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Abstract

Malnutrition in utero (IU) could alter pancreatic development. Reported here are the effects of 

high fat diet (HFD) during pregnancy on fetal growth and pancreatic morphology in an “At Risk” 

animal model of metabolic disease, the glucose transporter 4 heterozygous mouse (G4+/−).

Wild type (WT) female mice mated with G4+/− males were fed HFD or control (CD) diet for 2 

weeks prior to mating and throughout pregnancy. At embryonic day18.5 fetuses were sacrificed 

and pancreata isolated for analysis of morphology and expression of genes involved in insulin-cell 

development, proliferation, apoptosis, glucose transport and function.

Compared to WT CD, WT HFD fetal pancreata had a 2.4 fold increase in the number of glucagon 

cells (p=0.023). HFD also increased glucagon cell size by 18% in WT pancreata compared to WT 

CD. Compared to WT CD, G4+/− CD had an increased number of insulin cells, and decreased 

insulin and glucagon cell size. Compared to G4+/− CD, G4+/− HFD fetuses had increased 

pancreatic gene expression of Igf2, a mitogen and inhibitor of apoptosis. Expression of genes 

involved in proliferation, apoptosis, glucose transport and insulin secretion were not altered in WT 

HFD compared with G4+/− HFD pancreata.

In contrast to WT HFD pancreata, HFD exposure did not alter pancreatic islet morphology in 

fetuses with GLUT4 haploinsufficiency; this may be mediated in part by increased Igf2 
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expression. Thus, interactions between IU diet and fetal genetics may play a critical role in the 

developmental origins of health and disease.
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high fat diet; pancreas; fetus; programming; glucagon cells

Introduction

Metabolic Syndrome (MetS) is a cluster of risk factors including obesity, dyslipidemia, 

insulin resistance and hypertension. MetS increases the risk for type 2 diabetes mellitus 

(T2D) which is characterized by peripheral insulin resistance and insulin cell dysfunction 

(Grundy, et al. 2004).

In Western Societies, fat and carbohydrate-dense foods have become increasingly abundant 

and easily accessible (Cordain, et al. 2005) contributing to the increased prevalence of MetS 

in adults in the United States (Mozumdar and Liguori 2011). Increased globalization, 

associated with a nutritional transition towards Western diets, is thought to be a contributing 

factor to the increasing prevalence of obesity and T2D globally (Popkin 2006)). In addition 

to poor diet and genetics, evidence suggests that an altered intrauterine environment (IU) 

plays a key role in the development of MetS (Vuguin, et al. 2013) and that interactions 

between the IU environment and lifestyle can increase risk of MetS and T2D in people who 

are genetically susceptible (Hu 2011).

Poor nutrition during pregnancy impacts fetal growth and development particularly that of 

the endocrine pancreas (Snoeck, et al. 1990; Vuguin, et al. 2013). Specifically, alterations in 

the IU environment caused by a low calorie, low protein or a high fat diet (HFD) affects the 

function of the endocrine pancreas by altering islet size, islet vascularization, number of 

insulin-cells (INS), insulin content, function, and parasympathetic innervation (Cerf, et al. 

2005; Dahri, et al. 1991; Ford, et al. 2009; Garofano, et al. 1997; Ng, et al. 2010; Rodriguez-

Trejo, et al. 2012; Vogt, et al. 2014). In addition, it has been suggested that HFD during fetal 

development induced glucagon-cell (GLU) hypertrophy and hyperplasia, resulting in an 

increase in GLU-cell number and volume in the neonatal offspring (Cerf et al. 2005).

These findings could be partially explained by altered expression of growth factors, such as 

insulin like growth factors (Igfs) and regulatory proteins involved in endocrine cell 

differentiation, such as the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) 

(Chen, et al. 2012; Park, et al. 2008). Specifically, HFD exposure during development 

reduced Pdx1 immunoreactivity in a rodent model suggesting that Pdx1 is susceptible to IU 

environment (Cerf, et al. 2009).

The insulin growth factor (Igf) system, an important metabolic and mitogenic factor, is the 

major regulator of fetal growth and development. Igf2 mRNA is highly expressed in islet 

cells and some ductal epithelial cells in late fetal life (Hill, et al. 1999) and co-localizes with 

INS- and GLU-cells in human fetal pancreas (Portela-Gomes and Hoog 2000). Igf2 is 

mitogenic for INS cells (Calderari, et al. 2007; Hill et al. 1999), and inhibits INS cell 
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apoptosis (Cornu, et al. 2009; Hill et al. 1999; Raile, et al. 2003). Fetal expression of Igf2 

has been shown to be increased by a HFD IU (Zhang, et al. 2009), suggesting that changes 

in Igf2 expression, in response to the altered IU environment, may play a role in the 

programming of the endocrine pancreas.

To develop T2D, pancreatic dysfunction has to be accompanied by a state of peripheral 

insulin resistance. Peripheral insulin resistance can be defined as a reduction in the ability of 

target tissues such as skeletal muscle, white adipose tissue and heart to respond to insulin. 

One response of insulin resistance is a reduction in insulin stimulated glucose uptake, 

mediated via the glucose transporter 4 (GLUT4) (Bryant, et al. 2002; Zierath, et al. 1996). In 

animal models, GLUT4 haploinsufficiency (G4+/−) results in peripheral insulin resistance 

and T2D (Charron and Kahn 1990; Li, et al. 2000; Rossetti, et al. 1997; Stenbit, et al. 1997). 

In addition, as G4+/− mice age, they develop islet cell hyperplasia due to an increase in INS 

cell number (Brissova, et al. 2005)

Studies have demonstrated that GLUT4 mRNA and GLUT4 protein is expressed in the GLU 

and INS cells of mouse, rat and human endocrine pancreas (Bahr, et al. 2012; Kobayashi, et 

al. 2004). GLUT4 expression in pancreatic endocrine cells seems to be regulated by glucose 

and insulin (Bahr et al. 2012). Specifically, in GLU cells, high glucose levels decrease and 

high insulin levels increase GLUT4 expression. In contrast, the opposite occurs in INS cells. 

In addition, pancreatic GLUT4 expression is elevated in T2D patients and decreased in 

animal models of type 1 diabetes suggesting that alterations in GLUT4 expression in the 

endocrine pancreas may play a role in the regulation of pancreatic cell function during 

disease states (Bahr et al. 2012).

While effects of maternal nutrition on INS cell development and function have been 

extensively studied, very few studies have examined the effects of HFD IU on GLU cell 

development and function (Cerf et al. 2005). We have previously demonstrated that 

exposure to a HFD IU and during lactation leads to development of MetS in G4+/− and WT 

offspring (Hartil, et al. 2009; Vuguin et al. 2013). Although both animal models developed 

features of metabolic disease, genotype-dependent differences were observed. Specifically, 

HFD IU WT fetuses have significantly higher glucose levels compared to HFD IU G4+/− 

fetuses. We hypothesize that GLUT4 haploinsufficiency protects the pancreatic endocrine 

cell function from the effects of HFD thus protecting the G4+/− fetus from becoming 

hyperglycemic.

The animal model used in this study provides a unique opportunity to study the influence of 

genotype and diet on fetal pancreatic islet development (Vuguin et al. 2013). The results of 

this study suggest that the interaction between a HFD with genotype during gestation 

‘programs’ the fetus for increased susceptibility to T2D in part by altering pancreatic islet 

cell composition leading to an impaired ability to optimize glucose homeostasis.

Materials and Methods

Animal protocols were approved by the Institute for Animal Care and Use Committee at the 

Albert Einstein College of Medicine. As previously described (Hartil et al. 2009), age and 
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body weight (BW) matched female WT mice (CD1 background) were maintained on control 

PicoLab® Mouse Diet #5058 (CD: 9% fat as soybean oil and animal fat, 20% protein, 53% 

carbohydrate, 3.59 kcal/g), or switched to high fat Bio-Serv Product #F3282 (HFD: 35.5% 

fat as lard, 20% protein, 36.3% carbohydrate, 5.29 kcal/g) 2 weeks prior to mating and 

throughout pregnancy (IU). Females were bred to non-littermate G4+/− males. Pregnancy 

was determined by the detection of a copulatory plug and defined as embryonic day (e) 0.5. 

Pregnant mice were sacrificed on e18.5.

A total of 196 fetuses were euthanized by immediate decapitation following dissection from 

the uterine horn. Fifty-six fetuses were exposed to CD and 140 were exposed to HFD IU. 

This cohort was produced from a total of 4 WT females exposed to CD and 11 WT females 

exposed to HFD. The number of fetuses per litter and fetus weight were recorded at 

sacrifice. The numbers of abnormal and dead pups were also noted. Genotyping and sex 

determination of fetuses were performed as previously described (Hartil et al. 2009; Vuguin 

et al. 2013).

Tissue processing for immunostaining

These techniques have been previously described (Kedees, et al. 2007; Vuguin, et al. 2006). 

Embryos were placed in ice cold PBS and decapitated. The dorsal pancreas was removed by 

dissection and fixed overnight by immersion in a fixative solution of 4% paraformadehyde 

in 0.1 M phosphate buffer. Fixed tissues were infiltrated in 30% sucrose and mounted in 

embedding matrix (Lipshaw Co. Pittsburgh, PA). Cryosections (10–20 micron) were 

mounted onto glass slides coated with a solution of 1% gelatin containing 0.05% chromium 

potassium sulfate.

Immunoflourescence

As previously described (Kedees et al. 2007; Vuguin et al. 2006), sections were incubated 

sequentially in empirically derived optimal dilutions of control serum or primary antibody 

overnight at 4°C and with a 1:200 dilution of the secondary antibody (in 0.01M PBS). After 

completion of the staining procedure, sections were covered with 2–3 drops of Vectashield 

Solution (Vector Labs, Inc., Burlingame, CA) (Vuguin et al. 2006).

Source of Antibodies

Guinea pig anti-bovine INS antibodies were purchased from Linco Research, Inc. (Eureka, 

MO). Rabbit anti-human GLU was purchased from Calbiochem, Inc. (San Diego, CA). 

Anti-rabbit GLUT2 sera was purchased from Chemicon, Inc. (Temecula, CA). Rabbit 

antiserum to Pdx1 was a generous gift from C.V.E. Wright (Vanderbilt University, 

Nashville, TN). Antibodies were used at the following dilutions: anti-insulin (INS) at 1:400, 

anti-glucagon (GLU) (1:4,000), anti-Pdx-1 (1:5,000), and anti-GLUT2 (1:1,000). Secondary 

antibodies: Alexafluor 488 anti-mouse, anti-rat and anti-rabbit IgG, Alexafluor 594 anti-

guinea pig, anti-rabbit and anti-mouse IgG were purchased from Molecular Probes, Inc. 

(Eugene, OR).
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Confocal Microscopy

Confocal images were obtained using a Radiance 2000 confocal microscope (BioRad, Inc., 

Hercules, CA) attached to a Zeiss Axioskop microscope (Carl Zeiss, Inc.). Images of 540 X 

540 pixels were obtained and processed using Adobe Photoshop 6.0 (Adobe Systems, 

Mountain View, CA) (Vuguin et al. 2006).

Morphometric Analysis

The number of islets, size of individual endocrine cells, and cell number ratio for cells 

expressing insulin (INS) and glucagon (GLU) were calculated as previously described 

(Kedees et al. 2007; Vuguin et al. 2006). Consecutive 10 to 20 μm sections were obtained 

from each pancreas (n=4–8 per fetal genotype/diet from at least 4 litters/diet) Number of 

slides examined: 12 to 15 sections/pancreas/genotype/diet were examined at 200–300μm 

apart. Sections were projected on the screen of a video monitor and cell counting and area 

measurements were made using the National Institute of Health Image J software (http://

rsb.info.nih.gov/ij/).

Definitions of Parameters Measured

Total Endocrine Area (μm2/mm2)—Total endocrine area was defined as the sum of INS 

and GLU expressing areas normalized to the total pancreatic area.

INS and GLU Expressing Areas (μm2)—INS and GLU expressing areas were 

calculated as the product of the cell number by the cell size for either INS or GLU 

expressing cells.

Total Pancreatic Area (mm2)—Total pancreatic area was determined by manually 

defining the perimeter of the exocrine and endocrine pancreatic tissue in each section 

examined.

Islet Number (#islets/mm2)—Islet number was defined as aggregates of at least 5 INS or 

GLU expressing cells (Garofano, et al. 2000). The islet numbers were normalized to total 

pancreatic area.

INS and GLU cell number (#cells/mm2)—The relative number of INS and GLU cells 

per islet was determined by the point sampling method and normalized to total pancreatic 

area in each section as previously described (Garofano et al. 2000). At least 5000 points 

were scored in 30 islets/genotype/diet.

INS: GLU cell ratio—INS:GLU cell ratio was determined by dividing the total number of 

INS expressing cells by the total number of GLU expressing cells.

INS and GLU cell size (μm2)—The area of individual INS or GLU expressing cells was 

determined by manually defining the perimeter of the cells immunostained by either INS or 

GLU. More than 50 cells/pancreas/genotype/diet from multiple litters were measured and 

averaged.
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RNA Isolation and Quantitative Real-time PCR Analysis

Total RNA was prepared from fetal pancreata, liver (GLUT 4 expression negative control), 

gastrocnemius and adipose tissue (GLUT 4 expression positive controls) (n=6–10 diet/

genotype, n=4–8 litters) as previously described (Hartil et al. 2009; Vuguin et al. 2013). The 

RNA was checked for DNA contamination, using PCR with control primers as described 

previously (Ouhilal, et al. 2012).

Quantitative real-time PCR (qRT-PCR) was the method of choice to determine the 

expression of genes of interest (Ouhilal et al. 2012). Four commonly used housekeeping 

genes, ubiquitin, β-actin, hypoxanthine guanine ribotransferase, and Cyclophilin B were 

used for normalization, as described previously (Ouhilal et al. 2012). For quantitative 

analysis, all samples were normalized to the genes described above using the ΔΔCT value 

method. Each sample was measured in triplicate to assess technical variability (Ouhilal et al. 

2012).

Data Analysis

Data are expressed as the mean ± SEM. Statistical analyses were performed using JMP IN 

5.1 software (SAS Institute, Cary, NC). ANOVA was used to test the difference between the 

means of two (t-test) or more groups. Significance was defined as p< 0.05.

Results

Our previous studies demonstrated that maternal exposure to HFD decreased fetal body 

weight at e18.5 and increased blood glucose levels without altering plasma insulin levels 

(Hartil et al. 2009; Vuguin et al. 2013). Consistent with those studies, HFD IU decreased 

fetal growth by 10% independent of fetal genotype (Table 1). To determine whether HFD 

exposure affected pancreatic morphology or islet cell composition, we examined e18.5 WT 

and G4+/− pancreata. No significant differences were seen between the groups when 

analyzed based on fetal sex with regards to pancreatic morphology or gene expression.

Pancreatic Morphology

Total endocrine area (the sum of INS and GLU expressing areas normalized to the total 

pancreatic area) was increased almost two-fold in WT HFD fetal pancreata (Table 1) 

compared to WT CD (p=0.0015). In contrast, there was no statistical difference in total 

endocrine area in G4+/− HFD compared to G4+/− CD fetal pancreata. Despite a two-fold 

increase in total endocrine area in WT HFD fetal pancreata, HFD did not increase the 

number of islets (defined as aggregates of at least 5 INS or GLU expressing cells) in either 

genotype (Table 1). Islets, independent of the genotype and diet, were comprised of a mantle 

of GLU cells surrounded by a core of INS cells (Figure 1A to D).

To determine whether the increase in total endocrine area in WT HFD pancreata was 

associated with an increase in the relative abundance or size of endocrine cells within the 

islets, the number and area of GLU and INS immunoreactive cells was quantified.
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Morphometric analysis revealed that the mean number of GLU cells per pancreata was 2.4-

fold higher in WT HFD when compared to WT CD (p=0.023) (Figure 1A and B). In 

contrast, no change was observed in the mean number of GLU cells per pancreata between 

G4+/− CD and G4+/− HFD (Figure 1C and D). Similarly, no change in the relative number 

of INS cells was observed when each genotype was compared to the opposite diet. However, 

the mean number of INS cells per pancreata was 1.7-fold higher in G4+/− CD when 

compared to WT CD (p=0.007) (Table 1 and Figure 1C).

G4+/− HFD and G4+/− CD fetal pancreata had a significantly higher INS:GLU expressing 

cell number when compared to WT HFD, however, this was not statistically different when 

compared to WT CD fetal pancreata (Table 1 and Figure 1A to D).

Exposure to HFD did not affect INS cell size in WT or G4+/− fetal pancreas when compared 

to the fetuses exposed to CD. However, G4+/− CD pancreata had smaller INS cells 

compared to WT independent of the IU diet (p=0.03 vs. WT HFD and p<0.002 vs. WT CD) 

but was not different when compared to G4+/− HFD (Table 1).

Exposure to HFD increased GLU cell size by 18% in both WT and G4+/− fetal pancreata, 

although this only reached statistical significance in WT HFD vs. WT CD (p=0.03) (Table 

1). Interestingly, similar to reduced INS cell size, G4+/− CD had smaller GLU cells 

compared to WT independent of diet (p=0.0033 vs. WT HFD and p<0.0001 vs. WT CD) 

(Table 1).

GLUT2 and Pdx1 localization

To determine whether HFD IU regulates factors involved in the regulation of INS cell 

development, differentiation and function, we determined Pdx1 and GLUT2 localization in 

islets of fetuses exposed to both diets. HFD IU did not alter the localization of Pdx1 in WT 

or G4+/−fetal pancreata compared to a CD (Figure 1E to H). Similarly, HFD did not alter 

the GLUT2 localization in WT or G4+/− fetuses (data not shown).

Gene Expression

To determine whether HFD IU regulates factors involved in INS cell differentiation, 

proliferation, survival, apoptosis and function, we determined mRNA expression of 

pancreatic and duodenal homeobox1 (Pdx1), SRY (Sex Determining Region Y)-Box 9 

(Sox9), baculoviral IAP repeat containing 5 (BIRC5-Survivin), B-Cell CLL/Lymphoma 2 

(BCL2), and apoptosis-related cysteine peptidase (CASP 3) (Table 2). HFD IU did not alter 

mRNA expression of Pdx1, Sox9, BIRC5, BCL2 and CASP 3 in WT or G4+/− fetal 

pancreata compared to a CD.

To determine whether HFD IU regulates expression of genes involved in insulin secretion, 

pancreatic growth and (whatever NR3C1 does), we determined mRNA expression of the 

potassium inwardly-rectifying channel (Kir6.1), sulfonylurea receptor (SUR1), 

glucocorticoid receptor (NR3C1) and the insulin like growth factors, Igf1 and Igf2. HFD IU 

did not alter mRNA expression of Kir6.1, SUR1, NR3C1 or Igf1 in the pancreas of WT and 

G4+/− fetuses.
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HFD significantly increased expression of Igf2 mRNA, a potent INS cell growth and anti-

apoptotic factor, in G4+/− HFD pancreas compared to G4+/− CD. In contrast, no significant 

difference in Igf2 expression was observed in WT HFD fetal pancreata compared to WT 

CD. To determine whether HFD IU regulates expression of genes involved in facilitated 

glucose transport in pancreatic islets, mRNA expression of the main facilitated glucose 

transporter expressed in pancreatic islets, GLUT 2 was measured. In addition, GLUT 4 

mRNA expression was determined. HFD did not alter mRNA expression of GLUT 2 in WT 

or G4+/− fetuses. GLUT 4 mRNA expression was not detected in fetal pancreata at e18.5.

Discussion

Diabetes mellitus is a complex disease resulting from the interplay between genetics and the 

environment. It results from dysfunctional pancreatic INS cells that cannot compensate for 

the metabolic demands imposed by peripheral tissues such as skeletal muscle and adipose 

tissue. Due to the role of both genetics and the IU environment, and the importance of the 

pancreas on the development of diabetes, we sought to determine the effect of maternal HFD 

on pancreatic development in a mouse model genetically predisposed to develop features of 

diabetes, the G4+/− mouse (Charron and Kahn 1990; Li et al. 2000; Rossetti et al. 1997; 

Stenbit et al. 1997).

Consistent with our previous studies, HFD exposure decreased fetal body weight (Vuguin et 

al. 2013). Similar to a rat model of HFD IU that resulted in poor fetal growth, exposure to 

HFD during development was accompanied by an increase in GLU cell volume and number 

in WT, but not G4+/−, pancreata (Cerf et al. 2009).

HFD did not alter the islet morphology in G4+/− fetuses despite an increase in RNA 

expression of the mitogenic growth factor Igf2 when compared to CD. These data suggest 

that increased Igf2 could be a compensatory response to maintain normal islet morphology.

There were no discernible structural differences in the islets of fetuses exposed to HFD. INS 

cells were present at the core and GLU cells were present at the mantle, suggesting normal 

regulation of islet formation. In contrast to other models of IU programming, HFD IU did 

not alter gene expression and or localization of the transcription factor, Pdx1, thought to be 

relevant for INS cell adaptation to an altered IU environment (Chen et al. 2012; Gesina, et 

al. 2006; Rodriguez-Trejo et al. 2012). Additionally, the expression of genes implicated in 

pancreatic growth (Igf1) or insulin secretory capacity (Kir6.1 and SUR1) were not altered by 

maternal HFD.

In animal models, the most profound changes in islet cell morphology seen in response to a 

HFD IU were the number and the volume of INS cells, which were significantly reduced in 

neonatal rats (Cerf et al. 2009). In contrast, no detectable change in INS cell number was 

observed. These findings may represent differences in the species or differences in the INS 

cell adaptation to a different metabolic environment.

INS cell mass adapts to changes in metabolic homeostasis. These adaptations can occur 

through increases or decreases in INS cell number, through changes in proliferation, 

neogenesis, apoptosis or cell size. INS cell number was not significantly altered by diet, but 
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was increased 1.7-fold in G4+/− CD compared to WT CD. Based on gene expression at 

e18.5 data we did not find evidence of increased proliferation and/ or apoptosis. Future 

studies done at earlier developmental stages may be necessary to confirm these findings.

INS cell size was significantly reduced in G4+/− CD fetuses compared to WT CD. 

Adaptations in INS cell size have been observed during pregnancy (Dhawan, et al. 2007) 

and in response to persistent hyperinsulinemia (Anlauf, et al. 2005). Larger INS cells 

containing more protein per cell are known to be highly glucose responsive (Martens, et al. 

2010). Our finding that G4+/− CD fetuses exhibit smaller but more INS cells suggests an 

adaptation to the metabolic environment associated with GLUT4 haploinsufficiency.

HFD decreased the INS:GLU expressing cell number in WT HFD fetuses. Further analysis 

revealed a significant increase in GLU cell number and size in WT HFD pancreata. When 

the cell number was multiplied by the individual cell surface area, to approximate the 

endocrine cell mass, an increase in the total endocrine area was observed.

The mechanism that leads to GLU cell hyperplasia in WT HFD fetal pancreas is not clear. 

GLU cell hyperplasia has been seen in models with impaired GLU synthesis/signaling 

(Vuguin et al. 2006), glucagon receptor expression (Chen, et al. 2011) and GLU action 

(Chen, et al. 2005); inactivation of Pax4 (Sosa-Pineda, et al. 1997); circulating low insulin 

levels (Rahier, et al. 1983; Sosa-Pineda et al. 1997; Thyssen, et al. 2006); mild 

hypoglycemia and chronic HFD (Fiori, et al. 2013). Since circulating insulin levels were 

normal and glucose levels were elevated in our HFD IU model, other factors must be 

responsible for the increase in GLU cell number (Jiang and Zhang 2003).

In addition to the GLU cell hyperplasia, WT fetuses exposed to a HFD displayed an 

increased GLU cell size that could potentially lead to increased GLU levels (Huang, et al. 

2013). Increased GLU levels could explain the increase in expression of genes involved in 

gluconeogenesis and the increased glucose levels, which we previously reported in the livers 

of WT HFD fetuses (Vuguin, et al. 2013). Unfortunately, we were not able to determine 

serum GLU levels. Accurate determination of fetal GLU serum levels usually requires 

pooling serum from several fetuses to collect at least 50–100 μl of serum per sample 

(www.biotrend.com/download/gl-32k.pdf). Because of the technical difficulties associated 

with the adequate determination of serum GLU levels, alterations in pancreatic morphology 

were assessed instead. Thus, further studies are needed to confirm the role of GLU in the 

GLU cell phenotype observed in WT fetal pancreata exposed to HFD.

Increased GLU cell number and cell size could also occur in response to lower glucose 

levels during fetal development in a HFD IU. Decreased glucose levels would signal the 

central nervous system to increase GLU cell number and secretion leading to GLU-cell 

hyperplasia that may result in hyperglycemia (Brunicardi, et al. 1995; Furuta, et al. 1997). 

Alternatively, high glucose levels and GLU cell hyperplasia could be the result of cell 

transformation of GLU expressing cells into INS cells (Thorel, et al. 2010). GLU cells are 

the earliest identifiable cells of the pancreatic endocrine lineage, capable of becoming INS 

expressing cells (Gromada, et al. 2007). It is possible that the GLU cells in our model are 

incapable of being transformed into INS cells. This seems unlikely, since a decrease in INS 
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cell number or size as seen in another models of GLU cell hyperplasia, is not a feature found 

in this model (Cerf et al. 2009).

Increased INS:GLU endocrine cell ratio was seen only in WT HFD fetal pancreas while 

increased Igf2 gene expression was seen in HFD G4+/− fetal pancreas which had normal 

islet architecture. It is possible that different signals regulate GLU cell number in islets of 

WT HFD and G4+/− mice.

GLUT4 has previously been found to be expressed at low levels in pancreatic GLU and INS 

cells of adult mouse, rat and human endocrine pancreas (Bahr et al. 2012; Kobayashi et al. 

2004) and its expression is regulated by glucose and insulin levels (Bahr et al. 2012). 

Unfortunately, GLUT4 mRNA expression was not detected in fetal pancreata at e18.5. 

GLUT4 expression is turned on in brown adipose tissue, heart and skeletal muscle towards 

the end of pregnancy (Santalucia, et al. 1992). Its expression increases progressively after 

birth, and it has been found to be sensitive to alterations in maternal nutrient intake 

(Gardner, et al. 2005; Thamotharan, et al. 2005). Thus, the developmental timing of its 

expression in the pancreas could explain why we were not able to detect the presence of 

GLUT4 mRNA.

The exact role of Igf2 expression in the fetal pancreas is unclear. In genetic models, 

decreased Igf2 expression in fetal pancreata lead to lower INS cell proliferation rates and 

increased INS cell apoptosis (Kulkarni 2005). Overexpression of Igf2 in INS cells is 

associated with an increase in INS cell mass (Devedjian, et al. 2000), while global 

overexpression of Igf2 gene causes islet GLU cell hyperplasia with an abnormal INS:GLU 

ratio (Petrik, et al. 1999).

In one model, maternal under-nutrition decreased pancreatic Igf2 expression and was 

associated with increased INS cell mass (Martin, et al. 2005). In contrast, another study 

demonstrated that maternal under-nutrition increased pancreatic Igf2 expression with no 

alteration in INS cell mass (de Miguel-Santos, et al. 2010).

In rats, high carbohydrate diet during the neonatal period decreased Igf2 mRNA expression 

and GLU cell number (Petrik, et al. 2001). Thus, the lack of consistency between studies 

makes it difficult to determine the precise role of Igf2 in the pancreatic phenotype and 

determination of the INS:GLU cell number. Some differences may be related to 

compensatory increases in Igf1 expression that could potentially lead to increased INS cell 

mass (Martin et al. 2005). Igf1 expression was not different in our study. In addition, gene 

expression was determined in whole fetal pancreatic tissue and it may be that expression 

levels are regulated differently in response to genotype and/or HFD IU in different 

(pancreatic) islet cell types.

In conclusion, nature (genotype) modifies the effects of nurture (HFD) on fetal pancreatic 

development. We propose that changes in endocrine cell ratio in islets induced by IU 

nutritional and genetic manipulation may affect islet cell responsiveness to physiological or 

pathological stimuli. Further investigation is needed to confirm whether adaptations that 

occur in WT HFD islets IU are maladaptive in later life and whether developing in a HFD 

IU milieu affects the capacity of GLU cells to respond to insulin resistance with increasing 
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age and/or progressive metabolic deterioration. Additionally, it is unknown whether the lack 

of GLU cell hyperplasia in G4+/− pancreata in response to HFD might be detrimental to 

development during times when glucose delivery is interrupted, such as during time of 

delivery. Understanding the molecular basis of an altered INS:GLU expressing cell number 

is an attractive objective particularly in light of new treatments that may directly act on these 

pathogenic mechanisms of T2D.
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Figure 1. 
Photomicrographs of confocal images of representative islets from embryos at e-18.5 

immunostained for insulin (green) (A–D), glucagon (red) (A–D), and insulin (red) (E–H) 

and Pdx1 (green) (E–H) cells in WT C (A, E), WT HFD (B, F), G4+/− CD (C, G) and G4+/

− HFD (D, H). Pancreata from WT HFD (B) fetuses exhibit an increased number of GLU 

cells (red) as compared to WT CD (A), G4+/− CD (C) and G4+/− HFD (D) fetuses. HFD 

did not alter the expression or the localization of Pdx1 (green) in WT (E, F) or G4+/− (G, H) 

fetal pancreata compared to those from CD pancreata. Scale = 40 μm
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Table 1

Metabolic Parameters and Pancreatic Morphology seen in WT and G4+/− Fetuses Exposed to either CD or 

HFD During Development.

WT fetus G4 +/− fetus

CD HFD CD HFD

Body Weight (g) 1.32±0.019A 1.18±0.015B 1.34±0.017A 1.17±0.019B

Total Endocrine Area (μm2/mm2) 0.0104±0.001A 0.0204±0.009B 0.0124±0.001A 0.0106±0.003A

Islet Number (#islets/mm2) 6.2±0.4 A 6.2±0.6A 5.8±0.7A 7.5±0.9A

GLU Cell Number (#cells/mm2) 38±7A 91±20B 64±13AB 54±17AB

INS Cell Number (#cells/mm2) 88±10 A 110±20 AB 153±15B 123±37AB

INS:GLU Cell Number 2.6±0.3 A 1.3±0.2B 2.5±0.2A 2.3±0.2A

INS Cell Size (μm2) 79±7 A 91±11 A 58±1B 65±4AB

GLU Cell Size (μm2) 81±1A 96±7B 61±2C 72±6ABC

Data is expressed as mean ±SE. n=5–19/genotype. Values that do not share the same letter are significantly different from each other p<0.05.
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Table 2

Effect of HFD IU Exposure on Fetal Pancreatic Gene Expression

Gene Name Gene Symbol Gene Sequence (Forward and Reverse) WT HFD 
IU vs. 
WT C IU

G4+/− 
HFD vs. 
G4+/− C

A. Cell Differentiation

Pancreatic and duodenal homeobox 1 Pdx1 CGCGTCCAGCTCCCTTT
CCTGCCCACTGGCCTTT

NS NS

SRY (Sex Determining Region Y)-Box 9 Sox9 GTACCCGCATCTGCACAAC
CTCCTCCACGAAGGGTCTCT

NS NS

B. Cell Survival and Apoptosis

Baculoviral IAP repeat containing 5 BIRC5-Survivin CCCGATGACAACCCGATA
CATCTGCTTCTTGACAGTGAGG

NS NS

B-Cell CLL/Lymphoma 2 BCL2 AGTACCTGAACCGGCATCTG
GGGGCCATATAGTTCCACAAA

NS NS

Apoptosis-related cysteine peptidase CASP 3 GAGGCTGACTTCCTGTATGCTT
AACCACGACCCGTCCTTT

NS NS

D. Cortisol Receptor and Cell Function

Nuclear receptor subfamily 3, group C, member 
1

NR3C1 TGGAGCTACAGTCAAGGTTTCT
GCTTGGAATCTGCCTGAGA

NS NS

ATP-binding cassette, sub-family C, member 8− 

sulfonylurea receptor subunit
SUR1 GACGGCTGGGCAGATCTG

GAGGTTTGGGCATAAGAAGAAAAA
NS NS

Potassium Inwardly-Rectifying Channel, 
Subfamily J, Member 86.1

KCNJ8; Kir6.1 AGCCGCCATGCTGTGATT
CCCACCCGGAACATGAAG

NS NS

C. Glucose Transport

Solute Carrier Family 2 (Facilitated Glucose 
Transporter), Member 4

GLUT4 CTGCAAAGCGTAGGTACCAA
CCTCCCGCCCTTAGTTG

ND ND

Solute carrier family 2 (facilitated glucose 
transporter), member 2

GLUT2 TTGACTGGAGCCCTCTTGATG
CACTTCGTCCAGCAATGATGA

NS NS

E. Growth Factors

Insulin like growth factor Igf1 AACAAGCCCACAGGCTATGG
AAGCAACACTCATCCACAATGC

NS NS

Insulin like growth factor Igf2 CATCGTCCCCTGATCGTGTT
CACTGATGGTTGCTGGACATCT

NS 5*

Gene expression was determined for genes involved in: (A) cell differentiation, (B) cell survival and apoptosis, (C) glucose transport, (D) cortisol 
receptor and cell function and (E) growth factors. Fold change indicates the increase in mRNA measured by qRT-PCR in HF IU compared to C IU 
in WT and G4+/− fetal pancreata (n=6–10/genotype diet at e18.5)

*
p<0.001 in HF IU vs. C IU diet; NS =non significant, ND= no detected
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