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Abstract
Learning Representations for Novelty and Anomaly Detection

by Ranya Almohsen

The problem of novelty or anomaly detection refers to the ability to automati-
cally identify data samples that differ from a notion of normality. Techniques
that address this problem are necessary in many applications, like in medical
diagnosis, autonomous driving, fraud detection, or cyber-attack detection, just to
mention a few. The problem is inherently challenging because of the openness of
the space of distributions that characterize novelty or outlier data points. This is
often matched with the inability to adequately represent such distributions due
to the lack of representative data.

In this dissertation we address the challenge above by making several con-
tributions. (a) We introduce an unsupervised framework for novelty detection,
which is based on deep learning techniques, and which does not require labeled
data representing the distribution of outliers. (b) The framework is general and
based on first principles by detecting anomalies via computing their probabilities
according to the distribution representing normality. (c) The framework can
handle high-dimensional data such as images, by performing a non-linear dimen-
sionality reduction of the input space into an isometric lower-dimensional space,
leading to a computationally efficient method. (d) The framework is guarded
from the potential inclusion of distributions of outliers into the distribution of
normality by favoring that only inlier data can be well represented by the model.
(e) The methods are evaluated extensively on multiple computer vision bench-
mark datasets, where it is shown that they compare favorably with the state of
the art.
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1

1 Introduction

1.1 Background

Machine learning models often encounter samples that are diverged from the
training distribution. Failure to recognize a novel (also known as anomaly
or outlier) sample, and consequently assign that sample to an in-class label,
significantly compromises the reliability of a model.

The study of novelty/anomaly detection has a long history and spans multiple
disciplines including engineering, machine learning, data mining, and statistics.
While the first formal definitions of so-called ?discordant observations? date back
to the 19th century [19], the problem has likely been studied informally even
earlier, since anomalies are phenomena that naturally occur in diverse academic
disciplines such as medicine and the natural sciences. Anomalous data may be
useless, for example when caused by measurement errors, or may be extremely
informative and hold the key to new insights, such as very long surviving cancer
patients.

Novelty or anomaly detection today has numerous applications across a
variety of domains. Examples include intrusion detection in cybersecurity [55],
fraud detection in finance, insurance, healthcare, and telecommunication [109],
medical diagnosis [96], and disease outbreak detection [10] and event detection
in the earth sciences [36]. It is also expanding to include complex data types such
as images, video, audio, text, graphs, multivariate time series, and biological
sequences, among others. For applications to be successful on such complex and
high-dimensional data, a meaningful representation of the data is crucial.

Deep learning follows the idea of learning effective representations from
the data itself by training flexible, multi-layered deep neural networks and
has greatly improved the state of the art in many applications that involve
complex data types.Deep neural networks provide the most successful solutions
for many tasks in domains such as computer vision, speech recognition, or
natural language processing, and have contributed to the sciences. Methods
based on deep neural networks are able to exploit the hierarchical or latent
structure that is often inherent to data through their multi-layered, distributed
feature representations [76].
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1.2 Current Challenges and Motivation

Most machine learning models commonly make the closed-set assumption, where
the test data is drawn i.i.d. from the same distribution as the training data.
Yet in practice, all types of test input data?even those on which the classifier
has not been trained can be encountered. Unfortunately, models can assign
misleading confidence values for unseen test samples [90]. This leads to concerns
about the reliability of classifiers, particularly for safety-critical applications [30].
In the literature, several fields attempt to address the issue of identifying the
unknowns/anomalies/out-of-distribution data in the open-world setting. In
particular, the problems of Novelty Detection (ND), anomaly detection (AD), One-
Class Classification(OCC), Outlier Detection (OD), Out-of-Distribution (OOD)
detection, and Open-Set Recognition (OSR) have gained significant attention
owing to their fundamental importance and practical relevance. They have
been used for similar tasks, although the differences and connections are often
overlooked.

Detecting novel samples is challenging due to the intractability of modeling all
possible unknown distributions. Another challenge with anomaly detection that
contradict the premise that the training data includes entirely normal samples.

Moreover, to find a sample that deviates from the trend, adopting an appro-
priate distance metric is necessary. For instance, deviation could be computed
in a raw pixel-level input or in a semantic space that is learned through a deep
neural network. Some samples might have a low deviation from others in the
raw pixel space but exhibit large deviations in representation space. Therefore,
choosing the right distance measure for a hypothetical space is another challenge.
In addition, choosing the threshold to determine whether the deviation from nor-
mal samples is significant. Many approaches proposed using (AE) AutoEncoder
to leverage the learned manifold, they assume AE trained on entirely normal
training samples could not reconstruct unseen abnormal. However, AE trained
on entirely normal training samples could reconstruct unseen abnormal inputs
with even lower errors.

Finally, the last challenge is choosing the threshold to determine whether the
deviation from normal samples is significant. On the other hand, some approach
train an AutoEncoders (AE) on a dataset containing both inliers and outliers.
The outliers are detected and filtered during training, under the assumption that
inliers are significantly more frequent and have a shared normal concept. This
way, the AEs is trained only on normal training samples and consequently poorly
reconstructs abnormal test time inputs. But, AEs trained on entirely normal
training samples could reconstruct unseen abnormal inputs with even lower er-
rors [22]. Intuitively, AEs may not learn to extract uniquely describing features of
normal samples; as a result, they may extract some abnormal features from abnor-
mal inputs and reconstruct them perfectly. This motivates the need for learning
features that allow only normal samples to be reconstructed accurately [82]
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1.3 Problem Definition

We are interested in Novelty/Anomaly detection we define it as: a task of rec-
ognizing wither the given sample is inlier or outlier with respect to the training
data. We are going to define and highlight the differences between novelty
and anomaly detection as well in section 3. In general we aim and focus on
novelty/ anomaly detection by evaluating the inlier probability distribution on
test samples. For novelty detection our method, similarly to [1] relies on the
density estimation of the latent code of the sample as well as the reconstruction
error. In our framework, we begin with a probabilistic approach and attempt
to derive a way to estimate the probability density of the sample, and through
series of assumptions, we make it possible to factories probability density of the
sample into the probability of the latent code and the probability density of the
reconstruction error. In such a way, two factorized probability densities can be
united in a natural way into a single novelty score.

We learn the manifold of the generative distribution of inliers as well as we
compute the non-linear orthogonal projections onto this manifold from the ambi-
ent space. This step is essential to avoid losing the representation power of the
decoder, we preserve the geometric structure of the data, and it affect positively
with the computational complexity where we do not have to compute any deriva-
tive during testing. The manifoldM is parameterized by the mapping f , and
learn by auto encoder AE. However, a common problem in using AE for novelty
detection is its generalization ability to reconstruct some anomaly inputs, when
they share common features with the normal [83]. Although this generalization
property is useful in other contexts, such as restoration [57], it is considered as
a drawback in novelty detection. We investigate whether AEs are able to recon-
struct abnormal samples when it is trained just in normal images. We extend
our approach to reduce the AEs generalization ability and to have more robust
representations by synthesizing helper inliers and outliers samples based in the
learned manifold, and not adversarially or gradient based citerade2022reducing.

1.4 Dissertation Contributions

In this dissertation we aim to to automatically identify data samples that differ
from a notion of normality refer to as Novelty Detection (NV) or Anomaly De-
tection (AD). Detecting those samples is challenging due to the unsupervised
nature of the problem where no prior knowledge is available about them during
training. We introduce an unsupervised framework based on Auto Encoder (AE)
architecture and Generative Adversarial Network (GAN) for novelty detection,
which does not require labeled data representing the distribution of outliers. The
framework learns the manifold of the generative distribution of inliers using
generative adversarial auto encoder, and determines if a given sample is anomaly
via computing its probability according to the distribution representing normality.
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The method also handles high-dimensional data such as images, by perform-
ing a non-linear dimensionality reduction of the input space into an isometric
lower-dimensional space, leading to a computationally efficient method. This is
done by computing non-linear orthogonal projections onto the learned manifold
from the ambient space, which preserves the geometric structure of the data,
regularizes the learning, and simplifies the inference model. In addition, the
learned manifold is assumed to contain information that describe samples within
the training distribution, and therefore the Auto Encoder will not be able to re-
construct outliers. As generative modeling, AE (Autoencoder)-based, and GAN
(Generative Adversarial Network)-based are used to model the data distribution.
For AEs, there are two important assumptions, If the auto-encoder is trained
solely on normal training samples:

• They would be able to reconstruct unseen normal test-time samples as
precisely as training-time ones.

• They would not be able to reconstruct unseen abnormal test-time samples
as precisely as normal inputs.

However, it has been extensively reported that autoencoders can effectively
rebuild kinds of abnormal/ outlier samples. To reduce the generalization ability
of autoencoder to potential reconstruction of outliers we incorporate additional
training examples that mimic the inlier samples that are mapped to the manifold.
We also incorporate additional training samples that live outside the manifold
but close enough to the inliers i.e with only minor, imperceptible perturbations
to the original image.

We aim to preserve certain geometric properties of training samples while
learning a robust model. To this end, we add additional training examples,
which are generated during the training procedure. In particular, those examples
are constructed by extrapolating perturbation found during training by our
architecture. The methods are evaluated extensively on multiple computer vision
benchmark datasets, where it is shown that they compare favorably with the
state of the art.

In this dissertation we propose four models that are linearly realted to each
other:

• Generative Probabilistic Novelty Detection with Adversarial Autoencoders

• Open-set Recognition with Adversarial Autoencoders

• Generative Probabilistic Novelty Detection with Isometric Adversarial Au-
toencoders

• A Robust Generative Probabilistic Model for Novelty and Anomaly Detec-
tion
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2 Literature Review

In this section, we summarize the literature for novelty detection (ND) sas well as
other related topics including out-of-distribution detection (OOD) and Open Set
Recognition (OSR). Novelty detection methods can generally be split into three
overarching groups: probabilistic, density estimation, and reconstruction-based
methods.

2.1 Traditional probabilistic methods

[8, 104, 39, 20] estimate the probability density function of normal data points by
inferring the model parameters. New data points with the smallest likelihood
are identified as outliers. A popular approach uses the Gaussian Mixture Model
(GMM), which fits a selected number of Gaussian distributions to a dataset using
the Expectation-Maximization (EM) algorithm [44]. GMM has been used in appli-
cations including the identification of suspicious and possibly cancerous masses
in mammograms [93]. Additionally, kernel-based probabilistic methods learn
the null space of training data and rely on distance measures to perform density
estimation implicitly [11, 50, 110, 31]. Our approach relates to these approaches
because it derives a novelty test following the same likelihood principle.

2.2 Density estimation methods

include a recent category of approaches such as DifferNet [75], which adopts the
normalizing flow [73] as a density estimation of the image features extracted by
convolutional neural networks. The anomaly score is then computed based on the
likelihoods of multiple transformations per image. Other normalizing flow-based
methods include [74, 26, 108]. Each of them contains two main components: the
feature extraction module and the distribution estimation module. An advantage
of these models over other methods is that one can calculate the likelihood of
a point directly without any approximation while also being able to sample
from it reasonably efficiently. However, evaluating each layer’s Jacobian and its
determinant can be very expensive and slow at test time, especially with high-
dimensional data [17, 32]. Another drawback of these methods is that they do not
perform any dimensionality reduction [62], which makes them less useful with
high dimensional data like images. Our approach relates to these approaches
but it overcomes both of these drawbacks by eliminating the need for computing
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Jacobians during inference, and by performing dimensionality reduction since
the dimension of the inlier manifold is much smaller than the dimension of the
ambient space.

2.3 Reconstruction-based methods

are based on learning a close approximation to the true distribution of normal
instances by using generative methods, such as [4, 6]. The initial strategy uses
autoencoder [46] architectures such as a variational autoencoder (VAE) [41]
where a latent representation z is learned from the image space X via an encoder
mapping via Pr(z|x). Sequentially, a decoder maps from z back to image space
to produce x. The encoder and decoder is trained to minimise reconstruction
error between the original image and the reconstruction image. However, in
general (VAE) they do not closely capture the data distribution over X due to
the oversimplification of the learned prior probability p(z|x). VAE [41]are only
capable of learning a uni-modal distribution, which fails to capture complex
distributions that are commonplace in real world anomaly detection scenarios [6].
AnoGAN [85]combats this simplification by adopting GAN in the anomaly
detection approach. AnoGAN is the first GAN-based method used generative
adversarial networks [23], where the model is trained to learn the manifold z only
on normal data. When anomalous sample is going through the generator network,
it produces a reconstruction error which, if large enough from learned normal
data distribution will be flagged anomalous. Although effectively proven, the
computational performance is prolonged hence limiting real-world applicability.
GANomaly [3] solves this issue by training an encoder-decoder-encoder network
with the adversarial scheme to capture the normal distribution within the image
and latent space.

[97] used a GAN-based method, where the generator is used to recover a la-
tent representation with gradient descent, by optimizing upon the reconstruction
error, which was then used as a novelty score. [72] trained GANs using optical
flow images to learn a representation of scenes in videos. [100] minimized the
reconstruction error of an autoencoder to remove outliers from noisy data, and
by utilizing the gradient magnitude of the autoencoder they make the reconstruc-
tion error more discriminative for positive samples. In [80], a framework was
proposed for one-class classification and novelty detection. It consists of two
main modules learned in an adversarial fashion. The first is a decoder-encoder
convolutional neural network trained to reconstruct inliers accurately, while the
second is a one-class classifier made with another network that produces the
novelty score.

Computing reconstruction error in image space is not ideal, and in fact, the
L2 norm works poorly with images. [40] used as a novelty score not only the
reconstruction error in the image space, but also in hidden spaces. They pass the
reconstructed image to the encoder and observe activations of all the intermediate
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layers in the encoder and compare those to activations induced by the original
image. [86] extended this approach by adding an adversarial loss that matches
the distribution of hidden activations for real and reconstructed inliers. In [66]
DCAE exclusively reconstructs the in-class data by learning their latent represen-
tations to be compact and collapse-free. DCAE utilizes its own internal module
that captures class semantics of the in-class data for both effective training and
inference.

Our approach relates to these because it learns a generative model of the data,
but during inference we use it to directly compute the likelihood of datapoints,
rather than a novelty or anomaly score.

Although GAN-based methods for anomaly detection have gained signifi-
cant results, they suffer from volatile training issues such as mode collapse [94],
leading to potential inability for the generator to produce meaningful output. On
the other hand, AE based architectures are much more stable than GAN-based
approaches. However, a common problem in using AE for novelty detection is
its generalization ability to reconstruct some anomaly inputs, when they share
common features with the normal [83]. [83]works by injecting adversarial sam-
ples into the training set so that the model can fit the original sample and the
adversarial sample at the same time. [2] adds purposeful corruption to the
normal input data and subsequently forces the AE to reconstruct it, or denoise
it. It enables the model to compress anomaly score to zero for normal pixel,
resulting clean anomaly segmentation which significantly improve performance.
The work in [35] offers another approach in noise perturbation in input data,
where instead of being perturbed by noise, input images are subjected to mask-
ing through the use of Mask Module (MM). The masks generated by MM are
optimized to cover the most important parts of the input image, resulting in a
comparable reconstruction score across sample. Through optimal masking, the
proposed approach learns semantically richer representations and enhances nov-
elty detection at test time. [7]propose using adversarially generated noise which,
when added to the input data, is very challenging for the denoising autoencoder
to reverse. [7]Adversarially Learned Continuous Noise (ALCN), it consists of
two parts, Noise Generator and Denoising Autoencoder. The former produces
maximal and continuous noise which is bespoke to the training data while the
latter trained to reconstruct input images perturbed (by weighted sum) with
this maximal noise. [70] propose Helper-based Adversarial Training (HAT), to
balance the tradeoff between robust and accuracy by incorporating additional
wrongly labelled examples during training. We also investigate whether AEs are
able to synthesize abnormal samples when it is trained just in normal images.
However, our approach synthesized helper inliers and outliers samples based in
the learned manifold, and not adversarially. By doing so we avoid all generative
adversarial based issues such as: mode collapse, and difficulty to converge.
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2.4 Out-of-Distribution methods

usually improve robustness of existing classification or detection systems in order
to detect erroneous samples (i.e., from other problem domains or datasets) that
otherwise would be classified incorrectly. A recent line of work has focused
on detecting out-of-distribution samples by analyzing the output entropy of a
prediction made by a pre-trained deep neural network [38, 28, 16, 48, 92, 51, 91].
This is done by either simply thresholding the maximum softmax score [28] or by
first applying perturbations to the input, scaled proportionally to the gradients
with respect to the input and then combining the softmax score with temperature
scaling, as it is done in Out-of-distribution Image Detection in Neural Networks
(ODIN) [48]. While these approaches require labels for the in-distribution data to
train the classifier network, our method does not use label information.

2.5 Open Set Recognition methods

Open-set recognition (OSR) receives more supervision than AD or ND. In this
setting, K normal classes are given at the training time. At testing, N classes
with N?K unknown and K known classes exist. The objective is to identify
unknown classes while classifying the known ones. [9] addresses the problem
of overconfident scores of classification models for unseen test time samples.
Due to the normalization in softmax computation, two samples with completely
different logit scores may have the same confidence score distribution. Instead of
using the confidence score, OpenMax resorts to the logit scores that are shown by
Activation Vector (AV). AV of each sample captures the distribution over classes.
The mean AV (MAV) is defined to be the average of AV values across all samples.
As for each input sample, the value in AV corresponding to the ground truth is
supposed to be high; its distance to the corresponding value of MAV would be
high too. Considering the distance of each element in AVs from the corresponding
element in MAV as a random variable, correctly classified inputs would have
the highest distances for ground truth elements. [21]is similar to OpenMax with
exceptions of artificially generating unknown test time samples samples with
GANs and fine-tuning OpenMax. Class Conditioned Auto-Encoder for Open-
Set Recognition (C2AE) [65] wants the encoder to classify each passed sample
correctly and provide embeddings by which the reconstruction of the original
input is possible. Furthermore, it imposes other constraints to force encoder
embeddings not to be easily converted to each other, e.g., by applying linear
transformations, which prevents the AE from utilizing the learned features to
reconstruct abnormal/unseen inputs. [106] follows the similar idea as C2AE. In
particular, CROSR employs an encoder network for classification and producing
the latent vectors for reconstruction task. Importantly, the latent vector z used for
the reconstruction task and penultimate layer y used for the classification task
are not shared. The reason is that there is an excessive amount of information
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loss in the penultimate layer, which makes distinguishing between unknown and
known samples hard.

2.6 Robust Novelty Detection

Autoencoders are suppose to learn unique features to the normal class, and
for abnormal samples it either reconstruct a corrupted or a normal output. A
common problem in using autoencoder for anomaly and novelty detection is
its generalization ability to reconstruct some anomaly inputs, when they share
common features with the normal class [22]. To prevent this, regularization in
the form of adding deliberate perturbation to the input data often takes place.
[83] Proposed Adversarially Robust Autoencoder (ARAE) that works by forcing
perceptually similar samples closer in their latent representations by crafting
adversarial examples that are perceptually similar to the input, but also have
distant latent encoding from the normal input. The adversarial samples are pro-
duced by traversing the latent space at each training epoch, which significantly
increases computational cost of the model. [2] trains the autoencoder to directly
output the desired per-pixel measure of abnormality without first having to
perform reconstruction. This is achieved by corrupting training samples with
noise and then predicting how pixels need to be shifted so as to remove the noise.
[35] proposed the One-Class Learned Encoder-Decoder (OLED) an adversarial
framework for novelty detection in both images and videos. Where, instead of
being perturbed by noise, input images are subjected to masking through the
use of Mask Module (MM).More specifically, their approach includes a Mask
Module and a Reconstructor; the Mask Module is a convolutional autoencoder
that learns to cover the most important parts of images, and the Reconstructor is
a convolutional encoder-decoder that reconstruct the masked images. [7] intro-
duced approach of producing Adversarially Learned Continuous Noise (ALCN)
to maximally globally corrupt the input prior to denoising. This phenomena also
has been studied in the area of adversarial attacks, [52] provides evidence that
deep neural networks can be made resistant to adversarial attacks, they study the
adversarial robustness of neural networks in term of robust optimization. [24]
examined the problem of adversarial impact to deep autoencoders for anomaly
detection.

Motivated by the adversarial robustness model, we propose to craft inliers
and outliers samples along the perpendicular direction based in the learned
manifold. Where we aim to preserve certain geometric properties while learning
a robust model. Simple yet effective because our approach can crafted inliers and
outliers helper samples without auxiliary deep models, adversarial model, or
gradient based model.
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3 Anomaly, Novelty Detection
Formal Definition

Most existing machine learning models are trained based on the closed-world
assumption [27], where the test data is assumed to be drawn i.i.d. from the
same distribution as the training data, known as in-distribution (ID). However,
when models are deployed in an open-world scenario [18], test samples can be
out-of-distribution (OOD) and therefore should be handled with caution. The
distributional shifts can be caused by semantic shift (e.g., OOD samples are
drawn from different classes) [29], or covariate shift (e.g., OOD samples from a
different domain) [98]. The detection of semantic distribution shift (e.g., due to the
occurrence of new classes) is the focal point of OOD detection tasks. In addition
to OOD detection, several problems adopt the ?open-world? assumption and
have a similar goal of identifying OOD examples. These include outlier detection
(OD), anomaly detection (AD), novelty detection (ND), and open set recognition
(OSR). While all these problems are related to each other by sharing similar
motivations, subtle differences exist among the sub-topics in terms of the specific
definition [105]

Anomaly Detection (AD) and Novelty Detection (ND) have been used inter-
changeably in the literature, with few works addressing the differences [68, 99].
Here we are going to focus in defining novelty detection and anomaly detection,
and highlight similarities and differences between them.

3.1 Anomaly Detection

What is an Anomaly? An anomaly is an observation that deviates considerably
from some concept of normality. Let X ⊆ RD be the data space given by some
task or application. [76] define a concept of normality as the distribution P+ on X
that is the ground-truth law of normal behavior in a given task or application. an
anomaly is then a data point x ∈ X (or set of points) that lies in a low probability
region under P+ .

Anomaly detection (AD) aims to detect any anomalous samples that are
deviated from the predefined normality during testing. The deviation can happen
due to either covariate shift or semantic shift, which leads to two sub-tasks:
sensory AD and semantic AD, respectively. Sensory AD detects test samples
with covariate shift, under the assumption that normalities come from the same
covariate distribution. No semantic shift takes place in sensory AD settings. On
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the other hand, semantic AD detects test samples with label shift, assuming that
normalities come from the same semantic distribution (category), i.e., normalities
should belong to only one class.

3.2 Novelty Detection

What is a novel sample? The word ?novel? generally refers to the unknown, new,
and something interesting. While novelty detection (ND) is often interchangeable
with AD in the community, strictly speaking, their subtle difference is worth
noticing. In terms of motivation, novelty detection usually does not perceive
?novel? test samples as erroneous, fraudulent, or malicious as AD does, but
cherishes them as learning resources for potential future use with a positive
learning attitude Novelty detection aims to detect any test samples that do not fall
into any training category. The detected novel samples are usually prepared for
future constructive procedures, such as more specialized analysis, or incremental
learning of the model itself [105].

Novelty detection aims to detect any test samples that do not fall into any
training category. The detected novel samples are usually prepared for future
constructive procedures, such as more specialized analysis, or incremental learn-
ing of the model itself. Based on the number of training classes, ND contains two
different settings:

1. one class novelty detection (one-class ND): only one class exists in the
training set.

2. multi-class novelty detection (multi-class ND): multiple classes exist in the
training set.

It is worth noting that despite having many ID classes, the goal of multi-class ND
is only to distinguish novel samples from ID. Both one-class and multi-class ND
are formulated as binary classification problems.

3.3 Anomaly, or Novelty?

Some works make a concrete distinction between what is an anomaly, or a
novelty. While both refer to instances from low probability regions under P+, an
anomaly is often characterized as being an instance from a distinct distribution
other thanP+ (e.g., when anomalies are generated by a different process than
the normal points), and a novelty as being an instance from some new region
or mode of an evolving, non-stationary P+. Under the distribution P+ of cats,
for instance, a dog would be an anomaly, and a new breed of cats would be a
novelty [76].
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FIGURE 3.1: An illustration of the difference between ND and
AD:Under the distribution P+ of cats, a dog would be an anomaly,

and a new breed of cats would be a novelty.
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3.4 Evaluation Protocols

Receiver Operating Characteristics (ROC) is a well-known criterion. Given a
test dataset including positive and negative (or seen and unseen ) samples, it
characterizes the relation between the false positive rate (FPR) and the true
positive rate (TPR) at different detection thresholds. AUC-ROC is the area under
the ROC curve, which is a threshold-independent metric. The highest value of
ROC is 1, and 0.5 indicates that the model assigns the positive label with random
guessing. The F-measure or F-score is also used to evaluate both ND and AD, it
is the the harmonic mean of precision P and recall R. In the literature, AD and
ND are usually tested in one-vs-all setting that considers one class as normal and
the rest of the classes as anomaly, unseen or unknown [82]
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4 Contributions

In this section we explain the main contributions for this dissertations, which
consists of four main points:

• Generative Probabilistic Novelty Detection with Adversarial Autoencoders

• Open-set Recognition with Adversarial Autoencoders

• Generative Probabilistic Novelty Detection with Isometric Adversarial Au-
toencoders

• A Robust Generative Probabilistic Model for Novelty and Anomaly Detec-
tion

4.1 Generative Probabilistic Novelty Detection with
Adversarial Autoencoders (GPND)

4.1.1 Introduction

In this work, we introduce a new encoder-decoder architecture as well, which is
based on adversarial autoencoders [54]. However, we do not train a one-class
classifier, instead, we learn the probability distribution of the inliers. Therefore,
the novelty test simply becomes the evaluation of the probability of a test sam-
ple, and rare samples (outliers) fall below a given threshold. We show that this
approach allows us to effectively use the decoder network to learn the parameter-
ized manifold shaping the inlier distribution, in conjunction with the probability
distribution of the (parameterizing) latent space. The approach is made com-
putationally feasible because for a given test sample we linearize the manifold,
and show that with respect to the local manifold coordinates the data model
distribution factorizes into a component dependent on the manifold (decoder
network plus latent distribution), and another one dependent on the noise, which
can also be learned offline.

We named the approach generative probabilistic novelty detection (GPND) be-
cause we compute the probability distribution of the full model, which includes
the signal plus noise portion, and because it relies on being able to also generating
data samples. We are mostly concerned with novelty detection using images, and
with controlling the distribution of the latent space to ensure good generative
reproduction of the inlier distribution. This is essential not so much to ensure
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good image generation, but for the correct computation of the novelty score. This
aspect has been overlooked by the deep learning literature so far, since the focus
has been only on leveraging the reconstruction error. We do leverage that as
well, but we show in our framework that the reconstruction error affects only the
noise portion of the model. In order to control the latent distribution and image
generation we learn an adversarial autoencoder network with two discriminators
that address these two issues.

4.1.2 Approach

We assume that training data points x1, . . . , xN, where xi ∈ Rm, are sampled,
possibly with noise ξi, from the model

xi = f (zi) + ξi i = 1, · · · , N , (4.1)

where zi ∈ Ω ⊂ Rn. The mapping f : Ω → Rm definesM ≡ f (Ω), which is a
parameterized manifold of dimension n, with n < m. We also assume that the
Jacobi matrix of f is full rank at every point of the manifold. We also assume that
there is another mapping g : Rm → Rn, such that for every x ∈ M, it follows
that f (g(x)) = x, which means that g acts as the inverse of f on such points.

Given a new data point x̄ ∈ Rm, we design a novelty test to assert whether
x̄. We begin by observing that x̄ can be non-linearly projected onto x̄‖ ∈ M via
x̄‖ = f (z̄), where z̄ = g(x̄). Assuming f to be smooth enough, we perform a
linearization based on its first-order Taylor expansion

f (z) = f (z̄) + J f (z̄)(z− z̄) + O(‖z− z̄‖2) , (4.2)

where J f (z̄) is the Jacobi matrix computed at z̄, and ‖ · ‖ is the L2 norm. We note
that T = span(J f (z̄)) represents the tangent space of f at x̄‖ that is spanned by
the n independent column vectors of J f (z̄). Also, we have that T = span(U‖),
where J f (z̄) = U‖SV> is the singular value decomposition (SVD) of the Jacobi
matrix. The matrix U‖ has rank n, and if we define U⊥ such that U = [U‖U⊥]
is a unitary matrix, we can represent the data point x̄ with respect to the local
coordinates that define the tangent space T , and its orthogonal complement T ⊥.
This is done by computing

w̄ = U> x̄ =

[
U‖
>

x̄
U⊥> x̄

]
=

[
w̄‖

w̄⊥

]
, (4.3)

where the rotated coordinates w̄ are decomposed into w̄‖, which are parallel to
T , and w̄⊥ which are orthogonal to T .

We now indicate with pX(x) the probability density function describing the
random variable X, from which training data points have been drawn. Also,
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FIGURE 4.1: Manifold schematic representation. This figure shows
connection between the parametrized manifoldM, its tangent space

T , data point x and its projection x‖.

Input:

Reconstruction:

Label “7” - inlier

Label “0” - outlier
Input:

Reconstruction:

FIGURE 4.2: Reconstruction of inliers and outliers. This fig-
ure showns reconstructions for the autoencoder network that was
trained on inlier of label "7" of MNIST [45] dataset. First line is
input of inliers of label "7", the second line shows corresponding
reconstructions. The third line corresponds to input of outlier of

label "0" and the forth line, corresponding reconstructions.

pW(w) is the probability density function of the random variable W representing
X after the change of coordinates. The two distributions are identical. However,
we make the assumption that the coordinates W‖, which are parallel to T , and
the coordinates W⊥, which are orthogonal to T , are statistically independent.
This means that the following holds

pX(x) = pW(w) = pW(w‖, w⊥) = pW‖(w
‖)pW⊥(w

⊥) . (4.4)

This is motivated by the fact that the noise ξ is assumed to predominantly deviate
the point x away from the manifold M in a direction orthogonal to T . This
means that W⊥ is primarely responsible for the noise effects, and since noise and
drawing from the manifold are statistically independent, so are W‖ and W⊥.
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So given a new data point x̄, we propose to perform novelty detection by
executing the following test

pX(x̄) = pW‖(w̄
‖)pW⊥(w̄

⊥) =

{
≥ γ =⇒ Inlier
< γ =⇒ Outlier , (4.5)

where γ is a suitable threshold.

4.1.3 Computing the distribution of data samples

The novelty detector requires the computation of pW‖(w
‖) and pW⊥(w

⊥). Given
a test data point x̄ ∈ Rm its non-linear projection onto M is x̄‖ = f (g(x̄)).

Therefore, w̄‖ can be written as w̄‖ = U‖
>

x̄ = U‖
>
(x̄− x̄‖) + U‖

>
x̄‖ = U‖

>
x̄‖,

where we have made the approximation that U‖
>
(x̄− x̄‖) ≈ 0. Since x̄‖ ∈ M,

then in its neighborhood it can be parameterized, which means that w‖(z) =

U‖
>

f (z̄) + SV>(z − z̄) + O(‖z − z̄‖2). Therefore, if Z represents the random
variable from which samples are drawn from the parameterized manifold, and
pZ(z) is its probability density function, then it follows that

pW‖(w
‖) = |detS−1| pZ(z) , (4.6)

since V is a unitary matrix. We note that pZ(z) is a quantity that is independent
from the linearization, and therefore it can be learned offline.

In order to compute pW⊥(w
⊥), we approximate it with its average over the

hypersphere Sm−n−1 of radius ‖w⊥‖, giving rise to

pW⊥(w
⊥) ≈

Γ
(m−n

2

)
2π

m−n
2 ‖w⊥‖m−n p‖W⊥‖(‖w⊥‖) , (4.7)

where Γ(·) represents the gamma function. This is motivated by the fact that
noise of a given intensity will be equally present in every direction. Moreover, its
computation depends on p‖W⊥‖(‖w⊥‖), which is the distribution of the norms
of w⊥, and which can easily be learned offline by histogramming the quantities
w̄⊥ = U⊥> x̄ = U⊥>(x̄ − x̄‖) + U⊥> x̄‖ = U⊥>(x̄ − x̄‖), where we have made
the approximation that U⊥> x̄‖ ≈ 0.

4.1.4 Manifold learning with adversarial autoencoders

In this section we describe the network architecture and the training procedure
for learning the mapping f that define the parameterized manifold M, and
also the mapping g. The mappings g and f represent and are modeled by
an encoder network, and a decoder network, respectively. Similarly to previous
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work on novelty detection [34, 56, 81, 100, 80, 79], such networks are based on
autoencoders [13, 77].

The autoencoder network and training should be such that they reproduce the
manifoldM as closely as possible. For instance, ifM represents the distribution
of images depicting a certain object category, we would want the estimated
encoder and decoder to be able to generate images as if they were drawn from
the real distribution. Differently from previous work, we require the latent
space, represented by z, to be close to a known distribution, preferably a normal
distribution, and we would also want each of the components of z to be maximally
informative, which is why we require them to be independent random variables.
Doing so facilitates learning a distribution pZ(z) from training data mapped onto
the latent space Ω. This means that the autoenoder has generative properties,
because by sampling from pZ(z) we would generate data points x ∈ M. Note
that differently from GANs [23] we also require an encoder function g.

Real
or

Fake

Convolutional Layers Fully connected Layers Fake Sample Real Sample

Real
or

Fake

Encoder Decoder

Discriminator

Discriminator

Distribution prior

FIGURE 4.3: Architecture overview. Architecture of the network
for manifold learning. It is based on Adversarial Autoenconder
(AAE) [54]. Similarly to [12, 80] it has an additional adversarial
component to improve generative capabilities of decoded images

and a better manifold learning.

Variational Auto-Encoders (VAEs) [41] are known to work well in presence
of continuous latent variables and they can generate data from a randomly
sampled latent space. VAEs utilize stochastic variational inference and minimize
the Kullback-Leibler (KL) divergence penalty to impose a prior distribution on
the latent space that encourages the encoder to learn the modes of the prior
distribution. Adversarial Autoencoders (AAEs) [54], in contrast to VAEs, use an
adversarial training paradigm to match the posterior distribution of the latent
space with the given distribution. One of the advantages of AAEs over VAEs
is that the adversarial training procedure encourages the encoder to match the
whole distribution of the prior.
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Unfortunately, since we are concerned with working with images, both AAEs
and VAEs tend to produce examples that are often far from the real data man-
ifold. This is because the decoder part of the network is updated only from a
reconstruction loss that is typically a pixel-wise cross-entropy between input and
output image. Such loss often causes the generated images to be blurry, which
has a negative effect on the proposed approach. Similarly to AAEs, PixelGAN
autoencoders [53] introduce the adversarial component to impose a prior distri-
bution on the latent code, but the architecture is significantly different, since it is
conditioned on the latent code.

Similarly to [12, 80] we add an adversarial training criterion to match the
output of the decoder with the distribution of real data. This allows to reduce
blurriness and add more local details to the generated images. Moreover, we also
combine the adversarial training criterion with AAEs, which results in having
two adversarial losses: one to impose a prior on the latent space distribution, and
the second one to impose a prior on the output distribution.

Our full objective consists of three terms. First, we use an adversarial loss for
matching the distribution of the latent space with the prior distribution, which
is a normal with 0 mean, and standard deviation 1, N (0, 1). Second, we use
an adversarial loss for matching the distribution of the decoded images from z
and the known, training data distribution. Third, we use an autoencoder loss
between the decoded images and the encoded input image.

4.1.5 Adversarial losses

For the discriminator Dz, we use the following adversarial loss:

Ladv−dz(x, g, Dz) = E[log(Dz(N (0, 1)))] + E[log(1− Dz(g(x)))] , (4.8)

where the encoder g tries to encode x to a z with distribution close to N (0, 1). Dz
aims to distinguish between the encoding produced by g and the prior normal
distribution. Hence, g tries to minimize this objective against an adversary Dz
that tries to maximize it.

Similarly, we add the adversarial loss for the discriminator Dx:

Ladv−dx(x, Dx, f ) = E[log(Dx(x))] + E[log(1− Dx( f (N (0, 1))))] , (4.9)

where the decoder f tries to generate x from a normal distribution N (0, 1), in a
way that x is as if it was sampled from the real distribution. Dx aims to distinguish
between the decoding generated by f and the real data points x. Hence, f tries to
minimize this objective against an adversary Dx that tries to maximize it.
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4.1.6 Autoencoder loss

We also optimize jointly the encoder g and the decoder f so that we minimize the
reconstruction error for the input x that belongs to the known data distribution.

Lerror(x, g, f ) = −Ez[log(p( f (g(x))|x))] , (4.10)

where Lerror is minus the expected log-likelihood, i.e., the reconstruction error.
This loss does not have an adversarial component but it is essential to train an
autoencoder. By minimizing this loss we encourage g and f to better approximate
the real manifold.

4.1.7 Full objective

The combination of all the previous losses gives

L(x, g, Dz, Dx, f ) = Ladv−dz(x, g, Dz) + Ladv−dx(x, Dx, f ) + λLerror(x, g, f ) ,
(4.11)

Where λ is a parameter that strikes a balance between the reconstruction and
the other losses. The autoencoder network is obtained by minimizing (4.11),
giving:

ĝ, f̂ = arg min
g, f

max
Dx,Dz

L(x, g, Dz, Dx, f ) . (4.12)

The model is trained using stochastic gradient descent by doing alternative
updates of each component as follows

• Maximize Ladv−dx by updating weights of Dx;

• Minimize Ladv−dx by updating weights of f ;

• Maximize Ladv−dz by updating weights of Dz;

• Minimize Lerror and Ladv−dz by updating weights of g and f .

4.1.8 Novelty test parameters computation

After learning the encoder and decoder networks, by mapping the training
set onto the latent space through g, we fit to the data a generalized Gaussian
distribution and estimate pZ(z). In addition, by histogramming the quantities
‖U⊥>(x− x‖)‖we estimate p‖W⊥‖(‖w⊥‖). Finally, the computation of the Jacobi
matrix J f is performed more efficiently by computing Jg, with respect to the input

x, and then computing a SVD, so that Jg = VSU‖
>

. This is done by leveraging the
automatic differentiation capabilities of the deep machine learning framework
PyTorch [67].
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4.1.9 Experiments

We evaluate our novelty detection approach on the following datasets: MNIST [45],
The Coil-100 [64], and Fashion-MNIST [101].We compare the performance of
our approach against several state-of-the-art approaches using the F1 measure
and the area under the ROC curve (AUC).

4.1.10 Experimental setup

All reported results for the proposed approach, that we call Generative Probabilistic
Novelty Detection (GPND) are from our implementation using the deep machine
learning framework PyTorch [67], which we ran on an NVIDIA TITAN X.

4.1.11 Datasets

• MNIST [45] contains 70, 000 handwritten digits from 0 to 9. Each of ten
categories is used as inlier class and the rest of the categories are used as
outliers.

• The Coil-100 dataset [64] contains 7, 200 images of 100 different objects. Each
object has 72 images taken at pose intervals of 5 degrees. We downscale
images to size 32× 32. We take randomly n categories, where n ∈ 1, 4, 7
and randomly sample the rest of categories for outliers. We repeat this
procedure 30 times.

• Fashion-MNIST [101] is a new dataset comprising of 28× 28 grayscale
images of 70, 000 fashion products from 10 categories, with 7, 000 images
per category. The training set has 60, 000 images and the test set has 10, 000
images. Fashion-MNIST shares the same image size, data format and the
structure of training and testing splits with original MNIST.

MNIST dataset. We follow the protocol described in [80, 100] with some differ-
ences discussed below. We perform 5-fold cross-validation and all results are
reported as average from cross-validation. We split the dataset into 5 folds, each
of which takes 20% of each class. We use 60% samples of each class for training,
20% samples for validation, and 20% for testing. Validation set is used to find the
optimal threshold γ. Once pX(x̄) is computed for each sample in validation set,
we search for such γ that gives the highest F1 measure. For each class of digit,
we train the proposed model and simulate outliers as randomly sampled images
from other categories with proportion from 10% to 50%. Results for D(R(X))
and D(X) reported in [80] correspond to the protocol for which data is not split
into separate training, validation and testing sets, meaning that the same inliers
are used for testing, which were used during training the network. We diverge
from this protocol and do not reuse inliers, but follow 60%/20%/20% splits for
training, validation and testing.
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TABLE 4.1: Results on the MNIST [45] dataset. Inliers are taken to
be images of one category, and outliers are randomly chosen from

other categories.

% of outliers D(R(X)) [80] D(X) [80] LOF [14] DRAE [100] GPND

10 0.97 0.93 0.92 0.95 0.967
20 0.92 0.90 0.83 0.91 0.951

30 0.92 0.87 0.72 0.88 0.941
40 0.91 0.84 0.65 0.82 0.935

50 0.88 0.82 0.55 0.73 0.932

TABLE 4.2: Results on the Coil-100 database. Inliers are taken to
be images of one, four, or seven randomly chosen categories, and
outliers are randomly chosen from other categories (at most one

from each category)

OutRank [59, 60] CoP [71] REAPER [47] OutlierPursuit [102] LRR [49] DPCP [95] `1 thresholding R-graph [107] Ours

Inliers: one category of images , Outliers: 50%

AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997 0.968
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990 0.979

Inliers: four category of images , Outliers: 25%

AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996 0.945
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970 0.960

Inliers: seven category of images , Outliers: 15%

AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996 0.919
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955 0.941

Coil-100 dataset. We follow the protocol described in [107] with some differences
discussed below. We perform 5-fold cross-validation and all results are reported
as average from cross-validation. We split the dataset into 5 folds, each of which
takes 20% of each class. Because count of samples per category is very small, we
use 80% samples of each class for training, 20% samples for testing. We find the
optimal threshold γ on training set. Results reported in [107] correspond to the
protocol for which data is not split into separate training, validation and testing
sets, which is not essential, since in [107] is used pretrained VGG [87] network on
ImageNet [78]. We diverge from this protocol and do not reuse inliers and follow
80%/20% splits for training and testing.

We do not outperform R-graph [107], however the R-graph as mentioned
before uses pretrained VGG network, while we train autoencoder from scratch
on very limited number samples, which is on average only 70 per category.
Fashion-MNIST [101] We repeat the same experiment with the same protocol
that we have used for MNIST, but on Fashion-MNIST dataset.
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TABLE 4.3: Results on the Fashion-MNIST [101] dataset. Inliers
are taken to be images of one category, and outliers are randomly

chosen from other categories.

% of outliers 10 20 30 40 50

F1 0.961 .929 0.891 0.841 0.809

AUC 0.915 0.910 0.907 0.902 0.901

4.1.12 Ablation

To justify importance of each component of pX(x̄) we repeat experiment with
MNIST dataset under the following conditions:

• GPND Complete. Unmodified approach, where pX(x̄) = pW‖(w̄
‖)pW⊥(w̄

⊥).

• Parallel component only. We drop perpendicular component pW⊥ and
assume that pX(x̄) = pW‖(w̄

‖).

• pZ(z) only. We also drop |detS−1| and assume that pX(x̄) = pZ(z).

In ablation we show results and because the curve that corresponds to "GPND
Complete" performs better than curve with parallel component only, we can
conclude that the perpendicular component in is important. In addition, because
curve with parallel component only performs significantly better than "pZ(z)
only" one, we can conclude that the scaling factor |detS−1| plays essential role.
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FIGURE 4.4: Results on MNIST [45] dataset.
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FIGURE 4.5: Ablation study. "GPND Complete" corresponds to
unmodified approach. "Parallel component only" corresponds to
the modification, where the perpendicular component is ignored
and the "pZ(z) only" corresponds to very rough approximation

pX(x̄) = pZ(z).
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4.2 Open-set Recognition with Adversarial Autoen-
coders (OSRAAE)

4.2.1 Introduction

To be deployable to real applications, recognition systems need to be tolerant of
unknown things and events that were not anticipated during the training phase.
However, most of the existing learning methods are based on the closed-world
assumption, that is, the training datasets are assumed to include all classes that
appear in the environments where the system will be deployed. This assumption
can be easily violated in real-world problems, where covering all possible classes
is almost impossible [58], [106].

Conventional classification tasks are defined under a closed-set condition,
i.e. that all categories are fixed and known. However, learning models should
consider multiple known classes and also be able to reject unknown classes or
detect them as novel during testing. This is the open-set condition. We take
a deep learning approach to solving the problem of open-set recognition, by
leveraging an encoder-decoder network architecture in conjunction with a multi-
class classifier. The network enables learning a novelty detector that computes
the probability of a sample to belong to one of the known classes versus being
unknown. If known, the multi-class classifiers assigns the class label to the
sample.

We follow [69] where the novelty detector assumes that inlier samples are
generated by a parameterized manifold with additive noise. We show that
under this condition, given a test sample, a local linearization of the manifold
allows the factorization of the inlier probability into terms defined on the tangent
space to the manifold, as well as on its orthogonal complement. Such terms are
computable if the parameterized manifold, the distribution of the parameters,
and the noise distribution are available. Our goal is to learn efficient feature
representations that are able to detect unknowns as outliers and classify known
classes correctly. We assume that training data points x1, . . . , xN, where xi ∈ Rm,
are sampled, possibly with noise ξi, from the model

xi = f (zi) + ξi i = 1, · · · , N , (4.13)

where zi ∈ Ω ⊂ Rn. The mapping f : Ω → Rm definesM ≡ f (Ω), which is a
parameterized manifold of dimension n, with n < m. We also assume that there
is another mapping g : Rm → Rn, such that for every x ∈ M, it follows that
f (g(x)) = x, which means that g acts as the inverse of f on such points. Given a
new data point x̄ ∈ Rm, we design a novelty test to assert whether x̄ was sampled
from the model. We begin by observing that x̄ can be non-linearly projected onto
x̄‖ ∈ M via x̄‖ = f (z̄), where z̄ = g(x̄).

We show that the manifold and the distribution of the parameters can be
learned by training an adversarial auto-encoder (AAE) network with a prior
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distribution modeling the latent space of the parameters. Since we are interested
in working with image datasets, we improve the training of the network to make
sure that the AAE reproduces images with visually plausible statistics. When
a data sample is labeled as inlier, we leverage its latent space of parameters as
representation for assigning the class label.

We use the same novelty detector mechanism mentioned in the previous
section that works as follow: given a new data point x̄, we propose to perform
novelty detection by executing the following test

pX(x̄) = pW‖(w̄
‖)pW⊥(w̄

⊥) =

{
≥ γ =⇒ Inlier
< γ =⇒ Outlier , (4.14)

where γ is a suitable threshold.

4.2.2 Open set recognition model

The model is trained using stochastic gradient descent by doing alternative
updates of each component as follows

• Maximize Ladv−dx by updating weights of Dx;

• Minimize Ladv−dx by updating weights of f ;

• Maximize Ladv−dz by updating weights of Dz;

• Minimize Lerror and Ladv−dz by updating weights of g and f .

Figure 4 shows how we learn the encoder and decoder networks, by mapping the
training set onto the latent space through g, then we fit to the data a generalized
Gaussian distribution and estimate pZ(z).

4.2.3 Experemints

We evaluate our Open set recognition model on the following datasets: MNIST [45],
and Fashion-MNIST [101].We compare the performance of our approach against
OpenMax[9],and GOpenMax[21]using the F1 measure. We define the openness
as:

openness = 1−

√
2× |training classes|

|testing classes|+ |target classes| (4.15)

The openness yields percent openness (values between 0% and 100%), where
0% represents a completely closed problem, and larger values more open prob-
lems. For a fixed number of training classes, increasing the number of testing
classes increases openness, as does increasing the number of target classes to
identify. Increasing the fraction of classes available during training decreases
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FIGURE 4.6: Open set Recognition Training Phase, architecture
of the network for manifold learning. It is based on Adversarial
Autoenconder (AAE) [54]. Similarly to [12, 80] it has an additional
adversarial component to improve generative capabilities of de-

coded images and a better manifold learning.

Convolutional Layers Fully connected Layers Fake Sample Real Sample

Encoder Decoder

LabelClassi�er

Novelty 
detector

FIGURE 4.7: Open set Recognition Testing Phase, we add a classi-
fier during inference time to classify inlier samples

openness. By taking the square root of the openness grows in a gradual manner
as the number of classes increases (if linear, openness in this formulation would
quickly move towards 1 with just moderate numbers of classes, which is not as
meaningful) [84].

We shows F1-measure for multi-class open set recognition on MNIST. Our
model maintains high F1-measure scores as the openness grows, while Open-
Max[9] and G-OpenMax[21] degrade quickly on MNIST. We observe that our
model consistently outperforms OpenMax, and G-OpenMax. We show that
even a standard classifier like the multi-class SVM can achieve state of the art
accuracy in open-set recognition settings. We verify this on multiple benchmark
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(A) Real MNIST data samples (B) Open Set data samples

FIGURE 4.8: We train our model in MNIST with varying openness
settings, where we do not have knowledge of the entire set of possi-
ble classes during training, and must account for unknowns during

testing [33].

F1 Score on MNIST Dataset

Ours 0.994 0.924 0.876 0.869 0.875
GOpenMax 0.994 0.921 0.872 0.825 0.812
OpenMax 0.994 0.910 0.842 0.810 0.773

TABLE 4.4: F1measure for multi-class open set recognition on
MNIST.

datasets, including MNIST, where we obtain an improvement of the F-measure
with varying openness settings.
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(A) Result on MNIST Dataset

(B) Result on Fashion-MNIST Dataset

FIGURE 4.9: F1-measure for multi-class open set recognition on
MNIST and Fashion-MNIST Dataset
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4.3 Generative Probabilistic Novelty Detection with
Isometric Adversarial Autoencoders (GPNDI)

4.3.1 Introduction

In this work, we introduce a new method that stems from addressing a few
existing weaknesses of our previous approach known as Generative Probabilistic
Novelty Detection (GPND) [69]. We revise the derivation of the novelty/anomaly
test, where we highlight and make further use of the central hypothesis of com-
puting non-linear orthogonal projections from the ambient space, where outliers
come from, onto the manifold where inliers live. Doing so leads to important
computational improvements because we prove that the need for computing
costly Jacobians during inference is completely removed. On the training side,
we show that this entails learning a parameterized inlier manifold that is an
isometry, while we also need to learn a mapping that projects from the ambient
space onto the manifold and then inverts the isometry. We show that we can
implement our model with adversarial autoencoders where we add specialized
priors for learning such isometry and pseudo-inverse maps. As a byproduct, this
learning approach lends to smoother manifolds, thus more likely to generalize
well, which is vital to the process of determining the inlier distribution.

4.3.2 Generative Probabilistic Novelty Detection Isometric

Here we revise the derivation of the formulation of the novelty/anomaly test
initially introduced in [69] to emphasize certain properties that were previously
untapped, and to keep the paper self-contained. Specifically, we assume that
training data points x1, . . . , xN, where xi ∈ Rm, are sampled, possibly with noise
ξi, from the model

xi = f (zi) + ξi i = 1, · · · , N , (4.16)

where zi is defined in a latent space Ω ⊂ Rn. The mapping f : Ω→ Rm defines
M≡ f (Ω), which is a parameterized manifold of dimension n, with n < m. We
also assume that the Jacobi matrix of f is full rank at every point of the manifold.

Given a new data point x̄ ∈ Rm, we design a novelty test to assert whether x̄
was sampled from model (4.16). We begin by computing the non-linear orthog-
onal projection of x̄ ontoM, which we indicate as x̄‖ ∈ M, and that in latent
space is given by z̄, where x̄‖ = f (z̄), and

z̄ = arg min
z
‖x̄− f (z)‖ , (4.17)

in which ‖ · ‖ is the L2 norm. Assuming f to be smooth enough, we perform a
linearization around z̄, based on its first-order Taylor expansion

f (z) = f (z̄) + J f (z̄)(z− z̄) + O(‖z− z̄‖2) , (4.18)
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FIGURE 4.10: Isometric manifold schematic representation. Im-
proving on the efforts of GPND, (a), isometric autoencoders, (b),
enforce an angle and distance-preserving mapping from Rm to the
low-dimensional manifoldM⊂ Rm and then onto the latent space
Rn. Additionally, the full mapping f (g(x)) is encouraged to be or-
thogonal toM, and therefore to the tangent space T . Constraining
the learned manifold in this manner generally lends to a smoother
mapping and more appropriate generalization of the training data.

where J f (z̄) is the Jacobi matrix computed at z̄. We note that T = span(J f (z̄))
represents the tangent space ofM at x̄‖ that is spanned by the n independent
column vectors of J f (z̄), see Figure 4.10(b). Also, we have T = span(U‖), where
J f (z̄) = U‖SV> is the singular value decomposition (SVD) of the Jacobi matrix.
The matrix U‖ has rank n, and if we define U⊥ such that U = [U‖U⊥] is a unitary
matrix, we can represent the data point x̄ with respect to the coordinates that are
parallel to the tangent space T , and to its orthogonal complement T ⊥. This is
done by computing

w̄ = U> x̄ =

[
U‖
>

x̄
U⊥> x̄

]
=

[
w̄‖

w̄⊥

]
, (4.19)

where the rotated coordinates w̄ are decomposed into w̄‖, which are parallel to
T , and w̄⊥ which are orthogonal to T .

We now indicate with pX(x) the probability density function describing the
random variable X, from which training data points have been drawn. Also,
pW(w) is the probability density function of the random variable W representing
X after the change of coordinates (4.19). The two distributions are identical
modulo the coordinate change. However, we make the assumption that the
coordinates W‖, which are parallel to T , and the coordinates W⊥, which are
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orthogonal to T , are statistically independent. This means that in a neighborhood
of x̄‖, the following holds

pX(x) = pW(w) = pW(w‖, w⊥) = pW‖(w
‖)pW⊥(w

⊥) . (4.20)

This is motivated by the fact that in (4.16) the noise ξ is assumed to predominantly
deviate the point x away from the manifoldM in a direction orthogonal to T .
This means that W⊥ is primarily responsible for the noise effects, and since noise
and drawing from the manifold are statistically independent, so are W‖ and W⊥.

From (4.20), given a new data point x̄, we propose to perform novelty detec-
tion by executing the following test

pX(x̄) = pW‖(w̄
‖)pW⊥(w̄

⊥) =

{
≥ γ =⇒ Inlier
< γ =⇒ Outlier (4.21)

where γ is a suitable threshold.

4.3.3 Data distribution learning and inference

The novelty detector (4.21) requires the computation of pW‖(w
‖) and pW⊥(w

⊥).
Here we provide a revised version from [69], of the description of how these dis-
tributions can be learned from data, and used for inference, with some differences
that exploit the fact that it is possible to compute precise geometric projections
from the ambient space Rn ontoM, via (4.17). We note that w‖ can be written as

w‖ = U‖
>

x = U‖
>
(x− x‖) +U‖

>
x‖ = U‖

>
x‖, where U‖

>
(x− x‖) = 0, because

x− x‖ is orthogonal to the tangent space T . Therefore, w‖ and z are related as

w‖ = U‖
>

f (z). Let us now indicate with Z the random variable representing the
latent space, and with pZ(z) its probability distribution. By using the lineariza-
tion (4.18), and the fact that V is a unitary matrix, it is easy to realize that pZ(z)
and the distribution pW‖(w

‖), around the neighborhood of f (z), are related as
follows

pW‖(w
‖) = |detS−1| pZ(z) . (4.22)

Note that pZ(z) is independent from the linearization and it can be learned offline.
Specifically, from the training data {xi}, we compute their orthogonal projections
in the latent space {zi} according to (4.17), and we fit to them a generalized
Gaussian distribution to represent pZ(z) with a parametric model.

In order to compute pW⊥(w
⊥), we approximate it with its average over the

hypersphere Sm−n−1 of radius ‖w⊥‖, giving rise to

pW⊥(w
⊥) ≈

Γ
(m−n

2

)
2π

m−n
2 ‖w⊥‖m−n−1 p‖W⊥‖(‖w⊥‖) , (4.23)
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where Γ(·) represents the gamma function. This is motivated by the fact that
noise of a given intensity will be equally present in every direction.

Computing (4.23) requires p‖W⊥‖(‖w⊥‖), which is the distribution of the
norms of w⊥, and in principle, it could easily be learned offline by histogram-
ming the norms of w⊥ = U⊥>x, computed for each of the training data points
{xi}. On the other hand, the same distribution can be learned even more easily,
without the need for computing the Jacobi matrix at each point, by observing
the following. Since x− x‖ is orthogonal to T , it means that x‖ is orthogonal to
T ⊥, i.e., U⊥>x‖ = 0. Therefore, we have that w⊥ = U⊥>x = U⊥>x−U⊥>x‖ =
U⊥>(x− x‖). Moreover, by taking the squared norms, we can also write that

‖w⊥‖2 = ‖U⊥>(x− x‖)‖2 + ‖U‖>(x− x‖)‖2

= ‖U>(x− x‖)‖2 = ‖x− x‖‖2 , (4.24)

where the last equality follows from U being unitary. If we define x⊥ .
= x− x‖,

this means that in (4.23), we can replace ‖w⊥‖ with ‖x⊥‖, and p‖W⊥‖(‖w⊥‖)
with p‖X⊥‖(‖x⊥‖). x⊥ does not require the Jacobi matrix to be computed, making
the learning and inference more efficient. Specifically, p‖X⊥‖(‖x⊥‖) is learned
from the training data {xi}, by computing their orthogonal projections according
to (4.17), and histogramming the L2 norms between data and projectons.

4.3.4 Manifold learning

A major task in our approach is to learn the manifoldM. Here we derive the
requirements, the network architectures, and the set of losses needed to do the
learning.

4.3.5 Model driven requirements

The manifold M is parameterized by the mapping f . Out of all the possible
choices we propose to learn an isometric map. Imposing f to be an isometry is
beneficial for multiple reasons. First, we do not loose representational power
as long as m ≥ n + 1 [63]. Second, it is easy to realize that if two isometries
can representM, then they must be related by a rigid transformation [25]. This
reduces the search space for the mapping f , and from a learning perspective,
imposing this restriction will act positively, as a regularizer by reducing the
hypotheses space.

On the other hand, the most important reason for f to be an isometry is that
the Jacobian J f (z) will have orthonormal columns. This means that

J f (z)> J f (z) = I , (4.25)
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FIGURE 4.11: Architecture overview. Architecture of the network
for manifold learning. It is based on training an Adversarial Au-
toenconder (AAE) [54]. Similarly to [12, 80] it has an additional
adversarial component to improve generative capabilities of de-
coded images and a better manifold learning. The architecture
layers of the AAE and of the discriminator Dx are specified on the
right. All fake samples are generated from an n-dimensional nor-
mal distribution N (0, 1). x∗ represents a projection of z∗ onto the

learned manifoldM.

where I is the identity matrix. Therefore, it follows that |det S| = 1, where S is
the matrix with the singular values of the Jacobian, i.e., that (4.22) reduces to

pW‖(w
‖) = pZ(z) , (4.26)

since |det S−1| = 1. This result has very important computational implications,
because it means that to compute the detection test it will not be necessary to
compute the Jacobian J f (z), which is by far the most time consuming step in
the original GPND [69], not to mention that it introduces significant noise in
evaluating the sample probability.

Finally, we note that this updated framework has some parallels with very el-
egant recent work on novelty/anomaly detection [61], which is based on comput-
ing probabilities via normalizing flows [42]. While backed by a clear theoretical
framework, these approaches require computing the inverse Jacobian at every
network layer, leading to major computational drawbacks. The issue stems in
part from the fact that in computing the latent representation they do not perform
dimensionality reduction. On the other hand, this updated GPND formulation
not only does it learn a reduced representation, it also eliminates the need to
compute Jacobians.

In order to compute the test (4.21), we need to have the representation z, as
required by (4.26). According to (4.17), this can be done by first applying to x̄
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an orthogonal projection PM from the ambient space onto M, and then map
the projection to the representation space via f−1. This means that besides the
manifold representation f , we also need to learn a function g, defined as

g(x) .
= f−1 ◦ PM(x) . (4.27)

Figure 4.10 depicts this sequence of transformations. It can be shown, as described
in [25], that if f is an isometry, then g is such that

Jg( f (z))Jg( f (z))> = I , (4.28)

Jg( f (z)) = J f (z)> . (4.29)

Therefore, in order to compute (4.21) we need to learn two functions f and
g which behave according to (4.25), (4.28), and (4.29). We stress the fact that
satisfying all these requirements is fundamental, because the revised GPND
framework is based on being able to compute (4.17), which also leads to the sim-
plification (4.24), with the complete elimination of the need to compute Jacobians
during testing.

4.3.6 Training losses

We plan to learn f and g with an autoencoder architecture, since for data points
on the manifold the reciprocity must be satisfied, i.e., x = f (g(x)), but we require
also (4.25), (4.28), and (4.29) to be satisfied as well. To that end, we build on the
approach in [37, 25], and incorporate the following priors to the original GPND
framework [69]. The first prior is the isometry loss Liso( f ), and is defined as

Liso( f ) = E
[
(‖J f (z)u‖ − 1)2

]
(4.30)

where E[·] denotes expectation, and u is uniformly sampled from the unit-sphere
of dimension n− 1, i.e., Sn−1 = {u ∈ Rn | ‖ u ‖ = 1}.

The second prior is the pseudo-inverse loss Lpiso(g), and is defined as

Lpiso(g) = E
[
(‖u> Jg(x)‖ − 1)2

]
(4.31)

where, again, u is sampled from Sn−1. We combine these priors in this notation

Liso_AE( f , g) = Liso( f ) + Lpiso(g) (4.32)

For the implementation of the prior above we follow the same strategy described
in [25].

The backbone architecture mimics the adversarial autoencoder design in [69].
One adversarial component imposes a prior distribution on the latent space, the
output of the encoder, that is matched with a normal distribution N (0, 1). The
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second adversarial component matches the output distribution of the decoder
with the distribution of real data, representing the manifoldM. Finally, a cross-
entropy loss is used to impose the reciprocity of the autoencoder, which is also
the loss responsible to for encouraging (4.29), as discussed in [25].

The network architecture is shown in Figure 4.13. The adversarial losses are
summarized as follows for the two adversarial components:

Ladv−dz(x, g, Dz) = E[log(Dz(N (0, 1)))]
+E[log(1− Dz(g(x)))] ,

(4.33)

Ladv−dx(x, Dx, f ) = E[log(Dx(x))]
+E[log(1− Dx( f (N (0, 1))))] ,

(4.34)

Instead, Lerror is used to minimize the reconstruction error for the input x that
belongs to the known data distribution.

Lerror(x, g, f ) = −Ez[log(p( f (g(x))|x))] , (4.35)

For simplicity, we combine all the losses without discriminators in Lauto_error, so
that

Lauto_error(x, g, f ) = λisoLiso_AE( f , g) + Lerror (4.36)

Where λiso is a hyperparameter for balancing the losses. Therefore, our objective
function is going to be

L(x, g, Dz, Dx, f ) =Ladv−dz(x, g, Dz)+

Ladv−dx(x, Dx, f )+
λLauto_error(x, g, f ) , (4.37)

where λ is a hyper parameter that adjusts the trade off between the losses with
and without discriminators. The autoencoder network is obtained by minimizing:

ĝ, f̂ = arg min
g, f

max
Dx,Dz

L(x, g, Dz, Dx, f ) . (4.38)

We trained the proposed model by using stochastic gradient descent and
doing alternative updates of each component as follows

• Maximize Ladv−dx by updating weights of Dx;

• Minimize Ladv−dx by updating weights of f ;

• Maximize Ladv−dz by updating weights of Dz;

• Minimize Lauto_error and Ladv−dz by updating weights of g and f .
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In this section, we present the set of experiments that have been conducted
to demonstrate the effectiveness of our method. The performance results are
analyzed in detail and are compared with state-of-the-art techniques where each
of the results were taken from the original papers. In all cases, experiments are
carried out identically to GPND [69].

For each experiment, datasets are randomly split into training, validation,
and testing sets. In this setting, we do not reuse the same inliers for training
and testing to make our evaluation more realistic. We compare our results to a
few other approaches, namely [80, 14, 100] that do not follow this protocol and
instead use the same inliers for training and testing.

Performance of our approach is evaluated using the F1 measure, area under
the ROC (AUROC), false positive rate (FPR) at 95% true positive rate (TPR),
Detection Error at 95% TPR, and area under the precision-recall curve, calculated
in terms of inliers (AUPR-In) and outliers (AUPR-Out).

subsectionDatasets We evaluate our method on MNIST, Fashion-MNIST, Coil-
100, CIFAR-10, and CIFAR-100.
MNIST [45] is composed of 70,000 28× 28 handwritten digits.
Fashion-MNIST [101] contains 70,000 28× 28 grayscale images of fashion items.
Like MNIST, there are 10 categories each possessing 7,000 total samples.
Coil-100 [64] is comprised of 7,200 images. For each of 100 objects, pictures were
taken 5 degrees apart from one another, resulting in 72 images for each object.
CIFAR-10 and CIFAR-100 [43] each possess 60,000 32× 32 images with 10 and
100 classes, respectively. Both datasets contain a variety of balanced classes
ranging from vehicles to animals, although no classes are shared between them.
Like GPND [69] and ODIN [48], we count inliers as samples from either dataset,
while images from two different cropped and resized versions of both TinyIma-
geNet [15] and LSUN [89] are used individually as outliers. During validation,
we use samples from iSUN [103] as outliers. We reuse the currently available
datasets provided by ODIN’s GitHub project page.

4.3.7 Implementation details and complexity

Since our implementation was done based on the source code of GPND, we
follow most details with some differences related to hyperparameter values. We
learn the isometric mapping by training g, and f while imposing the described
specifications. During testing we do not need to compute any derivatives, such
as the Jacobian matrix, which makes our approach significantly more efficient.
Training is done with ADAM optimizer, we train the model for 100 epochs, λiso
was set to 0.01, using an NVIDIA TITAN RTX.

4.3.8 Results

MNIST dataset. For this set of tests, we create 5 random data splits with a
balanced number of samples per class. We then evaluate on one split, using three
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TABLE 4.5: F1 scores on MNIST [45]. Inliers are taken to be im-
ages of one category, and outliers are randomly chosen from other
categories. All results are averages from a 5-fold cross validation.

% of outliers D(R(X)) [80] D(X) [80] LOF [14] DRAE [100] GPND [69] GPNDI (Ours)

10 0.97 0.93 0.92 0.95 0.983 0.984
20 0.92 0.90 0.83 0.91 0.971 0.976

30 0.92 0.87 0.72 0.88 0.961 0.968
40 0.91 0.84 0.65 0.82 0.950 0.960

50 0.88 0.82 0.55 0.73 0.939 0.953

TABLE 4.6: Results on Fashion-MNIST [101]. F1 scores where inliers
are taken to be images of one category, and outliers are randomly

chosen from other categories.

% of outliers 10 20 30 40 50

GPND[69] 0.968 0.945 0.917 0.891 0.864

GPNDI (Ours) 0.972 0.974 0.930 0.904 0.873

TABLE 4.7: Results on Coil-100. Inliers are taken to be images of
one, four, or seven randomly chosen categories, and outliers are
randomly chosen from other categories (at most one from each

category).

OutRank [59, 60] CoP [71] REAPER [47] OutlierPursuit [102] LRR [49] DPCP [95] `1 thresholding [88] R-graph [107] GPND [69] GPNDI (Ours)

Inliers: one category of images , Outliers: 50%

AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997 0.968 0.984
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990 0.979 0.894

Inliers: four category of images , Outliers: 25%

AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996 0.945 0.960
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970 0.960 0.953

Inliers: seven category of images , Outliers: 15%

AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996 0.919 0.950
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955 0.941 0.964

TABLE 4.8: CIFAR-10 (CIFAR-100) comparison with ODIN [48] and
GPND [69]. ↑ indicates larger value is better, and ↓ indicates lower

value is better.

Outlier dataset FPR(95%TPR)↓ Detection↓ AUROC↑ AUPR in↑ AUPR out↑

CIFAR-
10

ODIN-WRN-28-10 / ODIN-Dense-BC / GPND / GPNDI (Ours)

TinyImageNet (crop) 23.4/4.3/29.1/26.6 14.2/4.7/15.7/14.1 94.2/99.1/90.1/93.4 92.8/99.1/84.1/85.2 94.7/99.1/99.5/95.1
TinyImageNet (resize) 25.5/7.5/11.8/22.7 15.2/6.3/8.3/24.6 92.1/98.5/96.5/97.1 89.0/98.6/95.0/88.1 93.6/98.5/99.8/89.2
LSUN (crop) 21.8/8.7/89.1/61.1 13.4/6.9/47.0/22.6 95.9/98.2/35.8/96.0 95.8/98.5/39.1/81.6 95.5/97.8/83.7/85.3
LSUN (resize) 17.6/3.8/4.9/5.6 11.3/4.4/4.9/5.1 95.4/99.2/98.7/98.9 93.8/99.3/98.4/97.2 96.1/99.2/99.7/98.1

CIFAR-
100

TinyImageNet (crop) 43.9/17.3/33.2/32.1 24.4/11.2/17.2/23.0 90.8/97.1/89.1/90.6 91.4/97.4/83.8/88.1 90.0/96.8/98.7/98.8
TinyImageNet (resize) 55.9/44.3/15.0 /26.4 30.4/24.6/9.5/23.9 84.0/90.7/ 95.9/96.1 82.8/91.4/94.6/89.2 84.4/90.1/99.4/86.4
LSUN (crop) 39.6/17.6/91.3/60.7 22.3/11.3/48.1/24.3 92.0/96.8/35.0/92.3 92.4/97.1 /38.8/81.6 91.6/96.5/79.4/82.1
LSUN (resize) 56.5/44.0/6.8/69.4 30.8/24.5/5.8/26.3 86.0/91.5/98.3/88.0 86.2/92.4/98.0/79.2 84.9/90.6/99.6/78.1
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TABLE 4.9: MNIST comparison with baselines. All values are per-
centages. ↑ indicates larger value is better, and ↓ indicates lower

value is better.

10% 20% 30% 40% 50% 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

F1↑ AUROC↑ FPR(95%TPR)↓
Ours 98.4 97.6 96.8 96.0 95.3 98.8 98.8 98.8 98.8 98.8 0.060 0.056 0.057 0.060 0.057
GPND 98.2 97.1 96.1 95.0 93.9 98.1 98.0 98.0 98.0 98.0 8.1 9.1 8.7 8.8 8.9
AE 84.8 79.6 79.5 77.6 75.6 93.4 93.8 93.4 92.9 92.8 24.3 24.6 24.7 23.9 23.7
P-VAE 97.6 95.8 94.2 92.4 90.5 95.2 95.7 95.6 95.8 95.9 18.8 18.0 17.4 17.3 17.0
P-AAE 97.3 95.5 94.0 92.0 90.2 95.2 95.6 95.3 95.2 95.3 20.7 19.3 19.0 18.9 18.6

Detection error↓ AUPR in↑ AUPR out↑
Ours 0.047 0.046 0.046 0.047 0.045 99.9 99.7 99.9 99.2 99.9 92.0 95.8 97.3 98.1 98.7
GPND 5.4 5.8 5.8 5.9 6.0 99.7 99.4 99.1 98.6 98.0 86.3 92.2 95.0 96.5 97.5
AE 11.4 11.4 11.6 12.0 12.2 98.9 97.8 95.8 93.2 90.0 78.0 86.0 89.7 92.0 94.0
P-VAE 9.8 9.7 9.7 9.7 9.5 99.3 98.7 97.8 96.7 95.6 81.7 89.2 92.5 94.6 96.3
P-AAE 9.4 9.3 9.5 9.8 9.8 99.2 98.6 97.4 96.0 94.3 79.3 87.7 91.5 93.7 95.4

TABLE 4.10: Ablation study that shows F1 scores for MNIST with
various choices of the proposed isometric auto-encoder compo-

nents.

% of outliers 10 20 30 40 50

Without Liso_AE( f , g) 0.980 0.960 0.940 0.954 0.910

With Liso_AE( f , g) 0.984 0.976 0.968 0.960 0.953
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of the remaining four for training and the final split for validation. The value
of γ that produces the highest F1 score on the validation set is then used during
testing. Experiments are run using each digit as an inlier while the remaining
digit samples are selected in order to generate outlier percentages between 10%
to 50%. Results are shown in Table 4.5, and Figure 4.4. They suggest that GPNDI
performs significantly better than GPND.
Fashion-MNIST dataset. We repeat the same protocol that we have used for
MNIST, but on Fashion-MNIST. Results are provided in Table 4.6. We compare
our results with GPND [69]. All results are averages from a 5-fold cross-validation.
Our proposed method exceeds GPND in all cases.
Coil-100 dataset. Similar to the datasets above, we create five even splits for
cross-validation, but instead use four for training and one for testing. The optimal
γ is thus found on the training set. For each experiment, 1, 4, or 7 classes are
randomly chosen to be inliers while the remaining classes are considered outliers
and are included at some pre-selected percentage.

Results on Coil-100 are shown in Table 4.7. This table confirms that our
method achieves a higher AUROC than GPND [69] in all cases. Interestingly,
our method yields the highest F1 score when the number of inlier categories
is increased to seven, which shows that our method robustly learns the inlier
representation and does not deteriorate as the number of inlier categories increase.
We do not outperform R-graph [107] as they use a pre-trained VGG network, and
we use an autoencoder with a very small architecture that we train from scratch
on a very limited number of samples, which is on average only 70 per category.
CIFAR-10 (CIFAR-100) dataset. The available datasets at the time of publication
were both versions of TinyImageNet and LSUN, as well as iSUN. For each ex-
periment, samples for iSUN were used as outliers during validation, while for
testing we use each of the remaining datasets as outliers. We report these results
in Table 4.4.4, the performance of our method is compared with ODIN [48] and
GPND [69]. In many cases, such as with CIFAR-10, LSUN (crop), and CIFAR-100,
LSUN (crop), GPNDI performs better than GPND. We do not outperform ODIN
but in some cases we do, such as with AUPR out of CIFAR-100,TinyImageNet
(crop), and AUROC of CIFAR-100, and TinyImageNet (resize). This is still no-
ticeable because ODIN requires label information provided with the training
samples and uses a deep network with more than 100 layers (Dense-BC and
WRN), whereas in our settings GPNDI dose not have any training label informa-
tion and uses a very small auto-encoder network.
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4.4 A Robust Generative Probabilistic Model for Nov-
elty and Anomaly Detection

4.4.1 Introduction

AE based architectures for novelty detection are much more stable than GAN-
based approaches. However, a common problem in using AE for novelty de-
tection is its generalization ability to reconstruct some anomaly inputs, when
they share common features with the normal [83]. This downside has been in-
vestigated by many researchers recentely, [83]works by injecting adversarial
samples into the training set so that the model can fit the original sample and
the adversarial sample at the same time. [2] adds purposeful corruption to the
normal input data and subsequently forces the AE to reconstruct it, or denoise
it. It enables the model to compress anomaly score to zero for normal pixel,
resulting clean anomaly segmentation which significantly improve performance.
The work in [35] offers another approach in noise perturbation in input data,
where instead of being perturbed by noise, input images are subjected to mask-
ing through the use of Mask Module (MM). The masks generated by MM are
optimized to cover the most important parts of the input image, resulting in a
comparable reconstruction score across sample. Through optimal masking, the
proposed approach learns semantically richer representations and enhances nov-
elty detection at test time. [7]propose using adversarially generated noise which,
when added to the input data, is very challenging for the denoising autoencoder
to reverse. [7]Adversarially Learned Continuous Noise (ALCN), it consists of
two parts, Noise Generator and Denoising Autoencoder. The former produces
maximal and continuous noise which is bespoke to the training data while the
latter trained to reconstruct input images perturbed (by weighted sum) with
this maximal noise. [70] propose Helper-based Adversarial Training (HAT), to
balance the tradeoff between robust and accuracy by incorporating additional
wrongly labelled examples during training. We also investigate whether AEs are
able to synthesize abnormal samples when it is trained just in normal images.
However, our approach synthesized helper inliers and outliers samples based in
the learned manifold, and not adversarially. By doing so we avoid all generative
adversarial based issues such as: mode collapse, and difficulty to converge.

4.4.2 Proposed Approach

A Prior for Robust Novelty Detection

We assume that x represents a quantity of interest, e.g., an image, which can be
seen as a realization from X, a random variable distributed according to pX(x).
Due to external factors, we assume we have access only to a modified version
x̄ = x + δ. Here δ could model noise, or an alteration due to an adversarial
attack, or the sensing of unexpected or unknown data, as it normally happens in
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Inliers

Outliers

Outliers

FIGURE 4.12: An illustration of the generation of inliers and outliers
in the manifold

settings in-the-wild, when data is identified as not being in distribution (i.e., the
distribution used for training the system), but in fact, it is out of distribution, and a
subsequent appropriate action needs to be taken. Therefore, a central question to
answer is whether or not the sample x̄ was drawn from pX. In general terms, the
problem can be approached by performing the test

pX(x̄) =
{
≥ γ =⇒ Inlier
< γ =⇒ Outlier (4.39)

where γ is a suitable threshold parameter which depends on the application.
Methods that perform test (4.39) almost interchangeably use names like nov-

elty [69], anomaly, outlier, or out of distribution detection, although subtle differ-
ences are often drawn. Also, in this context, pX does not really have the meaning
of probability, but rather of likelihood, which means that it depends on a partic-
ular model that was learned from training data. Out of all the possible models,
we propose to seek for one that exhibits robustness against a set of predefined
perturbations δ ∈ S . This means that if x belongs to the set of inliers X , then
it should be that pX(x + δ|x ∈ X ) ≥ γ, and if x is an outlier, then it should be
that pX(x + δ|x ∈ X {) < γ. Seeking for a robust model would allow the novelty
detector to offer improved guarantees that it will be less affected by the attacks
defined by the set of perturbations, which could be either intentional, or simply
due to natural environmental causes.

From the discussion above, we suggest that models that aim at perform-
ing test (4.39) could be made robust by including in their learning procedure a
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mechanism for maximizing the quantity

E[(min
δ∈S

pX(x + δ|x ∈ X )− γ)2]+

E[(max
δ∈S

pX(x + δ|x ∈ X {)− γ)2] ,
(4.40)

where E[·] denotes expectation. This is an approach based on robust optimiza-
tion [52], which has also inspired the recent adversarial training methods for
supervised learning [52]. Maximizing the first term of the robust prior (4.40) aims
at ensuring that the worst attacks do not turn inliers into outliers, while the
second term aims at ensuring that the worst attacks do not turn outliers into
inliers.

Another version of the prior (4.40) could be obtained by turning the two terms
into a single fractional term like

E[maxδ∈S pX(x + δ|x ∈ X {)]

E[minδ∈S pX(x + δ|x ∈ X )]
. (4.41)

The new fractional robust prior (4.41) aims for the same goals as (4.40) when it is
minimized, and it could be added to training losses as is. It has the advantage
of being a single term rather than two, and it does not require the parameter γ.
However, (4.41) requires outlier samples, whereas (4.40) without outlier samples
reduces to the first term only, and it can still be used.

We note that in order to solve the maximization or minimization in the argu-
ment of the expectations in (4.40) and (4.41), we can take a projected gradient
descent (PGD) approach, which implies following an iteration defined by

xt+1 = Πx+S(xt + α∇x pX(x)) , (4.42)

where Πx+S indicates a projection operator. This has also inspired the generation
of adversarial samples in the `∞-ball as the predefined set of perturbations .

We summarize GPNDI [5], a previously introduced novelty detection ap-
proach, In addition we describe how we make GPNDI robust by defining the set
of perturbations S and enabling the training based on the prior (4.41).

Generative Probabilistic Novelty Detection

We summarize the formulation, properties, and training objective function of
the novelty/anomaly test initially introduced in [69, 5] to keep the paper self-
contained. Specifically, we assume that training data points D = {x1, . . . , xN},
where xi ∈ Rm, are sampled, possibly with noise ξi, from the model

xi = f (zi) + ξi i = 1, · · · , N , (4.43)
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where zi is defined in a latent space Ω ⊂ Rn. The mapping f : Ω→ Rm defines
M ≡ f (Ω), which is a parameterized manifold of dimension n, with n < m.
It is also assumed that the Jacobi matrix of f is full rank at every point of the
manifold.

Given a new data point x̄ ∈ Rm, the novelty test to assert whether x̄ was sam-
pled from model (4.43), is derived under a number of assumptions. Specifically, f
is imposed to be an isometry, and in order to compute the test it is also necessary
to estimate the latent representation z̄ of x̄. This is done by first applying to x̄
an orthogonal projection PM from the ambient space onto M, and then map
the projection to the representation space via f−1. This means that besides the
manifold representation f , it is also necessary to learn a function g, defined as
g(x) .

= f−1 ◦ PM(x).
Mainly with the assumptions described above, given x̄, in [69, 5] they compute

the novelty test (4.39) according to

pX(x̄) = pZ(z̄)pX⊥(x̄⊥) =
{
≥ γ =⇒ Inlier
< γ =⇒ Outlier (4.44)

where pZ(z) indicates the probability distribution of the random variable Z,
representing the latent space, and x̄⊥ = x̄− f (z̄), represents the component of
x̄ that is orthogonal to the tangent space T of the manifoldM. Such space is
defined as T = span(J f (z̄)), with J f (z̄) being the Jacobi matrix computed at z̄.

The distribution pZ(z) is learned from training data by fitting a parametric
generalized Gaussian distribution. Instead, the distribution pX⊥(x⊥), is given by

pX⊥(x̄⊥) =
Γ
(m−n

2

)
2π

m−n
2 ‖x̄⊥‖m−n−1 p‖X⊥‖(‖x̄⊥‖) , (4.45)

where Γ(·) represents the gamma function. The distribution p‖X⊥‖(‖x⊥‖) is
learned by computing the orthogonal projections of the training data, and his-
togramming the `2-norms between data and projectons.

4.4.3 Manifold Learning

A major training task is the learning of the maps f , and g. They are modeled by
an adversarial autoencoder. To satisfy the requirements, the Jacobian J f (z) will
need to have orthonormal columns. This means that

J f (z)> J f (z) = I , (4.46)
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FIGURE 4.13: Architecture overview. Architecture of the network
for manifold learning. It is based on training an Adversarial Au-
toenconder (AAE) [54]. Similarly to [12, 80] it has an additional
adversarial component to improve generative capabilities of de-
coded images and a better manifold learning. The architecture
layers of the AAE and of the discriminator Dx are specified on the
right. All fake samples are generated from an n-dimensional nor-
mal distribution N (0, 1). x∗ represents a projection of z∗ onto the

learned manifoldM.

where I is the identity matrix. Moreover, if f is an isometry, then g should be
such that

Jg( f (z))Jg( f (z))> = I , (4.47)

Jg( f (z)) = J f (z)> . (4.48)

where Jg(x) denotes the Jacobi matrix of g.
To satisfy (4.46), (4.47), and (4.48), two priors are introduced. The first is the

isometry loss LI( f ), which encourages (4.46), and is defined as

LI( f ) = E
[
(‖J f (z)u‖ − 1)2

]
, (4.49)

where u is uniformly sampled from the unit-sphere of dimension n − 1. The
second prior is the pseudo-inverse loss LP(g), which encourages (4.47), and is
defined as

LP(g) = E
[
(‖u> Jg(x)‖ − 1)2

]
, (4.50)

where, again, u is sampled from the same unit sphere. These priors are combined
as

LIAE( f , g) = LI( f ) + LP(g) . (4.51)
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The adversarial autoencoder architecture is shown in Figure 4.13, which fol-
lows the design in [69]. One adversarial component encourages the distribution
on the latent space, to be a normal distribution N (0, 1). Another adversarial
component encourages the distribution of the output of the decoder to match
the distribution of real data, i.e., the manifoldM. The adversarial losses are as
follows

Ldz(x, g, Dz) = E[log(Dz(N (0, 1)))] + E[log(1− Dz(g(x)))] , (4.52)

Ldx(x, Dx, f ) = E[log(Dx(x))] + E[log(1− Dx( f (N (0, 1))))] , (4.53)

To minimize the reconstruction error for an inlier input x it is used the cross-
entropy loss

Lce(x, g, f ) = −Ez[log(p( f (g(x))|x))] , (4.54)

where Lce also encourages (4.48). See [25] for details, also on the implementation
of the isometric priors above. Also, we combine the losses that do not involve
discriminators in La

La(x, g, f ) = λILIAE( f , g) + Lce (4.55)

Where λI is a balancing hyperparameter. The final objective function becomes

L(x, g, Dz, Dx, f ) = Ldz(x, g, Dz) + Ldx(x, Dx, f )+
λaLa(x, g, f ) ,

(4.56)

where λa sets the trade off between the losses with and without discriminators,
and f and g are estimates as

ĝ, f̂ = arg min
g, f

max
Dx,Dz

L(x, g, Dz, Dx, f ) . (4.57)

Generative Robust Novelty Detection

labelsec-robust-implementation
We now describe how we build on GPNDI, and develop a robust training

procedure based on §??. First, we assume that the set of admissible perturbations
is an ε-ball, which means that S = {δ : ‖δ‖ ≤ ε}, where ‖ · ‖ denotes the `2-norm.
Next, we make the following simplifying assumptions

min
‖δ‖≤ε

pX(x + δ) ≈ pX(x + ε1x) , (4.58)

max
‖δ‖≤ε

pX(x + δ) ≈ pX(x− ε1x) , (4.59)

where 1x = (x− f (z))/‖x− f (z)‖ is a unit norm vector that is perpendicular to
the tangent plane T . (4.58) and (4.59) stem from the fact that we are expecting to
observe the highest drop, or increase, of the likelihood pX when from x we move
away from, or closer to, the manifoldM, respectively.
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Since data points are modeled according to (4.43), then we have that x =
f (z) + ν1x, where ν

.
= ‖ξ‖. Therefore, given also (4.58), as a general recipe for

generating inliers from x, we use the following expression

f (z)± (ν + ε)1x , (4.60)

where the ± sign takes into account that inliers can be generated on both sides of
the tangent plane T . Similarly, given also (4.59), the general recipe for generating
outliers from x becomes

f (z)± (ν− ε)1x , (4.61)

where the ± sign has been introduced for the same reason as in (4.60).
Note, however, that (4.60) should be used only if f (z) ± ν1x ∈ X , which

means it is an inlier. Similarly, (4.61) should be used only if f (z)± ν1x ∈ X {,
which means it is an outlier. Deciding whether f (z)± ν1x belongs to X or X {

is straightforward once we know the value ν0 such that pX( f (z)± ν01x) = γ. ν0
can be computed by solving numerically the equation

pZ(z)
Γ(m−n

2 )

2π
m−n

2 νm−n−1
0

p‖X‖⊥(ν0) = γ . (4.62)

It follows that f (z)± ν1x ∈ X if ν ≤ ν0, and that f (z)± ν1x ∈ X { if ν > ν0.
From the discussion above, we note that given a training dataset composed

of only inliers, we can still generate synthetic outliers according to how we
choose ν. In particular, we propose to randomly sample inliers by assuming
that ν ∼ U ([0, ν0)), which means ν is uniformly distributed in the interval [0, ν0).
Therefore, inliers come from the region closer toM. Outliers instead, are sampled
by assuming that ν ∼ E(λ), which means that ν is exponentially distributed with
rate parameter λ, and an offset ν0 is also added.

In essence, we propose to add to the objective function (4.56) the following
robust prior

Lr =
ED[Eν∼E [pX( f (z)± (ν + ν0 − ε)1x)]]

ED[E�∼U [pX( f (z)± (ν + ε)1x)]]
. (4.63)

The final procedure for the robust training of the novelty detection model is
summarized in Algorithm 1.

4.4.4 Experiments

MNIST dataset. . For this set of tests, we create 5 random data splits with a
balanced number of samples per class. We then evaluate on one split, using three
of the remaining four for training and the final split for validation. The value
of γ that produces the highest F1 score on the validation set is then used during
testing. Experiments are run using each digit as an inlier while the remaining
digit samples are selected in order to generate outlier percentages between 10%
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Algorithm 1 Generative Robust Novelty Detection

Input: Training dataset D = {xi}N
i=1.

Parameters: Minibatch size M; radius ε; rate parameter λ
Train f and g and obtain initial weights by optimizing (4.56)
Obtain γ from the validation dataset
repeat

Sample a minibatch {xij}M
j=1

for j ∈ {1, . . . , M} do
Compute ν0,ij by solving (4.62)
ν← draw from U ([0, ν0,ij)) Inlier generation; randomly pick + or −
xI

j ← f (zij)± (ν + ε)1xij

ν← draw from E(λ) Outlier generation; randomly pick + or −
xO

j ← f (zij)± (ν + ν0,ij − ε)1xij

end forUse the inlier batch {xI
j } for the following

Maximize Ldx by updating weights of Dx
Minimize Ldx by updating weights of f
Maximize Ldz by updating weights of Dz Use the inlier batch {xI

j } and
outlier batch {xO

j } for the following
Minimize La, Ldz , and Lr, by updating weights of g and f . Note that only

Lr uses both inlier and outlier batches
until Convergence

TABLE 4.11: F1 scores on MNIST [45]. Inliers are taken to be im-
ages of one category, and outliers are randomly chosen from other

categories.

% of outliers D(R(X)) [80] D(X) [80] LOF [14] DRAE [100] GPND [69] GPNDI [5] Ours

10 0.97 0.93 0.92 0.95 0.983 0.984 0.987
20 0.92 0.90 0.83 0.91 0.971 0.976 0.978

30 0.92 0.87 0.72 0.88 0.961 0.968 0.97
40 0.91 0.84 0.65 0.82 0.950 0.960 0.969

50 0.88 0.82 0.55 0.73 0.939 0.953 0.962
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TABLE 4.12: Results on Fashion-MNIST [101]. F1 scores where
inliers are taken to be images of one category, and outliers are

randomly chosen from other categories.

% of outliers 10 20 30 40 50

GPND 0.968 0.945 0.917 0.891 0.864

GPNDI 0.972 0.974 0.930 0.904 0.873

Ours 0.980 0.989 0.941 0.912 0.882

TABLE 4.13: Results on Coil-100. Inliers are taken to be images
of one, four, or seven randomly chosen categories, and outliers
are randomly chosen from other categories (at most one from each

category).

OutRank [59, 60] CoP [71] REAPER [47] OutlierPursuit [102] LRR [49] DPCP [95] `1 thresholding [88] R-graph [107] GPND [69] GPNDI Ours

Inliers: one category of images , Outliers: 50%

AUC 0.836 0.843 0.900 0.908 0.847 0.900 0.991 0.997 0.968 0.984 0.989
F1 0.862 0.866 0.892 0.902 0.872 0.882 0.978 0.990 0.979 0.894 0.897

Inliers: four category of images , Outliers: 25%

AUC 0.613 0.628 0.877 0.837 0.687 0.859 0.992 0.996 0.945 0.960 0.964
F1 0.491 0.500 0.703 0.686 0.541 0.684 0.941 0.970 0.960 0.953 0.957

Inliers: seven category of images , Outliers: 15%

AUC 0.570 0.580 0.824 0.822 0.628 0.804 0.991 0.996 0.919 0.950 0.960
F1 0.342 0.346 0.541 0.528 0.366 0.511 0.897 0.955 0.941 0.964 0.971
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TABLE 4.14: CIFAR-10 (CIFAR-100) comparison with ODIN [48],
GPND [69], GPNDI [5], and Ours.

↑ indicates larger value is better, and ↓ indicates lower value is better.
Outlier dataset FPR(95%TPR)↓ Detection↓ AUROC↑ AUPR in↑ AUPR out↑

CIFAR-
10

ODIN-WRN-28-10 / ODIN-Dense-BC / GPND / GPNDI /(Ours)

TinyImageNet (crop) 23.4/4.3/29.1/26.6/26.1 14.2/4.7/15.7/14.1/14.0 94.2/99.1/90.1/93.4/93.5 92.8/99.1/84.1/85.2/85.3 94.7/99.1/99.5/95.1/95.3
TinyImageNet (resize) 25.5/7.5/11.8/22.7/22.5 15.2/6.3/8.3/24.6/23.1 92.1/98.5/96.5/97.1/97.3 89.0/98.6/95.0/88.1/98.1 93.6/98.5/99.8/89.2/90.1
LSUN (crop) 21.8/8.7/89.1/61.1/59.6 13.4/6.9/47.0/22.6/21.3 95.9/98.2/35.8/96.0/96.2 95.8/98.5/39.1/81.6/81.8 95.5/97.8/83.7/85.3/85.6
LSUN (resize) 17.6/3.8/4.9/5.6/5.3 11.3/4.4/4.9/5.1/5.0 95.4/99.2/98.7/98.9/98.9 93.8/99.3/98.4/97.2/97.3 96.1/99.2/99.7/98.1/98.4

CIFAR-
100

TinyImageNet (crop) 43.9/17.3/33.2/32.1/32.0 24.4/11.2/17.2/23.0/22.9 90.8/97.1/89.1/90.6/90.6 91.4/97.4/83.8/88.1/88.5 90.0/96.8/ 98.7/98.8/98.8
TinyImageNet (resize) 55.9/44.3/15.0 /26.4/26.5 30.4/24.6/9.5/23.9/23.8 84.0/90.7/ 95.9/96.1/96.1 82.8/91.4/94.6/89.2/89.4 84.4/90.1/99.4/86.4/86.6
LSUN (crop) 39.6/17.6/91.3/60.7/60.8 22.3/11.3/48.1/24.3/24.1 92.0/96.8/35.0/92.3/92.3 92.4/97.1 /38.8/81.6/83.8 91.6/96.5/79.4/82.1/83.7
LSUN (resize) 56.5/44.0/6.8/69.4/69.0 30.8/24.5/5.8/26.3/26.1 86.0/91.5/98.3/88.0/90.0 86.2/92.4/98.0/79.2/81.7 84.9/90.6/99.6/78.1/82.9

to 50%. Results are shown in Table 4.11, and Figure 4.14. Our robust model
outperform both GPND [69] and GPNDI [5].
Fashion-MNIST dataset. We repeat the same protocol that we have used for
MNIST, but on Fashion-MNIST. Results are provided in Table 4.12. We compare
our results with GPND [69], and GPNDI [5]. All results are averages from a
5-fold cross-validation. Our proposed method exceeds GPND and GPNDI in all
cases.
Coil-100 dataset. We create five even splits for cross-validation, but instead use
four for training and one for testing. The optimal γ is thus found on the training
set. For each experiment, 1, 4, or 7 classes are randomly chosen to be inliers
while the remaining classes are considered outliers and are included at some
pre-selected percentage.

Results on Coil-100 are shown in Table 4.13. This table confirms that our
method achieves a higher AUROC than GPND, and GPNDI. We do not out-
perform R-graph [107] as they use a pre-trained VGG network, and we use an
autoencoder with a very small architecture that we train from scratch on a very
limited number of samples, which is on average only 70 per category.
CIFAR-10 (CIFAR-100) dataset. consists of TinyImageNet and LSUN, as well
as iSUN. For each experiment, samples for iSUN were used as outliers during
validation, while for testing we use each of the remaining datasets as outliers.
We compare the performance of our method with ODIN [48], GPND [69], and
GPNDI [5]. In many cases, such as with CIFAR-10, LSUN (crop), and CIFAR-100,
LSUN (crop), The robust model perform better than GPND and GPNDI.
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FIGURE 4.14: Results on MNIST [45] dataset.



52

5 Conclusions and Future Work

5.1 Conclusions

In this work we present GPND, GPNDI and robust model based in GPNDI. In
every extension we overcome several weaknesses. In GPNDI By revising the
theoretical formulation we motivate the need for using an autoencoder that learns
an isometry and a pseudoinverse map. Those, in turn, preserve the geometric
structure of the data, but more importantly, regularize the learning and dramati-
cally simplify the inference model by eliminating the need to compute Jacobians.
Extensive experiments demonstrate that the approach based on the proposed
new set of losses, learns the manifold of inliers effectively, while reducing the
dimensionality of the representation. In GPNDIR we propose to constrain the
AE to not enable it to reconstruct abnormal samples by synthesizing inliers and
outliers that are close enough to the learned manifold. Our results show that we
reach a balance between robustness as well as performance measurement.

5.2 Future Work

The current model could be trained and extend to handle Open Set Recognition
(OSR), As well as Outlier Distribution Detection (ODD) where multiple datasets
consider as In Distribution (ID).

Moreover, further experimentation with the same loss functions may yield
better performance. For example, there are many hyper parameters in GPNDIR
that worth the effort to explore, such as: Number and size of inliers and outliers
created per mini batch, learning rate, and expanding the range of computed ξ.

Additionally, by expanding the range of computed ξ, we can study the be-
havior of far outliers that are distant and different from those live close by the
manifold. From there, we can try to learn a way or mapping to compute their
distribution.

Beyond novelty detection, our method could be applied for synthesizing
normal images from training samples that can be used as augmentation, or for
creating and curating normal and abnormal training datasets.
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