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Introduction Our Model Flowchart Canceling eM:

a\ = —pBal* — BS*c — pa + od
b\ = pal* + BS*c — ab — ub
CA = ab— ¢ — uc

e Epidemiology: a subject that studies the patterns of diseases and health related factors among the human population.

A LS(t) b E(t) a d\ = e — pd — 64
e We are particularly focused on the spread of infectious diseases. U
Rearranging:

e Mathematical modeling: a description of a system using mathematical tools and language. ) B

5 A+ B+ p)ja+ (8S*)c— (6)d =0
e Mathematical models can be used to better understand the behavior of a disease and to study the relationships among its components. ) (A + “ +mb— (BI*)a—(6S")e =0 (3)

(—a)b+ (A +~v+p)e =0
. : . —~\e + () 3d —
e Reproduction number (Ry): the number of secondary cases one infectious individual will produce in a population consisting only of Differential Equation Model [2] \( Vet (At pto) 0
susceptible individuals during its infectious period [1] (o () = A—BST—uS+6R

E'(t) =pSI—aF —uk
'ty =abF —~I—pul
Basic SIR Model \R(t) =~I-uR-0R

Adding the equations, we get:
N'(t)=A—puN

e We substititute S* = %, E*=0,I"=0, R* =0 into system (3):
Note: unlike the SIR model from before, in this SEIR model, N(¢) is not constant.

e The SIR epidemic model created by Kermack and McKendrick serves as a good introduction to epidemic modeling[1].

O+ wa— (Ry— o) =
. . . . . . . e e A+ a+ )b — (e
e In this model, the total population N(t) is described as the sum of three non-intersecting classes: the susceptible class: S(t), the Equlhbrlum X _ re (4)
infected class: 1(t), and the recovered class: R(t). (el + A+ + ,u)_c B
(=) + (A +p+0)d =0

N(t)=S(t)+ I(t) + R(t)
In order for system (4) to have a non-zero solution, we need the following:
e The time-independent solutions to a differential equation model with constant coefficients are called equilibrium points.

’ 8 ’ (A+ 1) 0 —% —0
S (t) ‘ I(t) o ‘ R(t) e These can be determined by setting S’(¢t) = E'(t) = I'(t) = R'(t) = 0. Thus, our equilibrium model is 0 A+ a+ p) —Tﬂ/\ 0 0
’ ‘ ’ ‘ 0 —a (A+v+p) 0
(A — BS*T* — uS* + 6R* =0 0 0 —y (A +p+9)
Incidence BS*I* — ab* — pkb* =0 BAa
X (2) 2 T =
e It is common to assume that the rate of infection is proportional to the product of the number of susceptible people and the number ab* —~yI" — pl” =0 A+ p+ )N+ Ay +at2u) +(a+ )y +p) 1 J=0 5)
of infectious people. (V" —pR* =R = Equation (5) is the characteristic equation.
e The system will have two solutions when I* = 0 or I* # 0. Theorem 1 ([2]). A necessary and sufficient condition for an equilibrium to be locally asymptotically stable is that all eigenvalues of the Jacobian have

e We define incidence as the number of individuals becoming infected per unit time. negative real part.

e Where " = 0 the equilibrium is disease free, and it occurs when the disease is not present within the population.
So for our disease-free equilibrium to be stable we must have all A < 0:

e We can then describe incidence as SSI, where 3 is a transmission rate constant. e Where I # 0 the equilibrium is endemic, and it occurs when the disease is present.
Equilibrium of our Model We solve the first two terms for A in (5):
e As individuals become infected, they move out of the susceptible class and into the infected class. e We now want to determine the equilibrium of our model. A= —p
e For Disease Free Equilibrium (DFE), we let I* = 0, which gives: E* = 0, R* = 0, and S* = 2 Thus, DFE for our model is A=—p—20
S'(t) = —incidence = —3ST R = YU Solving the quadratic term:

A
)\2—|—>\(7—|—04—|—2,u)+(oz—|—u)(7+u)—BTa:O

e For Endemic Equilibrium (EE) we let I* # 0. Hence, EE for the model is: £* = (S*, E*, I*, R*) where: _ .
Using the quadratic formula:

Adding Recovery Rate P VR CE el L —htetanE VO a2 = al(n+ @) (7 + 1) — 2]
- 2 * * ) =
e Using a similar approach, we define o as the rate of individuals who are recovering per unit time. P+ I+ 0PI + op 2
* BI*(Ap+ A3 + 1) | -
e Therefore, the number of people in the infectious class is changing by +351 and —al. E" = (a+ ) (2 + Bl + 081" +op) Case 1: taking negative sign
\ —(v+a+2u) - \/(7+a+2u)2—4[(u+a)(k+u) - 2]
. 61" - 5
I'(t) = ST — ol R = L+ We can clearly see that in this case A will be negative.
e The recovered class is changing by +al Case 2: taking positive sign
... —(v+a+2m) /(a2 — 4+ )y +p) - 22
R(t) = al Linearization A= 5
We can then define a basic differential model. We can see, if (pu+ a)(y+ p) — % > 0, then lambda will be negative.
, Using this condition, we rearrange:
S'(t) = =BIS, e Stability of a nonlinear system can often be inferred from the stability of a corresponding linear system obtained through the process of linearization. 5A 8A 5A
I'(t) = BIS —al, _paa a a
R’Et; _ il “ e We consider a point close to our equilibrium point (S*, E*, I*, R*) with small perturbations a(t), b(t), c¢(t), and d(t) (1 +a)(y+p) [ >0 (pt+a)ly+p) > [ 1> 1+ a)(p+7)
t)y=5(t)— 95" __ BAa
Adding the equations above, we get: alt) (t) We denote p(ptor) (pty) by Ro
N'@#t)=S@t)+I'(t)+ R(t)=0 b(t)=E(t) — E*
Notice N(t) is constant. ty=1I1(t)—I" .
() e(t) = 1(1) Reproduction Number
d(t) = R(t) — R

SEIR Model Plugging in (1):

Theorem 2. The disease-free equilibrium for the model is stable if and only if Ry < 1. It is unstable whenever Ry > 1

Our Ry: m bla

b+ E*) —~y(c+I") — plc+ I7) (pta) (p+)

(8%
d(t) =y(c+I*) — p(d + R") — 6(d + R")

e We chose to work with an SEIR model. This model incorporates another variable, the exposed class.

)
y=0B(a+ S )(c+TI")—alb+ E*) — ub+ EY)
)
)

N(t) = S(t) + E(t) + 1(t) + R(t) Application and Future Work

e The exposed class allows us to account for individuals who come into contact with infected people, but they themselves may not be Simplifying:
infected. !
a'(t) =—pal* — pS*c — pa+ dod
State variables: V'(t) = Bal* + BS*c — ab — pb
d(t) = ab— ye — pe e In the future, we plan to work on analyzing the stability of endemic equilibrium.
e S(t) : Number of susceptible individuals at time t - ek . o
d'(t) = vc — pud — od e We want to consider a more complex model to account for greater intricacies.

e F(t): Number of exposed individuals at time t : : : :
e We want to try fitting real-world data to our model to analyze its accuracy for different diseases.

e I(t) : Number of infectious individuals at time The solutions to the previous system are of the form:

e R(t): Number of recovered individuals at time t
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