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While brain imaging studies emphasized the category selectivity of
face-related areas, the underlying mechanisms of our remarkable
ability to discriminate between different faces are less understood.
Here, we recorded intracranial local field potentials from face-
related areas in patients presented with images of faces and
objects. A highly significant exemplar tuning within the category
of faces was observed in high-Gamma (80–150 Hz) responses. The
robustness of this effect was supported by single-trial decoding
of face exemplars using a minimal (n= 5) training set. Importantly,
exemplar tuning reflected the psychophysical distance between
faces but not their low-level features. Our results reveal a neuronal
substrate for the establishment of perceptual distance among faces
in the human brain. They further imply that face neurons are anato-
mically grouped according to well-defined functional principles,
such as perceptual similarity.

Keywords: ECoG, face perception, high-gamma, perceptual similarity

Introduction

A major advance in our understanding of human visual per-
ception has been the discovery of category-selective regions,
and in particular face-selective ones, in high-order visual
cortex of both human and nonhuman primates (Kanwisher
et al. 1997; McCarthy et al. 1997; Ishai et al. 1999; Hasson
et al. 2003; Tsao et al. 2006). In nonhuman primates, it has
recently been shown that these “face patches” are capable of
discriminating between various face exemplars (Tsao et al.
2006; Freiwald et al. 2009). Paradoxically, although human
face recognition is superb, the evidence for such exemplar
selectivity in the human brain has been minimal and based
mainly on fMR-adaptation (Rotshtein et al. 2004; Gilaie-Dotan
and Malach 2007; Dricot et al. 2008; Gilaie-Dotan et al. 2010;
Malach 2012), which is an indirect measure of selectivity
(Sawamura et al. 2006; Mur et al. 2010). Other studies using
more direct univariate and multivariate analyses on
face-exemplar differentiation in the fusiform face area (FFA)
yielded contradicting results (Kriegeskorte et al. 2007; Op de
Beeck et al. 2010; Nestor et al. 2011; Mur et al. 2012).

Moreover, the relationship between such neuronal “face
tuning” and perception is unclear. Thus, it is presently
unknown whether perceptual metrics—i.e., the likeness and
dissimilarity among different face exemplars, are coded in the
neural responses. A hint that neuronal face tuning may
indeed be related to perceptual metrics has been provided for

the category of abstract shapes in a few imaging and single
unit studies. These studies reported a link between neuronal
tuning on the one hand and perceptual and physical shape
similarity on the other hand (Op de Beeck et al. 2001, 2008;
Haushofer et al. 2008; Drucker and Aguirre 2009). However,
objects have a wide range of different physical shapes com-
pared with the highly uniform category of faces. Thus, it is
not clear to what extent principles relevant for diverse sets of
abstract shapes can be extrapolated to the more physically
homogeneous face domain.

In the present study, we addressed these questions using
electrocorticographic (ECoG) recordings in epilepsy patients
monitored for presurgical evaluation. We have previously
found that such recordings show superior selectivity (and
hence spatial resolution) compared with fMRI (Privman et al.
2007), and therefore, ECoG recordings may be more suitable
for studying within-category tuning. Previous ECoG studies
indeed found clear category-selective responses in high-order
visual cortex but have not shown discrimination between
different exemplars within a certain category (Allison et al.
1994, 1999; Liu et al. 2009). Most of these studies have
focused on “evoked” activity, time-locked to the stimulus.
Here we extend this approach by examining “induced”
activity, which jitters in latency between trials. Induced ECoG
power at various frequencies—and particular high-frequency
(Broadband Gamma) bands—provides an informative index
to the underlying population firing rates (Kreiman et al. 2006;
Nir et al. 2007; Manning et al. 2009; Burns et al. 2010) and is
tightly linked to the perceptual states of the observers
(Mukamel et al. 2005; Fisch et al. 2009).

Our results reveal robust and consistent exemplar selectiv-
ity in face-selective electrodes placed over ventral temporal
cortex (fusiform gyrus). Importantly, the results show that the
“neural” discriminability of individual faces reflected their
“perceptual” distinctness but not their low-level image fea-
tures. Thus, our results uncover an organizing principle in
human face areas that could explain why certain faces appear
similar while others are perceived as more distinct.

Materials and Methods

Subjects and Recordings
Fourteen patients (5 males, 13 right handed, age 29.1 ± 2.7 years
(mean ± SEM), see Table 1) with pharmacologically intractable epi-
lepsy, monitored for presurgical evaluation, participated in the
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present study. The recordings were conducted at the Long Island
Jewish Medical Center and at Columbia University College of Phys-
icians and Surgeons, NY, USA. All patients provided fully informed
consent according to the US National Institute of Health guidelines, as
monitored by the local institutional review boards.

Each patient was implanted with 84–187 intracranial electrodes for
5–10 days. The electrodes were arranged in subdural grids, strips,
and/or depth arrays (Integra Lifesciences Corp.). In the subdural grids
and strips, each recording site was 2 mm in diameter with 1 cm separ-
ation, whereas in the depth electrodes each recording site was 1 mm
in diameter with 0.5 cm separation. The location and number of elec-
trodes were based solely on clinical criteria. The signals were filtered
electronically between 0.1 Hz and 1 kHz and sampled at a rate of
2 kHz (XLTEK EMU 128 LTM System). A strip electrode screwed into
the frontal bone near the bregma was used as common mode ground
and reference. Stimulus-triggered electrical pulses were recorded
along with the ECoG data for precise synchronization of the stimuli
with the neural responses.

The recordings were conducted at the patients’ quiet bedside.
Stimuli were presented via a standard LCD screen and keyboard
responses were recorded for measurement of behavioral performance.

Stimulus Presentation
The patients viewed grayscale digital photographs of faces, man-
made tools, buildings, and geometric patterns (of ∼15° × 15° visual
angle), which were superimposed with a small white fixation dot.
The images were presented for 250 ms in pseudorandom order at a
rate of 1 Hz, while the patients performed a 1-back memory task (i.e.,
pressing a mouse button each time a specific image repeated twice in
a row). Stimulus repetitions were infrequent (∼10% of the trials) and
were mainly used to keep the patient alert. The image set contained
14 different faces, 10 houses, 10 tools, and 5 patterns. Each exemplar
was presented 6 times throughout the experiment.

Quantitative Definitions of Electrode Responses
(A) Visually responsive electrodes: Following Fisch et al. (2009),

these electrodes were defined as those with short- to mid-latency
responses (up to 250-ms poststimulus onset). Latency was
defined as the time point in which high-Gamma (80–150 Hz)
power first became significantly greater than its prestimulus base-
line value if the response remained significant for at least 15
successive time points (Fisch et al. 2009).

(B) Category-selective electrodes: These electrodes were defined as
follows: 4 exemplars were selected from each category. For each
electrode, the mean area under the curve (AUC) of the high-
Gamma response was computed in a time window of 50–350 ms
poststimulus. Next, the response for each category was examined
and electrodes for which at least one of the exemplars evoked a

significantly higher response compared with all the exemplars
from the other categories were defined as category-selective. Note
that the 4 face exemplars used for this analysis were excluded
from the classification procedure, thus equalizing the number of
exemplars in the face category to the tool and house categories.

(C) Early visual electrodes: An electrode was defined as an early
visual one when meeting ALL the following 3 criteria: 1) Anatom-
ical location in retinotopic regions, as defined by an fMRI retino-
topy experiment (in 7 of the 14 patients); 2) Significantly
stronger response to geometric patterns compared with each one
of the other categories (Levy et al. 2001); 3) Response latency of
≤100 ms (Fisch et al. 2009).

Data Analysis

Preprocessing and High-Gamma Responses Calculation
In the preprocessing stage, the signals were downsampled to 500 Hz
and potential 60-Hz electrical interference was removed from the
raw signals using a linear-phase notch finite impulse response filter
of order 4. In addition, each electrode was dereferenced by subtrac-
tion of the averaged signal of all the electrodes, thus discarding
non-neuronal contributions (Privman et al. 2007). The induced
high-Gamma responses were computed in the following manner:
Time–frequency spectrogram decomposition was based on Fourier
transform amplitude spectrum with Hanning window tapering, calcu-
lated per trial in a 64-ms sliding window with a step size of 5.96 ms
and averaged across trials (Lachaux et al. 2005). The time–frequency
decomposition of each trial was divided by a prestimulus baseline of
250 ms, averaged across all the trials of a given category. In order to
avoid dependencies between trials (Pereira et al. 2009), in the classifi-
cation analysis the normalization was based on the trial-specific base-
line, averaged across all the electrodes. The induced high-Gamma
responses were calculated as the average of the spectrogram’s
frequency rows in the range of 80–150 Hz (Canolty et al. 2006; Ray
et al. 2008; Vidal et al. 2010). In contrast, evoked responses were
computed by averaging the raw ECoG signal according to the onset of
the visual stimuli.

Grand-Averaged Exemplar Tuning
The calculation of the mean exemplar tuning curve (Fig. 3, left
panels) was done as follows (see Supplementary Fig. 3A): for each
electrode, the exemplars were first rank-ordered according to the
high-Gamma AUC in a time window of 50–350 ms poststimulus, from
the exemplar that elicited the strongest response to the exemplar that
elicited the weakest response. This short time window was selected
so as to be largely below the average time of saccade initiation and in
accordance with previous ECoG studies (Liu et al. 2009). The ranking
was done based on the responses in odd trials (n = 3) only. Then, ac-
cording to this preset order, the high-Gamma AUC for each exemplar
was computed based on the responses in even trials (n = 3). The pro-
cedure was then reversed, this time using the even trials to order the
exemplars and the odd trials to compute the responses. Given the
high resemblance of the 2 independent tuning curves (Supplementary
Fig. 3B), they were averaged together. The resulting tuning curve was
normalized according to the top-ranked exemplar response and then
averaged across electrodes, yielding the grand-averaged tuning curve
presented in Figure 3.

We also defined an exemplar selectivity index for each electrode as
follows:

Exemplar selectivity idx ¼
response to 2 top exemplars� response to 2 bottomexemplars
response to 2 top exemplarsþ response to 2 bottomexemplars

As a control, we applied this analysis also to the evoked responses
(Supplementary Fig. 4B). Following Liu et al. (2009), the evoked
response was defined as the range of the raw intracranial field poten-
tial signal (MAX–MIN) in the same time window used in the main
analysis (50–350 ms poststimulus).

Table 1
Patient characteristics

Patient
ID

Gender Age
(years)

Handedness Implanted
hemisphere

No. of
implanted
electrodes

Seizure
localization

S1 F 36 Right Bilateral 128 Left F-T
S2 M 22 Right R 128 Right F-T
S3 M 21 Right R 124 Right T
S4 F 23 Right L 128 Left O
S5 F 23 Right R 128 Right T-P
S6 M 31 Right R 128 Right T
S7 F 55 Right Bilateral 106 Left T
S8 M 22 Right R 127 Right T
S9 M 25 Left L 127 Left T
S10 F 21 Right R 104 Right O
S11 F 45 Right L 94 Left T
S12 F 32 Right L 84 N/A
S13 F 25 Right L 127 Left mT
S14 F 26 Right Bilateral 187 Left aT

N= 1720

F, female; F-T, fronto-temporal; M, male; O, occipital; T, temporal; T-P, temporal-parietal; P, parietal;
m, mesial; a, anterior.
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As a second control, we repeated the exemplar tuning analysis
without first ranking the exemplars for each individual electrode.
Instead, we computed the response to each exemplar, averaged
across the entire electrode ensemble, based on even trials (n = 3). The
exemplars were then rank-ordered according to this “global order”,
and the tuning curves were computed based on the responses in odd
trials (n = 3). The responses were normalized according to the
top-ranked exemplar response. The procedure was then reversed, this
time using the odd trials to generate the global order and the even
trials to plot the responses. Next, the 2 independent tuning curves
were averaged, and the resulting tuning curves were averaged across
electrodes, yielding the grand-averaged “global tuning curve” pre-
sented in Figure 3 (right panels).

Data processing was carried out using MATLAB (The Mathworks,
Inc.) and EEGLAB (Delorme and Makeig 2004).

Classification of Exemplars in Single Trials
A linear discriminant analysis (Duda et al. 2001) was used to compute
the hyperplane, which optimally separated the responses to the
various exemplars. The classifier was cross-validated using a
leave-one-out scheme. In each fold of the cross-validation procedure,
the classifier was trained based on 5 of the 6 repetitions of each exem-
plar and the classification performance was assessed using the
remaining repetition.

The classifier was trained to distinguish between the 35 exemplars
of the image set (10 exemplars from each category, except of the pat-
terns category, which contained only 5 exemplars). Note that 4 face
exemplars were excluded from this analysis because they were used
to define the face selectivity of the electrodes. In order to assess
whether the classification performance was dependent on the specific
face exemplars that were excluded, 4 face exemplars were randomly
selected and excluded from the exemplar classification, repeating this
process 100 times. The mean decoding rate of faces in ventral
face electrodes, obtained in this process, was very similar that that
reported in the main text (29.1% and 33.3%, respectively).

Following Liu et al. (2009), this classification approach was im-
plemented both at the level of single electrodes (Supplementary
Fig. 6) and at the level of an ensemble of electrodes from different
patients by concatenating the responses of individual electrodes (Fig. 5A)
(Liu et al. 2009).

Classifier Input
The classifier input was either the AUC of the high-Gamma response
at a time window of 50- to 350-ms poststimulus onset or the time
course of the high-Gamma response within this time range. To avoid
overfitting the high-Gamma responses were downsampled by a factor
of 4, yielding 13 time points between 50 and 350-ms poststimulus
onset (Pereira et al. 2009).

The classification performance of high-Gamma responses was com-
pared with that obtained with low-Gamma (25–40 Hz) responses and
with evoked responses. For the classification of evoked responses, the
AUC measure was replaced by the range (MAX–MIN) of the raw signal
within the same time range used for the Gamma responses (Liu et al.
2009). The duration of the time window was varied systematically
between 300 and 500 ms (see Supplementary Fig. 5).

In addition, a novel data-driven approach was employed in which
the classifier was trained based on the time–frequency decomposition
of each trial at a time window of 50–350 ms poststimulus. Given the
high-dimensionality of the time–frequency decompositions, within
each training fold the following dimensionality reduction procedure
was used: the classifier was first trained to distinguish between the 4
categories (faces, tools, buildings, and patterns) based on each time–
frequency bin. To that aim, 4 exemplars were randomly selected from
each category and the data was divided into nonoverlapping training
set (60% of the trials for each category) and testing set (the remaining
40% of the trials). The P-value of the decoding performance of each
time–frequency bin was estimated using the binomial distribution
(Pereira et al. 2009). Note that this feature selection procedure was
univariate: the category classifier was trained and tested on each
time–frequency bin individually. Time–frequency bins that showed

significant (P < 0.01; uncorrected) category classification were then
used as the input for the exemplar classifier. The distribution of these
significant time–frequency bins is presented in Supplementary
Figure 7. Note that this distribution followed the response profile of
each electrode (compare Fig 1B and Supplementary Fig 7).

Note that the dimensionality reduction approach described above
did not bias the results of the exemplar classification. First, the
time–frequency bins were selected within each training set, indepen-
dently from the test set (Pereira et al. 2009). Second, the 4 face exem-
plars that were used in the category classification were excluded from
the exemplar classification. Owing to the lower number of exemplars
in nonface categories, this exclusion was performed in the face cat-
egory only. Thus, this feature selection procedure was applied for
face electrodes only.

Reproducibility Across Repetitions
Following Liu et al. (2009), the degree of reproducibility of evoked
responses and high-Gamma responses across repetitions of the same
image was assessed. For each electrode and each exemplar, the raw
signal or high-Gamma response between 0 and 800 ms poststimulus
was extracted. Then, the correlation coefficient between every pair of
repetitions for each exemplar was computed. Statistical significance
was assessed by shuffling the exemplar labels 500 times. For each
electrode, the z-score of the average correlation value relative to this
null distribution was computed.

Neuronal Distance Analyses
In the neuronal distance analyses (Figs 5 and 6), a population vector
was constructed for each face exemplar by concatenating the mean
high-Gamma responses at a time window of 50- to 350-ms poststimu-
lus onset (see Fig. 5A). The neural distance between 2 face exemplars
was defined as the Euclidean distance between the corresponding
population vectors. The neuronal distances between each pair of face
exemplars were then correlated with several measures: 1) perceptual
distance between the faces; 2) square root distance of low-level image
features; and 3) square root distance of facial features (see below).
The correlation between the neuronal distances in the “ventral face
ensemble” responses and in the “early visual ensemble” was exam-
ined as well.

Statistical Tests
In all cases, unless mentioned otherwise, statistical significance was
determined by means of a nonparametric Wilcoxon rank-sum test. In
order to assess the significance of visual responses (see above) the
comparisons were made per individual time points. In other cases
(testing for category selectivity and for exemplar selectivity), they
were carried out on the high-Gamma AUC at a window of 50–350 ms
poststimulus. All these tests were 1 tailed.

The significance level of the grand-averaged exemplar tuning was
assessed through a permutation test as follows (see Supplementary
Fig. 4A): exemplar labels were randomly shuffled 10 000 times. For
each iteration, the mean exemplar selectivity index was computed
through the same procedure that was used for the real data, generat-
ing the distribution of this index under the null hypothesis.

The significance of exemplar classification was assessed through a
permutation procedure, in which the exemplar labels were randomly
shuffled 10 000 times.

The significance levels of correlation coefficients were assessed
with a student’s t-test. Bonferroni procedure was applied to correct
for multiple comparisons.

The significance level of the difference in overall decoding rate
between high-, low-Gamma, and evoked responses was first assessed
with a 1-way repeated-measures ANOVA followed by post hoc t-tests
(see Supplementary Fig. 5).

Perceptual Similarity Measurement
Perceptual similarity was measured in 2 different psychophysical
experiments performed on groups of healthy observers. In the first
experiment 20 healthy observers (9 males, 17 right handed, mean age
32.5 ± 2.1 years) were asked to subjectively cluster the face images
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used in the main experiment according to their similarity. The face
images were printed on 14 × 14 cm cardboards. The observers
arranged these cardboards on a table—such that similar looking faces
were placed close to each other and distinct looking faces were
placed further apart from each other. Pairwise distances between
the centers of each face were measured and normalized according to
the observer’s mean distance between faces. Next, for each pair of
faces, we computed the mean perceptual distance rating as well as a
coefficient of variation across individuals (mean divided by standard
deviation). This coefficient reflects the consistency of the ratings
across observers. Consistent face pairs were defined as the 50% face
pairs with the lowest coefficients of intersubject variance, that is,
highest consistency across observers. Note that these cross-subject
consistent perceptual ratings should in principle be more reliably
indicative of the patients’ own rating.

The experiment described above provides a more “ecological” (i.e.,
close to natural vision) measure of perceptual similarity. However, the
viewing conditions were completely different from those used in the
ECoG experiment. For example, in the ECoG experiment, the images
were presented on a computer screen for 250 ms, whereas in the psy-
chophysical experiment, the images were presented on cardboards
and subjects were allowed to inspect them for unlimited duration. To
better simulate the viewing conditions during the ECoG experiment,
we performed a second psychophysical experiment in which 16
healthy observers (8 males, all right handed, mean age 28.1 ± 0.6
years) performed a same/different task on pairs of faces from the
main experiment. In each trial, 2 face images were presented sequen-
tially on a computer screen, each one for 250 ms with an interstimulus
interval (ISI) of 500 ms. Each pair of different faces (91 pairs in total)
was repeated 12 times throughout the experiment in a random order.
There were 1092 “different” trials in total as well as 364 “same” trials
(that were excluded from the analysis), in which the same face was
presented twice. For each different face pair and for each participant,
the inverse of the median of correct reaction times was computed
(Kahn et al. 2010). Next, this measure was averaged across

participants. Similar to the first psychophysical experiment—we also
computed for each face pair a coefficient of variation across
observers.

Face-Related Features
Inspired by previous studies in the macaque (Freiwald et al. 2009) for
each face image, the following parameters were measured: 1) face ec-
centricity (aspect ratio) defined the eccentricity of a solid ellipse con-
stituting the face outline; 2) total face area— the area of an ellipse
constituting the face outline; 3) hair intensity— mean intensity of hair
pixels; 4) hair width—width of the hair at the level of the eyes, nor-
malized by total face width; 5) hair height—height of the hair above
the forehead, normalized by total face height; 6) hair pixels—total
number of hair pixels; 7) eye–eyebrow distance—vertical distance
between iris center and eyebrow, normalized by face height; 8)
eyebrow thickness at the center of the eyebrow, normalized by face
height; 9) eyebrow intensity—mean intensity of eyebrow pixels; 10)
intereye distance—distance between iris centers, normalized by face
width; 11) Iris diameter—diameter of a solid circle around the iris,
normalized by face width; 12) eye width—major radius of a solid
ellipse around the eye, normalized by face width; 13) eye height—
minor radius of a solid ellipse around the eye, normalized by face
height; 14) nose base width, normalized by face width; 15) nose alti-
tude, normalized by face height; 16) nose–mouth distance—distance
of the mouth below the nose, normalized by face height; 17) lower
lip thickness, normalized by face height; 18) upper lip thickness, nor-
malized by face height; 19) mouth width—horizontal distance
between the 2 corners of the mouth, normalized by face width; 20)
mouth–chin distance—distance of the chin below the mouth, normal-
ized by face height. We limited the analysis to these 20 face-related
features both due to statistical power considerations and due to the
fact that these measures were performed manually for each face
image.

Figure 1. Category selectivity in high-order visual cortex. (A) Location of all visually responsive ECoG recording sites (131 electrodes in 14 patients) superimposed on a cortical
reconstruction of a healthy subject from a previous fMRI study. Electrode positions are shown on a ventral view of the cortical hemispheres (middle) and on a lateral view of the
cortical hemispheres (sides). Visual but noncategory-selective electrodes are marked in shaded yellow and category-selective electrodes are marked in red (ventral face-selective
electrodes), orange (lateral face-selective electrodes), green (house-selective electrodes), and blue (tool-selective electrodes). Early visual electrodes are marked in bright yellow.
The colored arrows point to the electrodes shown in (B). The electrodes are superimposed on the peak face-related activation measured in an fMRI mapping experiment. The
borders of the fusiform face area (FFA, red) and of the occipital face area (OFA, orange) based on a previous fMRI mapping experiment in control subjects are included for
reference as well. (B) Time–frequency spectrograms showing induced spectral responses to the 4 image categories of a ventral face-selective electrode (red frame), a
tool-selective electrode (blue frame), and a house-selective electrode (green frame). Spectrogram’s colors indicate power increase (red) or decrease (blue) relative to prestimulus
baseline. Dashed vertical lines denote stimulus onset and offset.

1882 Exemplar Selectivity in the Human Fusiform Cortex • Davidesco et al.



Low-Level Features
To quantify the extent to which the responses in face-selective electro-
des could be explained by low-level characteristics of the images, a
list of 12 basic image properties was considered (Liu et al. 2009):
1) mean pixel grayscale value; 2) standard deviation of the pixel
grayscale values; 3) minimum pixel grayscale value; 4) number of
pixels different from the background gray; 5) number of pixels below
the background gray; 6) number of pixels above the background
gray; 7) number of very dark pixels (grayscale value <64); 8) number
of very bright pixels (grayscale >192); 9) number of boxes above

background gray (box size = 20 pixels); 10) number of boxes below
background gray; 11) number of very dark boxes (mean intensity
within the 20 × 20 pixel box <64); and 12) number of very bright
boxes (mean intensity within the 20 × 20 pixel box >192).

Electrode Localization
Computed tomography (CT) scans following electrode implantation
were co-registered to the postoperative MRI. Pre- and postoperative
MRIs were both skull-stripped using the BET algorithm from the

Figure 2. Exemplar selectivity in a face-selective electrode. (A) Induced high-Gamma (80–150 Hz) responses to each of the exemplars in the image set. The responses are
arranged according to the AUC during a time window of 50–350 ms poststimulus from the strongest response (top left) to the weakest response (bottom right). The vertical
dashed line marks stimulus onset and the shaded areas denote SEM across the 6 repetitions of each exemplar. Responses which are significantly (P< 0.05; uncorrected) lower
than the top response are shown in blue, whereas nonsignificantly different responses are plotted in red. Orange horizontal bar (top left response) indicates image presentation
duration and the shaded gray area denotes the time window in which the AUC was computed. (B) Exemplar tuning curve: AUC of each exemplar, sorted by response strength.
The color of the bars denotes the category: faces (red), tools (blue), houses (green), and patterns (yellow). Asterisks mark significantly (P< 0.05; uncorrected) lower responses
than the top exemplar. Error bars denote SEM. (C) Location of the electrode on a ventral view of the left hemisphere.
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Figure 3. Grand-averaged exemplar tuning in 10 ventral face-selective electrodes (A), 10 lateral face-selective electrodes (B), 9 tool-selective electrodes (C), and 9
house-selective electrodes (D). Left panel: for each electrode, the exemplars were rank-ordered according to high-Gamma response AUC in even trials (n= 3), and the tuning
curve was computed based on the responses in odd trials (n=3). The procedure was then reversed, this time using the odd trials to order the exemplars and the even trials to
plot the responses, and the 2 independent tuning curves were averaged (see also Supplementary Fig. 3). One exemplar from each nonpreferred category that yielded the
strongest response is also shown for comparison. The responses were normalized according to the response to the “optimal” exemplar. Same asterisks and error bar notations
as in Figure 2B. Right panel: “global tuning”: the exemplars were rank-ordered according to their mean response across the entire electrode population in half of the trials
(n=3), and the tuning curve was computed based on the responses in the other half of trials (n= 3). Note the lack of global tuning, indicating that unlike the electrode-specific
order—the global order was not consistent across the 2 datasets.
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Oxford Centre for Functional MRI of the Brain (FMRIB) software
library (FSL; www.fmrib.ox.ac.uk/fsl/) followed by co-registration to
account for possible brain shift caused by electrode implantation and
surgery. Electrodes were identified in the CT using BioImagesuite
(www.bioimagesuite.org). The coordinates of the electrodes were
then normalized to Talairach coordinates (Talairach and Tournoux
1988) and rendered in BrainVoyager software in 2 dimensions as a
surface mesh, enabling precise localization of the electrodes both
with relation to the patient’s anatomical MRI scan and in standard
coordinate space. For joint presentation of all patients’ electrodes,
electrode locations were projected onto a cortical reconstruction of a
healthy subject from a previous fMRI study of our group (Hasson
et al. 2003).

fMRI Mappings in Patients
Prior to electrode implantation, 5 of the 14 patients underwent a stan-
dard fMRI category-localizer experiment used to delineate the borders
of category-selective regions within high-order visual cortex. In this
experiment, blocks of faces, buildings, man-made objects, and

geometric patterns were presented in epochs of 10 s, followed by a
6-s blank screen. Each image was presented for 250 ms, followed by a
750-ms blank screen, while the patients performed a 1-back memory
task (Levy et al. 2004). Seven patients performed a second fMRI
localizer experiment, which mapped the borders of retinotopic areas
according to the representations of the vertical and horizontal visual
field meridians (Engel et al. 1994; Sereno et al. 1995; DeYoe et al.
1996). Patients were scanned on a General Electric Signa HDx 3-T
scanner. Functional imaging using Blood-oxygenation-level–depen-
dent contrast were obtained with gradient-echo echo-planar imaging
sequence [field of view (FOV) = 220 mm, 3.5 × 3.5 × 4 mm voxel size,
64 × 64 matrix, flip angle = 70, repetition time (TR) = 2000 ms, echo
time (TE) = 30 ms, axial acquisition plane, 210 contiguous volumes in
the category-localizer experiment and 256 in the retinotopy exper-
iment]. An anatomical T1-weighted image was acquired using a
spoiled gradient recalled sequence [FOV = 256 mm, 1 × 1 × 1 mm
voxel size, 256 × 256 matrix, flip angle = 8, TR = 2500 ms, TE = 30 ms,
inversion time = 650 ms, axial acquisition plane, 180 slices].
Face-related activation was identified in each patient separately using
the contrast of faces versus baseline.

Figure 4. Exemplar decoding in category-selective electrodes. (A) From left to right: exemplar classification performance of the ventral face-, lateral face-, tool-, house-, and
early visual ensembles. Chance level is shown by the dashed line (1 of 35 exemplars = 2.8%) and significance level is marked by the dotted line (P< 0.05). Error bars denote
SEM across exemplars in each category. A significant difference between the decoding rates of exemplars from the preferred and nonpreferred categories is marked by an
asterisk. (B) Misclassification pattern (confusion matrix) of the “ventral face ensemble”, constructed by concatenating the high-Gamma responses of the 10 ventral face-selective
electrodes. Each row denotes the actual exemplar that was presented, and each column denotes the classifier prediction (color coded from 0% in dark blue to 100% in bright
yellow). The black and gray lines mark the borders between the categories.
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fMRI Mappings in Control Subjects
The borders of the FFA and of the occipital face area (OFA) (see
Fig. 1) were depicted based on a previous fMRI study conducted
in our group (Hasson et al. 2003). Briefly, 12 healthy subjects partici-
pated in a blocked-design experiment that included line drawings
of faces, buildings, man-made objects, and geometric patterns.
Each image was presented for 800 ms followed by a 200-ms blank
screen containing a fixation point. Each block lasted 9 s and was
followed by a 6 s blank with fixation point screen. The borders of

face-related areas were set based on the contrast of faces > buildings
(random-effects analysis, FDR corrected) (Kanwisher et al. 1997).

fMRI Data Analysis
fMRI data were analyzed with the BrainVoyager software package (R.
Goebel, Brain Innovation, Maastricht, The Netherlands).The first 3
images of each functional scan were discarded. The functional images
were superimposed on 2D anatomical images and incorporated into
the 3D datasets through trilinear interpolation. The complete dataset
was transformed into Talairach space (Talairach and Tournoux 1988).
Preprocessing of functional scans included 3D motion correction, slice
scan time correction, linear trend removal, filtering out of low fre-
quencies up to 4 cycles per experiment, and 8-mm spatial smoothing.

Results

Exemplar Selectivity in Face-Related Areas
Fourteen patients (5 males, 13 right handed, mean age
29.1 ± 2.7 years, see Table 1), each implanted with 84–187 in-
tracranial electrodes for presurgical evaluation, participated in
the present study. The patients viewed images of faces,
man-made tools, buildings, and patterns, presented for 250
ms in pseudorandom order at a rate of 1 Hz, while performing
a 1-back memory task. Each category of images consisted of
5–14 different exemplars, which were repeated 6 times
throughout the experiment (see Materials and Methods
section for further details).

Figure 1A depicts the distribution of all visually responsive
ECoG recording sites (131 electrodes in 14 patients) projected
on a cortical reconstruction of a healthy subject from a pre-
vious fMRI study (Hasson et al. 2003). Peak face-related fMRI
activation, measured in 5 patients prior to electrodes implan-
tation (see Materials and Methods section), is also presented
as well as the estimated borders of the FFA (red) and the OFA
(orange) based on a previous fMRI mapping experiment in
healthy participants (see Materials and Methods section). Our
analysis focused on induced high-Gamma (80–150 Hz)
changes in the spectral power of the ECoG signals (Canolty
et al. 2006; Ray et al. 2008). First, we examined whether each
electrode showed a significant visual response. This analysis
revealed that 131 of the 1720 electrodes (7.6%) were visually
responsive. Next, we examined to what extent each electrode
showed a preferential response to exemplars from one cat-
egory over exemplars from the other categories (see Materials
and Methods section). Twenty electrodes in 9 of the patients
showed a significant selectivity for faces. These electrodes
could be divided anatomically into 2 clusters: a ventral
cluster along the fusiform gyrus (10 electrodes in 7 patients;
depicted in red) and a lateral occipital cluster (10 electrodes
in 6 patients; orange) (Allison et al. 1999). Nine electrodes
in 5 patients were tool selective (blue) and 9 electrodes in
4 patients were house selective (green). As a control, we also
identified 9 early visual electrodes in 4 of the patients based
on fMRI retinotopy and functional criteria (depicted in yellow
with thick black contours; see Materials and Methods
section). The distribution of electrodes in individual patients
is presented in Supplementary Figure 1 and in Supplementary
Table 1.

Examples of time–frequency decompositions, which depict
the trial-averaged spectral power changes induced by the
various object categories, are shown in Figure 1B for a ventral
face-selective electrode (red frame), for a tool-selective

Figure 5. Exemplar selectivity in ventral face-selective electrodes reflects perceptual
similarity between face exemplars. (A) Calculation of neural distance between face
pairs. For each face exemplar, a population vector was constructed by concatenating
the high-Gamma responses of ventral face-selective electrodes in a time window of
50- to 350-ms poststimulus onset. The neural distance between a pair of face
exemplars was defined as the Euclidean distance between the corresponding
population vectors. This panel depicts the face pair with the minimal neural distance
(top) and the face pair with the maximal neural distance (bottom). These 2 face pairs
are also marked in (B). (B and C) For each pair of faces, 2 measures were correlated:
neuronal distance (y-axis) of the “ventral face ensemble” (A) or the “early visual
ensemble” (B) and psychophysical distance (x-axis), based on ratings of 20 healthy
observers. Each dot denotes a pair of faces. The 50% face pairs that received the
most reliable ratings across observers (i.e., lowest coefficient of variation) are
depicted in red.
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electrode (blue), and for a house-selective electrode (green).
The spectral decompositions show the typical broadband and
fast rising response followed by a sustained elevation of
Gamma-band power and a corresponding reduction in low
frequencies (5–25 Hz) power (also termed event-related de-
synchronization (Crone et al. 2006; Privman et al. 2011).

Next, we examined to what extent the category-selective
face electrodes also showed exemplar selectivity— i.e.,
showed a consistent difference in the response to various face
exemplars. Figure 2 depicts the induced high-Gamma
responses of a face-selective electrode to each of the exem-
plars in the image set. The high-Gamma responses were
arranged according to the AUC during a time window of 50–
350 ms poststimulus. Note that although exemplar selectivity
extended well beyond the 350 ms boundary, this short time
window was selected in order to remain within the typical

time of saccade initiation and in accordance with previous
ECoG studies (Liu et al. 2009). As expected in a category-
selective electrode, all top responses were driven by images
of faces. Critically, a robust and significant exemplar tuning
was found when comparing the responses across different
face images. Thus, almost all face exemplars (12 of 13) pro-
duced a significantly (P < 0.05; uncorrected) lower response
compared with the strongest face response (see Supplemen-
tary Fig. 2 for exemplar selectivity in a tool-selective
electrode).

To examine if exemplar selectivity was a general phenom-
enon in face-related areas, we calculated the grand-averaged
exemplar tuning of the 10 ventral and 10 lateral face-selective
electrodes (left panels of Fig. 3A,B, respectively). The exem-
plar tuning was determined based on independent trial sets.
For each electrode, we ranked-order the exemplars based on

Figure 6. Organizing principles underlying exemplar selectivity. Correlations between the neural distance of each electrode ensemble and a set of low-level image features and
face-related features. Significant correlations (P< 0.05, Bonferroni corrected) are highlighted.
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3 trials and computed the exemplar tuning curve based on
the remaining 3 trials (see Materials and Methods section and
Supplementary Fig. 3). As can be seen, significant exemplar
selectivity could be discerned also in the group responses.
This effect was particularly robust in ventral face electrodes,
in which the response to the last ranked face exemplar was
reduced to a level of 68.2 ± 7.7% of the response to the
“optimal” face exemplar. In order to test the significance of
this effect we computed an exemplar selectivity index for
each electrode and averaged this index separately for ventral
and lateral face-selective electrodes. Then, we recomputed
this index while randomly shuffling the exemplar labels (see
Supplementary Fig. 4A and Materials and Methods section for
further details). This permutation procedure showed that ex-
emplar selectivity was significant both in ventral face electro-
des (P < 0.01) and in lateral face electrodes (P < 0.05).
Exemplar tuning was evident also in tool-selective electrodes
(P < 0.05; Fig. 3C) and in house-selective electrodes (P < 10–4;
Fig. 3D). Interestingly, no exemplar tuning was evident in the
evoked responses (Supplementary Fig. 4B).

An important question concerns the source of the exemplar
selectivity. Such selectivity may be global, that is, a subset of
the exemplars produced consistently stronger responses
across patients and electrodes. Alternatively, the exemplar se-
lectivity profiles may have been unique to each electrode, that
is, for each recording site a different set of face images were
the optimal stimuli. One way to distinguish between these
alternatives can be obtained by recomputing the grand-
averaged exemplar tuning curves without first ranking the ex-
emplars for each electrode separately. Instead, we
ranked-order the exemplars according to the mean response
to each exemplar in 3 trials, averaged across the entire elec-
trode population, and computed the exemplar tuning curve
based on the remaining 3 trials. If all face-selective electrodes
exhibit similar tuning profiles (i.e., respond the most to a par-
ticular subset of face exemplars), the population exemplar
tuning curve should remain intact. However, as can be seen
in the right panels of Figure 3A,B, ventral and lateral face elec-
trodes failed to reveal a significant “global” tuning. In other
words, there was no global order of face exemplars, which
was consistent across the 2 independent trial sets. By contrast,
in house-selective electrodes there were 4 specific house ex-
emplars that consistently evoked weaker responses compared
with the “optimal” house exemplar (P < 0.05; Fig. 3D, right
panel).

Decoding Face Exemplars in Single Trials
Up to this point, we analyzed the mean exemplar tuning
across several repetitions. In ventral face-selective electrodes,
both the evoked responses and the high-Gamma responses
were highly reproducible across repetitions of the same
image (evoked responses: z-score = 5.21 ± 1.37; high-Gamma
responses: z-score = 4.29 ± 0.95; see Materials and Methods
section for details). Therefore, we set to examine the tuning at
a single-trial level using a multivariate pattern classifier (linear
discriminant analysis) (Duda et al. 2001). The classifier was
trained to differentiate between the 35 exemplars from all cat-
egories (4 face exemplars were used to define the face-
selective electrodes and thus were excluded from the current
analysis), and it was cross-validated using a leave-one-out
scheme (see Materials and Methods section). The classifier

was trained based on either the high-Gamma AUC (used in
previous analyses) or the high-Gamma time course in a time
window of 50- to 350-ms poststimulus onset. As higher de-
coding rates were obtained using the high-Gamma time
course (see Supplementary Fig. 5), we chose that signal as the
input of the classifier in the remaining analyses. Statistical sig-
nificance of classification performance was assessed through
a permutation test (see Materials and Methods section).

Despite the minimal training set (n = 5), 9 of the 10 ventral
face-selective electrodes showed a significant classification
performance (Bootstrap P < 0.05, uncorrected; Supplementary
Fig. 6). The overall decoding rate was 6.2 ± 0.7% and the de-
coding rate for faces was 10.3 ± 1.5% (mean ± SEM across elec-
trodes, chance level = 1 of 35 exemplars = 2.8%). Note that in
most electrodes the highest accuracy was obtained in the dis-
crimination between face exemplars, although several electro-
des showed above chance classification for exemplars from
other categories as well.

Next, following Liu et al. (2009), we constructed an ensem-
ble vector by concatenating the high-Gamma time courses of
all the ventral face electrodes and applied the same classifi-
cation approach (Liu et al. 2009). Using this “ventral face en-
semble” (10 electrodes in 7 patients), the overall accuracy rate
was 19.1 ± 4.2% (mean ± SEM across exemplars, chance
level = 2.8%). The accuracy in discriminating between differ-
ent face exemplars was 33.3 ± 10.5% (chance = 2.8%, Boot-
strap P < 10−4; Fig. 4A). Importantly, the classification
performance clearly exceeded chance level even when consid-
ering a more conservative threshold, taking into account the a
priori category selectivity of the electrodes (10%, i.e., 1 of 10
face exemplars). Classification performance was significantly
higher for face exemplars compared with nonface exemplars
(P < 0.05). By contrast, the ensemble of lateral face electrodes
(10 electrodes in 6 patients) did not exhibit higher classifi-
cation rate for faces compared with nonfaces (P = 0.47).

Inspection of the misclassification or confusion patterns of
the “ventral face ensemble” (Fig. 4B) revealed 2 aspects. First,
faces were almost always (in 97% of trials) decoded as faces.
By contrast, there were many cross-category misclassifications
for houses, tools, and patterns. Note that these electrodes
were defined as face-selective based on 4 face exemplars
which were excluded from the current analysis, and therefore,
these estimates were not biased. Second, the decoding accu-
racy rates for different face exemplars were not constant—
some face exemplars were highly differentiated and some
were not.

In addition to high-Gamma responses, we applied the clas-
sifier for low-Gamma (25–40 Hz) and for evoked responses
(Supplementary Fig. 5). The overall decoding rate was signifi-
cant in all signal types (19.1 ± 4.2%, 9.1 ± 2.3%, and
11.4 ± 2.2% for high-, low-Gamma, and evoked responses,
respectively, Bootstrap, P < 0.05). One-way repeated-measures
ANOVA revealed a significant effect of signal type
(F2,68 = 3.78, P < 0.05). The overall decoding rate for high-
Gamma responses was significantly higher than these ob-
tained by low-Gamma and evoked responses (post hoc t-test,
P < 0.05). More specifically, the decoding rate of faces was
much higher for high-Gamma responses compared with
evoked responses (33.3 ± 10.5% vs. 13.3 ± 3.3% respectively,
P < 0.05).

We also applied a novel data-driven approach in which the
classifier was trained based on features extracted from the
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time–frequency decomposition (Supplementary Fig. 7).
Instead of selecting a priori a specific frequency band, in each
fold of the cross-validation procedure we selected time–
frequency bins that were category-selective and then used
them in order to decode the specific exemplar that was
presented (see Materials and Methods section) (Pereira et al.
2009). Applying this method to ventral face-selective electro-
des yielded an overall decoding rate of 19.5 ± 3.5% and a face
decoding rate of 28.3 ± 7.1%, further validating the previous
results.

Organizing Principles Underlying Exemplar Selectivity
What could be the principles that underlie exemplar tuning in
face-related areas? More specifically why did certain face
exemplars produce similar neural responses while others pro-
duced highly different patterns? A particularly important
parameter of interest, suggested in the object perception
literature (Olson 2001; Op de Beeck et al. 2001, 2008;
Haushofer et al. 2008; Drucker and Aguirre 2009) is percep-
tual similarity. Ideally, one would like to directly compare
the neural responses and the perceptual similarity measures
obtained from the patients themselves. However, due to con-
straints imposed by the clinical setting, collection of behavioral
data from the patients was not feasible.

To examine whether the neuronal responses in the patients
may have represented more “canonical” perceptual simi-
larities, we performed a separate psychophysical experiment
in which 20 healthy observers (9 males, 17 right handed,
mean age 32.5 ± 2.1 years) were asked to subjectively cluster
the face exemplars according to their similarity (see Materials
and Methods section for details). For each pair of face exem-
plars, we compared the neuronal distance and the perceptual
distance evaluated by the observers. The neuronal distance
was computed in the following manner: we first constructed a
population vector for each face exemplar by concatenating
the single electrodes mean high-Gamma responses in a time
window of 50–350 ms poststimulus. The neuronal distance
between 2 face exemplars was defined as the Euclidean dis-
tance between the corresponding population vectors
(Fig. 5A). In the “ventral face ensemble”, we obtained a
highly significant correlation between neuronal distance and
perceptual similarity (r = 0.35; P < 0.001; Fig. 5B and Sup-
plementary Movie 1 demonstrating misclassification of per-
ceptually similar faces). Restricting this analysis to the more
“canonical” pairs, that is, the 50% face pairs which received
the most consistent ratings across observers, yielded a stron-
ger correlation coefficient (r = 0.52; P < 0.0005; depicted in
red in Fig. 5B; see Materials and Methods section). Note that
these cross-subject consistent perceptual ratings should in
principle be more indicative of the patients’ rating. The corre-
lation between neuronal distance and perceptual distance was
significant, albeit weaker, in the “lateral face ensemble”
(r = 0.29, P < 0.005; reliable face pairs only: r = 0.35; P < 0.05).
In contrast, no significant correlation between neural and per-
ceptual distances was observed in an ensemble of early visual
electrodes (9 electrodes in 4 patients: r = 0.16, P = 0.13;
reliable face pairs only: r =−0.13, P = 0.40; Fig. 5C), nor in
an ensemble of tool-selective electrodes (9 electrodes in
5 patients: r = 0.11, P = 0.49) and in an ensemble of house-
selective electrodes (9 electrodes in 4 patients: r = 0.05,
P = 0.72).

It could be argued that the method that was used to evalu-
ate perceptual similarity between faces, despite being “eco-
logical” (i.e., close to natural vision), differed substantially
from stimulus presentation conditions during the main ECoG
experiment. For example, in the main ECoG experiment
images were presented for 250 ms, whereas in the behavioral
experiment subjects were allowed to inspect the images for
unlimited duration. Therefore, we performed a control exper-
iment on an independent sample of 16 observers (8 males, all
right handed, mean age 28.1 ± 0.6 years), in which face pairs
were presented sequentially while the participants performed
a same/different task. Each image was presented for 250 ms
with an ISI of 500 ms. For each pair of faces, the inverse of
the median reaction time was computed as a measure of per-
ceptual similarity (see Materials and Methods section) (Kahn
et al. 2010). The results using this more controlled measure
replicated the significant correlation found between neural
distance and perceptual distance in the “ventral face ensem-
ble” (r = 0.23, P < 0.05; reliable face pairs only: r = 0.32,
P < 0.05). Importantly, the “early visual ensemble” did not
exhibit any significant correlation between neural and percep-
tual distances (r =−0.07, P = 0.52; reliable face pairs only:
r =−0.04, P = 0.82).

In order to further examine the neural representation of
face exemplars, we measured a set of image properties for
each face exemplar, which included 12 low-level features (Liu
et al. 2009) (such as contrast, number of bright and dark
pixels) and 20 face features, inspired by previous studies in
the macaque (Freiwald et al. 2009) (e.g., total face area and
intereye distance, see Materials and Methods section). Next,
we computed the correlation coefficient between the neuronal
distance of each pair of face images and the difference
between these 2 images in each of the above parameters.
Bonferroni procedure was applied in order to correct for mul-
tiple comparisons. The results of this analysis are depicted in
Figure 6. As can be seen, the response of the “ventral face en-
semble” (red) was significantly correlated only to face-related
features (primarily to the total face area and hair length), and
not to any of the low-level features. By contrast, the response
of the “early visual ensemble” (yellow) was significantly cor-
related only to low-level features (mean intensity of the
image) but not to any of the face-related features. The “tool
ensemble” (9 electrodes in 5 patients) and “house ensemble”
(9 electrodes in 4 patients) exhibited an intermediate pattern
that was partially related to low-level features (house ensem-
ble) and partially to face features.

Role of Low-Level Features
An important question concerns the possible role of low-level
features in the observed exemplar tuning. We examined this
issue using 2 approaches. First, as described above, there was
a clear dissociation between the “ventral face ensemble” and
the “early visual ensemble” in the parameters that predicted
the neuronal distance between face exemplars. Second, exam-
ining the correlation coefficient between the responses of the
“ventral face ensemble” and the “early visual ensemble” re-
vealed that it was close to zero (r =−0.07, P = 0.48, see
Materials and Methods section). Thus, a low-level explanation
for the exemplar tuning in face-related areas seems unlikely.
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Discussion

Exemplar Selectivity in Face-Related Cortex
Our results show that human face-related regions not only
show a clear category preference, as has been shown in fMRI
(Kanwisher et al. 1997; McCarthy et al. 1997; Ishai et al. 1999;
Hasson et al. 2003), scalp-EEG (Bentin et al. 1996) and ECoG
(Allison et al. 1994, 1999; Liu et al. 2009), but also exhibit
a significant exemplar selectivity within the face category.
Remarkably, despite the exceedingly small training set
(n = 5), this neuronal selectivity was sufficiently robust and
reliable to allow a significant, single-trial classification for
face exemplars, even at the level of individual electrodes
(Supplementary Fig. 6). The classification performance and
the fact that the tuning for different face exemplars was con-
sistent across independent trial sets (Fig. 3) argue against the
possibility that the tuning merely reflected random fluctu-
ations in the neuronal responses.

It is important to emphasize that 75% of the face-selective
electrodes showing exemplar selectivity were localized within
the borders of the well-known fMRI-defined FFA and the
more posterior OFA (Kanwisher et al. 1997; Ishai et al. 1999;
Hasson et al. 2003), as assessed by fMRI mappings in some of
the patients and in control subjects (Fig. 1A). Thus, our
results demonstrate exemplar selectivity in regions that were
previously considered category-selective.

These results are in line with previous single unit record-
ings in nonhuman primates (Baylis et al. 1985; Hasselmo
et al. 1989; Rolls et al. 1992; Tsao et al. 2006). Of particular
importance is the study of Tsao et al. (2006), showing that
face exemplars can be decoded at very high rates from single
unit activity in the middle face patch (ML), which is assumed
to be the homolog of the human FFA (Tsao et al. 2008). It is
important to emphasize that the “exemplar” discrimination
that was shown in the present study does not necessarily
imply “identity” discrimination. Assessing identity selectivity
necessitates comparing responses across transformations that
clearly change the visual appearance of a face (such as view-
point) while maintaining its identity, which were beyond the
scope of this study. Such view-invariant representation was
found in more anterior temporal areas than those recorded in
the present study (Freiwald and Tsao 2010).

Our finding of exemplar selectivity in face-related cortex
is also compatible with fMR-adaptation studies in humans
(Grill-Spector et al. 1999; Rotshtein et al. 2004; Gilaie-Dotan
and Malach 2007; Gilaie-Dotan et al. 2010). These studies
have demonstrated that the FFA shows release from adap-
tation when facial identity is changed. However, fMR-
adaptation is an indirect and coarse measure of selectivity
(Sawamura et al. 2006; Mur et al. 2010). fMRI multivariate
pattern analysis studies that addressed this issue more directly
have yielded mixed results. Recently, Nestor et al. (2011) have
shown that facial identity can be significantly decoded based
on FFA multivoxel activity, whereas 2 previous studies have
reached the opposite conclusion (Kriegeskorte et al. 2007;
Op de Beeck et al. 2010). Of particular interest is a recent
fMRI study demonstrating graded responses within the pre-
ferred category of the FFA and parahippocampal place area
(Mur et al. 2012). As discussed below, our results extend this
study by showing that within-category response differences
in face-selective areas are related to perceptual similarity

between faces and to face-related features rather than to low-
level features (Figs 5 and 6). Our results also demonstrate that
there was no global tuning shared by all face-selective electro-
des (Fig. 3). An intriguing possibility is that a common tuning
preference may still exist within individual patients rather
than across the patient population. However, in our dataset
the number of face electrodes per patient was far too small
(1.43 ± 0.43 electrodes) to allow a proper analysis of this ques-
tion and thus it should be addressed in future studies.
Altogether these findings suggest that it is unlikely that exem-
plar tuning in face-related areas can be attributed to global
(e.g., attentional) or low-level effects.

While we focused in our analysis mainly on face exemplar
selectivity, it is important to note that this phenomenon could
also be observed in tool-selective electrodes and house-
selective electrodes (Fig. 3 and Supplementary Fig. 2). This is
consistent with a previous report of a reliable decoding of
object identity in the macaque inferior temporal cortex (Hung
et al. 2005) and with fMRI multivariate pattern analysis in the
human lateral occipital complex (Eger et al. 2008). Thus, our
results support the notion that exemplar selectivity is a
general property in high-order visual cortex.

Low-Level Contribution?
An important question concerns the role that low-level visual
aspects such as contrast, size, or spatial frequency, may have
played in the exemplar tuning we observed. This concern is
particularly significant for the present study because we used
a diverse set of face exemplars, which allowed a wide range
of face-related features and perceptual distances. Indeed the
finding that early visual cortex electrodes as well as tool- and
house-selective electrodes significantly discriminated between
different exemplars likely indicates a substantial difference in
the low-level aspects of these images.

Could it be then that the exemplar selectivity in high-
order face-selective electrodes simply reflected differences in
the low-level image statistics? The fact that we found a clear
dissociation in the parameters that explain the neuronal selec-
tivity in low- versus high-order electrodes argues against this
interpretation (Fig. 6). Thus, the responses of early visual
electrodes were correlated with low-level image features, such
as image contrast, but not with face-related features, whereas
the responses of face-selective electrodes were correlated with
facial features but not with elementary image parameters.
House- and tool-selective electrodes showed an intermediate
pattern that was related both to low-level and to face features.
However, only ventral face-selective electrodes showed a sig-
nificant correlation to the perceptual similarity between face
images (Fig. 5). Finally, the lack of correlation between early
visual and face electrodes’ responses further renders a low-
level explanation unlikely. Thus, we can conclude that the
exemplar selectivity we find in high-order visual areas is unli-
kely to be merely the consequence of low-level physical
differences between face images.

Principles of Neuronal Anatomical Organization
Revealed by Exemplar Selectivity
The finding of exemplar selectivity in the ECoG responses
offers an important new insight into the anatomical principles
by which neurons in human high-order visual cortex are
grouped. The logic behind this notion stems from
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accumulating evidence that the ECoG signal, and particularly
the broadband Gamma response, likely reflects the approxi-
mate aggregate of firing activity generated by a large popu-
lation of neurons located in the vicinity of the recording
electrode (Mukamel et al. 2005; Kreiman et al. 2006; Nir et al.
2007; Manning et al. 2009). The fact that despite this massive
signal averaging, the ECoG signal still manifests exemplar se-
lectivity bears important implications for the functional organ-
ization of neurons in the recording sites. Note that the
observed exemplar selectivity in the ECoG response can be
generated only if 2 separate constraints are satisfied. First,
each neuron must show exemplar selectivity on its own, and
second, neurons sharing similar exemplar tuning properties
are likely to be, at least partially, grouped together. By identi-
fying the stimuli that produced similar activation profiles in
the ECoG responses, we could gain insight into the anatom-
ical grouping principles of the underlying neurons.

Our results revealed a highly significant correlation
between the neural response of face-selective electrodes and
the perceptual similarity between faces. Simply put, faces that
appeared more similar also elicited similar neural responses
(Fig. 5B). Perceptual similarity was measured in the current
study in 2 ways: an “ecological” manner, in which the partici-
pants clustered the face images according to their perceptual
similarity, and a more controlled manner, in which the face
images were briefly presented sequentially while the partici-
pants performed a same-different task. The correlation with
the neural responses of face electrodes was significant for
both measures but higher for the “ecological” measure. Note
that in the sequential presentation subjects were required to
bridge the percept across an interruption, a situation that
occasionally may have given rise to a “change blindness” type
of disruption (Beck et al. 2001). This potential difference
should be addressed in future studies.

The correlation between neuronal activity and perceptual
similarity reported here must be an underestimate of the
true correlation. This is because our perceptual measures of
face similarity were derived from a different subject popu-
lation (Israeli students) compared with the patient popu-
lation (American adults). However, it is important to
emphasize that despite major potential differences between
these 2 populations the correlation between perceptual and
neuronal similarities was highly significant. This result is
compatible with our previous research showing a similar
across-group correlation in sensory-driven responses
(Mukamel et al. 2005). It is also in line with previous nonhu-
man primates electrophysiology and human fMRI studies,
showing that object shape representations reflect physical
and perceptual similarities (Olson 2001; Op de Beeck et al.
2001, 2008; Haushofer et al. 2008; Drucker and Aguirre
2009). We now extend these findings to the category of
faces, which are much more perceptually homogeneous and
hence pose a more challenging visual problem. This result
raises the intriguing possibility that the perceptual sense of
similarity may be linked to the anatomical proximity (i.e.,
anatomical grouping) of high-order cortical neurons or to
the tuning profile of individual neurons (Edelman 1998;
Wang et al. 1998).

The responses of the ensemble of face-selective electrodes
were also correlated with several face-related features, in-
cluding total face area and hair length (Fig. 6). This is com-
patible with findings in the macaque emphasizing face

aspect ratio and iris size as important parameters (Freiwald
et al. 2009). While external facial features (such as hair) are
commonly excluded in face recognition studies, it has been
shown that they exert an important role in face perception
(Axelrod and Yovel 2010). Our study points to the important
role that such external features play in face exemplar tuning.

Induced versus Evoked Activity
Previous ECoG studies have emphasized the category selectiv-
ity of high-order visual cortex, but have not shown within-
category exemplar differentiation. It has been reported that
face-specific evoked potentials in occipitotemporal cortex
were not affected by face familiarity, by identification of the
face or by image type (colored, grayscale, or line drawing of a
face) (McCarthy et al. 1999). Of particular interest is a recent
ECoG study by Liu et al. (2009) which reported that category
but not exemplar information can be significantly decoded
from high-order visual cortex. There are a few possible expla-
nations for the inconsistency between Liu et al. and the
present study. Most importantly, Liu et al. focused on evoked
potentials, time-locked to the stimulus, and not on induced
changes, in which the modulations in spectral power within a
certain time window are measured. Our results show that
exemplar selectivity was mainly manifested in the induced
high-Gamma responses (compare Fig. 3 and Supplementary
Fig. 4B) although a more sensitive classification analysis
showed that evoked responses did discriminate to some extent
between individual exemplars (Supplementary Fig. 5). The
inconsistency between the 2 studies can also be accounted by
different electrode selection criteria (category selectivity in our
study vs. variance between categories divided by variance
within each category in Liu et al.) and the number of exem-
plars per category (5–14 in our study vs. 5 in Liu et al.).

The higher exemplar sensitivity of induced high-Gamma
responses relative to evoked responses is compatible with
reports that the N170 potential, recorded in scalp-EEG, is
insensitive to individual faces, leading to the notion that face
individuation only occurs at later stages (Bentin and Deouell
2000; Amihai et al. 2011). Our data thus argue against this
notion and emphasize the importance of induced activity in
assessing perceptually related neural responses (Engell and
McCarthy 2010, 2011; Vidal et al. 2010; Privman et al. 2011).

Ventral versus Lateral Face-Related Regions
The face selective electrodes identified in our study were
divided anatomically into 2 clusters: a ventral cluster along
the fusiform gyrus and a lateral occipital cluster (Allison et al.
1999). There were several important distinctions between
these 2 clusters. First, the exemplar tuning was much sharper
in ventral face electrodes compared with lateral face electro-
des (Fig. 3). Second, the exemplar classification rate for faces
was significantly higher than nonface exemplars only in
ventral face electrodes. Finally, the correlation between neur-
onal responses and perceptual similarity was stronger for
ventral face electrodes (Fig. 6). These findings are compatible
with previous fMRI findings, which reported that the OFA is
more sensitive to low-level features compared with the FFA
(Grill-Spector et al. 1999). Other studies have found that the
FFA and OFA differ in their category selectivity (Levy et al.
2001; Andrews and Ewbank 2004) and in their release from
adaptation following gradual morphing between faces (Gilaie-
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Dotan and Malach 2007). This ventral versus lateral distinction
has also been demonstrated in the object domain (Haushofer
et al. 2008).

In conclusion, our results reveal that high-order visual
areas exhibit selectivity not only at the category level but also
at the exemplar level. Exemplar selectivity follows general
principles, such as perceptual distance, and offers important
insights into the anatomical clustering of neurons in high-
order visual areas.

Supplementary Material
Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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