that analysts can 

use for their observations. Six true-fit pairs of polymers (clear and red) are initially used for testing 

and method development. Three analysts observe the six pairs independently and identify features 

they use during decision-making. The results are compared, and the proposed comparison 

characteristics are established after discussing the features that all three noted. Some of these 

features correspond with characteristics of other brittle materials, such as glass [25]. The 

terminology to describe these features and factors that can influence a fit or non-fit decision is 

established to ensure consistency in the reporting. In addition, an Excel documentation template is 

created to maintain consistent records of samples and features between analysts. 

 

This study utilizes the previously developed edge similarity score (ESS) concept for comparing 

tape physical fits [21-22]. Unlike duct tapes, which have uniform areas between scrim yarns, 

automotive polymers have no inherent uniform sub-divisions that can be used as pre-determined 

comparison bins. Thus, the ESS comparison areas are based on the length of the fracture. The 

fractured edge is divided into five equal-length bins. To account for potential curved edges in the 

polymer fractures, unwaxed dental floss is used to outline the fracture edge, then divided into five 

sections marked on the floss with a permanent marker to help the examiner locate where each bin 

is. The flexibility of that marked floss makes it easy to align to the edges under the microscope 

during the examination and does not alter any of the pieces.  

 

The method for this study incorporates two steps. The first step is a general observation of each 

sample independently and then a side-by-side comparison. Each fragment has the overall edge 

morphology documented. The edges are labeled as straight, curvy, serrated, or puzzle-like, and 

any observations about the fragment are documented. The analyst then assesses the degree of fit 

between them based solely on overall edge morphology. The next step incorporates the bin-by-bin 

assessment of the alignment of the fracture edges and features and the calculation of the ESS under 

a stereomicroscope (Leica EZ4, PA, USA). This step documents the presence or absence of ten 

defined features in each bin (Figure 5-3), whether that feature indicates the bin as a fit or non-fit, 

and describes how distinctive the feature is. The examiner has a third option: document an 

inconclusive bin when the observed features do not allow for a fit or non-fit decision. 
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Figure 5-3. Defined comparison features for brittle polymer comparisons. The presence or absence of each feature is noted in each 

comparison bin, and each feature is assigned a feature prominence value corresponding with how distinctive the feature is.  
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For example, in each bin, the pattern alignment is documented (as needed – not all polymers have 

patterns or textures). In instances with a pattern, the feature is recorded as indicative of fit or non-

fit. The feature is also noted as distinctive or highly distinctive. A new approach is implemented 

in this method to estimate the influence of each feature on a given decision. To evaluate the features 

quantitatively, each response option for the feature description is assigned a value, referred to as 

the feature prominence value (FPV). When the feature is absent or when the feature indicates an 

inconclusive alignment, the FPV is 0. For fit alignment, the FPV is positive, while a non-fit 

alignment of the feature contributes a negative FPV. The presence of more distinctive features 

provides higher FPV. Table 5-2 shows the assigned values for each feature and respective 

descriptive options.  

 

Table 5-2. Documented features, response options, and respective feature prominence value (FPV) 

for the brittle polymer comparisons. These values are summed across the ten features for each of 

the five comparison bins and then added to express the feature prominence sum of the comparison. 

Features Options for a response to these features 
Feature 

Prominence Value 

1. 3D Edge Alignment Aligns and highly distinctive (indicative of fit) 2 

2. Surface Plane/ 

Directionality 

Alignment 

Aligns (indicative of fit) 1 

Inconclusive 0 

3. Edge curvature/ 

Directionality  

Misaligns (indicative of non-fit) -1 

Misaligns and highly distinctive (indicative of non-

fit) 
-2 

4. Pattern Alignment Present and highly distinctive (indicative of fit) 2 

5. Surface damage 

alignment 
Present (indicative of fit) 1 

6. Scratch alignment Absent 0 

7. Fracture marks Present but misaligns (indicative of non-fit) -1 

8. Protruding features Present but misaligns (highly indicative of non-fit) -2 

9. Extraneous materials 

Present and highly distinctive (indicative of fit) 2 

Present (indicative of fit) 1 

Absent 0 

Present but misaligns (indicative of non-fit) -1 

Present but misaligns (highly indicative of non-fit) -2 

10. Missing materials 

Present and highly distinctive (indicative of fit) 2 

Present (indicative of fit) 1 

Absent 0 

Inconclusive 0 

Present but misaligns (indicative of non-fit) -1 

Present but misaligns (highly indicative of non-fit) -2 

 

The FPV of all features is summed for each bin and then across all bins to provide the feature 

prominence sum (FPS). In addition, the analyst assigns a value of 0, 0.5, or 1 for each bin's overall 
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non-fit, inconclusive, or fit alignment; the alignment values for each comparison bin are summed 

and expressed as a relative percentage the five total comparison areas to calculate the ESS. Finally, 

the final overall decision, ESS, and FPS are reported in each comparison. An example template 

for comparing a pair of polymer samples is shown in Figure 5-4.  

 

Following the development and preliminary testing of the method and documentation criteria, the 

analysts conduct a training session to standardize the criteria used for the examination and 

reporting. A set of blind comparisons is performed. The comparison set incorporates 385 

individual comparison pairs completed by an analyst trained in the polymer ESS methodology. 

The composition of the polymers across the set is a mixture of translucent clear, translucent-

colored, and opaque-colored polymers (refer to Table 5-3). In addition, a subset of comparisons 

is completed by a second analyst to evaluate inter-analyst variation in the method’s performance.  

 

5.4.2. Exploratory analysis of method performance and distributions of edge similarity 

scores and feature prominence on true-fit and true non-fit populations 

The proposed method demonstrates good performance, with an accuracy greater than 85%. A 

critical outcome of the comparisons is that no false positives are reported for true non-fits. 

However, several false negative results are observed, along with several fit and non-fit pairs 

reported as inconclusive. The documentation protocols established in this study allow the 

evaluation of the reasons and factors that lead to those misidentifications. Some result from 

samples lacking distinct features on the edges, distortion caused during the fracture event, and 

features left post-breaking (such as scratches created during evidence packaging or comparison) 

that suggest the samples be non-fit.  

 

Table 5-3. Performance rates of the analysis of the polymer pairs. This overall set includes a 

mixture of polymer types, compositions, and morphologies.  

Performance Rates Overall (n = 385) 

# of True Fits/# of True Non-fits 312/73 

True-Positive Rate (%) 82.7 

True-Negative Rate (%) 95.9 

False-Negative Rate (%) 9.9 

False-Positive Rate (%) 0.0 

Inconclusive Rate (True Fits) (%) 7.4 

Inconclusive Rate (True Non-fits) (%) 4.1 

Accuracy (%) 85.2 
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Figure 5-4. Documentation template for comparison of brittle polymer samples. The first step covers the overall assessment of each 

edge independently and then a side-by-side comparison, where the analyst documents whether they observe the pair as a fit or non-fit. 

The second step covers the bin-by-bin assessment of the compared edges, which are separated into five macroscopic bins based on the 

overall length of the fracture. Ten major features are documented for their absence or presence. If present, the analyst documents whether 

the feature indicates a fit or non-fit, and the degree of distinctiveness of the feature is assigned a prominence value. The analyst reports 

each bin as fit, non-fit, or inconclusive by coding it as 1, 0, or 0.5, which is then automatically calculated as the ESS. The conclusion, 

ESS, and the sum of prominence values (FPS) are reported. The complete Excel file clean template can be accessed through this link. 

file:///E:/Dissertation/4_Polymer%20Chapter/Polymer_Analysis_Template_v3_Feb2023.xlsx
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The distribution of ESS for the polymer set is shown in Figure 5-5 and documents the reported 

ESS for the true non-fit and fit pairs based on the ground truth. Figure 5-5A shows that the ESS 

distribution for the polymer comparison set for true non-fit pairs generally falls below 30, with the 

majority at an ESS of 0. There are two inconclusive true non-fit pairs at an ESS of 40. This 

indicates that even with some observed fit features, the overall ESS was still low for those samples. 

Conversely, the ESS distribution for the true fit pairs is more variable. While most fall at 90 to 

100, more inconclusive and false negative pairs are recorded with low ESS values. Despite the 

wider variation, there is a clear separation between the ESS distribution of fits and non-fits, 

indicating that the score can be used as a metric of fit quality. Figure 5-5B shows the distribution 

of ESS as a histogram. The true non-fit pairs are centered on an ESS of 0, but several true fit pairs 

are reported with an ESS of 0.  

 
Figure 5-5. Distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the polymer 

analysis (n=385 pairs). No false positives are reported, and only a few TNF pairs are reported as 

inconclusive. Figure 5-5A shows boxplot distributions of the ESS values of the polymer samples. 

The distribution of ESS for TF pairs is much broader. Those correctly reported as fits have an 

overall median ESS of 100; several pairs receive lower ESS and are misidentified as inconclusive 

or non-fits. Figure 5-5B shows the histogram of ESS values, where the number of misidentified 

true fit pairs is visible, and generally minimal overlap is observed between ESS on the two groups. 
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An additional exploratory analysis of these polymer comparison pairs is through the distributions 

of the FPS. Figure 5-6 shows the frequency distribution of the FPS for the sample set. All the true 

positive pairs receive FPS values of at least 15 or above, while true non-fit pairs have FP sums of 

-5 or lower. Most samples reported as inconclusive range in FPS from -5 to 10, but all the 

inconclusive pairs that are true non-fits receive an FPS of 0 or less. Meanwhile, all the inconclusive 

pairs that are true fits have FPS between 0 to 20. As such, the preliminary analysis would suggest 

that an FPS of 15 or higher supports a fit conclusion, while an FPS of less than -5 supports a non-

fit decision. Meanwhile, an FPS between -5 to 10 could indicate a pair that features that 

demonstrate both a fit and non-fit.  

 

 

 
Figure 5-6. Frequency distribution of FPS for the initial polymer set. The histogram is color-coded 

by outcome: True Positive (TP), True Negative (TN), False Negative (FN), False Positive (FP), 

Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP). No FPs are reported, and 

a few TNF and TF are reported inconclusive. The distributions of TP sums generally are at 15 or 

higher, while the TN pairs have sums of -5 or lower.  

 

The additional analysis assesses the polymer type's influence on the method's performance. Table 

5-4 shows the performance rate of the polymer set, divided by polymer class. Translucent clear 

polymers are the most common in this set, followed by the opaque colored and then the translucent 

colored. It is important to note that there is an imbalance between the number of true fits and true 

non-fits generated for this study. Generating non-fits for the brittle polymers is more complex than 
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in other materials, as there is no easy way to reproduce edges with consistent features and 

morphologies. As such, one of the limitations of this initial study is the imbalance and the limited 

number of overall pairs; however, it is worth noting that the analysts performing the comparisons 

were blind to the ground truth in addition to the number of expected fit or non-fit pairs for the set.  

 

Table 5-4. Performance rates of the initial analysis of the polymer pairs, grouped by polymer class 

of translucent clear, translucent color, or opaque color. 

Performance Rates 
Opaque 

Colored (n=40) 

Translucent 

Clear (n=314) 

Translucent 

Colored (n=32) 

# of True Fits/ 

# of True Non-fits 
31/9 253/62 28/2 

True Positive Rate 

(%) 
90.3 83.8 64.3 

True Negative Rate 

(%) 
88.9 96.8 100.0 

False Negative Rate 

(%) 
3.2 7.5 28.6 

False Positive Rate 

(%) 
0.0 0.0 0.0 

Inconclusive Rate 

(True Fits) (%) 
6.5 8.7 7.1 

Inconclusive Rate 

(True Non-fits) (%) 
11.1 3.2 0.0 

Accuracy (%) 90.0 86.3 66.7 

 

Of the three sets, the translucent-colored set generated a higher false negative rate and a high 

inconclusive rate for true fits. The misidentifications in this set reduce the accuracy for these 

polymers to 66.7%. During the comparisons, the analysts note that these polymer fragments, 

particularly the orange fragments originating from a headlight, tend to distort more substantially 

than some other polymers. This trend can be observed in Figure 5-7, which shows the boxplot 

distributions of pair ESS based on polymer class and composition. While there are two main 

polymer types in the transparent clear class, the distribution of the ESS for true fits and true non-

fits is similar. The translucent colored set, however, has a broader distribution of ESS for both true 

fits and non-fits.  
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Figure 5-7. Boxplot distributions of reported ESS grouped by polymer class (translucent clear, 

translucent colored, and opaque colored) and polymer composition (PMMA, polypropylene 

terephthalate, or polycarbonate). The separation between the ESS of true fits and true non-fits for 

the translucent clear and opaque color sets is relatively strong, and most pairs have ESS of 100 or 

0 for fits and non-fits, respectively. Conversely, the distribution of ESS for the translucent color 

fragments is more variable than the other classes.  

 

While both the translucent color set and some of the translucent clear sets are made of 

polycarbonate, the features of the samples are much different. Polycarbonate is generally very 

resistant to impact [1]. However, the translucent color samples in this study demonstrate more 

distortion than observed in other samples. An example of the orange translucent polymer is shown 

in Figure 5-8. The translucent colored samples have more texture and patterning than the 

translucent clear ones. It is observed that the sample tends to fracture between the patterns rather 

than through them. The material is thinner in these samples than in the clear plastic samples, which 

could contribute to more distortion as the sample fractures. 

 

Even though the translucent colored polymers tend to have more distinct patterns than the other 

classes, the more extensive distortion interfered with observing multiple features. This includes 

surface, pattern, and 3D edge alignment, three main characteristics to inform the overall edge 

assessment. An example of a misidentified orange translucent polymer pair is shown in Figure 5-

8. These samples have more visible surface damage, likely contributing to the misidentification. 

This pair has a noticeable gap between the edges between the MN-E (east direction) and AZ-W 

(west direction), and AZ has visible surface damage on the W and E sides. This causes the sample 

to be misclassified as non-fit with an ESS of 0 and an FPS of -32. 
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Figure 5-8. Example pair from translucent color polymers. The two fragments have visible surface 

damage, and the respective comparison edge has a noticeable gap between the material of the two 

edges in a manner that indicates they do not fit together. Figures 5-8A, 5-8B, and 5-8D show the 

gap between the edges caused by missing material and distortion of the edges. In contrast, 5-8C 

shows an indent in the surface of AZ top sample that causes misalignment of the pattern (texture) 

and the edge of the samples.  

 

The overall trend remains consistent between classes when evaluating the FPS values for the 

polymer classes (Figure 5-9). True positive pairs receive high FPS, while true negative pairs 

receive low FPS, and the inconclusive pairs sit between approximately -5 to 10. The 

documentation templates provided insight into the reason for this trend; some true non-fit pairs 

have features that indicate similarity between edges, particularly surface plane alignment, which 

contributes to positive FPV. As seen in the performance, both the translucent clear and translucent 

colored classes demonstrate more false negatives. The range of assigned FPS corresponds with the 

true negative distributions, meaning there are fragment pairs that indicate highly distinctive 

features that suggest non-fit conclusions. 
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Figure 5-9. The outcome color-coded the frequency distribution of FPS for the three polymer classes. True Positive (TP), True Negative 

(TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), and Inconclusive-True-Fit (INCP) are shown for 

each class. The distributions of TP sums generally start at 15 or higher, while the TN pairs have sums of -5 or lower for each of the three 

sets. The translucent clear and translucent color classes demonstrate several false negatives with very low FPS.  
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Overall, while the initial examination demonstrates that the method performs relatively well, 

analysts must consider the suitability of the samples for comparison. Fragments prone to distortion 

may become misshapen, limiting the utility of the edge for comparison. Despite this, the polymer 

samples demonstrate many valuable features for decision-making on physical fit examinations. 

The proposed method identifies which features are more informative to the examiner’s opinion 

and is a first step for assisting standardization in analyzing and reporting these types of automotive 

polymers. 

 

The proposed methodology also demonstrates that performing both the macroscopic and 

microscopic comparison of the samples often proves beneficial for comparison. Figure 5-10 shows 

the outcomes of the samples based on the decision made at the macroscopic or microscopic 

conclusion. As shown, the observations made at the microscopic level improve the overall rate of 

correct identifications. From the macroscopic to microscopic comparison, true positives and true 

negatives increase, and inconclusive decisions of both true fits and true non-fits decrease. There is 

a slight increase in false negatives, but critically, false positives are observed in the macroscopic 

decisions that are not present in the microscopic decisions. As such, this demonstrates that making 

observations at both the macroscopic and microscopic levels generally improve the accuracy rates 

and minimizes the risks of false positives. Nonetheless, it is worth noting that if there are 

substantial differences at the macroscopic level, an analyst can be justified in reporting a non-fit 

without performing a microscopic comparison.  

 
Figure 5-10. Bar graph of outcomes from overall polymer comparison set. Based on the general 

conclusions, there is an improvement in accuracy from the macroscopic to microscopic decisions, 

indicating it is generally vital to complete the microscopic comparison unless there are distinct 

visual differences at the macroscopic level.  
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Similar trends are observed by polymer class when exploring the difference between the 

macroscopic and microscopic decisions. Figure 5-11 shows the breakdown of macroscopic versus 

microscopic decisions by class, and the trend is consistent in all three – improvements in true 

positives and negatives and decreased inconclusive decisions.  

 

 
Figure 5-11. Bar graph of outcomes from overall polymer comparison set split by polymer 

category. Generally, there is an improvement in accuracy from the macroscopic to microscopic 

decisions across all three classes. 

 

5.4.3. Inter-examiner variation  

To further evaluate the method’s performance, a subset of samples from all three polymer classes 

is independently assessed by a second analyst. This subset contains 187 pairs purposely selected 

to include the most challenging samples, including those pairs where the first analyst observes 

more misclassifications. The performance of the method for these samples by both analysts is 

shown in Table 5-5.  

 

Overall, the accuracy is comparable between the two analysts, however, Analyst A has a slightly 

higher false negative and inconclusive rate for true fit pairs. Most of the pairs misidentified by one 

analyst are also misidentified by the other, and neither reports a false positive. Some variation in 

performance is not unexpected. Differences in the interpretation of features and the degree of 

distinction of the features can contribute to variation in performance, along with each analyst’s 

tolerance for risk. The evaluation of the ESS template, its color-coded bin-by-bin comparison, and 

the documentation of the features that lead the examiners' decisions help identify the sources of 

variability between analysts. One conclusion that is derived from this assessment is that because 

we are using only five bins, a small discrepancy in a single bin can lead to a difference of 10% to 

20% in the ESS (i.e., assigning a 0.5 versus 0 or 1 in one of the bins). As a result, it is recommended 

to increment the number of comparison bins to at least ten to minimize the variability in reported 

scores. 
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Table 5-5. Performance rates of the inter-analyst examination. This set is a subset of the initial set 

and contains a mixture of the polymer classes.  

Performance Rates Analyst A Analyst B 

# of True Fits/# of True Non-fits 114/73 114/73 

True Positive Rate (%) 72.8 81.6 

True Negative Rate (%) 95.9 98.6 

False Negative Rate (%) 14.9 11.4 

False Positive Rate (%) 0.0 0.0 

Inconclusive Rate (True Fits) (%) 12.3 7.0 

Inconclusive Rate (True Non-fits) (%) 4.1 1.4 

Accuracy (%) 81.8 88.2 

 

 

The ESS between the two analysts is also comparable. Analyst A has a slightly wider distribution 

of ESS for true fits, but both analysts have the median ESS for fits at 100 and non-fits at 0. There 

is limited overlap between the ground truth ESS distributions (Figure 5-12).  

 

 
Figure 5-12. Boxplot distribution of ESS for true fit (TF) and true non-fit (TNF) pairs from the 

inter-analyst polymer analysis. No false positives are reported, and only a few TNF pairs are 

reported as inconclusive for both analysts.  
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Moreover, the FPV and FPS metrics reveal a similar weight given by the analysts to the features 

that lead to a particular bin decision, this provides evidence that the metrics are a promising step 

towards the standardization of the polymer fit examinations. Figure 5-13 shows the comparison 

of FPS for the two analysts on the inter-analyst polymer set. The distributions are similar, sharing 

the general trends in samples correctly identified as fits and non-fits. For both analysts, 

inconclusive samples tended to have FPS between 0 to 10.  

 

 
Figure 5-13. The frequency distribution of FPS for the 187 inter-analyst pairs. True Positive (TP), 

True Negative (TN), False Negative (FN), False Positive (FP), Inconclusive-True-Non-fit (INCN), 

and Inconclusive-True-Fit (INCP) are shown for each analyst. The distributions of FPS are similar 

for both analysts, with only minor variations in the distributions of the inconclusive pairs.  

 

Interestingly, when comparing both analysts' macroscopic and microscopic decisions, the same 

trends apply, where performing the microscopic observations improves the overall accuracy. 

Figure 5-14 shows the outcomes of the samples based on the decision made at the macroscopic or 

microscopic decision for both Analyst A and B. For both analysts, the number of true positives 

and negatives increases, and inconclusive decisions of true fits and true non-fits decrease. Both 

analysts demonstrate false positives in the macroscopic comparisons that are not present in the 

microscopic decisions. As such, regardless of the analyst, performing both macroscopic and 

microscopic observations improves overall performance.  

 



 

 

169 

 

 
Figure 5-14. Bar graph of outcomes from the two analysts on the inter-examiner polymer set. Both 

analysts demonstrate improved performance from the macroscopic to microscopic decisions.  

 

The reporting approach makes comparing results between the two analysts straightforward and 

easy to review. The documentation template ensures that analysts evaluate the same bin areas using 

standardized features and criteria. However, the interpretation of the features is still decided by the 

analyst, which allows analysts to express and document their own opinions and allow for mutual 

discussion of the samples even long after the samples are compared initially.  

 

5.5. Conclusions 

The edge similarity score method demonstrates good overall performance for physical fit 

examinations of brittle automotive polymers — the initial comparison set of 385 comparisons 

results in an overall accuracy of 85.2%, with most of the false negative misidentifications driven 

by distortions during the breaking process. The absence of false positives indicates that no true 

non-fit pairs demonstrated enough features to show they belonged together. It is observed that even 

some true non-fit pairs have characteristics that show similarity between edges, particularly surface 

plane alignment. However, there are still sufficient distinct features to assist in correctly 

identifying when observed under the microscope (distinctive fracture marks, surface damage, and 

curve directionality). The novel addition of the feature prominence sum provided an additional 

quantitative metric to assess the similarity between edges and evaluate which features hold more 

support for the analyst decisions. This study demonstrates preliminary ranges that can be used to 

support an analyst’s decisions: true fits with FPS greater than 15 and true non-fits with FPS less 

than -5.  

 

In addition, inter-analyst performance shows consistency, with both analysts demonstrating similar 

overall accuracies, ESS, and FPS distributions when using the proposed examination and reporting 

method. The three-dimensional nature of the polymers examines fractured edges more challenging, 

as its more complex to position the side of the fragment by the side to observe the features in all 
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the dimensions. Also, unlike other materials of simpler and predictive construction patterns (like 

duct tape), it is not straightforward to identify the correct top and bottom edge of the compared 

items, including additional subjectivity in this assessment. Based on evaluating the reporting 

templates, we hypothesize that these two factors contribute to some variability between examiners. 

However, the approach proposed here is anticipated to provide a first step toward more systematic 

comparison criteria and documentation. It is also anticipated that the future evaluation of this tool 

by practitioners can lead to improvements in reproducibility. 

 

The initial mixed polymer set indicates that polymer composition and mechanical properties may 

influence the fit’s quality. According to the analyst's observations, the translucent colored 

fragments derived from headlights tend to deform more. However, with the limited number of 

comparisons performed in this class, it is currently unknown whether this is due to the polymer 

construction alone. More data is needed to evaluate polymer composition and construction's 

significance in edge morphology post-breaking.  

 

This study establishes for the first time a set of standard features and terminology for comparing 

brittle polymer edges and provides a documentation template incorporating the features for 

physical fit examinations. The initial comparison set provides insight into potential factors that 

could influence the quality of a fit and the possible error rates associated with polymer physical fit 

analysis. The documentation of the ESS and FPS of these pairs provides a means to quantitatively 

assess the similarity between edges and how the features correspond to an analyst’s decision. It is 

important to note that there are some misidentified samples, meaning that there is a reasonable 

chance that some polymer evidence samples may not be suitable for physical fit examinations, so 

analysts must be aware of potential sources of error in comparisons and assess if there is a chance 

that the samples could have been further damaged after breaking. Future work in this area will 

continue to refine the comparison method and documentation template. With additional 

comparisons, there is an opportunity to utilize computational models to estimate the weight of the 

comparison features and provide more representative feature prominence values. In addition, with 

an increased dataset, additional statistical analysis on the reported ESS and FPS for polymer 

comparisons to estimate the probative value of a potential fit will be reported in a follow-up work. 
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Appendix 5-A 

 

 
Figure 5A-1. FTIR spectra of the translucent color (orange) samples. The main polymer type is polycarbonate.  
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Figure 5A-2. FTIR spectra of the translucent color (red) samples. The main polymer type is polycarbonate.  
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Figure 5A-3. FTIR spectra of one of the translucent clear sources. The main polymer type is polycarbonate.  
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Figure 5A-4. FTIR spectra of the other translucent clear source. The main polymer type is poly(methyl methacrylate) or PMMA.  
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Figure 5A-5. FTIR spectra of the opaque color polymer. The silver coating on the top surface is polybutylene terephthalate (PBT), while 

the main body (the black portion) is polypropylene terephthalate (PPT).  
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Chapter 6: Development of methods for objective comparison of XRF spectra  

6.1. Overview 

Providing statistical support for X-ray Fluorescence (XRF) spectral comparisons using 

quantitative similarity measures is addressed in this study. A set of electrical tapes, most 

originating from different sources (94 rolls) and an additional subset originating from the same 

source (20 samples from the same roll), are characterized via XRF. Noise in spectra is filtered 

using Fast Fourier Transform (FFT), and baselines are corrected using a second derivative-

constrained weighted regression. Then, spectral contrast angle ratios (SCAR) are calculated for 

each pairwise comparison (n=4,561). This criterion optimizes a threshold to assess associations or 

exclusions to minimize error rates. In addition, SCAR is used to classify samples using cluster 

analysis. An automated approach to sample comparison utilizing a random forest algorithm assists 

in identifying the basis for similarities or differences between compared spectra. This study 

presents an objective approach to reporting opinions and probabilistic determinations of spectral 

data that can be used as a model for other fields and materials. The SCAR metric can capture 

information on the variability between the compared samples and the variability within same-

source samples. Also, the SCAR can support the forensic examiner’s decision-making process and 

add transparency in various ways. It offers an automated and quantitative basis for associations or 

exclusions of spectral comparisons. It also performs well for classifying samples based on the class 

characteristics of elemental compositions and making inferences about the sample’s origin.  

 

6.2. Introduction 

Pattern recognition tasks relying on spectral comparison between samples are common in the 

analytical and forensic chemistry fields [1]. Identifying unknown samples using reference libraries, 

comparing questioned samples to control samples to infer source identity, and classifying or 

discriminating samples are some examples of activities requiring the comparison of two or more 

spectra [1]. Various heuristic means and quantitative metrics exist to compare spectra. However, 

interpretation of the level of similarity between spectra in the context of the chosen pattern 

recognition task usually relies on the scientist’s judgment, and decisions become more complex 

when facing high-dimensional spectra with subtle differences or when comparing sets of spectra 

to each other and having to account for within-source variability.  

 

Heuristic comparison methods that rely primarily on human intervention, such as spectral overlay, 

are commonly used in Fourier Transformed Infrared Spectroscopy (FTIR) and Raman 

spectroscopy, X-ray fluorescence (XRF), Scanning Electron Microscopy-Energy Dispersive 

Spectroscopy (SEM-EDS), Laser-induced Breakdown Spectroscopy (LIBS), and 

microspectrophotometry (MSP) data [2-5]. A spectral overlay is a process that involves 

superimposing spectra from multiple samples to visually determine if any exclusionary differences 

are present that would indicate that the samples originate from different sources. This may include 

observable differences in peak heights, areas, or an element's presence or absence. A spectral 

overlay is valuable for distinguishing between samples with noticeable differences quickly. Still, 
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it becomes more complex when the spectra are more similar or when the comparisons are 

performed using sets of spectra for accounting for within-source variability. In these cases, 

decisions based on spectral overlay may be inconsistent across examiners. The problem of 

subjectivity in human-based spectral comparisons is found across forensic disciplines and 

spectrochemical methods (e.g., comparison of IR, XRF, EDS, Raman, and mass spectra). In a 

recent review paper, Lavine and co-authors discuss the need for statistical support in comparing 

IR spectra to assess the quality of a spectral comparison and minimize the appearance of personal 

bias [1].  

 

Quantitative metrics for the comparison of spectra have also been proposed. For instance, Lavine 

et al. and other research groups broadly report the statistical comparison of IR spectra of 

automotive paints for library searching and pattern recognition purposes [1, 13-25]. Other methods 

reported for spectral comparison are based on distance estimations (Euclidean, Mahalanobis, or 

Manhattan city block distance), correlation coefficients, or similarity indices [26-29]. Note that 

while using quantitative metrics may remove some of the bias involved with spectral overlay, 

using metrics in an inference scheme for comparing sets of spectra has yet to be satisfactorily 

addressed.  

 

The Euclidean distance is one of the most common comparison metrics that estimate the distance 

between two vectors in two or three dimensions [30]. Euclidean distance has been used in various 

applications, such as paints, cotton, inks, and the profiling of drugs [1, 26-35]. The Mahalanobis 

distance is another metric helpful during the classification of items since it enables the 

normalization of multivariate measurements on samples [30, 36]. Another reported comparison 

criterion is the correlation coefficient (Pearson product-moment correlation coefficient). 

Correlation coefficients have been reported in the library, searching for inks and comparing cotton 

contaminants and spray paints [29, 34-38]. The correlation coefficient measures the strength and 

direction of the relationship between two variables. The value of the correlation coefficient ranges 

from -1 to +1. The closer the absolute value of the coefficient is to 1, the stronger the relationship 

between variables. In addition, the sign of the correlation coefficient indicates whether the 

relationship between variables is direct or inverse [30, 39, 40].  

 

The probative value of the result of comparing sets of spectra is a central question of interest to 

the trier of fact. Using quantitative metrics is a step towards developing transparent and 

reproducible models to infer the identity of the source of samples characterized by analytical 

spectra. However, the field is still lacking these models. Thus, the need to develop more objective 

and statistical methods to support examiner decisions on multi-dimensional spectral data has been 

acknowledged as a critical research need by the Trace Materials Subcommittee of the Organization 

of Scientific Area Committees (OSAC) [6].  
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Tape materials such as duct tape and electrical tape have been extensively analyzed by various 

analytical techniques, including FTIR, SEM-EDS, µ-XRF, LIBS, laser-ablation inductively 

coupled plasma-mass spectrometry (LA-ICP-MS), and pyrolysis gas chromatography-mass 

spectrometry (Py/GC-MS) [3-5, 7-10]. Discrimination capabilities have been reported for each 

method independently and when combined in a complete analytical scheme. These studies found 

that elemental analysis is the most discriminating and informative technique for electrical tape 

samples [5, 7, 8].  

 

Some statistical methods, such as analysis of variance (ANOVA), principal component analysis 

(PCA), and quadratic discriminant analysis (QDA), have been used to evaluate the elemental data 

collected from electrical tapes using XRF [5, 7, 8]. These methods are advantageous as they 

complement spectral overlay and lead to identifying groups of samples with similar formulations. 

Nonetheless, the spectral overlay is the predominant practice for analyzing x-ray data collected 

from forensic polymer, tape, and glass items [1, 11, 12]. Furthermore, XRF analyses of tape 

material show high within-sample variability when performed on different apparatuses. The lack 

of appropriate metrics and the high within-sample variability result in XRF data being restricted 

to comparing single spectra to each other and in limited applicability of XRF spectra for database 

searching.  

 

This study proposes spectral contrast angle ratios (SCAR) as a complement to human-based 

comparisons. Using SCARs allows for the objective and transparent comparison of sets of spectra 

and for reducing the within-sample variability between XRF measurements made on different 

apparatuses (thus enabling library searches). Furthermore, SCAR is compatible with a two-stage 

inference model for assessing the probative value of material characterized by XRF. SCARs are 

based on the spectral contrast angle (SCA, also known as cosine dot product), a similarity measure 

often used in a mass spectral library [41, 44]. In this study, SCAs are calculated for pairs of spectra 

known to originate from a given source and for pairs of spectra potentially originating from 

different sources. The SCAR represents the ratio of the between-source and within-source SCAs.  

A previous publication by our group is used as the basis of this study, where SCAR is utilized to 

evaluate comparisons of X-ray fluorescence spectra of black electrical tape samples [8]. Our past 

results show that using SCARs dramatically improves the consistency of the discrimination of 

samples from different sources, even when the samples are analyzed on several configurations of 

XRF instruments [5,8]. This study expands our preliminary work by 1) improving the algorithms 

used to pre-process XRF spectra, 2) estimating the distribution of SCARs across populations 

known to originate from the same tape roll and different rolls, 3) identifying SCAR-based criteria 

for similarities and exclusions, and their respective error rates, and 4) utilizing SCAR for 

classification purposes. The classification approach adds value, as the elemental composition of 

electrical tape backing has shown potential for providing investigative information but is currently 

underutilized. The classification of sources using SCAR is validated using random forest models 

[45, 46]. These models are used to understand sample grouping based on spectral characteristics.  
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6.3. Methods and Materials 

The data is collected from 94 black electrical tape samples previously characterized by our research 

group and other researchers [3-5, 7, 8]. The electrical tape samples are analyzed on a Thermo 

Scientific ARL QUANT’X energy-dispersive XRF spectrometer, utilizing filters to improve the 

signal-to-noise at specific energy levels. An aluminum filter enhances the signal-to-noise ratio of 

lower energy elements (low Zc), such as calcium, titanium, and iron. The mid-range energies (mid-

Zc) are amplified using a thick palladium filter, while the high-range energies (high Zb) are 

amplified using a thick copper filter during collection. Three replicates are collected from each 

sample, and an additional subset of 20 samples collected from the same roll is used for an intra-

roll assessment. The samples are pre-treated using hexane to remove the adhesive before analysis.  

 

A spectral overlay is used to evaluate initial groupings based on similarities of elements and 

observed differences in peak heights. Pre-processing spectra remove noise and areas with minimal 

information, correct the baseline, and normalize the intensity. The spectra for the low filter are 

cleaned by removing the flat tail after 12 KeV, filtering noise using Fast Fourier transform (FFT), 

and then correcting the baseline using second derivative constrained weighted regression. The mid-

filter data is cleaned by removing the tail after 33 KeV and filtering the noise using FFT. Finally, 

the high filter data is processed by removing the tails before 1.5 KeV and after 33 KeV, followed 

by reducing noise using FFT. Each spectrum is then normalized by dividing it by the intensity of 

the maximum peak.  

 

Spectral contrast angles between two spectra 𝑥𝑖 and 𝑥𝑗 are calculated as described in [39], where 

〈𝑥𝑖 , 𝑥𝑗〉 is the dot product and ‖𝑥𝑖‖ is the L2 norm: 

𝑆𝐶𝐴 = 𝑎𝑐𝑜𝑠 (
〈𝑥𝑖,𝑥𝑗〉

‖𝑥𝑖‖‖𝑥𝑗‖
)    (Equation 1) 

Angles between samples of the same source are calculated as within-source angles. For example, 

source A with three samples (A1, A2, A3) has within-sample angle comparisons of A1 vs. A2, A1 

vs. A3, and A2 vs. A3. For each pairwise comparison, the angles between the samples from 

(potentially) different sources are calculated as the between-source angles. For two sources, A and 

B, this refers to comparisons between A1 vs. B1, A1 vs. B2, A1 vs. B3, A2 vs. B1, A2 vs. B2, A2 

vs. B3, A3 vs. B1, A3 vs. B2, and A3 vs. B3.  

 

SCARs are calculated by taking the ratio between the circular mean of the between-source angles 

and the circular mean of the within-source angles [8, 41].  

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 𝐴𝑛𝑔𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 (𝑆𝐶𝐴𝑅) =
𝑀𝑒𝑎𝑛 𝜃 (𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑔𝑙𝑒)

𝑀𝑒𝑎𝑛 𝜃 (𝑤𝑖𝑡ℎ𝑖𝑛 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑔𝑙𝑒𝑠)
  (Equation 2) 

 

Hierarchical clustering is performed on the proximity matrix representing all pairwise SCARs 

between the 94 tapes. The resulting dendrogram is compared to the initial manual comparison 

based on the spectral overlay. Since SCARs are univariate measurements summarizing all 

similarities and differences between two sets of spectra, it is complicated to directly and easily 
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interpret the clusters observed in the dendrogram. We interpret and validate the dendrogram 

clustering using random forest classifiers and compare the results with the analyst-based feedback 

determined by spectral overlay classification. The classifiers are designed to automatically detect 

common and differing peaks (based on intensity and slopes) between sets of XRF spectra. 

Commonalities and differences are assessed based on the importance of each wavelength 

(measured by its Gini index) to reach a correct classification [47].  

 

All algorithms to process the spectra, calculate SCA and SCAR, and perform hierarchical 

clustering and random forest classification are implemented in R (version 4.1.3).  

 

6.4. Results and Discussion 

 

6.4.1. Sample comparison using spectral overlay 

The electrical tape backings are first evaluated by spectral overlay to determine which chemical 

elements are present in the samples. This allows samples with noticeably different compositions 

to be quickly differentiated. All three spectra of one tape are overlaid over the spectra of another 

to perform the overlay. Present elements are recorded using a criterion of a signal-to-noise (SNR) 

ratio greater than 3, and areas of differences are observed and documented. Spectral overlay allows 

for a visual depiction of the variation within- and between sources. The spectra overlays are 

performed with a blind approach, where the ground truth is hidden from the analyst to avoid bias 

regarding the brand information of the tapes or how previous analysis methods have grouped them. 

While most tapes can be differentiated, numerous pairs cannot be distinguished or demonstrate 

only minor similarities and differences.  

 

From these comparisons, 41 distinct groups are formed, with additional differentiation between 

sources through observing more minor differences in peak shape or height, leading to 61 total sub-

groups (Figure 6-1). Comparisons are made blindly and independently corroborated by two 

analysts. Any reported discrepancy is discussed and resolved with a third reviewer. Based on the 

spectral overlay of XRF data, a discrimination power of 97.0% is obtained (132 indistinguishable 

pairs out of a total of 4371 comparisons) [8]. The manual process of overlaying spectra is tedious 

due to the extensive pairwise comparisons. Still, it proved helpful for the analyst in gaining 

knowledge of the elemental compositions of the tapes and setting the basis of the observed 

differences or similarities.  
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Figure 6-1. The 94 different source electrical tapes are classified into 41 distinct groups based on composition and discrimination using 

spectral overlay. Sources with the same elemental composition are grouped but can be further divided into 61 subgroups based on 

observed differences in elemental peak heights. Sources and groups listed here are not arranged in any hierarchical order. 
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Of note for these groups are the tapes that could not be distinguished. These sources are often not 

distinguishable by other analytical methods or a combination of methods used, supporting our 

findings [3-5, 7, 8]. For example, using the spectral overlay of the XRF data, Group IX contains a 

total of 30 sources, differentiated into six major subgroups (A to F) based on the relative 

concentration of the elements present. These tapes originate from the manufacturer 3M, all made 

in the United States (see Appendix A). As such, it is unsurprising that most tapes have very similar 

physical and chemical compositions. 

 

Interestingly, Group XXXI also contains tapes manufactured by 3M in the United States but do 

not have detectable lead, as seen in the tapes from Group IX. This same grouping is seen using 

both XRF and LA-ICP-MS and is further demonstrated with the clusters observed in PCA analysis 

of the samples conducted by Martinez-Lopez et al. [7]. Remarkably, similar classifications are 

observed when using only elemental analysis (LA-ICP-MS or XRF) or a comprehensive analytical 

protocol (microscopic examination, FTIR, SEM-EDS, and Py-GC-MS), demonstrating the highly 

informative power of sensitive elemental techniques for these tapes and its potential to use it as a 

rapid screening tool. These findings can lead to more cost-effective changes in current casework 

workflows by introducing elemental analysis earlier in the analytical sequence, reducing backlogs 

when exclusionary differences are detected. 

 

In addition, tapes originating from different countries could be identified as different, even if made 

by the same manufacturer. For example, 3M tapes manufactured in Taiwan can be distinguished 

from those made by the same company in the United States [7, 8]. The consistency of the results 

from these methods demonstrates the value of elemental analysis of electrical tape backings. It 

shows that XRF can be a valuable technique for analyzing tapes with high specificity and 

sensitivity. This type of information can become helpful in providing leads during an investigation. 

In a word of caution, it should be noted that a single manufacturer can have the same product 

produced at different sites, meaning sources labeled under the same product name could potentially 

have different chemical compositions. On the other hand, tapes made by the same manufacturer 

may be labeled under different product names by the distributors, leading to differently labeled 

sources having a similar chemical composition. These factors may affect the interpretation of 

potential manufacturing sources.  

 

6.4.2. Application of spectral contrast angle ratio 

Despite the value of spectral overlay for determining the composition and identification of 

different samples, there are instances where it is difficult for the analyst to judge whether two 

samples have true differences beyond expected intra-sample variation. For example, tapes 10 and 

26 had the same elemental compositions. While there are some minor observable variances in 

height at the calcium and antimony peaks (3.4 KeV) and zinc (8.6 KeV) (Figure 6-2), those 

differences are insufficient for some examiners to report the samples as distinguishable. 
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Figure 6-2. Spectral overlay of samples from tapes 10 and 26. There is a minor height difference 

in the calcium/antimony peaks at 3.4 KeV and the zinc peak at 8.6 KeV, where sample 10 has a 

slightly higher concentration of those elements. The corresponding SCAR for these samples is low 

(1.7). 

 

Spectral contrast angle ratios are calculated to provide a means to compare the spectra 

quantitatively and objectively. At the same time, spectral contrast angles can represent the 

difference between two individual spectra. Utilizing SCA ratios allows for the variability within 

and between samples to be accounted for [8, 39]. SCARs are calculated for all pairwise 

comparisons of the 94-tape set and the 20 intra-roll samples for the data collected under all three 

filters.  

 

Figure 6-3 shows the SCAR distribution of all pairwise comparisons for 94 tapes (n=4371) and 

20 intra-roll samples (n=190). Samples originating from the same roll (intra-roll) result in SCARs 

between 0.94 and 2.04. Meanwhile, samples from sources identified during spectral overlay as 

being classified into different groups (inter-group) have ratios ranging from 0.98 to 112. Samples 

from sources belonging to a common subgroup (e.g., Group VII-A) result in ratio values between 

0.96 and 4.34. In contrast, inter-subgroup pairs (i.e., tapes belonging to different subgroups with 

subtle differences, such as Group VII-A and Group VII-B) result in ratios ranging between 0.98 

and 14.97.  
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Figure 6-3. Histogram representing the frequency distribution of SCAR for all pairwise 

comparisons of electrical tape samples from different-source and same-source. The zoomed insert 

shows the range of 0 to 5 in more detail, indicating that most intra-roll pairs had SCA ratios less 

than 2.  

 

In theory, tapes with the same composition could be expected to have an SCA ratio of 1.0, as the 

between and within angles should be the same. In practice, however, minor variability in the 

analytical process or the tape composition produces some deviations from a SCAR of 1.0. Still, in 

these same-source cases, the SCAR values are much lower than those from different-source items. 

For example, intra-roll samples 2 and 5 (Figure 6-4) have an SCA ratio of 1.4, with no observable 

differences in the spectral overlay in the low-energy region.  

 

The tapes with SCA ratios close to 1.0 are more likely to be reported as indistinguishable by 

spectral overlay, even if they originated from different rolls. For example, samples 1 and 49 

(Figure 6-5A) demonstrate only subtle variations in peak height for calcium and antimony and 

have an SCA ratio of 2.7 within the low filter data. These samples are assigned to the same group 

by spectral overlay observations. In comparison, tapes classified into different subgroups during 

spectral overlay showed slightly higher SCA ratios, such as tapes 8 and 81 (Figure 6-5B), with an 

SCA ratio of 3.2 in the low-energy region. These tapes are classified as Groups VII-A and VII-E, 

respectively, due to a slightly higher concentration of calcium/antimony in tape 8, observable at 

approximately 3.6 KeV.  
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Figure 6-4. Spectral overlay of intra-roll samples 2 and 5. In the low-energy region, the samples 

contain chlorine, antimony, calcium, barium, titanium, and zinc. In the low-energy region, the 

emission lines of antimony/calcium and barium/titanium cannot be resolved, so they are labeled 

together. The SCAR for these samples from the same roll is 1.4. 

 

 

 
Figure 6-5A (left). Spectral overlay of samples from tapes 1 and 49, which are classified into the 

same group (I, Figure 6-1). While minor height variations exist, the spectral overlay could not 

distinguish the tapes. Figure 6-5B (right) shows the overlay of tapes 8 and 81, which belong to 

the same major group VII, but are separated into subgroups VII-A and VII-E due to higher 

concentration of calcium/antimony (3.6 KeV) in sample 8.  
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In contrast, tapes that showed more considerable visual differences during spectral overlay 

displayed large SCA ratios. An example is shown in Figure 6-6, with tapes 39 and 66, 4 and 50, 

and 5 and 85, indicating SCA ratios of 8.7, 15.9, and 60.8, respectively. 

 

 
Figure 6-6. Spectral overlays of tapes are found in different groups by spectra overlay, all with 

high SCA ratios in the low-energy region. Figure 6-6A demonstrates tape 39 with an elevated 

antimony/calcium and zinc concentration, while tape 66 has higher barium/titanium and iron. 

Figure 6-6B shows tape 50 with a higher concentration of antimony/calcium and barium/titanium 

than tape 4. Figure 6-6C shows tape 5 with a substantially higher chlorine concentration, while 

85 has a high Ca/Sb and Ba/Ti concentration.  

 

Same-source and different-source SCAR are well separated, showing the potential to assist 

analysts when making determinations of distinguishability. Therefore, a threshold is calculated to 

determine the SCA ratio value that minimizes the false inclusion and false exclusion rates (Figure 

6-7). Using the SCAR for each pairwise comparison, a threshold of 1.95 resulted in a 3.4% false 

inclusion rate (148 of 4371 different-source comparison pairs) and a 2.1% false exclusion rate (4 

of 190 same-source comparison pairs). As a result, the discrimination power of the set is 96.4% 

when using this SCAR criterion.  
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Figure 6-7. Rates of false inclusion and false exclusion of all comparison pairs at different SCA 

ratios. The ratio value that minimized the false exclusion and false inclusion rate is 1.95.  

 

However, while some additional pairs of tapes are differentiated with the inclusion of the SCAR 

threshold of 1.95, many intra-subgroup pairs identified by spectral overlay remain 

indistinguishable. This is primarily observed in tapes from Group IX. The lack of complete 

discrimination aligns with previous findings, indicating that some samples in this tape collection 

are similar enough in their formulation to be indistinguishable by XRF and other techniques (e.g., 

LA-ICP-MS, SEM-EDS, FTIR, Py-GC-MS) [3-5, 7, 8]. Moreover, the agreement of spectral 

overlay and SCA ratios shows that SCA ratios can be estimated as a complementary means to 

further support the examiner’s observations as an independent metric. More importantly, the 

SCAR provides a metric that complements the binary decision of association or exclusion with a 

continuous quantitative value that assesses the level of similarity and, thus, can assist in evaluating 

the value of the evidence. 

 

6.4.3. Automated clustering and sample comparison 

The development of methods to assign the probative value of comparison between tapes, such as 

the two-stage approach, requires estimating some measure of the rarity of the tapes’ characteristics. 

This involves studying many tapes and defining a measure to assign probabilities. Section 3.1 

shows that tapes can be based on their elemental spectra and that some clusters have more members 

than others. This observation creates a method to assign match probabilities to tape elemental 

composition based on clustering many randomly selected tapes.  

 

Unfortunately, the manual grouping reported in Section 3.1 is a tedious process, particularly as the 

number of tapes increases, and may need more reproducibility if performed by the spectral overlay. 

In this section, we propose a method relying on the hierarchical clustering of tapes based on their 

pairwise SCARs. The matrix of pairwise SCARs used to build the dendrogram is a weighted sum 
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of the matrices of the pairwise SCARs for each filter used in the XRF analysis (low, medium, and 

high), as described above. The weights are determined by optimization as 28.98 for the low, 21.63 

for the mid, and 1.15 for the high filter. Hence, the low filter has the most significant influence on 

the distance between samples. This is consistent with the observations made during spectral 

overlay, as elements accentuated in the low filter often provided the most discrimination between 

samples. The mid filter also substantially influences the resulting distance between samples, but 

the high filter only has a minor influence. However, the high filter is where the resolved peaks for 

antimony can be observed, providing additional discrimination between samples. We validated the 

hierarchical clustering method by comparing the clusters resulting from the hierarchical clustering 

with the grouping described in Figure 6-1. 

 

Since SCARs are univariate measures summarizing all similarities and differences between two 

sets of spectra into a single value, we propose to use a random forest classifier to interpret the 

grouping done by hierarchical clustering. Note that hierarchical clustering is unsupervised and can 

be used without prior knowledge of the number of clusters or the assignment of tapes to given 

classes. On the contrary, random forest classifiers require the definition of several classes and to 

development of a training set of tapes with known target classes. In this project, we rely on 

hierarchical clustering to group the tapes. Once grouped, we train the random forest classifier to 

study the similarities and differences between the tapes in pairs of clusters.  

 

Figure 6-8 shows the dendrogram with 61 classes labeled and color-coded. Most of these clusters 

correspond with groups and subgroups identified by the manual comparison using spectral overlay. 

We note that the hierarchical clustering complements spectral overlay by providing a visual 

representation of those tapes that display similarities and differences, with a relative dimension of 

the level of correspondences or distinctions among groups. 

 

Most tapes are consistent with the groups observed by spectral overlay, with a few exceptions (4 

out of 61 groupings). Those exceptions, seen in clusters 29, 38, 40, and 51 (Figure 6-8, highlighted 

in yellow), tend to be tapes identified as having slightly different compositions during spectral 

overlay. Still, the elemental differences are generally minimal, or the elements are very close to 

the signal-to-noise ratio of 3. Moreover, because spectral overlay cannot assign hierarchical 

grouping, some clusters are called by observed differences through pairwise comparisons and not 

grouped by the closeness of similar profiles between subgroups. The complexity of capturing 

similarity information by spectral overlay increases with the number of comparisons, thus missing 

that valuable information in the comparison process.  
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Figure 6-8. Dendrogram representing the clustered tapes from the dataset of 94 different sources based on the weighted average of SCA 

ratios from each filter. The data is divided into 61 distinct clusters to compare the clustering analysis to the original 61 groups identified 

during spectral overlay. Only 4 clusters in this dendrogram are not generally consistent with the spectral overlay groups, highlighted in 

yellow (clusters 29, 38, 40, and 51).  
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A discrepancy is observed between spectral overlay and SCAR-clustering in cluster 29 (tapes 4, 

58, 82), where each member is separated into their main groups by spectral overlay (Figure 6-1). 

However, the elemental composition of those tapes all had aluminum, chlorine, calcium/antimony, 

barium/titanium, iron, and lead in common. The major difference is that tape 4 does not show 

bromine, while tape 82 is noted to have zinc (Figure 6-9).  

 

 
Figure 6-9. Spectral overlay comparison of tapes 4, 58, and 82. Despite being separated into 

different main groups by spectral overlay alone, these tapes have a comparable content of major 

elements such as chlorine, calcium/antimony, barium/titanium, and iron (seen in the low filter 

region – Figure 6-9A). They are also consistent in lead content, as seen in the mid-filter region 

(Figure 6-9C). There is a slight height difference in the zinc peak at 8.6 KeV (Figure 6-9B) and 

the bromine peak at 11.8 KeV (Figure 6-9C).  

 

The bromine content in tapes 58 and 82 is visible when observing the overlaid spectra. Still, it is 

relatively small compared to the content of other elements, such as calcium/antimony, 

barium/titanium, and lead, consistent with all three tapes (Figure 6-9). The same is true of the zinc 

content, indicating those two elements are not influential on the final clustering of these tapes. 

Moreover, the calculated SCAR values for these three tapes are consistent with the cluster 

observation. Comparing samples 4 to 58, 4 to 82, and 58 to 82 resulted in SCAR values less than 

1.5 for low, mid, and high filters, which puts all SCAR values below the calculated threshold of 

1.95 to distinguish different-source samples.  

 

The discrepancy between the manual and automated grouping resulting in cluster 51 (tapes 38 and 

46) had a similar explanation. Tape 36 is initially separated into Group VII by spectral overlay, 

while tape 46 is in Group XVIII (Figure 6-1). These groups had various elements in common, 

including aluminum, silicon, chlorine, calcium/antimony, barium/titanium, iron, lead, bromine, 

and antimony (resolved in the high filter region). However, when looking at the tapes by spectral 
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overlay, as shown in Figure 6-10, there is an observable difference in the antimony content in the 

high region (between 26 and 30 KeV).  

 
Figure 6-10. Spectral overlay comparison of tapes 38 and 46. The tapes have comparable 

compositions in the low region (top figure) with similar amounts of chlorine, calcium/antimony, 

barium/titanium, and iron. They are also consistent in lead and bromine content, as seen in the 

mid-filter region (bottom left figure). An observable height difference in the antimony peak in the 

high filter region (bottom right figure) at 26.5 KeV.  

 

The high filter SCAR value for these two tapes is also slightly higher, with a value of 3.6. However, 

as described previously, the high filter is weighted less than the other two regions for the cluster 

analysis. As such, the SCAR values of 1.7 and 1.2 for the low and mid filters for these tapes 

significantly influenced the relatively small distance between tapes 38 and 46.  

 

Finally, the last case of discrepancy between the dendrogram and manual spectral overlay analysis 

included tapes 1, 57 (cluster 38), and tapes 49 and 48 (cluster 40). Tapes 1 and 49 are grouped by 

spectral overlay into Group I, while tapes 57 and 48 are sorted into Group XIX-A. However, with 

cluster analysis, tape 1 is closest to 57 than to 48 and 49. This is likely due to the calcium\antimony 

content observed in the low region and differences in the antimony content seen in the high region 

(Figure 6-11). These samples resulted in relatively low SCAR values, all less than 3. Pairwise 

comparisons of 1 to 57 and 48 to 49 are the smallest, at SCARs of 1.4 and 1.2, respectively.  
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Figure 6-11. Spectral overlay comparison of tapes 1, 48, 49, and 57. In the low region (top figure), 

the tapes have comparable compositions with similar amounts of chlorine and calcium/antimony, 

though tapes 48 and 49 have a slightly higher concentration. They are also consistent in zinc 

content, as seen in the mid-filter region (bottom left figure), although the zinc concentration is 

relatively low overall. An observable height difference in the antimony peak in the high filter 

region (bottom right figure) at 26.5 KeV. 

 

Overall, hierarchical clustering demonstrates the effectiveness of using the SCAR as a metric to 

assess the similarity of spectra and as an informative input for cluster analysis for large populations 

of samples. The spectral overlay provides a quick means of understanding the elemental 

composition, the intra-variability of samples, and the similarities and differences between 

individual samples. However, the spectral overlay of many sources is unrealistic. It fails to 

represent any hierarchy between multiple samples or a quantitative representation of how 

comparable the composition of groups of tapes is.  

The random forest classifiers and spectral overlay often detect the same similarities and 

differences. Below, we discuss examples from the most challenging group, classified by spectral 

overlay as group IX (subgroups IX-A to IX-F) and sharing the same tree node for clusters 7 to 12. 

All tapes on this major node correspond to 3M tapes manufactured in the United States with a high 

degree of similarity and some minor differences described below.  

 

For example, clusters 8 (tapes 10, 24) and 10 (tapes 41, 68, 13, 18, 26) (Figures 6-1 and 6-8) 

consist of samples that originate from the same manufacturer, 3M, and generally consist of 
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products from one of two premium brands, Super 88 and Super 33+ (Appendix 6A, Table 6A-1). 

As such, their elemental composition is expected to be somewhat similar. However, as seen in 

Figure 6-12, there are some areas where the automated classification denotes some peaks that are 

useful for differentiating samples between these clusters. These areas primarily correspond to the 

chlorine peak at around 2.3 KeV, the calcium/antimony peak at approximately 3.6 KeV, the lead 

peaks between 10-16 KeV, and the antimony peaks between 26-30 KeV, all highlighted in red and 

orange.  

 

 
Figure 6-12. The results of the random forest classification of tapes from clusters 8 and 10 from 

the dendrogram (Figure 6-8) and the determination of the importance of each peak intensity. Areas 

in red are denoted as highly important, areas in orange are somewhat important, and areas in green 

are not particularly important for classification.  

 

These trends are consistent with what is observed in a spectral overlay of tapes from those 

particular clusters. For example, tapes 10 (cluster 8) and 13 (cluster 10) have observable 
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differences in the calcium/antimony content between 3.5 and 4.2 KeV (Figure 6-13A), as well as 

differences in lead content (Figure 6-13B and 6-13C) and antimony (Figure 6-13D). 

Correspondingly, these tapes 10 and 13 belong to subgroups IX-A and IX-B when using spectral 

overlay.  

 

 
Figure 6-13. Spectral overlay of tapes 10 and 13, with all samples. There are subtle differences in 

the content of calcium and antimony in the low region (Figure 6-13A), with more distinguishable 

differences in the lead content in both the mid-filter region (Figure 6-13B) and the high-filter 

region (Figure 6-13C). In addition, tape 10 has a greater antimony concentration in the high filter 

(Figure 6-13D) region.  

 

The random forest classifiers and dendrogram demonstrate additional discrimination of some tapes 

that are difficult to identify by spectral overlay, including tapes from the same manufacturer and 

labeled under the same brand. For example, cluster 10 (samples 41, 68, 13, 18, 26), cluster 11 

(samples 11, 15), and cluster 12 (samples 12, 19, 20, 25, 39, 54, 64) (Figure 6-8) consist of 3M-

made tapes from the brand Super 33+ (Appendix 6A, Table 6A-1). These tapes show considerable 

similarities and are all classified under sub-group IX-B by spectral overlay, except for tape 39 

(subgroup IX-E) (Figure 6-1). When using the cluster analysis, it is notable that the distance 

between the clusters is relatively small, reflecting predominant similarities. When compared by 

random forest, the slight differences between the clusters become notable. Lead content in the mid-

region is critical for differentiating between tapes in these clusters and some additional 

contributing elements (zinc, chlorine, and antimony).  
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Figure 6-14. The results of the random forest classification of tapes from classes 10, 11, and 12 

from the dendrogram (Figure 6-8) and the determination of the importance of each peak intensity. 

Areas in red are denoted as highly important, areas in orange are somewhat important, and areas 

in green are not particularly important for classification. For these classes, lead is the most crucial 

element for classification, followed by zinc (low region) and antimony (high region).  

 

An example of the spectral comparison of tapes in these clusters is shown in Figure 6-15. Sample 

13 (cluster 10), sample 15 (cluster 11), and sample 20 (cluster 12) show minor differences in zinc, 

lead, and antimony. However, these differences are minimal when compared by spectral overlay, 

so an examiner with a conservative approach to classification could be expected to report these 

tapes as indistinguishable. The SCAR values resulting from comparing these tapes are generally 

low (all but one ratio remained under the threshold of 1.95), supporting the classification of these 

tapes as indistinguishable and the proximity of these clusters.  
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Figure 6-15. Spectral overlay spectra of tapes 13, 15, and 20, with all samples. There are 

differences in zinc content in the low region (Figure 6-15A) with tape 15 having the highest 

concentration. Tape 20 has the lowest lead content in the mid-region (Figure 6-15B), while tape 

13 has slightly higher antimony content in the high region (Figure 6-15C).  

 

Overall, the combined approach of SCA ratio calculations and the random forest model 

classifications provides an effective means of comparing electrical tape backing samples on an 

individual basis as well as to the larger population of tapes to provide a quantitative metric of 

similarity or difference, as well as the relevant characteristics of those differences to support the 

examiner’s decisions. 

 

6.5. Conclusions 

Human intervention is essential in data interpretation in the forensic comparison of XRF spectra. 

The training and experience of the practitioner can provide valuable input regarding the chemical 

composition of the items evaluated, along with the case context and the samples' physical 

characteristics. Nonetheless, the forensic community recognizes the need for statistical support in 

the comparison process of spectral data, mainly because visual comparisons such as spectral 

overlay can introduce bias by unintentionally focusing on similarities, not detecting small 

difference thresholds, or having different perceptions or attention to detail among practitioners. 

Also, when conclusions rely considerably on human-based abilities for pattern recognition, the 

transparency in demonstrating the decision-making process can be challenged. 

 

This study demonstrates that spectral contrast angle ratios provide a means to evaluate data 

collected from XRF through a metric that accounts for the similarities and differences between 

and within samples, making them an effective quantitative tool to express the significance of an 

association or exclusion. When combined with spectral overlay, spectral contrast angle ratios can 

provide a quantitative criterion to help examiners decide on spectra, even for very similar ones. 

Application of the spectral contrast angle ratios can be relatively straightforward, with the 

calculation of the ratios made practical with a standard Excel macro or open-source application (R 

code). 
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 For the tapes evaluated in this study, a clear distinction of SCAR values is observed for items 

originating from the same roll compared to items originating from different sources. Moreover, 

samples with low SCA ratios tend to belong to subclasses of similar brands or quality grades of 

tape rolls. Thus, SCAR can offer a more objective and reproducible approach to assist forensic 

examiners in assessing the value of their evidence beyond a binary association/exclusion 

conclusion. In addition, the random forest classification model allows for the automated and rapid 

identification of peaks of interest for differentiation between spectra, which can generally only be 

determined through a manual spectral overlay. These tools become increasingly helpful when the 

number of measurements or compared items increases. The introduction of random forest 

algorithms adds value to the SCA ratio calculation by comparing a large population of samples (> 

4,000 pairwise comparisons).  

 

Overall, SCAR has shown to be a valuable input for classifying samples, providing insights as to 

potential lead information such as manufacturers or tape classes when unknown samples are 

compared to a larger population. The approaches reported here allow for a visual representation of 

the data that can be easily explained to the trier of fact. This approach can be expanded to various 

analytical chemistry disciplines, spectrochemical data, and other forensic materials and has the 

potential to provide additional probabilistic interpretation to support decisions made on analytical 

spectra. 
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Appendix 6-A 

 

Table 6A-1. Brand information for all samples used in this study [8]. 

Sample Brand Product Country 

1 Marcy Enterprises, Inc. MA 750 Taiwan 

2 Advance® AT7, BS3924, 31/90Tp England 

3 
Work Saver™ (Royal 

Tools) 

Stock no. 55, 5 color PVC Tape 

Assortment 
China 

4 tesa tape, Inc. 40201, No. 111 E52811A Taiwan 

5 Tape It, Inc. E-60 Taiwan 

6 Qualpack® 1346, 6-Color China 

7 Marcy Enterprises, Inc. MA 750 Taiwan 

8 Manco® 200 MPH, AE-66 Taiwan 

9 Archer® (Radio Shack) 64-2349 Taiwan 

10 3M Scotch™ Super 88, 054007-06143 USA 

11 3M Scotch™ Super 33+, 10414 NA USA 

12 3M Scotch™ Super 33+, 10455 NA USA 

13 3M Scotch™ Super 33+ USA 

14 Frost King® ET-60 Taiwan 

15 3M Scotch™ Super 33+, 10455 NA USA 

16 3M Tartan™ 1710, part no. 054007 49656 USA 

17 3M Scotch™ Super 88, 054007-06143 USA 

18 3M Scotch™ Super 33+, Cat. 195NA USA 

19 3M Scotch™ Super 33+, Cat. 195NA USA 

20 3M Scotch™ Super 33+, 10414 NA USA 

21 Manco® P-66 Taiwan 

22 Manco® 667 Pro Series™ Taiwan 

23 3M Scotch™ Super 88, 054007-06143 USA 

24 3M Scotch™ Super 88, 054007-06143 USA 

25 3M Scotch™ Super 33+ 054007-06143 USA 

26 3M Scotch™ Super 33+ 054007-06143 USA 

27 3M Tartan™ 1710, part no. 054007 49656 USA 

28 3M Tartan™ 1710, part no. 054007 49656 USA 

29 3M Temflex™, 1700, 54007-69764 USA 

30 3M Temflex™, 1700, 54007-69764 USA 

31 Regal® Model ET-6 Taiwan 

32 GE GE2472-3DD Taiwan 

33 3M Scotch™ Cat. 190 USA 

34 3M Tartan™ 1710, part no. 054007 49656 USA 

35 Frost King® ET60 Taiwan 

36 3M Tartan™ 1710, part no. 49656 USA 

37 National All-Purpose Grade Taiwan 
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38 Manco® P-660 Taiwan 

39 3M Scotch™ Super 33+, 3744NA USA 

40 3M Tartan™ 1710, part no. 054007 49656 USA 

41 3M Scotch™ Super 33+, 200NA USA 

42 National All-Purpose Grade Taiwan 

43 3M Tartan™ 1710, part no. 054007 49656 USA 

44 3M Tartan™ 1710, part no. 054007 49656 USA 

45 Calterm® 49605 Taiwan 

46 Manco® P-20 Taiwan 

47 3M Tartan™ 1710, part no. 054007 49656 USA 

48 Tape It, Inc. 36-T USA 

49 Tape It, Inc. 36-T USA 

50 GE GE2472-31D Taiwan 

51 National No. 101, E52811A Taiwan 

52 Frost King® ET60FR USA 

53 National No. 101, E52811A Taiwan 

54 3M Scotch™ Super 33+, 03404NA USA 

55 Manco® 1219-60 Taiwan 

56 
Victor Automotive Products 

(Thermoflex) 
33-UL60, No. 101, E52811A Taiwan 

57 United Tape Company UT-602 Taiwan 

58 Frost King® ET60 Taiwan 

59 Tuff™ Hand Tools  China 

60 Tuff™ Hand Tools  China 

61 3M Scotch™ 88T USA 

62 Nitto Denko No. 228 Taiwan 

63 3M Scotch™ Super 88, 054007-06143 USA 

64 3M Scotch™ Super 33+, 10455 NA USA 

65 3M Scotch™ 700 Commercial Grade, 054007-04218 USA 

66 L.G. Sourcing, Inc. 19453 Taiwan 

67 Manco® P-66 Taiwan 

68 3M Scotch™ Super 33+ USA 

69 3M Tartan™ 1710, part no. 054007 49656 Taiwan 

70 Tyco Adhesives (National) No. 101, E52811A Taiwan 

71 Qualpack® 1346, 6-Color China 

72 Nitto Denko Nitto® No. 228 Taiwan 

73 Frost King® ET60FR China 

74 3M Scotch® 700 Commercial Grade, 054007-04218 USA 

75 3M Scotch™ 
Linerless Electrical Rubber Splicing Tape, 

2242, 06165 
USA 

76 3M Scotch® 
Super 33+, Cold Weather Electrical Tape, 

16736NA 
USA 

77 3M Scotch® Super 33+, 054007-06132 USA 
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78 3M 
Tartan™ 1710 General Use, 054007-

49656 
Taiwan 

79 3M Scotch® 700 Commerical Grade, 054007-04218 USA 

80 3M Scotch® Super 88, 054007-06143 USA 

81 Ace (Henkel) All Weather Taiwan 

82 Ace (Henkel) Weather Resistant Taiwan 

83 3M Scotch® Super 33+, 10414 NA USA 

84 3M 
Tartan™ 1710 General Use, 054007-

49656 
Taiwan 

85 Frost King® ET60FR China 

86 Duck (Henkel) Vinyl Electrical Tape Taiwan 

87 Nitto Denko No. 21E China 

88 Frost King® ET60FR China 

89 Power Pro Craft ETF China 

90 Duck (Henkel) Extra wide electrical tape China 

91 3M Scotch® Super 33+ USA 

92 3M Scotch® Super 88, 054007-06143 USA 

93 
Commercial Electric (Home 

Depot) 
EE-100 China 

94 3M 3M Economy 1400 Taiwan 

 

 



Chapter 7: Conclusions and Future Work 

7.1. Summary of the Study  

This research addressed the overall goal of improving and enhancing how forensic trace evidence is 

analyzed and compared. This was accomplished through two primary goals: developing and validating 

systematic comparison methods for performing physical fit examinations and applying a quantitative 

metric for spectral data to enhance the comparison of visually similar spectra. We anticipate that the 

methodologies, readily available comparison templates, and developed statistical measures will aid and 

support forensic practitioners in comparing forensic trace evidence and improve transparency in how 

decisions are made. The main findings and achievements of the research studies are discussed in the 

following sections.  

 

7.2. Outcomes of Study Objectives 

 

7.2.1. Objective 1. Expand the validation of a human-based systematic comparison method for 

duct tape physical fits with a more extensive dataset of duct tapes and interlaboratory 

studies. 

This objective aimed to expand and enhance the previously developed systematic comparison method 

for physical fits of duct tapes. To do this, we expanded the current dataset of duct tape comparison pairs 

and explored the performance of the edge similarity score (ESS) method through two interlaboratory 

exercises. Expanding the duct tape dataset to incorporate more than 3000 comparisons provided 

sufficient data to explore the relationship between the various experimental factors controlled during 

sample preparation – quality (grade) of tape, separation method, and stretching, and their influence on 

reported ESS values. The interlaboratory exercises allowed for refinement of the training and 

communication of the method and enhancements made to the documentation templates through 

feedback provided by current practitioners.  

 

The final tape dataset consisted of more than 3000 comparisons, divided into subsets of samples based 

on tape grade, separation method, and stretching. The ESS method demonstrated good overall 

performance, generally over 90% accuracy, and low false negative rates. None of the subsets reported 

any false positive results, indicating that it is not common for false positive results to be reported when 

the whole edge is present for comparison. For the subsets that demonstrated lower accuracy (around 

85%), the leading cause was the tape’s grade and the resulting features and characteristics of the edges 

post-separation. The higher-quality grade contributed to higher uncertainty in the examination due to 

generally straighter edges and the possibility of shifted fibers, leading to more misclassification of the 

samples as non-fits. Statistically, the data demonstrated a relationship between grade and separation 

method and showed that both factors impact the ESS values reported for true-fitting pairs. Stretching 

contributed minor variability in reported ESS but did not significantly affect the overall conclusion. 

This study established criteria for ESS thresholds: pairs with ESS greater than 80 strongly support a fit 

decision, while pairs with scores less than 20 strongly support a non-fit conclusion. Critically, regardless 
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of grade or separation method, all the tapes used in this study demonstrated features valuable for 

comparison that make physical fit examinations feasible.  

 

The two interlaboratory studies provided results from thirty-eight different participants for a total of 266 

sample comparisons. Each exercise demonstrated high overall performance, between 90-100%. Some 

discrepancies were noted in the first study regarding the participant’s reported ESS values and overall 

decisions. These discrepancies were resolved in the second study as a product of improvements to 

training and documentation of the examination process. The participants generally agreed on the ESS 

method’s potential for facilitating systematic and transparent peer review and training. The improved 

documentation templates defined comparison features and criteria, and methods of communication that 

were demonstrated to be practical tools in the standardization of forensic examination of physical fits. 

 

Overall, the outcome of these studies demonstrates that not every physical fit conclusion holds the same 

confidence. In addition, while there may be consistency in overall decisions between analysts and 

generally low error rates, the specific features observed on a given pair of samples and interpretation 

thereof may vary between individual analysts. As such, standardizing observed features, their value in 

comparison, and how similarity and differences between sample edges should be reported is a critical 

objective for forensic practitioners. The value of the proposed ESS method is that it provides a means 

of accompanying a reported physical fit with an assessment of its probative value, enhancing a physical 

fit comparison from a single binary decision to a more nuanced expression of the edge alignment and 

the significance of that comparison in context to a larger population of samples.  

 

7.2.2. Objective 2. Compare the performance of a computational algorithm for comparisons of 

duct tape physical fits against the human-based results. 

This objective aimed to explore the performance of a developed computational model for physical fit 

comparisons of duct tapes. While other algorithms have been developed to assess the edges of duct tapes 

and report on large populations of samples, this approach is novel in its use of both sides of the samples, 

which our research has demonstrated to provide critical features for comparison. Trained on a 

population of over 4000 images, the proposed computational model performs well with comparable 

high accuracies (71-88%) and low error rates on samples previously analyzed by human analysts.  

 

Indeed, layer-wise relevance propagation can demonstrate which pixels and tape characteristics the 

computational model relies on to decide for a given pair. Furthermore, the model recognized several 

features the human analysts reported for the same sample pairs, reinforcing the value of specific edge 

characteristics for comparison. In addition, the model provided objective, statistical support for physical 

fit examinations by reporting membership probabilities.  

 

However, it is worth noting that the model does produce false positive results not seen in human analysis 

and has room for improvement. As the initial dataset used is relatively small, adding more datasets in 

the future can assist in the learning process and performance of the model. Nevertheless, the model 
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presented here demonstrated the value of computational models for the forensic community to use to 

support decision-making in physical fit examinations. In time, we anticipate the development of 

additional databases and models for duct tapes and other materials of forensic interest. 

 

7.2.3. Objective 3. Extract and interpret edge feature data of duct tape and textile physical fit 

examinations using computational models 

This objective addressed several enduring questions in physical fit analysis: the minimum sample length 

necessary to perform reliable physical fit examinations and identify the most critical comparison 

features to substantiate an examiner’s opinion. The quantitative data provided by the ESS approach of 

more than 1000 tapes and 600 textiles were extracted to accomplish this objective.  

 

The partial width of the sample edges demonstrated that lengths of at least 35% of the tape or textile 

edges would provide acceptable accuracy in most samples. However, the relative size is highly 

dependent on the specimen, and samples more prone to distortion or lacking distinct features may not 

be suitable for comparison with only a small portion of the edge available. The mutual information 

analysis of the sample templates indicates several trends in feature value for the different subsets. Duct 

tape quality and separation method considerably impacted the features observed and their importance 

in comparison. For textiles, different features held more value based on the separation method of the 

samples. 

 

Finally, the decision tree model trained on the sample sets demonstrated consistent accuracy with the 

human analysis in most datasets. However, it produced higher false positive rates than observed in 

human analysis. As a result, the outcome of this method indicated it has the potential as a valuable 

supplementary tool for analysts in making decisions for specific pairs of tape or textile samples. Samples 

independently evaluated by the decision tree to have a different conclusion from the human analyst can 

be assessed further through another independent analyst's verification or chemical analysis.  

 

7.2.4. Objective 4. Develop and validate a systematic method to quantify the quality of fracture 

fits of hard plastics. 

This objective included the development of a method for the physical fit comparison of brittle 

automotive polymers. Specifically designed to address the distinctive features and properties of the rigid 

polymer material, the new method provides not only the quantitative edge similarity score (ESS) but 

also a feature prominence value (FPV), which describes the influence of a feature on a fit or non-fit 

decision.  

 

The three-dimensional nature of the polymers provided specific challenges for comparisons. For 

example, identifying the correct top and bottom surfaces of the compared item and the correct 

orientation of the fragments contributed to some of the discrepancies in performance and reported 

similarity metrics. In addition, the preliminary analysis indicated that polymer composition and 
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mechanical properties might influence the fit’s quality, such as thinner samples that deformed more 

during separation.  

 

The proposed ESS method applied to a population of 385 comparisons resulted in 85% accuracy, with 

no false positives reported. Most false negative misidentifications resulted from features influenced by 

distortions left during the breaking process. The analysis of decisions made at the macroscopic and 

microscopic levels demonstrated that performing the microscopic examination of the samples is 

valuable in most cases unless the samples have clear and distinct differences at the macroscopic level. 

In addition, the feature prominence sum (FPS) criteria demonstrated another potential metric that 

supports an analyst’s decisions. They provided information on the most valuable features for a detailed 

comparison. Inter-analyst performance on a subset of the polymer sets demonstrated consistency 

between two analysts regarding accuracies (82% and 88%) and reported ESS and FPS distributions. 

 

7.2.5. Objective 5. Develop and validate a systematic method to compare XRF data of electrical 

tapes.  

This objective aimed to demonstrate a novel approach for quantitative and objective comparison of 

complex X-ray Fluorescence (XRF) spectral data. A set of electrical tapes, with 94 different-source 

samples and 20 same-source samples, were characterized, and the data was processed to normalize and 

reduce noise. The pairwise comparison of all different source samples (n=4371) was completed using 

spectral overlay to classify the samples. While the spectral overlay is valuable for the rapid comparison 

and identification of visually distinct compositions, there is a need for statistical support in the 

comparison process of spectral data due to risks of bias, a lack of consensus-based thresholds for 

detecting and interpreting minor differences, and a lack of transparency in demonstrating the decision-

making process. 

 

Spectral contrast angle ratios (SCAR) were calculated for each pairwise comparison of different-source 

and same-source samples (n=4,561). The SCAR ratios were evaluated to determine trends in the sample 

analysis, and a random forest model was designed to identify critical peak differences in the XRF spectra 

between groups. This study demonstrated that SCAR served as an effective tool to evaluate and classify 

samples by accounting for similarities and differences between and within samples; this allowed them 

to be used to express the significance of an association or exclusion. Furthermore, applying the spectral 

contrast angle ratios was straightforward, with the calculation of the ratios made practical with Excel 

macros and open-source applications. As such, when used with spectral overlay, spectral contrast angle 

ratios served as a valuable quantitative criterion to help analysts decide on chemically similar samples.  

 

In addition, the random forest classification model provided automated and rapid identification of peaks 

of interest for differentiation between spectra. These differences would generally only be determined 

through a manual spectral overlay, which could be time-consuming when performed on large 

populations in casework. Cluster analysis of the sample populations using SCAR also helped identify 

consistent trends in manufacturing and source information, which could prove critical in an 
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investigation. Furthermore, SCAR holds potential value as a means to estimate a probabilistic 

assessment of the characterization and comparison of specific samples.  

 

7.3. Future Work  

The research discussed here forms a promising foundation for future research into comparison criteria 

and methods for forensic trace evidence. The systematic methods developed for physical fits of duct 

tape and automotive polymers demonstrate the value of defined comparison criteria and quantitative 

similarity metrics. The large population of duct tape samples allowed for statistical testing of the 

experimental factors. It revealed a relationship between grade and separation method on ESS value. The 

one for duct tapes inspired the method developed for automotive polymers. By analyzing additional 

samples, we plan to evaluate the fit quality for that material statistically. As with such a database, 

additional samples originating from different sources will provide more support and insight into the 

value of the features and experimental factors we are exploring. The next phase of this research will 

incorporate additional materials and larger populations of samples. A critical next stage for physical fit 

analysis of all the materials discussed in this research is the implementation of the probabilistic 

interpretation. This study demonstrates the potential use of score-based likelihood ratios for duct tape 

physical fits to provide a proxy for the probative value of the evidence. This approach can be tested on 

other materials, and additional data will enhance the recommended ESS thresholds and their 

interpretation. 

 

Furthermore, with the feedback provided by the participants of the interlaboratory studies, we improved 

upon the method training and documentation templates used for the duct tapes. These changes are 

anticipated to help with the future implementation of such systematic comparison methods in 

laboratories. This method and the corresponding documentation template hold substantial promise for 

training and verification processes in forensic laboratories. Several laboratories, including some of those 

that participated in the interlaboratory exercises, have expressed interest in additional collaboration on 

our method for tapes and other materials. Further work in this area will continue to address the concerns 

and feedback provided by practitioners in physical fit examinations, aiming to improve and expand the 

application, communication, and interpretation of the ESS method on duct tapes, textiles, automotive 

polymers, and other materials. 

 

The development of computational models, such as the convolutional neural networks and decision trees 

developed for the analysis of physical fits in this research, have demonstrated their potential to assist 

analysts in informing and supporting their decisions. Furthermore, the results of both models were 

comparable to human analysis for the same samples. However, additional data and training for both 

approaches will enhance their performance. In addition, the application of these computational models 

can serve as a foundation for developing additional models for application to duct tape edges and other 

forensic-relevant materials to provide objective support for physical fit examinations.  
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Finally, developing a quantitative approach to comparing X-ray fluorescence data for electrical tapes 

has demonstrated the value of an objective and computational comparison metric for semi-quantitative 

data. Forensic analysts have relied on spectral overlay for comparisons, which may contribute to 

discrepancies between analysts in an overall decision in cases of complex or very similar data. 

Determining a potential threshold for the spectral contrast angle ratio provides a quantitative value that 

analysts can use to support their decisions on pairs will similar compositions. However, this approach 

can be advanced by analyzing new samples on modern instruments to determine if updated 

manufacturing and compositions for electrical tapes and new and more sensitive detectors on XRF 

instruments will impact the recommended threshold values for SCARs.  

 

7.4. Impact on the Criminal Justice System  

Over the course of this project, results have been disseminated and presented to the forensic and 

scientific community and received very positive feedback. The main highlights of the value of the 

physical fit approach are described in Figure 7-1. The ESS methods developed in this research offer a 

simple approach for fit comparison that can complement and modernize fit examinations. One of the 

main benefits of the methods is that they are systematic and facilitate the standardization of comparison 

criteria using data-driven conclusions. An added value is the capability to allow transparent 

demonstration of the thought process in peer review and training. The documentation of qualitative and 

quantitative descriptors helps not only in the standardization of protocols but also in the demonstration 

of scientific validity that can serve as a foundation for supporting the value of physical fits and a better 

understanding of the factors that can influence accuracy. We anticipate further interest in this subject 

by publishing new methods and models to support physical fit examinations of additional materials.  

 

Furthermore, thanks to the feedback gathered during the interlaboratory exercises, the input of the 

current practitioners is incorporated into method development. More than twenty laboratories 

participated in the duct tape interlaboratory studies, and dissemination of the results of that study has 

attracted the attention of laboratories across the United States and internationally. Interpreting physical 

fits has become much more collaborative, involving practitioners from various organizations, 

statisticians, psychologists, attorneys, legal scholars, and others. This collaboration has led to the 

development of a standard guide for physical fit examination and, hopefully, in the future, the adoption 

of more standardized procedures for physical fit examination and additional studies that can help us 

further establish the reliability of physical fit examinations in casework and testimony.  

 

Another impact of the project is the results of the quantitative method for the analysis and interpretation 

of spectral data. One current research need for forensic trace evidence has been quantitative and 

objective approaches for interpreting complex spectrochemical data. This research addresses this gap in 

the field. The method demonstrated in this study would provide an open-source and straightforward 

process for comparing spectral data that would allow analysts to compare their samples and have the 

resulting quantitative metric fit within a relevant population to describe the respective weight of the 

comparison.



 
 

Figure 7-1. Diagram denoting the main benefits of the physical fit methodologies developed in this research. 
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PROFESSIONAL ASSOCIATIONS AND ORGANIZATIONS 

1. National Institute of Standards and Technology – Organization of Scientific Area Committees (NIST-

OSAC) Trace Subcommittee – Full member (since October 2022), Affiliate Member (July 2019 to October 

2022) 

2. American Academy of Forensic Science (AAFS) – Student Affiliate  

3. American Society of Trace Evidence Examiners (ASTEE) – Student Affiliate 

 

HONORS, AWARDS, AND RELEVANT COLLABORATIONS 

1. Selected as member of NIST-OSAC Materials/Trace Subcommittee – A prestigious nomination for a 

student. NIST-OSAC is an organization of more than 550 experts in forensic science disciplines, as well as 

research, measurement science, statistics, law, and policy. The mission of OSAC is to develop and evaluate 

scientific standards for use in the forensic science disciplines.  

Main contributions:  

• Started as an affiliate member in July 2019, was nominated and accepted for full membership starting 

October 1st, 2022.  

• Member of the physical fit task group, assisted with design of physical fit survey, collaborated on an 

interlaboratory study, presented research results, and provided introductory training on edge similarity 

score approach. Assisted task group in writing the first standard on examination of physical fits.  

• Currently participating in manuscript preparation on a Paint Interpretation Interlaboratory Study 

conducted by Materials (Trace) Subcommittee, and working on the development of a Glass 

Interpretation Interlaboratory Study 

• Co-author of review paper which will serve as a foundation for development of future standard 

methods.  

• Member of the Polymers Task group, assisted with writing of polymer XRF standard and currently 

assisting with physical characteristics of tape standard 

• Attended bi-annual subcommittee meetings since July 2019 to present data on interlaboratory study 

results and XRF analysis of electrical tape data.  

2. Interdisciplinary research collaborations with West Virginia University Physics Department, South Dakota 

State University Statistics Department, Bureau of Alcohol, Tobacco, Firearms and Explosives (ATF), and 

the Federal Bureau of Investigation (FBI) Chemistry Unit.  

3. Participated as assistant instructor of Forensic Examinations of Physical Fits—Past, Present, and Future 

Workshop. Hosted at MAFS/ASTEE annual meeting, September 14th, 2022.  

4. Received American Society of Trace Evidence Examiners (ASTEE) Travel Award. Sept. 2022.  

5. Received American Society of Trace Evidence Examiners (ASTEE) Scholarship Award. Feb. 2020. 

6. Received Forensic Sciences Foundation (FSF) Student Scholarship Award. Nov. 2019.  

7. Dean’s List at SUNY Geneseo Fall 2014, Spring 2015, Spring 2016. 

 

SKILLS AND MAIN QUALIFICATIONS 

1. Competence in chemistry 
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a. Bachelor’s degree in Chemistry, Master’s degree in Forensic Science with an emphasis in Forensic 

and Analytical Chemistry, Doctoral Degree in Forensics with emphasis in Forensic and Analytical 

Chemistry (anticipated graduation Fall 2022).  

 

2. Robust foundation on fundamentals of manufacturing, sample preparation, recovery, forensic examination, 

and interpretation of trace materials following ASTM test methods and practices.  

a. Glass (analysis of refractive index following ASTM E1967-19, elemental analysis of glass on XRF 

following ASTM E2926-17, elemental analysis of glass using ICP-MS following ASTM E2330 and 

LA-ICP-MS following ASTM E2927-16) 

b. Paint (analysis following ASTM E1610-18, FTIR analysis of paint following ASTM E2937-18, and 

elemental analysis following ASTM E2809) 

c. Tape (analysis following ASTM E3260-21, FTIR analysis following ASTM E3085-17, and relevant 

SWGMAT guidelines for physical examinations and characteristics) 

d. Gunshot Residue (GSR) (SEM-EDS analysis following E1588-20) 

e. Hairs and fibers (microscopic examination and analytical techniques following relevant SWGMAT 

guidelines) 

NOTE: Experience acquired through:  

a. Graduate research 

b. Graduate coursework (Trace Evidence Examination, Advanced Forensic Chemistry, Introduction to 

Microscopy, Forensic Statistics, Foundations of Criminalistics, Court Testimony, Forensic Casework 

Practicum, Research Design in Forensic Science, Forensic Informatics, Professional Ethics in Forensic 

Science) 

c. Teaching assistance (Trace Evidence Examination, Forensic Chemical Analysis, Introduction to 

Forensic Science) 

d. Participation in workshops and conference presentations (e.g., Workshop on LIBS, ICP-MS and 

LAICP-MS for Glass and Gunshot Residue, hosted by WVU Forensic and Investigative Science 

Department (14-June-2022 to 17-June-2022).  

 

3. Experience in fundamentals of sample preparation, recovery, forensic examination and interpretation of 

forensic chemical and biological evidence (illicit drugs, biological materials, fire debris) 

NOTE: Experience acquired through:  

a. Graduate coursework (Advanced Forensic Chemistry, Introduction to Microscopy, Forensic Statistics, 

Foundations of Criminalistics, Court Testimony, Forensic Casework Practicum, Forensic Informatics, 

Professional Ethics in Forensic Science, Forensic Laboratory Management, Advanced Forensic 

Biology) 

b. Teaching assistance (Forensic Chemical Analysis, Analysis of Seized Drugs, Arson and Explosives 

Analysis, Forensic Toxicology, Introduction to Forensic Science) 

 

4. Proficient in various analytical instrumentation and interpretation of results: 

a. Scanning Electron Microscope -Energy Dispersive Spectroscopy (SEM-EDS) 

b. micro-X-ray Fluorescence (µ-XRF) 

c. Gas Chromatography-Mass Spectrometry (GC-MS) 

d. Laser-Induced Breakdown Spectroscopy (LIBS) 

e. Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 

f. Video Spectral Comparator (VSC) 
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g. Fourier Transform Infrared Spectroscopy (FTIR) 

h. Ultraviolet–visible Spectroscopy (UV-Vis) 

i. Glass Refractive Index Measurement (GRIM) 

j. Microscopy (Stereomicroscope, Polarizing-light microscope, and Comparison microscope) 

 

5. Experience coding in R, Python and Linux 

 

6. Experience with statistical packages (R, JMP, Excel) 

 

7. Ability for problem-solving and initiative acquired through: 

a. Development and revision of methods for systematic comparison and feature documentation  

b. Analysis of data for research in various formats (R, Excel, etc) and interpretation of statistical models 

for data analysis 

c. Assisting colleagues and external collaborators in data analysis and displaying data in graphical format   

d. Troubleshooting of instrumentation (FTIR, GRIM, µ-XRF, digital microscope, high-resolution 

scanner) 

 

8. Adaptability and organizational skills developed through: 

a. Planning and coordination of research activities for undergraduate and graduate research students 

b. Participation in organization of a department-hosted research symposium 

c. Organization of interlaboratory studies and data collection 

d. Collection, organization, and documentation of physical and digital sample databases 

 

9. Strong oral and written communication and collaboration skills:  

a. Training undergraduate and graduate students and researchers on instrumentation usage and 

fundamentals, standard operating procedures, and data analysis 

b. Collaboration with colleagues to complete research activities and data analysis 

c. Participation in interlaboratory exercises with external collaborators (including Florida International 

University, Federal Bureau of Investigation, Organization of Scientific Area Committee, etc) 

d. Publication of peer-reviewed manuscripts and reports to funding agencies (see Publications) 

e. Numerous oral and poster presentations at scientific conferences and meetings (see Conference 

Presentations) 
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