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Abstract 

Due to its wide range of applications, the Internet of Things (IoT) technology is evolving 

rapidly. One can witness IoT systems in smart cities, smart homes, smart healthcare, smart 

industry, and smart agriculture. IoT systems usually use low-powered and low-memory 

devices to sense the data from the environment and transmit it to the destination through 

wired or wireless communication channels. Although IoT technology is gaining massive 

attention in every sector of life, the security of these devices is one of the biggest chal-

lenges. Due to resource constraints, these devices are often vulnerable to malicious actors. 

In this work, a machine learning-based intelligent classification of the IoT network at-

tacks using real-time heterogenous data is carried out. Two IoT network malware datasets 

(Ton-IoT & IoT-23) that include the real-time IoT Botnet attacks are used for the exper-

iments. The data is pre-processed before performing the experimentation. In addition, a 

information gain based feature selection method is also applied to select the most im-

portant features in the dataset. Several classification methods include Logistic Regression 

(LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors (KNN), Naïve 

Bayes (NB), and eXtreme Gradient Boosting (XGB) are implemented. These models 

were evaluated using classification metrics; accuracy, precision, recall, and f1-score. It is 

concluded that the Naïve Bayes and Logistic Regression are not the best methods to per-

form classification on these datasets. On the other hand, DT, RF, KNN, and XGB pro-

vided an accuracy of 99% for binary labels and 98% for multiclass labels for the Ton-IoT 

dataset. Using the IoT-23 dataset, these models provided accuracy above 90%. It is found 

that LR and NB are not the best choices for classification using either dataset. In addition, 

not all the features in these datasets are essential; hence some can be dropped to reduce 

the complexity of the model and improve the computational capacity. It is further con-

cluded that heterogeneity in the dataset does not necessarily affect the performance of 

classification algorithms.  
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1 Introduction 

This chapter presents the background of the internet of things and security problem re-

lated to IoT devices. In addition, the main aim and the objectives of the study are also 

discussed in this chapter.  

1.1 Background 

 

Internet of  Things (IoT) is everywhere; it is one of the building blocks of many technolo-

gies, including smart cities. Currently, more than 20 billion of these devices are connected 

to the Internet, and the number is expected to grow in the future [1]. These devices are vastly 

deployed for smart city applications, such as smart healthcare, smart homes, smart mobility, 

smart agriculture, etc. Cyber-attacks are also proliferating with the expansion of these IoT 

devices in smart environments. On the other hand, securing these devices is one of the 

biggest challenges in the current digital age. IoT provides huge attacks surface. It is because 

of weak encryption methodologies deployed by the IoT vendors and vulnerable default 

password settings. Such vulnerabilities put these devices at stake and allow hackers to 

exploit these loopholes and gain access to critical data [2].  

As we know, pervasive IoT applications enable us to perceive, analyze, control, and 

optimize traditional physical systems. Currently, IoT devices are deployed at a rapid pace, 

and the total number of devices has already crossed the number of humans on the planet 

and is expected to grow manifold by the end of this decade. According to Business Insider's 

report [3], the IoT market has a huge potential to grow by over 2.4 trillion dollars by 2027. 

However, severe resource constraints and insufficient security design are two major causes 

of many security problems in IoT applications. Easy and guessable default passwords by 

the manufacturers can be easily exploited by the hackers and gain access to these devices. 

According to the semantics report [4], most of these devices were sent to the customers 

with top 10 easily guessable passwords, such as admin, root, 12345, user etc. Over time 

the attacks on IoT devices have increased globally.  According to Semantics Internet 

Security Threat Report (ISTR) [5], monthly average large-scale attacks on IoT devices 
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have seen a surge in the past few years. The most famous attack that gained security experts' 

attention was the IoT BotNet attack called Mirai in 2016 [6]. Mirai took over many high-

profile web services like Netflix, Twitter, Reddit, and NY times and made them 

inaccessible. It is vital to meet the IoT security requirements i.e, confidentiality, integrity, 

availability, access control, and authentication. It has been realized that the traditional 

intrusion detection systems are not very effective against these BotNet attacks because of 

the heterogenous nature of IoT devices. The traditional mechanisms are time-consuming 

and slow in the detection of malware. This challenge requires a complete shift toward 

advanced methods and effective approaches to secure the IoT ecosystems from malicious 

actors.  

According to a report by Council to Secure the Digital Economy (CSDE) [7], malicious 

activities against the IoT devices increased significantly during the pandemic period. It is 

because corporations and companies moved from physical to remote work environments. 

Specifically, a massive surge has been witnessed in DDoS attacks on IoT devices during 

the first quarter of 2020. It is found that the DDoS attacks have increased to around 542% 

during that period [7]. The reason for such a big rise in malicious activities against the IoT 

devices is the paradigm shift in the form of digitization of many sectors. The pandemic 

provided an open surface for hackers to exploit the vulnerable devices and gain unauthor-

ized access.  

1.2 Motivation 

The IoT systems can be connected in different network structures. Mainly, the available 

IoT network datasets are collected using limited local area network (LAN) systems where 

one IoT device communicates with the other in a controlled environment. There is not 

much consideration given to the network heterogeneity in IoT systems. The heterogeneity 

in IoT network data means the number of network layers used in the testbed, number of 

attacks, number of features collected, and number of real-time IoT devices used for traffic 

generation. Therefore, the main motivation of the study is to present the analysis of IoT 

network malware classification using real-time heterogenous data. 

In addition, Artificial Intelligence (AI) and Machine Learning (ML) have been perceived 

as the main choice of researchers to detect IoT network malware. ML has proven to be a 

very effective solution in different aspects of our daily life problems. 



  -3- 

ML algorithms, given their mathematical complexity, can learn difficult patterns from the 

data and help in decision making. As far as the IoT networked systems are concerned, ML 

algorithms can be very effective in monitoring the behaviour in the network traffic data in 

real-time and detecting any abnormality. Therefore, using ML would further enhance the 

network security system against the persistent malware threats and detect them early. 

Hence, realizing the potential of ML, utilizing accurate and efficient ML-based algorithms 

for IoT attack detection is inevitable.  

1.3  Aim of the Study 

The aim of the study is the early classification of IoT network malware attacks on IoT 

devices using ML algorithms. The research will focus on the use of publicly available real-

time heterogenous IoT network datasets since the actual efficacy of an algorithm can be 

assessed only on real-time data.  

1.4  Research Objectives 

 

• To select the heterogenous IoT network dataset collected using real-time IoT de-

vices 

• To select the dataset that contains real-time IoT BotNet attacks 

• To select the important features from the dataset using feature selection method 

• To highlight the important common features in datasets 

• To analyse the performance of classification algorithms on the selected dataset 

• To analyse the impact of removing features on accuracy and training time. 
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2 IoT Definition, Applications 
and Security Aspect 

This chapter presents a brief introduction to the Internet of things. The chapter covers the 

definition of the IoT by IEEE and ITU, applications, and security vulnerabilities. In addi-

tion, IoT BotNet characteristics and various types of BotNet attacks are also discussed. 

2.1 Defining the Internet of Things (IoT) 

The Internet of things (IoT) has been around since its inception in the 1960s. However, the 

most popularly cited event regarding the IoT devices is Coca-Cola vending machine con-

nected to the Internet by programmers at Carnegie Mellon University in 1982 [8]. The term 

"Internet of things" was first coined by Kevin Ashton during his presentation in 1999 at 

Proctor and Gamble, talking about the role of RFID in the company's supply chain [9]. 

After 2004, the phrase "Internet of things" was commonly adopted in the literature. Ac-

cording to International Telecommunication Union (ITU) recommendation (ITU-T 

Y.2060), IoT is defined as; "A global infrastructure for the information society, enabling 

advanced services by interconnecting (physical and virtual) things based on existing and 

evolving, interoperable information and communication technologies" [10]. 

 In addition, IEEE also defined the term IoT as; "An IoT is a network that connects uniquely 

identifiable "things" to the Internet. The "things" have sensing/actuation and potential 

programmability capabilities. Through the exploitation of the unique identification and 

sensing, information about the "thing" can be collected, and the state of the "thing" can be 

changed from anywhere, anytime, by anything" [11]. 

 Currently, IoT has been reported as the fastest growing technology for it is being integrated 

to every field of our life. It is becoming a billion dollars market as the number of these IoT 

devices being used is increasing rapidly. 

2.2 IoT Applications 

  Internet of things has now come across the hype; it has gained momentum and it has broad 

application landscape. Due to the growing market of IoT, different new avenues for the 
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deployment of IoT systems are explored. One can spot IoT devices almost everywhere now 

a days in our lives. These devices are being used as smart healthcare wearables, home 

automation, etc. According to IoT analytics [12], the Industrial IoT (IIoT) has become the 

top sector for the employment of smart and intelligent manufacturing systems leaving 

behind the smart cities.It is because of the birth of a new paradigm called Industry 4.0. As 

described in [13], the top IoT applications shown in Figure 1, are briefly described below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

• Industry and Manufacturing (Industry 4.0)  

Industrial automation is one of the rapidly growing applications of IoT systems. The in-

tegration of smart systems makes the manufacturing and production system much faster 

and more efficient, resulting in the smoothing of the overall process. 

• Smart Healthcare   

e-Health or smart healthcare is also one of the growing applications of IoT. Various 

smart gadgets are now easily available; these gadgets are able to record human health 

conditions and report to the remote server or to a mobile application. These gadgets in-

clude wristbands, apple smartwatches, smart glasses, etc. 

• Smart Homes 

Smart homes are one of the popular use cases of IoT. The home electronic appliances can 

be controlled through mobile applications or remote web systems. The sensors such as 

temperature, humidity, and smoke transfer continuous data to the user end, which can be 

Figure 1: Applications of IoT 
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 analysed and controlled if necessary. This results in the home's energy efficiency since 

one can see the appliance's performance and use them accordingly. In addition, smart 

locks and smart surveillance systems are also becoming common in homes.  

 

• Smart Mobility  

One of the major advancements in the mobility sector is autonomous cars enabled by IoT 

technology. Big technology companies such as Google and Tesla have already demon-

strated self-driving cars using IoT.  

 

•  Smart Agriculture 

IoT technology has also stepped into the agriculture sector as well. The farmers can now 

use intelligent IoT systems in their fields to report to the user about the crop and weather 

conditions. In addition, smart irrigation systems are also developed using IoT technol-

ogy which has proven to be valuable in reducing the water consumption of the crops. 

 

• Smart Cities 

One of the most prominent candidates for the deployment of IoT devices is smart cities. 

The smart city requires the IoT system to be deployed in various sectors and parts of the 

city ranging from traffic control, solid waste management, smart water distribution, 

smart grids, and smart resource management.  

The applications of IoT technology are swiftly increasing with the advancement in data 

processing technology. It is because IoT devices generate a huge amount of data. The 

storage, processing, and analysis of such a massive amount of data require super-fast, 

efficient, and competent systems. Thanks to the Big data technologies, which are becoming 

the solution for this problem. 

In the future, one can expect further drift in the development of IoT technology, and its 

uses will also substantially increase. The integration of other cutting-edge technologies 

such as Blockchain is also considered a future trend in this domain. The combination of 

the IoT and Blockchain would completely change the current way of looking at smart sys-

tems in the future. 
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2.3 IoT Security Challenges 

Although IoT technology is experiencing exponential growth in the market, everyone is so 

curious to install IoT systems for the purpose of process automation. However, the biggest 

challenge for the IoT devices, which was not paid much attention to or completely ignored 

by IoT manufacturers, is the security of these devices. Securing the users' privacy should 

be the top priority of IoT companies. Nonetheless, cyber-attacks can be so lethal for the 

IoT systems deployed in critical infrastructures. Given this technology's distributed nature 

and pervasive use, it is crucial to understand the security problem and take countermeas-

ures. There are several reasons for this growing challenge of IoT security, mainly the lack 

of computational capacity, weak password encryption methods, and lack of regular firm-

ware updates. Many pieces of research are being conducted to highlight various security 

challenges at each layer of the IoT architecture  [14]–[16].  

2.4 Resource Constraints in IoT Devices 

The main characteristics of the IoT systems are the large-scale deployment, distributed 

nature in terms of network topologies, and heterogenous nature of devices. These devices 

will be connected to different platforms using different architecture and posing unique in-

tegration and security challenges. But resource constraint is the major backdrop of IoT 

devices. As shown in  Figure 2, the IoT devices are not really powerful in terms of 

processing the data. 

 

 

 

 

 

 

 

 

 

 

Figure 2: IoT Device Major Resource Constraints 
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They are not like conventional devices that can take up to 100s of gigabytes and still work. 

These devices usually run on the microcontrollers with the capability of only 100s of meg-

abytes, not the gigabytes. Additionally, IoT devices cannot store the huge amount of data 

continuously coming from the sensors. Another major limitation to the IoT devices is the 

physical environment; not all the devices  can sustain the harsh environment without spe-

cific protection [17].  

2.5 IoT Threats and Vulnerabilities 

As defined by the International Engineering Task Force (IETF), a cyber threat is actually 

"a potential for violation of security, which exists when there is a circumstance, capability, 

action, or event that could breach security and cause harm. That is, a threat is a possible 

danger that might exploit a vulnerability" [18]. At the same time, a vulnerability is the 

weakness of a system that can be exploited intentionally by the malicious actors for per-

sonal gains. IoT threat is always there, and the consequences can be fatal if IoT-based sys-

tems such as autonomous cars, sensor-guided weapons, and large-scale industrial systems 

are compromised.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An extensive study of the various IoT vulnerabilities and their exploitation possibilities at 

different layers with attack types is discussed by the authors in [19]. 

Figure 3:OWASP Top 10 IoT Vulnerabilities 
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 In addition, various IoT security organizations such as OWASP [20] and IoTSF [21] are 

extensively conducting research on IoT vulnerabilities. According to OWASP, the top ten 

vulnerabilities in IoT devices are shown in  Figure 3. 

We will briefly describe the OWASP top 10 IoT security vulnerabilities: 

1. Weak and guessable default password 

According to OWASP, easy default password by manufacturers is among the top vulnera-

bilities of IoT devices. These passwords can easily be guessed even by naïve hackers. Al-

most all the manufacturers send their devices encrypted with easy passwords such as ad-

min, 123, or the device name.  

2. Insecure Network Services 

The IoT devices are not capable of installing traditional intrusion detection systems on 

them. Hence unauthorized access is not very difficult on these devices. This vulnerability 

is easily exploited by the hackers who execute DOS attacks that populate the devices' band-

width capacity, resulting in the failure of the services. 

3. Insecure Ecosystem Interfaces 

Usually, the web, API, or cloud interface is not encrypted, solid, or secured. Therefore, 

making the IoT device vulnerable to cyber-attacks. The device can completely lack author-

ization if the interface is compromised.  

4. Lack of Security Update Mechanisms 

One of the major backdrops for IoT devices is not having regular security updates. Unfor-

tunately, these do not offer this facility by default providing any guarantee of the security 

for the end-user. Therefore, OWASP placed it at the 4th position.  

 

5. Use of Outdated Components 

It can be understood from this vulnerability that IoT isn't only vulnerable at the interface 

level. The insecure or outdated software system is also equally dangerous and open to ex-

ploitation and can completely block the production system. 

 

6. Insecure Privacy Protection 

Device privacy and the user's data privacy is also the main element in making the IoT 

devices secure. The IoT data traffic can be analyzed or saved without permission.  
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7. Insecure Data Transfer Storage 

It is obvious that data transfer and storage of the data must be secure and safe. Its access 

must not be allowed to unauthorized actors without permission. Therefore, encryption of 

data is essential in this case. Plain data transfer and storing it without proper security 

measures can be harmful. 

8. Lack of Device Management 

This vulnerability has been placed on number eight by OWASP, but it is also crucial to 

keep the device management intact. Proper management of the devices with monitoring 

control should be the primary concern of the users.  

9. Insecure Default Setting 

As already mentioned, any default setting such as the default username, password, or IP 

address of IoT devices can become a vulnerability and be exploited by the hackers. There-

fore, the default setting must be updated regularly.  

10. Lack of Physical hardening 

Last but not the least on the list is the lack of hardening of an IoT device. This means the 

debugging of the ports, secure boots, and removing cards can be a vulnerability.  

2.6 IoT BotNet Attack  

IoT BotNet attacks are currently considered as deadly and widely spreading attacks on IoT 

devices. These attacks are initiated by an infected device called a "Bot" or a zombie. A bot 

can be any IP-based device connected to the Internet through a wired or wireless network. 

It can be an IP camera, a router, a printer, or IP TV [22] . Mirai is one of the first large-

scale attacks discovered in 2016, which took down thousands of devices and popular web 

application services [6]. As shown in Figure 4, in an IoT botnet attack (Mirai BotNet), a 

malicious actor establishes a command and control (CnC) server to manage the attack. In 

addition to the CnC server, a ScanListen server and a LoadServer are also established to 

conduct the attack. Basically, the malicious actor or botmaster uses an infected device to 

telnet scan the immediate connections to the first bot. When the bot identifies any vulner-

abilities in the target, it tries to establish a connection with the target and brute forces to 

get unauthorized access. If the link is successfully established, the bot informs the Scan-

Listen server. The ScanListen server identifies if the target device is already in the database. 
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In case the target is new, the LoadServer is initiated to start downloading the malicious 

codes on the target device to get it infected. This target becomes a bot or zombie and shares 

the information with CnC and botmaster. 

Now that newly infected devices act as zombies, it starts scanning the ports and strives to 

establish a connection with immediate hosts on the network. This process continues, and 

millions of devices become zombies and create a colossal BotNet. This is how the famous 

Mirai BotNet attack worked. However, there are many variants of the Mirai attack shared 

on hack forums. Hence, every day a new BotNet attack is created. In addition, the worst 

that could happen is the open availability of these attacks. One can buy the bots and execute 

the BotNet attacks on the other systems. 

 

 

 

 

 

 

 

 

 

 

 

 

2.7 Popular IoT BotNet Attacks 

IoT BotNet attacks are becoming a serious challenge for cybersecurity companies. Many 

variants of the existing attacks are uploaded regularly on the internet, which can be used 

by anyone with some knowledge of hacking. We discuss some of the attacks which have 

been very popular due to well-known attack vectors. These attacks include Mirai, Okiru, 

Hajime, Hide and Seek, Torri, Bashlite, Hakai etc. These attacks aim to disturb the services 

by sending DDoS packets and gaining unauthorized access to IoT devices. 

Figure 4: Working Principle of IoT BotNet (Mirai BotNet) 
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2.7.1 Mirai BotNet  

The Mirai attack has been discussed previously. It has been one of the infamous and lethal 

attacks on IoT devices in the recent past. It was used to initiate millions of packets from 

approximately 380,000 devices placed in different locations. 

The DDoS attack by the Mirai botnet was one of the largest attacks ever seen in the history 

of the Internet. It was very simple yet very dangerous. The Mirai was coded in C program-

ming language, and the code was released on a website called hackforums.com by its author 

name Anna-Senpai [23]. The release of the code further worsened the situation as even the 

newbies to the programming could change the code and create a new variant of Mirai. 

2.7.2 Okiru BotNet 

Okiru is a variant of Mirai discovered in 2018 by an independent researcher [24]. The main 

target of Okiru botnet was the Linux-based operating system. The IoT devices comprised 

of (Argnoaut RISC core) ARC processor was found to be vulnerable to this kind of attack. 

The ARC central processing unit is in common use and widely popular for cameras, mo-

biles, and smart electricity meters. The Okiru is gaining popularity and its versions are 

being created because of the code available on the internet. 

2.7.3 Bashlite 

The Bashlite is another widespread IoT BotNet attack that has been discussed with other 

names such as Gagfyt and Lizkebab. The primary purpose of this attack is to exploit the 

Bash vulnerability in shellshock. A hacker can access an IoT device remotely using a Bash-

lite attack. It is used in exporting shell functions via environment variables. The leading 

cause of this kind of vulnerability in IoT devices is poor patching. It self-propagates after 

infecting the devices and gathers information about the immediate hosts using telnet [25].  

2.7.4 Torri 

Torri is different than Miria and Okiru, as claimed by the Avast researchers [26]. It is a 

persistent attack that does not initiate the DDoS attacks but applies more advanced methods 

such as encrypted communication and data exfiltration. The Torri is seen to have a system-

atic attack strategy. It performs reconnaissance, target initiation, and payload downloads in 

sequence. It also uses different methods to download the payload on the target and com-

municate with CnC server through XOR-based cipher. [26]. 
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2.7.5 Hajime 

Hajime is another IoT botnet that is in continuous evolution. The word Hajime means 'be-

ginning' in Japanese. The Hajime was first discussed in a public report published by Ra-

pidity Networks [27]. The strange fact about the Hajime is its unknown purpose. Until 

today, no one has been able to precisely describe the core purpose of this attack. The 

Hajime is indeed a variant of Mirai, but it builds a peer-to-peer network.  

2.7.6 Dark.IoT  

A recent variant of Mirai called Dark.IoT BotNet was reported by Palo Alto in 2021 [28]. 

According to the report published, The new variant could exploit the vulnerabilities in the 

IoT devices. The Dark.IoT BotNet as named by experts, uses file names Dark architecture. 

The attackers were able to delete the important files on the target devices and install the 

binaries. The Dark.IoT has been successful in targeting many devices since last year. 

Therefore, it is a concern for the researchers. 

2.7.7 Hakai 

Hakai is based on Mirai and Garget malware. The Hakai is a Japanese word meaning 'de-

struction'. It was mainly detected in routers because it leverages the vulnerability of routers 

that allow remote code execution [29]. It seems to have been used to carry as a DDoS 

attacker, shell command line injector, and telnet scanner. 

2.7.8 Hide and Seek 

Hide and Seek (HNS) is a variant of Mirai identified by the Bitdefender[30]. The scanner 

functionality of this attack has been borrowed from the Mirai. The scanner part tries to 

reach random IPV4 addresses through predefined ports such as HTTP, HTTPS, Orient DB, 

CouchDB, and Telnet. Once these ports are detected as open, the exploitations start using 

a simple self-synchronizing cipher. Communication is carried out through peer-to-peer 

connections like Hajime. These attacks are quite difficult to take down and are seen to get 

updated frequently. The sample code and updates are available here [31]. 
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3 Related Work 

IoT BotNet attack detection is currently the most researched area of IoT security. Various 

ML-based methods are proposed in the literature to detect these attacks [32]–[34]. Re-

searchers are using classification methods such as Support Vector Machine (SVM) and 

Decision Trees (DT) [35], Random Forest (RF) [36], and K-Nearest Neighbours (KNN) 

[37] for classifying the malicious and benign network traffic.  

However, these papers lack effective and necessary practices, such as data pre-processing 

or feature engineering steps to detect the intrusion accurately. In addition, it is essential to 

use real-time IoT attack data to evaluate the performance of the proposed method in real 

environment.  

The authors in [38] use DT, multiclass decision forests, and multiclass neural networks 

trained and tested on an imbalanced IoT23 dataset. The performance of these models was 

evaluated on a smaller dataset created from IoT23 log files, and later the larger version of 

the same dataset was used by increasing the number of data samples, the accuracy, 

probability of attack detection, and probability of false alarm detection increase up to 

99.9%. The models were trained using a 10-fold cross-validation method.  

A KNN, multilayer perceptron (MLP), and Gaussian Naïve Bayes (GNB models were used 

to classify the malicious and benign IoT traffic using the BoT-IoT dataset [39]. The key 

takeaway from this research is the combination of feature engineering and Synthetic 

Minority Oversampling SMOTE technique with ML models. The models were trained both 

on the class-imbalanced and class-balanced datasets. The features with F1-score greater 

than the mean value were selected, while those with low scores were rejected. Only eight 

features provided scores greater than the mean. Among all the algorithms used above, KNN 

provided the best Area Under Curve (AUC) values and accuracy on the imbalanced dataset.  

In [40], the authors presented an IoT attack and anomaly detection using various ML 

algorithms, including LR, SVM, DT, ANN, and KNN. The proposed models are trained 

on newly available network anomaly datasets i.e, UNSW-NB15 and CICIDS2017. 

However, these datasets are not purely from real IoT devices but provide a good overall 

scenario for understanding BotNet attacks on IoT devices in a smart city environment. 

In addition, the results show that for both datasets, the proposed ensemble methods 

outperformed the other algorithms with performance in terms of True Positive Rate 
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(TPR),False Positive Rate (FPR), and F1-score. The accuracy of all the methods was better 

(0.99) on the CICIDS2017 data than the UNSW-NB15. 

In addition, many novel methods for attacks are being introduced [41]. In [42], a 

comparison of ML and deep learning (DL)-based algorithms using the IoT-23 dataset is 

presented. The CNN used with the rectified linear unit (ReLu) as the activation function is 

evaluated using precision, recall, f1-scores, and support scores. The authors also show the 

time-cost comparison of all the models used. It can be observed from the results that DT is 

the best performing model in terms of both the accuracy (0.73%) and time cost (6 seconds) 

followed by the CNN model with an accuracy of 0.69% and time cost (242 seconds). Naïve 

Bayes performed worse than SVM in terms of accuracy but was faster.  

In [43], A sequential architecture approach is proposed, which involves different phases 

such as data collection, data categorization, model training, feature selection, and attack 

detection. The -sub-engine for the attack detection approach is used in the proposed 

architecture. Each attack class was assigned a sub-engine, and data samples were assigned 

to the model is assigned for classification. The architecture is based on ML algorithms, 

including ANN, J48, and Naïve Bayes. The authors used N-BaIoT datasets containing 

samples from IoT BotNet attacks such as Mirai and Bashlite. 

Interestingly, the performance of the proposed models varies on the type of class used in 

multiclass classification. The attack detection accuracy for all the models is almost similar, 

which is 99%. It can be observed that the performance of J48 and ANN does not change 

by varying the number of features. On the other hand, the performance of the NB degrades 

by increasing the number of features. In addition to the ML methods, the authors are also 

proposing the use of the deep learning-based method for intrusion detection. 

An Ensemble learning technique based on AdaBoost, RUSBoosted, and bagged method is 

presented in [44]. The authors proposed a three-phase model architecture to detect the 

intrusion using N-BaIoT dataset. I addition, the data is pre-processed and scaled using z-

score standardisation method before the training process. The feature selection is 

performed using a correlation score. Moreover, the author used 5-fold cross-validation to 

avoid overfitting on the training data. The ensemble methods were evaluated using binary, 

three-class, and multiclass classification. 

 The proposed ELBA-IoT method provides an accuracy of 99.6% on the Ba-IoT dataset. 

The experimentation was performed using Matlab-2021 software installed on windows 

operating system. 
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A feed-forward neural network (FFNN) has been investigated using flow and flag-based 

features from multiple datasets [45]. The proposed neural network comprises of one input 

layer, four hidden layers, and one output layer. The model was tested on binary and 

multiclass classification problems. In addition, a dropout layer was also added to reduce 

the probability of overfitting. The authors combined various datasets to increase the 

number of samples and classes. The authors achieved an average accuracy of 99.10% on 

the testing set using a learning rate of 0.001, and 100 epochs. 

An XGBoost-based method called PSO-XGBoost is proposed for network intrusion 

detection systems [46]. The proposed technique is a parametric optimization of XG-Boost 

algorithms that outperform existing Adaboost and Random Forest models. The particle 

swarm optimization (PSO) technique is derived from the bird's swarm behavior, where the 

particles are considered as the simulation of birds. The models were experimented with 

using the benchmark NSL-KDD dataset. The NSL-KDD is an old dataset with four target 

variables. The dataset was pre-processed before training. The results of the model were 

evaluated for each class. The average precision, recall, and F1-score achieved with the 

proposed model were 0.81, 0.75, and 0.71, respectively.  

A deep neural network-based attack detection system is proposed in [47]. The authors used 

a publicly available Bot-IoT dataset which consists of actual IoT BotNet attacks. The 

dataset includes different types of attacks such as DoS, DDoS, and keylogging. A subset 

of the dataset was extracted and used for the experiments. Before training the neural 

network, the data was pre-processed and normalized using min-max scaling. The proposed 

neural consist of an input layer, two hidden layers, and an output layer. A linear rectified 

unit (ReLu) activation function was used to introduce the non-linearity in the model. The 

proposed neural network achieved an accuracy of 95%. 

In [48], a comparative analysis of LR and ANN is presented using the N-BaIot dataset. N-

BaIoT is also a real-time IoT dataset collected from Doorbell, Thermostat, Baby monitors, 

and security cameras. It is shown that the proposed ANN provides excellent results in terms 

of accuracy, precision, and recall values for each device. The proposed neural network 

achieved an accuracy of 0.92, 0.94, 0.91, and 0.92 for the traffic from Doorbell, Thermo-

stat, Baby monitor, and security camera, respectively. 

In [49], several tree-based ensemble learning methods are implemented using the Bot-IoT 

dataset. Bot-IoT is a famous publicly available and commonly used IoT network dataset. 

The authors chose RF, Light Gradient Boosting Method (LGBM), Extra Tree, and 
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XGBoost method for the task of attack classification. The authors selected the ten best 

features using the Pearson correlation method and entropy. One can observe from the re-

sults that LGBM outperformed all other methods in terms of accuracy, precision, and recall 

scores. LGBM provided an accuracy, precision, and recall score of 99.9%. It is also one of 

the fastest methods in terms of training and execution time. 

In [50], the authors present the analysis of several ML classification algorithms 

experimented on the Ton-IoT dataset. The feature selection was performed using the chi-

square test. Moreover, simple minority oversampling (SMOTE) was used to tackle the 

imbalance samples in the Ton-IoT dataset. The data was split into a 70:30 train-test ratio, 

and a 5-fold cross-validation method was used to avoid any overfitting. It can be observed 

from the results that for binary classification, XGB outperformed other methods with 

99.1% accuracy, followed by KNN with 98.8%., decision tree (DT) with 98.0%, and RF 

(97.9%). In terms of multiclass classification, again, XGB provided an accuracy of 97.9%, 

while KNN (97.6%), RF (91.1%), and DT(91.3%). All these results are noted after using 

chi-square and SMOTE methods.  

 

Although, the use of ML for IoT BotNet attack detection is gaining massive attention by 

the research community. There are still gaps in standardising the important features and 

attack types. It is essential to underline the important features in the dataset, which contrib-

ute more toward the accurate classification of malicious and benign data. It is also critical 

to highlight the importance of heterogeneity in the IoT network datasets.   It is found that 

not much attention has been paid to that aspect of IoT network malware classification. 

Hence this study is focused on using real-time heterogenous data for the experimentation 

purpose.
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4 Dataset  

This chapter describes the datasets used in this study. The main objective of the research is 

to investigate the efficacy of ML algorithms on real-time IoT attack datasets. Hence, we 

chose to work on two real-time IoT network datasets, which are described in detail.  

4.1 IoT Network Malware Datasets 

The major challenge in IoT network attack detection is the availability of good quality data 

as the ML algorithms require data to perform prediction. The availability of quality data is 

the main issue in IoT security scenarios. The main aim of the study is to select the recent 

IoT network malware dataset. In addition, the dataset must be collected from real-time IoT 

devices. The reason for choosing real-time IoT datasets is to train the ML models with real 

IoT network data. The heterogeneity was also set as the main condition for the dataset to 

be used in this study.  

Various network intrusion detection datasets are publicly available; KDD [51], is one of 

the first among NSL.  However, with further advancements in the field of cyber-attack data 

collection, new datasets, such as ISCX-2012[52], UNSW-NB15[53], and CICIDS2017[54] 

were published in the last decade. However, all these datasets are not IoT specific and do 

not cover large-scale attacks of today's time. Moving on, some of the IoT-specific datasets 

currently published include N-BaIoT [55], Bot-IoT [53], and IoT-23 [56].  

These datasets are either collected using real-time IoT devices or emulated ones. However, 

one of the major concerns is the heterogenous nature of the IoT datasets. Heterogeneity is 

considered in terms of network structure, the number of malware attacks, and a number of 

devices used during data collection. It is because, the new attacks are being created and 

therefore, training ML algorithms using recently available data is inevitable. The 

mentioned datasets do not reflect the complete heterogenous nature, which is important for 

addressing the standardization problems. 
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4.1.1 Ton-IoT Dataset  

Ton-IoT is a heterogenous IoT network dataset publicly available. The dataset was 

collected from realistic IoT sources in a controlled lab environment at Cyber Range and 

IoT labs, University of South Wales (UNSW) Canberra, Australia. The test-bed includes 

the scenarios of IoT and Industrial IoT (IIoT) with several sensors to collect telemetry data. 

In addition, a diverse set of operating systems including; Windows 7, Windows 10, Linux, 

Kali Linux, and virtual machines, including Ubuntu 14 and 18 TLS were used for the 

deployment. The critical aspect of the Ton-IoT testbed is its criteria of fulfilling the net-

work heterogeneity. The network created in this test-bed scenario uses all the major layers 

of communication for an IoT system i.e, the Edge layer, Fog layer, and cloud layer, to 

ensure the complete sense of network heterogeneity in the data collection [57].  

The dataset consists of nine different types of attacks on web applications, network 

gateways, and operating systems. All these different types of attacks are described below. 

The network flow dataset is carefully labeled and provided in comma-delimited CSV 

format for compatibility with various platforms. Figure 5 shows the sample distribution in 

the dataset. The network flows dataset provided in CSV format is recommended by the 

authors for experimentation and used in this study. The network dataset consists of 461,043 

rows. The normal traffic denoted as '0' comprised of 300000 samples (65.07%), whereas 

the malicious data denoted as '1' is equal to 161043 samples (34.93%) of the total data. The 

dataset is further labeled into categories of the attacks carried out and their distribution, as 

shown in Figure 6.Figure 6 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Binary  Label Distribution in Ton-IoT Dataset 
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4.1.2 Attack Categories in Ton-IoT Dataset 

The dataset consists of nine different attack categories, as described below. 

1. Scanning Attack: this is the first step for exploiting any system further. Scanning is used to 

find the vulnerabilities in the target systems, such as open ports. The scanning attack gath-

ers all this information and carries on with further actions on that victim. 

2. Denial of Service (DoS): DoS is a famous attack where the target is flooded with packets 

to interrupt that host's services and ultimately take it down. DoS interrupts the services and 

makes them unavailable to the customers. It can be very harmful to the businesses until its 

recovery 

3. Distributed Denial of Service (DDoS): This attack is even more dangerous than DoS. The 

target devices are bombarded with a massive number of packets from various attackers 

such as Bots. IoT devices are vulnerable and weak against these types of attacks because 

of bandwidth constraints. 

4. Backdoor: This is a dangerous attack, especially on web applications, as malware is in-

stalled without letting know to the host, and unauthenticated access is granted. With this 

attack, the hacker can access databases on that application, steal the data, or hijack the 

server. The adversaries can use this attack to gain access to IoT systems and initiate a DDoS 

attack on the whole network. 

5. Injection attack: the injection attack has many categories itself. The hacker can exploit the 

code and change its commands to practice malicious activity. The host cannot identify the 

code injections and compile them as part of the code hence losing control to the adversary. 

The IoT systems are quite vulnerable to these types of attacks. 

6. Password Cracking: The hackers try to break your password using brute force methods in 

this attack. Due to the default and weak password encryption methods, IoT devices are the 

easiest target for hackers to gain access. Once the attacker gains access to the devices, he 

can change the setting and control the devices accordingly. 

7. Man in the middle (MITM): this is a famous network attack on the target devices where an 

attacker places himself in the middle of the two devices without letting them know and 

captures the packets from the source to the destination. This attack is carried to gain access 

to critical information in the network data, such as login details, credit card information, 

etc. 

8. Ransomware: Ransomware is one of the most lethal types of attack on computer systems 

that completely blocks legitimate user access to the system. The attackers enter the target 

systems and block the owner or the system's user until he is paid. Every year millions of 
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dollars are earned by the attackers using this type of attack. This can be very harmful to 

IoT devices, especially for IoT systems. 

 

9. Cross-Site Scripting (XSS): XSS is also a type of injection attack mostly carried out on 

vulnerable web applications. An IoT server can be infected with malicious code and mas-

querade as a legitimate user. This is usually done through browser-side scripting.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Features in the Ton-IoT dataset are divided into six categories depending upon their nature. 

The authors of the dataset provided a detailed analysis on the quality Ton-IoT in [58]. The 

categories of the features include connection activity, DNS activity, SSL activity, statistical 

activity, HTTP activity, and violation activity. All the features and their description is pro-

vided in Table 1. In addition, it is found that most of the traffic in the Ton-IoT dataset 

consists of TCP packets. It shows the communication protocol used in Ton-IoT is mostly 

TCP and UDP and some samples of ICMP as shown in Figure 7. 

 

 

Figure 6: Multiclass Label Distribution in Ton-IoT Dataset 
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Table 1: Ton-IoT Feature Description 

ID Feature Description 

1 ts Time of connection flows 

2 src_ip                     Source IP address 

3 src_port                   Source device port address 

4 dst_ip                     Destination device port address 

5 dst_port                   Designation device port address 

6 proto                      Transmission Control Protocol 

7 service                    Dynamically detected protocols (DNS, HTTP, SSL) 

8 duration                   Time difference between first packet and last packet 

9 src_bytes                  Payload bytes from sources (TCP sequence numbers) 

10 dst_bytes                  Destination bytes (TCP sequence numbers) 

11 conn_state                 Tells about the connection state between src and dest 

12 missed_bytes               Number of missing bytes in content gaps 

13 src_pkts                   Number of original packets from source 

14 src_ip_bytes               Number of original IP bytes from source 

15 dst_pkts    Number of destination packets from destination 

16 dst_ip_bytes Number of destination IP bytes  

17 dns_query Domain name queries 

18 dns_qclass Specification of DNS query class 

19 dns_qtype Types of DNS query 

20 dns_rcode DNS response code  

21 dns_AA Authoritative answers of DNS server 

22 dns_RD Recursion desired of DNS 

23 dns_RA Recursion available of DNS 

24 dns_rejected DNS query rejected by server 

25 ssl_version SSL version offered by server 

26 ssl_cipher SSL cipher suite which the server chose 

27 ssl_resumed initiate new connection (T denotes resumed) 

28 ssl_established SSL flag indicate establishment of connection  

29 ssl_subject Subject of X.509 cert offered by server 

30 ssl_issuer Trust owner of SLL  

31 http_trans_depth Pipeline depth into HTTP connection 

32 http_method HTTP request method (GET, SET, HEAD) 

33 http_uri URIs used in HTTP request 

34 http_version HTTP version used 

35 http_request_body_len uncompressed size of data transferred from HTTP client 

36 http_response_body_len uncompressed size of data transferred from HTTP server 

37 http_status_code Status code returned by HTTP 

38 http_user_agent Values of user agent in HTTP header 

39 http_orig_mime_types ordered vector of mime types from source 

40 http_resp_mime_types ordered vector of mime types from destination 

41 weird_name Names of anomalies violations  

42 weird_addl Additional information 

43 weird_notice Indicates if violation anomaly was turned into notice 
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4.1.3 IoT-23 Dataset 

IoT-23 is a recently released real-time IoT network dataset. It has 20 malware captures 

executed in IoT devices and three captures for benign IoT device traffic. This IoT network 

traffic dataset was captured in a controlled environment at Stratosphere Laboratory, AIC 

group, Czech Technical University, Czech Republic. The packet flows were captured dur-

ing 2018 and 2019. This dataset is also among the most heterogenous IoT network data 

because it has various attacks and is collected from real-time IoT devices. The full dataset 

is enormous as it contains more than 200 million labelled flows. The authors of the dataset 

created 23 different malware capture scenarios, out of which three captures were com-

pletely normal traffic from three IoT devices: Amazon Echo, Philips hue, and Somfy door 

lock. The packets were captured using Wireshark software and were converted into logs 

using Zeek software. One of the main advantages of using this dataset is different real-time 

IoT BotNet attacks such as Mirai, Okiru, Torri, Gagfyt, Kenjiro, Hakai, IRCBot, Muhstik, 

Hide and Seek, and Hajime was executed on device using Raspberry Pi [56]. These BotNet 

attacks are already described in the respective section. The features and their description in 

the IoT-23 dataset are given Table 2. The features in italics are used in this study. The attack 

distribution after pre-processing shown in Figure 9. Most of the scenarios in IoT-23 dataset 

consist of scanning attacks. It also includes three main communication protocols such as 

TCP, UDP and ICMP. However, it is observed that most of the packets were the TCP sync 

floods.  Hence one can infer from such a large amount of TCP packets that the BotNets 

used in IoT-23 dataset targeted TCP ports mostly. 

Figure 7: Communication Protocols in Ton-IoT Dataset 
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 TCP flooding packets are used initiate the DDoS against the target devices. These packets 

sometimes can be in thousands which results in failure of the devices due to resource con-

straint.    

 

 

 

 

 

 

 

 

 

 

 

One can observe from Figure 8, that over one million samples of the data consist of TCP as a 

communication protocol. This number changes if the number of samples from the original dataset 

is increased.  

Table 2: The Zeek Log Features in IoT-23 Dataset 

Feature  Data Type  Description 

ts  Float Time of the packet sent (unix date command) 

uid  string  Unique ID of Connection 

id.orig h  string  Source IP address 

id.orig p  integer  Source Port  

id.resp h  addr  Destination IP address 

id.resp p  integer  Destination Port  

proto  string  Transmission protocol (tcp, udp, icmp) 

service  string  Type of service (dns, arp etc)  

duration  integer  Time of the last packet received 

orig bytes  integer  Source bytes (payload) 

resp bytes  integer  Destination bytes (payload) 

conn state  string  Connection state 

local orig  bool  
If conn originated locally T; if remotely F. If 

Site::local nets empty, always unset. 

missed bytes  integer  Number of missing bytes  

history  string  History of previous connection established 

orig pkts  integer  Number of packets sent by the source 

orig ip bytes  integer  Number of IP level bytes sent by source 

resp pkts  integer  Number of packets sent by destination (responder) 

resp ip bytes  integer  Number of IP level bytes sent by destination 

tunnel parents  set  Used only for tunneled connection 

Figure 8: Communication Protocols in IoT-23 Dataset 
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4.1.4 Attack Categories in IoT-23 Dataset 

The attack types in IoT-23 are described below:  

1. Attack: This label represents any attacks observed from the packet flow. The authors do 

not specify the type of attack while labelling this flow.  

2. Benign: All the expected traffic flows were labelled as benign.  

3. C&C: This label shows that the target was connected to Command and Control (CnC) 

server.  

4. DDoS: Distributed denial of service attacks executed by infected devices. This can be de-

tected by the number of packets directed to the same IP address. 

5. FileDownload: This label indicates the downloading of the malicious code on the infected 

device. 

6. HeartBeat:  This label indicates that the packets sent for the infected device were used to 

keep track of the device. 

7. Mirai: This label indicated the characteristics of the Mirai botnet.  

8. Okiru: This label indicates the Okiru botnet attack 

9. PortofAHorizontalPortScan: This suggests that the connections are used to execute hori-

zontal port scanning for further attacks. 

10. Torri: This label indicates the Torri botnet attack. 

 

 

 

 

 

 

 

Figure 9: Attack Label Distribution in IoT-23 Dataset   
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5 Experiments and Methodol-
ogy 

This chapter describes the experimental work done in this study. It mainly discusses the 

methodology steps taken, such as data preprocessing, feature engineering, and model se-

lection. A brief description of the ML algorithms used in this study is also provided. 

5.1  Methodology 

The methodological approach adopted in this research is shown in Figure 10. The method-

ology is divided into four stages. Each stage has different steps and performs various func-

tions. The first stage is related to importing the data and pre-processing it for further use. 

The second stage is associated with the selection of features. In this stage, the most im-

portant features from the dataset are extracted. The model training and testing is performed 

in the third stage of this system. Finally, the last stage is designed to analyse the results of 

the models on unseen data and present the findings and analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10: Methodology Stages 
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After correctly labelling the Ton-IoT dataset is provided by authors in csv format. The data is 

imported using panda's library and pd.read_csv function. It is important to note that for 

experimentation, the data was split into train-test split to avoid any overfitting. The train-test 

split ratio was kept as 80:20 as per the Pareto principle [59]. In addition, the hold-out validation 

method was used to measure the model's validity on test data.  

In order to investigate the efficacy of supervised learning algorithms on Ton-IoT dataset, ini-

tially, the models were evaluated using all the features included in the dataset. The results 

achieved are presented the relevant section of the report. And in the second run, same models 

were evaluated using the remaining features selected using the feature selection technique. Alt-

hough we could directly remove the features with low information gain value, but the results 

will all features are presented to analyse the impact on the training time of the models. The 

evaluation results and training and testing time costs of all the models were recorded. 

5.1.1 Data Pre-processing 

Data pre-processing is transforming the raw data into clean and well-format so that the ML 

algorithm can perform its task efficiently [60]. Pre-processing is the primary and essential 

step in ML as not all the time the data come in the standard form. The publicly available 

datasets can possess duplicate, null, and unnecessary attributes which have no importance 

for the ML task. Therefore, it is essential to remove the duplicate entries, clean the data, 

and eliminate the attributes of non-significance. Performing the pre-processing of the data 

results in less complexity for the ML model, less resource utilization in terms of time, and 

better model results. 

5.1.2 Ton-IoT  

The Ton-IoT dataset is imported using the pandas read_csv function and the cleaning 

process is performed. The dataset has 461,043 rows in total. The normal traffic flows 

comprise of 300000 approximately (65.07%), whereas the attack data is equal to 161043 

(34.93%) of the total data. The dataset has 43 features, excluding the last two columns of 

label and type. The label columns are 0 and 1 for normal and malicious flows. At the same 

time, the type columns have nine categories of attacks. In addition, the missing values in 

the dataset are replaced with 0, as dropping these values might cause a loss of critical in-

formation [45]. The features such as 'src_ip', 'src_port', 'dst_ip', 'dst_port', and' ts' are 

removed in the beginning as these features can cause overfitting in prediction [50].  
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One of the main challenges while dealing with such datasets is to have many categorical 

features, and each column has several categories. Therefore, it requires encoding these 

categorical features into numerical as the ML algorithms do not work with categorical 

features directly. We convert the categorical features into numerical using the LabelEn-

coder() function from the sklearn library of python [61] . We use label encoding instead  

the one-hot encoding as the one-hot encoding increases the number of columns in the 

dataset by making a column of every single category. This significantly increases the 

dimensionality of the dataset and can affect the performance of ML. In addition, it also 

increases the complexity of the overall model [61]. 

ML algorithms often require data in the same range or scale. To scale the data in the same 

range, the standard normalization or scaling of the features using StandardScaler()  class 

of the sklearn.preprocessing library is used. We used the unit variance method called the 

Z-score scaling method to standardize the columns into a normal distribution range [61]. It 

is preferred because it ensures no bias toward larger values in the dataset. The formula for 

unit variance is shown as (1): 

𝑧 =
𝑥 − 𝑢

𝑠
 (1) 

Where 'x' represents the sample, 's' is the standard deviation and 'u', represents the mean of 

the data sample. 

5.1.3 Feature Selection 

One of the major challenges in building an accurate ML model is the selection of important 

features. Specifically, a network intrusion dataset can have a huge number of unwanted 

and redundant features with zero influence on the model's performance. Hence, it is vital 

to perform feature engineering on a large dataset to select the best features which influence 

the overall performance of the ML model. In addition, the feature selection will also reduce 

the computational cost of the model [62]. We selected relevant features using mutual 

information technique also called information gain. Information gain is a heuristic 

technique to choose the attribute while building decision trees. We used the mu-

tual_info_classif() library of the sklearn to calculate the mutual information or dependency 

between the variables with respect to target. The information gain value of all the features 

is plotted in Figure 11. Higher values mean a higher dependency of the variable. If two 

variables are independent, the score is zero.  
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5.1.4 IoT-23 Dataset 

As discussed earlier, the IoT-23 dataset is one of the largest datasets in terms of data 

samples. Given our system's technical limitation, we decided to sub-sample the dataset and 

extract approximately one million samples. In our study, the labeled lighter version of the 

dataset is used. The dataset is provided in conn.log format. ML models cannot understand 

and process this file format directly. Hence it is required to be converted into readable form. 

Some researchers combined the label and detailed-label columns to reduce the complexity 

[63] . We also combined these columns during the pre-processing phase. In our case, the 

malware scenarios were combined to generate a new dataset. The Zeek log files are con-

verted into csv format using panda's utilities. Specifically, 1244131 rows were extracted 

from the log.conn files and converted to a csv file using pandas' utility. This data contains 

almost all the botnet attacks executed in during the test-bed scenario. However, most of the 

packets consist of PortOfHorizontalScanattack. Therefore, the dataset is imbalanced in na-

ture. 

Figure 11: Feature Importance Values  
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 In addition, the three benign scenario were captured from real time device. Those scenarios 

are also combined to increase the total number of benign samples. 

 During prep-processing, detailed_label, tunnel_parents, uid, IP addresses, and port num-

bers, service and history columns were dropped [64]. Some of the hese features could cause 

an overfitting problem, and some were either unnecessary for further processing or 

completely null. 

In addition, for simplification, we rename some of the labels. The’ 

PartOfAHorizontalPortScan’ was renamed ‘POHS’, and Okiru-Attack was simplified as 

‘Okiru’. The newly created dataset consists of all the BotNet attacks listed by the authors. 

However, the new dataset was highly imbalanced for some classes, such as C&C-

HeartBeat, C&C-Torri, FileDownload, and few others were hardly in the hundreds.  

Hence we dropped these labels as the number of samples of these labels was relatively 

insignificant. After removing those attack labels, only five labels have remained in the data. 

The remaining attack distribution is shown Figure 9. Similar to the Ton-IoT, this dataset 

also consisted of many null values replaced by 0. In addition, the dataset also consisted of 

categorical variables, which were encoded into numerical using LabelEncoder() class from 

sklean. Like Ton-IoT, the data was normalized using StandardScaler() class of the 

sklearn.preprocessing. It should be noted that no feature selection was performed in this 

dataset since the number of features is already limited. In addition, some of the features 

which could cause overfitting were already dropped.  

5.1.5 Implementation Framework and Tools 

The experiments were performed using Intel(R) Core(TM) i5-8365U CPU @ 1.60GHz, 

1.90 GHz Dell laptop with 12GB RAM.The algorithms were coded using Python version 

3.7 and Sklearn library of the python. The data preparation and pre-processing were 

performed using pandas and NumPy libraries of the python. To perform all these 

computations, Jupyter Notebook version 6.1.4 was used. In addition, many ML libraries in 

python, such as sklearn, matplotlib.pyplot, train_test_split were utilized for performing 

various tasks. 

5.2 Machine Learning Models 

Machine Learning can be supervised or unsupervised. The supervised learning uses labeled 

data to perform the task, whereas unsupervised learning can be applied to unlabeled data. 
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These methods can be applied depending on the application. The classification methods 

come under supervised learning, and clustering is called unsupervised learning. 

 In this study, various classification algorithms are used to predict output from labeled data. 

These methods include LR, DT, RF,  NB, KNN, and XGB. Each method has its advantages 

and disadvantages. But all these algorithms are widely applied for task of classification.  

These classification methods are described in detail in the following sections. 

5.2.1 Logistic Regression  

LR [65] is basically the variation of linear regression. It is commonly used for classification 

problem, specifically for binary classification. Given an input variable, LR is used to pre-

dict the outcome of a non-continuous outcome. It uses the probability distribution to check 

which sample fits best to which category. The range of LR is bounded between 0 and 1. 

The mathematical intuition of the logistic regression is given in (2 ) 

ℎ𝜃(𝑥) = 𝜎 𝜃𝑇𝑋            (2) 

Where ℎ𝜃 is the hypothesis, X represents the input vector, 𝜎 is the sigmoid function given 

in (3) and   𝜃𝑇 shows the transpose of LR parameters. 

 

𝜎(𝑥) =
1

1 + 𝑒(−𝑥)
             (3) 

5.2.2 Decision Tree  

DT  [66] is a widely used supervised learning method for the purpose of predicting the 

categorical target variable. The goal of DT is to predict the variable by making a tree of 

decision rules from the input features. DT can be used for both i.e, binary classification as 

well as multiclass classification problems. The decision tree uses two methods of splitting 

criteria already programmed in sklearn library. The default splitting method is Gini; how-

ever, one can also choose entropy. In this study, we used Gini as our splitting criteria as 

given in (3). The max_depth was set to 20 to avoid any overfitting and the split criteria was 

set as best.   

𝐺(𝐷) = ∑(𝑃(𝑖) ∗ (1 − 𝑃(𝑖))           (4)

𝐶

𝐼=1

 

Where D is the training dataset, C is the collection labels, and p(i) represents the proportion 

of samples with class label I. If the class is one in C, the Gini impurity is zero. 
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5.2.3 Random Forest  

Random forest is a tree-based ensemble learning method [67]. It is arguably the most pop-

ular method among researchers and ML engineers for the purpose of classification. It pro-

vides the best results even without turning the hyperparameters a lot.  

It creates the forest of the trees by combining various decision rules. It can also be used 

easily using sklearn library of python. The RandomForestClassifier() method of sklearn 

library provides the ability to tune the parameters such as max-depth, number of estimators, 

and splitting criteria [68]. The number of estimators was set to 200, whereas the split cri-

teria, in this case, was also set as Gini impurity. 

5.2.4 K-nearest Neighbors  

KNN [66], is another supervised learning method that works completely different from the 

probability-based methods such as LR and NB. KNN groups the labels or target variables 

based on the similarity of using the simple distance-based formula. The number of neigh-

bors is initiated in the beginning, and the distance is calculated on the new data point to 

decide which neighbor the new sample belongs to, based on the training dataset. A simple 

method to measure the distance between two points is the Euclidean distance. However, 

this method is very slow compared to the ensemble learning techniques. The sklearn pro-

vides two options of selecting the distance measurement technique i.e the Manhattan dis-

tance and Euclidean. In this study, Euclidean distance (5) is used.  

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                     (5) 

 

5.2.5 Gaussian Naïve Bayes  

GNB [69] is a variation of Naïve Bayes algorithm, a probability calculation method that 

relies upon the Bayes Theorem to predict the outcome. These methods assume that the 

value of a particular variable in a classification problem is independent of the other varia-

bles.  

Although it is not the most popular method for multiclass problems, still used due to its 

low computational cost and fast performance. GNB uses Gaussian normal distribution and 

supports continuous values. The mathematical expression GNB probability calculation is 

shown in (6) 
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𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎2
 𝑒^(−

(𝑥𝑖 − 𝑢𝑦)
2

2𝜎𝑦  
2

          (6) 

 

5.2.6 eXtreme Gradient Boosting 

XGB [70] is also one of the most widely used gradient boosting methods for the task of 

classification. XGB is famous because of its ability to control the overfitting problem of a 

decision tree using a more regularized model formalization. The XGB can be easily imple-

mented using XGBClassifier() in sklearn python [70]. XGB applies robust regularization 

methods to control the overfitting. Hence, usually, the default method can also produce the 

best results. It is a fast and efficient method in terms of resource utilization. This method 

is preferred to optimize the resources such as memory and hardware computation require-

ments. In our study, default parameters are used.  

The XGB algorithm aims at optimizing the cost objective function using an additive ap-

proach [71]. The cost function is composed of the loss function (d) and regularization term 

(beta) as shown in (7) 

 

Ω(θ) = ∑ 𝑑(𝑦𝑖, 𝑦𝑖
^ 𝑛

𝑖=1 ) + ∑ 𝛽(𝑓𝑘)𝐾
𝑘=1        (7)  

 

 
 

The first term in equation (10) represents the loss and the second term is the regularization. 

Where 𝑦𝑖
^ represents the predictive value, n is the number of instances, K is number of trees 

and fk is the tree from ensemble trees.  The regularization term of the XGBoost algorithm 

is shown in (8) 

 

𝛽(ft) = γT +
1

2
 𝛼 ∑ |𝑐𝑗|

𝑇

𝑗=1

+ 𝜆 ∑ 𝑐𝑗         (8)
2

𝑇

𝑗=1

 

 

Where γ is the minimum split loss reduction, λ represents the regularization terms and c is 

the weight associated to each leaf. 
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6 Results and Discussion 

This chapter describes the results of the models implemented in this study. A detailed 

discussion about the evaluation metrics is presented. The results are divided into binary 

classification and multiclass classification problems. In the first section of this chapter, the 

evaluation metrics used in this study are briefly described. We used accuracy, precision, 

recall, and f1-score as the evaluation criteria for the ML models. 

Moreover, the results of ML models using Ton-IoT datasets are discussed in the second 

part of this chapter. The classification results achieved with the IoT-23 dataset are 

discussed in the third section. 

6.1 Evaluation Metrics 

 

• Accuracy  

 

Accuracy simply represents the total ratio or percentage of correctly classified instances 

from attack or normal traffic. It is represented as (9) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
   (9) 

 

 

• Precision 

 

Precision is the measure of attacks which were correctly classified out of total attacks. It 

is represented as follows (10) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (10)  

 



-36- 

• Recall 

 

Recall is the measure of total true positives identified by the model. In simple words, for 

all attacks that were actually the attacks, recall tells how many were correctly identified by 

the model. It is calculated as shown in (9)  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (11) 

 

• F1-score 

 

The fourth metric that we use to evaluate the models is the F1-score. It computes the 

weighted average of the accuracy and recall of the model. It can be represented as follows 

(12) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (12) 

 

6.2 Ton-IoT Results 

This section presents the results of the ML algorithms on the Ton-IoT dataset.  

6.2.1 Binary Classification 

The Ton-IoT dataset contains the binary labels as well as the multiclass labels. The binary 

labels are represented as benign and malicious data. In contrast, multiclass labels are 

distributed in various types of attacks. The performance of the models in the binary class 

can be seen in Table 3. 

It can be observed that LR and GNB are not the best choices for classifying the malicious 

and benign samples in this dataset. These two models provide 75% and 44% accuracy 

scores, respectively. This result was achieved using the default parameters of the models 

imported using sklearn library of python. However, these algorithms are fast in terms of 

time computation on the training dataset. In addition, the AUC score of the LR and GNB 

is achieved to be 0.86 and 0.62, respectively. The ROC curve of LR and GNB is shown in 

Figure 12. 
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Table 3:Binary Classification Results of all Models 

 

 

On the other hand, the tree-based classifiers such as DT, RF, and XGB provided an accu-

racy of 0.99 with varying time costs. The precision, recall, and f1-score of these models 

are above 0.98. The training times for DT, RF, and XGB are 2.71, 106.24, and 18.89 sec-

onds respectively. The ROC curve of these classifiers is shown in Figure 13. It can be 

observed from the results that all tree-based algorithms have provided almost similar re-

sults on a binary classification problem. However, the best results were achieved with RF 

and XGG. 

 

 

 

 

 

 

 

 

 

Model 

Accurac

y Precision Recall 

F1-

score 

Train 

time (s) 

testing 

time (s) 

LR 0.745 0.66 0.57 0.61 33.09 0.02 

GNB 0.436 0.38 0.98 0.55 0.38 0.22 

RF 0.992 0.986 0.992 0.989 106.24 5.81 

DT 0.991 0.984 0.991 0.988 2.71 0.06 

KNN Model 0.991 0.984 0.990 0.997 0.06 1925.26 

XGB 0.992 0.995 0.992 0.988 18.89  0.07 

Figure 12: ROC characteristics of LR and GNB 
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 Moreover, the performance of the KNN classifier on Ton-IoT data is also comparable to 

the tree-based methods. The KNN-classifier provided an accuracy of 0.99, while the pre-

cision score was 0.98.  

In terms of training and testing time, KNN is the costliest algorithm, with a training time of 0.6 

seconds and a testing time of 1925 seconds. The distance measurement method was kept as Eu-

clidean, and the total number of neighbors was set to 5 for KNN.   

 

 

 

 

 

 

 

 

 

 

 

In addition, the confusion matrix plot of these models for binary classification is shown in Figure 

14. Confusion matrix is another evaluation method commonly used in classification problems. It 

tells about the actual and the predicted labels. It should be noted that here ‘0’ represents the 

normal traffic, whereas the ‘1’ represents the malicious traffic. It can be noted from Figure 14(a) 

that LR has classified true (normal) labels as false. More than 13000 normal samples were mis-

classified as the attack samples, and more than 9000 samples were predicted as a false negatives. 

Similarly, the GNB model misclassified almost all normal traffic as an attack. It can be seen in 

Figure 14 (b) that GNB predicted the majority of samples as false negatives. As given in  Figure 

14(c) and (d), the confusion matrix of DT and RF looks almost similar. The prediction error rate 

of these classifiers is shallow. Finally, the KNN and XGB classifiers also predicted the target 

samples correctly. Figure 14( e ) and (f) show the confusion matrix of the KNN and XGB. Only 

less than 500 samples were misclassified as either false positive or false negative in both cases. 

Therefore, the TPR rate of these Is higher and FPR is lower.  

 

Figure 13:ROC characteristics of DT, RF, KNN, and XGB 
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Figure 14  (b) Figure 14 (a) 

Figure 14  (c) Figure 14 (d) 

Figure 14: Confusion Matrix (Binary Classification) 

Figure 14 (e) Figure 14 (f) 
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6.2.2 Multiclass classification  

Similar algorithms are also tested on multiclass target variables. Initially, the results are evalu-

ated on the pre-processed data with all 38 features. It is found that the tree-based algorithms 

perform excellently with this baseline dataset. The LR can cause a convergence problem if the 

number of iterations is not optimum. In this study, the parameters of the LR were set as follows; 

the solver was set as ‘sag’, because the linear solver doesn’t work with multinomial classes. In 

addition, the default class for the multiclass problem is one-v-rest or ‘ovr’, we changed this to 

multinomial, and the number of iterations was set to 300. However, it is concluded that LR is 

not the best choice, especially for the multiclass problem on the Ton-IoT dataset. It reaches an 

accuracy of approximately 65%, precision, recall, and F1-score of 0.52, 0.649, and 0.55, respec-

tively.  

Table 4: Evaluation Metrics of Models on All Features 

 

 

 

 

 

 

 

 

 

The best performances were achieved with DT, RF, KNN, and XGB algorithms. It can be noted 

from Table 4, that the accuracy of these models is above 98%. At the same time, the XGB pro-

vides the highest accuracy of 98.4%, followed by RF (98.3%) and DT (98.2%). The KNN clas-

sifier provided an accuracy of 98.1%. It can further be observed that the other metrics, such as 

precision, recall, and f1-score, remain almost similar for all the models. The GNB is the worst 

performing algorithm of all these ML models, with an accuracy of just 7% and a precision of 

68%. It is probably because of the imbalance in the dataset. Hence, GNB cannot be chosen as the 

classification algorithm for multiclass intrusion detection problems. The evaluation metrics can 

also be seen in Figure 15. 

Model Accuracy  Precision Recall F1-score 

LR 0.649 0.522 0.649 0.548 

GNB 0.076 0.684 0.076 0.047 

RF 0.983 0.984 0.983 0.983 

DT 0.982 0.982 0.982 0.982 

KNN 0.981 0.982 0.981 0.982 

XGB 0.984 0.985 0.984 0.984 
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We took a step ahead by investigating the impact of dropping the number of features with 

the lowest gain ratio information. All the features with shallow mutual importance scores 

were dropped to see the impact on models’ training time and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

The performance of the models using the 18-best features can be seen in Table 5. It can be 

observed that the performance of these models doesn’t improve or degrade a lot by drop-

ping the number of features. However, the training time and model complexity decrease 

essentially. It is found that with a further reduction of the features from the dataset, the 

accuracy performance of the model may start reducing. The evaluation metrics can also be 

seen from Figure 16.  

Table 5: Performance Metric with 18 Features 

 

 

 

 

 

 

 

 

Model Accuracy Precision  Recall F1-score 

LR  0.649 0.659 0.65 0.65 

GNB 0.12 0.71 0.12 0.10 

RF 0.983 0.984 0.983 0.983 

DT 0.982 0.982 0.982 0.983 

KNN 0.981 0.982 0.981 0.982 

XGB 0.984 0.985 0.984 0.984 

Figure 15: Evaluation Metric on All Features (Ton-IoT) 
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On the other hand, one can observe the impact on the training time of all the models from  

Table 6.  It can be derived that the training time of all the models keeps reducing with the 

reduction in the total number of features. As far as the time cost of the models is concerned, 

GNB, and DT consume the least training time, whereas the LR, RF, and XGB consume 

comparatively more time than others. It should be kept in mind that the KNN uses less time 

during training, but it is the most expensive model for prediction.  

 

 

 

 

 

 

 

 

 

 

However, reducing the number of features results in less time and memory computations. 

The training time of LR with 18 features was reduced from 128.81 seconds to 41 seconds. 

Similarly, DT and RF also show a reduction in training time at 18 features. A significant 

change from 2866 seconds to 1990 seconds can be observed in the prediction time of KNN. 

Table 6: Model Training Time (second) Vs Number of Features 

Model  features38 features18 

 LR 128.81 41 

 GNB 1.38 0.15 

 DT 1.98 1.3 

 RF 83.71 68 

 KNN 2866 1990.56 

 (XGB) 238.8 148.48 

 

It is important to note that not all the features in Ton-IoT contribute to the accurate detection of 

network attacks. Hence many of the features can be dropped. However, certain features cannot 

be dropped in any case while detecting the IoT BotNet attacks. 

Figure 16: Evaluation Metrics of All Models (18-features) 
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These features include: proto, service, src_bytes, dst_bytes, conn_state, duration, src_pkts, 

src_ip_bytes, dst_pkts, dst_ip_bytes. These features carry important information, such as 

the type of protocol that can help understand the packet and the attacker’s intention. In ad-

dition, the number of source packet bytes can tell the size of the packets, which can be 

compared with the normal packet size and the malicious packet size. Malicious packet bytes 

would be different or sometimes lesser than the original legitimate source.  

6.2.3 Accuracy of Models in Each Class  

The model’s performance was further evaluated in terms of accuracy in each class. There 

are ten different class labels in the Ton-IoT dataset. The authors correctly labelled these 

attacks during the collection of the dataset. A further evaluation of the models for these 

types of attacks are carried out. It can be observed from Table 7, that some of the attacks 

were entirely not detected or classified by the models. Hence their accuracy is 0. For ex-

ample, in the case of GNB, the overall accuracy of this model is the lowest. But it com-

pletely misclassified some of the attacks, such as backdoor, injection, and XSS. However, 

its accuracy with a ransomware attack is 100%.  

In addition, LR has also performed. These models could not detect some attacks because 

of the imbalance of the data. Since we split our data into an 80:20 ratio, some attacks might 

likely be in the training dataset but not the test set. 

Table 7: Accuracy of Models in Each Class Label 

 

Similarly, it was also unable to detect some labels such as backdoor, DdoS, MITM, and 

scanning. But LR classified the ‘normal’ class perfectly with an accuracy of 94%, followed 

by XSS with 54%. On the other hand, DT predicted almost all the categories of attacks 

Class Labels GNB LR DT RF KNN XGB 

Backdoor 0 0 0.998 0.999 0.999 0.998 

DdoS 0.004 0.25 0.92 0.974 0.972 0.977 

DoS 0.0002 0 0.982 0.982 0.98 0.984 

Injection 0 0.001 0.969 0.971 0.964 0.969 

MITM 0.08 0 0.705 0.785 0.705 0.7723 

Normal 0.003 0.94 0.992 0.993 0.991 0.992 

Password 0.0017 0.0037 0.979 0.979 0.974 0.979 

Ransomware 1 0 0.933 0.933 0.932 0.936 

Scanning 0.001 0 0.99 0.992 0.992 0.994 

XSS 0 0.569 0.899 0.907 0.901 0.918 
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with outstanding performance. The best classification accuracy of over 99% was achieved 

with the backdoor, ‘normal’, and scanning class. At the same time, the lowest accuracy 

(75%) was achieved with MITM. Similarly, RF performed better with all the classes except 

MITM. It provided better accuracy (78.5%) than DT for the MITM label. A similar pattern 

can be observed in the case of the KNN and XGB classifiers. The KNN and XGB classified 

all the labels with a high accuracy rate.  

6.2.4 Results Comparison 

The investigation of the efficacy of ML algorithms on Ton-IoT is still yet to be fully ex-

ploited. It is because the Ton-IoT dataset is released recently. Hence, not much has been 

explored about this dataset as far as ML algorithms are concerned. We compare our results 

with recently published research in [50]. The authors in this work proposed various models 

based on the algorithms we implemented in this work. 

 The authors used the Chi-square test for feature selection and also implemented SMOTE 

method for data balancing. In our case, the feature selection is performed using mutual 

information. The comparison of the results is shown in Table 8. It can be observed that our 

proposed models and existing work perform more or less equally. In our case, DT and RF 

models provide better accuracy of 98.2% and 98.3%, respectively. 

In comparison, these models in the current work provide an accuracy of 93.4% and 93.7%, 

respectively. The proposed LR method in the existing one offers better accuracy than our 

model, whereas the XGB algorithm provides similar accuracy in both works. 

 

Table 8: Results Comparison with Existing Work 

  [50] Our work [50] Our work [50] Our work [50] Our work 

Model Accuracy Accuracy Precision Precision Recall Recall 

F1-

score F1-score 

LR 0.77 0.65 0.509 0.512 0.509 0.65 0.509 0.548 

DT 0.934 0.982 0.934 0.983 0.934 0.982 0.875 0.982 

RF 0.937 0.983 0.937 0.984 0.937 0.983 0.937 0.983 

KNN 0.979 0.981 0.979 0.981 0.979 0.981 0.979 0.981 

XGB 0.983 0.984 0.983 0.985 0.983 0.984 0.983 0.984 
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6.3 IoT-23 Results 

As mentioned earlier, IoT-23 is one of the largest IoT network malware datasets available. 

Due to the technical limitations of our system, a portion of the dataset is used for experimen-

tation in this study.  Although samples from all the scenarios were combined, some of the 

attack labels were relatively scarce. Hence, those labels needed to be dropped for proper ex-

perimentation and evaluation of the models. 

After pre-processing and cleaning the dataset, approximately 1.2 million data samples were 

saved for training and testing. In addition, the two label columns were combined to reduce the 

complexity of the data. Only five class labels were used for classification, and the results are 

presented in this section. Like Ton-IoT, the models tested on the IoT-23 are evaluated using 

accuracy, precision, recall, and f1-score.   

The results of the model models can be seen In Table 9. It can be observed that GNB and LR 

models are again behind other models in terms of accuracy. The accuracy achieved with these 

models was noted to be 0.384 and 0.648 for GNB and LR, respectively. 

Simultaneously the precision, recall, and f1-score for GNB is reported to be 0.622, 0.382, and 

0.325, respectively. However, this model is quite fast in the training process. A similar pattern 

of the results can be seen with LR. The LR models provided a 0.679, 0.684, and 0.609 for 

precision, recall, and f1-score.   

Table 9: IoT-23 Performance Evaluation Metrics 

 

On the other hand, the DT and other ensemble learning methods i.e RF and XGB, accu-

rately classified the target variable. The DT provided an accuracy of 0.902; a similar accu-

racy score was achieved with the RF and XGB. However, KNN did not reach the best 

results on IoT-23 compared to Ton-IoT. The KNN provided an accuracy score of 0.862. 

Model Accuracy Precision Recall F1-score Training Time(s) 

GNB 0.384 0.622 0.382 0.325 1.01 

LR 0.648 0.679 0.648 0.609 70.79 

DT 0.902 0.917 0.902 0.9 5.63 

RF 0.902 0.917 0.902 0.9 25.806 

KNN 0.862 0.875 0.862 0.864 921 

XGB 0.902 0.916 0.902 0.9 184.57 



-46- 

Finally, the XGB method was also able to achieve an accuracy score similar to DT and RF. 

Hence, it can be concluded that ensemble learning methods successfully classify the target vari-

ables in the IoT-23 dataset. 

The precision, recall, and f1-score values and training time of these models can be seen in Table 

9 . Figure 17  also shows the performance evaluation metrics of all models on the IoT-23 dataset. 

 

 

 

 

 

 

 

 

 

 

Further evaluation of these models is carried out for each class label. The performance of 

these models for the accuracy of each target variable is presented in Table 10 . It can be 

observed that LR was able to classify DDoS and POHS labels correctly. However, the 

accuracy of the model for other class labels is not good. A similar trend can be seen with 

GNB; however, GNB models were able to classify the Okiru attack with an overall accu-

racy of 0.99. The ensemble learning method DT, RF, and XGB provided similar patterns 

while recognizing each class label. However, KNN was able to classify only CnC with high 

accuracy, but it found it difficult to detect other attacks. 

Table 10: IoT-23 Accuracy on Each Label Class 

 Accuracy for each class label 

Class 

label LR GNB DT RF KNN XGB 

Benign 0.1 0.1 0.78 0.78 0.78 0.78 

CnC 0 0.11 0.99 0.99 0.98 0.99 

dDoS 0.81 0.81 0.81 0.81 0.82 0.81 

Okiru 0.37 0.99 0.75 0.75 0.88 0.75 

POHS 0.85 0.12 0.99 0.99 0.87 0.99 

Figure 17: IoT-23 Evaluation Metrics 
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6.4 Discussion 

The IoT networks can be structured in a distributed hierarchy. The network can be divided 

into different layers, including edge, fog, and cloud networks. Hence, heterogeneity is the 

main element of IoT network systems. The datasets used in this study were selected for 

fulfilling the criterion of heterogeneity. These datasets include traffic from real-time IoT 

devices and several types of malicious attacks. In addition, the Ton-IoT dataset contains 

real-time attacks, which are more frequent on IoT systems. On the other hand, IoT-23 con-

tains attacks from real IoT BotNets, such as Mirai, Okiru, and Bashlite. The use of these 

datasets makes this study more robust. However, the network heterogeneity does not seem 

to have affected the overall performance of classification algorithms. The main reason for 

ensemble learning providing excellent results is the inclusion of important feature sets in 

the dataset. 

Many features in both datasets were not useful and could cause overfitting of the model on 

training data. Hence it was necessary to drop those columns to avoid bias. The models were 

able to generalize well on the unseen data and provide excellent results. The datasets used 

in the study are collected from packet captures. In both datasets, the statistical features 

which represent the number of bytes from source and destination appear to have a higher 

impact on the overall results. It is also because the main difference between the malicious 

and benign is spotted using IP header payload, duration between two consecutive packets, 

and transmission protocol. The difference in the size of the payload could alarm a network 

analyser about the threat. Therefore, these features are of high importance and contribute 

more to the correct classification of attacks. On the other hand, it is quite interesting to note 

that many feature categories, especially in the Ton-IoT dataset, do not really help ML al-

gorithms to detect attacks. These categories include http and ssl features. Since this dataset 

also consists of DNS attacks, the DNS activity features are found to have a higher depend-

ency.   

6.5 Threats to Validity  

All necessary steps were taken to avoid any validity threats as much as possible.  During 

the pre-processing phase, all those features were removed that could cause overfitting. In 

addition, the data is split into training and testing sets to validate the model on unseen data. 

Further, the data is shuffled to ensure that the model does not receive the same samples 

during the testing. Besides, to make the results more robust and avoid bias in the prediction, 
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the hyperparameters of the models such as maximum depth, number of estimators, and 

number of neighbors were controlled.  

However, one can observe the imbalance in the datasets, and this imbalance is logical be-

cause it is impossible to have a balance network dataset in a real-world scenario. The IoT-

23 dataset used in this study was also highly imbalanced. We removed some of the classes 

which were significantly less in quantity. Still, POHS samples seemed to have a high per-

centage. But that doesn’t seem to have affected the overall results of the model since all 

the features which were causing the overfitting were removed in this dataset as well. How-

ever, an imbalance in the dataset might affect the performance of some algorithms. And 

this is quite visible in case of LR and GNB. However, the ensemble learning methods per-

form well on even imbalanced datasets. 

The IoT-23 is a massive dataset, and we only use 1.2 million samples approximately. More 

samples and classes extracted from the log files might alter the results. The time of the day 

(ts) feature in the IoT-23 dataset seems to have high importance and contributes to higher 

accuracy, precision, and recall scores. Although our models do not produce biased results 

overall, ‘ts’ might result in overfitting unintentionally for some models since it has many 

unique values.  

Finally, the performance of models such as RF, DT, KNN, and XGB is well established in 

the classification domain. Also, evaluation metrics such as accuracy, precision, recall, and 

f1-score are also widely accepted. Hence, we are confident that the models used in this 

study are able to generalize well on unseen data.  
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7 Conclusion and Future Work 

This chapter summarizes the research contribution of this study. Moreover, final conclud-

ing remarks and proposed future work are also provided in the later sections.  

7.1 Research Contribution  

The IoT network malware detection is an emerging field of research. It is a fast and dy-

namic field; hence many research works are being published. However, to the best of our 

knowledge, this is the first time where these two heterogeneous datasets are used for the 

analysis. 

We highlight our contribution in the following points 

• A detailed overview of the current state of art in IoT malware detection and classification 

are presented 

• Specific consideration is given to the current IoT BotNet attacks  

• To the best of our knowledge, this is the first time where these two real-time datasets with 

high heterogeneity levels in terms of network structure, number of devices, and number 

of attacks are used for the analysis 

• The feature selection process is performed to select the important features in the dataset. 

• Important features in the dataset are highlighted 

• Various classification algorithms are evaluated on real-time IoT network datasets. 

• Detailed analysis and discussion on the performance of classification algorithms are pro-

vided 

7.2 Concluding Remarks 

IoT networked systems are facing one of the biggest challenges in the form of  malware. 

One of the main reasons for being an easy attack for hackers is to have various vulnerabil-

ities in the IoT devices. In this work, we studied several IoT security challenges and op-

portunities for AI and ML to protect these devices. ML algorithms require good quality 

data. After reviewing many publicly available IoT network datasets, two heterogeneous 

and real-time IoT network datasets were selected for this study. These datasets are named 

Ton-IoT and IoT-23. In addition, supervised learning methods including DT, RF, GNB, 

KNN, LR, and XGB were selected for experimentation.  
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Furthermore, both datasets were pre-processed before training and testing. A feature selec-

tion method was also implemented to separate the best features from the Ton-IoT dataset. 

 It is found that not all the features contribute to the classification of attacks. Hence those 

features can be dropped to reduce the training time and the computational complexity of 

the models. A hold-out validation method was used to validate the models learning test 

data.  

It is concluded that not all the models implemented in this study provide perfect classifica-

tion results. Among the selected models, LR and GNB are suboptimal choices for malware 

classification using the above-mentioned datasets. At the same time, the best results were 

achieved with the tree-based ensemble learning methods and K-Nearest neighbors.  

It is recommended that classification methods such as DT, RF, KNN, and XGB can provide 

excellent result when used for classification IoT network attacks in real-time. These models 

can detect attacks with high accuracy given the proper data.  

7.3 Future Work 

For future work, there are many IoT network datasets publicly available. Transfer learning 

is an ML phenomenon that focuses on learning from one problem and applying the 

knowledge to similar context problems. 

 It is highly suggested to train models using these heterogenous datasets and test on other 

similar publicly available datasets. This would enhance the efficacy of the models and solve 

the security problems of IoT systems.  

In addition, more such data from the industry could be helpful in training the models and 

ensuring the quality of prediction. The IoT requires more research on different aspects of 

security so that industry standards can be formalized with regard to important features and 

attacks. 
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Source Code: 

The source code can be accessed here: https://github.com/aqeel2022/IoT-Network-Mal-

ware-classification-2022 
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