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IN UTERO EXPOSURE TO A MATERNAL HIGH FAT DIET 
ALTERS THE EPIGENETIC HISTONE CODE IN A MURINE 
MODEL
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Ariana Fiallo, MS2, R. Alan Harris, PhD1, Maureen J. Charron, PhD2,4,5,#, and Kjersti M. 
Aagaard, MD, PhD1,*

1Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal 
Fetal Medicine, 1 Baylor Plaza, Houston, Texas, 77030, USA

2Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, New 
York, NY 10461, USA
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Abstract

Objective—Data from animal models show that in utero exposure to a maternal high fat diet 

(HFD) renders susceptibility of these offspring to the adult onset of metabolic syndrome. We and 

others have previously shown that epigenetic modifications to histones may serve as a molecular 

memory of the in utero exposure, rendering risk of adult disease. Because mice heterozygous for 

GLUT4 (insulin sensitive glucose transporter) born to wild-type (WT) mothers demonstrate 

exacterbated metabolic syndrome when exposed to a high fat diet in utero, we sought to analyze 

the genome-wide epigenetic changes which occur in the fetal liver in susceptible offspring.

Study Design—WT and Glut4+/− (G4+/−) offspring of WT mothers exposed either to a control 

or a HF diet in utero were studied. Immunoblotting was used to measure hepatic histone 

© 2014 Mosby, Inc. All rights reserved.
*Corresponding author and to whom reprint requests should be sent: Kjersti M. Aagaard, M.D., Ph.D., Baylor College of Medicine, 1 
Baylor Plaza, Jones 314, Houston, TX, 77030. Fax (713) 798-4216, Telephone (713) 798-8467, aagaardt@bcm.tmc.edu. #For 
questions concerning the murine model: Maureen J. Charron, Ph.D., Albert Einstein College of Medicine, 1300 Morris Park Avenue, 
Forchheimer 312, Bronx, NY 10461, Fax (781) 430-8565, Telephone (718) 430-2852, maureen.charron@einstein.yu.edu.
Present address for PMV: Cohen’s Children Medical Center, Department of Pediatric Endocrinology, 1991 Marcus Ave Suite M100, 
Lake Success, NY 11042

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure Statement: The authors report no conflicts of interest

Results from this work were previously presented at the annual SMFM Meeting in 2009 and will be presented at the annual SMFM 
meeting in 2014.

HHS Public Access
Author manuscript
Am J Obstet Gynecol. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Am J Obstet Gynecol. 2014 May ; 210(5): 463.e1–463.e11. doi:10.1016/j.ajog.2014.01.045.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modifications of fetal and 5 week animals. Chromatin immunoprecipitation (ChIP) followed by 

hybridization to chip arrays (ChIP on chip) was utilized to detect genome-wide changes of histone 

modifications with HFD exposure.

Results—We found that levels of hepatic H3K14ac and H3K9me3 significantly increased with 

HFD exposure in WT and G4+/− fetal and 5 week offspring. Pathway analysis of our ChIP on chip 

data reveal differential H3K14ac and H3K9me3 enrichment along pathways which regulate lipid 

metabolism, specifically in the promoter regions of Pparg, Ppara, Rxra and Rora.

Conclusion—We conclude that HFD exposure in utero is associated with functional alterations 

to fetal hepatic histone modifications in both WT and G4+/− offspring, some which persist up to 5 

weeks of age.

Keywords

developmental origins of adult disease; GLUT4; H3K14ac; H3K9me3

INTRODUCTION

According to the developmental origins of health and disease (DOHaD) hypothesis, the in 

utero experience can have a profound effect on the individual. Studies have suggested that 

the effects of a suboptimal intrauterine milieu can persist into adulthood1. In utero exposure 

to either a maternal low protein diet, caloric restriction or a maternal high fat diet (HFD), is 

associated with an increased susceptibility to the adult onset of metabolic syndrome2, 3. In 

the current era of obesity, studies concerning how a mother’s HFD may influence the health 

of her offspring are of increasing relevance. High fat diet consumption during pregnancy is 

associated with gestational diabetes mellitus 4. Animal models of in utero HFD exposure 

have shown that offspring are more susceptible to fatty liver in early life as well as increased 

adiposity, diabetes and cardiovascular disease in adulthood 3, 5–8. The question therefore 

remains, how can the memory of an exposure only experienced during gestation be 

maintained over the lifetime of the individual?

The possibility that epigenetic modifications contribute to this memory is an intriguing one. 

Epigenetic modifications constitute changes to the local chromatin structure that do not 

change the underlying DNA sequence. The addition or removal of post-translational histone 

modifications alongside changes in DNA methylation patterns are potential mechanisms that 

could contribute to the memory of an in utero exposure. Some histone modifications are 

enriched within the promoters of transcriptionally active genes, such as acetylation of lysine 

14 of histone H3 (H3K14ac)9, 10 while other modifications such as trimethylation of lysine 9 

of histone H3 (H3K9me3) are enriched in promoters of repressed genes as well as within 

heterochromatin 11–13. It is also well established that activating and repressive marks are not 

mutually exclusive, even within the same promoter. During embryogenesis, chromatin 

domains which contain both repressive and activating motifs cluster throughout the 

genome 14. Our previous work in a non-human primate model has demonstrated that HFD 

exposure in utero alters the fetal hepatic histone code 15. Specifically, hepatic H3K14ac is 

increased in the HFD exposed fetal animals 15, 16. H3K14 appears particularly sensitive to 

the intrauterine milleu as it is also modified in a rat model of nutrient restriction in skeletal 
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muscle 17. How these modifications are established and their relationship to the 

susceptibility to the adult onset of disease remains to be fully investigated.

Not every animal exposed to a HFD is equally susceptible, begging the question as to 

whether the offspring genotype may serve as a modifier of the in utero environment. We 

have studied offspring heterozygous for the Glut4 gene (G4+/−) from WT mothers fed a 

HFD 18. GLUT4 haploinsufficiency results in peripheral insulin resistance, altered lipid 

metabolism and type 2 diabetes 19–22. It has been shown that exposure to a HFD during 

critical periods of development leads to development of metabolic syndrome such as 

increased adiposity, impaired glucose tolerance, and insulin insensitivity in G4+/− and WT 

offspring. Interestingly, genotype-dependent differences were observed, suggesting that 

haploinsufficiency of GLUT4 may result in a different metabolic remodeling in response to 

the HFD 18. Thus, it is possible that an interaction between the in utero environment 

(exposure to a maternal HFD) and the offspring genotype (specifically a heterozygous 

deletion of GLUT4) may lead to different epigenetic changes either protecting against or 

increasing the risk of developing metabolic disease.

Based on our findings of an altered hepatic epigenome in a non-human primate model of 

maternal HFD consumption 15, 16, 23, we sought to determine whether (1) an increase in 

hepatic acetylation is similarly observed in a murine model of maternal HFD exposure and 

(2) whether offspring genetically susceptible to metabolic syndrome (the G4+/− offspring) 18 

have a similarly altered hepatic epigenome with HFD exposure in order to study whether 

diet x genotype interactions may also contribute to offspring disease susceptibility. Because 

the paternal germline is the source of the Glut4 haploinsufficiency (and Glut4 is not 

expressed in the liver until late postnatal life 24), any intrauterine genotypic contribution 

would be attributable only to altered placental glucose and/or nutrient uptake in G4+/− 

offspring.

In this study we found that fetal hepatic H3K14ac and H3K9me3 increases with maternal 

HFD exposure. These alterations were also observed in animals at 5 weeks of age. 

Chromatin immunoprecipitation (ChIP) followed by hybridization to a promoter array chip 

(ChIP-on-chip) was used to determine which promoters on a genome-wide scale show 

differential enrichment for H3K14ac and H3K9me3 in response to maternal diet. We 

observed that these modifications are predominantly enriched among those gene promoters 

which relegate to lipid metabolism networks. We conclude that HFD exposure in fetal life is 

associated with significant alterations of distinct histone modifications, rendering enriched 

occupancy in the promoters of genes which regulate lipid metabolism.

MATERIALS AND METHODS

Murine model

All animal procedures were done in accordance with approved IRB protocols from both 

Baylor College of Medicine and Albert Einstein College of Medicine as previously 

described 8, 18. WT CD1 female mice were maintained on a control breeding chow 

(PicoLab® Mouse Diet #5058; 9% fat, 20% protein, 53% carbohydrate) or high fat (HF Bio-

Serv Product #F3282; 35.5% fat as lard, 20% protein, 36.3% carbohydrate) diet two weeks 
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prior to mating with G4+/− males throughout gestation and lactation. Offspring were weaned 

onto a low fat diet (Pico Lab #5053; 4.5% fat, 20% protein, 54.8% carbohydrate) at 

postnatal day 21. The animals used in this study were male WT and G4+/− offspring. For 

fetal tissue, pregnant mice were sacrificed at embryonic (e) day e18.5. Fetuses were 

sacrificed by decapitation and organs were immediately harvested and snap frozen using 

liquid nitrogen18.

Experimental methods can be found in the supplemental information.

RESULTS

Hepatic H3K14 acetylation and H3K9 trimethylation increase with HFD exposure in utero 
and during lactation

Immunoblotting was used to determine if hepatic histone modifications are altered in either 

WT or G4+/− offspring with HFD exposure (Figure 1A). In fetal liver at e18.5, H3K14ac is 

increased in both the WT (3.6-fold, p=0.002) and G4+/− (3.0-fold, p=0.002) offspring with 

HFD exposure (Figure 1B). H3K9me3 is also increased with HFD exposure in both the WT 

(5.7-fold, p=0.007) and G4+/− (4.6-fold, p=0.047) fetal offspring (Figure 1C).

Immunobloting was similarly performed on livers from 5 week old animals exposed in utero 

to a maternal control or HF diet and weaned onto a low fat diet two weeks before harvesting 

the tissue. In these animals, both H3K14ac and H3K9me3 are significantly increased in 

HFD exposed animals compared with control diet in both WT and G4+/− offspring (Figures 

1D and 1E). Relative levels of fetal hepatic H3K27me3, H4K20me3, H3K9ac, H3K18ac 

and H3K4me3 were found to be unchanged with HFD exposure in the fetal WT animals so 

were not further assessed (Supplementary Table 1).

Hepatic gene expression of histone modifying enzymes is reduced in WT 5 week old 
offspring with HFD exposure during lactation

Because of the observed increase in histone acetylation in the fetal and 5 week old animals, 

we hypothesized that expression levels of histone acetyltransferases would be altered. GCN5 

is a histone acetyltransferase of histone H3 25, 26. HDAC1, HDAC3 and SIRT1 deacetylate 

histone H3K14 27–30. Hepatic mRNA levels of these genes were measured in both fetal and 

5 week old animals in the WT and G4+/− offspring. While we failed to observe a significant 

alteration in expression in the fetal animals (Figure 2A), at 5 weeks of age, Sirt1 expression 

was significantly decreased when compared to the control diet exposed cohort in both WT 

and G4+/− animals (Figure 2B). In WT offspring, gene expression of Gcn5, Hdac1 and 

Hdac3 were also significantly reduced in 5 week old offspring who experience both prenatal 

and postnatal HFD exposure (Figure 2B).

ChIP on chip reveals that global H3K14ac and H3K9me3 are both enriched at the 
transcription start site (TSS) regardless of genotype or diet exposure in the fetal liver

In order to determine in the localization of H3K14ac and H3K9me3, ChIP-on-chip was 

performed on the fetal liver from WT and G4+/− offspring exposed to either control or HFD 

in utero (Figure 3A). Enrichment (as measured by log 2 IP/ Input) of these modifications 

Suter et al. Page 4

Am J Obstet Gynecol. Author manuscript; available in PMC 2015 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was plotted throughout the array as a means of internal validation 31, 32. Consistent with 

previous epigenome-wide characterizations 26, 33, we observed robust enrichment in a broad 

region surrounding the TSS in each of the eight groups studied (Figures 3B–C).

H3K14ac and H3K9me3 are differentially enriched in genes involved in lipid metabolism in 
the fetal liver

In order to determine promoter specific changes of H3K14ac and H3K9me3 in the fetal 

animals, gene lists were generated from the ChIP-on-chip data which demonstrated 

differential enrichment over input (Supplementary Tables 2–9). We then determined which 

genes had differential enrichment between the control and HFD groups (Supplementary 

Tables 10–13). Of interest were the genes significantly altered for both H3K14ac and 

H3K9me3: , 454 genes in the WT animals and 755 genes in the G4+/− aimals (Figure 3D). 

To determine if there is an offspring genotype effect on histone modification localization, 

the generated gene lists were analyzed for overlap for each modification between WT and 

G4+/− offspring (Figure 3E). When comparing genes differentially enriched between control 

and HFD for H3K14ac, 8% (427 out of 5182 total) of genes were similarly enriched 

between WT and G4+/− liver while 10% (566 out of 5588 total) of the genes enriched for 

H3K9me3 were found in both WT and G4+/− liver.

For the genomic regions enriched for H3K14ac or H3K9me3 between control and HFD 

exposed animals (Supplementary Tables 10–13), HOMER 34 was used to determine which 

transcription factor binding sites were significantly (Benjamini q-value < 0.05) represented 

in the dataset. In the WT animals, there were no known motifs enriched in either the 

H3K14ac or H3K9me3 datasets. However, analysis of the G4+/− offspring revealed 9 

significantly enriched motifs (Table 1). H3K14ac is differentially enriched in regions 

containing Gata1, 2, 4 and Myf5 binding motifs. H3K9me3 is differentially enriched in 

regions containing GFY, E2F, E2F4 and RUNX-AML binding motifs.

Genes important for lipid metabolism are differentially enriched in H3K14ac and H3K9me3 
in fetal livers of WT and G4+/− offspring

The generated gene lists were analyzed using Ingenuity Pathway Analysis (IPA) to 

determine which biological networks are differentially represented. For each group, lipid 

metabolism was the top network identified (Supplementary Table 14). In each analysis, four 

genes involved in lipid metabolism consistently emerged as central convergence nodes for 

the differentially represented pathways: Pparg, Ppara, Rora, and Rxra. Enrichment of 

H4K14ac and H3K9me3 within gene-specific promoters was interrogated employing qPCR 

on ChIP’ed DNA using primers proximal to the TSS (Supplementary Table 15). Indeed, 

both H3K14ac and H3K9me3 were enriched among both WT and G4+/− fetal liver 

following in utero HFD exposure compared to control diet (Figure 4 A–D).

We hypothesized that if there were an enrichment of these modifications with HFD 

exposure, this enrichment should correlate with significant alterations in gene-specific 

transcription. Pparg, Ppara, Rora and Rxra expression was quantified by qPCR (Figure 4 E

+F). Pparg was increased in the G4+/− HFD exposed fetuses compared with the control diet 
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group. Expression levels of Ppara, Rora and Rxra were not altered in HFD exposed fetuses 

in either the WT or G4+/− groups.

Promoter enrichment of H3K14ac and H3K9me3 is reversed at 5 weeks of age despite HFD 
exposure during lactation

We performed qPCR on H3K14ac and H3K9me3 ChIP’ed DNA using primers proximal to 

the TSS. At 5 weeks of age, both modifications are enriched with maternal HFD exposure in 

the Pparg promoter , but only among G4+/− offspring (Figure 5A). In HFD WT animals, 

there was a significant decrease in H3K14ac in the Ppara promoter (Figure 5B). Similarly, 

both H3K14ac and H3K9me3 were decreased in the Rora promoter with HFD exposure 

(Figure 5C). There were no significant changes in the Rxra promoter (Figure 5D). However, 

mRNA expression analysis demonstrated that Ppara expression was significantly decreased 

following maternal HFD exposure in both the WT and G4+/− 5 week old offspring (Figure 5 

E+F), while mRNA expression of Pparg and Rxra were significantly decreased only in the 

G4+/− offspring (Figure 5F).

COMMENT

In this study we undertook a discovery based, epigenome-wide approach to identifying 

which modifications were altered in the HFD exposed male offspring in fetal and postnatal 

life. Similar to our prior findings in a non-human primate model 15, 16, hepatic H3K14ac is 

increased in fetal life in the mouse. Hepatic H3K9me3 is also increased with HFD exposure 

in the fetal mouse, which was not observed in the non-human primate model. We conclude 

that K14ac and K9me3 are both modifiable in utero in response to maternal diet.

If epigenetic modifications contribute to a molecular memory of an in utero exposure, one 

would expect that changes which occur in utero would persist postnatally. Hepatic levels of 

both H3K14ac and K9me3 were measured in 5 week old offspring. Both the 5 week old WT 

and G4+/− offspring which were exposed to a HFD in utero showed an increase in both 

modifications compared with animals on a control diet. From this we conclude that in mice, 

an in utero exposure is sufficient to contribute to a change in the hepatic epigenome at 5 

weeks of age.

Consistent with our work in primates, the Sirt1 deacetylase showed a significant decrease in 

expression in the 5 week old WT and G4+/− offspring following HFD exposure. Not only 

does Sirt1 have many reported functions in lipid metabolism and obesity 35, due to its 

dependence on NAD+, its activity is directly related to cellular energy levels. We have 

shown that Sirt1 functions as a histone deacetylase with preference for H3K14ac in vitro 16. 

Based on our collective findings, we speculate that hepatic Sirt1 is a crucial epigenomic 

modulator of fetal and juvenile histone acetylation.

Using ChIP on chip with a genome-wide promoter array we observed that H3K14ac and 

H3K9me3 are uniquely enriched within a 4 kb region surrounding the TSS and peaking 

directly at the start site (Figures 3 B+C). Although this was not surprising, this observation 

is crucial to our concluding that the increase in H3K14ac and K9me3 abundance by 
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immunoblotting is not manifested through a delocalized spreading throughout the promoter 

regions.

We wanted to determine if both H3K14ac and H3K9me3 were potentially “marking” the 

same genes for reprogramming with HFD exposure. Such genes are potentially interesting 

because the mechanism(s) responsible for differential enrichment of each modification 

similarly targets these genes. Also, genes enriched for both repressive and permissive 

modifications in utero may be poised for rapid transcriptional activation when challenged ex 

utero 14. These histone marks may be key to understanding the susceptibility of offspring 

exposed to a maternal HFD to metabolic syndrome.

A surprising finding of this study was the difference in hepatic histone modification 

localization between the HFD exposed WT and G4+/− offspring. As evidenced in Figure 3E, 

only 10% of the genes which are differentially marked by either K14ac or K9me3 are 

similar between the WT and G4+/− animals. This was unexpected as Glut4 is not 

prominently expressed in fetal liver 24, and therefore it seemed unlikely that G4+/− offspring 

would have a different hepatic epigenome-wide pattern compared with WT offspring. 

However, it is important to note that Glut4 is expressed in mouse placenta 36 and therefore 

G4+/− offspring likely had a different intrauterine milieu resulting from a haploinsufficiency 

of the GLUT4 transporter in the placenta with altered placental nutrient uptake. It is also 

interesting to note the nearly two-fold increase in genes differentially enriched for H3K14ac 

in the G4+/− fetal liver when compared with the WT offspring (Figure 3D, 2912 genes vs 

1488 genes). This may suggest that a diet x genotype interaction contributes to the observed 

phenotypic outcomes of offspring exposed to a maternal HFD. Consistent with this finding, 

we also determined that 9 transcription factor binding motifs are enriched within the G4+/− 

offspring dataset, but not that of the WT.

The promoter occupancy of four genes (Ppara, Pparg, Rora and Rxra) revealed differential 

enrichment of both modifications between control and HFD animals in both the WT and 

G4+/− groups. We hypothesize that these modifications may act as markers of in utero and 

lactation exposure, marking the genes for future transcription with continued metabolic 

stress of HFD consumption. However, we did not observe a similar pattern in the 5 week old 

animals. While we cannot conclude that the marks set in fetal life remain unaltered 

postnatally, it is important to note that the 5 week old animals were all weaned onto a low 

fat chow which they consumed for two weeks prior to sacrifice. We hypothesize that 

because both hepatic H3K14ac and H3K9me3 are both responsive to changes in the diet, the 

exposure to low fat chow may allow for a subtle altered enrichment of the modifications.

We conclude that the fetal hepatic epigenome is modified following maternal HFD exposure 

in utero and during lactation to enrich specific histone modifications in the promoters of 

genes well-characterized as key regulators of lipid overload. Whether these modifications 

contribute to the increased susceptibility of metabolic syndrome in adulthood remains to be 

determined, but this robust characterization of the fetal and postnatal epigenomic landscape 

lends crucial impetus to such studies.
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MATERIALS AND METHODS

Immunoblotting

Immunoblots were performed as previously described 1. Briefly, acid extracted histones or 

whole cell lysates were run on 18% SDS-PAGE and transferred to polvinylidene fluoride 

(PVDF). Blots were incubated overnight at 4°C in primary antibody, washed three times and 

incubated for 45 minutes at room temperature in secondary antibody. Blots were visualized 

using Chemiluminescence. Bands were quantified using the UltraQuant system, and 

normalized to unmodified histone H3. The H3K9me3 antibody was purchased from 

Millipore (07–442); the H3K14ac antibody from Millipore (07–353) and total H3 from Cell 

Signaling (9715L). The HDAC1 and 3 antibodies were from Abcam (HDAC1 #46985; 

HDAC3 #28170). For the fetal animals an n of 5 per group was utilized and for the 5 week 

old animals, an n of 4 per group.

qPCR

RNA was extracted from liver using the Machery Nagel kit (740955.250) and converted to 

cDNA using Superscript III from Illumina (#18080-044). Commercially available TaqMan 

primers and probes were used for qPCR. Analysis was performed using the DDCT 

method 2. For the fetal animals an n of 5 per group was utilized, for the 5 week old animals 

there was an n of 4 per group.

ChIP

Chromatin immunoprecipitation was performed as previously described 3. Three fetal 

animals/ group were utilized. Histone modification antibodies were the same as from the 

western blots. Before the addition of antibody, 10% of the reaction was set aside as the 

input. Before genome wide amplification, samples were tested by qPCR for proper fold 

enrichment using previously published primers 4. Samples were amplified to approximately 

7.5µg using the Sigma WGA kit (WGA-2) and submitted to the Baylor Microarray Core 

Facility for processing.

Array hybridization

Fragmentation of 7.5µg of double-stranded DNA was completed with the aid of 0.2U of 

DNase I, Amplification Grade, from Life Technologies (18068-015), producing fragment 

products 50–200bp in length. Fragment sizes were verified on the Agilent Bioanalyzer. 

Fragmentation was followed by terminal labeling with terminal deoxynucleotidyl transferase 

and the Affymetrix® proprietary DNA Labeling Reagent that is covalently linked to biotin. 

Hybridization cocktails containing Affymetrix spike-in controls and fragmented, labeled 

double-stranded DNA were loaded onto Affymetrix GeneChip® Mouse Promoter 1.0R 

arrays. The arrays were hybridized for 16 hours at 45°C with rotation at 60 rpm in the 

Affymetrix GeneChip® Hybridization Oven 640. The arrays were washed and stained with a 

streptavidin, R-phycoerythrin conjugate stain using the Affymetrix GeneChip® Fluidics 

Station 450. Signal amplification was done using biotinylated antistreptavidin. The stained 

arrays were scanned on the Affymetrix GeneChip® Scanner 3000. The images were 

analyzed and quality control metrics recorded using Affymetrix Command Console.
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Array analysis

The analysis of ChIP-chip data was performed using Partek®, Genomic Suite™, Partek Inc. 

The CEL Files were imported and normalized by default method predefined in Partek, 

which includes Robust Multiarray Average (RMA) background correction, quantile 

normalization and Log 2 transformation. The difference of each comparison group was 

found by performing ANOVA, and then the MAT (Model based analysis of tiling-array) 

algorithm 5 was used to detect regions with enriched peaks. The p-value of the region is the 

empirical p-value of the most significant MAT score included within this region. MAT score 

of the region is the maximum MAT score for this region. The threshold for MAT score is 

3.0. Enriched region with overlapping genes were annotated with Mus musculus NCBI Build 

36.

Genes overlapping with significantly enriched regions were used to estimate the occupancy 

around TSS region. The probes corresponding to each region were identified and mapped 

into a window around transcription starting site (TSS) based on correct strand orientation. 

For each probe, the fold enrichment between the immunoprecipitated (IP) sample and 

negative control was calculated; the mean enrichment is the average of all the probes.

Transcription factor binding site motif analysis

Genomic regions identified by ChIP-chip as enriched for either H3K14ac or H3K9me3 in 

comparisons between control and HFD exposed animals were analyzed for transcription 

factor binding site motif enrichment using the findMotifsGenome.pl tool within the 

Hypergeometric Optimization of Motif EnRichment (HOMER) tool suite 6.

Statistical analysis

Statistical significance for immunoblotting and qPCR was calculated using a 2-tailed t-test 

in Excel with significance being a p-value of less than 0.05. The Known Motif Enrichment 

Results at a Benjamini multiple testing correction q-value < 0.05 were identified as being 

significantly enriched.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. H3K14ac and H3K9me3 are increased in the livers of HFD exposed WT and G4+/− 

offspring
(A) WT mothers were exposed to either a control or HFD during pregnancy and lactation. 

Epigenetic changes in both WT and G4+/− offspring were characterized. (B) Immunoblotting 

with antibodies specific for each histone modification reveal that H3K14ac is significantly 

increased in the fetal liver in the WT and G4+/− offspring. (C) Similar results are seen for 

H3K9me3 in the fetal animals. (D,E) The increase in each modifiaction persists in the livers 

of 5 week old animals in both WT and G4+/− offspring. All results were normalized to total 
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histone H3. Results are displayed as fold change compared with control diet exposed 

animals. P-values < 0.05 are designated *, and < 0.005 as **.
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Figure 2. Hepatic SIRT1 levels are reduced in 5 week old animals exposed in utero to a maternal 
HFD
(A) Using qRT-PCR levels of the histone acetyltransferase Gcn5 as well as the histone 

deacetylases Hdac1, Hdac3 and Sirt1 were analyzed. No significant changes with HFD 

exposure in WT and G4+/− animals were found. (B) Gcn5, Hdac1 and Hdac3 are all 

significantly decreased in the WT but not in the G4+/− animals. Sirt1 was significantly 

decreased with HFD exposure in both groups. P-values < 0.05 are designated *, and < 0.005 

as **.
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Figure 3. Chip on chip reveals a distinct profile for H3K14ac and H3K9me3 localization
(A) This schemata shows an overview of the samples processed by ChIP for ChIP on chip 

analysis. Livers from fetal WT or G4+/− animals exposed to either a control or a HFD in 

utero were used for ChIP using either H3K14ac or H3K9me3 antibodies. Localization of 

both H3K14ac and H3K9me3 in WT (B) or G4+/− (C) animals surrounding the TSS is 

calculated using Log 2 IP/IN. (D) Partek was used to generate lists of genes with differential 

promoter occupancy between control and HFD exposed animals. In the WT animals, 

H3K14ac was differentially enriched in the promoters of 1942 genes with HFD exposure, 

and H3K9me3 n 2781 genes. There were 454 genes common to each group. In G4+/− 

animals, H3K14ac was differentially enriched in the promoters of 3667 genes, and 

H3K9me3 in 3373 genes. There were 755 genes common to each group. (E) To compare the 

overlap in genes marked by each modification in WT and G4+/−offspring a Venn Diagram 

was created. In the WT offspring, 1942 are differentially enriched with HFD exposure, in 

the G4+/− offspring 3667 genes show differential enrichment. Less than 10% (427 genes) are 

shared between the two groups. For H3K9me3, the WT offspring have 2781 and the G4+/− 

offspring have 3373 genes differentially enriched by virtue of HFD exposure. Only 566 

genes are similar between the WT and G4+/− offspring.
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Figure 4. Both H3K14ac and H3K9me3 are enriched at site specific promoters with HFD 
exposure in the fetal liver
ChIP followed by site specific qPCR was used to determine enrichment (as calculated by 

percent input) of either H3K14ac or H3K9me3 within the promoters of (A) Pparg, (B) 

Ppara (C) Rora or (D) Rxra for WT and G4+/− offspring. qRT-PCR was used to determine 

if expression of each gene was altered in either the (E) WT or (F) G4+/−offspring. P-values < 

0.05 are designated *, and < 0.005 as **.
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Figure 5. Enrichment of H3K14ac and H3K9me3 at site specific promoters in the livers of 5 
week old animals
ChIP followed by site specific qPCR was used to determine enrichment (as calculated by 

percent input) of either H3K14ac or H3K9me3 within the promoters of (A) Pparg, (B) 

Ppara (C) Rora or (D) Rxra for WT and G4+/− offspring. qPCR was used to determine if 

expression of each gene was altered in either the (E) WT or (F) G4+/− offspring. P-values < 

0.05 are designated *, and < 0.005 as **.
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Table 1

Known motifs differentially enriched by virtue of maternal high fat diet exposure

Modification Motif Name q-value

H3K14ac Gata1 0.0095

H3K14ac Gata4 0.0436

H3K14ac Gata2 0.0436

H3K14ac Myf5 0.0436

H3K9me3 E2F 0.014

H3K9me3 GFY-Staf 0.014

H3K9me3 E2F4 0.0434

H3K9me3 GFY 0.0434

H3K9me3 RUNX-AML 0.0434

HOMER was used to determine known motifs enriched within the H3K14ac and H3K9me3 datasets.

Am J Obstet Gynecol. Author manuscript; available in PMC 2015 May 01.


	2014
	In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model
	M. A. Suter
	J. Ma
	P. M. Vuguin
	K. Hartil
	A. Fiallo
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1534861821.pdf.9QaiG

