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a b s t r a c t

Background: The association between coronary artery disease (CAD) and diabetes mellitus (DM) is strong
but the physiologic mechanisms responsible for this association remain unclear. Patients with DM exhibit
high circulating levels of glycated proteins and lipoproteins called advanced glycation end products
(AGEs) which have been implicated in the development of oxidative damage to vascular endothelium.
We examined the relationships between the presence and extent of CAD and AGEs in patients under-
going elective coronary artery catheterization in an urban teaching hospital.
Methods: Patients with possible CAD (n ¼ 364) were recruited prior to elective cardiac catheterization
(52% male, 48% diabetic). Regression and correlation analyses were used to examine the relationship
between serum AGE concentrations, soluble AGE receptor (sRAGE) concentration, HbA1c, LDL and the
presence of obstructive CAD along with the burden of CAD measured by SYNTAX and SYNTAX II scores.
Results: AGE and sRAGE levels did not significantly correlate with any of the studied coronary artery
disease parameters. HbA1c showed positive correlation with both SYNTAX and SYNTAX II scores in pa-
tients with and without diabetes.
Conclusion: In this cross-sectional study of patients with possible CAD, serum AGEs and sRAGE con-
centrations did not correlate with SYNTAX or SYNTAX II scores regardless of diabetic status. HbA1C
correlated positively with the SYNTAX and SYNTAX II scores in both diabetic and non-diabetic
populations.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

While it is understood that diabetes mellitus (DM) increases the
risk of coronary artery disease (CAD), it is unclear whether hyper-
glycemia leads to the excessive CAD risk in the diabetic population.

Landmark diabetes trials such as the ACCORD, ADVANCE and Vet-
erans’ Affairs have shown that intensive glycemic control does not
reduce cardiovascular events compared to standard therapy [1e3].
Yet other large trials have shown that patients with type 2 diabetes
benefited from more intensive therapy, with a significant risk
reduction for myocardial infarction and death [4]. Furthermore, in
the diabetic population, hemoglobin A1c (HbA1c) may be a pre-
dictor of CAD [5,6].

Advanced glycation end-products (AGEs) are a heterogeneous
class of glycated proteins and lipoproteins. The accumulation of
AGEs, such as methylglyoxal, glyoxal, carboxymethyl-lysine (CML),
pentosidine, glucosepane, fructoselyine and their serum soluble
receptor for AGE (sRAGE) has been implicated in a variety of

Abbreviations: AGEs, advanced glycation end products; CAD, coronary artery
disease; CML- N(6), carboxymethyl-lysine; DM, diabetes mellitus; HbA1c, hemo-
globin A1c; LDL, low density lipoprotein; MACCE, Major adverse cardiovascular
and/or cerebrovascular events; sRAGE, soluble AGE receptor.
* Corresponding author. Lenox Hill Hospital, 110 East 59th St, Suite 3B, New York,

NY, 10021, USA.
E-mail address: lporetsky@northwell.edu (L. Poretsky).
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pathologies including CAD, chronic kidney disease and Alzheimer’s
disease. AGE levels have been correlated with increased arterial
stiffness, vascular calcifications, and the development of athero-
sclerosis [7e10]. Furthermore, an elevated AGE level has been
independently associated with cardiovascular morbidity and mor-
tality in the diabetic population [11,12]. Several studies have found
that circulating levels of a variety of AGEs (including glycated al-
bumin, pentosidine, CML, and sRAGE) independently predict the
presence and/or severity of CAD [13e16].

Though previous studies have demonstrated a correlation be-
tween AGE levels and CAD, the AGEs measured differed in each
study and the overall numbers of subjects in each study were small.
It therefore remains unclear if circulating levels of AGEs or their
soluble receptor (sRAGE) can be used as a tool to risk stratify pa-
tients in the diabetic or non-diabetic populations for CAD. We
sought to assess if serum levels of AGEs or their receptors may be
useful for predicting the presence or severity of CAD in patients
with and without diabetes mellitus suspected of having CAD.
Furthermore, we analyzed the relationship between additional
serum markers (including HbA1c and LDL levels) and the presence
of CAD in both diabetic and non-diabetic patients with possible
CAD.

2. Materials and methods

Study Population: The study procedures received full approval
from the Institutional Review Board at our institution. All subjects
provided written informed consent to participate in this study.
Enrollment procedures are summarized in Fig. 1. Three hundred
sixty four patients ages 40e80 years old with no prior history of
CAD who presented to our institution for diagnostic cardiac cath-
eterization for suspected CAD were enrolled. All subjects under-
went an invasive coronary angiogram and had serum levels of AGEs
(Pentosidine, N(6)-carboxymethyl-lysine) and soluble receptor
sRAGE analyzed by ELISA protein quantification.

Inclusion Criteria: Patients between the ages of 40e80 years old
with no known history of obstructive coronary artery disease pre-
senting for elective cardiac catheterization.

Exclusion Criteria: Active or recent infections (last one month),
anti-inflammatory medications (NSAIDs) or corticosteroid treat-
ment (in the last 4 weeks), cardiomyopathy/heart failure, hema-
tological disorders (including severe anemia and hemolytic
disorders), history of coronary artery bypass grafting, angioplasty
or stenting, acute coronary syndrome, history of myocardial
infarction, history of connective tissue disorders, history of previ-
ous major trauma or surgery (within 3 months), impaired renal
function (creatinine >1.3 mg/dL), known cancer, liver dysfunction,
or pregnancy.

Advanced glycation end-products: All patients were required to
fast at least 8 h prior to obtaining blood samples for measurement
of AGE levels. SerumAGE and sRAGE levels weremeasured by ELISA
using commercially available kits following manufacturer’s pro-
tocols. Information about the ELISA kits used and sensitivity of the
assays is as follows: Human CML (G-Biosciences, Cat. # IT4530,
sensitivity <9.4 ng/mL), Human Pentosidine (Biotang, Inc., Cat. #
HU9354, sensitivity <15 pg/mL), Human RAGE (R&D Systems, Cat.
# SRG00, sensitivity 1.23e16.14 pg/mL).

Coronary Angiography: Coronary angiography was performed
through the radial artery or femoral artery by an experienced
interventional cardiologist. Obstructive CAD was defined as a
reduction of 50% or more in the luminal diameter of one or more
major epicardial coronary artery branches. One interventional
cardiologist blindly interpreted each angiogram. The severity of
CAD was determined by the SYNTAX score [17]. Patients with
nonobstructive or normal coronary arteries were given a score of 0.
For all patients with obstructive CAD (SYNTAX score >0), the
mortality risk associated with undergoing percutaneous coronary
intervention or coronary artery bypass grafting was determined by
calculating the SYNTAX Score II [18].

Fig. 1. Patient selection.
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2.1. Statistical analyses

Descriptive statistics (n, mean, median, standard deviation, IQR,
frequencies and percentages) were used to describe the de-
mographic and clinical characteristics of the entire sample, as well
as the DM and non-DM groups. Univariable logistic regression
models were used to examine the association between obstructive
CAD and pentosidine, CML, LDL, HbA1c, sRAGE. The Spearman
correlation coefficient was used to determine the strength of a
monotonic relationship between each proposed factor and the
SYNTAX score as well as SYNTAX Score II. Subgroup analyses were
conducted for patients with and without diabetes. A result was
considered statistically significant at the p < 0.05 level of signifi-
cance. P-values and confidence intervals were not adjusted for
multiple testing. All analyses were performed using SAS version 9.4
(SAS Institute, Cary, NC).

3. Results

3.1. Baseline characteristics

The clinical characteristics of the patients enrolled in this study
are displayed in Table 1. Male subjects comprised 52% of the study
population. Diabetes was present in 48% of the subjects, and 22%
were insulin-treated. The majority of patients had hyperlipidemia
(80%) and were on statin therapy (72%). There were few active
smokers (13%).

3.2. Correlations of serum AGEs, sRAGE and HbA1c levels with CAD

Within the DM subgroup, 60% had obstructive CAD, while
within the non-DM subgroup, 47% had obstructive CAD. Our study
did not find any significant association between the presence of
obstructive CAD (SYNTAX score > 0) and pentosidine (p ¼ 0.15),
CML (p ¼ 0.75) or sRAGE (p ¼ 0.36) levels (Supplementary Material
1). Furthermore, there was no statistically significant relationship
between CAD burden (as measured by the SYNTAX score) or CAD
mortality risk (as measured by SYNTAX Score II) and AGE levels
(Fig. 2, Table 2). There was however, a statistically significant pos-
itive relationship between serum HbA1c levels and presence of
obstructive CAD (p < 0.0001) among all patients (Fig. 3, Table 2).
Specifically, each unit increase in HbA1c was associated with a 68%
increase in the odds of having obstructive CAD (OR ¼ 1.68, 95%CI:
1.36e2.09). A significant positive relationship was found in both
the non-diabetic and diabetic patient subgroups (non-DM:
OR ¼ 1.88, 95%CI: 1.05e3.37, p ¼ 0.03; DM: OR ¼ 1.83, 95%CI:

1.33e2.52, p ¼ 0.0002). This relationship was also found in sub-
group analyses for non-diabetic and diabetic patients when
spearman correlation was examined (non-DM: rS ¼ 0.18, p ¼ 0.01;
DM: rS ¼ 0.29, p ¼ 0.001) (Fig. 4). There was also a positive rela-
tionship between HbA1c and SYNTAX Score II (rS¼ 0.25; p < 0.0001,
and rS ¼ 0.21; p < 0.0001 for SYNTAX II PCI and SYNTAX II CABG
respectively) (Table 3).

3.3. Correlation between serum AGEs, sRAGE, HbA1c levels, and lipid
profile

sRAGE levels were negatively correlated with those of pentosi-
dine (rS ¼ �0.14, p ¼ 0.01), positively with those of CML (rS ¼ 0.14,
p ¼ 0.01), and negatively with those of HbA1c (rS ¼ �0.11, p ¼ 0.04)
(Supplementary Material 2). LDL levels did not correlate with
pentosidine, CML, sRAGE, or HbA1c (Table 4).

4. Discussion

We found that in 364 patients presenting for elective cardiac
catheterization, AGE levels did not significantly correlate with the
presence or burden of CAD. There was a positive correlation of
HbA1c with the both the presence of CAD and the severity of CAD,
as quantified by the SYNTAX score. In patients with obstructive
CAD, HbA1c also correlated with SYNTAX Score II, a mortality
prediction metric that incorporates anatomical and clinical char-
acteristics to guide decision making between coronary artery
bypass grafting (CABG) or percutaneous coronary intervention
(PCI).

Our results contrast with some previous studies which suggest
that AGE levels are associated with CAD [13,14,16,19e24]. To our
knowledge however, we present the largest cross-sectional study
conducted thus far. There are significant differences in the study
populations and methodology between previously published
studies and the current study. Some previous studies reported
differences in levels of AGEs in subjects with CAD in patients with
DM, but not in those without DM [13,14,20], while other studies
have suggested an association between AGEs and the risk of CAD in
populations without DM [19,21]. It remains unclear to what extent
increased HbA1C, above the level considered for a diagnosis of DM,
impacts AGE levels. In our study, the population with DM had
achieved excellent glycemic control, with an average HbA1C of
7.01%. Kiuchi et al. [13], presented data that demonstrated
increased AGEs in patients with DM and CAD, however their study
population had poor DM control with an average HbA1C of 8.5%
and included a high percentage of smokers. Previously published

Table 1
Patient characteristics by DM status.

Variable All patients Non-DM patients DM patients P-value

N ¼ 364 (%) N ¼ 190 (%) N ¼ 174 (%)

Age, years (mean ± SD) 65.33 ± 10.51 64.56 ± 10.45 66.18 ± 10.57 0.1441
Body Mass Index (mean ± SD) 29.6 ± 6.7 29.4 ± 4.9 30.6 ± 6.8 0.2651
Gender, male 187 (51.52) 102 (53.68) 85 (49.13) 0.3862
Hyperlipidemia 290 (79.89) 134 (70.53) 156 (90.17) <.0001
Hypertension 313 (86.23) 153 (80.53) 160 (92.49) 0.0010
Current smoker 49 (13.50) 19 (10.00) 30 (17.34) 0.0409
Use of Statin 262 (72.18) 117 (61.58) 145 (83.82) <0.001
LDL (mean ± SD) (mg/dL) 86 (31) 90 (29) 82 (33) 0.01
HbA1c (mean ± SD) (%) 6.23 (1.29) 5.51 (0.54) 7.01 (1.41) <0.0001
Pentosidine (mean ± SD) (pg/mL) 665 (522) 625 (524) 709 (515) 0.14
CML (mean ± SD) (ng/mL) 847 (110) 851 (113) 843 (105) 0.51
sRAGE (mean ± SD) (pg/mL) 1395 (897) 1407 (849) 1381 (945) 0.79
HDL (mean ± SD) 55.46 (17.31) 59 (18) 52 (16) <0.0001

Data are expressed as mean ± standard deviation or number of patients (percentage). SD ¼ standard deviation.
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studies identified an association between increased CML levels and
CAD [21,22] however these studies examined populations with
notable differences. For example, Semba et al. examined a popu-
lation restricted to women over age 65, with significant disabilities
and co-morbidities [22].

Differences in methodology may also account for the discrepant
findings. Some previous studies did not specify the AGEs under
investigation, reporting instead combined levels of a heteroge-
neous group of AGE molecules. Additional variability in the results

may be attributed to differences in methods used to measure AGE
levels. Multiple studies [16,24] reported that increased levels of
pentosidine as measured by mass spectometry are associated with
CAD, a finding our study failed to replicate when measuring pen-
tosidine by ELISA. In addition to differences in population ethnicity,
the current study evaluated the degree of coronary disease using
SYNTAX score, in contrast to an older scoring system, the Gensini
score, used by Kerkini et al. [16].

Elevated levels of serum sRAGE have been reported in patients

Fig. 2. Relationship of Advanced Glycation End-Products and Coronary Artery Disease. (A) No significant correlation of pentosidine levels and SYNTAX score. A penalized B-spline
curve was used to fit the data points. (B) No significant correlation of CML levels and SYNTAX score. A penalized B-spline curve was used to fit the data points. (C) No significant
correlation of sRAGE levels and SYNTAX score. A penalized B-spline curve was used to fit the data points.

C. Basman et al. / Metabolism Open 7 (2020) 1000504



with diabetes and renal disease, while decreased levels have been
associated with other chronic diseases including CAD, hyperten-
sion, heart failure, and hyperlipidemia. It has been hypothesized
that the observed increase in sRAGE levels in patients with diabetes
is a by-product of increased matrix metalloproteinase production
(as a downstream effect of increased AGEs) leading to increased
cleavage of sRAGE from the cell surface [20,25,26]. It may be diffi-
cult therefore to establish an association between sRAGE levels in
patients with both DM and CAD.

We found that higher HbA1c levels do not only predict the
presence of CAD, but also the severity of CAD (as measured by the
SYNTAX scores). HbA1c is known to be an independent predictor for
the severity of CAD. It has been suggested that high-normal glucose
and HbA1c level in patients without diabetes are associated with a
higher risk of CAD [5,6]. Studies have also shown that in the pa-
tients with diabetes, HbA1c is an independent risk factor for CAD
[5,27]. There is also evidence that HbA1c is a reliable tool for
identifying patients at risk for cardiovascular events, including
patients with no previous diabetes diagnosis [15]. Several studies
have demonstrated that an elevated HbA1c level is associated with
poor outcomes in patients presenting with acute coronary syn-
drome [28,29].

Our study found that in patients with obstructive CAD, HbA1c
levels correlated positivelywith the SYNTAX Score II, a risk score for
revascularization with both PCI and CABG. The SYNTAX Score II
includes the SYNTAX score and seven other clinical variables (age,
creatinine clearance, left ventricular ejection fraction (LVEF), pres-
ence of unprotected left main coronary artery disease, peripheral
vascular disease, female sex, and chronic obstructive pulmonary
disease) [18]. Though the presence of diabetes is not included in the
SYNTAX Score II, HbA1c levels correlated positively with both the
SYNTAX II CABG score and SYNTAX II PCI score in our study.

Our data add to the hypothesis that HbA1c is associated with
atherosclerotic changes and imply that HbA1c can be used to further
risk stratify patients with possible CAD. However, it is not clear
whether the relationship between HgA1c and CAD is entirely
dependent on glycemic control. Genetic evidence supports a link
between elevated HbA1c and a higher risk of CAD that is not only

driven by glycemia, but also by glycemia-independent factors
[30,31]. As a long half-life protein, HbA1c may be involved in a
chronic inflammatory response resulting in accelerated
atherosclerosis.

Low-density lipoprotein (LDL) plays a significant role in the
progression of atherosclerosis, and decades of research have
demonstrated that lowering LDL reduces the risk of future cardio-
vascular events [32,33]. While the positive correlation between LDL
levels and risk of major acute cardiovascular events has been
demonstrated in several large meta-analyses, there is little evi-
dence suggesting that higher LDL level predicts obstructive CAD
[34,35]. In perhaps the largest meta-analysis, including almost
170,000 individuals, treatment with a statin was associated with a
22% proportional reduction in the risk of major cardiovascular
events per millimole per litre reduction in LDL-C over a median of 5
years of treatment [36]. However, studies regarding LDL lowering
medications in asymptomatic patients have not examined baseline
angiograms to evaluate for the presence of obstructive CAD prior to
study enrollment. Because there is a paucity of evidence that LDL is
predictive of obstructive CAD, some investigators hypothesize that
increased LDL is harmful because it is associated with a pro-
inflammatory state, and not because it leads to a higher degree of
obstructive CAD. Our study’s subject number is too small to support
this hypothesis and is also confounded by the proportion of pa-
tients on LDL lowering medications. In our study, LDL levels were
significantly lower in patients with diabetes compared to patients
without diabetes (mean LDL¼ 81.9 vs. 90.1, respectively; p¼ 0.005)
probably reflecting a more aggressive treatment of hyperlipidemia
in patients with diabetes. While LDL levels may help predict future
cardiac events, they may not predict baseline obstructive CAD.

Our study shows that at the time of cardiac catheterization, the
AGE levels which we examined do not predict the presence or
burden of CAD. A study looking at different AGEs (including LDL-
AGE and glycated albumin) might yield different results. In
particular, recent studies have found that glycated albumin is su-
perior to HbA1c in assessing glycemic control [37]. It would there-
fore be interesting to see if future studies find glycated albumin
levels to be predictive of CAD.

Fig. 2. (continued).
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Table 2
Correlation of AGE levels and HbA1C with SYNTAX Score and SYNTAX II Score.

Variable Spearman Correlation Coefficients

P-value

SYNTAX score SYNTAX score II PCI SYNTAX score II CABG

Pentosidine (n ¼ 342) 0.08 0.05 0.05
0.14 0.38 0.34

CML (n ¼ 341) 0.00 0.06 0.07
0.96 0.30 0.22

sRAGE (n ¼ 338) 0.01 0.05 0.05
0.80 0.41 0.34

HbA1C (n ¼ 364) 0.26 0.28 0.21
<0.001 <0.001 <0.001

Fig. 3. Relationship of HbA1c and SYNTAX score. (A)- A positive correlation between HbA1c and the SYNTAX score (p < 0.0001, r ¼ 0.26). A penalized B-spline curve was used to fit
the data points.(B)- Patients with nonobstructive or normal coronary arteries have a lower HbA1c than patients with obstructive CAD (p < 0.0001).

C. Basman et al. / Metabolism Open 7 (2020) 1000506



Fig. 4. HbA1c and SYNTAX score in diabetic and non-diabetic subjects. (a)- Plot of SYNTAX score vs HbA1c in diabetic subjects demonstrates a positive correlation (p ¼ 0.001,
r ¼ 0.29). A penalized B-spline curve was used to fit the data points. (b)- Plot of SYNTAX score vs HbA1c in non-diabetic subjects demonstrates a positive correlation (p ¼ 0.01,
r ¼ 0.18). A penalized B-spline curve was used to fit the data points.

Table 3
Potential predictors of obstructive CAD.

Variable All patients Non-DM DM

N ¼ 364 N ¼ 190 N ¼ 174

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Pentosidine 1.03 (0.99, 1.07)a 0.1539 1.05 (0.99, 1.11)a 0.0930 1.00 (0.94, 1.06)a 0.8751
CML 1.00 (0.98, 1.02)b 0.7464 1.01 (0.98, 1.04)b 0.4265 1.00 (0.97, 1.03)b 0.7685
sRAGE 1.03 (0.99, 1.04)a 0.3594 1.03 (0.99, 1.07)a 0.1108 1.00 (0.96, 1.03)a 0.8446
LDL 1.00 (0.99, 1.01) 0.8814 1.00 (0.99, 1.01) 0.5658 1.00 (0.99, 1.01) 0.9195
HbA1c 1.68 (1.36, 2.09) <0.0001 1.88 (1.05, 3.37) 0.0335 1.83 (1.33, 2.52) 0.0002

OR: Odds ratio, CI: Confidence interval.
a Odds ratio for a 100-unit increase in pentosidine/sRAGE level.
b Odds ratio for a 10-unit increase in CML level.

C. Basman et al. / Metabolism Open 7 (2020) 100050 7



We analyzed only two of themany AGEs alongwith their soluble
receptor. It is important to note that circulating AGE levels do not
sufficiently reflect the AGE levels stored in the body’s tissues [38].
Circulating concentrations of AGEs fluctuate over time and are
affected by their renal and hepatic clearance [39]. To minimize this
limitation, we excluded patients with renal and hepatic dysfunc-
tion, though inherent variations in function may lead to some
discrepancies in the measured AGE levels. Furthermore, diet and
medications can affect AGE and sRAGE levels [40,41]. For instance,
treatment with statins has been associated with a reduction in AGE
accumulation and an increase in sRAGE [42].

5. Conclusion

In patients with CAD undergoing elective cardiac catheteriza-
tion, circulating pentosidine, CML, and sRAGE levels do not corre-
late with the presence of obstructive CAD or the SYNTAX score and
SYNTAX score II regardless of diabetic status. Instead, the presence
of CAD and the SYNTAX scores correlate positively with HbA1c in
individuals with and without diabetes.
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