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Abstract
The division of CLL into 2 broad subsets with highly significant differences in clinical behavior was reported in 2 landmark papers in
Blood in 1999.1,2 The simple analysis of the mutational status of the IGV regions provided both a prognostic indicator and an insight
into the cellular origins. Derivation from B cells with very low or no IGV mutations generally leads to a more aggressive disease course
than derivation fromB cells with higher levels. This finding focused attention on surface Ig (sIg), themajor B-cell receptor, and revealed
dynamic antigen engagement in vivo as a tumor driver. It has also led to new drugs aimed at components of the intracellular activation
cascades. After 20 years, the 2 senior authors of those papers have looked at the history of the observations and at the increasing
understanding of the role of sIg in CLL that have emanated from them. As in the past, studies of CLL have provided a link between
biology and the clinic, enabling more precise targeting which attacks critical pathways but minimizes side effects.

Historical context

The story from Southampton (UK)

The Tenovus Institute was established in 1970 at the new
medical school in Southampton and George and I moved there
from Oxford. With the help of Tenovus funding, I established a
laboratory aimed at studying B cells, while George focused on
antibody therapy. The new tools of immunogenetics became
available in the early 1990s, and my lab seized on the new
opportunity to understand immunoglobulins. Part of the drive
arose from our studies of cold agglutinin (CA) disease, whereMyf
Spellerberg’s precious CA-secreting single B cells had been
handed to other laboratories for the then novel approach of DNA
sequencing. Those labs had the fun of showing that they were all
derived from the IGHV4–34 gene.We immediately bought a PCR

machine and Caroline Chapman and I set up a molecular biology
laboratory and taught ourselves how to sequence IGV genes,
initially using gel-based methods. Protein sequencing had already
been applied to clonal Igs secreted by plasma cells, but DNA
sequencing added critical information on V(D)J recombination,
somatic hypermutation and isotype switch. Interpretation of
sequence data however totally relied on having available the
libraries of human IGV, D and J genes existing in the
unrearranged DNA, which were provided by the labs of Tasuku
Honjo, Fred Alt and Greg Winter. For once, human genetics was
ahead of the mouse, and we could map the clonal history of any B
cell.
For normal B cells, the range and level of IGV gene usage was

investigated by Peter Lipsky’s group.3 Strangely the functional
repertoire in circulating B cells did not simply reflect the available
library and a similar selection was evident in different ethnic
groups. Rearrangements of one, or sometimes both, alleles were
mapped giving information on non-functional IGHV genes.
Leaning on the revelations of somatic hypermutation from Cesar
Milstein, the Lipsky lab analyzed mutational patterns and
revealed differential distribution across IGV sequences. In what
seems to be an evolutionary mechanism, most “hot spots” are in
the complementarity-determining regions.4

In a fairly short time we had sequenced B cell IGHV genes in
every possible situation ranging from normal B cells, IgE, EBV
infection, autoimmunity to the full range of B-cell tumors.
Comparison with the databases allowed insights into the point of
differentiation reached by the transformed B cell, and any
subsequent changes. During this time, Terry Hamblin, based in
the then non-university hospital at Bournemouth, provided the
important bridge from his “typical” patient clinic to our lab. One
day we discussed whether we should look in detail at the most
common B-cell tumor, chronic lymphocytic leukemia (CLL). I
had already had a quick look at cases fromDavidOscier whowas
focused on chromosomal abnormalities, and we showed that
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cases with trisomy 12 tended to have unmutated IGHV genes
whereas those with a sole 13q14 abnormality had higher
mutational levels.5 This confirmed the view from others that CLL
was heterogeneous, but we had only small numbers. Terry and I
decided to do a blitz of VH sequencing on the large number of
clinically well-documented cases he and David had stored. It
meant directing the lab effort toward this, with Zadie Davis, then
in my lab, at the forefront. With RNA as the preferred source to
avoid non-functional IGHVs, we used 5’-leader primers to get the
full sequence in combination with 3’-primers from mixed JHs or
constant regions. Because I was aware of polymorphic differences
which could be wrongly counted as mutations, I decided to divide
the cases into “unmutated” (U-CLL) and “mutated” (M-CLL)
with unmutated being >98% homologous to germline sequence,
and this was later agreed with Nick who had independently come
to the same conclusion.
Onmatching to Terry’s clinical records, it only took 84 cases to

see the dramatic differences in clinical behavior between U-CLL
(∼40% of cases) and M-CLL (∼60%).2 Nick meanwhile had
done his study with the same result.1 Other insights emerged,
with the over-expressed IGHV1–69 gene reported by TomKipps6

being found almost entirely in U-CLL while the IGHV4–34 gene,
which is not particularly over-expressed, was mainly in M-CLL.
To me, the evidence pointed to two different diseases, but it took
a while to convince the hematology community of this, partly
because, apart from clinical behavior, CLL looks similar in many
respects. Kanti Rai asked if our findings meant that once a CLL
patient was designated as U-CLL, should he/she wrap themselves
in a shroud and climb into a coffin? He knew the answer which
was that therapy might be more targeted toward U-CLL.
Wediscussed our findingswithNick and decidedwewould each

send our manuscripts to the New England Journal of Medicine.
Both were rejected without review, denying that journal the
citations of ∼5000 to date. So we sent our document to Nick, and
he forwarded both toBlood in the same envelope since at that time
submissions were made as “hard” copies. Both papers were
immediately accepted there and were published with commentar-
ies. A matter of pride is that there was never any competitive edge
but only complementarity betweenNick’s group and ours. In spite
of many efforts to replace IGHVmutational status as a prognostic
factor, it stubbornly remains thebest at all disease stages andallows
patients and clinicians tomanageCLL inamore informedway. For
the biologists, the question of how the cell of origin influences
clinical behavior has been paramount. It became clear that Ig is not
only a passive marker of differentiation but a major receptor
through which CLL is driven, leading to the application of new
drugs to target this pathway.

The story from New York (USA)

After completing medical training, I spent postdoctoral periods
at Harvard Medical School (Baruch Benacerraf’s Department of
Pathology working with David H. Katz) and The Rockefeller
University (Henry G. Kunkel’s Laboratory), becoming exposed
to concepts of basic T-cell/B-cell interactions and immunoglobu-
lin structure and function, very foreign ideas for a physician with
no basic science experience. It was at Rockefeller that I learned
the value of studying clonal populations to derive concepts
applying to diverse populations, as Kunkel had done for the
structure of IG using myeloma proteins. Based on this, in
collaboration with ShuMan Fu, we showed that CLL B cells were
not frozen at the membrane Ig-expressing stage of B-cell
maturation but could differentiate to plasma cells if T-cell help

or mitogenic signals were provided.7 It was also at Rockefeller
that I first met Kanti Rai, who provided patient samples for the
CLL studies, and Manlio Ferrarini, both of whom became long-
lasting collaborators.
Because the focus of the Kunkel Laboratory at that time was

autoimmunity, our work for the next decade addressed
autoreactive B cells in systemic autoimmune conditions. However
after moving to the North Shore University Hospital to start a
Division of Rheumatology & Allergy-Clinical Immunology, my
experiences studying autoimmune and lymphoproliferative
disorders merged. This came about upon realizing that patients
with lymphoproliferative disorders could be considered the
human equivalent of IG transgenic mice, since both expressed
almost exclusively a single B lymphocyte with a single IGHV-
IGHD-IGHJ (IGHV-D-J) rearrangement. This spurred investi-
gating CLL B cells and the IG they produced to understand
autoreactivity at the clonal level, a major advantage for the study
of polyclonal autoimmunity. This also led to re-engagement with
Kanti Rai, who worked at Long Island JewishMedical Center ∼1
mile away, and Drs. Steven L. Allen and Jonathan E. Kolitz at
North Shore. It also led to rekindling a partnership with Manlio
Ferrarini of the University of Genoa. Each of these people became
dear friends and close collaborators in our work on CLL and each
provided invaluable input to our observations over the years.
Collectively, we set out to interrogate the antigen-specificity and

structural propertiesofCLLIGs,with thehelpof a seriesof talented
postdoctoral research and clinical fellows.Zev Sthoeger found that
CLL cells secreted IGs that reacted with autoantigens,8 consistent
with findings by Peter Lydyard’s laboratory9 and reinforcing the
notion that studyingCLLcould serve asamodel for autoimmunity.
Next, because the pathogenic autoantibodies in autoimmune
disorders are isotype class-switched and somatically mutated,
Shiori Hashimoto studied the structure of IGs made by IgG+CD5+

CLL cells. These demonstrated that many but not all such clones
bore significant numbers of somatic IGHVmutations and also that
human CD5+ B cells could develop such mutations.10 The latter
findingwasdifferent fromthat inmice andmanandconsistentwith
a review of IGHV-D-J sequences by Harry Schroeder and
Guillaume Dighiero.11 To extend these findings to the more
frequent IgM+ CLL cells, Franco Fais carried out similar
experiments with clones producing IgM, using the 2% cutoff
decided upon with Harry Schroeder to avoid miscalls due to
unidentified genetic polymorphisms. These studies documented
that IgM+CD5+ CLL cells could but need not exhibit IGHV
mutations.12 Collectively, the studies of Hashimoto and Fais
documented that CLL cases fell into two subsets defined by the
presence or absence of IGHV mutations. Finally on our end,
Rajendra Damle and Tarun Wasil made the now classic
observation that IGHV-mutation status had major clinical
inferences for CLL patients and basic implications for the disease.1

That these discoveries have been impactful for understanding
CLL as a disease, and, most importantly, clinically meaningful to
patients, has been extremely gratifying to all of us involved, and
continues to motivate our ongoing studies.

Prognostic power 20 years later

It is remarkable that our observation of the 2 subsets with
different clinical behavior has remained so significant. One
reason is that IGHV status applies to all cases and remains useful
for clinicians and patients from diagnosis throughout the disease
process.13 It is now recognized as the most reliable prognostic
factor and is part of the management algorithm,14 with the recent
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IWCLL guidelines recommending that IGHVmutational analysis
be carried out in general practice and in clinical trials. An exciting
clinical finding is that patients with M-CLL who require
treatment respond better to FCR and may in fact be cured.15–
18 In contrast, patients with U-CLL appear to benefit most from
chemotherapy-free approaches, currently represented by ibruti-
nib. It raises the question as to whether there should be a revision
of the 2016 update of the WHO classification which still
considers CLL as a single homogeneous entity.
Although powerful, prognostic value of any single feature is

never absolute, and, there is an intermediate category where
epigenetic probing may be valuable.19–21 While genomic
information has always been center-stage,22–30 chromosomal
changes and mutations, at least in early disease stages, generally
apply only to a minority of patients. For example, TP53
abnormalities are of obvious significance in planning drug
treatment but involve ∼10% of patients, mostly in the U-CLL
subset.31 The majority of chromosomal abnormalities actually lie
mainly in U-CLL.32 Those aberrations occurring in M-CLL are
often distinct from U-CLL, such as MyD88 (L265P) and KLHL6
mutations, occurring in 5.6% and 4.5%, respectively.33 Taking
biology into account, there is a logic in considering the two
subsets as two diseases, and then assessing sub-subsets within
these categories instead of across the board.

The cell of origin (COO) of CLL

Indolent tumors, such as CLL, have often not strayed far from
the normal counterpart and this allows insight into the cell of
origin. Obviously there has been a transforming event but often
this is only the del(13)(q14.3), which upregulates BCL2, a likely
requirement for survival. The clonal V-gene sequence provides a
genetic label which is largely, if not always, stable, and
accumulation of somatic mutations in U-CLL such that they
convert to M-CLL is extremely rare.34,35 Analysis of DNA
methylation patterns has added support to the concept of the U-
CLL and M-CLL subsets, each of which differs markedly but
retains a similarity to the COO.19 A few cases lie in an
intermediate zone between the two subsets, including those
involving the IGHV3–21 gene belonging to stereotyped subset
#2, which appear to have a relatively poor prognosis independent
of mutational status. Nevertheless, the major division holds, with
U-CLL andM-CLL differing according to the presence or absence
of IGHV mutations. Although the specific stages of B-cell
development at which they occur might be debated, here we refer
to U-CLL as resembling “pre-germinal center” (pre-GC) and M-
CLL as resembling “post-GC” cells.
These findings have overtaken the many attempts to find the

COO using phenotypic features, although transcript analysis of
normal B cells revealed a continuing connection of each CLL
subset with CD5+ populations in either pre-or post-GC cells.36

For U-CLL, tracking of CLL-associated VDJ sequences from the
over-represented 51p1 allele of IGHV1–69, in combination with
IGHJ6, revealed highly similar junctional regions in normal
blood B cells, some of which were CD5+, indicating an origin of
this subset from the natural antibody repertoire, presumably
selected over evolutionary time to fight infections.37

However, no tumor cell is exactly the same as its COO partly
because the transforming events can influence behavior. Clonal
selection based on proliferative activity and exploitation of the
microenvironment can occur after transformation, and for CLL
this includes engagement with a range of potential (auto)
antigens.38–43 The membrane phenotype44 and telomere

lengths45,46 in circulating CLL cells have given rise to the term
“antigen-experienced”. However, it is unclear whether this
occurred prior to transformation, or if it is acquired after, and
whether the antigens in the two settings are the same. Curiously,
intraclonal diversification of IGHV in either subset is rare but can
occur. Additionally, there is a relatively rare variant of CLL that
has undergone isotype switch to IgG/A. These cases have IGHV
asymmetries, like IgM+ CLLs, but are not yet fully understood.
An important clinical feature of CLL is immunosuppression

which develops early and can lead to hypogammaglobulinemia,
likely due to plasma cell loss. This contrasts withmost other B-cell
tumors and, while occupation of the bone marrow is a factor,
suggests a direct influence of CLL cells on developing and mature
B cells. In this regard, CLL cells bear some resemblance to
regulatory B (B10) cells,47 which, in commonwith anergic B cells,
arise in the setting of chronic antigen exposure, express CD5 and
suppress B cell responses by producing IL-10.48

Structural features of sIg in CLL

The asymmetric usage of IGHV genes is most evident in the
over-expression of IGHV1–69 in U-CLL, and adds weight to the
distinction between the subsets. Another distinguishing feature of
the expressed CLL IGHV-D-J repertoire is the biased presence
of discrete VH CDR3 sequences resulting from the association of
specific IGHV, IGHD and IGHJ segments leading to “stereo-
typed” BCRs. These structural aspects have been comprehen-
sively reviewed,49 so here we focus primarily on new insights.
One of these is the provocative finding that CLL IGs self-

associate, that is, bind each other. This was initially suggested by
peptide binding studies,50 and then documented by X-ray
crystallography for 2 stereotyped BCR subsets.51 When the
“antigen” on one IG interacts with the “antigen-binding site” on
the adjacent membrane IG, BCR signaling can be detected in
vitro;52 this has been termed “autonomous signaling”. Based on
measuring the affinity of self-association in the crystallized
stereotyped subsets, it has been proposed that high avidity
interactions lead to more frequent autonomous signaling and
consequent dampening of signal transduction and an anergic-like
state and better clinical outcome.51 A so-far unanswered question
is whether these IG-IG interactions will occur in the presence of
serum IG.
Theweight of evidence is that CLL cells are stimulated to divide

during passage through tissue sites although the nature of the
likely multiple (auto) antigens involved is unclear. Attempts to
define these have to take into account an observation on some of
the findings on polyreactivity, that is, that when sIgM is expressed
as secreted IgG, a mismatch in reactivity can occur, with
polyreactivity seen only in the recombinant secreted IgG.53 This
might reflect themisfolding that can occur in recombinant soluble
Ig which renders proteins “sticky”.

Active B-cell receptor (BCR) engagement of
CLL cells occurs in vivo

There has been much speculation about why CLL cells express
so little sIg. Although sIg is virtually always present, levels are
lower than any suggested normal B-cell counterpart, even after
recovery of expression in vitro. One possibility relates to the
recent findings that B cells need a “Goldilocks” level of signaling
for maintenance, that is, not too much, which, in the absence of
T-cell help, would induce death via mitochondrial dysfunction
and accumulation of reactive oxygen species; and not too little,
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which would fail to activate the low level signal required to meet
the metabolic demands of tumor cells.54 CLL cells under constant
stimulation have to calibrate their responses, and one way is to
express a minimal level of sIg. Additionally, CLL cells can
increase numbers of mitochondria and over-express BCR-
associated inhibitory phosphatases.55 Evidence consistent with
CLL cells being driven by encounter with “antigen” in tissue sites
arises from phosphorylation of BCR-associated kinases in lymph
nodes.56 Since antigen exposure generally leads to endocytosis
and downregulation of expression of sIg, circulating CLL cells
were probed for this imprint.57 This showed that blood CLL cells
of U-CLL and M-CLL subsets can increase expression of IgM
following culture in vitro. It provides compelling evidence for
downregulation of expression in vivo, supporting the concept
that it occurred during transient exposure to lymphoid tissue
antigen. Attempts to find the antigens involved have pointed to
pathogens and autoantigens in U-CLL.43 Although it is more
difficult to find candidate autoantigens for the possibly higher
affinity BCRs in M-CLL, evidence for microbial reactivity
exists.58–60 However even in this subset, reactivity with
autoantigens can be detected with one example free of potential
artifacts being the IGHV4–34-encoded cases which largely retain
the amino acids in FR1 which confer low affinity reactivity with
the red cell I/i autoantigen.61

The dynamic nature of CLL cells after stimulation which
occurs before exiting from and upon entering antigen-expressing
tissue sites leads to circulating cells that are heterogeneous in
basal sIgM levels both within and between patients. There is also
an apparent overall difference between the two subsets with U-
CLL generally expressing higher levels of sIgM than M-CLL.57

This is functional as shown using anti-IgM-induced Ca++ flux and
phosphorylation of kinases as readouts, with, in general, U-CLL
cells responding more than M-CLL57 In fact, higher expression
alone can be used as a partial surrogate for IGHV mutational
status in predicting clinical behaviour.62 Although levels of sIgM
appear stable in patients, they can be modulated by cytokines,
particularly IL-4, which increases expression, mainly in U-CLL,
via upregulating CD79B.63,64 This has clinical relevance since it is
more difficult to inhibit sIgM-mediated signaling with ibrutinib
after exposure to IL-4.63 Curiously, response to engagement of
sIgD does not show variability between subsets, and, in contrast
to sIgM, there is no evidence for downregulation of expression in
vivo or of a response to IL-4. Although difficult to explain, this
differential effect on the two isotypes mirrors that of anergic
normal B cells in mouse models and in human B cells.65

The reciprocal densities of membrane CXCR4 and CD5 have
allowed subsetting of CLL clones in the blood into fractions that
recently left tissue sites after birth,66,67 the latter defined by the
incorporation of deuterium into replicating DNA of CLL cells.68

This approach indicated that the most recently born cells
(CXCR4DimCD5Bright) express genes associated with vitality,
survival and growth and the “oldest” cells (CXCR4BrightCD5Dim)
express genes associated with frailty and cell death. Moreover the
CXCR4DimCD5Bright and CXCR4BrightCD5Dim fractions differ in
sIgM levels with the former displaying more than the latter.66,69

The gene expression panel and surface phenotype are consistent
with the older, sIgM lower cells needing to re-enter the tissue
microenvironment to survive and for IL-4 to provide rescue
signals and lead to increased sIgM expression.
Other cells in the clone appear to be driven into anergy57 with

downregulation of sIgM and CXCR4 expression, and expression
of both can recover during transit in the blood before returning to
tissue. This recovery can be mirrored by incubating cells in vitro.

The various pressures on tumor cells in the tissues clearly lead to a
variety of outcomes with downregulation of CXCR4 being
common to all, but effects on sIgM varying, likely due to whether
the cell has responded to antigen by dividing or, if the stimulus is
inadequate, by becoming anergic. This dichotomy is reflected in
the variable effects on sIgM, as summarized in Figure 1.
In addition to the effects of specific ligands on receptors, there

is apparent cross-talk between the induced responses, perhaps
best described for sIgM-induced anergy which can affect other
receptors.70 The influence of sIgM engagement is clearly evident
for CXCR471,72 and could be mediated via SHIP1/DOK1 axis,
since complexes of these proteins can reduce PI3K-mediated
signaling at remote receptors.70

Anergy and CLL

If tissue drivers are autoantigens, there will be few, if any,
cognate CD4+ T cells available to provide help. Again it is useful
to consider the differences between U-CLL and M-CLL. U-CLL
most closely resembles B cells derived from the natural antibody
repertoire. Responses of the normal B cell counterparts to
antigen, which is often microbial and multivalent, are usually
considered to be T-cell independent. Although not absolute, there
is a greater reliance on CD40L-like cytokines such as BAFF and
APRIL derived from a multitude of innate immune cells.73 In
contrast, the normal counterpart ofM-CLL is closer to a memory
B cell which will be vulnerable to apoptosis on encountering high
affinity antigen and more dependent on cognate TFH cells.74

However for both pre-GC and post-GC normal B cells, low
affinity antigens, including most autoantigens, can induce anergy,
and this is evident in both U-CLL and M-CLL, especially the
latter.70 Anergy can be defined as a mechanism of tolerance
whereby autoreactive B cells are rendered non-responsive to
activation via the BCR. Normal anergic B cells are susceptible to
apoptosis, but CLL cells may be protected by over-expression of
BCL-2. Persistent anergic tumor cells may be relatively harmless,
but there is the danger of reverting to responsiveness. The real
question for each subset of CLL is what happens in tissue sites
where (auto)antigen is encountered and where the limited
availability of T-cell cytokines or those from innate cells, allows
some cells to proliferate while others are anergized.

Targeting the sIg-mediated pathways

Therapeutic targeting of ongoing BCR activation by inhibiting
essential enzymes in the signaling process have led to dramatic
clinical results in CLL. These include ibrutinib,75 which targets
Bruton’s tyrosine kinase (BTK), and idelalisib,76 which inhibits
PI3Kd, and next generation derivatives of the two.77,78 The most
efficacious to date has been ibrutinib,79which is now approved
for the treatment, alone or in combination, of patients at all stages
of the disease. BTK inhibition by ibrutinib occurs very rapidly
leading to inhibition of CLL cell proliferation in vitro and in
vivo.80–82 Moreover, BTK inhibition affects the CXCR4-
CXCL12 axis directly and integrin signaling indirectly,81,83–85

both of which prevent returning to and might promote exiting
from solid tissue niches. This leads eventually to death because of
the lack of survival signals delivered by interaction with tissue-
fixed antigen and IL-4 in the tumor microenvironment.
Interestingly, although the cells change shape and size, sIgM
expression increases, mimicking that seen in vitro,86 possibly
reflecting that CLL cells blocked from entering tissue sites are no
longer able to engage antigen. Worryingly, the cells remain
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capable of responding to sIgM engagement by phosphorylation
of upstream Syk. Should ibrutinib levels decrease because of
discontinuation due to side effects or lack of patient compliance,
the brakes on CLL-cell growth and migratory capacity are
released, and the cells quickly return to full function. This may
also occur with the outgrowth of clones containing enabling
mutations in the BTK pathway.

The continuing role of the BCR

For the indolent B-cell tumors, it is quite extraordinary to see
how the BCR is exploited for its ability to control cell responses
and environmental interactions to maintain growth and survival.
CLL appears to use lowered sIg expression to interact in just the
right waywith tissue autoantigen. Upregulation of BCL-2 is likely
to be a necessity, as it is for follicular lymphoma, although the
mechanism of upregulation is strikingly different between the
two. There are likely to be many attempts by expanded clones to
get further, but they might fail and remain as monoclonal B-cell
lymphocytosis (MBL). To progress, there may be a need for
modulation by CD40L and local cytokines, likely from innate cell
populations or from a low number of available cognate T cells.
The differential grading of these influences which reflects the
COO is probably the key to the difference between U-CLL and
M-CLL. There will be overlap, with some cases of M-CLL

avoiding the strong anergic signal which seems to operate on this
subset, possibly due to variability in the antigen involved. This
sub-subset deserves more study, especially as it apparently is
responsive to FCR. Stimulation of the BCR leads to changes in
expression of chemokine receptors and adhesion molecules,87 all
of which are required for tumor expansion. Both subsets of CLL
have found a way to avoid the homeostatic control of cell
numbers in the blood, possibly because they are cheating the
system by low level engagement of antigen. Whatever the
mechanism, inhibition of the BCR or anti-apoptotic pathways
makes biological sense, and it is working for patients.
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