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Introduction

• Epidemiology: a subject that studies the patterns of diseases and health related factors among the human population.

• We are particularly focused on the spread of infectious diseases.

• Mathematical modeling: a description of a system using mathematical tools and language.

• Mathematical models can be used to better understand the behavior of a disease and to study the relationships among its components.

• Reproduction number (R0): the number of secondary cases one infectious individual will produce in a population consisting only of
susceptible individuals during its infectious period [1]

Basic SIR Model

• The SIR epidemic model created by Kermack and McKendrick serves as a good introduction to epidemic modeling[1].

• In this model, the total population N(t) is described as the sum of three non-intersecting classes: the susceptible class: S(t), the
infected class: I(t), and the recovered class: R(t).

N(t) = S(t) + I(t) +R(t)

S(t) I(t) R(t)
β α

Incidence

• It is common to assume that the rate of infection is proportional to the product of the number of susceptible people and the number
of infectious people.

• We define incidence as the number of individuals becoming infected per unit time.

• We can then describe incidence as βSI, where β is a transmission rate constant.

• As individuals become infected, they move out of the susceptible class and into the infected class.

• Therefore,
S ′(t) = −incidence = −βSI

Adding Recovery Rate

• Using a similar approach, we define α as the rate of individuals who are recovering per unit time.

• Therefore, the number of people in the infectious class is changing by +βSI and −αI.

I ′(t) = βSI − αI

• The recovered class is changing by +αI

R′(t) = αI

We can then define a basic differential model.

S ′(t) = −βIS,

I ′(t) = βIS − αI,

R′(t) = αI

Adding the equations above, we get:
N ′(t) = S ′(t) + I ′(t) +R′(t) = 0

Notice N(t) is constant.

SEIR Model

• We chose to work with an SEIR model. This model incorporates another variable, the exposed class.

N(t) = S(t) + E(t) + I(t) +R(t)

• The exposed class allows us to account for individuals who come into contact with infected people, but they themselves may not be
infected.

State variables:

• S(t) : Number of susceptible individuals at time t

• E(t) : Number of exposed individuals at time t

• I(t) : Number of infectious individuals at time t

• R(t) : Number of recovered individuals at time t

Parameters:

• Λ: Birth rate

• β: Exposure rate

• γ: Recovery rate

• µ: Natural death rate

• δ: Re-susceptibility rate

Our Model Flowchart

S(t) E(t) I(t) R(t)
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Differential Equation Model [2] 
S ′(t) = Λ− βSI − µS + δR

E ′(t) = βSI − αE − µE

I ′(t) = αE − γI − µI

R′(t) = γI − µR− δR

(1)

Adding the equations, we get:
N ′(t) = Λ− µN

Note: unlike the SIR model from before, in this SEIR model, N(t) is not constant.

Equilibrium

• The time-independent solutions to a differential equation model with constant coefficients are called equilibrium points.

• These can be determined by setting S ′(t) = E ′(t) = I ′(t) = R′(t) = 0. Thus, our equilibrium model is


Λ− βS∗I∗ − µS∗ + δR∗ = 0

βS∗I∗ − αE∗ − µE∗ = 0

αE∗ − γI∗ − µI∗ = 0

γI∗ − µR∗ − δR∗ = 0

(2)

• The system will have two solutions when I∗ = 0 or I∗ ̸= 0.

• Where I∗ = 0 the equilibrium is disease free, and it occurs when the disease is not present within the population.

• Where I∗ ̸= 0 the equilibrium is endemic, and it occurs when the disease is present.

Equilibrium of our Model

• We now want to determine the equilibrium of our model.

• For Disease Free Equilibrium (DFE), we let I∗ = 0, which gives: E∗ = 0, R∗ = 0, and S∗ = Λ
µ . Thus, DFE for our model is

E∗ = (S∗, E∗, I∗, R∗) = (Λµ , 0, 0, 0)

• For Endemic Equilibrium (EE) we let I∗ ̸= 0. Hence, EE for the model is: E∗ = (S∗, E∗, I∗, R∗) where:

S∗ =
Λµ+ Λδ + δγI∗

µ2 + βI∗µ+ δβI∗ + δµ
,

E∗ =
βI∗(Λµ+ Λδ + δγI∗)

(α + µ)(µ2 + βI∗µ+ δβI∗ + δµ)
,

R∗ =
δI∗

µ+ δ

Linearization

• Stability of a nonlinear system can often be inferred from the stability of a corresponding linear system obtained through the process of linearization.

• We consider a point close to our equilibrium point (S∗, E∗, I∗, R∗) with small perturbations a(t), b(t), c(t), and d(t)

a(t) = S(t)− S∗

b(t) = E(t)− E∗

c(t) = I(t)− I∗

d(t) = R(t)−R∗

Plugging in (1):

a′(t) = Λ− β(a+ S∗)(c+ I∗)− µ(a+ S∗) + δ(d+R∗)

b′(t) = β(a+ S∗)(c+ I∗)− α(b+ E∗)− µ(b+ E∗)

c′(t) = α(b+ E∗)− γ(c+ I∗)− µ(c+ I∗)

d′(t) = γ(c+ I∗)− µ(d+R∗)− δ(d+R∗)

Simplifying:

a′(t) = −βaI∗ − βS∗c− µa+ δd

b′(t) = βaI∗ + βS∗c− αb− µb

c′(t) = αb− γc− µc

d′(t) = γc− µd− δd

The solutions to the previous system are of the form:

a(t) = aeλt, b(t) = beλt, c(t) = ceλt, d(t) = deλt

Where λ is our eigenvalue.

Plugging these in:

aλeλt = −βaeλtI∗ − βS∗ceλt − µaeλt + δd

bλeλt = βaeλtI∗ + βS∗ceλt − αbeλt − µbeλt

cλeλt = αbeλt − γceλt − µceλt

dλeλt = γceλt − µdeλt − δdeλt

Canceling eλt:

aλ = −βaI∗ − βS∗c− µa+ δd

bλ = βaI∗ + βS∗c− αb− µb

cλ = αb− γc− µc

dλ = γc− µd− δd

Rearranging: 
(λ+ βI∗ + µ)a+ (βS∗)c− (δ)d = 0

(λ+ α + µ)b− (βI∗)a− (βS∗)c = 0

(−α)b+ (λ+ γ + µ)c = 0

(−γ)c+ (λ+ µ+ δ)d = 0

(3)

Plugging in Disease Free Equilibrium

• We substititute S∗ = Λ
µ , E

∗ = 0, I∗ = 0, R∗ = 0 into system (3):
(λ+ µ)a− (βΛµ )c− (δ)d = 0

(λ+ α + µ)b− (βΛµ )c = 0

(−α)b+ (λ+ γ + µ)c = 0

(−γ)c+ (λ+ µ+ δ)d = 0

(4)

In order for system (4) to have a non-zero solution, we need the following:∣∣∣∣∣∣∣∣∣
(λ+ µ) 0 −βΛ

µ −δ

0 (λ+ α + µ) −βΛ
µ 0

0 −α (λ+ γ + µ) 0
0 0 −γ (λ+ µ+ δ)

∣∣∣∣∣∣∣∣∣ = 0

(λ+ µ)(λ+ µ+ δ)[λ2 + λ(γ + α + 2µ) + (α + µ)(γ + µ)− βΛα

µ
] = 0 (5)

Equation (5) is the characteristic equation.

Theorem 1 ([2]). A necessary and sufficient condition for an equilibrium to be locally asymptotically stable is that all eigenvalues of the Jacobian have
negative real part.

So for our disease-free equilibrium to be stable we must have all λ < 0:

We solve the first two terms for λ in (5):

λ = −µ

λ = −µ− δ

Solving the quadratic term:

λ2 + λ(γ + α + 2µ) + (α + µ)(γ + µ)− βΛα

µ
= 0

Using the quadratic formula:

λ =
−(γ + α + 2µ)±

√
(γ + α + 2µ)2 − 4[(µ+ α)(γ + µ)− βΛα

µ ]

2

Case 1: taking negative sign

λ =
−(γ + α + 2µ)−

√
(γ + α + 2µ)2 − 4[(µ+ α)(λ+ µ)− βΛα

µ ]

2
We can clearly see that in this case λ will be negative.

Case 2: taking positive sign

λ =
−(γ + α + 2µ) +

√
(γ + α + 2µ)2 − 4[(µ+ α)(γ + µ)− βΛα

µ ]

2

We can see, if (µ+ α)(γ + µ)− βΛα
µ > 0, then lambda will be negative.

Using this condition, we rearrange:

(µ+ α)(γ + µ)− βΛα

µ
> 0 ⇔ (µ+ α)(γ + µ) >

βΛα

µ
⇔ 1 >

βΛα

µ(µ+ α)(µ+ γ)

We denote βΛα
µ(µ+α)(µ+γ) by R0

Reproduction Number

Theorem 2. The disease-free equilibrium for the model is stable if and only if R0 < 1. It is unstable whenever R0 > 1

Our R0:
βΛα

µ(µ+α)(µ+γ)

Application and Future Work

• In the future, we plan to work on analyzing the stability of endemic equilibrium.

• We want to consider a more complex model to account for greater intricacies.

• We want to try fitting real-world data to our model to analyze its accuracy for different diseases.
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