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Abstract

Introduction—A novel mega-analytical approach that reduced methodological variance was 

evaluated using a multi-site diffusion tensor imaging (DTI) fractional anisotropy (FA) data by 

comparing white matter integrity in people with schizophrenia to controls. Methodological 

variance was reduced through regression of variance captured from quality assurance (QA) and by 

using Marchenko-Pastur Principal Component Analysis (MP-PCA) denoising.

Methods—N=192 (119patients/73controls) datasets were collected at three sites equipped with 

3T MRI systems: GE MR750, GE HDx and Siemens Trio. DTI protocol included five b=0 and 60 

diffusion-sensitized gradient directions (b=1000 s/mm2). In-house DTI QA protocol data was 

acquired weekly using a uniform phantom; factor analysis was used to distil into two orthogonal 

QA factors related to: SNR and FA. They were used as site-specific covariates to perform mega-

analytic data aggregation. The effect size of patient-control differences was compared to these 

reported by the Enhancing Neuro Imaging Genetics Meta Analysis (ENIGMA) consortium before 

and after regressing QA variance. Impact of MP-PCA filtering was evaluated likewise.

Results—QA-factors explained ~3–4% variance in the whole-brain average FA values per site. 

Regression of QA factors improved the effect size of schizophrenia on whole brain average FA 

values - from Cohen’s d=0.53 to 0.57 - and improved the agreement between the regional pattern 
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of FA differences observed in this study vs. ENIGMA from r=0.54 to 0.70. Application of MP-

PCA-denoising further improved the agreement to r=0.81.

Discussion—Regression of methodological variances captured by routine QA and advanced 

denoising that led to a better agreement with a large mega-analytic study.

INTRODUCTION

Lower integrity of cerebral white matter (WM), quantified as reduced fractional anisotropy 

(FA) of water diffusion measured from diffusion tensor imaging (DTI), is a consistent 

finding in schizophrenia (Alba-Ferrara and de Erausquin 2013; Ellison-Wright and Bullmore 

2009; Friedman, et al. 2008; Glahn, et al. 2013; Kelly, et al. 2017; Kochunov and Hong 

2014; Kubicki, et al. 2007; Nazeri, et al. 2012; Perez-Iglesias, et al. 2011; Phillips, et al. 

2012; Wright, et al. 2015). FA deficits are hypothesized to be prominent in the associative 

WM fibers and responsible for neuropsychological deficits association with this disorder 

(Ellison-Wright and Bullmore 2009; Friedman, et al. 2008; Kochunov, et al. 2017; 

Kochunov, et al. 2016; Kubicki, et al. 2007; Nazeri, et al. 2012; Perez-Iglesias, et al. 2011). 

A challenge for evaluating regional WM deficits is the need for statistically powerful and 

representative samples that can be difficult to collect at a single site (Ioannidis 2014; 

Jahanshad, et al. 2013). Multi-site studies can collect larger and more representative samples 

but require pre-processing steps to address site-specific sources of methodological variance. 

The Enhancing Imaging Genetics Meta-Analysis (ENIGMA) consortium developed a multi-

site homogenization approach for DTI data to address methodological biases in multi-site 

data (Jahanshad, et al. 2013). We sought to improve upon this approach, by evaluating two 

new steps aimed at addressing site-specific variances: a) regression of the site-specific 

variance captured through routine quality assurance (QA) program and b) Marchenko-Pastur 

Principal Component Analysis (MP-PCA) based noise reduction technique aimed at 

improving signal-to-noise ratio (SNR) and reporting potential artifacts that contribute to 

spatial non-uniformities of thermal noise. We tested these approaches in the data collected 

by the multi-center collaborative Social Processes Initiative In Neurobiology of the 

Schizophrenia(s) (SPINS) study.

We assessed the impact of regressing the site-specific methodological variance and advanced 

denoising approach by comparing the effect size of schizophrenia on regional FA values to 

those published by the largest meta-analytic analysis of regional FA deficits to date 

(N=1984/2391 patients/controls, thirty independent cohorts worldwide) performed by 

ENIGMA (Kelly, et al. 2017). The average effect size for regional FA values in ENIGMA 

was reported to be Cohen’s d=~0.25 (Kelly, et al. 2017). This suggested that a sample of 

N=250 patients/250 controls is required to detect such an effect size. The SPINS sample 

(N=192) is insufficiently powerful to reliably detect these regional differences. Therefore, 

the aim was to study the changes in the agreement in the pattern of regional difference 

between the SPINS and ENIGMA results. This study was focused on FA and did not explore 

other diffusion parameters (axial, radial, and mean diffusivities); FA was selected because it 

is the most commonly studied diffusion-metric in schizophrenia research, and is the metric 

most consistently altered between schizophrenia patients and matched controls (Kelly, et al. 

2017).
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METHODS

Subjects

The study was performed in N=192 participants (average age =32.7±10.1 years), including 

n=119 schizophrenia patients (age=33.6±13.3) and n=73 controls (age=31.2±10.2) collected 

at three sites (Table 1). Each site collected both patients and controls. Data for N=84 

participants were collected at the Centre for Addiction and Mental Health, Toronto 

(CAMH); N=60 at the Maryland Psychiatric Research Center (MPRC), Baltimore; and 

N=47 at the Zucker-Hillside Hospital (ZHH), New York City. The demographic information 

is summarized in Table 1. Uniform clinical assessment and exclusion criteria were 

maintained across the three sites. The local Internal Review Boards approved the studies, 

and informed written consent was obtained from all participants. All participants had no 

current or past neurological conditions or major medical conditions. Patients were diagnosed 

with either schizophrenia or schizoaffective disorder as determined by the Structured 

Clinical Interview for DSM-IV or IV-TR (SCID). Controls had no Axis I psychiatric 

disorder as determined by the SCID. With the exception of nicotine, participants were 

excluded if they had DSM-IV substance abuse in the last 3 months or substance dependence 

within the past 6 months. Other exclusion criteria included diagnosis with uncontrolled 

hypertension, type 2 diabetes, heart disorders, or a major neurological event such as stroke 

or transient ischemic attack.

Diffusion Tensor Imaging (DTI)

Imaging data were collected using 3T MRI systems and multichannel head coils. A 

homogenized diffusion imaging protocol was developed for this study and implemented on 

each site using a consistent set of 60 gradient vectors (b=1000 s/mm2) and five b=0 volumes. 

Details of the implementation of the protocol at each site are summarized in Table 2.

Image processing

DTI data from the three sites was processed using the ENIGMA-DTI analysis pipeline 

(http://enigma.ini.usc.edu/ongoing/dti-working-group/), which includes quality control and 

assurance QC/QA steps. One deviation from ENIGMA-DTI protocol was inclusion of the 

principal component analysis (PCA) based approach for automatic removal of noise-specific 

components, developed by Veraart and colleagues (Veraart, et al. 2016a; Veraart, et al. 

2016b). The MP-PCA approach differs from traditional denoising approaches that improve 

SNR via spatial smoothing. Instead the MP-PCA approach quantifies the principal 

components that are fundamentally associated with thermal noise signal in magnitude MRI 

data. Noise contributes randomly to voxel-wise intensity values, but its contribution to the 

histogram of the eigenvalues of covariance matrix is deterministic (Veraart, et al. 2016b) and 

its eigenvalues are described by the Marchenko-Pastur (MP) distribution (Marchenko and 

Pastur 1967). The MP-PCA approach estimates the noise level and the number of significant 

signal components and regresses eigenvalues related to noise while not affecting the 

temporal or spatial domains of the data (Veraart, et al. 2016b). Quantification and regression 

of thermal noise can both enhance SNR and identify the spatial patterns of noise distribution 

within data (Veraart, et al. 2016b) (Figure S1, see supplement). The spatial distribution of 

thermal noise is independent of the underlying tissue type and therefore should have uniform 
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spatial distribution(Veraart, et al. 2016b). Spatial heterogeneity in the noise component may 

serve as an important QA parameter that provides information regarding the linearity and 

noise properties of the receiving elements of the RF coil as shown by artifacts observed in 

the data from one of the sites (Figure S1, see supplement). MP-PCA denoising was applied 

to raw DTI data using the default filter setting. Both raw and MP-PCA filtered data were 

processed using the ENIGMA-DTI pipeline.

Next, DTI data were corrected for motion and eddy current distortions using the eddy 

correction tool distributed as a part of FMRIB Software Library (FSL, “eddy_correct”) 

package (Smith, et al. 2006). FA maps were then generated by voxel-wise fitting of the local 

diffusion tensor. Next, individual FA maps were warped to an ENIGMA-DTI template and 

projected onto the ENIGMA-DTI skeleton that represents the middle of the tract of major 

white matter structures. ENIGMA-DTI per-tract average values were calculated by 

averaging values along tract regions of interest in both hemispheres. Overall average FA 

values were calculated by averaging values for the entire white matter skeleton, including 

the tract regions of interest and peripheral white matter. DTI data is sensitive to artifacts 

brought about by subject’s motion (Yendiki, et al. 2014). All data included in the analysis 

passed the ENIGMA-DTI QA/QC adopted from the report by Acheson and colleagues 

(Acheson, et al. 2017). The QA/QC steps included: visual inspection of raw and FA images, 

followed by calculating the frame-wise displacement and the average projection distance 

onto the skeleton.

DTI Quality Assurance

DTI QA was performed one to two times per week following each scanner reboot. The 

details of the QA protocol are discussed elsewhere (Chavez, et al. 2017). In short, the 

spherical (d=17.5 cm) agar-gel filled BIRN phantom (Biomedical Informatics Research 

Network) was used. The phantoms were stored in the scanner rooms to ensure temperature 

consistency. The QA protocol parameters matched imaging parameters used by the site. QA 

data were processed by a centralized automated QA pipeline (https://github.com/

josephdviviano/qa-dti) (Chavez, et al. 2017). The average signal-to-noise ratio (SNR) 

measurements for b=0 and b=1000 s/mm2 images and the average and standard deviation of 

the fractional anisotropy (FA) measurements showed trending correlations with whole-brain 

FA values in subjects. We included these measurements as potential explanatory variables 

for site-specific methodological variance.

The QA sessions were matched-in-time to the human imaging session. For each site we 

chose the closest QA session to the human imaging session (average time interval = 2.5 

± 1.1 days). Factor analysis was performed on the QA measures to distill orthogonal 

measurements of scanner stability. Factor analysis used principal components analysis 

(PCA) to extract linear composites of correlated variables with eigenvalues > 1. MP-PCA 

yielded eigenvalues describing the amount of variance among variables explained by a 

factor. A varimax rotation was used to remove collinearity (e.g., to orthogonalize individual 

eigenvectors). The factor analysis yielded factor loadings (correlations between a variable 

and a factor) and factor scores (a standardized score on each factor).
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We compared the effect of the regression of the site-specific QA factor scores by comparing 

effect sizes observed in this study to these published by the ENIGMA-schizophrenia 

working group in the largest DTI study of patient-control differences in this disorder 

(www.enigma-viewer.org) (Kelly, et al. 2017). Specifically, we compared the regional FA 

differences observed here with ENIGMA’s patient-control effect sizes across white matter 

regions in the brain (Table 5). The SPINS data were collected past the deadline for the 

submission to ENIGMA project and therefore can be treated as an independent replication 

sample. The results provide a definitive and independent assessment of white matter regions 

most vulnerable to schizophrenia.

Mega-Analysis

The ENIGMA-DTI mega-analysis algorithm was used to combine the data into a single 

population following regression of nuisance covariates and data homogenization. The goal 

of this analysis was to investigate the impact of the regression of QA-related variance on the 

overall effect size of schizophrenia on the whole-brain average and regional FA values. The 

ENIGMA-DTI mega-analysis uses two normalization steps: regression of covariates, per 

cohort, followed by the per-cohort inverse Gaussian normalization of data (Kochunov, et al. 

2014). This produced the mega-analytic sample to quantify the significance of the global and 

regional differences in the FA values and calculating effect size (Cohen’s d). Four analyses 

were conducted: the first used the standard per-site covariates ( age, sex, age2, age×sex, 

age2×sex), followed by the standard and QA covariates (FA and SNR factors), followed by 

denoising and the standard covariates and the final analysis combined denoising with the 

standard and QA covariates.

RESULTS

Extraction of QA factors

Temporal stability plots for the factorized and raw QA measures are provided in supplement 

(Figure S2 and S3). Overall, all three system demonstrated a good stability (variance < 5%) 

across the 60 week period of data collection. Factor analysis in the SNR b=0, SNR b=1000, 

average FA and standard deviation FA measures produced two orthogonal factors that 

explained 94%, 92% and 97% of total variance in QA scores for the CAMH, MPRC and 

ZHH sites respectively (Table 3). The pattern of factor loading was similar for all three sites 

- with SNR and FA measurements loading on separate factors (Table 3).

Stability of QA factors

The scatter plot of QA factors over the week of scanning demonstrates that MPRC and ZHH 

sites experienced significant (p<0.01) linear changes in QA factors with time on one or both 

factors (Figure S2). The MPRC site showed significant increase in both SNR and QA factors 

(r=0.37 and 0.51, p<0.02). The ZHH site showed significant increase in SNR factor (r=0.71, 

p<0.001).

Correlation between QA factors and average FA values

The two orthogonal QA factors explained ~8.6% of the individual variance in the whole-

brain FA values and this was significant for the MPRC site (11% variance explained, 
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p=0.047) with the correlation coefficients shown in Table 4. Only the FA factor showed 

consistent negative correlation with FA values at all three sites (r=−0.22, −0.06 and −0.24).

Effect of diagnosis before and after regression of QA factors

Patients showed lower average FA values than controls in each of three samples, after 

regression of age and sex effects (Figure 1, Table 5). This difference was only significant for 

MPRC and ZHH sites (Cohen’s d=0.82 and 0.60, p=0.003 and 0.047 for MPRC and ZHH, 

respectively). The patient-control difference for CAMH sample were not significant 

(Cohen’s d=0.25, p=0.23).

The pattern of regional d-values for each site was plotted versus effect sizes published by 

ENIGMA (Figure 1, Table 5). The correlation with ENIGMA pattern approached 

significance for MPRC sample (r=0.46, p=0.05). At CAMH and ZHH this correlation was 

not significant (r=0.0.5 and r=0.29, p>0.1).

Following inclusion of the QA factors Cohen’s d values for CAMH improved from d=0.25 

to d=0.31 but remained non-significant (p=0.16). The effect sizes for MPRC and ZHH were 

unchanged (Cohen’s d= 0.78 and 0.62, p=0.004 and 0.048 for MPRC and ZHH, 

respectively). The correlation coefficients between per-site effect size and ENIGMA were 

improved (Figure 1). Changes were observed for all three sites: CAMH (r=0.05 to 0.25), 

MPRC (r=0.46 to 0.57) and ZHH (r=0.29 to 0.59). The correlation for both MPRC and ZHH 

became significant (p=~0.01). The correlation for CAMH remained non-significant 

(p=0.13).

Effect of diagnosis after MP-PCA-denoising and regression of QA factors

PCA denoising led to improvements in the effect size for whole-brain FA average for MPRC 

and ZHH sites (Cohen’s d= 0.85 and 0.78, p=0.002 and 0.020 for MPRC and ZHH, 

respectively). The patient-control difference for CAMH sample remained non-significant 

(Cohen’s d=0.22, p=0.25). Inclusion of QA factors did not cause a significant change 

(p>0.5) in effect size for MPRC and ZHH sites (Cohen’s d= 0.86 and 0.76, p=0.002 and 

0.020 for MPRC and ZHH, respectively).

The patterns of regional effect differences for each site were plotted versus effect sizes 

published by ENIGMA (Figure 1, Table 5). The MP-PCA denoising improved correlation 

with ENIGMA pattern (r=0.17, 0.50 and 0.41 for CAMH, MPRC and ZHH) this correlation.

Mega-analyses: effect of diagnosis before and after MP-PCA denoising and inclusion of 
QA factors

The mega-analyses of schizophrenia-related FA difference while accounting for age and sex 

demonstrated significantly reduced global FA values in patients compared to controls 

(Cohen’s d=0.55, p=0.0006). MP-PCA denoising led to a slight increase in the effect size 

and significance (Cohen’s d=0.57, p=0.0002).

Regional pattern of mega-analytical patient-control FA difference was significantly 

correlated with that reported by the ENIGMA schizophrenia analysis (r=0.54, p=0.02) 

(Figure 2). MP-PCA denoising improved this correlation (r=0.64, p=0.004). Inclusion of QA 
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factors in the regression of site-specific parameters slightly improved the patient control 

difference for global FA values (r=0.70, p=0.001). The best agreement was observed 

following MP-PCA and regression of QA factors (r=0.81, p=0.0001) (Figure 2, Table 5).

DISCUSSION

Many neuroimaging studies, such as the Social Processes Initiative in Neurobiology of 

Schizophrenia(s) (SPINS), use a multi-site design to collect statistically powerful datasets 

across diverse sites, MRI scanners, or platforms. DTI places a heavy demand on the stability 

of the MRI hardware; we therefore proposed a quantitative DTI QA protocol and data 

analysis to capture potential methodological variances (Chavez, et al. 2017). Quantitative 

metrics measured by this approach are sensitive to small drifts in hardware performance that 

do not produce detectable image artifacts (Chavez, et al. 2017; Wang, et al. 2011). We show 

that regression of this variance improves consistency of effect sizes across sites and makes 

the overall findings more agreeable with the findings of larger studies. In parallel, we show 

that a novel denoising technique that removes thermal noise from DTI images helps to 

improve the agreement of biological signal. Combining these two approaches produced the 

best outcome in terms of agreement between SPINS findings and those published in the 

largest cohort to date.

The two QA factors loaded on the SNR of the diffusion images and the average and standard 

deviation of FA values in the phantom. Longitudinal changes in SNR measurements may 

signify variability in the transmit/receive RF system, such as variance in the coil elements/

pre-amplifiers/amplifiers and other system instabilities. In a noise-free, uniform agar-gel 

phantom, water is expected to diffuse freely in all directions, leading to zero average FA 

values (Friedman, et al. 2006a; Friedman, et al. 2006b). The measurement of FA from an 

agar-gel phantom simultaneously captures the effect of noise, gradient instability, and 

gradient nonlinearity, as suggested by Wang and colleagues (Chavez, et al. 2017; Wang, et 

al. 2011).

Plots of factorized QA metrics over the two-year period of data collection showed that all 

three sites demonstrated good stability (<5% variance) (Chavez, et al. 2017). However, the 

time-related trends of factorized QA metrics differed across sites. The SNR factor showed 

significant negative correlation with time for CAMH and a positive correlation for MPRC 

and ZHH (Figure 1). The FA factor showed significant positive correlation with time for 

MPRC and no changes for two other sites. Such deviations are expected for a multisite 

study, as system performances for different vendors/models are rarely consistent across sites 

or time.

Inclusion of the methodological variance captured from QA into the data analysis improved 

the agreement between the effect sizes among global and regional effect values observed in 

SPINS sample and those published by ENIGMA. Two orthogonal QA factors explained 

between 7.5 and 11.5% of the intersubject variance per site. Both QA factors contributed to 

explaining methodological variances observed in human FA values; the effect of removal of 

this variance was site-specific and led to both higher and lower effect sizes. For instance, for 

all three sites, higher average FA values in the FBIRN phantom were associated with lower 
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FA values in human subjects scanned the same week. Such an erroneous variance may both 

increase and decrease the observed effect sizes per site. The non-zero average FA values in 

the phantom is the consequence of mismatches between the recorded gradient direction/b-

value and these executed by the gradient system (Wang, et al. 2011). Deviations between the 

expected and the executed gradients, as well contamination by noise may cause both reduced 

and increased voxel-wise FA values in human participants by introducing fit error into the 

DTI model.

PCA denoising further improved agreement. DTI is an SNR-limited technique but increasing 

SNR with longer scan time can lead to a diminishing return due to subject motion and other 

physiological artifacts (Hansen, et al. 2013; Hansen, et al. 2016; Poot, et al. 2010; Veraart, et 

al. 2016b). Spatial smoothing such as Gaussian kernel filtering are not appropriate for 

improving SNR in DTI as spatial averaging of the signal from nearby voxels may interfere 

with the fitting of the diffusion tensor model (Molloy, et al. 2014; Triantafyllou, et al. 2006). 

Instead, advanced denoising techniques can improve SNR characteristics and fidelity of 

DTI-derived parameters by taking advantage of the spatial and temporal redundancy of the 

data. We used a MP-PCA-based denoising technique to reduce signal fluctuations rooted in 

thermal noise and hence increase the SNR without altering the spatial resolution (Figure S2). 

The thermal noise-selective nature is based on data redundancy in the MP-PCA domain 

using universal properties of the eigenspectrum of random covariance matrices (Veraart, et 

al. 2016b). The MP-PCA-denoising brought the biggest improvements in the SNR-limited 

ZHH data that was collected with an older MRI scanner (Figure S1). It also revealed 

regional inhomogeneity of the noise structure in that dataset, which may be used as an 

important characteristic for future QA design. On the other hand, MP-PCA denoising only 

showed minor changes in the MPRC dataset that was collected with the newest MRI scanner 

and a 32-channel coil (Figure S2). The changes in CAMH dataset were intermediate.

In summary, regression of site-specific QA factors and application of MP-PCA-based 

denoising produced improved correlation between regional patterns of FA deficits observed 

in SPINS subjects and these published by the largest-to-date meta-analysis study 

(N=1,984/2,391 patients/controls). The observed improvements were modest but showed the 

outcomes of the SPINS study now more faithfully approximate the expected results. Our 

experiment demonstrates the importance of well-powered samples in solving the problems 

of reproducibility in biomedical research. We used ENIGMA regional effect sizes as the 

“gold standard” to study the impact of data homogenization steps. The effect of diagnosis on 

FA values varied among the three sites due to differences in sample and methodological 

variance. The ZHH and MPRC samples showed higher effect sizes than ENIGMA, while 

CAMH sample showed only modest effect size. The mega-analytic aggregation with 

regression of methodological and noise-related variances improved the agreement between 

SPINS and ENIGMA findings. The SPINS sample was insufficiently powerful to detect 

regional findings and regression of methodological variance reduced significance of some of 

the regional effects despite providing a better agreement with ENIGMA. Therefore, the 

comparison with ENIGMA was used to show that smaller samples can achieve the expected 

patter of effect without achieving statistical significance.
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Future directions should focus on quantifying regional site-specific QA variance. Present 

assessment was aimed at overall quantification of the site-specific variance. The spatial maps 

of the noise derived from the MP-PCA approach indicated that methodological variance was 

regionally variable presumably due to non-linearity in RF-receiving elements of the coil or 

reconstruction algorithms or other scanner hardware or software related problems. Our 

observations should stimulate development of QA phantoms that approximate both the 

geometry of a typical human head and the non-anisotropy of human white matter for 

deriving regional QA indices.

CONCLUSION

Regressing methodological variances captured via a DTI-specific QA program and reducing 

signal variances using an advanced denoising approach made the outcomes of a relatively 

smaller multi-center study more reproducible as judged by comparison with the largest 

meta-analyses to date.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation between regional effects of diagnosis (Cohen’s d-values) for each of the three 

sites versus ENIGMA effect sizes plotted after regression of age and sex, QA-factors and 

MP-PCA denoising.

Kochunov et al. Page 12

Hum Brain Mapp. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Comparison of regional mega-analytic effect sizes following inclusion of the QA factors and 

MP-PCA denoising.
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