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Abstract

One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line therapy 

often targets the dominant clone, and drug resistance can emerge from preexisting clones that gain 

fitness through therapy-induced natural selection. Such mutations may be identified using targeted 

sequencing assays by analysis of noise in high-depth data. Here, we develop a comprehensive, 

unbiased model for sequencing error background. We find that noise in sufficiently deep DNA 

sequencing data can be approximated by aggregating negative binomial distributions. Mutations 

with frequencies above noise may have prognostic value. We evaluate our model with simulated 

exponentially expanded populations as well as data from cell line and patient sample dilution 

experiments, demonstrating its utility in prognosticating tumor progression. Our results may have 

the potential to identify significant mutations that can cause recurrence. These results are relevant 

in the pre-treatment clinical setting to determine appropriate therapy and prepare for potential 

recurrence pretreatment.
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1 Introduction

Every extant organism is the result of over three billion years of evolution. Complex 

organisms consist of cells whose functions are regulated by a large number of interconnected 

pathways that ensure cellular, tissue, and organ homeostasis. Cancer is a result of the 

breakdown of this process in a single cell, which results in its unregulated growth. In most 

cases, the immune system is able to detect and eliminate such aberrant cells. Sometimes, 

however, a clone escapes this surveillance and manifests as clinically detectable disease 

[47]. Consequently, most clinically diagnosable tumors are clonal, i.e. they grow clonally 

from a single cell that finds a path to circumvent the body’s defense mechanisms. The 

growing tumor accumulates mutations, most of which have low or no fitness and therefore 

are found at low frequencies, outcompeted by the dominant clone [30].

The clonal expansion process, which underlies genomic diversification within a tumor, was 

first studied by Salvador Luria and Max Delbrück. They designed a simple system of single-

cell organisms to investigate patterns of mutation accumulation. Their rigorous quantitative 

methodology led them to discover that mutations arise randomly and their numbers follow a 

distinct probability distribution [28]. As the cell population in the tumor diversifies, it is able 

to explore the fitness landscape. Studying the dynamics of this genomic heterogeneity can 

yield insight into when the clonal expansion started, how fast the population evolved, and 

whether specific genomic alterations were selected in a particular host or under a treatment 

regimen.

The principal biochemical mechanisms in cancer are often recurrent across tumors in 

different tissues. For example, aberrations leading to unregulated cell growth or inactivation 

of the apoptotic pathway (cell suicide) are common to almost all tumors. Given the limits 

within which cells are regulated, the growing tumor has access to only a finite number of 

pathways that it can alter. As a result, tumors arising from different cells of origin often 

harbor identical genetic mutations, which alter the same pathways, and often have similar 

prognostic consequences [5].

First line therapy drugs target a tumor’s dominant, fastest growing clone. Drug resistance 

often emerges from the rise of preexisting clones that harbor potential driver mutations that 

gain evolutionary fitness via therapy-induced natural selection. It has been shown that the 

presence of drug-resistant sub-clones in the primary tumor prior to therapy may be a strong 

predictor of poor survival, with direct implications for disease management [41,51,44,35]. 

As cancer therapy moves towards individualized treatment, it is important to identify and 

understand the role of such mutations, some of which may have prognostic value. Such 

potentially prognostic mutations are commonly identified using targeted deep sequencing of 

the tumor DNA in clinical settings, and their sensitive detection relies on the accurate 

analysis of background noise, specifically DNA sequencing errors.

Studying the evolution of chronic lymphocytic leukemia (CLL) under therapy is an 

illuminating example of these approaches [23,24]. CLL is the most common leukemia in 

adults and its clinical course ranges from asymptomatic disease that never requires therapy 

to rapidly progressive disease that requires intensive treatment. Genomic alterations in CLL 
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follow a time ordered process [52]. Patients who harbor genomic defects in the TP53 gene, 

which regulates many pathways including the cell suicide or apoptotic pathway, are 

considered at high risk of failing conventional therapies [42]. Such patients are good 

candidates for stem cell transplant or new gene-specific therapeutics [46,2]. The presence of 

such secondary mutations in genes such as TP53 is often assessed using traditional Sanger 

sequencing that only provides sufficient power to detect mutations present in at least 20% of 

leukemia cells [39]. To assess the presence of TP53 prognostic mutations at lower 

abundances in newly diagnosed CLL patients, we used deep sequencing and evaluated 

thousands of leukemia cells and identified small TP53 mutations that were missed by 

traditional methods such as Sanger sequencing [41]. We found that TP53 mutated sub-clones 

identified before treatment became the predominant population at the time of CLL relapse, 

as a result of therapy induced selection pressure. These results suggest that tumors harboring 

small TP53 mutations have the same clinical phenotype and risk of failing therapy as those 

with TP53 defects in the dominant clone [41,34], and their early detection is essential for the 

identification and management of high-risk CLL patients [12].

These results are also pertinent to other hematological malignancies where the presence of 

leukemia-associated mutations in remission is associated with significantly increased risk of 

relapse and poor survival [38,44]. These data lead to the conclusion that it is imperative to 

identify alterations that induce therapeutic resistance in leukemia patients in the early stages 

of disease in order to properly guide individualized therapy with the goal of preventing 

disease relapse. However, the detection of mutations at low allele frequencies (e.g., 1 

mutation in 10,000 cells) is hindered by the lack of a precise model of noise in diagnostic 

sequencing assays.

Targeted sequencing is the most commonly used method to track prognostic markers in both 

clinical and basic research applications [10]. However, finding such mutations in sequencing 

reads is often confounded by misreading a base in the sequencing instrument or mis-

incorporation of DNA bases (nucleotides) during library enrichment by polymerase chain 

reaction (PCR) amplification cycles. More accurate sequencing protocols, which perform 

overlapping reads of the same genomic DNA region, allows the merging of such reads for 

improved accuracy. This facilitates correcting errors accumulated in the sequencer, while 

leaving uncorrected PCR errors that arise during library preparation steps [4,53,17].

The challenge in identifying potentially functional sub-dominant mutations is to determine 

the sensitivity thresholds of sequencing platforms, i.e. the depths above which PCR errors 

happen with a probability below a statistical cut-off. Such thresholds can be estimated by 

hypothesizing that all variants are due to errors and using deviations from this null 

hypothesis to indicate the presence of true variants. This can sometimes be confounded by 

the fact that different sequencing errors occur at different rates [6,3,11], as the mechanism of 

nucleotide misincorporations during PCR amplification by polymerase molecules is the 

same is the rise of spontaneous mutations that drive Darwinian variation. Hence a single 

threshold cannot comprehensively test the significance of all variants. As a result, more 

sophisticated statistical modeling of the background error distribution is necessary.
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To model background error one may use different types of error distributions: (i) a single or 

a linear combination of Luria-Delbrück distributions, characterizing the expected number of 

spontaneous nucleotide misincorporations, when PCR error rate is assumed to be constant 

[20]; (ii) the negative binomial distribution, describing the depth distribution of clones after 

PCR amplification through a Poisson-Gamma mixture model [36]; and iii) the beta-binomial 

distribution, suitable for Bayesian models, where error rates are assumed to follow the Beta 

distribution [25].

The Luria-Delbrück distribution, which has been demonstrated to accurately describe 

mutagenesis by bacterial polymerases using high-depth error-corrected sequencing [17], is 

expected to better model the long tail of the error depths. However, empirical analysis has 

shown that the negative binomial distribution gives the best fit to the observed error depths 

based on goodness-of-fit log-likelihood [41]. The beta-binomial distribution, in conjunction 

with multiple filtering criteria based on normal control DNA samples, has also been 

proposed for somatic mutation detection from cancer genomes [27,8,43,9]. Finally, 

empirical Bayes methods that establish prior distributions based on observations in the data 

have also been used for detection and genotyping variants and comparing allele frequencies 

across different samples for both tumor and viral populations [33,48,21,14].

In this manuscript, we revisit this problem and provide a comprehensive model that 

illustrates how aggregate negative binomial distributions describe PCR error depths in ultra-

deep targeted sequencing. We test our model with in silico as well as cell line and patient 

dilution experiments, and propose a highly sensitive, mutation-specific approach to detect 

true mutations, without the need for control data from un-mutated (wild type) normal tissue 

DNA.

2 Methods

Derivation of the error depth distribution

Here, we will only be discussing the distribution of low frequency errors in deep DNA 

sequencing analysis of tumor samples. Let us assume an experiment in which S independent 

tissue samples are subjected to ultra-deep sequencing. DNA sequencing of tumor samples 

produces strings of nucleotides (A, C, G, and T) of 100–200 base-pair length that correspond 

to the DNA sequences of different sections of the genome in the tumor sample. These 

sequences of DNA reads are mapped to a “reference” genome and deviations/mismatches 

are identified as potential mutations. Ideally, the reference sequence is the sequence from the 

patient’s “germ-line”, usually obtained from blood or some other tissue with normal cells. 

The sequencing read depth is the average number of reads that map to the same locus 

(section of the genome). At a nucleotide, three potential single base substitutions can occur: 

A (adenine) → C, G, T, or C (cytosine) → A, G, T, or G (guanine) → A, C, T, or T 

(thymine) → A, C, G. Alternately, there might be an insertion (addition of one or more A, 

C, G, T nucleotides) or a deletion (loss of A, C, G, T nucleotides). All of these will 

henceforth be referred to as variants. We want to derive the posterior probability distribution 

for these variants, assuming they are stochastic, i.e. they represent noise (statistical random 

errors).

Rabadan et al. Page 4

J Stat Phys. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Suppose that, at a genomic DNA locus, we see ni such variant reads amongst Ni total reads. 

The distribution of ni follows a binomial distribution, Bino(ni|Ni, θ), where θ is the a priori 

probability of a variant’s occurrence. Let M = ∑i ≠ j
S Ni be the total number of reads across 

samples at that locus and m = ∑i ≠ j
S ni be the total number of variant (erroneous) reads 

across samples at that DNA locus. Then, the posterior predictive p value for having detected 

a true mutation in sample j, given S – 1 other samples, can be obtained from the posterior 

probability distribution:

P(n j ∣ N j, {ni, Ni}) = ∫0
1

Bino(n j ∣ N j, θ) ∏
i ≠ j

Bino(ni ∣ Ni, θ)

∫ 0
1 ∏

i ≠ j
Bino(ni ∣ Ni, θ′)dθ′

dθ′

=
N j
n j

× ∫0
1 θ

n j + m
(1 − θ)

N j − n j + M − m

∫ 0
1θm(1 − θ)M − mdθ

dθ

=
N j
n j

×
Beta(1 + n j + m, 1 + N j − n j + M − m)

Beta(1 + m, 1 + M − m) ,

where Beta indicates the Beta function. Simplifying the algebra yields the beta-binomial 

distribution,

P(n j ∣ N j, m, M) = 1 + M
1 + N j + M

N j

n j

M
m

N j + M

n j + m

. (1)

Variations of equation (1) have been previously derived for sequencing depths > 100× 

[8,43,9]. Today, it is possible to do ultra-deep sequencing, where Ni > 5,000×. In such cases, 

for low frequency variants, we can assume that ni ≪ Ni. Therefore, we can use Stirling’s 

approximation, and estimate 
Ni
ni

≈
Ni

ni

ni!
. Equation (1) can then be approximated by

P(n j ∣ N j, m, M) =
n j + m

n j
(

N j
N j + M )

n j
( M
N j + M )

m + 1
, (2)
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which equals NB(n j ∣ 1 + m,
N j

N j + M ), with NB indicating the negative binomial distribution, 

and where 1 + m and 
N j

N j + M  are its two parameters, which we can interpret as the number of 

detected errors and the a priori probability of success in detecting an error, respectively.

Exponential expansions at varying error rates

An exponentially expanded population is generated through c PCR amplification cycles, 

where each cycle doubles the DNA population. If errors accumulate independently at a rate 

of μ substitutions per site per cycle, the average error depth (i.e. the average number of reads 

harboring errors) is 2cμ. For S such populations, the error depth distribution is described by 

equation (1), or is approximated by a negative binomial distribution, NB(1 + (S − 1)2cμ, 1
S ), as 

derived above in equation (2).

It is well known that different types of PCR errors occur at different rates. For example, 

transitions, that exchange two-ring purines (A and G) or one-ring pyrimidines (C and T) are 

more common than transversions, which replace an A or G with one of C or T. Assuming R 
independent rates, the observed number of variants with error depth v, D(v), is given by,

D(v) = ∑
r = 1

R
XrP(v ∣ 2c, (S − 1)2cμr, (S − 1)2c)

≈ ∑
r = 1

R
XrNB(v ∣ 1 + (S − 1)2cμr,

1
S ),

(3)

where Xr represents the number of variants that occur with rate μr. Since error rates are often 

unknown and sequence context dependent, we can alternatively bin the variants based on 

their average error depth across samples and write D(v) as

D(v) = ∑
b = 1

B
XbP(v ∣ 〈N〉, (S − 1)〈v〉b, (S − 1)〈N〉)

≈ ∑
b = 1

B
XbNB(v ∣ 1 + (S − 1)〈v〉b, 1

S ),

(4)

where B is the number of bins, Xb is the number of variants in each bin, and 〈N〉 is the 

average sequencing depth across S samples. It has been shown that the sum of negative 

binomial distributions with equal success probabilities is also a negative binomial 

distribution, though with a random parameter [7, 50]. Thus, the approximation of D(v) in 

equations (3) and (4) with sums of negative binomial distributions that have success 

probability of 1
S , suggests empirical observations [41].
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The MATLAB implementation for simulating exponentially expanding populations as well 

as calculating cumulative P using equations (1) and (2) are available at software.khiabanian-

lab.org.

3 Data

In the first experiment, a series of dilutions was generated using the SU-DHL-6 cell line 

(Diffuse Large B-Cell Lymphoma), which carries a heterozygous (one allele altered)TP53-

Y234C missense mutation (one that changes an amino acid in a protein sequence) [32]. The 

cells were serially diluted at (1:10, 1:102, 1:103, 5:104, 1:104, 5:105, and 1:105) by mixing 

the cell line DNA with TP53 wild-type genomic DNA from a healthy donor. The TP53 
mutation locus was sequenced at depths of 10,000× (10K×), 100,000× (100K×), and 

1,000,000× (1M×) [29].

In the second experiment, samples from undiluted cancer cells from a CLL patient, 

harboring a heterozygous SF3B1-K700E missense transition substitution were analyzed. A 

diluted sample (1:103) was also generated by mixing this patient’s CLL DNA with wild-type 

genomic DNA from a healthy donor. The mutated SF3B1 locus in these samples, in addition 

to un-mutated genomic DNA from 18 healthy, volunteered individuals were sequenced at a 

mean depth of 620,000×.

For both experiments, each cell line dilution and patient sample was bar-coded and targeted 

with amplicon multiplexed sequencing using the Illumina MiSeq (2 × 150 bp) (Genewiz, 

South Plainfield, NJ). The number of raw sequence reads per samples depended on the 

utilized instrument. With sufficient DNA (in the form of PCR products or un-amplified 

genomic DNA), Illumina MiSeq could produce eight million paired-end 150 bp reads [15]. 

The primers were designed so that the paired-end reads substantially overlapped with each 

other and each read pair was merged to correct sequencing errors. The merged reads were 

mapped to the human reference genome (hg19) using the Burrows-Wheeler Aligner (BWA) 

alignment tool [26], and all variable sites were identified using an inclusive variant caller 

[11]. Raw sequence data are available at the Sequence Read Archive under Bio Project 

PRJNA421179.

4 Results

Simulated data

We generated a set of in silico experiments with exponentially expanded populations starting 

from a single, homogenous, 100 base-long sequence of binary bases. Each population was 

aggregated from four expansions that followed error rates of 10−3, 10−4, 10−5, and 10−6 

substitutions per site per cycle. The number 12, 14, and 18 of cycles were chosen to produce 

populations with 16,384, 65,536 and 1,048,576 total reads respectively. Each experiment 

contained 50 independent populations (S = 50) and for each experiment, D(v), the expected 

number of variants with depth v was calculated using equations (3). This experiment was 

repeated 100 times. Figure 1 shows the results, as well as statistically significant χ2 p values 

indicating high accuracy of the estimates from both the beta-binomial model and its NB 

approximation.

Rabadan et al. Page 7

J Stat Phys. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dilution experiments

We removed the real diluted TP53 mutation from cell line sequencing data, and arranged the 

erroneous variants based on their depth in 5×-sized bins. We then counted the number of 

variants Xb in each bin, and calculated D(v) using equation (4). Figures 2, 3, and 4 show the 

results for sequencing depths of 10K×, 100K×, and 1M×, indicating statistically significant 

χ2 p values that show a strong concordance between estimates from the beta-binomial 

model, its NB approximation, and ultra-deep sequencing data. Distinguishing transitions and 

transversions further clarified the importance of classifying variants using sequencing depth 

as a proxy for the error rates. We obtain similar results from modeling the ultra-deep 

sequencing data from the SF3B1 locus (Figure 5).

Detecting true mutations

We propose two comprehensive approaches to assess the presence of true mutations at very 

low abundance relative to background. Our methodology does not require matched normal 

samples or extensive filtering based on variant annotation resources.

First, having established an accurate model to describe the sequencing error distribution, a 

threshold is determined above which sequencing errors happen with a probability below an 

established statistical cut-off. These thresholds can be derived from all variants or a subset of 

variants, for example, only transitions or transversions. Figure 6 shows such thresholds for 

detecting the TP53-Y234C transition mutation in dilution experiments, where we are able to 

identify the mutation in abundances as low as 5:104 at 10K× and 100K×, and 1:104 at 1M×, 

without any false positive calls. As shown in Figures 2, 3, and 4, there is better sensitivity for 

detecting a transversion substitution.

In the absence of matched normal samples, this approach is especially practical for 

identifying mutations that may exist in more than one tumor sample. Its application to 309 

newly diagnosed CLL patients identified small sub-clonal prognostic mutations in four 

frequently mutated drivers of this neoplasm, present in 2 out of 1,000 wild-type alleles. 

These mutations were missed by traditional Sanger sequencing, but were validated by 

independent deep sequencing and allele-specific PCR [41,40].

Second, we tested an individual mutation in each sample against all other sequenced samples 

and calculated the cumulative P using equation (1). After correcting for multiple hypotheses 

using the Benjamini and Hochberg method [1], we generated a list of variants that satisfied a 

pre-determined false discovery rate. This approach is particularly powerful in identifying 

patient-specific mutations. We assess the presence of the SF3B1-K700E mutation in patient 

samples, and find the probability of observing the mutation in 1:103 CLL dilution to be 

extremely significant compared to controls (Table 1). This approach can accurately identify 

sample-specific mutations by comparing multiple samples at the same exact mutated base.

In comparison of our method to other published variant calling algorithms, one comparable 

unbiased method is EBCall, whose implementation is based on beta-binomial distributions 

and establishing priors from normal sequencing data [43]. EBCall requires normal samples; 

therefore, we removed the reads harboring the diluted mutations in the EBCall analysis to 

simulate matched normal data. EBCall, with a sensitivity-adjusted configuration, 
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successfully identified the SF3B1-K700E mutation in 1:103 CLL dilution sample, as well as 

the TP53-Y234C mutation in the least diluted samples at all sequencing depths (i.e. 1:10 in 

10K×, 1:102 in 100K×, and 1:103 in 1M×). However, it failed to detect the mutation at 

higher dilution levels, and also resulted in four false positive calls at 1M×.

5 Conclusion

Therapeutic resistance, one of the main causes of eventual disease relapse and mortality in 

cancer patients, is often associated with natural selection of preexisting resistant clones 

under treatment [13,41]. The detection of such low frequency sub-clones is hindered by a 

lack of precision-tested diagnostic assays.

Allele-specific, real-time PCR assays have been proposed to identify prognostic variants 

[31,18,49]. These approaches only target known mutations, and their adaptation to situations 

with large numbers of variants requires extensive primer calibration. In contrast, high-

throughput sequencing provides an unbiased view of tumor heterogeneity and its genomic 

profile. Various techniques based on unique molecular identifiers have been proposed to 

correct both polymerase and sequencing errors [22,19,17,37] that facilitate distinguishing 

real mutations from mistakes that arise during amplification. However, the main hurdle in 

clinical utilization of these approached is the requirement for generating very large numbers 

of sequencing reads to assemble the genome of a single DNA molecule with high confidence 

at depth > 2,000×.

Here, we addressed this important problem in cancer therapy by introducing a highly 

sensitive method to model sequencing noise, which allows the detection of prognostic 

markers of disease recurrence using ultra-deep targeted sequencing. Our approach is based 

on interrogating data from multiple tumor samples at identical genomic regions and provides 

an accurate assessment of the error rate at a given position without relying on normal 

samples. Instead of establishing a fixed detection threshold for all variants, we directly 

calculate mutation-specific sensitivities. Overall, since ultra-deep sequencing methods are 

now routinely implemented in the clinic, we believe that the application of our 

comprehensive model to tumor samples will increase the speed with which patients can be 

evaluated during disease surveillance. Our method opens up the possibility of exploring the 

dynamics of cancer clones after treatment, timing the rise of resistance to therapy, and 

determining the clinical importance of minimal residual disease assessed from liquid biopsy 

samples for precise disease management [16,45].
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Fig. 1. 
Number of variants with error depth of v from aggregated simulated cycles of PCR 

amplification at four error rates: 12 cycles (left), 14 cycles (middle), and 18 cycles (right). 

Ptheo. and NBtheo. are calculated using equation (3), and Pemp. and NBemp. are calculates 

using equation (4). The χ2 test was used to compare the distributions.
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Fig. 2. 
Error depth distribution in ultra-deep sequencing of a TP53 locus at 10,000× for all variants 

(left), transitions (middle), and transversions (right).
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Fig. 3. 
Error depth distribution in ultra-deep sequencing of a TP53 locus at 100,000× for all variants 

(left), transitions (middle), and transversions (right).
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Fig. 4. 
Error depth distribution in ultra-deep sequencing of a TP53 locus at 1,000,000× for all 

variants (left), transitions (middle), and transversions (right).
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Fig. 5. 
Error depth distribution in ultra-deep sequencing of a SF3B1 locus at mean 620,000× for all 

variants (left), transitions (middle), and transversions (right).

Rabadan et al. Page 18

J Stat Phys. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Sensitivity of detecting TP53-Y234C mutation dilutions. Assessing the presence of a variant 

requires correcting for multiple hypotheses based on the number of sequenced genomic 

positions (Bonferroni correction). Testing the presence of a discovered variant does not 

require such a correction; here, significance is set at 0.01.
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